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1 Introduction

Object-oriented languages can be separated into single-receiver languages and multi-method lan-

guages. Single-receiver languages use the dynamic type of a dedicated receiver object in conjunction

with the method name to determine the method to execute at run-time. Multi-method languages use

the dynamic types of one or more arguments1 in conjunction with the method name to determine the

method to execute. In single-receiver languages, a call-site can be viewed as a message send to the

receiver object. In multi-method languages, a call-site can be viewed as the execution of a behavior

on a set of arguments. The run-time determination of the method to invoke at a call-site is called

method dispatch. Note that languages like C++ and Java that allow methods with the same name but

different static argument types are not performing actual dispatch on the types of these arguments;

the static types are simply encoded within the method name.

Since most of the commercial object-oriented languages are single-receiver languages, many ef-

ficient dispatch techniques have been invented for such languages ([HS97]). However, there are some

multi-method languages in use, such as Cecil ([Cha92]), CLOS ([BDG�88]), and Dylan ([App94]).

By looking at the distribution of methods in such languages, it is interesting to note that almost all

behaviors have less than four arguments. For example, in the Cecil hierarchy ([Cha92]), 54% of

the behaviors have one or no arguments; 90% have two or fewer arguments; and 96% have three or

fewer arguments. Behaviors with no arguments do not need method dispatch. Many efficient 1-arity

(single-receiver) dispatch techniques already exist. Therefore, the most important research problem

in multi-method language dispatch is how to efficiently dispatch 2 and 3-arity behaviors.

There are two major categories of method dispatch: cache-based and table-based. Cache-based

techniques look in either global or local caches at the time of dispatch to determine if the method

for a particular call-site has already been determined. If it has been determined, that method is

used. Otherwise, a cache-miss technique is used to compute the method, which is then cached for

subsequent executions. Table-based techniques pre-determine the method for every possible call-site,

and record these methods in a table. At dispatch-time, the method name and dynamic argument types

form an index into this table. This paper focuses exclusively on table-based techniques.

In this paper we present a new multi-method table-based dispatch technique. It uses a time

efficient n-dimensional dispatch table that is compressed using an extension of a space efficient row

displacement mechanism. Since the technique uses multiple applications of row displacement, it is

called Multiple Row Displacement and will be abbreviated as MRD. MRD works for methods of

arbitrary arity, and is especially time and space efficient for 2-arity and 3-arity methods. Its execution

1In the rest of this paper, we will assume that dispatch occurs on all arguments.
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(a) Type Hierarchy

A anA;
if( ... )

anA = new A();
else

anA = new C();
anA.�();

(b) Code Requiring Method
Dispatch

Figure 1: An example hierarchy and program segment requiring method dispatch

speed and memory utilization are analyzed and compared to other multi-method table-based dispatch

techniques.

The rest of this paper is organized as follows. Section 2 introduces some notation for describ-

ing multi-method dispatch. Section 3 presents the row displacement single-receiver dispatch tech-

nique. Section 4 summarizes the existing multi-method dispatch techniques. Section 5 describes

n-dimensional table dispatch and presents the new multi-method table-based technique. Section 6

presents time and space results for the new technique and compares it to existing techniques. Sec-

tion 7 discusses future work, and Section 8 presents our conclusions.

2 Terminology for Multi-Method Dispatch

2.1 Notation
��o�� o�� ���� ok� (1)

Expression 1 shows the form of a k-arity multi-method call-site. Each argument, oi, represents

an object, and has an associated dynamic type, T i � type�oi�. Let H represent a type hierarchy, and

jHj be the number of types in the hierarchy. In H, each type has a type number, num�T �. A directed

supertype edge exists between type T� and type T� if T� is a direct subtype of T�, which we denote

as T� ��T�. If T� can be reached from T� by following one or more supertype edges, T� is a subtype

of T�, denoted as T� � T�.

Method dispatch is the run-time determination of a method to invoke at a call-site. When a method

is defined, each argument, oi, has a specific static type, T i. However, at a call-site, the dynamic type

of each argument can either be the static type, T i, or any of its subtypes, fT jT � T ig. For example,

consider the type hierarchy and method definitions in Figure 1 (a), and the code in Figure 1 (b). The

static type of anA is A, but the dynamic type of anA can be either A or C. In general, we do not know

the dynamic type of an object at a call-site until run-time, so method dispatch is necessary.
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An Inheritance Hierarchy, H:

A

B

C

Method Definitions onMethod Definitions on HH 22::
γγ 11 →→ AA xx AA
γγ 22 →→ BB xx BB
γγ 33 →→ AA xx CC

The induced 2-arity product-type graph,The induced 2-arity product-type graph, HH 22

AxAAxA
γγ 11

AxB BxAAxB BxA

AxCAxC
γγ 33 BxBBxB

γγ 22 CxACxA

BxCBxC
γγ 44 CxBCxB

CxCCxC

Figure 2: An Inheritance Hierarchy, H, and its induced Product-Type Graph H�

Although multi-method languages might appear to break the conceptual model of sending a mes-

sage to a receiver, we can maintain this idea by introducing the concept of a product-type. A k-arity

product-type is an ordered list of k types denoted by P � T ��T �� ����T k. The induced k-degree

product-type graph, k � �, denoted Hk , is implicitly defined by the edges in H. Nodes in Hk are

k-arity product-types, where each type in the product-type is an element ofH. Expression 2 describes

when a directed edge exists from a child product-type P� � T �
��T

�
������T

k
� to a parent product-type

P� � T �
��T

�
������T

k
� , which is denoted P� ��P�.

P� ��P� � �i� � � i � k � T i
�
��T i

� � �j 	� i� T
j
�
� T

j
�

(2)

The notation P� � P� indicates that P� is a sub-product-type of P�, which implies that P� can

be reached from P� by following edges in the product-type graph Hk . Figure 2 presents a sample

inheritance hierarchy H and its induced 2-arity product-type graph, H�. To this end, three 2-arity

methods (�� to ��) for behavior � have been defined on H� and associated with the appropriate

product-types 2. Note that the product-type hierarchies, H�, H�, ���, are too large to store explicitly.

Therefore, it is essential to define all product-type relationships in terms of relations between the

original types, as in Expression 2.

We next define the concept of a behavior. Behaviors are denoted by Bk�, and have a name,

� � name�Bk��, and an arity, k � arity�Bk��. The maximum arity for all behaviors in the system is

denoted as K. Multiple methods can be defined for each behavior. A method for a behavior named

2The method �� in the dashed box is an implicit inheritance conflict definition, and will be explained later.
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� is denoted by �j . If the static type of the ith argument of �j is denoted by T i, the list of argument

types can be thought of as a product-type, dom��j� � T ��T ������T k . With multi-method dispatch,

the dynamic types of all arguments are needed 3.

2.2 Inheritance Conflicts

In single-receiver languages with multiple inheritance, the concept of inheritance conflicts arises. In

general, an inheritance conflict occurs at a type T if two different methods of a behavior are visible

(by following different paths up the type hierarchy) in supertypes T i and Tj . Most languages relax

this definition slightly so that an inheritance conflict is not considered to have occurred if T i � Tj or

Tj � Ti, since one of the types is “closer” to T .

Inheritance conflicts can also occur in multi-method languages, and are defined in an analogous

manner. A conflict occurs when a product-type can see two different method definitions by looking

up different paths in the induced product-type graph, Hk . Interestingly, inheritance conflicts can

occur in multi-method languages even if the underlying type hierarchy, H, has single inheritance.

For example, in Figure 2, the product-type B�C has an inheritance conflict, since it can see two

different definitions for behavior � (�� in A�C and �� in B�B). For this reason, an implicit conflict

method, ��, is defined in B�C as shown in Figure 2. In multi-method languages, it is especially

important to use the more relaxed definition of inheritance conflict (where a conflict does not occur if

one of the conflicting product-types is a child of the other). Otherwise, a large number of inheritance

conflicts would be generated for almost every method definition.

3 Single-Receiver Row Displacement Table Dispatch (RD)

Figure 3: Selector Table, S

In single-receiver table dispatch, the method address can be calculated in advance for every legal

class/behavior pair, and stored in a selector table, S . Figure 3 shows the selector table for the type

hierarchy and method definitions in Figure 1 (a). An empty table entry means that the behavior cannot

be applied to the type. At run time, the behavior and the dynamic type of the receiver are used as

indices into S ([Cox87]). This algorithm is known as STI in the literature [DHV95].

3In single-receiver languages, the first argument is called as receiver. However, in multi-method languages the first
argument is only one of the arguments.
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Although STI provides efficient dispatch, its large memory requirements prohibit it from being

used in real systems. For example, there are 961 types and 12130 different behaviors in the Visual-

Works 2.5 Smalltalk hierarchy. If each method address required 4 bytes, then the selector table would

have more than 46.6 Mbytes (���� ����	� 
 bytes). Fortunately, 95% of the entries in the selector

table for single-receiver languages are empty ([DH95]), so the table can be compressed.

Figure 4: Compressing A Selector Table By Row Displacement

Row displacement (RD) reduces the number of empty entries by compressing the two-dimensional

selector table into a one-dimensional array ([DH95, Dri93]). As illustrated in Figure 4, each row in

S is shifted by an offset until there is only one occupied entry in each column. Then, this structure

is collapsed into a one-dimensional master array, M . When the rows are shifted, the shift indices

(number of columns each row has been shifted) are stored in an index array, I .

At run-time, the behavior is used to find the shift index from the index array, I . In fact, each

behavior has a unique index determined at compile time, and it is this index which is used to represent

the behavior in the compiled code. For simplicity, we will just use the behavior name in this paper.

The shift index is added to the type number of the receiver to form an index into the master array, M .

For example, to dispatch behavior � with D as the dynamic type of the receiver, the shift index for �

is I ��� � �. The type number of the receiver, D, is 3. Therefore, the final shift index is �
� � 
, and

the method to execute is at M [4] which is B::�. Compared with other single-receiver table dispatch

techniques, row displacement is highly space and time efficient ([HS97]). We will show how this

single-receiver technique can be generalized to multi-method languages in Section 5.

4 Existing Multi-Method Dispatch Techniques

This section provides a brief summary of the existing multi-method dispatch techniques.

1. CNT: Compressed N-Dimensional Tables ([AGS94, DAS96]) represents the dispatch table as

a behavior-specific k-dimensional table, where k represents the arity of a particular behavior.

Each dimension of the table is compressed by grouping identical dimension lines into a single
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line. The resulting table is indexed by type groups in each dimension, and mappings from type

number to type group are kept in auxiliary data structures. Although this approach provides

efficient dispatch, the type-to-group arrays tend to take up a substantial amount of space.

2. LUA: Lookup Automata ([CTK94, Che95]) creates a lookup automaton for each behavior. In

order to avoid backtracking, and thus exponential dispatch time, the automata must include

more types than are explicitly listed in method definitions (inheritance conflicts must be implic-

itly defined). This technique is O(k) but its overall speed performance is inversely proportional

to the memory used, based on an implementation parameter (the smaller this parameter, the

better the dispatch performance, but the more memory used).

3. SRP: Single-Receiver Projections ([HSLP98]) maintains k extended single-receiver dispatch

tables and projects k-arity multi-method definitions onto these k tables. Each table maintains

a bit-vector of applicable method indices, so dispatch consists of logically anding bit-vectors,

finding the index of the left-most on-bit and returning the method associated with this index. It

is much more space efficient than CNT, but has slower dispatch time.

4. Extended Cache-Based Techniques are used in Cecil ([Cha92]). The cache-based techniques

from single-receiver languages ([DHV95]) are extended to work for product-types instead of

just simple types.

5 Multiple Row Displacement (MRD)

5.1 N-dimensional Dispatch Table

In single-receiver method dispatch, only the dynamic type of the receiver and the behavior name are

used in dispatch. However, in multi-method dispatch, the dynamic types of all arguments and the

behavior name are used.

The idea of the selector table in single-receiver dispatch can be extended to handle multi-method

dispatch. In multi-method dispatch, each k-arity behavior, Bk�, will have a k-dimensional dispatch

table, Dk
� , with type numbers as indices for each dimension. Therefore, each k-dimensional dispatch

table will have size jHjk. At a call-site, ��o�� o�� ���� ok�, the method to execute is in

Dk
� �num�T ����num�T �������num�T k��, where T i � type�oi�.

For example, the 2-dimensional dispatch tables for the type hierarchy and method definitions

in Figure 5 (a) are shown in Figure 5 (b). In building an n-dimensional dispatch table, inheritance

conflicts must be resolved. For example, there is an inheritance conflict at E�E for �, since both

�� and �� are applicable for the call-site ��anE� anE�. Therefore, we define an implicit conflict

method ��, and insert it into the table at E�E.
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Figure 5: N-Dimensional Dispatch Tables

N-dimensional table dispatch is very time efficient. Analogous to the situation with selector

tables in single-receiver languages, n-dimensional dispatch tables are impractical because of their

huge memory requirements. For example, the space required for all 2 and 3-dimensional tables in the

Cecil hierarchy would be more than 9 Gbytes.

5.2 Multiple Row Displacement by Examples

Multiple Row Displacement (MRD) is a time and space efficient dispatch technique which combines

row displacement and n-dimensional dispatch tables. We will first illustrate MRD through examples,

and then give the algorithm. The first example uses the type hierarchy and 2-arity method definitions

from Figure 5 (a).

Instead of the single k-dimensional array shown in Figure 5 (b), each table can be represented

as an array of arrays as shown in Figure 6 (a). The arrays indexed by the first arguments are called

level-	 arrays, L�. There should be only one level-	 array per behavior. The arrays indexed by the

second argument are called level-� arrays, L��
�. If the arity of the behavior is greater than two then

the arrays indexed by the third arguments are called level-� arrays, L��
�; and so on. The highest

level arrays are level-�k� �� arrays, Lk���
�, for k arity behaviors.

It can be seen from Figure 6 (a) that some of the level-� arrays are exactly the same. Those

arrays are combined as shown in Figure 6 (b). In general, there will be many identical rows in an

n-dimensional dispatch table. As well, there will be many rows for which all entries are empty (i.e.

do not correspond to any method). These observations are the basis for the CNT dispatch technique

mentioned in Section 4, and are also one of the underlying reasons for the compression provided
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Figure 6: Data Structure for Multiple Row Displacement

by MRD. It is worth noting that this sharing of rows is only possible due to the fact that we are

compressing a table that uses types to index into all dimensions. In single-receiver languages, the

tables being compressed have behaviors along one dimension, and types along the other. Sharing

between two behavior rows would imply that both behaviors invoked the same methods for all types,

and although languages like Tigukat ([OPS�95]) allow this to happen, such a situation would be

highly unlikely to occur in practice. Sharing between two type columns is also unlikely since it

occurs only when a type inherits methods from a parent and does not redefine or introduce any new

methods. Such sharing of type columns is more feasible if the table is partitioned into subtables by

grouping a number of rows together. This strategy was used in the single-receiver dispatch technique

called Compressed Dispatch Table (CT) ([VH96]).

We have one data structure per behavior, Dk
� , and MRD compresses these per behavior data

structures by row displacement into three global data structures: a Global Master Array, M , a set of

Global Index Arrays, Ij , where j � 	� ���� �K� ��, and a Global Behavior Array, B .

In compressing the data structure D�
� in Figure 6 (b), the level-� array L��A� is first shifted into

the Global Master Array, M , by row displacement, as shown in Figure 7 (a). The shift index, 0, is

stored in the level-	 array, L�, in place of L��A�. In the implementation, a temporary array is created

to store the shift indices, but in this paper, we will put them in L � for simplicity of presentation.

Figure 7 (b) shows how L��C� and L��E� are shifted intoM by row displacement, and how they are

replaced in L� by their shift indices. Finally, as shown in Figure 7 (c), L� is shifted into the Global

Index Array, I� by row displacement. The resulting shift index, 0, is stored in the Global Behavior

Array at B ���. AfterD�
� is compressed into the global data structures, the memory for its preliminary

data structures can be released. Figure 8 shows how to compress the behavior data structure, D �
� ,
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Figure 7: Compressing The Data Structure for �

into the same global data structures,M , I� and B . The compression of the level-� arrays, L��A� and

L��B�, are shown in Figure 8 (a). The compression of the level-	 array, L�, is shown in Figure 8 (b).

Note that only I� is used in the case of arity-2 behaviors. For arity-3 behaviors, I� will also be used.

For arity-4 behaviors, I� will also be used, etc.

As an example of dispatch, we will demonstrate how to dispatch a call-site ��anE� aD� using the

data structures in Figure 8 (b). The method dispatch starts by obtaining the shift index of the behavior,

�, from the Global Behavior Array, B . From Figure 8 (b), B ��� is 5. The next step is to obtain the

shift index for the first argument, E, from the Global Index array, I�. Since the shift index of � is 5,

and the type number ofE, num(E), is 4, the shift index of the first argument is I���

� � I���� � ��.

Finally, by adding the shift index of the first argument to the type number of the second argument,

num�D� � �, an index to M is formed, which is �� 
 � � �
. The method to execute can be found

in M ��
� � ��, as expected.

MRD can be extended to handle behaviors of any arity. Figure 9 (a) shows the method definitions

of a 3-arity behavior, �, and Figure 9 (b) shows its preliminary behavior data structure,D �
� . Figures 9

(c) to (e) show the compression of this data structure. First, the level-� arrays, L��B�D�, L��D�B�

and L��E�E� are shifted into the existing M as shown in Figure 9 (c). Their shift indices (15, 14,

19) are stored in L��B�, L��D� and L��E�. In fact, every pointer in Figure 9 (b) that pointed to
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Figure 8: Compressing The Data Structure For �

L��B�D� is replaced by the shift index 15. Pointers to L��D�B� are replaced by the shift index

14 and the single pointer to L��E�E� is replaced by the shift index 19. Then, the level-� arrays,

L��B�, L��D� and L��E�, are shifted into the Global Index Array I� as shown in Figure 9 (d). The

shift indices (0,1,5) are stored in L�. Finally, L� is shifted into the Global Index Array I� and its shift

index (7) is stored in the Global Behavior Array at B ���, as shown in Figure 9 (e).

5.3 The Multiple Row-Displacement Dispatch Algorithm

We have shown, by examples, how MRD compresses an n-dimensional dispatch table by row dis-

placement. On the behavior level, a preliminary data structure, Dk
� , is created for each behavior.

Dk
� is a data structure for a k-arity behavior named �, as shown in Figure 9 (b). It is actually an

n-dimensional dispatch table, which is an array of pointers to arrays. Each array in D k
� has the size

of jHj. The level-	 array, L�, is indexed by the type of the first argument. The level-� arrays, L��
�,

are indexed by the type of the second argument. The level-�k � �� arrays, Lk���
�, always contain

method addresses. All other arrays contain pointers to arrays at the next level.

After the compression has finished, there are a Global Master Dispatch Array, M , K � � Global

Index Arrays, I�, ..., Ik��, and a Global Behavior Array, B . The Global Master Dispatch Array, M ,

stores method addresses of all methods. Each Global Index Array, Ij, contains shift indexes for Ij��.

The Global Behavior Array, B stores the shift indices of the behaviors.

At compile time, a Dk
� data structure is created for each behavior. The level-�k � �� arrays,

Lk��, are shifted into M by row displacement. The shifted indices are stored in Lk��. Then, the

level-�k��� arrays, Lk��, are shifted into the index array, Ik��. The shift indices are stored in Lk��.

This process is repeated until the level-	 array, L�, is shifted into I�, and the shift index is stored in
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Figure 9: Compressing The Data Structure For �

B ���. The whole process is repeated for each behavior. The algorithm to compress all behavior data

structures is shown in Appendix A.

The dispatch formula for a call-site, ��o�� ���� ok�, is given by Expression 3, where T i � type�oi�.
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M � Ik��� Ik��� ��� I�� I�� B � � � 
 num�T �� �


 num�T �� � 
 ��� � 
 num�T k��� � 
 num�T k��� � 
 num�T k� � (3)

As an example of dispatch with Expression 3, we will demonstrate how to dispatch a call-site

��anE� aD� aB� using the data structures in Figure 9 (e). Since � is a 3-arity behavior, Expression 3

becomes Expression 4.

M � I�� I�� B � � � 
 num�E� � 
 num�D� � 
 num�B� � (4)

Substituting the data from Figure 9 (e) into Expression 4 yields the method ��, as shown in

Expression 5.

M � I�� I�� � 
 
 � 
 � � 
 � �

�M � I�� I�� �� � 
 � � 
 � �

�M � I�� � 
 � � 
 � � (5)

�M � I�� �� 
 � �

�M � �� 
 � �

�M � �� � � ��

Note that all index arrays, I�, I�, I�, ..., can be further compressed into one big index array by

row displacement to save more memory. However, for presentation simplicity we have ignored this

final compression.

6 Performance Results

Here we present memory and execution results for the new technique, MRD, and three other pub-

lished techniques, CNT, LUA and SRP. When analyzing dispatch techniques, both execution perfor-

mance and memory usage need to be addressed. A technique that is extremely fast is still not viable

if it uses excessive memory, and a technique that uses very little memory is not desirable if it dis-

patches methods very slowly. We present both timing and memory results for MRD, SRP, LUA and

CNT. To our knowledge, this is the first time such a comparison of the techniques has appeared in the

literature.

The rest of this section is organized into four subsections. The first subsection discusses the

data-structures and dispatch code required by the various techniques. The second subsection presents

timing results. The third subsection presents memory results. The fourth subsection presents some

observations on how MRD can be made even more space efficient. The source code for each tech-

nique was compiled with 'g++ -O2' and run on an UltraSparc1 with 128 Mbytes of memory using

Solaris 2.6.
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6.1 Data Structures and Dispatch Code

This section provides a brief description of the data-structures that each of the four dispatch tech-

niques requires in a static context. The code that needs to be generated at each call-site is also pre-

sented. In the subsections that follow, the code presented refers to the code that would be generated

by the compiler upon encountering the call-site �� o�� o�� ���� ok �.

The notation N�oi� represents the code necessary to obtain a type number for the object at argu-

ment position i of the call-site. Naturally, different languages implement the relation between object

and type in different ways, and dispatch is affected by this choice. Our timing results are based on

an implementation in which every object is a pointer to a type structure that contains a 'typeNumber'

field.

6.1.1 MRD

MRD has an M array that stores function addresses, a B array that stores behavior shift indices, and

K � � index arrays, I�, ..., IK��.

The dispatch sequence is given in Expression 6.

� ��M � Ik��� ���I�� I��b
� 
N�o�� �


N�o�� � 
 ��� � 
N�ok��� � 
N�ok� �� ��o�� o�� ���� ok� (6)

Note that the Global Behavior Array, B , from Expression 3, is known at compile-time, so B ���

can be precomputed. The resulting constant that is denoted as b�.

6.1.2 CNT

For each behavior, CNT has a k-dimensional array, but since we are assuming a static environment,

this k-dimensional array can be linearized into a one-dimensional array. Indexing into the array

requires a sequence of multiplications and additions to convert the k indices into a single index. For

a particular behavior, we denote its one-dimensional dispatch table by DCNT
� .

In addition to the behavior-specific information, CNT requires arrays that map types to type-

groups. These group arrays can be compressed by merging multiple groups into a single group using

selector coloring (SC). Our dispatch results are based on such a compression scheme, and assume

that the maximum number of groups is less than 256, so that the group array can be an array of bytes.

Furthermore, since the compiler knows exactly which group array to use for a particular type, it is

more efficient to declare n statically allocated arrays than it is to declare an array of arrays. Thus, we

assume that there are arrays G�, ..., Gn, and that the compiler knows which group array to use for

each dimension of a particular behavior.

If we assume that the compressed n-dimensional table for k-arity behavior � has dimensions

n�� n�� ���� nk, where the ni values are behavior specific, and that the group arrays for these dimen-

sions are Gi� � Gi�� ���� Gik then the call-site dispatch code is given in Expression 7.
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�� �DCNT
� � Gi� �N�o���


 Gi� �N�o���� n�


 ���


 Gik �N�ok��� n� � n� � ���� nk�� � � � �o�� o�� ���ok� (7)

Note that since the ni are known constants, the products of the form , n� � ��� � nj , can be

precomputed. Thus, only k � � multiplications are required as run-time.

6.1.3 SRP

SRP has K selector tables, denoted S�� ���� SK where Si represents the applicable method sets for

types in argument position i of all methods. These dispatch tables can be compressed by any single-

receiver dispatch techniques, such as selector coloring (SRP/SC), row displacement (SRP/RD), or

compressed dispatch table (SRP/CT). The timing and space results, and the code that follows, are for

SRP/RD.

In addition to the argument-specific dispatch tables, SRP has, for each behavior, an array that

maps method indices to method addresses, which we denote by DSRP
� .

The dispatch code for SRP is given in Expression 8, where FirstBit() is some macro or function

that implements the operation of finding the position of the first '1' bit in a bit-vector. [HSLP98]

discusses this in some detail. Our timing and space results assume that this is a hardware-supported

operation with the same performance as modulo.

� ��DSRP
� � FirstBit�S��N�o�� 
 b�� � �

S��N�o�� 
 b�� � �

��� �

Sk�N�ok� 
 b�k �� � � � �o�� o�� ���� ok� (8)

Note that b�i is the shift index assigned to behavior � in argument-table i and is a compile-time

constant.

6.1.4 LUA

LUA is, in some ways, the most difficult technique to evaluate accurately. First, [Che95] does not

provide any explicit description of what the code at a particular call-site would look like. Second,

there are a number of variations possible during implementation, that have vastly different space vs.

time performance results. The most naive implementation (referred to here as simply LUA) is highly
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space efficient, but has a dispatch time that is proportional to the method count (number of methods

defined for the behavior). The performances of MRD, CNT and SRP are independent of method

count. A more complex implementation, which we will denote LUA/c, reduces this dependency on

method count and improves dispatch performance at the expense of additional memory. The space-

time tradeoff is controlled by a parameter, c. When c � �, LUA provides constant time dispatch

with respect to method count, but uses prohibitive amounts of memory. For higher values of c, the

technique varies between the extremes of LUA and LUA/c.

For the purposes of the comparisons here, we have chosen to use the naive approach, for a number

of reasons. First, as mentioned previously, no explicit discussion of call-site code is presented, so the

discussion here represents our own implementation of data structures described in [Che95]. Second,

describing static data-structures and dispatch code for LUA/c would require an entire paper. Third,

for low method counts, LUA and LUA/c have similar dispatch performance and extremely different

memory utilization, favoring LUA over LUA/c.

Conceptually, a lookup automaton consists of a root node with a set of edges to other nodes, which

in turn have edges to other nodes (or to method addresses). Edges between nodes are labeled with

types. If a dynamic type is a subtype of the type associated with an edge, then the edge can be chosen.

As described in [Che95], we can order the edges of a node by their associated types in a bottom-up

fashion (any ordering in which a subtype is guaranteed to occur before any of its supertypes). In this

way, each node can be represented as an array of integer-pointer pairs, where the integer represents

a type number, and the pointer refers to either a method address, or another array of integer-pointer

pairs.

Thus, for a behavior, we must maintain a collection of arrays of integer-pointer pairs. Each

behavior has an array of such pairs, identified by some behavior-specific name, DLUA
� . This array

can be fully initialized at compile-time. In order to avoid using the heap, the subarrays are also

allocated statically on the stack.

In addition to the behavior-specific data, LUA requires data-structures for performing sub-type

testing. Although techniques like [KVH97] provide extremely space efficient implementations, we

decided to optimize time instead of space, so we implemented the sub-type testing in a naive fashion.

Each type, T, has an associated array, Ts, that is indexed by type numbers. The ith element of Ts

stores a boolean indication of whether type i is a subtype of Ts. A few simple variations were tested

for their impact on space and time. Using bitvectors is space efficient, but requires that for type i we

perform several additional logical operations4. Using an array of bytes avoids these operations at the

cost of 8 times more space. We have presented results here for an implementation using bitvectors,

since it dramatically improves memory usage and has very little impact on dispatch efficiency on the

architectures we tested.

Given the DLUA
� and Ts arrays, the dispatch code for LUA is:

4The actual code becomes T �i �� ����� �� �i���� instead of just T �i�.
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typedef struct f
LUAPairOrAddr * next;
int type;

g LUAPairOrAddr;

register int i;
register LUAPairOrAddr * P;

// Follow appropriate edge from root
i = 0; label1: if (!((Ts[ DLUA

� [i].type ])[ N�o�� ])) ++i; goto label1;

// Obtain the level-1 node
P = DLUA

� [i].next;
i = 0; label2: if (!((Ts[ P[i].type ])[ N�o�� ])) ++i; goto label2;

...

// Obtain the level-(k-1) node
P = P[i].next;
i = 0; labelk: if (!((Ts[ P[i].type ])[ N�ok� ])) ++i; goto labelk;

// Call the method
( *(P[i].next) )(o�� o�� ���� ok);

As mentioned previously, the original LUA paper did not give specific optimizing implementation

details, and we have provided only one possible solution. We mention in passing that LUA provides

information that is required by a much more efficient mechanism for dispatch, but this information

can be derived more easily than by the mechanisms suggested by LUA. This new technique will be

the subject of a forthcoming paper.

6.2 Timings Results

The most critical aspect of a method dispatch technique is the amount of time it takes to compute the

address of the method to invoke at a particular call-site.

In this paper, we use a simple mechanism for obtaining the timing results for a particular dispatch

technique. We wrap the call-site code in a loop and execute it ten million times. We do this in order

to obtain enough computation to exceed the resolution of the timing facilities, which in our case was

getrusage 5. After obtaining a total time, we subtract from it the amount of time needed to execute

an empty loop 10 million times, and divide by 10 million to get a measure of the time to dispatch a

single call-site.

Although MRD, SRP and CNT always require the same amount of time for behaviors of a given

arity 6, the performance of LUA is dramatically affected by the average number of comparisons that
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Figure 10: Number of microseconds required to compute a method at a call-site

occur before successful matches occur at each level of search. Our results here are for the fastest

possible case, when the match occurs on the first comparison at each level.

From Figure 10, MRD provides the fastest call-site dispatch, at 0.19 �s, followed by SRP at 0.21

�s, then CNT at 0.22 �s, and finally LUA at 0.30 �s.

6.3 Memory Utilization

We can divide memory usage into two different categories: 1) data-structures, and 2) call-site code-

size. The amount of space taken by each of these depends on the application, but in different ways.

An application with many types and methods will naturally require larger data-structures than an

application with fewer types and methods. As well, although the size of an individual call-site is

independent of the application, the number of call-sites (and hence the amount of code generated) is

application dependent.
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Figure 11: Call-Site Memory Usage

Figure 11 shows the number of bytes required by the call-site dispatch code. MRD requires 52

bytes, SRP requires 96 bytes, CNT requires 100 bytes and LUA requires 160 bytes.

5The getrusage routine has a resolution threshold of 10,000 microseconds on Solaris machines.
6In making this observation we ignore fortuitous optimizations like the ability to change the multiply operation in CNT
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Figure 12: Static Data Structure Memory Usage for all 2-arity Cecil Methods

Since the data-structure size is dependent on an application, we chose to measure the size required

to maintain information for all types and all 2-arity behaviors in the basic Cecil library ([Cha92]). It

consists of 472 classes and 741 2-arity behaviors. The results are shown in Figure 12. LUA requires

the least amount of space, at 48 Kbytes, as compared to MRD at 102 Kbytes, SRP at 182 Kbytes and

CNT at 428 Kbytes.
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Figure 13: Total Memory for Cecil 2-Arity Methods

The total memory needed for method dispatch at run-time is the memory used by the static data

structures plus the memory used by each call-site times the number of call-sites. Figure 13 shows the

impact of the number of call-sites on overall memory consumption. Although LUA has very small

data-structure requirements, its large call-site code size quickly makes it less efficient than MRD. For

any application with more than 498 call-sites, MRD is more space-efficient than LUA.

Given the dominating impact of call-site code size on memory usage, it is natural to ask whether

it is wise to generate such code at every call-site. An alternative approach would be to generate

a function that represents the dispatch code for each behavior, so that the call-site code becomes

dispatch to a shift operation when the constant is a power of two
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simply a call to the appropriate dispatch function. This is a viable alternative but does incur a time

penalty due to the extra function call. Note that MRD provides efficient memory utilization and fast

dispatch even when call-site code is generated for every call-site.

6.4 Optimizations to MRD to further improve space utilization

The row-shifting mechanism used in our implementation of row displacement is not the most space-

efficient technique possible. If we replace our row-shifting algorithm by a more general algorithm

based on string matching, we will get a higher compression rate. For example, using row-shifting

to compress rows R1 and R2 in Figure 14 (a) produces a master array with 9 elements as shown in

Figure 14 (b). However, using the improved algorithm to compress R1 and R2 produces a master

array with only 6 elements as shown in Figure 14 (c). Our improved algorithm cannot be used

in single-receiver row displacement, since different rows contain different selectors. The memory

results in this paper do not include the improved algorithm.

Figure 14: Different Row Displacement Techniques

7 Future Work

The research into MRD is part of a larger research project analyzing various multi-method dispatch

techniques. Numerous issues impact the performance results given in this paper. For example, the

simple loop-based timing approach poses a problem. It reports an artificially deflated execution

time due to caching effects. Since the same data is being executed 10 million times, it stays hot.

This problem can be partially solved by generating large sequences of random call-sites on different

behaviors with different arguments. However, this approach might actually discount caching effects
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that would occur in a real program, since random distributions of call-sites will have poorer cache

performance than real-world applications that have locality of reference.

Furthermore, some of the techniques allow for a variety of implementations. In particular, LUA

has a great deal of room for different implementations. The implementations usually trade space for

time, so we can choose the implementation with the execution and memory footprint that most closely

satisfies our application requirements. Also related to the issue of implementation is the impact of

inlining of dispatch code. In single-receiver languages, the dispatch code is placed inline at each

call-site, but some of the multi-method dispatch techniques have large call-site code chunks. Rather

than placing such code at every call-site, it is possible to define a single dispatch function for each

behavior. Since the number of behaviors is much less than the number of call-sites, this will provide

a substantial savings in code size, at the expense of an extra function call.

In order to obtain the best possible analysis of the various techniques, we need some indepth

metrics on the distribution of behaviors in multi-method languages. In particular, the number of be-

haviors of each arity, and the numbers of methods defined per behavior are critical. As more and

more multi-method languages are introduced, we will be able to get a better feel for realistic distri-

butions. Note that call-site distributions are especially important for accurate analysis of LUA, since

its dispatch time depends on the average number of types that need to be tested before a successful

match occurs.

8 Conclusion

This paper has presented Multiple Row Displacement (MRD), a new multi-method dispatch tech-

nique that compresses an n-dimensional table by row displacement. It has been compared with ex-

isting table-based multi-method techniques, CNT, LUA and SRP. MRD has the fastest dispatch time

and the smallest per-call-site code size.

In addition to presenting the new technique, we have provided the first performance comparison

of the existing table-based multi-method dispatch techniques.

References

[AGS94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing multi-method dispatch using
compressed dispatch tables. In OOPSLA'94 Conference Proceedings, 1994.

[App94] Apple Computer, Inc. Dylan Interim Reference Manual, 1994.

[BDG�88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common Lisp Object System specification, June 1988.
X3J13 Document 88-002R.

20



[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In ECOOP'92 Conference
Proceedings, 1992.

[Che95] Weimin Chen. Efficient multiple dispatching based on automata. Master's thesis, Darm-
stadt, Germany, 1995.

[Cox87] Brad Cox. Object-Oriented Programming, An Evolutionary Approach. Addison-Wesley,
1987.

[CTK94] Weimin Chen, Volker Turau, and Wolfgang Klas. Efficient dynamic look-up strategy for
multimethods. In ECOOP'94 Conference Proceedings, 1994.

[DAS96] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multi-
method dispatch table generation. In Transactions on Programming Languages and
Systems, 1996.

[DH95] K. Driesen and U. Holzle. Minimizing row displacement dispatch tables. In OOPSLA'95
Conference Proceedings, 1995.

[DHV95] K. Driesen, U. Holzle, and J. Vitek. Message dispatch on pipelined processors. In
ECOOP'95 Conference Proceedings, 1995.

[Dri93] Karel Driesen. Selector table indexing and sparse arrays. In OOPSLA'93 Conference
Proceedings, 1993.

[HS97] Wade Holst and Duane Szafron. A general framework for inheritance management and
method dispatch in object-oriented languages. In ECOOP'97 Conference Proceedings,
1997.

[HSLP98] Wade Holst, Duane Szafron, Yuri Leontiev, and Candy Pang. Multi-method dispatch
using single-receiver projections. Technical Report TR-98-03, University of Alberta,
Edmonton, Canada, 1998.

[KVH97] Andreas Krall, Jan Vitek, and R. Nigel Horspool. Near optimal hierarchical encoding of
types. In ECOOP'97 Conference Proceedings, 1997.

[OPS�95] M.T. Ozsu, R.J. Peters, D. Szafron, B. Irani, A. Lipka, , and A. Munoz. Tigukat: A
uniform behavioral objectbase management system. In The VLDB Journal, pages 100–
147, 1995.

[VH96] Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed pro-
gramming languages. In Proceedings of the Intl. Conference on Compiler Construction,
1996.

21



A Algorithm To Compress Behavior Data Structure

// Shift the given array into this array by row displacement, and return the shift index.
// The shift index will also be stored in the given array.
shiftIndex Array::add( Array );

// Get the shift index of this array. If this array has never been shifted
// into any other array, return -1.
shiftIndex Array::getShiftIndex();

// Create a n-dimensional table for the behavior.
BehaviorStructure Behavior::createStructure();

Array M , I�, ..., IK��, B ;

createGlobalDataStructure() begin
for( each behavior Bk

� ) do
BehaviorStructureDk

� = Bk

� .createStructure();
createRecursiveStructure(Dk

� �L�, 0 );
B ��� 	 I��add�D

k

� �L��;
endfor

end

createRecursiveStructure( Array L, int level ) begin
if( level == k � � ) then

for( int i=0, i�L.size(); i++ ) do
if( L[i] == null ) then

continue;
elseif ( L[i].getShiftIndex() == -1 ) then

L[i] = M .add( L[i] );
else

L[i] = L[i].getShiftIndex();
endif

endfor

else

for( int i=0, i�L.size(); i++ ) do
if( L[i] == null ) then

continue;
elseif( L[i].getShiftIndex() == -1 ) then

createRecursiveStructure(L[i], level+1 );
L[i] = Ilevel��.add( L[i] );

else
L[i] = L[i].getShiftIndex();

endif
endfor

endif
end
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