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Aൻඌඍඋൺർඍ
Grade control in open pit mines establishes the final destination for mined material (e.g.,

plant, leach pad, stockpile, waste dump, etc.). In contrast to long- and medium-term mine

planning, errors at this stage of a mine operation cannot be changed in the future; correct

decisions bring a certain amount of profit, while wrong decisions incur a certain amount of

loss. In the simplest grade control case, there is only ore and waste. Ore is more profitable

to process in the plant than send to the waste dump. More complex cases may involve multi-

ple grades, multiple destinations, locally varying geology, and complex profit calculations.

Any flaw in the grade control procedure can lead to significant losses.

This thesis formulates and develops improved theory and practice for grade control pro-

cedures in open pit mines. An integrated grade control system called the Advanced Grade

Control (AGC) is developed that considers all the relevant data and encodes rules and algo-

rithms to make important decisions automatically. The developed system is a nearly auto-

matic algorithm that seamlessly links all the grade control processes. The main components

of the system are: i) spatial prediction of grades or profit, ii) modeling the blast-induced

displacement of pre-blast spatial predictions, and iii) optimization of mineable dig limits.

AGC uses the maximum expected profit approach for making grade control decisions.

High resolution expected profit is automatically calculated using a new local multivariate

simulation algorithm called the Advanced Grade Control-Expected Profit (AGC-EP). The

algorithm utilizes a k-fold cross-validation procedure to optimize input parameters. Two

case studies based on real data demonstrate that AGC-EP outperforms carefully applied

kriging estimation in terms of total profit from a mine bench.

An optimization-based algorithm called the Advanced Grade Control-Blast Movement

(AGC-BM) has been developed to model blast-induced displacement of rock in 3-D using

gridded pre- and post-blast topography and direct blast movement measurements. The blast

movement of rock is considered an optimization assignment problem approximately solved
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by a heuristic algorithm. The objective function and optimization details are explained and

examples are provided. A method is proposed to calibrate limited blast movement mea-

surements using firing pattern information. Blast movement modeling with approximate

topography is considered.

An algorithm for optimizing the classification of surface mine material subject to exca-

vating constraints called the Advanced Grade Control-Dig Limits (AGC-DL) is developed.

High resolution expected profit models are input and optimized to classification maps sub-

ject to site specific rectangular or non-rectangular excavating constraints. The algorithm is

fast and produces classification maps that allow selecting up to 98-99 % of the total maxi-

mum expected profit obtained with free selection.

A grade control system should work nearly automatically and be integrated within a

mine’s short-term planning and processing workflows. It should work in unison with pre-

cise location tracking and measuring equipment providing constantly updated information

on the position of excavating equipment and ore grade. The Advanced Grade Control sys-

tem is a step towards intelligent grade control utilizing all available information in real time

for maximizing profit from mining operations.
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Cඁൺඉඍൾඋ 1

Iඇඍඋඈൽඎർඍංඈඇ
This chapter motivates the thesis, discusses the current state of grade control practice in

open pit mines, and describes limitations. Section 1.1 summarizes the main reasons for the

loss of profit in open pit mines and outlines the main objectives of this research. Section 1.2

provides a thesis statement and lists scientific contributions. Section 1.3 provides a thesis

outline with a brief description of each chapter.

1.1 Problem Statement and Motivation

Grade control is a set of procedures allowing selective excavation of different ore/waste

types with a final goal of maximizing the profit frommining operations. It should start with

a comprehensive sampling procedure providing samples from blastholes, trenches, truck

dumps, and, maybe, dedicated grade control drilling (J. G. Davis, 1992). In many cases, it

is necessary to manage several stockpiles with different ore types and/or grades; they can

be used for blending the ore and maintaining specified head grades for the mill.

Typical grade control procedures can be summarized by three main unit operations: i)

spatial prediction of grades or profit, ii) modeling the blast-induced displacement of pre-

blast spatial predictions, and iii) optimization of mineable dig limits. Grade control prac-

tices in open pit mines are moving towards greater automation and using more sophisti-

cated tools in each unit operation. However, there is still no comprehensive framework

that combines all these unit operations in a single algorithm and sets the standards for their

implementation.

The rules for determining correct destinations for minedmaterial vary in complexity and

often depend on the conditions of a particular deposit or a technological process; they usu-

ally include spatial information such as grades of metallic or non-metallic elements present

in the mined material. Some other information such as rock type may also be used. Since
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only a limited number of samples of the pre-blast rock is available, the values of grade

variables for any given portion of mined material may be unavailable and should be mod-

eled. Also, it is often necessary to break rocks using explosives prior excavation; a proper

selection plan (dig limits) should account for the displacement of the rocks and an increase

in their volume caused by the energy of blasted explosives. Stages of a mine’s operation

related to grade control are schematically illustrated in Figure 1.1.

Figure 1.1: Schematic illustration of the stages of grade control

In stage 1, blastholes (illustrated as black dots in Figure 1.1) are bored in rock to pre-

pare it for blasting; rock samples from the blastholes are obtained and analyzed. In stage 2,

the rock is blasted to ensure that it can be excavated and loaded. In stage 3, the post-blast

rock (mined material) is loaded in trucks and sent to different destinations. The proposed

grade control unit operations correspond to the stages of a mine’s operation. Each grade

control unit operation is characterized by a level of uncertainty in the values of grade vari-

ables at a given scale and, therefore, the destination for mined material is also uncertain.

The challenge of grade control is to manage the uncertainty at each unit operation using

available information and obtain a post-blast excavation plan maximizing profit subject to

the limitations of available excavating and hauling equipment.

The uncertainty in the geological composition of a mine bench is usually managed using

blasthole (BH) samples; the samples are used to obtain pre-blast predictions of grades for

a grid of blocks. If blasting is not performed, there is a direct connection between the

spatial predictions and a selection plan; the predicted grades are used to obtain dig limits at
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a certain resolution. Vasylchuk and Deutsch (2017) recommend using a block size of 25 %

or less of the sample spacing for the spatial predictions to minimize the loss from a mine

bench. However, the optimal destinations obtained using the spatial predictions at a high

resolution may not be mineable. Therefore, they are usually combined into larger mining

units in Stage 3. Ideally, the optimal destination would be determined for each truck load.

The implementation of such detailed dig limits would rely on high quality positioning and

dispatching systems at the mine.

If blasting is performed, the direct connection between the predictions of grades and a

corresponding selection plan is interrupted. This connection can be restored using direct

blast movement measurements, which allow mapping the pre-blast predictions onto a post-

blast muckpile. The uncertainty in the volume and shape of the post-blast muckpile can be

managed using post-blast topography.

Optimizing dig limits using high resolution (HR) spatial predictions and large selection

units (e.g., red dashed square in Figure 1.1 (Stage 3)) is another challenge. Each large

selection unit can be assigned a destination based on the HR predictions that fall within it;

all the units of a selection map have to be placed with respect to each other in such a way

that the total profit from a mine bench is as close as possible to the maximum total expected

profit possible with free selection at a high resolution.

1.1.1 Grade Control Decision Making Accounting for Economic

Benefits

Grade control procedures currently rely primarily on deterministic estimationmethods (Dim-

itrakopoulos & Godoy, 2014; Godoy, Dimitrakopoulos, & Costa, 2001) like inverse dis-

tance or kriging that are relatively easy to use by junior mining engineers or geologists. Es-

timation techniques provide single deterministic predictions at unsampled locations. These

predicted grades can be used to assign destinations for mined material based on a cut-

off grade or more complex set of rules. Profit functions with asymmetric and non-linear

constraints and relationships are sometimes used for determining the correct destinations.

Kriging estimates assume equal penalty for underestimation and overestimation (Srivas-
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tava, 1987; Isaaks, Treloar, & Elenbaas, 2014). In fact, the actual losses/benefits in grade

control decision making are often asymmetric and non-linear. An attempt to obtain best

estimates that account for the asymmetry and/or non-linearity in profit would result in bias

(Vasylchuk & Deutsch, 2016) and is usually not practical. The concept of the asymmetry

in the profit from grade control decisions is illustrated in Figure 1.2.

Figure 1.2: An example of a profit map for all possible classification scenarios with 3 destinations
for mined material

The matrix in Figure 1.2 shows the percentage of the maximum achievable profit value

obtained at a particular location. If a predicted destination is the same as the true destination,

100 % of the profit is achieved; otherwise, the profit is reduced. The benefits from grade

control decisions may be asymmetric; for example, the scenarios when the true destination

is 1 but a predicted destination is 2 and when the true destination is 2 and a predicted

destination is 1 may be not equal. Also, the rules for determining the profit for a particular

destination may depend on several grades and variable metal recovery, which means the

resulting profit may be non-linear. Ideally, predicted destinations should be equal to the

true destinations at all locations, which would maximize the profit. Unfortunately, this is

difficult to achieve since the true grades at all locations is unknown.

Geostatistical simulation should be considered as an alternative to estimation for spa-

tial predictions. It provides the uncertainty in grade values, which can be used to assess
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the economic benefits of grade control decisions in terms of profit. The profit can be ob-

tained using any type of asymmetric or non-linear profit function; this feature allows more

accurate and precise decisions for the grade control cases with asymmetric or non-linear

rules for determining correct mined material destinations. Making grade control decisions

with simulation using a risk-neutral position on profit allows theoretically maximizing the

total expected profit from a mine bench; the maximum expected profit approach (Glacken,

1996) can be used to determine optimal decisions. Theoretically, the more precisely the

uncertainty in grade values is estimated, the more often predicted destinations will match

the true ones for a grade control model. Mathematically, this principle is expressed in Chap-

ter 3. The quality of the simulated models plays an important role for obtaining the best

possible predictions of profit and, therefore, the most correct grade control decisions.

1.1.2 Influence of Locally Varying Geology

Spatial prediction models in grade control are the basis for making classification decisions.

Local geological features may contradict a global assumption of stationarity (Journel &

Huijbregts, 1978, p. 30) often made for geostatistical models. This can potentially lead

to sub-optimal predictions of grades and, consequently, misclassification errors and the

loss of profit. Therefore, it is important to have a method for accurate local uncertainty

determination for better reproduction of the local geological features.

Simple grade control methods based on estimation do not fully consider the problem of

locally varying geology. An advanced grade control system based on geostatistical simula-

tion should have tools for determining the parameters of local anisotropy; this information

should be used to obtain better predictions of uncertainty and a final classification of mined

material closer to the correct true destination.

1.1.3 Multivariate Relationships Between Grades

In multivariate deposits, the valuation of rock to be sent to different destinations may de-

pend on multiple grades and be subject to constraints. In such cases, it may be important to

reproduce multivariate relationships between grade variables in spatial prediction models to
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avoid misclassification errors and the loss of profit. The reproduction of the multivariate re-

lationships between grade variables may require specialized tools for their joint simulation.

A multivariate simulation workflow should be implemented and simulated values should

be considered in a profit function of realistic complexity.

It may be important for a multivariate simulation workflow that all the sample obser-

vations are homotopic (without missing collocated grade values). Removing the samples

with missing grade values from the modeling procedure may result in a bias (R. J. A. Little

& Rubin, 2014) and decrease the quality of the spatial prediction models. A multivariate

imputation of the missing grade values should be considered to be a pre-requisite step be-

fore simulation to maximize the usage of available data without introducing a bias in grade

control models.

1.1.4 Blast Movement of Rock

The ways to account for blast movement in grade control can be summarized into three

major categories: i) theoretical modeling of blast movement physics, ii) measuring the

blast-induced displacement of rocks, and iii) combining direct measurements and numerical

modeling. The theoretical blast movement modeling can be done either in 2-D (Cundall,

1980; R. L. Yang, Kavetsky, & McKenzie, 1989) or 3-D (Hart, Cundall, & Lemos, 1988;

Preece & Silling, 2016; R. L. Yang & Kavetsky, 1990); a mine bench can be represented as

blocks or circles that are assigned pre-blast rock properties. The theoretical approach allows

modeling the trajectory of each block using the physics of blasting and the mechanics of

rock breakage. Suchmodeling algorithmsmay incorporate information about the properties

of blasted rocks, boundary conditions, properties of explosives, and blast design as an input

information. However, the quality of final models will always depend on the quality of this

input information in addition to the quality of the modeling algorithm (La Rosa & Thornton,

2011). Unfortunately, the unavoidable uncertainty in the input information and parameters

may result in misclassification and the loss of profit.

Another approach is to measure the displacement of rocks during blasting using either

simple visual markers such as bags or wooden sticks (S. L. Taylor, 1995; Zhang, 1994)

or some type of transmitters with remote detecting equipment (Adam & Thornton, 2004;
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Gilbride, 1995). Direct measurements provide the most accurate information about blast

movement. However, using many transmitters may be unreasonable due to their cost while

using inexpensive visual markers may suffer from their low recovery during excavation

(S. L. Taylor, 1995; Zhang, 1994) and high labor intensity. Therefore, some method should

be developed to use limited blast movement measurements, represented as displacement

vectors, for modeling the post-blast distribution of spatial grade control information.

The combination of the direct measurement of blast movement and numerical model-

ing is a reasonable approach for obtaining post-blast grade control models validated by

available information. D. L. Taylor and Firth (2003) interpolate the sparse displacement

vectors to correct pre-blast polygons accounting for blast movement. A method to model

blast movement using surface topography, historical blast movement measurements, and

the blast initiation sequence is described in Isaaks, Barr, and Handayani (2014). Even

though historical information about blast movement in a particular mine is a very useful

information about a possible behavior of the rock mass during blasting, the conditions of

each blast are often unique. This motivates developing a blast movement modeling algo-

rithm incorporating relevant measurements and blast design information and provides the

flexibility in input parameters.

A practical modeling algorithm should use all the available information about blast

movement including pre- and post-blast topographic surfaces to model the shape of a mine

bench before and after blasting and direct measurements to link pre-and post-blast predic-

tions of grades or profit. A practical algorithm should also account for cases when only

limited information about a blast is available. The firing pattern configuration can be used

as an additional source of information about the direction of rock displacement during blast-

ing. A way to perform blast movement modeling with approximate topography is required

if the pre- and post-blast topographies are absent.

1.1.5 Optimal Selection of Mined Material

The post-blast models of grades or profit should be used to delineate areas (dig limits)

of a corresponding post-blast mine bench and assign them to optimal destinations. The

parameters and characteristics of the excavating and hauling equipment available at a mine
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should be taken into account while designing the dig limits (M. Deutsch, 2017; Isaaks,

Treloar, & Elenbaas, 2014; Richmond & Beasley, 2004a; Tabesh & Askari-Nasab, 2011).

The simplest way to accomplish this task is manually drawing dig limit lines; however, this

approach may not be optimal, especially, for the grade control cases with many destinations.

Misclassification errors and the loss of profit may occur at the edges of different zones due

to marginal ore.

Different zones representing final destinations for mined material should consider the

limitations of the excavating equipment to follow the lines. Isaaks, Treloar, and Elenbaas

(2014) use the concept of minimum mining width for designing dig limits. The concept

of a rectangular selection unit (M. Deutsch, 2017) representing the excavating constraints

is appealing due to its straightforward implementation with the maximum expected profit

method. The design of dig limits can be expressed as an optimization problem. After the

optimization problem is formulated, an algorithm is required to find a solution maximizing

the total expected profit from a mine bench subject to meeting the excavating constraints.

1.1.6 Summary

The surface mining industry needs a comprehensive grade control modeling framework

linking all the main unit operations and generating all the necessary information to be used

directly in the mine. The framework should be automatic and adaptable to site specific

conditions. The automation of the grade control modeling ensures that important modeling

steps are not omitted and careless errors are not made. Grade control models should be

adjusted in real time accounting for new information. Local adaptability in grade control

should help maximize the recovery of natural resources and increase the profit from mining

operations.

The primary objective of this dissertation research is to develop an integrated grade

control modeling framework covering all stages of grade control. There are a number of

important aspects that should be considered in the new modeling framework. Simulation

should replace estimation to better reflect the uncertainty in profit. Local geological features

and multivariate relationships between grade variables should be reproduced in simulated

models. High resolution expected profit obtained using the simulated models can be used
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as a summary of spatial grade control information; it can be averaged and used to optimize

the selection of mined material. The topographic surfaces supplied to the grade control

system along with blast movement measurements and the elements of blast design should

be used to adjust the pre-blast expected profit for the post-blast muckpile. Finally, optimiz-

ing dig limits should be performed with the post-blast expected profit for any number of

destinations and accounting for excavating constraints.

1.2 Thesis Statement and Research Contributions

Thesis Statement: A new comprehensive grade control system based on local multivariate

simulation, blast movement modeling, and determination of post-blast optimal dig limits

increases profit from mine operations while standardizing and simplifying grade control

practice in open pit mines.

The key contributions of this dissertation research include: i) the development of a

robust and flexible algorithm for local multivariate simulation, ii) the modification of the

mass moment of inertia (MOI) method for automatic determination of the direction of local

anisotropy, iii) the development of a blast movement modeling algorithm based on topogra-

phy and direct measurements, and iv) the development of a fast heuristic algorithm for the

dig limits optimization accounting for excavating constraints. Other developments include

a way to incorporate the firing pattern information into blast movement modeling and a way

to perform blast movement modeling with approximate topography.

1.2.1 An Automatic Algorithm for Local Multivariate simulation

Estimation methods like kriging or inverse distance provide single deterministic predictions

at each unsampled location. Simulation is suggested bymany authors (C. V. Deutsch, Magri,

& Norrena, 2000; Glacken, 1996; Godoy et al., 2001; Leuangthong, Neufeld, & Deutsch,

2003; Neufeld, Norrena, &Deutsch, 2005; Norrena, 2007; Richmond, 2003; Verly, 2005) as

an alternative to estimation in grade control. It allows improving the classification of mined

material while accounting for the varied and complex economic consequences of different
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grade control decisions. The grade control decisions should be based on the maximum

expected profit over many realizations.

A global assumption of stationarity may be unrealistic for some deposits; reproducing

local geological features may be important for the correct classification of mined mate-

rial. Simulation with locally varying anisotropy (LVA) is offered in Leuangthong, Prins,

and Deutsch (2006) and Boisvert and Deutsch (2011). Leuangthong et al. (2006) propose

a way to change rotation matrices accounting for locally varying directions of anisotropy;

the anisotropy ratios are considered stationary. Boisvert and Deutsch (2011) offer repre-

senting the data coordinates in higher dimensions using multi-dimensional scaling (MDS)

(Torgerson, 1952) with anisotropic distances; the Euclidean distances calculated with these

newmulti-dimensional coordinates are used to calculate covariances and solve normal equa-

tions. Both of the describedmethods are valuable contributions to the field of computational

geostatistics. However, a different approach is implemented in this thesis; the assumption

of stationarity is revisited at each location being simulated. A new simulation algorithm

performs all modeling steps, including normal score transformation, at modeling locations

using nearby samples.

The new simulation algorithm implements a full local multivariate simulation work-

flow at each location. It is developed as the first part of an integrated grade control system

covering all the proposed grade control unit operations. At each modeling location, a sim-

plified simulation workflow includes the following steps for each variable: i) search for

closest data, ii) normal score transformation (multivariate if required), iii) local anisotropy

determination and variogram modeling, iv) local simulation, and v) the conversion of the

simulated values to expected profit. All the modeling steps are performed automatically;

the measures of performance and quality checks are incorporated into the modeling work-

flow to support the automatic operation.

A manual implementation of the proposed local multivariate simulation workflow is

challenging. Depending on the resolution of an expected profit model and the number of

variables, the number of operations required to perform the modeling locally (e.g., normal

score transformation and variogram modeling) can be considerable. Aside from that, the

automatic implementation allows incorporating various checks and the measures of perfor-
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mance that improve the quality of resulting models. Performing all the modeling and val-

idation operations manually could be overwhelming and prone to errors. This thesis aims

to demonstrate that an unsupervised local multivariate simulation algorithm can produce

better results than conventional grade control modeling workflow. A detailed workflow of

the local multivariate simulation algorithm is provided in Chapters 3 and 4.

1.2.2 Automatic Determination of Local Anisotropy

Within the automatic simulation workflow, a primary consideration for local anisotropy

determination algorithm is flexibility. The MOI method (Hassanpour, 2007) is modified

for this purpose. The method uses correlation maps for determining the anisotropy angles.

Correlation coefficients serve as masses and lag distances serve as the distances to the axes

of rotation. A major problem with this method is that the correlation maps often contain

artifacts and noise, which may cause errors in the angle determination. An algorithm is

implemented to remove the artifacts and leave only the high correlation coefficients pointing

in the direction of major geological continuity.

1.2.3 Blast Movement Modeling Algorithm

A reliable approach to model the blast-induced displacement of rock includes direct mea-

surements rather than purely theoretical concepts (La Rosa & Thornton, 2011). Pre- and

post-blast topography along with blast movement vectors can be used to predict the post-

blast positions of the expected profit units. The pre- and post-blast topographic surfaces

and a project bench elevation are the only parameters required to build initial 3-D models.

Figure 1.3 shows an example of topographic surfaces created artificially to illustrate the

concept.
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(a) Pre-blast (b) Post-blast

Figure 1.3: Example of pre- and post-blast topographic surfaces

The 3-D models are discretized by blocks; initially, the pre-blast expected profit units

are assigned to the blocks of the pre-blast model. The blast movement problem is expressed

as a combinatorial assignment problem. A cost function is developed that accounts for the

positions of the high resolution blocks of the pre- and post-blast 3-D models with respect to

corresponding free faces. Direct blast movement measurements and the elements of blast

design may be included into the cost function as well. A stochastic optimization algorithm

is developed to minimize the cost function and associate each block of the pre-blast model,

along with the expected profit values assigned to it, to a block of the post-blast model. The

blast movement algorithm is the second part of the integrated grade control system. More

details about the cost function and optimization algorithm are in Chapter 5.

1.2.4 Dig Limits Optimization Algorithm

After a post-blast 3-D model of expected profit is obtained, the displaced expected profit

values are used to determine optimal dig limits. The HR blocks of the post-blast 3-D model

have the expected profit values for each destination assigned to them. Since the dig limits

optimization is done in 2-D, the 3-D expected profit is averaged or accumulated along the

vertical direction to obtain a 2-D expected profit map. When the HR expected profit units

in 2-D are combined inside a larger selection unit or frame, the total expected profit value

of the selection unit in each destination is the total expected profit value of all the HR units

falling within it. Small changes in the position of the selection frame may change the most

profitable destination. Therefore, an algorithm is required to account for all the possible

positions of all selection units with respect to each other.
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There are two conditions that an optimized dig limits map should meet: i) every HR

block must be assigned to at least one selection frame representing a destination for mined

material, and ii) all the HR blocks within a frame must have the same destination.

A fast heuristic optimization algorithm is developed to satisfy the conditions stated

above. It is implemented in the third part of the integrated grade control system. Details

about the optimization algorithm are in Chapter 6.

1.2.5 Integrated Grade Control System

A comprehensive grade control system called the Advanced Grade Control (AGC) system

is developed to define and support the main grade control unit operations: i) spatial pre-

diction of high resolution expected profit, ii) modeling the blast-induced displacement of

pre-blast expected profit, and iii) optimization of mineable dig limits accounting for exca-

vating constraints.

The grade control system is implemented as an integrated algorithm that can be incorpo-

rated into a mine’s short-term planning workflow. The three parts of the system correspond-

ing to the three grade control unit operations are designed to work automatically or nearly

automatically in a chained workflow to allow the fast updating of grade control models if

new information is available. In order to support the automatic operation of the first part of

the system, dedicated checks and measures are used to choose important modeling param-

eters automatically during a k-fold cross-validation procedure. The system’s operation can

be classified as partially intelligent; it is designed to assist with high quality grade control

modeling in open pit mines.

The AGC system sets the performance standards for each unit operation and aims at

increasing the total profit from a mine’s operations. The three parts of AGC are designed

so that they can be used either altogether or as components of another grade control system.

1.3 Thesis Outline

Chapter 2 contains an overview of the main aspects of grade control in open pit mines.

Simulation-based methods for grade control decision making are reviewed. The reproduc-
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tion of locally varying geology and multivariate relationships between grade variables for

better predictions is discussed. Then, the existing methods to account for blast-induced dis-

placement of rocks are reviewed. The remainder of the chapter is dedicated to reviewing

the methods for the optimal classification of mined material for its subsequent excavation.

Chapter 3 describes a simulation-based framework for expected profit calculation used

in the spatial prediction part of AGC. The concept of using k-fold cross-validation for op-

timizing modeling results is explained. Main elements of the k-fold cross-validation pro-

cedure are described in detail. A modified MOI method for the determination of local

anisotropy directions is described. The choice of important parameters of the expected

profit modeling algorithm is justified based on artificial tests.

Chapter 4 describes the main expected profit modeling part of AGC. A detailed simula-

tion workflow is described. A method to post-process high resolution expected profit maps

using averaging filters for better modeling results is described. The chapter concludes with

a case study partially based on a real multivariate blasthole data set. The performance of

the proposed simulation algorithm is compared to the performance of ordinary kriging in

terms of total profit from a mine bench.

Chapter 5 describes an optimization-basedmethod for blastmovementmodeling. Firstly,

the optimization problem is defined. Secondly, the steps of a heuristic optimization algo-

rithm are explained. Thirdly, a way to incorporate the firing pattern information into the

modeling procedure and a way to perform blast movement modeling with approximate to-

pography are described. The chapter concludes with a series of examples.

Chapter 6 focuses on designing dig limits maximizing total mineable expected profit

from a mine bench. A new heuristic algorithm for fast dig limits optimization based on

high resolution expected profit for all destinations is described. A way to account for the

limitations of excavating and hauling equipment during optimization is explained. A series

of examples are provided.

Chapter 7 describes a grade control case study partially based on real data. The per-

formance of AGC is compared to a conventional grade control method based on kriging

estimation. Total profit from a mine bench is compared for the two methods. The effect of

blast movement on the total profit is investigated. Constraints imposed by excavating and

14
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hauling equipment on the selection of mined material are taken into account. Results of the

case study are summarized.

Chapter 8 summarizes the main scholarly contributions of this research. Limitations

and possible future work are discussed.
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2.1 Spatial Prediction for Grade Control

Rock samples from rotary percussion or reverse circulation drilling provide relevant infor-

mation about the composition of a mine bench before blasting and excavation. Although

blastholes are relatively closely spaced, most of the volume of a mine bench is not sam-

pled and, therefore, some method should be applied to predict grade values at unsampled

locations.

Usually, predictions are made for a grid of nodes or blocks (Vasylchuk&Deutsch, 2017)

for the grade variables relevant to short-term planning; the grid of blocks represents the

volume of a mine bench. The node spacing of the grid should be chosen accounting for

selectivity and misclassification errors (Vasylchuk & Deutsch, 2017). Grade values are

obtained at the center of each block without a sample using a numerical modeling method.

Inmany open pit mines, simple estimationmethods like inverse distance (Dimitrakopou-

los & Godoy, 2014; Godoy et al., 2001) and the nearest neighbor assignment of grades are

used to create grade control models. The nearest neighbor method assigns the closest BH

sample value to each unsampled block. The inverse distance interpolation method is used

to estimate grade values using a number of nearby BH samples (Shepard, 1968); the nearby

samples are used to obtain a weighted average for each block. Although the inverse distance

weighting method most likely provides better estimates than local arithmetic averages or

the nearest neighbor method, it does not account for the details of the data configuration or

varying anisotropy at different scales. Kriging is a popular estimation method for grade con-

trol predictions that accounts for these factors and theoretically minimizes the estimation

variance under certain assumptions.

Misclassification of mined material occurs due to limited sampling; however, the mis-

classification errors and financial consequences are often asymmetric (Dimitrakopoulos

& Godoy, 2014) and non-linear. If many variables are used for determining the optimal
16
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destinations for mined material, the multivariate relationships and constraints between the

variables should be taken into account (Vasylchuk & Deutsch, 2017). Kriging assumes

equal penalties for underestimation and overestimation (Isaaks, Treloar, & Elenbaas, 2014;

Srivastava, 1987) and, therefore, should be used carefully for grade control. Simulation

provides the distribution of uncertainty in grades to permit the asymmetric consequences

of grade control decisions to be considered. Vasylchuk and Deutsch (2017) demonstrate that

simulation outperforms kriging, inverse distance estimation method, and the nearest neigh-

bor assignment method in terms of minimizing loss when the penalties for underestimation

and overestimation are asymmetric.

The following sections will review geostatistical tools for grade control. The influence

of locally varying geology, multivariate relationships between grade variables, and non-

linear profit on decision making will be discussed.

2.1.1 Regionalized Variables and Stationarity

The concept of a regionalized variable is used to describe continuous geological phenom-

ena such as grades; it is defined at a series of locations ui, i = 1, ..., n over some domain D.

The sample values z(ui), i = 1, ..., n are considered outcomes or realizations of a random

function F (Z(ui)), i = 1, ..., n (Journel & Huijbregts, 1978, p. 29). In order to perform sta-

tistical inference at an unsampled location u0, a conditional distributionF (Z(u0)| z1, ..., zn)

must be inferred. An n+1-variate distribution function is needed to estimate this conditional

distribution:

F (z, z1, ..., zn;u0,u1, ..., un) = Prob{Z(u0) < z, Z(u1) < z1, ..., Z(un) < zn}

The first two moments of the n+1-variate distribution function are considered to be

sufficient for most of the applications in mining (Journel & Huijbregts, 1978, p. 31).

This distribution cannot be obtained having only a single realization of z(u) at a partic-

ular location. Some generalization must be made. The decision of stationarity is made to

provide replicates by considering the samples from the domain D as members of the same

population but distributed in space. The assumption of second order stationarity implies

two conditions: i) the expectation E{Z(u)}, ∀ u does not depend on the location u, and
17
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ii) the covariance between two random variables Z(u) and Z(u + h) exists; the separation

lag h is the only parameter that determines the covariance, C(h) = E{Z(u) · Z(u+ h)} −

E{Z(u)}2, ∀ u (Journel & Huijbregts, 1978, p. 32). The existence of the covariance and

stationary mean implies that the variance is finite and that the variogram and covariance

are equivalent tools for spatial prediction (Journel & Huijbregts, 1978, p. 32):

V ar{Z(u)} = E{[Z(u) − E{Z(u)}]2} = C(0)

γ(h) = 0.5 · V ar{Z(u) − Z(u + h)} = C(0) − C(h) (2.1)

where γ(h) is a semi-variogram for lag distance h.

The assumption of second order stationarity is then used for deriving the theory of

kriging. The term variogram will be used throughout this thesis instead of the term semi-

variogram for consistency with geostatistical literature (Isaaks & Srivastava, 1989; Journel

& Huijbregts, 1978; Matheron, 1963; Rossi & Deutsch, 2014).

2.1.2 Kriging and Simulation

Krige (1951) pioneered the use of statistical methods for the valuation of mineral deposits.

Matheron (1963) formulated the theory of best unbiased spatial prediction and named it

kriging. The theory of kriging is further explained with respect to its application in mining

by other authors (David, 1977; Isaaks & Srivastava, 1989; Journel & Huijbregts, 1978).

Kriging is an estimation method that minimizes the theoretical error variance (quadratic

error) between true values and estimates (Journel & Huijbregts, 1978, p. 305). Simple

kriging assumes that the mean is known and stationary (Rossi & Deutsch, 2014, p. 138).

Ordinary kriging constrains the weights to samples to sum to 1 to remove the need for the

global mean (Rossi & Deutsch, 2014, p. 139). Ordinary kriging adapts to local trends in the

mean and is more suitable for grade control. Vasylchuk and Deutsch (2017) demonstrate

that for a single variable and a symmetric loss/profit function, ordinary kriging provides

results close to more advanced simulation-based methods in terms of misclassification. For

the cases with asymmetric penalties, the performance of kriging deteriorates significantly

compared to simulation.
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Multiple variables can be estimated with cokriging (Journel, 1989); if a primary variable

is missing at a location, it can be estimated from secondary data. Cokriging also minimizes

the error variance of estimation; the cross-correlation between variables helps to reduce the

estimation error even more compared to kriging with one variable (Isaaks & Srivastava,

1989, p. 400).

Simulation is a way to model uncertainty in a grade distribution that can be later used

for assessing economic consequences of particular decisions (C. V. Deutsch et al., 2000;

Glacken, 1996; Isaaks, 1991; Neufeld et al., 2005; Richmond, 2003). Similar to kriging,

simulation honors local data but also reproduces the histogram and variogram (Rossi &

Deutsch, 2014, p. 167). The use of a multivariate transformation technique permits re-

production of the multivariate relationships between variables. Unlike kriging, simulation

better reproduces the distribution of extreme values.

Sequential Gaussian Simulation (SGS) is a popular simulation method (Isaaks, 1991).

Like most simulation techniques, it relies on a multivariate Gaussian assumption after nor-

mal score transformation of the grades. Turning bands simulation (Matheron, 1973) and

LU simulation (Luster, 1986) are other simulation techniques that have seen use in mining.

2.1.3 Economic Functions and Optimal Estimates

The error of estimation can be defined as: e(u) = z∗(u)−z(u), where z∗(u) is an estimated

value and z(u) is the true value at a location u. Then, the loss from this error can be defined

by a loss function (Journel, 1989). The quadratic loss function is well known:

L(e(u)) = e2(u)

where e(u) is the variance of estimation at a location u.

The mean of a distribution minimizes the quadratic loss function regardless of the dis-

tribution shape. Simple kriging computes a conditional mean and theoretically minimizes

the quadratic loss function between the true and estimated values. Also, the mean value of

multiple realizations (E-type estimate) at a location uminimizes the quadratic loss function

(Glacken, 1996, p. 29).
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Journel (1984) shows that the median minimizes the absolute error loss function:

L(e(u)) = |e(u)|

Another simple loss function type is a constant loss function; some constant value is

assigned if the error between truth and estimate is not 0:
L(e(u)) = 0, if e(u) = 0;

Constant, if e(u) ̸= 0.

The mode of the distribution of values minimizes this loss function (Glacken, 1996, p.

30).

Journel (1984) proves that if the loss function is linear and asymmetric, the optimal

estimate decision will be a p quantile of a distribution instead of the median. This can be

understood as if, for example, underestimation is penalized more than overestimation, the

value minimizing the error of estimation is above the mean. An example of such a loss

function is in Figure 2.1.

Figure 2.1: An asymmetric loss function

The p quantile can be calculated using the following expression (Journel, 1984):

p = λ1

λ1 + λ2

where λ1 and λ2 represent that angles determining the rates for the overestimation and

underestimation errors, respectively.
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Loss functions may be asymmetric non-linear and have multiple constraints. In such

cases, an analytical solution is impossible (Glacken, 1996) and a numerical approach should

be used. If the distribution of uncertainty at a locationu forn conditioning data,F (u; z|(n)) =

Prob{Z(u) ≤ z|(n)}, is available, a general optimal estimate or L-optimal estimate can be

derived using the expression below (Glacken, 1996, p. 28; Journel, 1989, p. 27):

E{L(z∗(u), Z(u))|(n)} =
∫ ∞

−∞
L(z∗(u), z(u)) · dF (z;u|(n))

whereL(z∗(u), Z(u))|(n) is a loss function; z∗(u) is an estimate value; Z(u) is a random

variable representing the true value.

In practice, the integral can be solved by a discrete sum over all the realizations of

simulation (Glacken, 1996, p. 28):

E{L(z∗(u), Z(u))|(n)} = 1
S

S∑
s=1

L(z∗(u), zs(u)) (2.2)

where zs(u) are the simulated values at a location u over the realizations s = 1, ..., S.

It is required to find such z∗(u) that minimizes the expected loss; one would need to

check a range of values of z∗(u) using Equation (2.2) to find the one that brings the smallest

expected loss. This principle can be used to determine an optimal destination for mined

material at each location instead of a grade value. In real life, there is asymmetry in the

profit calculation for each destination, but loss functions are not really applicable given

the repeated nature of grade control decisions. A neutral position on risk maximizes the

expected profit. Therefore, using the most applicable profit functions and maximizing the

expected profit is more reasonable for this task.

In Vasylchuk and Deutsch (2016), the authors attempt to directly obtain the optimal

estimates for non-linear loss functions using training images and iterative optimization of

kriging weights. Tests show that the method tends to overestimate or underestimate grades

in order to minimize the specified error of estimation.

2.1.4 Grade Control Decision Making with Simulation

Minimum expected loss (Isaaks, 1991) and maximum expected profit (Glacken, 1996) are

sometimes considered two separate methods but they are the same in principle; both of
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them should yield the same classification of mined material in a risk neutral situation. A

brief description of simulation methods for grade control is in Verly (2005) and Vasylchuk

(2016).

In Verly (2005), only a simple grade control case with one cutoff grade is considered; the

cutoff grade allows distinguishing between two destinations: ore and waste. This defines

four scenarios for a location being estimated: i) correct acceptance (both estimate and true

value are above the cutoff), ii) correct rejection (both estimate and true value are below

the cutoff), iii) false acceptance (estimate is above the cutoff but true value is below the

cutoff), iv) and false rejection (estimate is below the cutoff but true value is above the

cutoff). The false acceptance and false rejection errors may also be interpreted as Type 1

and Type 2 errors, respectively. More information about hypothesis testing is in Sheskin

(2003). Figure 2.2 illustrates the four scenarios.

Figure 2.2: Four scenarios for ore and waste decisions

The expected loss method (Isaaks, 1991; Srivastava, 1987) is based on two simple utility

functions: 
Uore(z) = z · r · p − cm − cp;

Uwaste(z) = −cm.
(2.3)

where Uore(z) is the utility obtained from mined material of a certain grade z; Uwaste(z)

is the loss incurred when the waste material is mined; r is the recovery of grade; p is the
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price of commodity; cm and cp are the costs for mining and processing, respectively. The

cutoff grade is calculated using the following expression:

zc = cp

r · p

According to this method, the expected loss for the ore decision is calculated as follows:

L(u; ore) =


0, correct acceptance;

−p · r · Z(u) + cp, false acceptance (Type 1 error).
(2.4)

EL(u; ore) = E{L(u; ore)}

where L(u; ore) is the loss at a location u given the ore decision; EL(u; ore) is the

expected loss at a location u given the ore decision.

The expected loss for the waste decision is calculated as follows:

L(u;waste) =


0, correct rejection;

p · r · Z(u) − cp, false rejection (Type 2 error).
(2.5)

EL(u;waste) = E{L(u;waste)}

where L(u;waste) is the loss at a location u given the waste decision; EL(u;waste) is

the expected loss at the location u given the waste decision.

The correct decision at the location u has the smallest corresponding expected loss.

Glacken (1996) offers another approach to the optimal classification problem. The same

utility function parameters as in the ore utility function from Equation 2.3 are used. If the

ore decision is correct, the grade value is at least high enough to cover a processing cost. If

the ore decision is incorrect, there is overestimation and the profit turns negative because

the grade value does not fully pay for the processing cost. If the waste decision is correct,

then profit is equal to 0, while an incorrect waste decision implies underestimation and a

negative profit associated with lost ore. Glacken (1996) introduced the coefficients for the

underestimation and overestimation decisions (false rejection and false acceptance) that are

supposed to reflect a mine operator’s attitude to treating the waste material as ore and to

losing ore by directing it to a waste dump. According to this method, the expected profit
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for the ore decision can be calculated as follows:

P (u; ore) =


p · r · Z(u) − cp, correct acceptance;

w1 · (p · r · Z(u) − cp), false acceptance (Type 1 error).
(2.6)

EP (u; ore) = E{P (u; ore)}

where P (u; ore) is the profit at a location u given the ore decision; EP (u; ore) is the

expected loss at the location u given the ore decision; w1 is the false acceptance coefficient.

The expected profit for the waste decision can be calculated as follows:

P (u;waste) =


0, correct rejection;

−w2 · (p · r · Z(u) − cp), false rejection (Type 2 error).
(2.7)

EP (u;waste) = E{P (u;waste)}

where P (u;waste) is the profit at the location u given the waste decision; EP (u;waste)

is the expected loss at the location u given the waste decision; w2 is the false rejection

coefficient.

For this method, the correct decision at the location u has the largest corresponding

expected profit.

C. V. Deutsch et al. (2000) propose amodification of the expected profit method. Unlike

in Glacken (1996), the cost of mining is considered here. There is a lost opportunity cost

included in the case the waste decision is incorrect. The cutoff grade accounts for the

difference in mining waste and ore:

zc = cp + (co − cw)
p · r

where co is the cost of mining ore; cw is the cost of mining waste.

The expected profit for the ore decision can be expressed as follows:

P (u; ore) =


p · r · Z(u) − co − cp, correct acceptance;

p · r · Z(u) − co − cp, false acceptance (Type 1 error).
(2.8)

EP (u; ore) = E{P (u; ore)}
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In the case of a false acceptance, the profit for the ore decision will be less than −cw.

The expected profit for the waste decision can be calculated as follows:

P (u;waste) =


−cw − clo, correct rejection;

−cw − clo, false rejection (Type 2 error).
(2.9)

EP (u;waste) = E{P (u;waste)}

where clo = i(Z(u), zc)·(−p · r · Z(u) + co + cp − cw) is the lost opportunity cost; i(Z(u), zc)

is equal to 1 if a grade is greater than zc and it is equal to 0 otherwise.

Neufeld et al. (2005) also use the expected profit approach with a profit function that

accounts for a difference in the costs of mining ore and waste. The function converts sim-

ulated grades to negative or positive profit values depending on whether a grade exceeds a

cutoff grade; a ’cost of processing waste’ coefficient is used to scale negative profit values:

cpr = p · r(zc) · zc − co + cw

p · r(zc) · zc

where cpr is the cost of processing waste coefficient; r(zc) is the recovery at the cutoff

grade.

Grades are converted to profit as follows:

P (u) =


(Z(u) · r(Z(u)) − zc · r(zc)) · p, if Z(u) > zc;

(Z(u) · r(Z(u)) − zc · r(zc)) · p · cpr, if Z(u) < zc.
(2.10)

EP (u) = E{P (u)}

If the expected profit value calculated using Equation 2.10 is greater than 0, the decision

is ore; the decision is waste otherwise.

Vasylchuk andDeutsch (2017) offer a simpler implementation of theminimum expected

loss method: if either the ore or the waste decision is correct, the loss is 0; otherwise, the

loss is calculated as the difference between the cutoff grade and a grade variable value.

The underestimation and overestimation decisions could be scaled by coefficients similar

to Glacken (1996).

The expected loss for the ore decision is calculated as follows:

L(u; ore) =


0, correct acceptance;

(zc − Z(u)) · w1, false acceptance (Type 1 error).
(2.11)
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EL(u; ore) = E{L(u; ore)}

The expected loss for the waste decision is calculated as follows:

L(u;waste) =


0, correct rejection;

(Z(u) − zc) · w2, false rejection (Type 2 error).
(2.12)

EL(u;waste) = E{L(u;waste)}

All the reviewed methods are similar in nature; they all account for a single cutoff

grade and assume linear profit or loss. Simulation is used to calculate multiple realizations

of grade and calculate the expected profit or loss. In real life, grade control cases are rarely

so simple. Mined material can be routed to multiple destinations; asymmetric or non-linear

profit/loss for a particular destination can be calculated using multiple variables. A more

flexible method is required.

2.1.5 Multivariate Normal Score Transformation

Grade control may depend on multiple variables. A multi-Gaussian distribution of grades

is assumed for Gaussian simulation; unfortunately, the univariate normal score transfor-

mation does not ensure multi-Gaussianity and complex multivariate features such as het-

eroscedasticity, non-linearity, and constraints will remain (Barnett, Manchuk, & Deutsch,

2014). Therefore, common cosimulation techniques assuming multi-Gaussianity will not

be able to reproduce the complex features in the simulated realizations (Almeida & Journel,

1994; Verly, 1993). Another approach assumes independent simulation of multiple vari-

ables. There are advanced methods for decorrelation/normal score transformation of multi-

ple variables such as principal component analysis (PCA) (B. M. Davis & Greenes, 1983;

Hotelling, 1933), minimum/maximum auto-correlation factors (MAF) (Desbarats & Dim-

itrakopoulos, 2000; Switzer, 1985), stepwise conditional transformation (SCT) (Leuangth-

ong & Deutsch, 2003; Rosenblatt, 1952), and projection pursuit multivariate transform

(PPMT) (Barnett et al., 2014; Friedman, 1987).

PCA is a classic dimension reduction and decorrelation technique. Amultivariate distri-

bution of data is decorrelated using spectral decomposition of a corresponding covariance

matrix at h = 0 lag distance (Barnett & Deutsch, 2015a, p. 38).
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The application of PCA implicitly assumes that if the correlation between multivariate

data is removed at the h = 0 lag distance, it is also removed for all other h > 0 lag distances;

this assumptionmakes PCA less effective for complexmultivariate data (Barnett &Deutsch,

2015a, p. 39). MAF performs the spectral decomposition of covariance matrix at h = 0

and h > 0 lag distances. The covariance matrix at h > 0 is also corrected to have no

cross-correlation between the factors (Barnett & Deutsch, 2015a, p. 39).

Stepwise conditional transformation is performed in a sequential manner. A primary

variable is normal score transformed. The second variable is transformed conditional to the

first variable. Subsequent variables are transformed with respect to all previous variables.

The method is influenced by the curse of dimentionality with increasing the number of

variables, that is, there are too few data to define the conditional distributions in a non-

parametric manner with multiple previous variables. (Rossi & Deutsch, 2014, p. 184).

The details of the theory and implementation of this method can be found in Leuangthong

(2003).

A multivariate transformation algorithm is useful for an automatic grade control sys-

tem; it should not require extensive tuning and supervision. PPMT appears to be a suitable

algorithm. The method is based on aspects of the Projection Pursuit Density Estimation

algorithm (PPDE) (Friedman, 1987). PCA is used to decorrelate the normal score trans-

formed variables. Then, projection pursuit can be performed on the processed data (Barnett

& Deutsch, 2015a). The idea is to find vectors that if the input data are projected on them

the resultant projections are the most non-Gaussian; a projection index is used to measure

the degree of the Gaussianity of the projection. Once such a vector is found, the input data

are transformed so that the values on this projection become Gaussian. Then, this process is

repeated until a pre-defined number of iterations is completed or when a stopping criterion

is achieved. The details of the theory and implementation of this method can be found in

Barnett et al. (2014) or Barnett and Deutsch (2015a).

2.1.6 Multivariate Imputation of Heterotopic Observations

Multivariate grade control cases benefit from the PPMT workflow described above. Iso-

topic observations, that is, all variables are available at all data locations, are required for
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most of the methods described in Section 2.1.5. Due to various reasons, some variables may

be missing, which creates heterotopic observations; removing the heterotopic observations

may lead to omitting valuable information and producing biased results (R. J. A. Little &

Rubin, 2014). A solution to the problem of heterotopic observations is to impute themissing

variables using spatial and multivariate relationships between variables.

Missing samples may or may not follow a specific pattern; for example, the high grade

areas of a domain are usually sampled more densely. Depending on this pattern, different

imputation techniques may be used. Barnett and Deutsch (2015b) indicate that a suitable

method for geostatistical modeling should reproduce the variability of observed data and do

not introduce a bias; multiple imputation (Rubin, 1978) andmaximum likelihood estimation

(Dempster, Laird, & Rubin, 1977) methods satisfy these conditions.

Consider K regionalized random variables Z1, ..., ZK ; the variables are sampled at n

locations. The observations can be represented as a data matrix Z with zij, i = 1, ..., n, j =

1, ..., K entries. The observed and missing values of Z are denoted Zobs and Zmis, re-

spectively. A multiple imputation method implies constructing a conditional distribution

f(Zmis|Zobs) and then sampling it to obtainL realizations of imputedmissing values,Z l, l =

1, ..., L consisting of the observed values and imputed values (Barnett & Deutsch, 2015b).

This workflow is suitable for performing geostatistical simulation; a realization of imputed

values Z l can be used with a realization of simulation l.

Barnett and Deutsch (2015b) propose two multiple imputation methodologies adapted

for geological data: i) the parametric merged method, and ii) the non-parametric merged

method. The parametric merged method is based on the assumption of multivariate Gaus-

sianity of the data. The non-parametric merged method is recommended if input variables

exhibit complex multivariate relationships. This method is based on multivariate kernel

density estimation for better reproducing complexmultivariate features and Gibbs sampling

(Geman & Geman, 1984; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

Silva and Deutsch (2016) propose a semi-parametric method using Gaussian mixture

models (SPGMM). The method is similar to the non-parametric merged method from Bar-

nett andDeutsch (2015b) but it usesGaussianmixturemodel (GMM) for calculatingmarginal

and conditional probabilities. SPGMM is faster than the non-parametric merged method
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(Silva & Deutsch, 2016) but requires the number of kernels for GMM specified. SPGMM

is the most suitable when the data are missing independent of the missing data; however,

the data may still be missing dependently on the observed values (Silva & Deutsch, 2016).

2.1.7 Local Anisotropy and Variography

Mineral deposits often exhibit different non-linear and anisotropic features in different di-

rections. In such cases, the major direction of geological continuity, as well as the pa-

rameters of an underlying variogram function, could be different for different regions of a

mine bench. In other words, the assumption of stationarity (constant mean and variogram)

might be unrealistic. The idea of incorporating locally varying anisotropy into geostatistical

modeling is not new. Te Stroet and Snepvangers (2005) propose Local Anisotropy Kriging

(LAK), which is based on gradient calculations for local orientations and subsequent kriging

with local anisotropy; the two above operations are repeated iteratively until some optimiza-

tion criterion is satisfied. Boisvert, Manchuk, and Deutsch (2009) consider non-Euclidian

distances for calculating covariances and incorporating locally varying anisotropy into krig-

ing models. Magneron, Jeannee, Le Moine, and Bourillet (2010) offer the local optimizing

of the variogram model parameters using moving windows and cross-validation. The idea

to use the mass moment of inertia tensors for determining major directions of local geolog-

ical continuity was described by Hassanpour (2007). Machuca-Mory and Deutsch (2013)

offer adjusting local cumulative distribution functions and variograms based on weighting

by the distance to some anchor points. Feng and Milanfar (2002) present a method for

finding the local orientation of geological features called multiscale PCA; the method uses

the singular value decomposition (SVD) of gradient matrices at different resolutions (gra-

dient pyramid layers) to determine a dominant orientation using resulting singular vectors

and singular values. Estimated orientation vectors are then propagated from the coarsest to

the finest resolution using the Kalman filter (Kalman, 1960). The 2-D method from Feng

and Milanfar (2002) was further extended to a 3-D version in Martin (2017). Lillah and

Boisvert (2015) discuss techniques for determining locally varying anisotropy (LVA) fields

for different types of data.

In order to fully implement a local simulation algorithm, it is necessary to obtain local
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anisotropy ratios in addition to the orientation of the anisotropy. For multiscale PCA and

the mass moment of inertia methods, it can be done directly from the singular values and

eigenvalues, respectively. Nevertheless, the ratios can bemore reliably estimated from local

variogram models. The concept of variograms and fitting variogram models is extensively

described in geostatistical literature (David, 1977; Journel & Huijbregts, 1978, p.148-303;

Matheron, 1963). Cressie (1985) and Cressie (1992) discuss different types of variogram

estimators and least squares fitting algorithms; the weighted least squares fitting method

in a combination with a robust estimator is compared to the generalized least squares and

the ordinary least squares methods. Brunell (1992) offers an algorithm for an automatic

fitting of variogram models with the weighted least squares method from Cressie (1985).

Larrondo, Neufeld, and Deutsch (2003) describe an iterative algorithm for automatic var-

iogram fitting. Desassis and Renard (2013) present a modification of the Gauss-Newton

minimization algorithm to fit variogram models to experimental variograms or variogram

maps. The algorithm is implemented in univariate and multivariate cases. J. L. Deutsch

(2015) presents a modified iterative algorithm that offers an increase in speed and reliabil-

ity. Another modification of the Gauss-Newton algorithm for fitting variogram models is

in Manchuk and Deutsch (2017).

After the local anisotropy information is obtained, it can be used within a kriging or sim-

ulation workflow. The implementation of sgsim (C. V. Deutsch & Journel, 1998) that uses

locally changing rotation matrices for calculating covariances and solving normal equations

is described in Leuangthong et al. (2006). Another method to perform SGS and kriging

using locally varying anisotropy, non-Euclidian distances and multi-dimensional scaling

fields is offered in Boisvert and Deutsch (2011).

2.2 Modeling Blast Movement

2.2.1 Background

In many open pit mines, rock blasting is a necessary step before excavation. It is performed

by means of explosives that are placed in dedicated blastholes. The chemical reaction fol-

lowing the initiation of explosives induces a fast release of detonation gases that creates an
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initial impulse on the walls of the blastholes; the gases also perform the subsequent moving

and breaking of the rock. Persson, Holmberg, and Lee (1993, p. 87-143) provide more

information on the detonation theory and the mechanics of the rocks breakage. Blasting en-

gineers are usually concerned with the harmonic and reasonable distribution of blast energy

inside the mine bench. This design considers a number of constraints imposed by geology,

the configuration of the free face, available explosives and firing systems, environmental

and safety regulations, desired degree of fragmentation among other considerations.

Blasting rocks causes their movement depending on the configuration of a blast. A post-

blast muckpile is also characterized by a swell factor, that is, an increase in the volume after

blasting. Grade control is concerned with decreasing dilution and ore loss due to incorrect

classification of the mined rock. Therefore, the blast-induced displacement of rocks and the

swell factor should be accounted for in grade control models (Dimitrakopoulos & Godoy,

2014; Vasylchuk & Deutsch, 2017).

There are two main approaches to model blast movement for grade control: i) modeling

based on the physics of rocks breaking, and ii) modeling based on direct measurements of

the blast-induced displacement of rocks.

2.2.2 Overview of Existing Blast Movement Models

Early attempts to theoretically model the blast movement of rocks were limited by compu-

tational capability. A classification of early blast movement models is in Gilbride (1995, p.

14-24). Cundall (1980) presents a sophisticated Universal Distinct Element Code (UDEC)

that allows modeling the post-blast displacement of rocks represented as discrete blocks.

UDEC was later implemented in a 3-D commercial code, 3DEC (Hart et al., 1988); the

method accounts for the displacement and rotation of individual blocks. Schamaun (1984)

describes two models named BLOCKS and BUMP, where blast movement is represented

by discrete blocks or circles, respectively; the dynamic behavior of the discrete particles

for both models is governed by the geological characteristics of mine benches, shapes and

sizes of the particles, and the parameters regulating the interactions between the particles.

Preece and Taylor (1989) present a Distinct Motion Code (DMC) that allows incorporating

the properties of explosives for modeling the motion of rocks; DMC also uses the principle
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of moving sphere objects. Some developments in the field of blast modeling are described

in Tordoir, Weatherley, Onederra, and Bye (2009). A 3-D version of the DMC algorithm

is presented in Preece and Silling (2016); it now utilizes parallel processing for modeling

millions of discrete parcels. The modern version of DMC is able to predict the influence

of different initiation schemes on blast movement. Furtney, Andrieux, and Hall (2016)

describe the application of a new numerical model for modeling the blasting process. The

model is developed as a part of the Hybrid Stress BlastModel (HSBM) project implemented

in a software called Blo-Up (Onederra, Furtney, Sellers, & Iverson, 2013). The program

aims to predict the detonation process, fragmentation, blast movement, and a final muckpile.

P. Yang et al. (2017) present a new model simulating the entire process occurring in rocks

during blasting including an initial impulse from waves propagation, rock movement, and

fragmentation. It is reported that the simulation results are in good agreement with blasting

cylinder and projectile fire tests (P. Yang et al., 2017).

Modeling the entire blasting process is an interesting approach for predicting blast move-

ment. However, incomplete knowledge of the geological characteristics, fracture locations

and orientation, and mechanical properties of the rocks together with uncertainty in blast

parameters such as timing, stemming ejection, and the influence of free faces undermines

these modeling results. La Rosa and Thornton (2011) discuss the possible economic conse-

quences of having discrepancies between theoretically modeled blast movement and mea-

sured blast movement; for two test blasts, the error between a physics-based model and real

measurements was from 1 to 7 m, which was estimated to be equivalent to a total loss of

from 2.2 to 4.8 million dollars, respectively. La Rosa and Thornton (2011) argue that even

a 0.5 m error may make the theoretical modeling less economically effective than actually

measuring the blast-induced displacement of rock. Therefore, any theoretical blast models

should be calibrated with real pre- and post-blast configurations of a mine bench.

2.2.3 Direct Measurement of Blast-induced Displacement of Rock

There are two major ways that have been used to measure blast movement: i) using simple

visual markers, and ii) using remote detecting equipment. Zhang (1994) and S. L. Taylor

(1995) investigate the displacement of rocks during blasting using sand bags and wooden
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stakes as markers. Gilbride (1995) offers to use remote sensing magnetic target markers put

inside a mine bench with magnetic radiometers. La Rosa and Thornton (2011) describe the

use of radio frequency tags ID (RFID) for measuring blast movement. Adam and Thornton

(2004) present a new method of remote blast movement measuring using Blast Movement

Monitors (BMM), transmitters placed in a protective shell. The BMMs are put in dedicated

drill holes to different depths and detected after blasting using a specialized receiver. The

blast movement vectors are calculated using the pre-blast surveyed locations of the dedi-

cated drillholes and the post-blast positions of the BMMs. Thornton, Sprott, and Brunton

(2005) report the error of measurement of the system of about 0.1-0.5 m (increasing with

depth). Thornton (2009b) provides a summary of a 6 years long monitoring the blast move-

ment displacement of rocks with BMM; the most important conclusions are as follows: i)

the bottom and middle parts of the bench move more than the upper part; a classical D-

shaped profile is created, ii) swell is approximately uniform throughout the bench, iii) the

movement of the central part of the mine bench during buffered and free-faced blast are

similar, and iv) the echelon blast is preferred because it creates the most predictable blast

movement. Vasylchuk (2016) indicates that there is a lack of methods to reconcile the pre-

and post-blast 3-D models with complex configurations of free faces using sparse displace-

ment vectors.

D. L. Taylor and Firth (2003) model separately the directional components of the sparse

measurement vectors with any interpolation method (e.g., kriging) to get displacement

vectors at all the grid points and later model the post-blast dig limits. Isaaks, Barr, and

Handayani (2014) use the pre- and post-blast topographic surfaces to create the pre- and

post-blast 3-D models of mine benches. The directions of displacement are determined

perpendicular to the timing contours. The horizontal displacements are drawn from the

distributions of horizontal displacements based on historical data.

2.3 Classification of Rocks for Short-term Planning

A traditional way to determine mined material destinations is hand contouring using rock

types or a cutoff grade (Norrena & Deutsch, 2001). This method is prone to errors with
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marginal ore and at the boundaries of different rock types. There are two major require-

ments for dig limits: i) maximizing profit, and ii) honoring selection constraints including

equipment maneuverability, the direction of excavation, and other factors. Gershon (1983)

discusses using linear programming (LP) and mixed integer linear programming (MILP)

approaches for solving mine planning and scheduling problems. Tabesh and Askari-Nasab

(2011) offer to optimize long-term planing using a two-stage clustering algorithm based on

hierarchical clustering and tabu search. Tabesh and Askari-Nasab (2013) use hierarchical

clustering for determining dig limit polygons; first, similar block-units are merged accord-

ing to a similarity index and then post-processed to remove small clusters and smooth the

shapes of the polygons. Away to account for the direction of mining during the clustering is

described; however, it is not clear how to determine the ultimate optimal number of clusters

as a stopping criterion. Norrena and Deutsch (2001) present an algorithm that optimizes

the dig limit boundaries by maximizing profit and accounting for ’digability’ (a measure of

difficulty to follow dig limit lines for mining equipment ) using simulated annealing (Kirk-

patrick, Gelatt, & Vecchi, 1983); initial dig limits are determined automatically. Neufeld,

Norrena, and Deutsch (2003) offer a semi-automatic algorithm for the dig limit determina-

tion using simulated annealing and initial polygons supplied by the user; an algorithm is pro-

posed to account for multiple destinations. Richmond and Beasley (2004b) use ’demolition

and reconstruction’ heuristics to find an optimal solution to the grade control problem with

different processing options expressed as a mixed integer non-linear problem. In Richmond

and Beasley (2004a), a discrete efficient frontier is built using the output of an optimization

function with different weights to utility and risk penalty. A floating circle algorithm is

applied to account for equipment constraints during selection. Wilde and Deutsch (2007)

optimize selection using expected profit maps and accounting for pre-defined shapes of

selection units and the direction of mining. Isaaks, Treloar, and Elenbaas (2014) use the

minimum loss principle and simulated annealing to find optimal dig limit lines constrained

by a minimum mining width. Ruiseco (2016) solves the selection problem using a genetic

optimization algorithm that starts from random dig limits and iterates using the concept

of evolving through breeding, mutation, and survival. An idea of a clustering penalty is

incorporated in an objective function to account for selecting equipment constraints. Sari
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and Kumral (2018) formulate the selection problem as a MILP; only a simple case with

one variable and a linear utility function is considered. M. Deutsch (2017) demonstrates

an algorithm for dig limits optimization partially based on a branch-and-bound algorithm

(Land & Doig, 1960; J. D. C. Little, Murty, Sweeney, & Karel, 1963). Dig limits are often

optimized on a block basis; the dimensions of the blocks account for a mining width. The

optimized boundaries are then contoured to generate mineable polygons.

2.4 Conclusion

This literature review covers the topics that are necessary for understanding this thesis. It

also demonstrates that the grade control procedure is still not perceived by the scientific

community as an integrated process with all its aspects and unit operations interdependent.

Many of the improvements in the field of grade control target a specific area of the short-

term mine planning, which is unlikely an optimal approach.

This review is by no means comprehensive but it rather provides a useful guidance for

finding more information on a particular topic.
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Chapter 2 discusses the minimum expected loss (Isaaks, 1991) and maximum expected

profit (Glacken, 1996) methods for grade control; the two methods are expected to make

identical grade control decisions in a risk neutral situation. Since the main purpose of a

mine is maximizing profit, the maximum expected profit method may be considered more

intuitive and, therefore, is advocated in this thesis. All the reviewed simulation-based grade

control methods assume only two destinations for mined material: ore and waste. However,

real grade control cases often involve multiple destinations depending on a particular tech-

nological process and mine plan. A flexible maximum expected profit method should allow

incorporating complex rules for defining profit.

This chapter describes a new maximum expected profit method based on local multi-

variate simulation. The method is implemented as the first part of the Advanced Grade

Control (AGC) system. The simulation workflow and its main components are described

in detail.

3.1 Problem Formulation

Consider a stationary domain A (usually a mine bench) chosen based on geological and sta-

tistical characteristics that conform to site specific considerations. There are g = 1, ..., G true

grade values associated with each location u ∈ A.

ztrue(u; g), g = 1, ..., G, u ∈ A

The true grades permit calculating true profit for every destination k = 1, ..., K through

a profit function P :

Ptrue(u; k) = P (ztrue(u; g), g = 1, ..., G; k), k = 1, ..., K, u ∈ A
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The true optimal destination at each location is the one that maximizes the true profit:

dtrue(u) = max k of (Ptrue(u; k), k = 1, ..., K), u ∈ A

The true cumulative profit over the domain is written as:

CPtrue =
∑
u∈A

Ptrue(u; dtrue(u))

This is the global maximum cumulative profit since it is a sum of maximum local profit

values. Of course, the true grades and true profit values are inaccessible. A carefully ap-

plied geostatistical framework would provide L realizations of grades that accurately and

precisely represent uncertainty in the true values.

zl(u; g), u ∈ A, g = 1, ..., G, l = 1, ..., L (3.1)

The expected profit for each destination at each location could be calculated as follows:

EP (u; k) = 1
L

L∑
l=1

P (zl(u; g), g = 1, ..., G; k) (3.2)

The optimal destination for each location could be calculated from the expected profit:

dopt(u) = max k of (EP (u; k), k = 1, ..., K), u ∈ A (3.3)

The cumulative profit based on these optimal destinationsmaximizes the expected profit,

that is, a sum of maximum values is the maximum of the sum.

CPopt =
∑
u∈A

EP (u; dopt(u)) (3.4)

Given unavoidable uncertainty and differences between dopt(u) and dtrue(u) at some

locations, the optimized cumulative profit must be less than the true cumulative profit:

CPopt < CPtrue

Nevertheless, the optimal decisions dopt(u) are the best possible without additional in-

formation that would make the uncertainty more precise and the predicted expected profit

values converge to the truth. A risk neutral position implies that the destination correspond-

ing to the highest expected profit value at a certain location should be chosen even if the
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difference in the expected profit values for different destinations is marginal. This strategy

allows maximizing the expected profit.

The profit function regulates how much profit is expected with each grade control de-

cision. Provided the geostatistical realizations are truly accurate and precise, the expected

profit should be close to the true profit over multiple locations. There will be differences

due to incomplete sampling and short scale variability. A measure of error could be written

as:

MSEprofit = E{(EP (u; k) − Ptrue(u; k))2} > 0, u ∈ A, k = 1, ..., K (3.5)

As written, this MSE is across all locations and destinations. The mean squared error

would represent the amount of local data and the quality of the geostatistical approach. Of

course, it could only be calculated when the true values are known in cross-validation mode

or with a synthetic true model.

3.2 Profit Functions

Similar to the reviewed maximum expected profit/minimum expected loss methods, simu-

lated grades zl(u; g), g = 1, ..., G, l = 1, ..., L are used to estimate the uncertainty in profit

through a profit function P . Optimal destinations for mined material are then determined

using Equations (3.2) - (3.3). Multiple constraints and relationships between any number

of relevant grade variables may be considered. Two types of profit functions are proposed

for AGC: a cutoff-based and a user-defined.

3.2.1 Cutoff-based Profit Function

The cutoff-based profit function can be used to calculate the expected profit values for the

ore and waste destinations similar to the minimum expected loss/maximum expected profit

methods reviewed in Chapter 2. A risk neutral position on profit allows maximizing total

expected profit from a mine bench, which is reasonable considering the short-term nature

of grade control and the fact that grade control decisions are irreversible. Therefore, the

proposed profit function assumes that correct decisions bring a certain amount of profit and
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incorrect decisions bring neither profit nor loss. It also assumes that all the mined material

must be removed, and it should at least cover the processing cost if classified as ore. If

a simulated value zl(u) at a location u is greater than or equal to a cutoff grade zc, the

expected profit for the ore decision is calculated as follows:

P (zl(u); ore) =


(zl(u) − zc) · b1, if zl(u) ≥ zc, (correct acceptance);

0, if zl(u) < zc, (false acceptance).
(3.6)

EP (u; ore) = 1
L

L∑
l=1

P (zl(u); ore)

where P (zl(u); ore) is the profit at the location u given the ore decision; EP (u; ore) is

the expected profit at the location u given the ore decision; b1 is a scaling coefficient for

correct acceptance.

If zl(u) is below than zc, the expected profit for the waste decision is calculated as

follows:

P (zl(u);waste) =


(zc − zl(u)) · b2, if zl(u) < zc, (correct rejection);

0, if zl(u) ≥ zc, (false rejection).
(3.7)

EP (u;waste) = 1
L

L∑
l=1

P (zl(u);waste)

whereP (zl(u);waste) is the profit at the locationu given thewaste decision;EP (u;waste)

is the expected profit at the location u given the waste decision; b2 is a scaling coefficient

for correct rejection.

The scaling coefficients b1 and b2 are included as an option to add asymmetry in the

profit calculations. The cutoff-based function can be applied only to the simplest grade

control cases assuming ore and waste destinations for mined material only.

3.2.2 User-defined Profit Functions

The proposed cutoff-based profit function does not incorporate complex multivariate or

non-linear relationships between grades. Complex grade control cases may include mul-

tiple grade variables, multiple destinations, and multiple rules for defining profit for the

destinations. Multiple grade variables may be associated with multiple cutoff grades and/or
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recovery functions as well as various constraints. The recovery functions, in turn, may in-

volve linear and non-linear relationships between grades (Dimitrakopoulos&Godoy, 2014).

A user-defined profit function should be based on information related to a particular mine’s

plan and technological process. In order to define a dedicated profit function for AGC, the

following general suggestions may be used:

• Information related to metallurgical recovery from a mine should be used as a basis

for the profit function such as recovery functions, stockpile blending criteria, geolog-

ical information, and others.

• A risk neutral position should be used; profit should be defined for correct decisions,

while classification errors should not be penalized.

• A strategic mine plan should be taken into account (e.g., cutoff grade, scheduling).

• A profit function’s design should be reasonable and balanced; dividing by zero or

very small numbers should be avoided.

An example of an arbitrary user-defined profit function with non-stationary recoveries

is provided below. There are three destinations for mined material: i) plant, ii) leach (pad),

and iii) waste (dump). There are three simulated grade variables, zl(u; g), g = 1, ..., 3, l =

1, ..., L, ∀ u ∈ A, and two recovery functions, R1(zl(u; 1), zl(u; 3)), l = 1, ..., L, ∀ u ∈ A

and R2(zl(u; 2)), l = 1, ..., L, ∀ u ∈ A. As written, the recovery of the first grade variable

depends on the values of the first and third grade variables at each location u. The recovery

of the second grade variable depends on the value of the second grade variable only at each

location u. The expected profit for the plant decision is determined as follows:

P (zl(u; 1), zl(u; 3); plant) =
p1 · R1(zl(u; 1), zl(u; 3)) · zl(u; 1) − c1

p, if profit ≥ cost;

0, otherwise.
(3.8)

EP (u; plant) = 1
L

L∑
l=1

P (zl(u; 1), zl(u; 3); plant)
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where p1 is the price for metal/mineral per unit of mined material represented by the first

grade variable; c1
p is the cost associated with processing the mined material at the plant.

The expected profit for the leach decision is determined as follows:

P (zl(u; 2); leach) =
p2 · R2(zl(u; 2)) · zl(u; 2) − c2

p, if profit ≥ cost;

0, otherwise.
(3.9)

EP (u; leach) = 1
L

L∑
l=1

P (zl(u; 2); leach)

where p2 is the price for metal/mineral per unit of mined material represented by the second

grade variable ; c2
p is the cost associated with processing the mined material at the leach

pad.

The expected profit for the waste decision is determined as follows:

P (zl(u; 1), zl(u; 2), zl(u; 3);waste) =
−p1 · R1(zl(u; 1), zl(u; 3)) · zl(u; 1)−

p2 · R2(zl(u; 2)) · zl(u; 2) + c1
p + c2

p, if cost > profit;

0, otherwise.

(3.10)

EP (u;waste) = 1
L

L∑
l=1

P (zl(u, 1), zl(u; 2), zl(u; 3);waste)

Even though the arbitrary function described by Equations (3.8) - (3.10) is more com-

plex than the cutoff-based profit function described in Section 3.2.1, real life profit cal-

culations may be more complex and changing frequently. The profit calculations are not

limited to grade variables. Some constraints may be added based on geology, the capacities

of final destinations, and other considerations. Also, it may be important to address stock-

pile blending criteria (since they may influence recovery) and mine planning in the profit

calculations.

3.3 Modeling Framework

The expected profit calculation part of the AdvancedGrade Control system is abbreviated as

AGC-EP. The number of nearby samples used locally in the main modeling part of AGC-EP
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is the most important parameter of the entire system. This number affects the local normal

score data transformation, anisotropy determination, and variogram calculation. An un-

supervised modeling approach requires that this parameter is determined automatically. A

k-fold (5-fold is considered by default) cross-validation procedure at blasthole (BH) sample

locations is used as a basis for decision making within AGC-EP.

The original data set is divided into 5 validation data sets Vi, i = 1, .., 5 (20 % of

data in each); the validation data sets are extracted at random without overlapping. The

training data set for each validation data set is the data in the other four folds. Necessary

calculations are performed for each fold i = 1, .., 5, and the results are assembled.

The modeling decisions made in the cross-validation mode are transferred to the main

modeling mode. It is assumed that minimizing the mean squared error in profit (Equation

(3.5)) in the cross-validation mode allows maximizing the expected profit from a mine

bench for final models.

Before the cross-validation starts, some pre-processing steps are carried out: i) multi-

variate imputation (if required), ii) the division of the original data to training and validation

data sets, iii) the calculation of the average lag distance for anisotropy and variogram calcu-

lations, and iv) the definition of the parameters of a coarser super grid for faster parameter

inference.

3.3.1 Multiple Imputation

Multivariate grade control cases are common in open pit mines. If the rules for determin-

ing correct destinations for mined material are non-linear and include multivariate condi-

tions, the reproduction of multivariate relationships between grade variables in simulated

models may be important for modeling local uncertainty. Advanced multivariate trans-

formation methods like Projection Pursuit Multivariate Transform (PPMT) (Barnett et al.,

2014) require homotopic observations. Excluding heterotopic observations (with missing

grade values) may negatively impact the quality of grade control models and result in a

bias (R. J. A. Little & Rubin, 2014).

Imputation should be performed prior to the start of expected profit modeling if missing

samples are detected. If the rock type information is available, the imputation procedure
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should be performed for each rock type independently. Methods from Silva and Deutsch

(2016) and Barnett and Deutsch (2015b) should be considered for multivariate grade control

cases.

3.3.2 Average Lag Distance

As a part of the local multivariate modeling workflow, local anisotropy directions are deter-

mined using correlation maps and the mass moment of inertia tensor (MOI) method (Has-

sanpour, 2007). The correlation maps summarize correlation coefficients in different direc-

tions. Since the BH samples are relatively densely spaced (spacing is usually in the range

from 3 m to 8 m), the average distance from a BH location to the closest BH samples may

be used as the lag distance for the calculation of the correlation coefficients.

Usually, blastholes do not provide enough information about the geological variability

in 3-D and, therefore, are not used for modeling 3-D variograms; the lag distances are

calculated only in the horizontal plane using N BH samples. Let C = {c1, ..., cN} ∈ R3

be a set of vectors. Each vector ci = (ci
1, ci

2, ci
3), i = 1, ..., N has the Euclidean distances

from a BH location i to three closest BH samples as its elements. The average lag distance

is calculated as follows:

hxy = 1
N

N∑
i=1

ci
1 + ci

2 + ci
3

3
(3.11)

Each location i might have a different number of locations situated at approximately

the same distance from it depending on a drilling pattern and its position within a mine

bench. Locations on the edges and in the corners of a mine bench are likely to have fewer

close neighbors than the ones in the middle of the bench. Also, blastholes may be missing

and bored with positioning errors. Selecting three closest BH samples for calculating the

average lag distance provides a reasonable and unbiased estimate based on many test cases.

3.3.3 Super Grid Parameters

The concept of a super grid is implemented to decrease the operation time of the local multi-

variate simulation workflow. It is based on an assumption that local anisotropy parameters

and variogram models are similar at nearby locations. A set of pre-blast coordinate vectors
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B = {b1, ..., bN} ∈ R3, where bi = (bi
x, bi

y, bi
z), i = 1, ..., N is used to define the super

grid. The elements of B with the largest and the smallest x and y components are extracted.

The numbers of super grid nodes in the x and y directions are calculated as follows:

nsx = (blargest
x − bsmallest

x − hxy)/(hxy · vconst);

nsy = (blargest
y − bsmallest

y − hxy)/(hxy · vconst).
(3.12)

where nsx and nsy are the numbers of super grid nodes in the x and y directions rounded

up to the nearest integers, respectively; bsmallest
x and blargest

x are the smallest and largest

coordinate components in the x direction among all the elements in B; bsmallest
y and blargest

y

are the smallest and largest coordinate components in the y direction among all the elements

in B; vconst is a constant value used to scale the average lag distance hxy.

Locations of super grid nodes x ∈ A are defined using the minimum coordinates in the

x and y directions (bsmallest
x and bsmallest

y ), a grid size (calculated as hxy · vconst), and the

number of nodes in each direction. The concept of defining grid parameters is explained in

C. V. Deutsch and Journel (1998). The constant value vconst is used to increase the super

grid size relative to the average lag distance for faster parameter inference; guidance for

choosing this value is provided later in this chapter. A super grid node location is clipped

if there is no a coordinate location bi closer to it than hxy · 2; this is done to account for

complex boundaries of a mine bench.

3.3.4 K-fold Cross-validation Workflow

The estimated profit values are compared to the true profit values obtained from the data

left out. All the modeling steps required for the expected profit calculation are performed

using the nearby data and statistics from a super grid location x of domain A (representing

a mine bench). A primary performance measure for selecting the number of samples is the

mean squared difference between the true profit and the expected profit over all the BH

locations of a validation data set and all destinations for mined material (Equation (3.5)).

The workflow of the cross-validation part of AGC-EP is shown in Figure 3.1 and explained

in detail below.
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Figure 3.1: K-fold cross-validation workflow

Step 1

The cross-validation procedure starts with selecting validation and training data sets

from Vi, i = 1, ..., 5 and Ti, i = 1, ..., 5, respectively; all the modeling steps are carried

out using the samples from Ti.

Step 2

Each BH sample location u ∈ A of the validation data set Vi is associated with the

closest super grid node location x ∈ A. Since the number of super grid nodes is often

smaller than the number of BH samples in Vi, each super grid node location will likely

have several BH samples assigned to it.
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Step 3

The cross-validation procedure is performed with different numbers of nearby BH sam-

ples associated with the super grid nodes, starting with some specified number of BH sam-

ples.

Step 4

The cross-validation algorithm starts at a super grid node location x ∈ A.

Step 4.1

A number of BH samples nd situated nearby x are retrieved from the bench and stored

in a set D. A simple search algorithm based on the shortest Euclidean distance between x

and the nearby data locations is used.

Step 4.2

The normal score (NS) transformation of the grade values in D corresponding to

g = 1, ..., G grade variables is performed. If there are multiple grade variables in each

BH sample, the PPMT multivariate normal score transformation is performed. The PPMT

algorithm requires relatively few input parameters specified, which makes it suitable for

automation; some other multivariate transformation algorithms may be considered (includ-

ing MAF (Desbarats & Dimitrakopoulos, 2000; Switzer, 1985)). PPMT is intended to re-

produce the non-linear relationships between grades in simulated models, which may be

beneficial for multivariate grade control cases with complex profit calculations. Some pa-

rameters required for the PPMT algorithm are fixed according to recommendations from

Barnett and Deutsch (2015a).

Fixed parameters for PPMT:

• The minimum and maximum numbers of iterations are 25 and 50, respectively.

• Targeted Gaussian percentile (Barnett & Deutsch, 2015a; Barnett et al., 2014) is 50.

Step 4.3

The NS and PPMT back-transformation information is saved for this super grid location

x. It is used for back-transforming the simulated values at each location u ∈ A associated

with x.

Step 4.3.1
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If there are multiple variables g = 1, ..., G, the following operations start with a vari-

able g.

Step 4.3.1.1

The principal direction of anisotropy is calculated using a modified MOI method de-

scribed in Section 3.4.1. If the number of nearby data nd is insufficient for theMOI method,

the initial specified number of nearby samples should be increased and the k-fold cross-

validation procedure should be repeated starting from Step 1.

Step 4.3.1.2

Experimental variogram values are calculated using grade values in D; then, a 2-D var-

iogram model γ(h) is fitted to the experimental points. Average lag distance hxy (Section

3.3.2) is used for the variogram calculations. Details about the automatic variogram mod-

eling are provided in Section 3.4.2. If the number of nearby samples nd is insufficient

for calculating the experimental variogram values, the initial specified number of nearby

samples should be increased and the k-fold cross-validation procedure should be repeated

starting from Step 1.

Step 4.3.2

Steps 4.3.1.1 - 4.3.1.2 are repeated for all variables g = 1, ..., G.

Steps 4.4 - 4.5

The cross-validation algorithm continues at a location u ∈ Vi; previously saved vari-

ogram models and anisotropy directions for each variable associated with x are retrieved.

Step 4.5.1

The simulation part of the algorithm starts with a grade variable g.

Step 4.5.2

The BH samples fromD and a variogrammodel γ(h) are used to solve normal equations

for this variable.

Steps 4.5.2.1 - 4.5.2.2

Normal equations are solved and a conditionalmean and standard deviation are obtained.

A number of values zl(u), l = 1, ..., L are drawn from a cumulative distribution function

defined by the mean and standard deviation. The higher the number of simulated values

L, the better local uncertainty is estimated. However, selecting a large value for L will
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significantly decrease the operation time of AGC-EP. Guidance on selecting a reasonable

value for L is provided later in Section 3.5.

Step 4.5.3

Steps 4.5.2.1 - 4.5.2.2 are repeated for all variables g = 1, ..., G.

Step 4.5.4

In order to test the performance of AGC-EP, an alternative estimate is obtained. A

nearest neighbor (NN) estimate zNN(u) is obtained with the BH samples from D and used

to estimate profit at location u. The performance of AGC-EP and NN is compared with

respect to true profit across all locations u ∈ A in the end of the workflow.

Step 4.5.5

The back-transformation information saved for x is used to back-transform the simu-

lated values from Step 4.5.2.2 to original units.

Step 4.6

In this step, the profit and expected profit values are calculated for mined material desti-

nations k = 1, ..., K using a profit function. The profit function may involve any number

of variables. The calculations start with a destination k.

Step 4.6.1

A true local profit value Ptrue for k is calculated using the true values of all the grade

variables involved in the profit calculation ztrue(u; g), g = 1, ..., G. The true values are

known in the cross-validation mode.

Steps 4.6.2 - 4.6.3

A local expected profit value EP for this destination is calculated using the simulated

values zl(u), l = 1, ..., L. Then, a squared error SEprofit is calculated between the true

profit value Ptrue and the expected profit value EP .

Steps 4.6.4 - 4.6.5

Calculate a local profit value PNN using the NN estimates for all the variables involved

in the profit calculation. Then, calculate a squared error SENN
profit between the true profit

value Ptrue and the NN profit value PNN for this destination.

Step 4.6.6

The squared errors SEprofit and SENN
profit are incremented.
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Step 4.7

Steps 4.6.1 - 4.6.6 are repeated for all destinations for mined material k = 1, ..., K.

Step 4.8

Steps 4.5 - 4.7 are repeated for each location u ∈ Vi associated with the super grid node

location x.

Step 5

Steps 4.1 - 4.8 are repeated for all super grid nodes x ∈ A.

Step 6

Squared errors SEprofit and SENN
profit are averaged across all the BH locations u ∈ Vi

to obtain the mean squared errors in profit MSEprofit and MSENN
profit, respectively. The

averaging of the squared error values is not essential for the cross-validation workflow; it

is done for consistency with the mathematical notation in Section 3.1.

Step 7

The number of samples nd is increased by a certain increment (10 samples is a default

values). Steps 4 - 6 are repeated a certain number of times or until nd cannot be increased

anymore.

Steps 8 - 9

The minimum values of MSEprofit and MSENN
profit for the current fold i are saved.

Also, the number of samples nd corresponding to the smallest MSEprofit value is saved.

Step 10

The values of MSEprofit and MSENN
profit are incremented and saved.

Step 11

Steps 2 - 10 are repeated for all i = 1, ..., 5 folds.

Step 12

The optimal numbers of nearby samples is chosen as the average values of nd corre-

sponding to the smallest MSEprofit values across all the folds.

Step 13

The expected value of the difference between MSENN
profit and MSEprofit is calculated.

This measure (Eavg) indicates the difference in performance between simulation and the
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nearest neighbor estimation. Normally, Eavg is positive; a negative value would indicate a

problem with the input data or parameters.

The 13major steps explained above summarize the cross-validation part of the expected

profit calculation algorithm used in AGC-EP. All the operations are performed automat-

ically. Some parameters for local anisotropy determination and variogram modeling are

fixed based on synthetic tests with different true values.

3.4 Local Anisotropy Modeling

Chapter 2 emphasizes the importance of modeling local geological anisotropy for some

deposits to make better predictions of grade or profit. For geostatistical modeling in 2-

D, local anisotropy parameters can be fully defined by the first angle of rotation (azimuth

correction) and the first anisotropy ratio (C. V. Deutsch & Journel, 1998). This information

is used within estimation and simulation workflows to make correct local predictions of

grade values or uncertainty, respectively.

Within a local multivariate simulation workflow, it is necessary to have tools for local

anisotropy modeling that operate fully automatically. This section describes a modification

of the MOI algorithm for determining locally varying angles of anisotropy; the algorithm is

described in detail with examples. The first anisotropy ratio is determined using the ranges

of local variogram models. Automatic variogram modeling is performed using a stochastic

optimization algorithm based on weighted least squares described by Larrondo et al. (2003)

and J. L. Deutsch (2015).

3.4.1 Determination of the Direction of Local Anisotropy

Variogram maps plotted for lags in different directions and for different distances (Rossi &

Deutsch, 2014, p. 102) or smooth kriging estimates can be used to determine the principal

direction of geological continuity; another option is to use expert judgment based on avail-

able geological information. This approach is usually robust in case of stationary deposits.

Determining the principal direction of continuity for deposits with many non-stationary

features can be challenging and prone to errors. Models of local anisotropy, expressed
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as locally varying anisotropy (LVA) fields, can be used (e.g., by the kriging method from

Boisvert et al. (2009)) to better model local geological features as opposed to using station-

ary anisotropy parameters for such deposits. The idea to use the mass moment of inertia

tensors for obtaining local directions of anisotropy was described earlier by Hassanpour

(2007). Moment of inertia or rotational inertia can be understood as the inertia of a rigid

body rotated around one of the axes of rotation.

I =
∫

r2dm

where m is the mass and r is the perpendicular distance from the point mass to the axis of

rotation.

Moment of inertia can be expressed as a scalar, when the axis of rotation is known,

and as a tensor, summarizing the moments and products of inertia for all the axes. The

correlation coefficients from a correlation map can be considered as masses m; while the

lag distances, for which the correlations are calculated, can be considered as distances to

the axes of rotation r. The inertia tensor for a 2-D is expressed as follows:

M =

Ixx Ixy

Iyx Iyy


The directional moments and products of inertia are calculated according to the following

equations:

Ixx =
nx∑

x=−nx

ny∑
y=−ny

d2
y · pxy (3.13)

Iyy =
nx∑

x=−nx

ny∑
y=−ny

d2
x · pxy (3.14)

Ixy = Iyx = −
nx∑

x=−nx

ny∑
y=−ny

dx · dy · pxy (3.15)

where Ixx is the moment of inertia around the x axis; Iyy is the moment of inertia around

the y axis; Ixy and Iyx are the products of inertia; nx and ny are the total numbers of cells

of a correlation map in the x and y directions, respectively; ρxy is the correlation coefficient

corresponding to a particular cell of the correlation map.

The correlation coefficient is calculated as follows:

ρxy(h) = C{Z(u), Z(u+h)}√
V ar{Z(u)} · V ar{Z(u + h)}
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The inertia tensor describes a current state of an anisotropic property (correlation) in a

given coordinates system. It is possible to find such an angle θ that would rotate the initial

coordinates system such that the off-diagonal elements of the tensor are equal to 0; this

means the new coordinate axes would be aligned with the principal directions of geological

continuity.

Hassanpour (2007) indicates that the eigenvectors and eigenvalues of the inertia tensor

can be used to determine the principal directions of anisotropy. In this case, the eigenvalue

decomposition of the inertia tensor should be performed. The eigenvector corresponding

to the largest eigenvalue should be used to find the principal angle of rotation between the

coordinate axes and the current principal direction of continuity.

There are a number of algorithms for finding eigenvalues and eigenvectors of a sym-

metric matrix. For a 2-D tensor, one would need to find a solution to a classical eigenvalue

problem (Wierzbicki, 2013):

(M − λiI)ni = 0 (3.16)

where M is the moment of inertia tensor (2 × 2), I is an identity matrix; λi are the

eigenvalues of M and ni are their corresponding eigenvectors.

Then, the determinant of the matrix (M − λiI) has to be zero for a solution ni ̸= 0 to

exist. If this condition is satisfied, the determinant det(M − λiI) = 0 has to be solved for

λi to obtain a characteristic polynomial. Then, the roots λi of the characteristic polynomial

are substituted into Equation (3.16) to obtain eigenvectors.

3.4.1.1 A Simple Example of Finding Anisotropy Directions with the MOI method

An artificial reference model is simulated using sgsim (C. V. Deutsch & Journel, 1998)

for an area of 100 × 100 m2 with a grid size of 1 × 1 m2. The variogram model used

for simulation has one spherical nested structure with the nugget effect contribution of 0.1.

The major direction of continuity is set at 25◦ from North. The major and minor ranges of

continuity are 25 m and 5 m, respectively. The reference model is sampled at the resolution

of 5 × 5 m2 with a random error in coordinates of up to 1 m; this is done for making the

example more realistic. There are 400 artificial BH samples. In order to demonstrate the

work of the MOI method, the anisotropy direction is determined globally for the entire map
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using the BH samples. The reference realization and BH samples are illustrated in Figure

3.2.

(a) Reference realization (b) BH samples

Figure 3.2: Artificial reference realization and BH samples (simple example)

A correlation map is calculated using all 400 BH samples. Correlation coefficients are

calculated for the lags in the ranges from −nx = 5 to nx = 5 and from −ny = 5 to ny = 5.

The lag distance is 5 m with the lag tolerance of 2.5 m. The correlation map is illustrated

in Figure 3.3.

Figure 3.3: A global correlation map (simple example)
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Negative correlations are not used for the calculation of the moments and products of

inertia and, therefore, not shown in the correlation map.

Equations (3.13) - (3.15) are used to calculate the moments and products of inertia for

tensor M:

M =

 229.755 −40.366

−40.366 149.839


The determinant of (M − λiI) is calculated as follows:

det

229.755 − λ −40.366

−40.366 149.839 − λ


det(M −λiI) = (229.755−λ)(149.839−λ)−(−40.3662) = λ2−379.594λ+32796.845

λ1 = 246.595; λ2 = 132.999

The largest eigenvalue λ1 = 246.595 is substituted into Equation (3.16) to obtain a

corresponding eigenvector (Wierzbicki, 2013):229.755 − 246.595 −40.366

−40.366 149.839 − 246.595


ex

ey

 =

0

0


Next, the following equation with two unknown values can be derived:

(229.755 − 246.595)ex − 40.366ey = 0

Any ex and ey satisfying the equation above are the components of an eigenvector;

therefore, it is possible to set ey to 1 and then solve for ex:

ex = 40.366
−16.84

= −2.397

Then, the eigenvector is normalized as follows:

n1 = 1√
(−2.397)2 + 12

−2.397

1

 =

−0.923

0.385


Eigenvector n1 points in the direction of the principal moment of inertia, which is the

minor direction of anisotropy. The angle of rotation defined by eigenvector n1 and an
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initial axis is 90 ◦apart from the first anisotropy angle, defined according to the GSLIB

conventions (C. V. Deutsch & Journel, 1998). The first anisotropy angle can be determined

as follows:

αmajor = arctan

−0.923
0.385

 + 90 ◦ = 22.64 ◦

The calculated angle of anisotropyαmajor equals to 22.64 ◦, which is a 9.44% difference

from the theoretical angle of 25 ◦. Even though the calculated angle is unlikely to be exactly

25 ◦due to the relatively small size of the artificial reference model and, as a result, the lack

of stationarity, it is possible to increase the accuracy and reliability of the MOI method. The

anisotropy angle can also be determined using a method based on Mohr’s circle, which is

described in Hassanpour (2007). More information about Mohr’s circle can be found, for

example, in Beer, Johnston, Mazurek, Cornwell, and Self (2015, p. 523-528).

3.4.1.2 Fixing Algorithm for Correlation Maps

The determination of the direction of anisotropy with the MOI method is based solely on

correlation maps. Therefore, the quality of the correlation maps is the most important factor

for the reliability of the method. This is especially important for deposits with complex

locally varying geology and/or sparse data. The correlation map in Figure 3.3 shows a

cluster of cells with high correlation coefficients directed at approximately 25◦ from North.

However, there are obvious artifacts at the sides of the correlation map that may potentially

decrease the accuracy of the MOI method.

An algorithm is developed for removing cells that are not relevant for determining the

correct principal direction of anisotropy. There are two conditions for a cell of the correla-

tion map to be considered valid and left in the correlation map: i) its correlation coefficient

value has to be above some minimum threshold value, and ii) it has to be connected to at

least one cell previously considered valid. The central cell of the correlation map with the

correlation coefficient value of 1 is considered valid by default. The minimum threshold

value is determined as the fraction of the maximum correlation value of the correlation map;

the central cell of the map is not taken into account. A cell under consideration can be con-

nected to a valid cell in four directions measured from the current cell: i) one cell to the

right, ii) one cell to the left, iii) one cell up, and iv) one cell down. Valid cells connected
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to the cell under consideration diagonally are not considered to avoid artifacts in a final

correlation map.

At each pass of the algorithm, cells of the correlation map under consideration are all

the cells defined in the range from −nx to nx and from −ny to ny. At the first pass, the

range is defined from −nx = −1 to nx = 1 and from −ny = −1 to ny = 1; at the

second pass the range is defined from −nx = −2 to nx = 2 and from −ny = −2

to ny = 2. At each subsequent pass, the range is increased by one cell in each direction

until it reaches a maximum number of cells; it is assumed that using large correlation maps

with many cells is better in terms of the precision of the angle calculation (provided the

fixing algorithm is used) than using small correlation maps. The maximum number of cells

is adjusted automatically depending on the dimensions of a mine bench and the maximum

number of lags that can be calculated; this number is limited (7 is a default number) to avoid

excessive computational time for large benches.

The fixing algorithm consists of the following steps:

Step 1

Check all the cells of the correlation map in the range from −nx to nx and from −ny to

ny.

Step 2

Save all cells in the range that satisfy the conditions of validity.

Step 3

Increase the range by one cell in each direction and repeat Steps 1 - 2.

Step 4

Reset the range to one cell in each direction and repeat steps 1 - 3.

Step 4 is performed to account for the cells not considered in the first iteration of the al-

gorithm. Figures 3.4 - 3.5 illustrate all the passes of the two iterations of the algorithm using

the correlation map from the simple example in Section 3.4.1.1; the fraction of maximum

correlation of 0.3 is chosen for this example.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.4: First iteration of the fixing algorithm

Figure 3.4g illustrates that not all the valid cells are found after the last pass of the first

iteration of the algorithm; this is because the algorithm visits all the cells in a neighborhood

(black colored grid in Figure 3.4) starting from the bottom left cell, which results in some

valid cell not having a valid neighbor. The second pass of the algorithm detects the rest of

valid cells, which results in a symmetrical map (Figure 3.5).

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.5: Second iteration of the fixing algorithm
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Figure 3.5g demonstrates that all the valid cells are found and the fixed correlation

map is symmetrical. The MOI algorithm from Section 3.4.1.1, performed with the fixed

correlation map from Figure 3.5g, determines the first anisotropy angle to be 25.67◦; this is

a 2.68 % difference from the theoretical angle of 25◦. The use of the fixed correlation map

from Figure 3.5g with the MOI method resulted in significantly more accurate detection of

the principal direction of anisotropy for this artificial example.

3.4.1.3 Selection of the Fraction of Maximum Correlation

Unsupervised use of the MOI method coupled with the new fixing algorithm for correla-

tion maps (Section 3.4.1.2) requires specifying the fraction of maximum correlation (FMC)

value. This process is largely automated inside AGC-EP. All the elements of the tensor cal-

culated in Equations (3.13) - (3.15) must be non-zero. If M has a zero entry, it indicates that

there is likely not enough data for calculations. Therefore, the minimum FMC specified by

default is automatically decreased by a small number (allowing more cells of the map to be

considered valid) until all the entries of the tensor M are greater than zero. FMC can be set

as large as 1.0 since the algorithm will automatically reduce it until the moment of inertia

calculations are possible. An artificial experiment is designed to define a reasonable range

for FMC

Reference realizations of sgsim (C. V. Deutsch & Journel, 1998) are obtained for an

area of 100 × 100 m2 (representing domain A). The realizations are then sampled at a

grid of 5 × 5 m2 with a random error of up to 1 m in coordinates. The variogram model

used for simulation has one spherical nested structure; other parameters of the variogram

model change depending on a particular reference realization. The MOI method is used

to determine major anisotropy directions at all locations of the domain A. The major di-

rections of anisotropy, measured with MOI, are checked against theoretical directions of

anisotropy used to simulate the reference realizations. The directions are represented by the

first anisotropy angles (azimuths) measured from North (C. V. Deutsch & Journel, 1998).

Let α1, ..., αN and β1, ..., βN be the theoretical and measured angles of anisotropy at N

locations of A, respectively. A mean squared error between the measured and theoretical
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angles is calculated using the following expression:

MSEang = 1
N

N∑
i=1

(αi − βi)2

902

 · 100% (3.17)

where MSEang is the mean squared error between the theoretical and measured angles

standardized by the maximum possible error of 902.

The mean squared error from Equation (3.17) is used as a performance measure for

the MOI method to select a reasonable fraction of maximum correlation in the range from

0.0 to 1.0. A series of influencing factors are taken into account when simulating artificial

reference realizations to avoid a bias in results: i) theoretical angles of anisotropy change

in the range from 0◦ to 150◦ with a step of 30◦, ii) the ratios between the major and minor

ranges of continuity change from 2:1 to 10:1, iii) the nugget effect contribution change

from 0.0 to 0.6 with a step of 0.1, and iii) the numbers of local data used by the MOI

method change from 20 to 100 samples with a step of 10 samples. Reference models are

simulated for each of the factors in its corresponding range and for 10 realizations, which

results in 3780 reference realizations in total. Finally, MSEang is averaged across all the

3780 reference realizations for each instance of FMC. The theoretical angles of anisotropy

and the ranges of geological continuity are specified through the variogram model used for

simulating the reference realizations. Table 3.1 and Figure 3.6 summarize the experiment

results.

Figure 3.6: Fraction of maximum correlation versus the average mean squared error between the
theoretical and measured angles of anisotropy
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Table 3.1: Average mean squared error between the theoretical and measured angles of anisotropy
for different FMC values

FMC Range Range Range Range Range Range Range Range Range
1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10

0 20.664 14.611 11.269 9.368 8.177 7.404 6.860 6.468 6.170
0.1 17.872 11.939 8.939 7.353 6.421 5.757 5.306 5.001 4.748
0.2 16.056 10.405 7.829 6.481 5.692 5.160 4.783 4.550 4.340
0.3 14.931 9.506 7.209 6.032 5.340 4.877 4.556 4.356 4.169

0.4 14.308 8.982 6.868 5.782 5.161 4.738 4.442 4.266 4.089
0.5 13.992 8.706 6.665 5.649 5.064 4.663 4.383 4.216 4.046
0.6 13.858 8.570 6.562 5.579 5.013 4.624 4.351 4.189 4.023
0.7 13.811 8.514 6.514 5.544 4.985 4.603 4.332 4.171 4.005

0.8 13.806 8.495 6.501 5.529 4.974 4.593 4.324 4.164 3.999
0.9 13.808 8.491 6.496 5.526 4.971 4.590 4.323 4.163 3.998
1.0 13.808 8.491 6.495 5.526 4.971 4.590 4.323 4.163 3.998

Black dashed lines on the graph in Figure 3.6 indicate a reasonable range for FMC. A

lower boundary for FMC for each of the anisotropy ratios corresponds to an MSEang value

that is not higher than a minimum MSEang value for this case by more than 10 % (bolded

values in Table 3.1); the average of all the lower boundaries for the FMC values (0.3) is

a lower limit of the reasonable range for FMC. An upper limit for the reasonable range is

1.0. The results of the artificial experiment confirm the assumption that FMC can be set as

high as 1.0 to ensure low MSEang. The FMC of 1.0 is a default value for the fraction of

maximum correlation inside AGC-EP.

3.4.1.4 Example with Complex Local Anisotropy

Two complex artificial examples are created to test the modified MOI algorithm. Locally

varying directions of anisotropy are determined at each sample location and compared to

theoretical local angles of anisotropy. Different numbers of nearby samples are used for

determining directions; optimal ranges for the numbers of nearby samples are determined

for each example

Example 1

The first complex example is represented by realizations of grade, with incorporated arti-
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ficial LVA information, simulated for an area of 300 × 200 m2 at a grid of 1 × 1 m2. A

modified version of sgsim (C. V. Deutsch & Journel, 1998) is used to simulate the refer-

ence realizations with pre-determined local anisotropy parameters; the modified program

takes local anisotropy parameters (angles and ratios) as an input at each simulated location

to reproduce complex non-stationary geological features in simulated models. The exam-

ple represents a case that may be challenging for an estimation or simulation algorithm

not accounting for LVA; major direction of geological continuity, represented by the first

anisotropy angle, changes from 135◦ on the left side of the area to 90◦ in the center of the

area and 45◦ from North on the right side of the area. A variogram model used for sim-

ulation has one spherical nested structure and the nugget effect of 0.1. Major and minor

ranges of continuity are 50 m and 10 m at the sides of the area and 100 m and 10 m in the

center. The mine bench is sampled at a grid of 5 × 5 m2 with a random error in coordinates

of up to 1 m. A reference realization and sampled locations for this example are illustrated

in Figure 3.7.

(a) Reference realization (b) BH samples

Figure 3.7: Reference realization and samples (example 1)

The fraction of maximum correlation is set to 1.0 according to the conclusion from

Section 3.4.1.3. There are 2400 samples in total; different numbers of local samples are

used with the modified MOI method to determine locally varying angles of anisotropy in 2-

D; results are averaged over 10 reference realizations for stability. For this example, the true

angles of anisotropy at each location are known since they were used to obtain the reference

realization with sgsim. Therefore, Equation (3.17) is used to calculate the mean squared

error MSEang between the true and measured angles. A graph in Figure 3.8 summarizes
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the performance of the modified MOI method with the numbers of nearby samples in the

range from 20 to 200 with a step of 5 samples.

Figure 3.8: Number of nearby samples used at each location with the modified MOI method versus
mean squared error between the theoretical and measured angles of anisotropy (example 1)

According to the graph in Figure 3.8, the performance of MOI improves with the in-

crease in the number of samples used locally. The green area under the graph indicates

the range where MSEang does not exceed 10 % of the lowest MSEang value of 1.625 %

(achieved with 185 nearby samples). Figure 3.9 displays local anisotropy angles estimated

by the modified MOI method with 50, 100, 150, and 200 samples used locally; the refer-

ence map for the first example is shown with the anisotropy angles, depicted as vectors,

superimposed on it.
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(a) 50 samples (b) 100 samples

(c) 150 samples (d) 200 samples

Figure 3.9: Local anisotropy angles obtained with the modified MOI method (example 1)

Figure 3.9 illustrates that using themodifiedMOImethodwith 50 and 100 local samples

results in overfitting to local geological features, which results in higher MSEang values

compared to using the MOI method with 150 and 200 local samples.

Example 2

The second complex case represents evenmore challenges for correct anisotropy estimation.

Reference realizations are simulated for an area of 300 × 200 m2 at a grid of 1 × 1 m2 and

sampled at a grid of 5 × 5 m2 with a random error in coordinates of up to 1 m. For most of

this reference realization, major direction of anisotropy is at 0 degrees from North; major

andminor ranges of geological continuity are 75 and 15m, respectively. There is an annulus

area in the center of the realization, inside which the major anisotropy direction changes in

a circular manner; the minor and major ranges are 25 and 5 m, respectively. A variogram

model used for simulation has one spherical nested structure with the nugget effect of 0.1.

A reference realization and samples for this example are illustrated in Figure 3.10.
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(a) Reference realization (b) BH samples

Figure 3.10: Reference realization and samples (example 2)

The performance of the modified MOI method with different numbers of samples used

locally is performed similarly to the first example; theoretical angles of anisotropy are com-

pared to measured ones at each sample location. Results are averaged over 10 reference

realizations. A graph in Figure 3.11 summarizes the performance of the modified MOI

method for the second example with the numbers of samples in the range from 20 to 200

with a step of 5 samples.

Figure 3.11: Number of samples used locally with the modified MOI method versus mean squared
error between the theoretical and measured angles of anisotropy (example 2)

The graph in Figure 3.11 indicates an optimal range for the numbers of nearby samples

(green area under the curve) from 80 to 180 samples; in this range,MSEang does not exceed

the minimum MSEang of 4.78 (achieved with 135 samples) by more than 10 %, whereas

using more than 180 samples results in an increase of MSEang. Since using more samples
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results in determining more global directions of anisotropy at each location, the annulus

feature in the center may be disregarded; this results in higher MSEang values. Figure 3.12

displays local anisotropy angles estimated by the modified MOI with 50, 100, 150, and 200

samples used locally for example 2.

(a) 50 samples (b) 100 samples

(c) 150 samples (d) 200 samples

Figure 3.12: Local anisotropy angles obtained with the modified MOI method (example 2)

Similar to the previous example, the number of samples used locally determines how

well local geological features are captured. Overall, the modified MOI method works rela-

tively well with any number of samples due to the ability to change its sensitivity automati-

cally (tuning FMC). Since the true angles of anisotropy are unknownwith real grade control

data and MSEang cannot be used as a performance measure, an optimal number of samples

should be selected based on a different performance measure. When incorporated into the

AGC-EP modeling workflow, the performance of the modified MOI method is measured

indirectly by the mean squared error between the true and estimated profit values during

the k-fold cross-validation procedure. Parameters of local anisotropy corresponding to the

best profit predictions are selected.
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3.4.2 Automatic Variogram Modeling

Automatic variogram modeling is relatively simple in grade control due to the following

reasons: i) the number of BH samples is usually sufficient; regular blasts in open pits often

have anywhere between 100 and 400 blastholes, ii) the distances between BH samples are

relatively short, and iii) the BH samples are situated in a regular pattern.

The average lag distance hxy is calculated beforehand using Equation (3.11). A vari-

ogram value for a lag distance h is calculated using Equation (2.1). If the Euclidean distance

between a BH sample at a location u and a BH sample at a location u + h in a particular

direction is greater than or equal to hxy × j − htol, j = 0, ..., nh and is less than or equal

to hxy × j + htol, j = 0, ..., nh, these two locations, separated by h, are accepted for the

variogram calculations; the number of lags j scales the average lag distance hxy accounting

for some lag tolerance htol. The number of lags should depend on the dimensions of a mine

bench. The maximum lag distance should not be more than a half of deposit A (Rossi &

Deutsch, 2014, p. 101). Dimensions of deposit A are measured in the x and y directions;

the largest dimension dlargest is used to calculate the maximum number of lags as follows:

nh = dlargest

2 · hxy

The maximum number of lags nh is rounded up to the nearest integer. The maximum

number of lags in any direction cannot exceed 10 by default to limit calculations for large do-

mains. Variogram modeling is performed at each super grid node location x using nearby

BH samples associated with it. Grade values in the BH samples are normal score trans-

formed (using the quantile-to-quantile method) prior to the experimental variogram calcu-

lations.

Local anisotropy directions are calculated using the modified MOI method. For each

grade variable, experimental variogram values are calculated for major and minor direc-

tions of continuity using the algorithm from J. L. Deutsch (2015). Some input parameters

for the variogram calculation and modeling are fixed during tests or with respect to the

spatial configuration of data to support automatic operation. The fixed parameters for the

variogram calculation can be summarized as follows:
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• Lag tolerance is calculated as hxy × 0.5. Calculating the lag tolerance as a half of the

lag distance is a common practice (Rossi & Deutsch, 2014, p. 101; Pyrcz & Deutsch,

2014, p. 83). The lag tolerance can be reduced since blastholes are usually bored on

a regular grid. The significant tolerance is used to account for data with positioning

errors.

• Azimuth is calculated beforehand using the MOI method; azimuth tolerance is set to

22.5◦. The azimuth tolerance should be selected as small as possible to better estimate

directional anisotropy (C. V. Deutsch & Journel, 1998, p. 59). The value of 22.5◦ is

mentioned by Pyrcz and Deutsch (2014, p. 84) as a reasonable tolerance parameter,

which should be iteratively refined. The relatively large azimuth tolerance is used

inside AGC-EP to account for data with positioning errors.

• Horizontal bandwidth is calculated as hxy × 1.5. Pyrcz and Deutsch (2014, p. 84)

recommend to use a relatively small horizontal bandwidth if there are sufficient data;

the values between 1 to 3 lag distances are recommended.

• Dip and tilt are set to 0 ◦.

The tolerance parameters used inside AGC-EP assume densely spaced data at a regular

pattern; they should be refined for other data configurations. Experimental variogram val-

ues and directions of continuity determined with the modified MOI method are used with

a stochastic optimization algorithm described in Larrondo et al. (2003) and J. L. Deutsch

(2015) to fit a variogram model. The algorithm starts by determining an initial guess var-

iogram model; an initial objective value is a weighted mean squared error between the

experimental variogram points and variogram points obtained using the variogram model.

Then, the initial values of some parameters of the variogram model (e.g., ranges, the con-

tributions of the nugget effect and nested structures, etc.) are randomly changed by adding

to or subtracting from them small values; changes to the model bringing improvement to

the objective function are accepted. The algorithm performs a certain number of iterations

(this parameter is explained below) to decrease the objective function.

Within AGC-EP, the majority of parameters for variogram modeling, including the var-

iogram ranges, the nugget effect contribution (optimization boundaries are from 0 to 1.0),
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the types of variogram nested structures (spherical, exponential, or Gaussian), and the con-

tributions of nested structures are unconstrained during optimization for a higher flexibility

and decreasing the number of input parameters. In order to obtain an initial variogram

model, reasonable parameters are chosen within the algorithm; for instance, the variogram

ranges are calculated by diving the maximum experimental lag distance in a corresponding

direction to the number of nested variogram structures used to fit the model. Experimen-

tal variogram values are standardized by the variance of all data; the variogram model sill

value is fixed at 1. Experimental variogram values calculated using as few as 1 pair ac-

cepted for optimization; the weighting of the experimental variogram points by the number

of pairs is used for better fitting to the variogram points calculated using more information.

In addition, weighting the variogram points by the inverse distance is used for better fit-

ting to the variogram points at short lag distances (Larrondo et al., 2003). Other crucial

parameters such as the number of variogram nested structures being fit and the total num-

ber iterations of the optimization algorithm are fixed. Ideally, the k-fold cross-validation

should be used to optimize these parameters along with optimizing the number of nearby

samples. Unfortunately, the k-fold cross-validation operation time would increase signif-

icantly in this case, since the number of times the cross-validation procedure is repeated

would grow significantly with the addition of each new parameter being optimized.

Selecting Parameters for the Optimization Algorithm

In order to select the number of iterations of the optimization algorithm to be used within

AGC-EP, the results of experiments with artificial data sets are used. The minimum mean

squared error in profitMSEprofit averaged across 5 folds is used as a performance measure.

The cross-validation procedure is repeated with different numbers of iterations of the op-

timization algorithm (from 200 to 10000). The average minimum MSEprofit is saved for

each case; the results are averaged over a range of nugget effect values and over 50 realiza-

tions (obtained using different seed numbers of a random number generator) for stability.

Realizations of sgsim (C. V. Deutsch & Journel, 1998) are obtained for an area of

100×60 m2. A variogrammodel required for simulation has a single spherical nested struc-

ture with the nugget effect contribution changing form 0.0 to 0.3 with a step of 0.1. Major

direction of anisotropy as well as major and minor ranges of anisotropy change throughout
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the area. Most of the first half of the area (from 0 m to 50 m in the West-East direction) is

simulated with the major direction of anisotropy at 0◦ from North and the major and minor

ranges of anisotropy of 50 m and 5 m, respectively. Most of the second half of the area

(from 50 m to 100 m in the West-East direction) is simulated with the major direction of

anisotropy at 0◦ from North and the major and minor ranges of anisotropy of 25 m and 5

m, respectively. There is a tortuous streak going through the entire area in the West-East

direction simulated using different anisotropy parameters. The section of the streak from

0 m to around 27 m in the West-East direction is simulated with the major direction of

anisotropy at 12◦ from North. The section of the streak from around 27 m to around 54 m

in theWest-East direction is simulated with the major direction of anisotropy at 131.5◦ from

North. The section of the streak from around 54 m to around 100 m in the West-East di-

rection is simulated with the major direction of anisotropy at 51.2◦ from North. The major

and minor ranges of anisotropy within the streak are 50 m and 10 m, respectively. The

simulated realizations are converted to be lognormal with the mean and standard deviation

of 1.0. The reference realizations are then sampled at a grid of 4 × 4 m2 (which results

in 375 samples) with a random error of up to 1 m in coordinates. The cutoff-based profit

function from Section 3.2.1 is used to calculate expected profit for ore and waste mined

material destinations; a cutoff grade of 1.0 is used to distinguish between the two destina-

tions. The scaling coefficients for correct acceptance and correct rejection are set to 1.0.

Cross-validation is repeated using the number of nearby data for simulation in the range

from 60 to 150 with a step of 10 samples. The super-grid multiplier vconst of 3 is used to

decrease the cross-validation operation time. One thousand simulated values is used for

expected profit calculation. An example of a simulated realization and sampled data are in

Figure 3.13.
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(a) Reference realization (b) Sampled data

Figure 3.13: Example of an sgsim realization used for selecting variogram modeling parameters

Figure 3.14 summarizes the performance of k-fold cross-validation with different num-

bers of iterations of the optimization algorithm; the calculations are also repeated for differ-

ent numbers of variogram nested structures of the variogram model being fit. The average

minimum MSEprofit and operation time are recorded for each case.

(a) Average minimum MSEprofit (b) Average cross-validation time

Figure 3.14: Number of iterations of the variogram modeling algorithm versus the average mini-
mum MSEprofit and cross-validation time

Analysis of the graph in Figure 3.14 indicates that increasing the number of iterations

of the optimization algorithm after a certain limit does not significantly improve the value

of the average minimum MSEprofit. For each nested structure, an optimal range for the

number of iterations is defined where the average minimumMSEprofit does not exceed 0.5

% of a corresponding minimum value. The lower boundaries for each nested structure are

defined as follows: i) 700 iterations with 1 nested structure, ii) 400 iterations with 2 nested

structures, iii) 500 iterations with 3 nested structures, and iv) 500 iterations with 4 nested
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structures. An upper boundary is 10000 iterations for each case. Figure 3.14a indicates that

the optimization algorithm with 3 and 4 nested variogram structures perform slightly better

than the other options; the option with 3 structures is chosen for AGC-EP due to faster

operation. Figure 3.14b shows that the operation time grows linearly with the increase in

the number of iterations of the optimization algorithm. As few as 500 iterations can be

used with 3 nested structures to minimize the operation time; however, 2000 of iterations

are selected for AGC-EP to account for more complex cases of variogram modeling that

may occur with real data. The two selected parameters should be changed if the k-fold

cross-validation procedure indicates problems with expected profit models.

3.5 Selecting the Number of Simulated Realizations and

Super Grid Parameters

The quality of expected profit calculation with AGC-EP is measured by the average mini-

mum MSEprofit during the k-fold cross-validation procedure. Important input parameters

for simulation such as the number of simulated realizations L and super grid size may have

an impact on the value of MSEprofit and, consequently, an optimal number of data used

for the final expected profit calculation on a grid.

Pyrcz and Deutsch (2014, p.377-379) discuss selecting an optimal number of simulated

realizations based on the confidence level for a reported quantile; for example, 6600 real-

izations is suggested to achieve the 99 % confidence level with the tolerance of +/-1 %.

Theoretically, using many realizations is better for grade control decision making, since

the entire distribution of a simulated grade is used to estimate profit; the higher precision

is required, the more realizations should be used. From the practical point of view, a very

high number of simulated realizations may not bring additional benefits for grade control

decision making with AGC-EP. Even though simulating realizations is relatively fast within

AGC-EP, additional time will be required for back-transforming the simulated values from

normal score to original units before expected profit calculation.

Results of an artificial test are used to define a reasonable range for the number of

realizations used with AGC-EP. The average minimum MSEprofit, obtained with cross-
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validation, is used as a performance measure. Reference realizations are simulated with

sgsim for an area of 120 × 120 m2. The variogram model required for simulation has

one spherical nested structure. Geological continuity is directed at 45◦ from North with

the major and minor ranges of 100 and 20 m, respectively. Realizations are converted to

be lognormal with the mean and standard deviation of 1.0 and then sampled at a grid size

of 8 × 8 m2 with a random error in coordinates of up to 1 m. The cutoff-based profit

function (Section 3.2.1) is used to convert simulated grade values to expected profit; the

cutoff grade of 1.0 is used. The k-fold cross-validation procedure is run with the numbers

of data in the range from 50 to 170 samples with a step of 10 samples. Calculations are

repeated for the nugget effect contribution varying between 0.0 and 0.3 with a step of 0.1

and 20 reference realizations; overall, results are averaged over 80 realizations. The test

procedure is repeated for different numbers of simulated realizations at each location and

for different super grids. The super grid sizes are defined based on the average sample

spacing and a scaling coefficient vconst (Section 3.3.3). The results of the artificial test are

summarized in Figure 3.15.

(a) Average minimum MSEprofit (b) Average cross-validation time

Figure 3.15: Number of local simulated realizations versus the average minimum MSEprofit

Analysis of the graph in Figure 3.15a indicates that increasing the number of realizations

used locally after a certain limit does not significantly improve the value of the average

minimum MSEprofit. For each super grid size (represented by the average sample spacing

multiplier, vconst), an optimal range for the number of realizations is defined where the

average minimum MSEprofit does not exceed 0.5 % of a corresponding minimum value.

The optimal range across all three super grids is between 400 and 5000 realizations.
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Considering the rapid increase in the operation time with the increase in the number of

realizations used, the number of realizations for AGC-EP is chosen to be 1000. The graph

in Figure 3.15a also shows that the super grids with sizes of 0.25 and 0.5 sample spacing

perform better than the super grid with the size of 1 sample spacing. The super grid size

multiplier, vconst, is chosen to be 0.25 for the k-fold cross-validation part of AGC-EP.

3.6 Summary

This chapter describes a new workflow for automatic local multivariate simulation imple-

mented in the first part of the AGC system. Main operations of the workflow include: i)

normal score data transformation (multivariate for multiple variables), ii) determination of

local anisotropy directions, iii) modeling local variograms, iv) modeling local uncertainty,

and v) expected profit calculation. The algorithms used to perform each operation are de-

scribed. The choice of specific parameters used for the algorithms is explained.

The current version of AGC-EP demonstrates the concept of unsupervised spatial mod-

eling for grade control. All the main elements of the workflow are replaceable. K-fold

cross-validation is proposed as a tool for optimizing the number of local data used for per-

forming the modeling operations. Other parameters of the system could also be optimized

in a similar manner. The workflow of the main modeling part and comparison to another

grade control method are provided in Chapter 4.
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Chapter 3 describes the local multivariate simulation algorithm including expected profit

calculation and k-fold validation called theAdvancedGrade Control-Expected Profit (AGC-

EP). The main part of AGC-EP is used to model expected profit for a grid of blocks.

The number of nearby samples used for modeling is either predicted by the k-fold cross-

validation or specified by the user. Elements of the workflow of the main modeling part

of AGC-EP include: i) normal score transformation, ii) determination of local anisotropy

angles, iii) modeling local variograms, iv) modeling local uncertainty, v) expected profit cal-

culation, and vi) post-processing of expected profit estimates. The expected profit estimates

generated by AGC-EP at a high resolution can be used for determining optimal pre-blast

destinations for mined material and as input information for blast movement modeling.

This chapters describes final expected profit calculation with AGC-EP at a high resolu-

tion. Main steps of the modeling workflow are described in detail. A method to improve

local anisotropy determination is described. A method to post-process high resolution ex-

pected profit maps for improved grade control predictions is proposed. Amultivariate grade

control study based on real data is described. Grade control decisions made by AGC-EP

and kriging are compared in terms of total misclassification (type 1 and type 2 errors) and

profit gained from mining operations.

4.1 Main Modeling Part of the Expected Profit

Calculation Workflow

In AGC-EP, local uncertainty is modeled at a high resolution approximately one quarter of

sample spacing as recommended in Vasylchuk and Deutsch (2017). This could be achieved

by performing all modeling operations at all high resolution grid locations. A coarser super

grid can could also be used to decrease the modeling time for large domains (e.g., when
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several mine benches are modeled simultaneously). If a coarse super grid is used, final

expected profit estimates (maps) may contain visual artifacts potentially causing misclassi-

fication and a loss of profit. A method is proposed for post-processing the final expected

profit maps to remove the artifacts and improve the expected profit predictions. The steps

of the main modeling part of the local multivariate simulation workflow are provided in

Figure 4.1.

Figure 4.1: Main modeling workflow

Step 1

Each blasthole (BH) sample is associated with the closest super grid node location

x ∈ A. The super grid node locations are placed in the centers of the blocks of the main

modeling grid for the highest precision of uncertainty modeling; however, a coarser super

grid can be user to decrease the operation time of the modeling algorithm.

Step 2

The modeling algorithm starts at a super grid node location x.

Steps 2.1-2.3

A simple search based on the shortest Euclidean distance between the super grid loca-

tion x and BH sample locations is used. The number of nearby BH samples nd used for
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calculations is retrieved and placed in a set D. Then, the BH samples from D are normal

score (NS) transformed. The Projection Pursuit Multivariate Transform (PPMT) method

(Barnett et al., 2014) is used if there are more than one variable; the input parameters for

PPMT are set according to recommendations from Barnett and Deutsch (2015a). The NS

and PPMT back-transformation information is saved for the location x for later use.

Step 2.3.1

The following operations are performed with samples of a variable g in normal scores.

Step 2.3.1.1

Major direction of anisotropy is determined using the modified mass moment of inertia

tensors (MOI) method (explained in Chapter 3).

Step 2.3.1.1.1

If the number of nearby BH samples nd is insufficient for the mass moment of inertia

tensor calculation, nd is increased by a certain number (10 % is a default value) and Steps

2.1-2.3 are repeated until an anisotropy angle is calculated with MOI or until nd cannot be

increased anymore. If nd cannot be increased anymore (the direction of anisotropy cannot

be determined even globally with all BH samples), anisotropy parameters are specified

through a default variogram model.

Step 2.3.1.2

A variogram is modeled using BH samples from D. The algorithms for calculating

experimental variograms and fitting variogrammodels are described in J. L. Deutsch (2015),

Larrondo et al. (2003), and Chapter 3. A default variogram model should be specified to

use when the local direction of anisotropy cannot be determined in Step 2.3.1.1.

Step 2.3.1.2.1

If the number of nearby BH samples nd is insufficient to model the variogram, nd is

increased by a certain number (10 % is a default value), and Steps 2.1-2.3 are repeated until

a local variogram model γ(h) is obtained. If nd cannot be increased anymore (a variogram

cannot be modeled even globally with all BH samples), the default variogram model is

used.

Step 2.3.2

Steps 2.3.1.1-2.3.1.2 are repeated for all variables g = 1, ..., G.
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Step 2.4

The expected profit calculation part of the modeling workflow starts at a location u of

the main modeling grid associated with the super grid node location x. If a coarse super

grid is not used, the coordinates of super grid node locations, x ∈ A, coincide with the

coordinates of block centers of the main modeling grid, u ∈ A.

Step 2.5

Variogram models for each variable and back-transformation information are retrieved

for the super grid location x.

Step 2.5.1

If there are multiple variables g = 1, ..., G, the following operations start with a variable

g.

Steps 2.5.1.1 - 2.5.1.2

Normal equations are solved using the variogram model γ(h) and BH samples from D;

a conditional mean and a standard deviation are obtained. A number of values zl(u), l =

1, ..., L are drawn from a cumulative density function defined by the mean and standard

deviation; the number of realizations can be chosen based on k-fold cross-validation or

artificial tests with known true values. The default number of realizations for AGC-EP is

1000 (this choice is explained in Chapter 3).

Step 2.5.2

Repeat Steps 2.5.1.1 - 2.5.1.2 for all variables g = 1, ..., G.

Step 2.6

Back-transform the simulated values zl(u), l = 1, ..., L for all the variables g = 1, ..., G

using the previously retrieved back-transformation information associated with the location

x.

Step 2.7

The following step is performed for different destinations for mined material k =

1, ..., K defined by a profit function P . Calculations start for a destination k.

Step 2.7.1

Calculate expected profit EP (u; k) for the destination k using the back-transformed

values zl(u), l = 1, ..., L.
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Step 2.8

Step 2.7 is repeated for all the destinations k = 1, ..., K.

Step 2.9

Steps 2.5-2.8 are repeated for all locations u ∈ A associated with the super grid node

location x.

Step 3

Steps 2.1 - 2.9 are repeated for all the super grid node locations x ∈ A. If the super grid

is not used, Steps 2.1-2.9 are performed for all the main grid locations u ∈ A.

Step 4

Expected profit estimates are post-processed using an averaging filter to remove arti-

facts and/or improve expected profit predictions. This steps is explained in detail in Section

4.1.1.

The four major steps explained above are used to generate high resolution expected

profit maps for any number of destinations for minedmaterial. AGC-EP is intended to work

automatically or nearly automatically. AGC-EP generates locally varying anisotropy (LVA)

fields, local variogram models, and local normal score transformed data as text ASCII files

to validate modeling results; any type of tools can be used to visualize and inspect the

generated information. It is important to validate local modeling parameters, especially if

modeling is performed with a small number of nearby samples. Final expected profit maps

can be used to find optimal pre-blast destinations for mined material or used with a blast

movement modeling algorithm to predict the post-blast distribution of expected profit.

4.1.1 Post-processing of Expected Profit Maps

Due to the local nature of expected profit calculation with AGC-EP, final expected profit

maps may contain visual artifacts, which may be transferred to corresponding selection

plans. This is particularly noticeable if a coarse super grid is used for faster calculations.

A method is proposed for smoothing expected profit maps and mitigating the effect of the

artifacts on grade control decision making.

An image enhancing method based on neighborhood averaging (a moving averaging

filter) (Russ, 2016, p. 208) is used for post-processing expected profit maps. This operation
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can be explained as a convolution operation of an image (expected profit map) and a filter

(kernel). Mathematically, this operations can be expressed as follows (Russ, 2016, p. 372):

g(x, y) ∗ f(x, y) =
∫ ∫

f(s, t) · g(x − s, y − t)dsdt (4.1)

where f(x, y) is a function representing an expected profit map; g(x, y) is a function

representing a filter; s and t are the variables for integration with the ranges encompassing

the entire image f(x, y).

Equation (4.1) can be expressed as a matrix operation. A matrix G represents a filter,

which usually has dimensions 3×3, 5×5, 7×7, etc. (Russ, 2016, p. 209), while a matrixF

represents the blocks of an expected profit map (spatial domainA), which are covered byG.

For example, the filter matrix with the dimensions of 3×3 is chosen for post-processing the

expected profit map. Using the matrix notation, expected profit value EP (u; k) for mined

material destinations k = 1, ..., K is calculated as follows:

EP (u; k) =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 ∗


g11 g12 g13

g21 g22 g23

g31 g32 g33

 , k = 1, ..., K, ∀u ∈ A (4.2)

where g11, ..., g33 are the weights applied to the entries f11, ..., f33 of F .

An expected profit value EP (u; k) corresponds to the central entry of F , f22, and is

a linear combination of all its elements f11, ..., f33 and corresponding weights g11, ..., g33.

Other operations can be performed with f11, ..., f33 to obtain an estimate for f22; for exam-

ple, minimum, maximum, or median values in the neighborhood can be used (Russ, 2016).

Using estimates for f22 other than a linear combination of non-negative weights and blocks

of an expected profit map (e.g., in Jensen (2016, p. 296)) can be beneficial for improving

the visual quality of the map in certain cases. However, this may cause the loss of important

spatial information or introduce artifacts, which, in turn, may cause misclassification and a

loss of profit.

Handling the edges and corners of expected profit maps is another aspect of the filtering.

Some specific rules may be applied to handle the problematic locations including mirroring

the blocks at the edges, extrapolating the edge and corner blocks, or wrapping the expected

profit maps (Russ, 2016, p. 210). Another straightforward approach is implemented inside
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AGC-EP; the main modeling grid is increased by a certain number of blocks (e.g. 1 block

for a 3 × 3 block2 filter) at each side of the map in the x and y directions during modeling.

The extra expected profit blocks are used for smoothing with the filter.

4.1.1.1 Averaging Filters

In order to demonstrate the post-processing of expected profit maps and compare different

types of averaging filters, an artificial example is created. Reference realizations are simu-

lated with sgsim (C. V. Deutsch & Journel, 1998) for an area of 100 × 100 m2 with a grid

size of 1 × 1 m2; the simulated values in Gaussian units are converted to be lognormal with

both mean and standard deviation of 1.0 for more realistic results. A variogram model used

for simulation has one spherical nested structure and the nugget effect contribution of 0.1.

Major direction of continuity is at 135◦ from North. Major and minor ranges of continuity

are 50 and 10 m, respectively. The reference realizations are then sampled at a grid size

of 8 × 8 m2 with a random error in coordinates of up to 1 m. An example of a reference

realization and samples are in Figure 4.2.

(a) Reference realization (b) Samples

Figure 4.2: Reference realization and samples

The samples are used to generate expected profit maps for the entire area of 100 × 100

m2 with the grid size of the reference model (1 × 1 m2). A cutoff-based profit function

(described in Chapter 3) is used to convert simulated values to expected profit; a cutoff grade
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of 1.0 is used. The k-fold cross validation procedure is not performed since optimizing the

number of nearby samples is not essential for this example; 100 nearby samples are used

locally to calculate expected profit.

Expected profit for ore and waste destinations is generated using AGC-EP. A super grid

is defined by the average lag distance hxy and a constant value vconst = 3 (details are in

Chapter 3); general rules for defining grid parameters are described in C. V. Deutsch and

Journel (1998). The super grid, used to infer local anisotropy parameters, is coarser than

the main modeling grid, used to calculate expected profit; this causes some visual artifacts

in final expected profit maps. In order to mitigate or remove the artifacts, the expected

profit maps are post-processed using different averaging filters; the post-processed expected

profit maps are compared to the original ones with no filter used. For all the expected

profit maps, cumulative profit gained from correct decisions, CPgained, mean squared error

in profit, MSEprofit, and total misclassification (calculated as a fraction of misclassified

locations out of all modeling locations in percent) are recorded. The results are averaged

over 10 realizations for stability. The cumulative gained profit is the true profit gained at

the locations u ∈ A, where estimated destinations are equal to the true destinations; this

measure can be calculated when the true destinations are known for artificial reference

realizations at a high resolution. Following the notation from Chapter 3, the cumulative

gained profit is expressed mathematically as follows:

CPgained =
∑
u∈A

Ptrue(u; dest(u)), ∀u ∈ A, where dtrue(u) = dest(u) (4.3)

where dtrue(u) and dest(u) are the true and estimated best destinations for mined ma-

terial at a location u; Ptrue(u; dest(u)) is the true profit gained at the location u if mined

material is sent in the true best destination dtrue(u).

Figure 4.3 illustrates examples of original expected profit maps for the ore and waste

destinations with no filter applied; estimated best destinations, obtained using the expected

profit maps, and corresponding true destination are also provided.
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(a) Ore destination (b)Waste destination

(c) True optimal destinations (d) Estimated optimal destinations

Figure 4.3: Expected profit maps before applying an averaging filter and corresponding estimated
best destinations and the true best destinations; the red ellipse indicates artifacts caused by using a
super grid.

The expected profit maps in Figure 4.3 demonstrate minor still visible artifacts (espe-

cially, for the waste destination expected profit) caused by using the coarse super grid. The

artifacts from the expected profit maps are transferred to the selection ore/waste map; an

example of a problematic zone caused by the artifacts is indicated by a red ellipse in Figure

4.3d. Analysis of the expected profit and selection maps provides the following results:

• Average CPgained: 110.08

• Average MSEprofit: 0.7
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• Average total misclassification: 22.408 %

It is assumed that the post-processing of the expected profit maps with averaging filters

may mitigate the artifacts and result in improving the performance indicators described

above. Summary of the performance of AGC-EP with different filters is provided below.

Simple Averaging Filter with Equal Weights

The first type of filters has equal weights applied to each expected profit unit falling

within it; the weights should sum up to 1. Filters with dimensions of 3 × 3 block2, 5 × 5

block2, and 7 × 7 blocks2 are considered. The 3 × 3 block2 filter is expressed in the matrix

notation as follows:

G = 1
9


1 1 1

1 1 1

1 1 1


The 5 × 5 block2, and 7 × 7 block2 filters can be expressed in a similar manner. Figure

4.4 demonstrates expected profit maps for the ore and waste destinations after applying

the 3 × 3 block2 filter with equal weights; estimated best destinations, obtained using the

post-processed expected profit maps, and the true best destinations are also shown.
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(a) Ore destination (b)Waste destination

(c) True optimal destinations (d) Estimated optimal destinations

Figure 4.4: Expected profit maps after applying the 3×3 block2 averaging filter with equal weights
and corresponding estimated best destinations and the true best destinations

Figure 4.4 demonstrates that the artifacts present in the expected profit maps and the se-

lection ore/waste map before applying the filter are mitigated, while the general structure of

geological continuity is preserved. Analysis of the expected profit and selection ore/waste

maps after applying the 3 × 3 block2 filter provides the following results:

• Average CPgained: 113.606

• Average MSEprofit: 0.657

• Average total misclassification: 18.145 %
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The post-processing of the expected profit maps with the 3 × 3 block2 filter improved

all the three performance indicators. Average CPgained, average total misclassification, and

average MSEprofit are improved by 3.203 %, 6.143 %, and 19.024 %, respectively.

Filters Based on a Gaussian Kernel Function

The weights of the second type of filters are calculated using a Gaussian kernel function

and then normalized to ensure that they sum up to 1.0. The Gaussian kernel-based filters are

further referred to as Gaussian for brevity. Similar to the previous type of filters, Gaussian

filters can be implemented with the dimensions of 3 × 3 block2, 5 × 5 block2, and 7 × 7

block2. Non-normalized weights for a Gaussian filter are calculated using the following

equation (Russ, 2016, p. 212):

G(x, y, σ) = 1
2 · π · σ2 e

−
(

x2+y2

2·σ2

)
(4.4)

where x and y are measured in expected profit blocks from the central block; σ is a standard

deviation expressed in terms of the expected profit blocks.

Weights calculated using Equation (4.4) are non-zero for any filter size and any σ value.

However, with the increase in the filter size and the value of σ staying constant, the weights

that are farther away from the central entry of the filter become negligibly small. In general,

large Gaussian filters require large σ values. The σ value of 1 is used by default for the

3 × 3 block2, 5 × 5 block2, and 7 × 7 block2 Gaussian filters. The weights produced

by the Gaussian kernel function are normalized; each weight is divided by the sum of all

the weights. It should be noted that the sum of weights for the 5 × 5 block2, and 7 × 7

block2 Gaussian filters are very close to 1.0 with the σ parameter of 1 block; therefore, the

normalization of weights does not significantly alter them.

Figure 4.5 demonstrates the expected profit maps for the ore and waste destinations

after applying the 3 × 3 block2 Gaussian filter; estimated best destinations obtained using

the post-processed expected profit maps and the true best destinations are also shown for

comparison.
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(a) Ore destination (b)Waste destination

(c) True optimal destinations (d) Estimated optimal destinations

Figure 4.5: Expected profit maps after applying the 3 × 3 block2 Gaussian filter and corresponding
estimated best destinations and the true best destinations

The post-processing of the expected profit maps with the 3×3 block2 Gaussian filter im-

proves average CPgained, average MSEprofit, and average total misclassification by 3.203

%, 6.169 %, and 18.998 %, respectively.

Table 4.1 summarizes the performance indicators for all the 6 filters.
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Table 4.1: Performance summary for 6 averaging filters

Filter CPgained MSEprofit Type 1 and 2
errors, %

No filter 110.080 0.700 22.408
Simple (3 × 3 block2) 113.606 0.657 18.145
Simple (5 × 5 block2) 113.430 0.654 18.396
Simple (7 × 7 block2) 112.311 0.663 19.124
Gaussian (3 × 3 block2) 113.606 0.657 18.151
Gaussian (5 × 5 block2) 113.476 0.656 18.359
Gaussian (7 × 7 block2) 112.371 0.668 19.142

Table 4.1 shows that the post-processing of the expected profit maps for this example

improves the performance of AGC-EP. The simple filters with equal weights and Gaussian

filters demonstrate similar performance. Generally, the performance of the two types of

filters deteriorates with the increase in the size of the filters from 3 × 3 block2 to 7 × 7

block2, according to all the performance indicators.

It is reasonable to include the post-processing of expected profit maps by either the

simple or Gaussian filter with the dimensions of 3 × 3 block2 as a final step in the lo-

cal multivariate simulation workflow. However, the performance of the filters may vary

for different grade control situations. The expected profit modeling on a high resolution

grid (not using a super grid) and without the filtering may produce better results for sharp

ore/waste boundaries. It is recommended to construct artificial tests mimicking grade con-

trol conditions at a particular mine and calibrate filters for specific grade control situations.

Even though rectangular averaging filters are useful and straightforward to implement, fil-

ters with different shapes and/or different ranking strategies can be used to address specific

artifacts. More research could be done in this direction.

4.2 Case Study: Grade Control at the Red Dog Mine

Grade control modeling in open pit mines is a multistage procedure. Such modeling op-

erations as declustering, normal score transformation, variogram modeling, among others,

can be performed by various tools. An industry professional responsible for grade control
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at a mine selects the best tool for each particular modeling operation, defines optimal input

parameters, and validates modeling results. Relatively simple estimation tools like inverse

distance or ordinary kriging (OK) are traditionally used for grade control modeling in open

pit mines (Dimitrakopoulos & Godoy, 2014) due to their robustness. This choice is often

reasonable for grade control cases with one grade variable, only ore and waste destinations

for mined material, and a simple cutoff-based profit function. However, grade control cases

involving multiple grade variables and/or locally varying geology may be more complex.

For such cases, the reproduction of local anisotropy and multivariate relationships between

grade variables in grade control models may improve the predictions of optimal destinations

for mined material and, as a result, increase profit from mining operations.

This case study is designed to demonstrate that a carefully applied traditional grade

control method based on OK can be outperformed by an unsupervised spatial prediction

algorithm based on local multivariate simulation. A real blasthole data set from the Red

Dog mine in Alaska is used to simulate a multivariate reference realization of truth at a

high resolution. The AGC-EP modeling algorithm and OK are used to predict profit at

unsampled locations and estimate optimal destinations for minedmaterial. A profit function

is designed based on stockpile blending criteria that were used to improve plant recovery at

the Red Dog mine. Performance measures such as cumulative gained profit, mean squared

error in profit, and total misclassification (type 1 and type 2 errors) are compared.

4.2.1 Background

The Red Dog mine is located approximately 150 km north from Kotzebue, Alaska, USA.

The mine is owned by a Canadian metals and mining company Teck Resources Limited

previously known as Teck Cominco Limited. The Red Dog mine is one of the world’s

largest producers of zinc. It also produces significant amounts of lead and silver (Teck

Cominco Alaska Inc., 2009).

There are seven deposits comprising the Red Dog mine: Main, Aqqaluk, Qanaiyak,

Paalaaq, A6arraaq, Su, and Aktigiruq. Production in the Main deposit completed in 2012.

The Aqqaluk deposit is being mined since 2010, while pre-stripping at the Qanaiyak de-

posit started in 2016 (Krolak, Palmer, Lacouture, & Paley, 2017). The deposits of the Red
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Dog mine area are of sedimentary exhalite and replacement origin. The Main, Aqqaluk,

Qanaiyak, Paalaaq deposits are believed to be the parts of a single formation faulted by tec-

tonic forces (Teck Cominco Alaska Inc., 2009). There are three main rock types: i) silica

rock, ii) barite rock, and iii) sulfide rock. All the rock types can contain ore (Teck Cominco

Alaska Inc., 2009). More detailed information about deposits of the Red Dog district can

be found in Kelley and Jennings (2004) and Moore, Young, Modene, and Plahuta (1986)

4.2.1.1 Available Data and Information for Grade Control

Blasthole data are available from the Main deposit only. The data is released by Teck Re-

sources Limited to the Centre for Computational Geostatistics (CCG) for PhD research.

BH samples inform on the grade of five variables: Zn, Pb, Fe, Ba, and SPb (soluble lead).

There were three metallurgical rock types distinguished for the Main deposit (Teck Com-

inco Alaska Inc., 2009): i) siliceous, ii) veined, and iii) baritic. Siliceous ore was the most

abundant; its metallurgical recovery depended on the grade of Fe. High grade of Fe caused

low Zn recovery (Teck Cominco Alaska Inc., 2009). Baritic ore, defined where the grade of

Ba is more than 7 % and the grade of Fe is less than 8 %, had a variable recovery depending

on the grade of Zn; higher Zn grade resulted in higher recovery of baritic ore. Veined ore

had a constant Zn recovery of 89 % (Teck Cominco Alaska Inc., 2009).

Stockpile blending criteria were used at the Red Dog mine to optimize plant recovery

and honor grinding/flotation capacity; they are used as a basis for developing a user-defined

profit function for this case study. The stockpile blending criteria are expressed by the

following constraints (Teck Cominco Alaska Inc., 2009):

1. Zn/Fe ratio ≥ 2.5

2. Zn/Pb ratio ≥ 3.65

3. Baritic ore ≤ 10 %

4. Total organic carbon ≤ 0.65

5. Weathered ore ≤ 5 %
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Only the first three criteria are used for this case study. The content of total organic car-

bon is unavailable for blasthole samples. The rules for defining weathered ore are unknown.

The third criteria is modified based on the rules for defining baritic ore. Additionally, the

constraint for Zn to be greater than or equal to 5 % is included. Details are provided in

Section 4.2.2.3.

4.2.2 Methodology

Short-term modeling for the Main deposit was performed using OK with data from reverse

circulation (RC) drilling, diamond drilling, and blastholes. Long-term modeling was per-

formed using RC and diamond drilling only (Teck Cominco Alaska Inc., 2009). Planning at

the Main Pit combined the long- and short-term models. The original long- and short-term

models are not available for this study.

According to Teck Cominco Alaska Inc. (2009), a multi-pass OK approach was used

to construct both the long- and short-term models. The first pass was done using a 100ft×

100ft×60ft ellipse search and from 3 to 7 composites as conditioning data. The second pass

was done using a 50ft × 50ft × 20ft ellipse search and from 4 to 7 composites. Geological

models at the Main Pit were constructed with a grid size of 25×25×25 ft3. The multi-pass

approach was used with BH samples as well to construct short-termmodels; however, exact

input parameters of corresponding kriging plans are unknown and, therefore, not used for

this case study.

Since it is impossible to reproduce the short-term grade control models used at the Main

Pit exactly due to the limited information and data, a different methodology is implemented

for this study. OK is performedwith different numbers of nearby BH samples and compared

to AGC-EP. The grid size of the grade control models approximately equals to 25 % of the

average BH spacing according to the recommendations fromVasylchuk andDeutsch (2017).

General workflow of the case study consists of the following steps:

• Grades of Zn, Pb, and Fe are obtained from the BH samples taken in the Main Pit

during its operations. A reference model is obtained for each grade variable at a high

resolution. A full multivariate simulation workflow based on the PPMT method is
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used. The reference model is used to determine the true profit and optimal destina-

tions at the high resolution.

• The reference model is validated in terms of reproducing important univariate and

multivariate statistics and other measures of performance.

• A dedicated profit function is developed based on the stockpile blending criteria used

at the Red Dog mine.

• The reference model is sampled with positioning errors in coordinates to better repro-

duce a real grade control situation.

• The artificial BH samples are used to perform grade control modeling at the resolution

of the reference model using OK and AGC-EP. Grade control models produced by

the twomethods are used to predict optimal destinations based on the dedicated profit

function.

• Cumulative gained profit (CPgained) (calculated using Equation (4.3)), mean squared

error in profit (MSEprofit) (calculated using Equation (3.5)), and total misclassifica-

tion are compared for the two methods.

The following section describes the construction of the reference model and its vali-

dation in detail. Also, the dedicated profit function is described. Finally, a performance

summary for the two methods is provided along with concluding remarks.

4.2.2.1 Construction of a Reference Model

Original BH samples from bench ’18243’ of the Main Pit are used as conditioning data

for multivariate simulation. A single realization of the multivariate simulation is the ’true’

reference model, which is used as a basis for comparing the OK-based grade control method

and AGC-EP. Figure 4.6 and Figures 4.7 show location maps for original Zn, Pb, Fe, and

Ba sampled grades and corresponding histograms.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.6: Location maps for grade variables sampled at ’18243’ mine bench

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.7: Histograms for grade variables sampled at ’18243’ mine bench

There are 210 BH samples situated at a staggered pattern with the average distance

between BHs, hxy, of 14.38 ft (calculated using Equation (3.11)). The reference model

is simulated in 2-D, since BH samples do not provide information on vertical geological

variability, using the following steps:
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• Collocated grades of Zn, Pb, Fe, and Ba from ’18243’mine bench are NS transformed

using the quantile to quantile method (Rossi & Deutsch, 2014, p. 22). Declustering

is not required because blastholes are situated on the regular grid.

• Variograms for Zn, Pb, Fe, and Ba are modeled using corresponding normal scored

grades. This is done to improve the variogram reproduction in the reference simulated

model according to recommendations from Barnett and Deutsch (2015a). Figure 4.8

demonstrates the variograms for each grade variable.

(a) Zn (calculated at 90◦ from North) (b) Pb (calculated at 96.5◦ from North)

(c) Fe (calculated at 42.5◦ from North) (d) Ba (calculated at 90◦ from North)

Figure 4.8: Variograms of grade variables sampled at ’18243’ mine bench

• The original grades of Zn, Pb, Fe, and Ba are PPMT forward-transformed using ppmt

program described in Barnett and Deutsch (2015a).

• The PPMT transformed grades of Zn, Pb, Fe, and Ba are modeled separately for

an area of 326.25 × 116.25 ft2 with a grid size of 3.75 × 3.75 ft2 using sgsim

(C. V. Deutsch & Journel, 1998).
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• The simulated grades are back-transformed altogether using ppmt_b program de-

scribed in Barnett and Deutsch (2015a).

The back-transformed simulated realization is sampled at a grid size of 15×15 ft2 with a

random error in coordinates of up to 1 ft. The samples are then used with both OK andAGC-

EP to predict optimal destinations at the resolution of the reference model (326.25×116.25

ft2 with the grid size of 3.75 × 3.75 ft2).

Reference Model Validation

The reference models for Zn, Pb, Fe, and Ba and corresponding location maps for arti-

ficial BH samples are shown in Figures 4.9 and 4.10.

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.9: Reference models for all four grade variables

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.10: Artificial BH samples for all four grade variables
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Histogram Reproduction

Histogram reproduction is an important validation check. Means and standard devi-

ations of the reference and simulated realizations should be close as well as the shapes

of corresponding cumulative distribution functions (CDFs). For ’18243’ mine bench, this

check is performed using 20 simulated realizations. Figure 4.11 demonstrates the CDFs of

the original (red color) and simulated (black color) distributions and important statistics.

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.11: Histogram reproduction for all four grade variables sampled at ’18243’ mine bench

According to Figure 4.11, the CDFs of the four grade variables and corresponding uni-

variate statistics are close to the CDFs and univariate statistics of original grade variables.

Variogram Reproduction

The reference models are simulated using the variograms of normal scored grades.

Therefore, the reproduction of variogram models is checked for the simulated grades in

normal scores (before the PPMT back-transformation). Figure 4.12 illustrates the repro-

duction of variograms for all four grade variables.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.12: Variogram reproduction for all four grade variables sampled at ’18243’ mine bench

In Figure 4.12, blue and green dots represent experimental variogram values for the ma-

jor and minor directions, respectively, while continuous grey lines represent corresponding

variograms of simulated models. The variograms of the simulated models are calculated in

the same directions as the variograms of original grade variables in normal scores. Some

statistical fluctuations are expected and desired. Overall, the variogram reproduction is

reasonable.

Reproduction of Bivariate Relationships between Grade Variables

The Red Dog mine stockpile blending criteria used to design a dedicated profit func-

tion for this case study involve multivariate relationships between grade variables. These

bivariate relationships may influence profit calculations and, therefore, should be repro-

duced in the simulated reference model. The PPMT multivariate normal transformation

method decorrelates variables and removes multivariate relationships between them. Fig-

ures 4.13 and 4.14 demonstrate the bivariate relationships between the four grade variables

before and after the PPMT transformation, respectively.
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Figure 4.13: Bivariate relationships between grades variables before the PPMT transformation
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Figure 4.14: Bivariate relationships between grades variables after the PPMT transformation

Figure 4.14 demonstrates that correlation and complex non-linear relationships between

all pairs of grade variables are removed. The multivariate relationships are then reintro-

duced in the simulated models during back-transformation. Figure 4.15 shows the bivariate

plots for the simulated PPMT back-transformed variables.
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Figure 4.15: Bivariate relationships between simulated grade variables after the PPMT back-
transformation

Figures 4.13 and 4.15 demonstrate that the complex bivariate relationships between

original grade variables are reintroduced for the simulated grade variables.

4.2.2.2 Grade Control Decision Making with AGC-EP and OK

The BH samples from mine bench ’18243’ (domain A) are used to obtain reference models

for Zn, Pb, Fe, and Ba grade variables. The reference models are then used to measure

and compare the performance of AGC-EP and OK with respect to known true values. Two

destinations for mined material k = 1, ..., 2 (ore and waste, respectively) are considered.

The grade control modeling procedure is performed using the following steps:
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1. For each grade variable, a corresponding reference model is sampled at a grid size of

15 × 15 ft2 with a random error in coordinates of up to 1 ft; the error in coordinates

is the same for all the grade variables since they are collocated.

2. Sampled grade variables g = 1, ..., 4 (Zn, Pb, Fe, and Ba, respectively) are mod-

eled with OK for an area of 326.25 × 116.25 ft2 with a grid size of 3.75 × 3.75

ft2. A dedicated profit function P is used to convert ordinary kriging estimates

zok(u; g), g = 1, ..., 4 to profit values P (zok(u; g), g = 1, ..., 4; k) for destinations

k = 1, ..., 2 at all locations u ∈ A, representing blocks of the modeling grid. Then,

the OK-based profit estimates P (zok(u; g), g = 1, ..., 4; k), k = 1, ..., 2 are used to

define optimal destinations dok
opt(u) at all locations u ∈ A.

3. The sampled grade variables g = 1, ..., 4 are used to model expected profit with

AGC-EP for the area of 326.25 × 116.25 ft2 with the grid size of 3.75 × 3.75 ft2. The

dedicated profit function P is used with local uncertainty estimates zl(u; g), g =

1, ..., 4, , l = 1, ..., L to calculate expected profit EP (u, k), k = 1, ..., 2 at all loca-

tions u ∈ A (more details are in Chapter 3). Then, the expected profitEP (u, k), k =

1, ..., 2 is used to determine the best AGC-EP destinations dopt(u) at all the locations

u ∈ A.

4. True grades ztrue(u; g), g = 1, ..., 4 are used to obtain true profit values

Ptrue(ztrue(u; g), g = 1, ..., 4; k), k = 1, ..., 2 at all the locations u ∈ A. The

true profit Ptrue(ztrue(u; g), g = 1, ..., 4; k), k = 1, ..., 2 is then used to obtain true

optimal destinations dtrue(u) at all the locations u ∈ A.

5. The optimal OK destinations dok
opt(u) and the best AGC-EP destinations dopt(u) are

compared to the true optimal destinations dtrue(u) at all the locations u ∈ A. Cumula-

tive gained profitCPgained, mean squared error in profitMSEprofit, and total misclas-

sification are calculated. Mean squared error in profit MSEprofit for the AGC-EP

expected profit estimates is calculated using Equation 3.5. A modified version of

Equation 3.5 is used to calculate MSEprofit for the OK profit estimates:

MSEprofit = E{(P (zok(u; g), g = 1, ..., 4; k) − Ptrue(u; k))2}, k = 1, ..., 2, u ∈ A
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After steps 1-5 of the workflow are completed, the performance measures are recorded and

analyzed for both grade control methods.

4.2.2.3 Profit Function

The stockpile blending criteria described in Section 4.2.1.1 are used to design the dedicated

profit function P for this case study. The function governs how much profit is assigned to

the ore and waste decisions based on the true or estimated Zn, Pb, Fe, and Ba grades. Profit

for the ore decision is calculated as follows:

P (z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba); ore) =
(z(u; Zn) − 5) · s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)), if z(u; Zn) ≥ 5;

0, otherwise.

(4.5)

where z(u; Zn), z(u; Pb), z(u; Fe), and z(u; Ba) are either true or estimated grade

values at a location u; s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) is a function depending on

the compliance with the stockpile blending criteria at the location u.

Profit for the waste decision is calculated as follows:

P (z(u; Zn);waste) =


5 − z(u; Zn), if z(u; Zn) < 5;

0, otherwise.
(4.6)

Function s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) in Equation (4.5) is defined by the

outcome of three bivariate functions: s1(z(u; Ba), z(u; Fe)), s2(z(u; Zn), z(u; Fe)), and

s3(z(u; Zn), z(u; Pb)). The first function is defined as follows:

s1(z(u; Ba), z(u; Fe); ore) =


0.5, if z(u; Ba) > 7 and z(u; Fe) < 8;

0.9, otherwise.
(4.7)

The second function is defined as follows:

s2(z(u; Zn), z(u; Fe)) =
exp(−(2.5 − z(u; Zn)/z(u; Fe))), if z(u; Zn)/z(u; Fe) < 2.5;

1, otherwise.
(4.8)
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The third function is defined as follows:

s3(z(u; Zn), z(u; Pb)) =
exp(−(3.65 − z(u; Zn)/z(u; Pb))), if z(u; Zn)/z(u; Pb) < 3.65;

1, otherwise.
(4.9)

Function s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) is expressed as follows:

s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) =

s1(z(u; Ba), z(u; Fe)) · s2(z(u; Zn), z(u; Fe)) · s3(z(u; Zn), z(u; Pb)) (4.10)

The first function s1(z(u; Ba), z(u; Fe)) defines a coefficient, which can be viewed

as an equivalent of a recovery factor. Grades of Ba and Fe determine whether mined

material at a location u can be classified as baritic ore. The function returns the value

of 0.5 if the mined material is baritic ore and 0.9 otherwise. Other two functions are

used to penalize the profit for the ore decision if the first and/or second blending crite-

ria are not satisfied. If z(u; Zn)/z(u; Fe) ≥ 2.5 and z(u; Zn)/z(u; Pb)) ≥ 3.65, then

s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) is equal to either 0.5 or 0.9 and the full amount

of profit P (z(u; Zn); ore) is achieved at the location u. If either of the stockpile blending

criteria is not satisfied, the profit is reduced. If the stockpile blending ratios are close to 0 at

the location u, so is the value of s(z(u; Zn), z(u; Pb), z(u; Fe), z(u; Ba)) and correspond-

ing profit.

4.2.3 Results

OK is performed separately for each grade variable. The OK estimates zok(u; g), g =

1, ..., 4 are used with the profit function P described in Section 4.2.2.3 to obtain estimates

of profit P (zok(u; g), g = 1, ..., 4; k), k = 1, ..., 2 and corresponding optimal destinations

dok
opt(u) at all locations u ∈ A. OK is performed with the variograms modeled using the

artificial samples for each variable. Calculations are repeated for OK with the number of

nearby conditioning samples varying from 15 to 155 with a step of 5 samples. AGC-EP is

performed with all the grade variables at once. Similarly to OK, calculations are repeated

with nearby samples in the range from 15 to 155 with a step of 5. Expected profit estimates
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EP (u, k), k = 1, ..., 2 are used to obtain corresponding optimal destinations dopt(u) at

all the locations u ∈ A. The 3 × 3 block2 Gaussian filter is used to smooth the expected

profit estimates. Figures 4.16, 4.17, and 4.18 show cumulative gained profitCPgained, mean

squared error in profit MSEprofit, and total percent of misclassification plotted versus the

number of nearby samples used with OK and AGC-EP, respectively.

Figure 4.16: Cumulative gained profit CPgained versus the number of nearby samples

The highest CPgained for OK is achieved with 15 nearby samples; this measure, how-

ever, is almost constant for the range from 15 to 155 nearby samples. The highest CPgained

for AGC-EP is achieved with 115 nearby samples used. K-fold cross-validation is per-

formed using the range from 65 to 140 (80 % of all 176 samples) nearby samples with a

step of 5 samples; 65 is the minimum number of samples, for which angles of anisotropy

are determined with the MOI method for all the locations. K-fold cross-validation predicts

the optimal number of nearby samples to be 92, which falls into the optimal region between

approximately 85 to 130 nearby samples.
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Figure 4.17: Mean squared error in profit versus the number of nearby samples

For OK, mean squared error in profit MSEprofit also remains nearly constant for all

the considered numbers of nearby samples. For AGC-EP, MSEprofit rapidly decreases

with the increase in the number of nearby samples used. The highest and lowest values are

achieved with 15 and 150 nearby samples, respectively.

Figure 4.18: Total misclassification versus the number of nearby samples

For OK, the lowest total misclassification value is achieved with 15 nearby samples.

Then, it slowly grows for the range from 15 to 155 nearby samples. For AGC-EP, the highest

total misclassification is achieved with 25 nearby samples. Then, it rapidly decreases for

the range from 30 to 90 nearby samples, remains nearly constant for the range from 90 to

130 nearby samples, and slightly increases for the range from 135 to 155 nearby samples.

The lowest misclassification is achieved for AGC-EP used with 155 nearby samples.
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The graphs in Figures 4.16 and 4.17 support the assumption stated in Chapter 3 that

decreasing mean squared error in profit increases profit from mining operations. AGC-EP

performs much better in terms of minimizing MSEprofit than OK, which results in a higher

corresponding CPgained value.

Figures 4.19 and 4.20 show OK estimates obtained with the optimal number of nearby

samples and corresponding optimal ore/waste and the true optimal destinations.

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.19: OK estimates for Zn, Pb, Fe, and Ba grade variables

(a) Estimated destinations (b) True destinations

Figure 4.20: Optimal destinations for mined material determined with OK and the true optimal
destinations

Figure 4.21 shows the variograms used for OK.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 4.21: Variograms of all four grade variables used for OK

Figure 4.22 shows optimal ore/waste destinations determined byAGC-EPwith 92 nearby

samples and the true optimal ore/waste destinations.

(a) Estimated destinations (b) True destinations

Figure 4.22: Optimal destinations for minedmaterial determined with AGC-EP and the true optimal
destinations

Overall, bothmethods show a good performance for this grade control case study. Nonethe-

less, AGC-EP outperforms the OK-based method by around 1.0 % in terms of cumulative

gained profit CPgained, 9.7 % in terms of mean squared error in profit MSEprofit, and 16.2

% in terms of total misclassification.

106



4. Grade Control Decision Making

4.3 Summary

The workflow of the main part of AGC-EP is explained in detail. The post-processing of

expected profit estimates produced by AGC-EP for better predicting correct mined material

destinations is discussed. A practical method based on averaging filters is proposed.

A multivariate grade control case study based on real data from the Red Dog mine

in Alaska is described. A carefully applied grade control modeling method based on OK

is compared to the automatic AGC-EP algorithm. AGC-EP outperforms OK in terms of

cumulative gained profit, mean squared error in profit, and total misclassification (type 1

and type 2 errors). The k-fold cross-validation algorithm (explained in Chapter 3) accurately

predicts the number of nearby samples to use with AGC-EP.

The expected profit predictions obtained with AGC-EP can be used to determine op-

timal destinations for mined material directly if blasting is not performed. If blasting is

performed, the pre-blast positions of high resolution expected profit should be corrected

accounting for the shape and volume of the post-blast muckpile.
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Final selection of mined material is performed on the post-blast muckpile. However, all

grade control information (e.g., samples from blastholes, trenches, dedicated drillholes, etc.)

is inherently pre-blast. If blasting is performed, mineable dig limits should be obtained for

the post-blast muckpile to minimize misclassification. Blast movement modeling is a proce-

dure that makes pre-blast predictions of grades or profit relevant for dig limits optimization

and post-blast selection.

Pre-blast topography is necessary to estimate the pre-blast volume of rocks. The post-

blast volume of rocks can be determined by discretizing the pre-blast volume into units

or blocks and then transforming or moving them to define a post-blast shape. The size of

the pre-blast blocks should correspond to pre-blast spatial prediction models. Modeling the

trajectories of all blocks allows predicting the post-blast positions of all the pre-blast blocks

along with the information assigned to them; post-blast topography is not necessary in this

case butmay be used for defining the post-blast muckpile (Isaaks, Barr, &Handayani, 2014).

This approach also allows modeling the collisions and mixing of blocks. The physics of the

breakage of rocks during blasting is very complex, which makes it difficult to predict the

exact effect of blasting on the pre-blast rocks. Uncertainly in the geological composition

and fractures of a mine bench as well as variations in the properties and characteristics of

explosives and initiation systems will likely compromise even very good models and lead

to significant positioning errors (La Rosa & Thornton, 2011).

Precise information about blast movement is obtained from blast movement measure-

ments and detailed post-blast topography. By using measured blast movement vectors, it

is possible to approximately estimate the post-blast positions of dig limits. A common ap-

proach is the translation of each pre-blast block to its post-blast position and fixing pre-blast

polygons based on interpolated blast movement vectors (Thornton et al., 2005). This ap-
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proach is unlikely to be accurate due to the difference of the pre- and post-blast shapes of a

mine bench. A method will be developed to overcome this issue.

In this chapter, an optimization-based algorithm for modeling blast-induced displace-

ment of rock in 3-D using gridded pre- and post-blast topography and direct blast movement

measurements is described; the algorithm is called Advanced Grade Control-Blast Move-

ment (AGC-BM). The blast movement problem is expressed as an optimization assignment

problem. The optimization assignment problem is solved by a heuristic algorithm offering

an approximate solution in a reasonable time. The objective function and optimization de-

tails are explained. The modeling algorithm can be used to map the pre-blast positions of

expected profit blocks to the post-blast muckpile in 3-D. The post-blast profit can then be

used to define optimal post-blast dig limits. Specific grade control cases with limited in-

formation about the direction of blast movement and the shape of post-blast muckpile are

discussed. Relevant examples are provided.

5.1 Sources of Information about Blast Movement

Detailed topography allows creating accurate pre- and post-blast 3-D models. The pre- and

post-blast models should be discretized such that the swell (an increase in the volume of

rocks during blasting) is taken into account but the number of blocks is the same for both

models. An assumption is made that the material in each pre-blast block is kept together and

mapped to a post-blast block. If topography is absent, it can be approximately estimated

using the major direction of rock displacement, the locations of free faces, and the swell

factor.

After the pre- and post-blast models are created and discretized, some criteria should

be used to map the blocks of the pre-blast model to the blocks of the post-blast model. Di-

rect blast movements is a valuable source of information that may be used to improve the

mapping and avoid modeling the complex physics of blasting. Simple visual markers like

sands bags and wooden stakes (S. L. Taylor, 1995; Zhang, 1994) may be placed in drill-

holes before blasting and used to determine the displacement vectors for some zones of a

mine bench. S. L. Taylor (1995) indicates that only 35 % of stakes and bags were recov-
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ered over 5 blasts. Zhang (1994) also reports low bag recovery for some blasts. Another

drawback of this method is its labor intensiveness; the visual markers have to be recov-

ered manually during excavation. Remote sensing equipment like magnetic radiometers

(Gilbride, 1995), radio frequency ID tags (La Rosa & Thornton, 2011), or other special-

ized transmitters (Adam&Thornton, 2004) may be used for a more reliable blast movement

measurement. Usually, only sparse measurements are available; some tools are necessary

to use this limited information to improve the understanding of blast movement for often

complex configurations of post-blast muckpiles.

Thornton (2009a) confirms that the firing sequence of a blast has a significant impact

on the direction of blast movement; rocks move preferentially perpendicular to the timing

contours. Programmable electronic detonators (Lusk, Silva, & Eltschlager, 2013) offer a

high level of control over the timing and initiation sequence of a blast. Therefore, the firing

pattern configuration may be used to calibrate sparse blast movement measurements.

To summarize, there are three primary sources information about blast movement: i)

detailed topography, ii) direct blast movement measurements, and iii) the elements of blast

design. A practical blast movement modeling algorithm should allow incorporating this

information for obtaining better blast movement models.

5.2 Problem Formulation

Themovement of rock due to blasting could be considered to be a combinatorial assignment

problem. A pre-blast mine bench and a post-blast muckpile can be discretized by a set of

blocks; the coordinate location of the centre of each pre- and post-blast block is known. It

is assumed that the numbers of pre- and post-blast blocks are the same. A set of post-blast

coordinate vectors A = {a1, ..., aN} ∈ R3, where ai = (ai
x, ai

y, ai
z), i = 1, ..., N should

be assigned to a set of pre-blast coordinate vectors B = {b1, ..., bN} ∈ R3, where bi =

(bi
x, bi

y, bi
z), i = 1, ..., N using a bijective mapping (or permutation) φ : A 7→ B (Burkard &

Derigs, 2013). Each post-blast block should be assigned to a pre-blast block based on some

cost function c(φ), where φ is one permutation out of the set of all possible permutations P .

Given that C is the matrix of cost elements ci,j , the cost for every permutation is associated
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as follows (Burkard & Derigs, 2013, p. 1):

c(φ) :=
N∑

i=1
ci,φ(i)

The objective is to find a mapping φ ∈ P such that the cost is minimized:

minφ ∈ P

N∑
i=1

ci,φ(i)

This problem can also be expressed as a bipartite graph in Figure 5.1.

Figure 5.1: A bipartite graph illustrating the linear sum assignment problem

Due to the nature of complex geological and grade control boundaries, it is desirable to

have a high resolution. The resolution of the grade control models is recommended to be

around 25 % of the sample spacing (Vasylchuk & Deutsch, 2017); for example, a 2 × 2 m2

grid is recommended for a blasthole pattern with an average spacing of 8m. The 3-Dmodels

of mine benches built according to these recommendations would consist of approximately

10 000 to 25 000 blocks.

The Kuhn-Munkres or ‘Hungarian’ algorithm (Kuhn, 1955) is a popular algorithm for

solving linear sum assignment problems in polynomial time if the size of the cost matrix is

reasonable. Unfortunately, the current blast movement problem cannot be solved by such

an algorithm because some elements ci,j of matrix C change at each permutation; this is

due to one element of the cost function explained below. Therefore, a heuristic algorithm

is applied to find an approximate solution in a reasonable time.
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5.2.1 Cost Function

It is necessary to make assumptions about the blast movement including i) there is no mix-

ing and collision of particles inside the mine bench during blasting, and ii) the swell factor

is uniform throughout the entire muckpile. Although the rocks mix and collide during blast-

ing, it is currently infeasible to model blast movement with correct physics due to compu-

tational considerations and uncertainty in initial and boundary conditions. Fortunately, the

direct blast movement measurements made by the systems such as described by Adam and

Thornton (2004) allow creating 3-D blast movement vectors that can be used to constrain

pre- and post-blast blocks. Topography is a primary source for creating detailed 3-D mod-

els. Gridded topographic surfaces of a mine bench before and after blasting may be created

using laser scanners (Isaaks, Barr, & Handayani, 2014) or scanning drone systems.

The proposed cost function consists of four aspects: i) the distance between the pre-and

post-blast blocks, ii) the distance between each pre- and post-blast block to neighboring

blocks within a corresponding 3-D model, iii) distance from each pre- and post-blast block

to the boundaries of a corresponding model in three orthogonal directions, and iv) the close-

ness of optimized displacement vectors to real displacement vectors measured with special-

ized equipment.

Mathematically, the proposed cost function is expressed as follows:

c(φ) =
4∑

i=1
wi

(
ci(φ)/ci(φinit)

)
(5.1)

where ci(φ), i = 1, 2, 3, 4 are components (elements) of the cost function c(φ) depen-

dent on a current permutation φ ∈ P ; ci(φinit) are from the initial permutation φinit ∈ P

corresponding to an initial guess model; wi, i = 1, 2, 3, 4 are weights corresponding to the

components of the cost function c(φ).

Note that the units of all the components are similar, that is, the units of distance. Also,

the initial costs are checked to ensure that they are not close to zero. Since the initial per-

mutation φinit is obtained using a simple algorithm based on search and sorting (explained

below), the initial costs are unlikely to be close to 0; if they are, in fact, close to 0, then the

initial solution is very close to an optimal one and no or very few iterations are required to
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reach it. A tolerance parameter is used to ensure that optimization terminates if the initial

cost is close to 0.

First Element of the Cost Function

The purpose of this element is to assign each post-blast block to the closest pre-blast

block based on their corresponding x, y, and z coordinates. Even though the difference in

coordinates for the associated blocks of the pre- and post-blast models is expected to be

smaller at the back of the mine bench and larger closer to its free face, the general principle

is the same. This idea is illustrated in Figure 5.2 and described mathematically as follows:

c1(φ) = 1/N
N∑

i=1
∥ aφ(i) − bi ∥ (5.2)

where c1(φ) is the first element of c(φ); bi is the coordinate vector of a pre-blast block;

aφ(i) is the coordinate vector of a post-blast block corresponding to the current permutation

φ ∈ P .

Figure 5.2: A graph illustrating the idea behind the first element of the cost function

Second Element of the Cost Function

This element of the cost function is calculated as the average quadratic difference be-

tween the corresponding off-diagonal elements of pre- and post-blast distancematrices,DB

and DA, respectively. This element of the cost function represents the assumption that the

post-blast blocks do not significantly change their position relative to surrounding blocks

if compared to the assigned blocks of the pre-blast model; it accounts for the coherency of
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the post-blast model. This is the part of the cost function that prohibits using an exact linear

sum assignment algorithm; it is expressed mathematically as follows:

dB
ij = ∥ bi − bj ∥, i = 1, ..., N, j = 1, ..., N

dA
ij = ∥ aφ(i) − aφ(j) ∥, i = 1, ..., N, j = 1, ..., N

c2(φ) = 1
N2 − N

N∑
i=1

N∑
j=1

(dB
ij − dA

ij)2, ∀ i ̸= j (5.3)

where c2(φ) is the second element of c(φ); dB
ij are the elements of thematrix of distances

between all pre-blast blocks, DB; dA
ij are the elements of the matrix of distances between

all post-blast blocks, DA.

Third Element of the Cost Function

The next element of the cost function accounts for relative positions of each pre- and

post-blast block with respect to the boundaries of a corresponding 3-D model. A set of N

vectorsK = {k1, ..., kN} ∈ R3 corresponds to each block of a pre-blast model. Each vector

ki = (ki
x, ki

y, ki
z), i = 1, ..., N has the distances to the boundaries of the pre-blast model as

its elements. Similarly, a set of N vectors L = {l1, ..., lN} ∈ R3, where li = (li
x, li

y, li
z), i =

1, ..., N corresponds to each block of a post-blast model. The idea behind this element of

the cost function is illustrated in Figure 5.3.

Figure 5.3: A graph illustrating the idea behind the third element of the cost function

The third element of the cost function is calculated using the following equation:

c3(φ) = 1
N

N∑
i=1

∥ lφ(i) − ki ∥ (5.4)

114



5. Optimization Approach for Modeling Blast Movement

where c3(φ) is the third element of c(φ); lφ(i) is the confinement coordinate vector of a

post-blast block corresponding to the current permutation φ ∈ P .

Fourth Element of the Cost Function

The specialized equipment for measuring blast movement usually consists of some type

of transmitters and detecting equipment (a receiver). The pre- and post-blast positions of

the transmitters are used to calculate the directions and magnitudes of displacement for

each assigned pair of pre- and post-blast blocks. Unfortunately, it is not economically vi-

able to use many transmitters for a blast. Some researchers report using around 5 trans-

mitters on average for 38 blasts (Yennamani, 2010, p. 73-74). The components of the

measured pre- and post-blast coordinate vectors of the transmitters should be interpolated

and assigned to the closest pre-blast block. After interpolation, the pre- and post-blast po-

sitions of the transmitter can be expressed as two sets of vectors P = {p1, ..., pN} ∈ R3

and S = {s1, ..., sN} ∈ R3, respectively. The set of measured displacement vectors as-

signed to each pre-blast block, M = {m1, ...,mN} ∈ R3, is obtained as follows:

mi = si − pi, i = 1, ..., N

The set of optimized displacement vectors for the assigned pairs of pre- and post-blast

blocks, O = {o1, ..., oN} ∈ R3, is calculated as follows:

oi = aφ(i) − bi, i = 1, ..., N

The fourth element of the cost function accounts for minimizing the average difference

between the measured and optimized displacement vectors. This is the element of the cost

function that allows calibrating the theoretical blast movement modeling with real measure-

ments without the need for modeling mixing and colliding blocks (Figure 5.4).

Figure 5.4: The magnitude of the difference between measured and optimized displacement vectors
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Mathematically, the fourth element of the cost function is expressed as follows:

c4(φ) = 1
N

N∑
i=1

∥ mi − oφ(i) ∥ (5.5)

where c4(φ) is the fourth element of c(φ); oφ(i) is an ith optimized displacement vector

corresponding to the current permutation φ ∈ P .

The firing sequence information of a blast can be used to calibrate sparse blast move-

ment vectors. Details about this procedure are provide later in this chapter.

The cost function c(φ) is minimized using a stochastic algorithm based on random

restarts. A detailed description of the algorithm with an example is provided below.

5.3 Optimization Algorithm

The primary idea of the optimization algorithm is to find a permutationφ that approximately

minimizes the cost function using random changes to the permutation vector. Each element

of the cost function is standardized and has a weight. The algorithm is first implemented

on low-resolution (LR) pre- and post-blast models to reduce the number of required permu-

tations; a fine-tuning optimization is then used on high-resolution (HR) models (e.g., one

quarter of sample spacing). A detailed workflow is provided below:

1. Build pre- and post-blast 3-D models using topography and polygons.

2. Determine the grid size for the LR models; there should be at least 4 blocks in the

vertical direction for an adequate representation of the muckpile shape. The grid size

is calculated using the following equation:

gLR = (hpre + hpost)/8

where hpre and hpost are the average heights of the pre- and post-blast topographic

surfaces above the bottom elevation, respectively; gLR is the grid size for the LR 3-D

models.

The LR grid size defines a new grid definition. The pre-blast gridded topography is

re-gridded according to the new definition; the re-gridded topography and the bottom
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elevation are sufficient for creating the pre- and post-blast LR 3-D models. Due to

the swell factor, the post-blast 3-D model has more blocks than the pre-blast one.

3. Change the grid sizes of the LR post-blast model in the x, y, and z directions such that

the numbers of blocks for the LR pre- and post-blast models are the same accounting

for the swell factor. A derivative free adaptively controlled random search optimiza-

tion algorithm (ACRS) (Brachetti, Ciccoli, Di Pillo, & Lucidi, 1997; Cirio, Lucidi,

Parasiliti, & Villani, 2002; Liuzzi & Lucidi, n.d.; Liuzzi, Lucidi, Parasiliti, & Villani,

2003) is used. It is based on a global optimization algorithm from Price (1977).

4. After the numbers of blocks for the two models are equal, the pre-blast blocks A

should be assigned to the post-blast blocksB using an initial bijective mapping φinit :

A 7→ B. The objective for each pair of assigned blocks is formulated separately:

minφinit ∈ P

(
(aφinit(i)

x − bi
x)2 + (aφinit(i)

y − bi
y)2 + (aφinit(i)

z − bi
z)2+

(lφinit(i)
x − ki

x)2 + (lφinit(i)
y − ki

y)2 + (lφinit(i)
z − ki

z)2
)(1/2)

, 1, ..., N (5.6)

After a post-blast block φinit(i), is assigned to a pre-blast block i, this pair is removed

from the queue. The procedure above is implemented using a simple search based

on sorting.

5. Calculate an initial value of the cost function c(φinit) for the LRmodel corresponding

to the initial guess mapping φinit using Equation (5.1); then, optimize the LR initial

guess model by minimizing the cost function using an algorithm based on random

restarts and permutations (described below).

6. In order to build the second initial guess HR model, the blocks of the optimized LR

post-blast model are associated with the blocks of the HR post-blast model. The grid

definition for the HR pre- and post-blast 3-D models is obtained using a grid size

provided by the user; similar to the LR models, the pre- and post-blast topography is

re-gridded using the new definition and then used to create the HR 3-D models. The

grid sizes in the x, y, and z directions of the HR post-blast model are changed to match

the number of blocks in the HR models similar to the LR models. Each block of the
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HR post-blast model is associated with the closest block of the LR post-blast model;

naturally, each LR block will have several HR blocks associated with it. Then, each

block of the LR pre-blast model is associated with the blocks of the HR pre-blast

model in a similar fashion. After Steps 1-5, each block of the LR post-blast model

is assigned to a block of the LR pre-blast model; this mapping can be used to assign

each block of the HR pre-blast model to a block of the HR post-blast model. It is

not known exactly in which order the HR blocks from each of the pre- and post-blast

pulls should be assigned to each other; therefore, they are assigned by the closeness

to their respective LR blocks in Euclidian space. The main idea behind this step is

illustrated in Figure 5.5.

Figure 5.5: Schematic illustration of associating blocks of high resolution pre- and post-blast models
using low resolution pre- and post-blast models

7. Calculate an initial value of the cost function c(φinit2) for the HR model correspond-

ing to the second initial guess mapping φinit2 using Equation (5.1); then, optimize the

HR second initial guess model by minimizing the cost function. Start from a random

location of the post-blast model; search for a user-specified number of nearby blocks.

8. Switch the first starting blockwith a block in its neighbourhood, calculate a difference

in the total cost and save this permutation if the cost is decreased; continue until all

the blocks in the neighbourhood are used in a random order and go to the next start

location. This allows randomly permuting the blocks of the HR post-blast model

assigned to the blocks of the HR pre-blast model.
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9. Perform the number of random restarts specified by the user.

10. Output the optimized model for further processing and obtaining mineable dig limits.

The numbers of restarts for the LR and HR 3-D models could be selected automatically.

The algorithm iterates until the improvement to the cost function of a model is less than a

tolerance parameter. The improvement to the cost function is calculated and saved as the

percentage of the initial cost function value, Improvement = ((c(φinit − c(φ))/c(φinit)) ·

100%. The number of neighbours for the LR and HR models should be selected by the user.

It is recommended using no less than 20 and 40 neighbours for the LR and HR models,

respectively. The user can also specify the numbers of restarts for the two models manually.

5.4 Example with Topography and Blast Movement

Vectors

The optimization algorithm described in Section 5.3 is implemented in Fortran according to

the GSLIB conventions (C. V. Deutsch & Journel, 1998). A synthetic example is developed

to demonstrate the steps for blast movement modeling.

A realization of grade is simulated using sequential Gaussian simulation algorithm

(Isaaks, 1991) implemented in sgsim (C. V. Deutsch & Journel, 1998) for an area of

70 × 110 m2 with a grid size of 1 × 1 m2. The reference realization is then sampled at

a grid size of 8 × 8 m2 with a random error of up to 1 m in coordinates. The variogram

model required for the simulation has one spherical nested structure with a nugget effect of

0.2 and the major direction of continuity at 30◦ from North. The major and minor ranges

of continuity are 100 m and 35 m, accordingly. Simulated grades in Gaussian units are con-

verted to be lognormal to appear more realistic. Then, the simulated grades are converted

to expected profit for three destinations using two cutoff grades; the expected profit is gen-

erated for the same area with a grid size of 2 × 2 m2 to match the resolution of 3-D models.

Figure 5.6 illustrates the reference simulated model and samples.
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(a) Reference model (b) Samples

Figure 5.6: Artificial reference realization and samples

Profit Function

The Advanced Grade Control-Expected Profit (AGC-EP) algorithm (more details about

the algorithm are in Chapters 3 and 4) is used to perform local multivariate simulation and

expected profit calculation. Simulated values zl(u), l = 1, ..., L at all locations u ∈ A are

converted to expected profit using a profit function designed for this example. The profit

function uses a single grade variable and two cutoff grades, z1
c = 1.0 and z2

c = 0.5, to

distinguish between three destinations for mined material: ore, stockpile, and waste. If a

simulated value zl(u) at a location u is greater than or equal to the cutoff grade z1
c , the

expected profit for the ore decision is calculated as follows:

P (zl(u); ore) =


zl(u) − z1

c , if zl(u) ≥ z1
c ;

0, otherwise.
(5.7)

EP (u; ore) = 1
L

L∑
l=1

P (zl(u); ore)

where P (zl(u); ore) is the profit at the location u given the ore decision; EP (u; ore) is

the expected profit at the location u given the ore decision.
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If zl(u) is below than z1
c and zl(u) is greater than or equal to z2

c , the expected profit for

the stockpile decision is calculated as follows:

P (zl(u); stockpile) =


zl(u) − z2

c , if zl(u) < z1
c and zl(u) ≥ z2

c ;

0, otherwise.
(5.8)

EP (u; stockpile) = 1
L

L∑
l=1

P (zl(u); stockpile)

where P (zl(u); stockpile) is the profit at the location u given the stockpile decision;

EP (u; stockpile) is the expected profit at the location u given the stockpile decision.

If zl(u) is below than z2
c , the expected profit for the waste decision is calculated as

follows:

P (zl(u);waste) =


z2

c − zl(u), if zl(u) < z2
c ;

0, otherwise.
(5.9)

EP (u;waste) = 1
L

L∑
l=1

P (zl(u);waste)

whereP (zl(u);waste) is the profit at the locationu given thewaste decision;EP (u;waste)

is the expected profit at the location u given the waste decision.

Equations (5.7)-(5.9) define the profit function for this example. Figure 5.7 demon-

strates high resolution expected profit obtained with AGC-EP.

(a) Ore (b) Stockpile (c)Waste

Figure 5.7: Expected profit maps for three mined material destinations

Pre- and post-blast topographic surfaces are required to build 3-D models. Also, pre-

and post-blast polygons are required for better defining the limits of the models. The arti-
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ficial pre- and post-blast topographic surfaces illustrating probable blast movement are in

Figure 5.8 .

(a) Pre-blast (b) Post-blast

Figure 5.8: Artificial pre- and post-blast topographic surfaces

Measured displacement vectors are used for calibrating theoretical blast modeling. In

Figure 5.9, a set of artificial blast movement vectors created for this example is illustrated.

Figure 5.9: Artificial blast movement vectors

After the LR model is optimized (steps 1-5 of the algorithm), it is used to obtain a HR

initial guess model (Figures 5.10d-5.10f) with a corresponding permutation φinit2.
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(a) Ore (b) Stockpile (c)Waste

(d) Ore (e) Stockpile (f)Waste

Figure 5.10: Initial guess post-blast 3-D models compared to pre-blast 3-D models of expected
profit

Equation (5.1) is used to calculate the initial value of the cost function corresponding

to the permutation. After the initial guess permutation for the HR model φinit2 is obtained

and the corresponding cost is calculated, the final part the optimization algorithm starts;

each new permutation φ is accepted if it brings an improvement to the cost function. The

tolerance parameter was set to 0.005 % of improvement. The LR and HR neighbors were

set to 20 and 40, respectively. The algorithm performed 58 000 and 100 000 iterations to

minimize the cost functions for the LR and HR models, respectively. The post-blast 3-D

models after 30 % and 100 % of the performed number of random restarts for the HRmodel

are illustrated in Figures 5.11 and 5.12.

(a) Ore (b) Stockpile (c)Waste

Figure 5.11: Expected profit units for three destinations mapped on the post-blast 3-D models (30
% of random restarts)
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(a) Ore (b) Stockpile (c)Waste

Figure 5.12: Expected profit units for three destinations mapped on the post-blast 3-D models (100
% of random restarts)

After the optimized post-blast expected profit in 3-D is obtained, it can be used to opti-

mize dig limit boundaries. Figure 5.13 shows HR pre- and post-blast expected profit maps

converted to 2-D HR classification maps. It can be seen that spatial structures of the HR

pre- and post-blast classification maps are similar despite apparent differences in the shapes

of the underlying 3-D models.

(a) Pre-blast (b) Post-blast

Figure 5.13: Pre-blast classification of mined material versus post-blast classification of mined
material

The current example is performed with the third element of the cost function receiving

half the weight of the rest of the elements; this reduces the amount of visual artifacts that

occur due to the artificial nature of the pre- and post-blast topographic surfaces. Giving

more or less weight to one of the elements does not necessarily mean it will drastically

change the mapping since all the elements are related. However, it might be reasonable
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to give more weight to the fourth element of the cost function if many transmitters are

available to measure blast movement directly. Having very good and detailed pre- and

post-blast topography would justify weighting the third elements of the cost function more

than the others. Figure 5.14 shows the improvement in the cost function versus the number

of random restarts performed.

Figure 5.14: Improvement to the cost function and all its elements versus the number of random
restarts

The improvement to the cost function increases quickly up to around 30%of the random

restarts and then gradually flattens out; this trend is observed for all the elements of the cost

function irrespective of the improvement each element brings. A case with more weight to

the fourth element of the cost function would be interesting to analyze; unfortunately, only

artificial data are available, which may not represent blast movement accurately.

The run-time for this example was 36.4 minutes for 10149 blocks on an older PC. In the

majority of cases, it can be decreased to 10-15 minutes by reducing the number of random

restarts or neighbors; this may introduce some minor visual artifacts in the 3-D models,

which, nevertheless, should not significantly impact final results.
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5.5 Blast Movement Modeling with Limited Information

Blast movement modeling with AGC-BM should always be performed with detailed topog-

raphy and accurate blast movement measurements for obtaining the best results. However,

there are situations when only limited information about the configuration of amuckpile and

blast movement is available for short-term planning. This may happen due to equipment

malfunction, harsh weather conditions, and human error, among other reasons.

In this section, two cases are reviewed: i) blast movement modeling with sparse blast

movement vectors, and ii) blast movement modeling with approximate topography. Algo-

rithms for inferring approximate blast movement vectors and topography based on blast

design are proposed.

5.5.1 Modeling with Approximate Displacement Vectors

For some blasts, the pre- and post-blast positions of only a few transmitters (e.g., the trans-

mitters described in Adam and Thornton (2004)) are available due to their damage during

blasting or economical considerations. In such situations, blast movement modeling can

be performed using only detailed pre- and post-blast topography or with the topography

and approximate blast movement vectors. Sparse blast movement vectors can be interpo-

lated using estimation methods like inverse distance (Shepard, 1968) or kriging (Matheron,

1963); this procedure is performed by default within AGC-BM. Some practitioners may

consider using local directions of blast movement obtained based on the firing sequence

of a blast, especially, if available blast movement measurements are limited or deemed

unreliable. Thornton (2009a) indicates that the direction of blast movement at a particular

location of a mine bench is usually perpendicular to the timing contours of a firing pattern.

However, different factors may have an impact on the directions such as the proximity of

free faces, stemming ejection, the firing pattern configuration (e.g., diagonal or v-shaped)

and delays, the blasthole design, etc.. Initiating different parts of a column charge with

different delays or separating the column charge by air decks or inert material may also

have an effect on the local blast movement directions. For complex cases involving some

or all of the described factors, blast movement should be measured with a sufficient number
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of specialized transmitters. Determining a minimum sufficient number of transmitters is a

separate issue and is not addressed in this thesis.

Approximate blast movement vectors may be inferred using the firing sequence of a

blast. The firing sequence may provide information on the theoretical direction of rock

displacement but not on its magnitude unlike real blast movement vectors obtained with

specialized transmitters. Limited blast movement vectors can be used to estimate the mag-

nitude of displacement locally.

A practical method for inferring approximate blast movement vectors using theoreti-

cal directions and sparse blast movement vectors is described below with examples. The

method should be used for simple blasting cases with one or two free faces, solid column

charge (with a single initiation point), and a reasonable blast design (e.g., reasonable burden,

spacing, sub-drill, stemming length, etc.). Figure 5.15 schematically illustrates a simple di-

agonal firing pattern; the pre-blast topography created for the example in Section 5.4 is

used.

Figure 5.15: Schematic illustration of the major blast movement direction (diagonal firing pattern);
the numbers are the firing times in milliseconds.

In Figure 5.15, blastholes in a row are connected with 25 millisecond delays while
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the rows are connected with 65 millisecond delays. Blastholes in each row are blasted

almost instantaneously creating a new free face for the subsequent row. The large blue

arrows indicate the theoretical major direction of displacement of the rock mass, which is

perpendicular to timing contours. Different firing patterns may result in a different direction

of displacement; also, the blasted rock mass can move in several directions.

Optimization Algorithm for Blast Movement Vectors

A simple a stochastic optimization algorithm is developed to obtain approximate blast

movement vectors at Nloc arbitrary locations of a mine bench. Local directions of dis-

placement are expressed as azimuths αi, i = 1, ..., Nloc in degrees from North (from 0◦ to

360◦ measured clockwise) perpendicular to timing contours. Measured displacement vec-

tors are calculated by subtracting pre-blast coordinates of the transmitters from the post-

blast coordinates of transmitters. Then, the measured displacement vectors are interpo-

lated using inverse distance (Shepard, 1968) and stored in a set D = {d1, ..., dNloc
} ∈

R3, where di = (di
x, di

y, di
z), i = 1, ..., Nloc. Initial magnitudes of displacement vectors

∥ di ∥, i = 1, ..., Nloc are calculated and saved. The components of pre-blast coordinate

vectors at all locations Nloc are obtained and stored in a set H = {h1, ..., hNloc
} ∈ R3,

where hi = (hi
x, hi

y, hi
z), i = 1, ..., Nloc. Components hi

x and hi
y for each element hi are

known for each location where αi is determined and, therefore, are not interpolated. Com-

ponent hi
z, in turn, is not known and is interpolated using the corresponding components

of the measured pre-blast coordinate vectors of the transmitters. A set of post-blast vectors

G = {g1, ..., gNloc
} ∈ R3 is obtained as follows:

gi = hi + di, i = 1, ..., Nloc (5.10)

The following expression is used to re-calculate the displacement vectors inD = {d1, ..., dNloc
}

∈ R3 during optimization:

di = gi − hi, i = 1, ..., Nloc (5.11)

Angles βi, i = 1, ..., Nloc between displacement vectors in D and the West-East direc-

tion are determined as follows:

βi = arctan
(di

y

di
x

)
, i = 1, ..., Nloc (5.12)
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The angles βi, i = 1, ..., Nloc are then converted to be in the range from 0◦ to 360◦. Average

absolute error between angles βi, i = 1, ..., Nloc and αi, i = 1, ..., Nloc is calculated as

follows:

Eang = 1
Nloc

Nloc∑
i=1

|βi − αi| (5.13)

The optimization algorithm is performed using the following steps:

1. Coordinate components of a randomly chosen element in G are changed by adding

or subtracting small values.

2. Equation 5.11 is used to recalculate coordinate components of a displacement vector

in D affected by the change in Step 1 and a corresponding new vector magnitude.

3. If the difference between the new magnitude of the changed displacement vector and

the initial magnitude exceeds a tolerance parameter tolmagn, the change in Step 1 is

not accepted, and the optimization algorithm returns to Step 1.

4. If the change in Step 1 is accepted, the angle βi corresponding to the changed dis-

placement vector is re-calculated using Equation (5.12).

5. Average absolute error Eang is re-calculated using Equation (5.13). If the new Eang

is smaller than the initial one, the initial value is replaced with the new one, and the

change in Step 1 is accepted; otherwise, it is revered, and the algorithm returns to

Step 1.

6. If the new value Eang is smaller than a tolerance parameter tolang, the optimization

algorithm terminates.

7. Steps 1-6 are repeated a user-specified number of iterations.

Tolerance parameters tolmagn and tolang should be set as small as possible. Smaller

tolerance parameters usually require more iterations. Figure 5.16 illustrates post-blast to-

pography for the artificial example from Section 5.4 but with only 4 measured displacement

vectors.
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Figure 5.16: Artificial post-blast topography with limited vectors

Figure 5.16 illustrates the locations at which approximate displacement vectors are in-

ferred (black dots) using the described optimization algorithm versus a final set of optimized

vectors.

(a) Locations (b) Optimized vectors

Figure 5.17: Approximate blast movement vectors (diagonal firing pattern)

The theoretical angles are directed at 90◦ from North. Also, the artificial ’measured’

vectors are in 3-D even though they are depicted in 2-D; this has an influence on the final

optimized vectors. The optimization algorithm was performed with 1×107 iterations. Both

tolang and tolmagn were set to 1 × 10−2. The algorithm terminated based on tolang in 1.24
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seconds. The optimized vectors have the directions obtained from the firing sequence and

the magnitudes estimated using the limited measured vectors.

Figure 5.18 shows a schematic illustration of a v-shaped pattern. The large blue arrows

illustrate possible directions of rock displacement.

Figure 5.18: Schematic illustration of a v-shaped firing pattern

Thornton (2009a) indicates that muckpiles formed from blasts initiated via v-shaped

patterns are often characterized by a distinct centerline of the blast initiation. During blast-

ing, rocks are moving towards the centerline and upwards creating a ridge. Blast movement

is often unpredictable in the centerline region (Thornton, 2009a); therefore, measured blast

movement vectors close to this region should be used carefully. Figure 5.19 illustrates ar-

tificial blast movement vectors created for this example plotted on the top of an artificial

post-blast topographic surface.
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Figure 5.19: Artificial blast movement vectors (v-shaped firing pattern)

Figure 5.20 illustrates the locations at which approximate blast movement vectors are

inferred for this example using the optimization algorithm versus a final set of optimized

vectors.

(a) Locations (b) Optimized vectors

Figure 5.20: Optimized vectors (v-shaped firing pattern)

The locations for optimization are situated at some distance from the centerline to avoid

unreliable results. The artificial blast movement vectors are directed at 153◦ from North

at the top of the mine bench and at 27◦ from North at the bottom of the mine bench. The

optimization algorithmwas performed with 1×107 iterations. Both tolang and tolmagn were
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set to 1 × 10−2. The algorithm terminated based on tolang in 0.89 seconds.

Examples provided in this section demonstrate how limited blast movement measure-

ments and firing pattern information can be combined for more reliable blast movement

modeling. The optimization algorithm is tested with artificial examples representing sim-

ple grade control cases, where the direction of blast movement can be reliably predicted.

5.5.2 Modeling with Approximate Topography

The conditions of each blast in an open pit mine may be different depending on geology

and blast design. Within AGC-BM, detailed pre- and post-blast topographic surfaces are

used to create 3-D block models of a mine bench before and after blasting and determine an

optimal mapping of pre-blast grades or profit onto a post-blast muckpile. Unfortunately, the

pre- and post-blast topography is not always available. For simple configurations of mine

benches, pre-blast topograpic surfaces can be obtained using blasthole surveys or other

related information. However, corresponding post-blast topographic surfaces cannot be

inferred from other sources and should be obtained using laser scanners or drone systems.

This section proposes a method to obtain approximate pre- and post-blast topography.

The method can be used for simple cases with uniform blast movement. In order to approx-

imately model pre- and post-blast topography of a mine bench, the following information

is required: i) bench bottom elevation, ii), bench height, iii) swell factor, iv) the principal

direction of blast movement, and v) a pre-blast polygon with a free face indicated.

The approximate pre-blast topography is defined by the pre-blast polygon, bench bot-

tom elevation, and the bench height. Then, it is used to build an approximate 3-D model.

The 3-D model is discretized at a high resolution. The pre-blast volume is determined by

the summation of the individual volumes of all pre-blast blocks.

The pre-blast polygon is transformed to obtain an approximate post-blast polygon by

moving the section of the polygon indicated as a free face in the major direction of blast

movement. The free face is moved until the post-blast volume is equal to the pre-blast

volume multiplied by the swell factor. The optimal distance at which the free face is moved

is determined using the line search algorithm
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In order to illustrate the work of AGC-BM with approximate topography, the artificial

example from Section 5.4 is used along with the corresponding profit function. The major

blast movement direction is set at 90◦ from North. The bench height of 15 m and the

swell factor of 1.25 are used. Figure 5.21 illustrates an initial pre-blast polygon versus an

optimized polygon with a free face indicated.

(a) Initial (b) Optimized

Figure 5.21: Initial and optimized pre-blast polygons with a free face indicated

Since the optimized post-bast polygon expands in the direction of blast movement, the

bench height should be reduced. The new bench height is calculated by dividing the initial

bench height by the cubic root of the swell factor, which equals to 13.93 m for this example.

AGC-BM was performed with 30 and 60 neighbors for the low resolution and high

resolution models, respectively. The tolerance parameter was set to 0.01 % of the cost

function improvement. The algorithm performed 23 000 and 196 000 iterations for the

LR and HR models, respectively. The total number of blocks being optimized was 12 600.

The operation time was 92 minutes 43 seconds. The long operation time may be due to

approximate topography, which results in less reliable initial guess models. More research

is required.

Figure 5.22 shows pre and post-blast 3-Dmodels of expected profit for the ore, stockpile,

and waste destinations for mined material.
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(a) Ore (b) Stockpile (c)Waste

(d) Ore (e) Stockpile (f)Waste

Figure 5.22: Pre-blast 3-D expected profit models versus post-blast 3-D expected profit models
obtained with approximate topography

Figure 5.23 shows corresponding pre- and post-blast classification maps at a high reso-

lution.

(a) Pre-blast (b) Post-blast

Figure 5.23: Pre-blast classification of mined material versus post-blast classification of mined
material (approximate topograpy)

The pre- and post-blast high resolution classification maps in Figure 5.23 have similar

spatial structures, which will result in similar dig limit boundaries. Different versions of

this algorithm can be used. For example, an approximate magnitude of rock displacement

or even a detailed post-blast polygon may be known; this information will allow better

estimating approximate topography and obtaining more reliable post-blast dig limits. Also,
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some blast movement measurements or firing pattern information can be used to improve

mapping. More research is required in this direction

5.6 Summary

An optimization-based algorithm for blast movement modeling called AGC-BM is pro-

posed. Details about objective function and stochastic optimization are described. The

algorithm models post-blast grades or expected profit using detailed topography and real

blast movement measurements. The blast movement modeling procedure using AGC-BM

is explained with an artificial example. Specific cases of blast movement modeling with

limited information are discussed

Testing AGC-BM with artificial examples showed the ability of the algorithm to map

pre-blast expected profit onto post-blast 3-D models within a reasonable time frame (35 -

90 minutes). Potentially, a more efficient optimization algorithm could be used. However,

this is the area of future research.

The practicality of the algorithm would be assessed during an industrial experiment

with real data. The 3-D post-blast expected profit generated by AGC-BM could be used to

obtain mineable dig limits. An algorithm for dig limits optimization based on the post-blast

expected profit and subject to excavating constraints is described in Chapter 6.
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The determination of dig limits is the last of four major operations in short-term mine plan-

ning or grade control. The first step includes the following prerequisite steps: i) assembly

of all relevant data that informs on the rock properties influencing the optimal destination of

the mined material, and ii) formulation of a profit calculation for each destination for any

combination of input rock properties. The second step is the calculation of the expected

profit for each destination on a high resolution (HR) grid using the best possible geostatis-

tical prediction of the multivariate rock properties. Considering expected profit assumes a

risk neutral position for short-term planning, which is reasonable given the repeated nature

of grade control decisions over relatively short time frames. The third step is to numeri-

cally model the blast movement since the dig limits and final selection is performed on the

post-blast muck pile. The fourth and final step is the translation of free selection expected

profit values at a high resolution to realistic dig lines to be transmitted to mining operations.

This chapter addresses this last step.

A heuristic dig limits optimization algorithm called the Advanced Grade Control-Dig

Limits (AGC-DL) is described. The algorithm uses high resolution expected profit for

optimizing dig limits subject to excavating constraints represented by rectangular selection

units. Dig limits optimizationwith non-rectangular shapes of the selection units is discussed.

The work of the algorithm is demonstrated with examples.

6.1 Problem Formulation

The concept of using a floating selection frame for classifying mined material is appealing

because of its straightforward implementation with the maximum expected profit approach.

It is possible to incorporate equipment constraints through the dimensions of a rectangular

floating selection frame. M. Deutsch (2017) proves that this grade control classification
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problem is NP-hard, which means there is currently no algorithm to solve it in polynomial

time. However, it is possible to develop an approximate method for solving this problem

since it is well defined. The expected profit at a location u of a domain A over destinations

K is defined as follows:

EP (u, k), k = 1, ..., K, u ∈ A (6.1)

The best destination at each location u is:

dopt(u) = max k of (EP (u, k), k = 1, ..., K), u ∈ A (6.2)

The maximum attainable cumulative expected profit (achieved with free selection) over

the domain A is then:

CPopt =
∑
u∈A

EP (u; dopt(u)) (6.3)

In order to satisfy excavating constraints, each location u may be assigned to a number

of larger selection frames C(u) ⊆ F , where F represents all the selection frames locations

u ∈ A can be assigned to. For example, a location u (a blue block in Figure 6.1) can

possibly be assigned to nine 3 × 3 block2 selection frames (Figures 6.1a to 6.1i).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: Floating selection frame representing excavating constraints; the central blue block
must belong to one of the nine selection frames.

All the selection frames that the location u ends up being assigned to comprise a set

S(u) ⊆ C(u); all locations u ∈ A also covered by the frames S(u) are assigned the same

destination, ds(u′) = ds(u). If all the locations u ∈ A are assigned ds(u), the cumulative

mineable profit over the domain A can be written as:

CPmineable =
∑
u ∈ A

EP (u, ds(u)) (6.4)

where CPmineable is the total expected profit corresponding to a feasible solution to the

classification problem.

If a location u does not belong to at least one of the selection frames C(u) ⊆ F , it is not

assigned a ds(u) and, as such, is called problematic. Some tolerance may be established for

the number of problematic locations remaining in an optimized classification map. Setting
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the tolerance greater than zero may help to handle the cases with the shapes of selection

frames other than rectangular; in such cases, the selection frames may not fit together well

in a domain with complex boundaries.

The maximum attainable cumulative expected profit,CPopt, is known. An optimization

algorithm should be applied to makeCPmineable as close toCPopt as possible. The objective

function for the optimization procedure can be expressed as follows:

min ds(u) ∈ K, ∀ u ∈ A CPopt −
∑
u ∈ A

EP (u, ds(u)) (6.5)

In Equation (6.5), CPopt is constant (since optimal destinations are known at a high

resolution), while the cumulative mineable profit changes depending on the destinations

ds(u) at all locations u ∈ A. Due to the excavating constraints, the objective is always

greater or equal to zero. For domains with complex boundaries, it may be necessary to

allow some locations u ∈ A not be assigned a ds(u) for optimization to be possible. For

convenience, the performance of the optimization algorithm is expressed as the fraction of

CPopt in percent throughout this chapter.

6.2 Practical Considerations

The result of blast movement modeling is typically a high resolution 3-Dmodel even though

the underlying information supporting the expected profit calculation is from blastholes

and inherently 2-D. It is assumed that grades estimated from drill cuttings are averaged

along the entire length of the blasthole, and a mine bench is excavated in one lift. If more

information is available about the vertical geological variability of a mine bench, grade

control modeling should be done in 3-D. The high resolution expected profit block model

should be converted to 2-D before starting the dig limits optimization. The total profit in

2-D should be considered.

Assigning each location u a destination ds(u) is not a trivial task, especially, with large

maps. The number of possible classifications for a map at the resolution of nx × ny block2

and K destinations is Knx×ny ; only a few of those classifications are feasible. It is unrea-

sonable to check all possible classifications; therefore, some fast practical algorithm should
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be developed to find the feasible solutions. Assigning a block to a selection frame also in-

fluences adjacent blocks; doing it in sequence does not guarantee a feasible solution. For

example, consider a 6 × 5 block2 map that should be classified by a 3 × 3 block2 selection

frame. The map is discretized by white and green blocks with the expected profit values of

1 and 1.5, respectively; the colors represent two destinations for mined material. If the total

expected profit of the green blocks inside a selection frame is higher than the total expected

profit of the white blocks inside the frame, all the blocks inside the frame are classified

green; all the blocks are classified white otherwise. The selection frame is moved within

the map; for this example, the horizontal coordinate of the frame’s lower left corner changes

first, then the vertical one. All the high resolution HR blocks covered by the floating selec-

tion frame are assigned the destination corresponding to a maximum total expected profit

value of all the blocks in the frame (Figure 6.2).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 6.2: Sequential classification with a floating frame

The movement of the selection frame is shown in Figures 6.2b-6.2m. Figure 6.2n il-

lustrates that after all steps are done, 6 problematic locations (red blocks) still remain. Ap-

plying the above algorithm on a different path might eventually bring a feasible solution

but many iterations might be required for large maps with complex boundaries; the entire

process would be slow and not guaranteed to converge.

Using non-overlapping classification frames on a grid of nodes to classify a map guar-

anties that each block (except for the boundary blocks) will be assigned to a frame; the

centers of the classification frames should be on a fixed grid of nodes. Using the fixed grid

implies that there are only as many possible positions for a frame’s center as the number of
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HR blocks that fall inside it; for example, for a 3×3 block2 frame, there are only 9 possible

positions its center can take. This principle is illustrated in Figure 6.3.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 6.3: Classification by frames on a fixed grid

Different positions of the fixed grid (Figures 6.3b to 6.3j) yield different classifications

and thus different cumulative expected profits. All the 9 classifications in Figure 6.3 are

infeasible due to the model edges. However, the classifications shown in Figures 6.3b

and 6.3e have the fewest problematic locations; the classification in Figure 6.3b is chosen

because it brings higher cumulative expected profit (fewer green blocks are misclassified).

The example above is just for illustration. For a real life classification, every HR block

would have several grade control destinations and an expected profit value associated with

each of them. The expected profit of misclassified blocks would reduce the mineable profit.
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6.3 Optimization Algorithm

Both approaches described in the previous section cannot be used to optimize dig limit

boundaries. In terms of the number of problematic locations, their performances seem

similar on such a small example. However, using the fixed grid instead of the floating

frame approach for large maps results in fewer problematic locations; thus, less effort is

required to fix them and reach a feasible classification.

The main algorithm consists of the following steps:

1. Determine an initial classification with the fixed grid approach. The main purpose of

this step of the algorithm is to reduce the number of problematic locations and bring

the initial guess classification closer to a feasible solution; the initial classification

with the fewest problematic locations and the largest cumulative profit CP is chosen.

CP =
∑
u ∈ A

EP (u, dt(u)) (6.6)

where dt(u) ∈ K is a temporary destination assigned to a location u.

If an input model has complex boundaries, the number of problematic locations usu-

ally increases. Increasing the spacing of nodes (frame size) of the fixed grid makes

the initial guess classification blockier and less precise but generally decreases the

number of problematic locations. The ‘blockiness’ of the initial classification is fixed

in later stages of the algorithm. The classification frame of a fixed grid should not

be confused with a floating selection frame; the size of the floating selection frame

should always be smaller than or equal to the node spacing of the fixed grid.

2. In this step, all remaining problematic locations are visited and eliminated to obtain

a feasible solution; the maximum profit feasible solution among all possible fixes is

kept (Figure 6.4).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Schematic illustration of the fixing algorithm

In this small example, the first step of the algorithm produces a classification with 6

problematic locations illustrated as red squares in Figure 6.4a; each of the 6 blocks is

not assigned to at least one 3 × 3 block2 frame. The destinations of all the problem-

atic locations and their closest neighbors (one block in each direction) are reverted

to their best HR destinations irrespective of excavating constraints; for the current

example, the area with replaced HR destinations is indicated by the black dashed line

in Figure 6.4b. After the destinations of the blocks are replaced, the number of prob-

lematic locations increases to 21 (Figure 6.4c). All the blocks in the replaced area

are visited in a random order and assigned to a 3 × 3 block2 frame. For example, a

randomly chosen block in the replaced area (highlighted in blue) is shown in Figure

6.4d; using the algorithm illustrated in Figure 6.1, all the frames it can be assigned

to are checked. Both green and white destinations are checked with the frames that

do not go beyond the boundaries of the map. The blue block should be assigned to

a frame (blue dashed square in Figure 6.4e) and a destination reducing the number

of problematic locations the most and resulting in the highest cumulative expected

profit of the map CP (Equation (6.6)). After the block is assigned to its frame and

destination, the number of problematic locations is reduced to 3 (Figure 6.4e). The

next random location is shown in Figure 6.4f. Again, this location is assigned to a
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frame representing the white destination (Figure 6.4g). After a feasible classification

is achieved, the algorithm terminates. A fixed map for the current example is in Fig-

ure 6.4h. If all the blocks from the problematic area (Figure 6.4b) are visited and

assigned to their frames and destinations but a feasible solution is not reached yet,

the fixing algorithm is repeated; a new set of problematic locations and their closest

neighbors are determined and replaced with their HR best destinations.

Usually, no more than 10 repetitions are required to obtain a feasible solution with

a corresponding CPmineable (Equation (6.4)). The user may choose the size of the

neighborhood for each problematic location or the number of iterations to be used in

this procedure; using more neighbors increases chances of removing all problematic

locations but usually takes more time. If after the specified number of iterations all

the problematic locations are still not fixed, the first step of the algorithm with an

increased node spacing of the fixed grid is repeated. The node spacing of the fixed

grid in the horizontal and vertical directions is increased sequentially. If a frame

size of 3 × 3 block2 is allowed to be increased by one unit in each direction, the

following frame dimensions are checked: i) 4×3 block2, ii) 3×4 block2, and iii) 4×4

block2. The best frame dimensions in terms of problematic locations and cumulative

expected profitCP are chosen. A tolerance to the number of problematic locations in

the second stage classification can be used for some situations to increase cumulative

mineable expected profit and/or decrease the operation time; examples are provided

later in this chapter.

3. Steps 1 and 2 lead to a solution to the classification problem that satisfies the con-

straints. In an attempt to increase the cumulative mineable expected profit from a

mine bench, CPmineable, a final hill climbing step is performed. Every location of

the feasible solution is visited in random order; a location is assigned to a new frame

(Figure 6.1) and/or a new destination if this change increases CPmineable and does

not result in more problematic locations. Within each hill climbing operation, all the

locations u ∈ A can be visited at random several times to increase the current so-

lution CPmineable and minimize the objective function (Equation (6.5). The number
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of times this random visiting is repeated is limited by the number of times it is done

without an improvement to the objective function; one repetition is used by default

to minimize the time required. Each hill climbing operation is repeated several times

with a different random path and a solution bringing the largest cumulative mineable

expected profit is chosen. At this stage, all the changes to the feasible classification

map should ensure it remains feasible. If a tolerance to the number of problematic

locations is used in the Stage 2, it is also accounted for during the hill climbing oper-

ation.

Selection of Parameters

The main focus of the AGC-DL algorithm is fast optimization; chosen input parameters

should ensure achieving reasonable results in the shortest time. The first stage of the algo-

rithm is performed automatically. An initial fixed grid node spacing is equal to the floating

frame size specified by the user. No other input parameters are required.

For the second stage of the algorithm, the size of the neighborhood (e.g., 1, 2, 3, etc.

blocks in each direction) for each problematic location should be specified. Another im-

portant parameter is the number of times the second stage can be repeated without an im-

provement in the number of problematic locations remaining in a classification map (the

second stage tolerance) before repeating the first stage with a new fixed frame size. The

size of the neighborhood and the second stage tolerance should be chosen as small as possi-

ble to avoid a significant change in the initial guess solution (Stage 1). It is recommended

to use 1 block in each direction to define a neighborhood and the second stage tolerance of

1 iteration without a decrease in the number of problematic locations. Different optimiza-

tion plans with different parameters for the second stage can be used to achieve a higher

cumulative mineable profit if the operation time is not of concern.

In the third stage, the number of times the hill climbing operation is performed should

be specified. Each hill climbing operation results in a new optimized feasible solution and a

new objective function value. The more times this operation is repeated, the more likely the

best possible optimized solution for a current initial guess will be reached. The third stage

of the optimization algorithm may be terminated based on a number of repetitions without

an improvement to the cumulative mineable profit (the third stage tolerance parameter).
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For the fastest operation, the third stage tolerance parameter should be as small as possible

(e.g., one). For a better exploration of the solution space, it may be set in the range from 5

to 10. The AGC-DL algorithm terminates based on the third stage tolerance parameter or

on a specified number of hill climbing operations.

Another practical consideration is isolated blocks at the edges of an expected profit map

(artifacts) that cannot be optimized (assigned to a full selection frame). This may happen

due to a low resolution and/or sharp edges of the expected profit map. One solution is to set

the tolerance to the number of problematic locations remaining in the final solution equal

to the number of such blocks. Another solution is to remove all the edge artifacts before

optimization.

Remarks

This dig limits optimization algorithm is heuristic and designed to minimize the differ-

ence between the profit achieved within the chosen dig limits and the profit achieved with

free selection. There is no guarantee of optimality. This is considered a limitation, but also

a practical advantage. Results are obtained very fast and it is possible to visually and quan-

titatively assess how the free selection case is modified to be considered more practical for

the mining constraints. The algorithm is implemented as a standalone program written in

Fortran according to the GSLIB conventions (C. V. Deutsch & Journel, 1998).

6.4 Examples

Two examples are shown to demonstrate the dig limits optimization for expected profit

block models subject to rectangular and non-rectangular excavating constraints. The two

examples represent pre-blast domains with realistic boundaries. The first example is ar-

tificial. It is used to illustrate some of the steps in the AGC-DL optimization algorithm

described in Section 6.3 and specific optimization cases. The second example is based on

a real blasthole data set from the Red Dog mine.
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6.4.1 Artificial Example with Three Destinations

For the first example, a reference realization of a grade is simulatedwith sgsim (C. V.Deutsch

& Journel, 1998) for an area of 100 × 180 m2 with a grid size of 2 × 2 m2. The variogram

model used for simulation has one spherical nested structure with a nugget effect of 0.1 and

the major direction of continuity at 60◦ from North. Major and minor ranges of continuity

are 75 m and 35 m, respectively. The simulated grades are transformed to be lognormal

with a mean and standard deviation of 1. The reference realization is then sampled at a grid

size of 6 × 6 m2 with a random error in coordinates of up to 1 m. Figure 6.5 illustrates the

reference simulated model and samples.

(a) Reference model (b) Samples

Figure 6.5: Artificial reference realization and samples

Expected profit is obtained for the area of the reference model using the Advanced

Grade Control-Expected Profit (AGC-EP) algorithm. The expected profit modeling was

performed using 141 nearby samples. The number of samples used for the modeling was

determined using the k-fold cross-validation part of AGC-EP; the node spacing of a super

grid used for the k-fold cross-validation procedure was set to 25 % of the average sample
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spacing of 5.93 m. Final expected profit maps for all destinations are post-processed with a

3 × 3 block2 Gaussian filter. More details about the k-fold cross-validation and main parts

of AGC-EP are in Chapters 3 and 4.

Profit Function

Similarly to the profit function from Chapter 5, a profit function for this example uses a

single grade variable and two cutoff grades, z1
c = 1.2 and z2

c = 0.6, to distinguish between

three destinations for mined material: ore, stockpile, and waste. Grade values simulated

with AGC-EP, zl(u), l = 1, ..., L, are converted to expected profit at all locations u ∈ A

using the profit function. Recall how expected profit is calculated for the three destinations.

If a simulated value zl(u) at a location u is greater than or equal to the cutoff grade z1
c , the

expected profit for the ore decision is calculated as follows:

P (zl(u); ore) =


zl(u) − z1

c , if zl(u) ≥ z1
c ;

0, otherwise.
(6.7)

EP (u; ore) = 1
L

L∑
l=1

P (zl(u); ore)

where P (zl(u); ore) is the profit at the location u given the ore decision; EP (u; ore) is

the expected profit at the location u given the ore decision.

If zl(u) is below than z1
c and zl(u) is greater than or equal to z2

c , the expected profit for

the stockpile decision is calculated as follows:

P (zl(u); stockpile) =


zl(u) − z2

c , if zl(u) < z1
c and zl(u) ≥ z2

c ;

0, otherwise.
(6.8)

EP (u; stockpile) = 1
L

L∑
l=1

P (zl(u); stockpile)

where P (zl(u); stockpile) is the profit at the location u given the stockpile decision;

EP (u; stockpile) is the expected profit at the location u given the stockpile decision.

If zl(u) is below than z2
c , the expected profit for the waste decision is calculated as

follows:

P (zl(u);waste) =


z2

c − zl(u), if zl(u) < z2
c ;

0, otherwise.
(6.9)
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EP (u;waste) = 1
L

L∑
l=1

P (zl(u);waste)

whereP (zl(u);waste) is the profit at the locationu given thewaste decision;EP (u;waste)

is the expected profit at the location u given the waste decision.

Figure 6.6 shows the expected profit for the three destinations.

(a) Ore destination (b) Stockpile destination (c)Waste destination

Figure 6.6: Expected profit for three destinations (example 1)

Optimal destinations at each high resolution location are determined using Equation

(6.2). Excavating constraints are represented by a 5 × 5 block2 floating selection frame.

Figure 6.7 illustrates a high resolution 2-D classification map representing maximum ex-

pected profit destinations for the case of free selection (without excavating constraints).
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Figure 6.7: A 2-D maximum expected profit destination map at high resolution (example 1)

Cumulative expected profit, CPopt, is calculated using Equation (6.3). It represents a

maximum attainable profit achieved with free selection for the current resolution or 100 %

selection. In Figure 6.7, each high resolution block represents a 2×2m2 area. The expected

profit model has complex boundaries both at its edges and between different types of mined

material. A failure to follow such precise dig limits would result in a certain amount of

dilution and ore loss. The AGC-DL optimization algorithm from Section 6.3 is used to re-

assign destination for each high resolution location accounting for excavating constraints

represented by rectangular selection frames.

Figure 6.8a illustrates the classification produced in the first stage of the algorithm using

a fixed grid with a frame size of 11×9 block2. It achieves 89.84 % of the maximum total ex-
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pected profit and still contains 13 problematic locations (Figure 6.8b). All the problematic

locations are then fixed using the second step of the algorithm.

(a) Classification map after Stage 1 (b) Problematic locations

Figure 6.8: A classification map produced in the first stage of the optimization algorithm and
corresponding problematic locations (example 1)

Figure 6.9a shows the classification map for this example after Stage 2 of the optimiza-

tion algorithm is completed. A changed classification map represents a feasible solution

since it does not contain problematic locations and each high resolution block belongs to

at least one 5 × 5 block2 selection frame. However, this classification is far from optimal

and allows selecting only 89.44 % of the cumulative expected profit achieved with free

selection. The final hill climbing step (the third stage of the optimization algorithm) was

performed to increase a cumulative mineable profit, CPmineable. Figure 6.9b demonstrates

a final optimized classification map.
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(a) Classification map after Stage 2 (b) Optimized classification map

Figure 6.9: Classification map after the second stage of the optimization algorithm versus final
optimized classification map satisfying the excavating constraints represented by the 5 × 5 block 2

selection frame (example 1)

It is seen in Figure 6.9b that each location belongs to at least one 5×5 block2 classifica-

tion frame (covering an area of 10 × 10 m2). The total number of blocks for this example is

2426. The pre-blast optimized classification map achieves 97.18 % of a maximum cumula-

tive expected profit. The second stage of the algorithm was run with the neighborhood size

of 1 block in each direction and the tolerance of 1 iteration without a decrease in the number

of problematic locations for the fastest operation. The optimization algorithm terminated

based on the Stage 3 tolerance of 10 hill climbing operations without an improvement to

the objective function. The run-time was 40.96 seconds.

The cumulative mineable expected profit varies depending on the size and dimensions

of the selection frame. Since partial frames are not allowed, the complexity of the edges

of the expected profit model can greatly influence a final classification. Generally, smaller

frame sizes are better fit to the edges of a model, which results in higher CPmineable and

shorter operation time. Shapes of the frames other than square can also be considered.

Figure 6.10 demonstrates the same domain classified using selection frames sizes of 3 × 3
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block2 and 7 × 3 block2.

(a) 3 × 3 block2 frame size (b) 7 × 3 block2 frame size

Figure 6.10: Optimized classification maps satisfying excavating constraints represented by differ-
ent rectangular frames

The same optimization plan as in the previous example was used for obtaining the two

classification maps in Figure 6.10. The optimized classification map satisfying the 3 × 3

block2 frame size constraint (Figure 6.10a) allows selecting 99.29 % of the cumulative ex-

pected profit achievedwith free selection. The operation time for this mapwas 5.64 seconds.

The optimized classification map satisfying the 7 × 3 block2 frame size constraint (Figure

6.10b) allows selecting 96.62 % of the cumulative expected profit achieved with free se-

lection. The operation time for this map was 18.43 seconds. Overall, the performance of

AGC-DL for all the shapes and sizes of rectangular selection frames is reasonable consider-

ing the short operation times. Optimality is not guaranteed; better results may be achieved

with different optimization plans.
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6.4.1.1 Dig Limits Optimization with Non-rectangular Selection Units

Shapes of selection units other than rectangular may be desirable to better account for such

factors as the direction of mining, local shapes of geological features, equipment limita-

tions, and the sequence of individual scoops, among others. M. Deutsch (2017) indicates

that it is important that the shapes of individual selection units allow them to be fit well to

one another inside a domain; otherwise, some unexpected artifacts may be produced at the

edges of a classification map, which may drastically decrease corresponding cumulative

mineable expected profit. Since individual selection units can overlap, they are often com-

bined into larger units during dig limits optimization to account for large ore/waste zones;

many combinations of the individual units may be possible. The geometrical shapes of such

combined units should be flexible enough to account for complex edges of a domain. Dig

limits optimization with non-rectangular shapes is possible with the AGC-DL algorithm. It

may be necessary to allow some number of problematic locations in the final solution to

account for complex edges of a domain. Figure 6.11 illustrates an arbitrary-shaped floating

selection unit.

(a) (b) (c)

(d) (e)

Figure 6.11: Floating selection unit of an arbitrary shape representing excavating constraints; the
central blue block must belong to one of the 5 selection units.

Figure 6.11 shows all possible selection units a block can be assigned to within a 5 × 5
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block2 area. Expected profit calculated for the first example (Figure 6.6) is used to obtain

optimized dig limits accounting for the constraints imposed by the selection unit shown in

Figure 6.11. The second stage of AGC-DL is run with the neighborhood size of 1 block in

each direction and the tolerance of 1 iteration without a decrease in the number of problem-

atic locations. The optimization algorithm terminated based on the Stage 3 tolerance of 10

hill climbing operations without an improvement to the objective function. Two problem-

atic locations are allowed in the final solution to handle the edges of the domain. Figure

6.12 demonstrates a classification map optimized accounting for the constraints imposed

by the arbitrary-shaped floating selection unit.

(a) Optimized classification map (b) Problematic locations

Figure 6.12: An optimized classification satisfying excavating constraints represented by an
arbitrary-shaped selection unit (example 1)

The final classification allows selecting 97.3%of the cumulative expected profit achieved

with free selection. The run-time was 10.56 seconds.

Other shapes of the floating selection units may allow accounting for the direction of

mining. A floating selection unit directed at 45◦ from North is illustrated in Figure 6.13.

157



6. Dig Limits Optimization

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.13: A floating selection unit directed at 45◦ from North representing excavating con-
straints; the central blue block must belong to one of the 7 selection units.

AGC-DL is run with the same optimization plan as for the previous examples. Cases

with different allowances for the number of problematic locations remaining in final clas-

sification maps are considered. Figure 6.14a shows an optimized classification map with 2

problematic locations allowed.
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(a) Optimized classification map (b) Problematic locations

Figure 6.14: An optimized classification map satisfying excavating constraints represented by a
selection unit directed at 45◦ from North and two problematic locations allowed (example 1))

The classification map in Figure 6.14a allows selecting 95.03 % of the cumulative ex-

pected profit achieved with free selection. The run-time was 18.78 seconds. There are

visible artifacts in the right hand side of the classification map caused by a single problem-

atic location at the right hand side edge of the domain (Figure 6.14b). Figure 6.15 shows an

optimized classification map for the current domain with 6 problematic locations allowed.
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(a) Optimized classification map (b) Problematic locations

Figure 6.15: An optimized classification map satisfying excavating constraints represented by a
selection unit directed at 45◦ from North and six problematic locations allowed (example 1)

The classification map in Figure 6.15 allows selecting 98.72 % of the cumulative ex-

pected profit achieved with free selection. The run-time was 5.85 seconds. Allowing more

problematic locations in the classification map resulted in a better handling of the edges of

the classification map and a significant increase in the cumulative mineable profit.

6.4.2 Example Based on Real Data

Another example is based on a real blasthole data set from the Red Dog mine in Alaska,

USA. The data is released by Teck Resources Limited to the Centre for Computational

Geostatistics (CCG) for PhD research. The blasthole samples inform on the content of five

collocated grade variables: Zn, Pb, Fe, Ba, and SPb (soluble lead); the first four variables

are used for this example. Figure 6.16 illustrates blasthole samples from ’19204’ mine

bench for the four grade variables.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 6.16: Location maps for four grade variables (example 2)

The profit function designed for the case study in Chapter 4 is used for this example.

The profit function is partially based on the stockpile blending criteria used at the Red Dog

mine. Recall the rules for calculating expected profit for ore and waste decisions. Expected

profit for the ore decision is calculated as follows:

P (zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba); ore) =
(zl(u; Zn) − 5) · s(zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba)), if zl(u; Zn) ≥ 5;

0, otherwise.

EP (u; ore) = 1
L

L∑
l=1

P (zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba); ore) (6.10)

where zl(u; Zn), zl(u; Pb), zl(u; Fe), and zl(u; Ba) are simulated grade values at a

location u; s(zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba)) is a function depending on the com-

pliancewith the stockpile blending criteria at the locationu; P (zl(u; Zn), zl(u; Pb), zl(u; Fe),

zl(u; Ba); ore) is profit given the ore decision at the location u; EP (u; ore) is the expected

profit given the ore decision at the location u.
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6. Dig Limits Optimization

Expected profit for the waste decision is calculated as follows:

P (zl(u; Zn);waste) =


5 − zl(u; Zn), if zl(u; Zn) < 5;

0, otherwise.

EP (u;waste) = 1
L

L∑
l=1

P (zl(u; Zn);waste) (6.11)

whereP (zl(u; Zn);waste) is profit given thewaste decision at the locationu;EP (u;waste)

is the expected profit given the waste decision at the location u.

Function s(zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba)) in Equation (6.10) is defined by

the outcome of three bivariate functions: s1(zl(u; Ba), zl(u; Fe)), s2(zl(u; Zn), zl(u; Fe)),

and s3(zl(u; Zn), zl(u; Pb)). The first function is defined as follows:

s1(zl(u; Ba), zl(u; Fe)) =


0.5, if zl(u; Ba) > 7 and zl(u; Fe) < 8;

0.9, otherwise.
(6.12)

The second function is defined as follows:

s2(zl(u; Zn), zl(u; Fe)) =
exp(−(2.5 − zl(u; Zn)/zl(u; Fe))), if zl(u; Zn)/zl(u; Fe) < 2.5;

1, otherwise.
(6.13)

The third function is defined as follows:

s3(zl(u; Zn), zl(u; Pb)) =
exp(−(3.65 − zl(u; Zn)/zl(u; Pb))), if zl(u; Zn)/zl(u; Pb) < 3.65;

1, otherwise.

(6.14)

Function s(zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba)) is expressed as follows:

s(zl(u; Zn), zl(u; Pb), zl(u; Fe), zl(u; Ba)) =

s1(zl(u; Ba), zl(u; Fe)) · s2(zl(u; Zn), zl(u; Fe)) · s3(zl(u; Zn), zl(u; Pb))

(6.15)
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More details about the profit function are in Chapter 4. The profit function is used

with the AGC-EP algorithm to perform local multivariate simulation and calculate expected

profit for the ore and waste destinations for an area of 241.5 × 136.5 ft2 with a grid size of

3.5×3.5 ft2. The simulated expected profit is clipped to a polygon to remove grid locations

that are far away from the blasthole samples. AGC-EP is performed with the number of

samples (94) determined by cross-validation. The node spacing of a super grid used for the

cross-validation procedure was defined as 25 % of the average sample spacing of 13.88 ft.

Final expected profit maps for the two destinations are post-processed with a 3 × 3 block2

Gaussian filter. Figure 6.17 illustrates high resolution expected profit maps for the ore and

waste destinations.

(a) Ore destination (b)Waste destination

Figure 6.17: Expected profit for the ore and waste destinations (example 2)

In order to impose excavating constraints on the selection of mined material, a 7 × 7

block2 selection frame (covering an area of 24.5 × 24.5 ft2) is used. The total number of

blocks for this example is 2351. Figure 6.18 compares a classification map for the case of

free selection and an optimized classification map for this example.
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6. Dig Limits Optimization

(a) Free selection (b) Optimized classification map

Figure 6.18: A classification map for the case of free selection versus an optimized classification
map satisfying the excavating constraints represented by the 7 × 7 block2 selection frame

The optimized classification map allows selecting 99.49 % of the cumulative expected

profit achieved with free selection. The second stage of the algorithm is run with the neigh-

borhood size of 1 block in each direction and 1 iteration without a decrease in the number

of problematic locations. The dig limits optimization algorithm terminated based on the

Stage 3 tolerance of 10 hill climbing operations without an improvement to the objective

function. The run-time was 24.05 seconds.

The classification maps generated by the AGC-DL optimization algorithm allow se-

lecting areas of mine benches with high expected profit values accounting for excavating

constraints. Precise following such classification maps during excavation would bring cu-

mulative expected profit close to the maximum cumulative expected profit achieved with

free selection.

6.4.3 Summary

A simple heuristic algorithm for dig limits optimization called AGC-DL is presented. The

algorithm works with expected profit for all destinations for rocks to determine mineable

dig limits maximizing the cumulative mineable expected profit of a mine bench. Excavat-

ing constraints may be represented by rectangular or non-rectangular selection units. The

algorithm is new and offers a different approach for optimizing the short-term rock clas-

sification. The algorithm is explained in detail and can be modified for solving similar

classification problems in a reasonable time.
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6. Dig Limits Optimization

For the two examples provided in this chapter, the AGC-DL algorithm produced clas-

sification maps that allow selecting 96.5-99.5 % of the maximum attainable cumulative

expected profit obtained with free selection subject to satisfying constraints represented by

rectangular selection frames. The run-time was under 45 seconds for both examples.

While it is convenient to use rectangular selection frames with different dimensions, one

might want to use some other arbitrary shapes. Using complex shapes may make it difficult

to find a feasible solution to the optimal classification problem; most of the problems are

expected at the boundaries of models. Dig limits for this case may be improved by estab-

lishing some tolerance to the number of problematic locations allowed in final classification

maps.

The presented heuristic algorithm is a part of an integrated grade control system but

it can also be used separately or as a part of another grade control system utilizing the

maximum expected profit method.
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The primary goal of grade control in open pit mines is maximizing profit from mining

operations. An open pit mine may have several active mine benches and/or stockpiles that

are excavated concurrently to optimize head grades to the mill. The situation with multiple

mine benches is not considered in this chapter. It is assumed that increasing the total profit

from amine bench increases the total profit frommining operations. Maximumprofit would

be possible if: i) grade values relevant for the final selection of mined material are known at

a high resolution, and ii) free selection is possible. Unfortunately, it is impossible to satisfy

these conditions.

Assuming that sampling preparation and assaying procedures are of sufficient quality,

the main reasons for misclassification include the following: i) spatial prediction errors, ii)

significant displacement of pre-blast predictions due to blast movement, iii) errors in detect-

ing correct ore/waste contacts, and iv) failure to follow complex dig lines during selection.

All these reasons cause the accumulation of misclassification errors, which results in a loss

of profit (Isaaks, Treloar, & Elenbaas, 2014).

This chapter compares two grade control methods applied to data from a single mine

bench at the Misima mine in Papua NewGuinea. The first grade control method is based on

the Advanced Grade Control system. The second grade control method is based on ordinary

kriging. The total profit is assessed for the two methods. Blast movement is modeled

using artificial topography and blast movement measurements. Excavating constraints are

represented as rectangular selection frames.
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7. Case Study: Grade Control at the Misima Mine

7.1 Background

A blasthole data set for the entire operation period of the Misima mine was released by

Placer Dome to the Centre for Computational Geostatistics (CCG) for PhD research. The

minewas owned by Placer Dome Incorporated and operated by its subsidiaryMisimaMines

Pty Ltd from 1988 to 2004. Placer Dome was a large Canadian mining company operating

from 1987 to 2006 when it was purchased by another large mining company, Barrick Gold

Corporation.

The Misima mine was situated at the eastern side of Misima Island, which is a part of

the Louisiade Archipelago in Milne Bay province of Papua New Guinea. The Umuna ep-

ithermal gold/silver deposit has a stike length of over 3 km; it is characterized by a complex

system of faults (Clarke, Lewis, &Waldron, 1990). The deposit is hosted inmetamorphosed

Cretaceous-Paleogene rocks of the Sisa Association (Shannon & Stoker, 2013). Mineral-

ization is developed in faults, fractures, stockworks, breccias, skarns, and disseminations

(Clarke et al., 1990; Shannon & Stoker, 2013). The Umuna Lode has the most distinctive

mineralization. It is characterized by a complex veined system infilled with quartz (Clarke

et al., 1990). A detailed review of the geology and mineralization of the Umuna deposit

can be found in Clarke et al. (1990) and Shannon and Stoker (2013).

The principal gold deposits of the Misima mine were Umuna (including the Kulumalia

area) and Quartz Mountain. The Quartz mountain deposit was mined by Maika, Kobel

Creek, and Ewatinona pits. The Kulumalia open pit was developed as a source of soft ore

in addition to the hard ore from the main Umuna pit and had higher ore grades than expected

(Lyday, 1994). In 1994, the Kulumalia pit was replaced by the Ewatinona pit (Lyday, 1994)

operating from 1995 to 1997. Stages 1, 2, and 3 of the main Umuna open pit were mined

by 1996; then, the operation in Stages 4, 5, and 6 began (Shannon & Stoker, 2013). In

1999, mining continued in East Umuna Stage 2 and Tonowak pits (Lyday, 1999). Open

pit production stopped at the Misima mine in 2001 due to a decline in ore grades and was

followed by stockpile processing up to 2004 (McManus, 2017).
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7.1.1 Available Data

This case study uses blasthole samples from the Kulumalia open pit. A data set representing

a single mine bench at the elevation of 110 m is selected; the mine bench will be further

referred to as Bench ’110’. The data set has grades of Au and Ag in grams per tonne. The

grade values are used in profit calculations to distinguish between ore andwaste destinations

for mined material.

Blast Movement Data

In order to assess the influence of blasting on total profit from Bench ’110’, blast move-

ment should be modeled. The Advanced Grade Control-Blast Movement (AGC-BM) algo-

rithm is used for this case study to map pre-blast predictions of profit onto a 3-D post-blast

muckpile; details about the algorithm are in Chapter 5. The most accurate modeling results

with AGC-BM are obtained with pre- and post-blast topography and blast movement mea-

surements. The blast movement measurements are obtained using specialized transmitters

and detecting equipment (e.g., a system like that described in Adam and Thornton (2004)).

Real topography and blast movement measurements are not available for this case study.

Artificial topography and blast movement measurements are created instead. It is assumed

that the mine bench was confined by the surrounding rock mass during blasting (buffer

blasting) to prevent excessive movement in the direction of free faces. This blast config-

uration represents the most favorable situation for grade control since blast movement is

expected inside the area of blasting only.

7.2 Methodology

A grade control method based on ordinary kriging (OK) is compared to a grade control

method based on the Advanced Grade Control (AGC) system. Total profit from Bench

’110’ is compared for the two methods at three main stages of grade control: i) spatial

prediction, ii) blast movement modeling, and iii) selection optimization. The comparison

is based on a high resolution ’true’ model constructed for Bench ’110’. A detailed workflow

for this case study consists of the following steps:
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1. A reference model at a high resolution is obtained. The model contains grade values

for Au and Ag at each high resolution location. A multivariate simulation workflow

based on the Projection Pursuit Multivariate Transform (PPMT) algorithm (Barnett

et al., 2014) is used. The reference model allows calculating the true total profit from

Bench ’110’.

2. The reference model is validated in terms of reproducing important statistics.

3. A profit function is developed.

4. The reference model is sampled with positioning errors and clipped to a polygon to

more realistically represent the shape of the mine bench.

5. The grades of Au and Ag are used to model optimal destinations with OK and the

Advanced Grade Control-Expected Profit (AGC-EP) algorithm; the profit function

form step 3 is used. Section 7.2.2 describes the profit function in detail.

6. Total pre-blast profit from Bench ’110’ is calculated for the two methods. Methodol-

ogy for calculating total profit is explained in Section 7.2.2.

7. Artificial pre- and post-blast topography and artificial blast movement vectors are

created for Bench ’110’.

8. Blast movement modeling is performed. The high resolution profit predicted by or-

dinary kriging and AGC-EP is mapped onto a 3-D shape of a muckpile.

9. Optimal post-blast destinations are obtained for the two grade control methods.

10. The pre- and post-blast high resolution profit is used to design optimal pre- and post-

blast dig limits for the two grade control methods.

11. Total mineable profit is compared at different stages of grade control. Different grade

control scenarios are considered.

The following sections describe the construction of the reference model and provide

details about profit calculations. Then, the grade control modeling with AGC and OK is

illustrated and results are summarized.
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7.2.1 Construction of a Reference Model

In order to calculate a total profit value from Bench ’110’, a high resolution ’true’ refer-

ence model is required. The reference model is simulated using a multivariate simulation

workflow based on the PPMT algorithm and sequential Gaussian simulation (Isaaks, 1991).

Location maps for Au and Ag are provided in Figure 7.1; Figure 7.2 shows corresponding

histograms.

(a) Au (b) Ag

Figure 7.1: Location maps for grade variables sampled at Bench ’110’

(a) Au (b) Ag

Figure 7.2: Histograms for grade variables sampled at Bench ’110’

There are 234 BH samples situated at a square pattern with positioning errors. The

average distance between BHs (hxy) is 5.91 m (calculated using Equation (3.11)). The

simulation workflow consists of the following steps.

1. Original Au and Ag grade values are normal score transformed (Rossi & Deutsch,

2014, p. 22). Declustering is not performed since the blasthole data are relatively

evenly spaced throughout the mine bench.
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2. The normal-scored Au and Ag grade values are used to calculate variogram mod-

els used for simulation. The variograms of normal scores are used to improve the

variogram reproduction according to recommendations from Barnett and Deutsch

(2015a). Figure 7.3 demonstrates the modeled variograms.

(a) Au (calculated at 130◦ from North) (b) Ag (calculated at 110◦ from North)

Figure 7.3: Variograms of grade variables sampled at Bench ’110’

In Figure 7.3, blue and green dots represent experimental variogram points calcu-

lated in the major and minor continuity directions, respectively; blue and green lines

represent corresponding modeled variograms.

3. The original Au and Ag grades are PPMT forward transformed using ppmt program

described in Barnett and Deutsch (2015a). Recommended parameters for the PPMT

transformation from Barnett and Deutsch (2015a) are used.

4. The PPMT-transformed Au and Ag grades are used as conditioning data to obtain the

reference models for an area of 138 × 75 m2 with a grid size of 1.5 × 1.5 m2 using

sgsim (C. V. Deutsch & Journel, 1998).

5. Simulated Au and Ag grades are back-transformed to original units using ppmt_b

program described in Barnett and Deutsch (2015a).

The back-transformed reference models are sampled at a grid size of 6 × 6 m2 with a

random error in coordinates of 1 m. The samples are then clipped to a polygon to approxi-

mately reproduce the original shape of Bench ’110’.
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7.2.1.1 Reference Model Validation

Figures 7.4 and 7.5 show simulated Au and Ag grades and corresponding samples.

(a) Au (b) Ag

Figure 7.4: Reference models for Au and Ag

(a) Au (b) Ag

Figure 7.5: Artificial BH samples for Au and Ag

Histogram Reproduction

Histogram reproduction is an important validation check. It is performed using 20 sim-

ulated realizations. The shapes of the original and simulated cumulative distribution func-

tions (CDFs) should be similar as well as corresponding means and standard deviations.

Figure 7.6 shows the histogram reproduction for Bench ’110’.
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(a) Au (b) Ag

Figure 7.6: Histogram reproduction for the Au and Ag grades sampled at Bench ’110’

In Figure 7.6, the shapes of the CDFs of original (red color) and simulated (black color)

data are similar. Some fluctuations in the univariate statistics are expected and desired.

Variogram Reproduction

Another important check is the reproduction of original variograms. Since the vari-

ogram models of the normal scored Au and Ag grades are used to simulate the reference

model, the reproduction is checked for the simulated Au and Ag grades in normal scores

(before the PPMT back-transformation). Figure 7.7 demonstrates the reproduction of vari-

ograms for Bench ’110’.

(a) Au (b) Ag

Figure 7.7: Variogram reproduction for the Au and Ag grades sampled at Bench ’110’

In Figure 7.7, blue and green dots represent experimental variogram points calculated

in the major and minor continuity directions, respectively, while grey lines represent the

variograms of simulated models. The variograms of simulated realizations are calculated
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in the same directions as the original variograms. Overall, the variogram reproduction is

satisfactory for the two grade variables.

Reproduction of Bivariate Relationships between Grade Variables

The total profit of Bench ’110’ is calculated based on the simulated grade values of Au

and Ag. Since the bivariate relationship between Au and Ag may influence profit calcu-

lations, it should be reproduced in the simulated models. Figure 7.8 shows the bivariate

relationship between the two grade variables before and after the PPMT transformation,

respectively.

(a) Before PPMT (b) After PPMT

Figure 7.8: Scatter plots between the Au and Ag grade variables before and after the PPMT trans-
formation

Figure 7.9 shows the reproduction of the bivariate relationship between Au and Ag in

the simulated reference model.
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Figure 7.9: Scatter plot between the simulated Au and Ag grade variables after the PPMT back-
transformation

Figures 7.8a and 7.9 show that the bivariate relationship between the Au and Ag grade

variables is reproduced in the simulated models.

7.2.2 Determining Optimal Destinations with AGC-EP and Ordinary

Kriging

The single reference model is used to calculate the true optimal destinations for Bench ’110’

and a true total profit value. Optimal destinations for OK and AGC-EP are obtained using

the following steps:

1. The reference model is sampled at a grid size of 6 × 6 m2 with a random error in

coordinates of up to 1 m.

2. The sampled grades are modeled with OK for an area of 138 × 75 m2 with a grid size

of 1.5 × 1.5 m2. A profit function P is used to convert ordinary kriging estimates

to optimal destinations dok
opt(u) at all mine bench locations u ∈ A. OK is performed

with variograms of Au and Ag in original units.

3. The sampled grades are used to model expected profit with AGC-EP for the area

of 138 × 75 m2 with the grid size of 1.5 × 1.5 m2. The profit function P is used
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to calculate high resolution expected profit at all the locations u ∈ A. Then, the

expected profit is used to determine the best AGC-EP destinations dopt(u) at all the

locations u ∈ A.

4. The simulated Au and Ag grades are used to obtain the true profit values at all the

locations u ∈ A. Then, the true high resolution profit is used to obtain the true

optimal destinations dtrue(u) at all the locations u ∈ A.

5. The optimal OK destinations dok
opt(u), the optimal AGC-EP destinations dopt(u), and

the true simulated grades are used to calculate total profit from Bench ’110’. The

predicted total profit values for both methods are compared.

Steps 1-5 are relevant to the first stage of grade control. They are used to calculate

pre-blast total profit from Bench ’110’ for the case of free selection. Then, blast movement

is modeled to map the true and predicted pre-blast profit on the post-blast shape of a muck-

pile. Finally, dig limits are optimized to account for equipment limitations. The post-blast

mineable destinations and the post-blast true profit define total mineable profit for OK and

AGC-EP; this is the actual profit that can be extracted from Bench ’110’.

7.2.3 Profit Function

Sampled grade values are used to predict high resolution profit with OK and AGC-EP for

two mined material destinations: ore and waste. The real profit and recovery functions

are not available for this case study. A simple profit function is designed accounting for

monetary profit obtained from recovered gold and silver. Profit at a location u is calculated

as follows:

P (z(u; Au), z(u; Ag)) = (z(u; Au) · p1 · r1 + z(u; Ag) · p2 · r2 − cm − cp) · T. (7.1)

where z(u; Au) and z(u; Ag) are the grades of gold and silver in grams per tonne, re-

spectively; r1 and r2 are the recoveries of gold and silver, respectively; p1 and p2 are the

prices of gold and silver in US dollars per gram, respectively; cm is the cost of mining a

tonne of mined material; cp is the cost of processing a tonne of ore; T is the number of

tonnes of mined material associated with the location u.
176



7. Case Study: Grade Control at the Misima Mine

The recoveries for Au and Ag are assumed to be 0.9 and 0.7, respectively. The price

of Au is chosen to be $1 305 per troy ounce, while the price of Ag is chosen to be $16.7

per troy ounce. The prices are based on average prices from the London Metal Exchange

in January and February, 2019. The prices are converted to US dollars per gram based on

31.1035 grams per troy ounce. The costs of mining and processing are assumed to be $2

per tonne and $17 per tonne, respectively. The density of mined material is assumed to be

2.3 tonnes per m3.

The true destination at the location u is defined as follows:

dtrue(u) =


ore, if P (ztrue(u; Au), ztrue(u; Ag)) ≥ 0;

waste, otherwise.
(7.2)

where ztrue(u; Au) and ztrue(u; Ag) are the true grades of gold and silver at the location

u, respectively.

The total profit from Bench ’110’ is calculated based on the predicted and true destina-

tions at each high resolution location. If a predicted destination dest(u) is ore, and the true

destination dtrue(u) is ore, profit for correct acceptance at the location u is calculated as

follows:

P1(u) =
P (ztrue(u; Au), ztrue(u; Ag)), if dest(u) is ore and dtrue(u) is ore;

0, otherwise.
(7.3)

If dest(u) is waste, and dtrue(u) is waste, profit for correct rejection at the location u is

calculated as follows:

P2(u) =


−cm · T, if dest(u) is waste and dtrue(u) is waste;

0, otherwise.
(7.4)

If dest(u) is ore, and dtrue(u) is waste, loss (negative profit) for false acceptance at the

location u is calculated as follows:

P3(u) =
P (ztrue(u; Au), ztrue(u; Ag)), if dest(u) is ore and dtrue(u) is waste;

0, otherwise.
(7.5)
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If dest(u) is waste, and dtrue(u) is ore, profit for false rejection at the location u is

calculated as follows:

P4(u) =


−cm · T, if dest(u) is waste and dtrue(u) is ore;

0, otherwise.
(7.6)

The total profit from Bench ’110’ is calculated as follows:

Ptotal =
∑
u∈A

(P1(u) + P2(u) + P3(u) + P4(u)). (7.7)

The profit for the correct rejection and false rejection decisions is negative since the cost

of removing mined material should be covered. Lost opportunity cost for false rejection is

not considered. The cost of processing waste is negative and linearly increases with the

decrease in grade values.

7.3 First Grade Control Stage

OK is performed separately for Au and Ag. The OK estimates are then used with the profit

function P to obtain predicted destinations dok
opt(u) at all locations u ∈ A. The total OK

profit from Bench ’110’ is calculated using the optimal OK destinations dok
opt(u), the true

destinations dtrue(u) at all locations u ∈ A, and Equations 7.3-7.7. OK is repeated with

numbers of nearby conditioning samples in the range from 15 to 220; the best scenario is

chosen for comparing with AGC-EP. An optimal number of nearby samples to use with

AGC-EP is predicted by k-fold cross-validation (more details are in Chapter 3). Optimal

destinations dopt(u), the true destinations dtrue(u) at all locations u ∈ A, and Equations

7.3-7.7 are used to calculate total AGC-EP profit from Bench ’110’. The total profit values

obtained with OK and AGC-EP are then compared to the true total profit value achieved at

free selection with all destinations predicted correctly. Figure 7.10 shows variogrammodels

used for ordinary kriging.
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(a) Au (b) Ag

Figure 7.10: Variograms of Au and Ag used for OK

The variograms shown in Figure 7.10 are modeled using the Au and Ag grades in orig-

inal units. The highest total profit for OK was achieved with 15 nearby samples at each

location. Figure 7.11 shows OK estimates corresponding to the best OK classification.

(a) Au (b) Ag

Figure 7.11: Ordinary kriging estimates for Au and Ag

Figure 7.12 shows the best classification map obtained with kriging versus the classifi-

cation map showing the true destinations.

(a) OK destinations (b) True destinations

Figure 7.12: Optimal OK mined material destinations versus the true optimal destinations at Bench
’110’
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The classification map in Figure 7.12a allows selecting around $170 246 of total profit

from Bench ’110’.

Figure 7.13 shows optimal ore/waste destinations determined by AGC-EP with 155

nearby samples (predicted by k-fold cross-validation) and the true optimal ore/waste desti-

nations.

(a) AGC-EP destinations (b) True destinations

Figure 7.13: Optimal AGC-EP mined material destinations versus the true optimal destinations at
Bench ’110’

The classification map in Figure 7.13a allows selecting the total profit of $ 172 118,

which is $1 872 or around 1.1 % improvement in profit over ordinary kriging for no ad-

ditional cost. The tonnes of ore and waste at each location are calculated using pre-blast

topography and a 3-D model created for this example; the model is shown later in this chap-

ter. This total profit value is not achievable because it assumes free selection. Total profit

from a mine bench should be calculated for a pre-blast mineable classification.

Note that ordinary kriging is performed well. Also, the best possible ordinary kriging

estimate is selected based on carefully modeled variograms. An inexperienced junior en-

gineer assigned to the grade control task may not select optimal input parameters for OK,

which may result in a more significant loss of profit.

The classification maps produced by OK and AGC-EP allow selecting 80.1 % and 80.9

% of the true total profit value of $212 648, respectively, from Bench ’110’. This is possible

to assess since the high resolution ’truth’ is known. If blasting is performed, the positions

of pre-blast profit or grade predictions should be corrected due to blast movement. The

following section assesses a possible impact of blast movement on the total mineable profit

from Bench ’110’.
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7.4 Second Grade Control Stage

The pre-blast predictions of profit obtained with OK and AGC-EP are mapped onto a post-

blast 3-D model of muckpile. The model is constructed using artificial topography. The

post-blast predicted profit is used to determine optimal post-blast destinations for each

method. The true post-blast profit defines the total profit from Bench ’110’ relevant for

selection. The workflow of this part of the case study consists of the following steps:

1. Realistic topography for Bench ’110’ before and after blasting is created.

2. Realistic blast movement vectors are created. The vectors are defined by assuming

pre- and post-blast positions of transmitters.

3. Blastmovement ismodeledwith theAdvancedGradeControl-Blastmovement (AGC-

BM) algorithm. A 3-D model of the true post-blast profit is obtained. The true post-

blast profit in 3-D is relevant for selection and, therefore, is used for calculating total

mineable profit from Bench ’110’.

4. Post-blast profit prediction models for OK and AGC-EP are obtained.

After steps 1-4 are performed, the post-blast profit in 3-D is used for designing optimal

dig limits in the next grade control stage.

7.4.1 Modeling Results

Artificial pre-blast topography is approximated based on blasthole surveys. Inverse distance

is used to interpolate sparse elevation measurements. Post-blast topography is constructed

based on two assumptions: i) Bench ’110’ is confined during blasting, and ii) blasting is

performed using a v-shaped firing pattern. Both pre- and post-blast topographic surfaces

are obtained for the area of the reference model of 138 × 75 m2 with a grid size of 1.5 × 1.5

m2. Figure 7.14 demonstrates the pre- and post-blast topographic surfaces.
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(a) Pre-blast (b) Post-blast

Figure 7.14: Pre- and post-blast artificial topography for Bench ’110’

In Figure 7.14a, the black dashed line illustrates the outline of the mine bench. In Figure

7.14b, there is a distinctive ridge formed along the centerline of the blast initiation. It is

assumed that the rock mass moves towards the centerline perpendicular to timing contours.

Figure 7.15 shows the artificial blast movement vectors created for Bench ’110’; the vectors

are plotted as arrows on the top of the post-blast topographic surface.

Figure 7.15: Artificial blast movement vectors for Bench ’110’

In Figure 7.15, the blast movement vectors are plotted in 2-D, which illustrates hor-

izontal displacement only. However, the pre- and post-blast positions of transmitters in

3-D are used for this case study. The pre- and post-blast positions of each transmitter are

summarized in Table 7.1.
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Table 7.1: Pre- and post-blast coordinates of 9 transmitters

Transmitter ID East North Elevation East North Elevation
(pre-blast) (pre-blast) (pre-blast) (post-blast) (post-blast) (post-blast)

Transmitter 1 479,531.0 819,850.9 114.0 479,525.7 819,858.4 115.0
Transmitter 2 479,512.2 819,850.9 113.0 479,505.8 819,858.8 114.0
Transmitter 3 479,470.4 819,859.5 116.0 479,465.9 819,867.8 118.0

Transmitter 4 479,444.2 819,850.7 113.0 479,438.1 819,856.9 114.0
Transmitter 5 479,426.4 819,858.7 114.0 479,423.2 819,865.3 115.0
Transmitter 6 479,437.1 819,902.0 114.0 479,428.9 819,894.3 115.0

Transmitter 7 479,462.5 819,890.2 114.0 479,456.8 819,883.4 115.0
Transmitter 8 479,492.8 819,882.2 115.0 479,488.5 819,876.8 118.0
Transmitter 9 479,531.3 819,885.4 116.0 479,525.6 819,881.2 118.0

The artificial pre- and post-blast topography and blast movement vectors are used to

construct pre- and post-blast 3-D models approximately representing blast movement for

Bench ’110’. Figure 7.16 shows pre-blast 3-D profit and corresponding 3-D classification

map.

(a) Ore profit (b)Waste profit

(c) Destinations

Figure 7.16: True pre-blast profit for the ore and waste destinations and the corresponding true
optimal destinations for Bench ’110’

In Figure 7.16, profit is defined by Equation 7.1. Profit for the waste destination is

shown positive although it represents the loss of profit. Figure 7.17, shows pre-blast high

resolution profit mapped to a 3-D muckpile using AGC-BM.
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(a) Ore profit (b)Waste profit

(c) Destinations

Figure 7.17: Post-blast true profit for the ore and waste destinations and the corresponding true
optimal destinations for Bench ’110’

Figures 7.18 and 7.19 show pre- and post-blast expected profit for the ore and waste

destinations (calculated with AGC-EP), respectively; also, the corresponding pre- and post-

blast classification maps in 3-D are shown.

(a) Ore expected profit (b)Waste expected profit

(c) Destinations

Figure 7.18: Pre-blast expected profit for the ore and waste destinations calculated with AGC-EP
and the corresponding optimal destinations for Bench ’110’
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(a) Ore expected profit (b)Waste expected profit

(c) Destinations

Figure 7.19: Post-blast expected profit for the ore and waste destinations calculated with AGC-EP
and the corresponding optimal destinations for Bench ’110’

Figures 7.20 and 7.21 show pre- and post-blast profit for the ore and waste destinations

(calculatedwith OK), respectively; also, the corresponding pre- and post-blast classification

maps in 3-D are shown.

(a) Ore profit (b)Waste profit

(c) Destinations

Figure 7.20: Pre-blast profit for the ore and waste destinations calculated with OK and the corre-
sponding optimal destinations for Bench ’110’
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(a) Ore profit (b)Waste profit

(c) Destinations

Figure 7.21: Post-blast profit for the ore and waste destinations calculated with OK and the corre-
sponding optimal destinations for Bench ’110’

The AGC-BM algorithm was run with all the elements of the cost function weighted

equally. The algorithmwas run with 20 and 40 nearest neighbors for the low resolution (LR)

and high resolution (HR) models, respectively. The algorithm performed 61 000 and 137

000 iterations for the LR andHRmodel, respectively. The cost function tolerance parameter

was set to 0.05 %. The total number of blocks to optimize was 15 000. The swell factor

was estimated to be around 1.15. The operation time was 88 minutes 40 seconds. Details

about the optimization algorithm are in Chapter 5. The post-blast model shows some minor

artifacts due to the artificial topography and blast movement measurements.

It is assumed that the blast movement model generated by AGC-BM represents the

true blast movement; this implies that the true post-blast profit at high resolution is known.

Since the true and predicted high resolution profit is modeled during the same optimization

procedure, the total post-blast monetary profit of Bench ’110’ (calculated with Equations

(7.3)-(7.7)) is the same as the total pre-blast monetary profit. The 3-D models of the true

and predicted profit are used with the Advanced Grade Control-Dig Limits (AGC-DL) op-

timization algorithm to define optimal dig limits in 2-D for each method.
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7.5 Third Grade Control Stage

The first two stages of grade control described in the previous sections determine true and

predicted post-blast profit from Bench ’110’. The high resolution optimal destinations in

Figures 7.19c and 7.21c may not be possible to mine selectively due to equipment limita-

tions. Ideally, the 3-D post-blast predicted profit should be used to define mineable dig

limits in 3-D. However, the information used to predict profit is from blastholes and in-

herently 2-D. Unless there is additional information that informs on the vertical geological

variability of the mine bench (from multiple samples along the blastholes or dedicated drill-

holes), dig limits should be optimized in 2-D accounting for the 3-D shape of a muckpile.

The most straightforward approach is to average the predicted profit in the vertical di-

rection at each modeled location over the mine bench. A more correct approach is to give

different locations different weights during optimization based on local bench heights; this

is done by using the cumulative profit calculated along the vertical direction for each loca-

tion at the bottom elevation of themine bench. After a location in 2-D is assigned amineable

destination during the dig limits optimization, all the corresponding locations along the ver-

tical direction are also assigned this destination. Conversion of the 3-D post-blast expected

profit obtained with AGC-EP in 2-D is illustrated in Figure 7.22.
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(a) Ore expected profit (b)Waste expected profit

(c) Destinations

Figure 7.22: Conversion of the post-blast expected profit obtained with AGC-EP from 3-D to 2-D

After the pre-and post-blast 3-D models of profit are converted to 2-D, the AGC-DL

algorithm is run to obtain optimal dig limits. Pre- and post-blast optimal dig limits are ob-

tained for both AGC-EP and OK. This final classification is used to calculate total mineable

monetary profit for both grade control methods. A detailed workflow of the third stage of

grade control for Bench ’110’ consists of the following steps:

1. The pre- and post-blast 3-D profit predicted by AGC-EP and OK is converted to 2-D;

this procedure is schematically illustrated in Figure 7.22.

2. Pre-blast dig limits are optimized for AGC-EP and OK using the pre-blast profit

predictions converted to 2-D.

3. Post-blast dig limits are optimized for AGC-EP and OK using the post-blast profit

predictions converted to 2-D.
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4. The optimized dig limits are used to classify the pre- and post-blast 3-D models and

obtain pre- and post-blast 3-D dig limits. This reverse conversion from 2-D to 3-D is

illustrated below.

5. Total mineable profit is calculated for AGC-EP and OK using the pre-blast 3-D dig

limits, the true high resolution pre-blast profit in 3-D, and Equations (7.3)-(7.7).

6. Total mineable profit is calculated for AGC-EP and OK using the post-blast 3-D dig

limits, the true high resolution post-blast profit in 3-D, and Equations (7.3)-(7.7).

7. Total mineable profit is calculated for AGC-EP and OK using the pre-blast 3-D dig

limits, the true high resolution post-blast profit in 3-D, and Equations (7.3)-(7.7). This

step allows assessing the consequence of not accounting for blast movement while

optimizing dig limits.

8. Results are summarized.

7.5.1 Modeling Results

The dig limits optimization is performed using a rectangular frame with the size of 5 × 5

block2 (7.5×7.5 m2). The frame covers the areas of 56.25 m2 and 59.48 m2 for the pre- and

post-blast models, respectively. The difference in the size of the areas covered by the frame

is due to a slight increase in the post-blast grid size during blast movement modeling; the

post-blast grid size is 1.54×1.54×1.62m3. Figure 7.23 demonstrates a pre-blast optimized

classification map based on the AGC-EP profit prediction; a classification map for the case

of free selection is also shown.
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(a) Optimized classification map (b) Free selection

Figure 7.23: Optimized pre-blast classification map (5 × 5 block2 frame size) and a corresponding
high resolution classification map (free selection) based on the expected profit obtained with AGC-
EP

The pre-blast optimized classification map in Figure 7.23a allows selecting 99.03 % of

a maximum attainable cumulative expected profit value. This measure indicates the total

estimated profit (Equation (6.3)) as opposed to total true profit (Equation (7.7)). The second

stage of the algorithm was run with the neighborhood size of 1 block in each direction and

the tolerance of 1 iteration without a decrease in the number of problematic locations. The

optimization algorithm terminated based on the stage 3 tolerance of 10 hill climbing oper-

ations without an improvement to the objective function. The run-time was 13.72 seconds.

More details about the AGC-DL optimization algorithm are in Chapter 6.

Figure 7.24 demonstrates a pre-blast optimized classification map based on the OK

profit predictions; a classification map for the case of free selection is also shown.

(a) Optimized classification map (b) Free selection

Figure 7.24: Optimized pre-blast classification map (5 × 5 block2 frame size) and a corresponding
high resolution classification map (free selection) based on the profit predictions obtained with OK

The pre-blast optimized classification map in Figure 7.24a allows selecting 98.85 %

of a maximum attainable cumulative profit value. AGC-DL was run with the same input

parameters as in the previous case. The run-time was 8.87 seconds.
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Figure 7.25 demonstrates a post-blast optimized classification map based on the post-

blast AGC-EP expected profit; a post-blast classification map for the case of free selection

is also shown.

(a) Optimized classification map (b) Free selection

Figure 7.25: Optimized post-blast classification map (5×5 block2 frame size) and a corresponding
high resolution classification map (free selection) based on the expected profit obtained with AGC-
EP

The post-blast optimized classification map in Figure 7.25a allows selecting 98.34 % of

a maximum attainable cumulative expected profit value. AGC-DL was run with the same

optimization plan as for the pre-blast optimization. The run-time was 6.62 seconds.

Figure 7.26 demonstrates a post-blast optimized classification map based on the post-

blast OK profit predictions; a post-blast classification map for the case of free selection is

also shown.

(a) Optimized classification map (b) Free selection

Figure 7.26: Optimized post-blast classification map (5×5 block2 frame size) and a corresponding
high resolution classification map (free selection) based on the profit obtained with OK

The post-blast optimized classification map allows selecting 97.17 % of a maximum

attainable cumulative profit value. AGC-DL was run with the same optimization plan as

for the pre-blast optimization. The run-time was 6.26 seconds.
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The optimized classification maps in Figures 7.23-7.26 are obtained based on predicted

profit. In real life, maximizing the selection of this predicted profit is the only performance

measure available since the true pre- and post-blast profit is unknown. For this case study,

the true pre- and post-blast profit is known. Therefore, the performance of the kriging-based

grade control method and AGC should be compared with respect to the true profit. Opti-

mized dig limits in 2-D are applied to corresponding 3-D volume to compare the true and

estimated destinations. Figure 7.27 schematically illustrates how a 2-D optimized classifi-

cation map is used to classify the corresponding post-blast 3-D volume; the classification

map based on the post-blast AGC-EP expected profit is used as an example.

Figure 7.27: Optimized 2-D dig limits (based on the AGC-EP expected profit) applied to the corre-
sponding post-blast 3-D volume

An optimal destination at a location of the 2-D classification map is applied to all the

locations of the 3-D post-blast model that have the same coordinates in the horizontal plane;

a 3-D dig limits model is obtained. The 3-D dig limits in Figure 7.27 are then used to calcu-

late a total mineable profit value from Bench ’110’ using Equations (7.3)-(7.7). Figure 7.28

shows 3-D dig limit models for the AGC-EP and OK cases obtained using the optimized

pre-blast 2-D dig limits (Figures 7.23-7.24) and the pre-blast 3-D volume.
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(a) AGC-EP dig limits (b) OK dig limits

Figure 7.28: Pre-blast dig limits in 3-D obtained based on the AGC-EP and OK profit predictions

The 3-D dig limits for the AGC-EP case allow selecting $ 169 338, which is 79.6 % of

the true total profit value of $ 212 648. The 3-D dig limits for the OK case allow selecting

$ 167 493, which is 78.8 % of the true total profit value. These total profit values are

the actual monetary profits that would be selected from Bench ’110’ if blasting was not

performed. The total mineable profit values for both OK and AGC-EP are close to the total

profit values calculated for the case of free selection in Section 7.3. AGC-EP outperforms

OK by $1 845, which is around 1.1 %.

Figure 7.29 shows 3-D dig limits for the AGC-EP and OK cases obtained using opti-

mized post-blast 2-D dig limits (Figures 7.25-7.26) and the post-blast 3-D volume.

(a) AGC-EP dig limits (b) OK dig limits

Figure 7.29: Post-blast dig limits in 3-D obtained based on the AGC-EP and OK profit predictions

The 3-D dig limits for the AGC-EP case allow selecting $ 160 194, which is 75.3 %

of the true total profit value. The 3-D dig limits for the OK case allow selecting $ 154

913, which is 72.8 % of the true total profit value. These total profit values are the actual

monetary profits that would be selected from Bench ’110’ if blasting was performed. The

post-blast optimized dig limits in both the AGC-EP and OK cases allow selecting signifi-

cantly less true profit than the pre-blast optimized dig limits. The difference between the
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total mineable profit values for OK and AGC-EP are higher in this case. AGC-EP outper-

forms OK by $5 282, which is a 3.4 % improvement.

It is interesting to analyze how using pre-blast dig limits impacts the total post-blast

mineable profit from Bench ’110’. This comparison is valid since the pre- and post-blast

shapes of the mine bench have the same boundaries for this cases study. Therefore, the pre-

blast optimized dig limits are relevant for the post-blast 3-D volume. Figure 7.30 shows

3-D dig limits for the AGC-EP and OK cases obtained using optimized pre-blast 2-D dig

limits (Figures 7.23- 7.24) and the post-blast 3-D volume.

(a) AGC-EP dig limits (b) OK dig limits

Figure 7.30: Post-blast dig limits in 3-D obtained based on the AGC-EP and OK pre-blast profit
predictions and corresponding pre-bast 2-D dig limits

The 3-D dig limits for the AGC-EP case allow selecting $ 156 689, which is 73.7 %

of the true total profit value. The 3-D dig limits for the OK case allow selecting $ 148

016, which is 69.6 % of the true total profit value. These total profit values are the actual

monetary profits that would be selected from Bench ’110’ if blasting was performed but

was not accounted for during dig limits optimization. AGC-EP outperforms OK by $8 673,

which is a 5.9 % improvement.

The 3-D dig limit models should be precisely followed by excavating equipment to

maximize the true total profit from Bench ’110’. Positioning errors during excavation may

increase misclassification and reduce the total profit value.

7.6 Summary

A case study partially based on a real blasthole data set from the Misima mine in Papua

New Guinea is presented. The case study shows the importance of a careful grade con-

trol modeling at three stages of short-term mine planning: i) spatial prediction of grades or
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profit, ii) blast movement modeling (if blasting is performed), and iii) selection optimiza-

tion. The misclassification errors may accumulate during the three stages, which may result

in a significant loss of profit.

The AGC system is compared to a conventional grade control method based on OK

estimation. A real blasthole data set is used to construct a high resolution reference model

and compare the two methods in terms of total monetary profit achieved from a mine bench.

Spatial prediction of profit was performed using OK and the AGC-EP algorithm (Chap-

ters 3 and 4). AGC-EP was run fully automatically while OK required manual implemen-

tation. Blast movement modeling was performed using the AGC-BM algorithm (Chapter

5). Artificial topography and blast movement vectors were used. Dig limits optimization

was performed with the AGC-DL algorithm (Chapter 6) using the pre- and post-blast profit

predictions.

Optimized pre-blast dig limits based on the AGC-EP profit predictions outperform the

optimized pre-blast dig limits based on the OK profit predictions by around 1.1 % in terms

of the total mineable profit from the mine bench. The AGC-EP and OK pre-blast dig limits

allow selecting 79.6 % and 78.8 % of the total true profit of the mine bench, respectively.

Optimized post-blast dig limits based on the AGC-EP profit predictions outperform the

optimized post-blast dig limits based on the OK profit predictions by around 3.4 % in terms

of the total mineable profit from the post-blast mine bench. The AGC and OK post-blast

dig limits allow selecting 75.3 % and 72.8 % of the total true profit of the post-blast mine

bench, respectively.

The impact of using the pre-blast optimized dig limits for post-blast selection of mined

material is assessed. The AGC and OK pre-blast dig limits allow selecting 73.7 % and 69.6

% of the total true profit of the post-blast mine bench, respectively; AGC outperforms OK

by 5.9 % in terms of the total mineable profit from the post-blast mine bench.

The case study represents a possible grade control scenario. The cumulative loss of

profit may be higher or lower for other scenarios with more significant blast movement,

more complex bench boundaries, and/or significant modeling errors.
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Grade control in open pit mines is a procedure that aims at optimizing the extraction of

mineral resources. Profit from mining operations is maximized when material is sent to

the correct destination. Grade control is performed in several stages summarized by three

main unit operations: i) spatial prediction of grades or profit, ii) modeling the blast-induced

displacement of pre-blast spatial predictions (if blasting is performed), and iii) selection

optimization. The focus of this dissertation research is improving each grade control unit

operation via developing an integrated system called the Advanced Grade Control (AGC)

system. Figure 8.1 schematically illustrates the main elements of the system.

Figure 8.1: Schematic illustration of the Advanced Grade Control system

Spatial prediction for grade control is performed using a local multivariate simulation

algorithm called the Advanced Grade Control-Expected Profit (AGC-EP). The algorithm is
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used to generate high resolution expected profit for any number of destinations for mined

material. The expected profit is then used to determine optimal destinations subject to

excavating constraints.

Blast movement modeling is formulated as an optimization assignment problem. A

heuristic optimization algorithm called theAdvancedGradeControl-BlastMovement (AGC-

BM) is developed. The algorithm is used to approximately solve the optimization problem

based on detailed topography and blast movement measurements.

Optimal classification of mined material is formulated as an optimization problem. Op-

timization constraints imposed by such factors as parameters and characteristics of exca-

vating and hauling equipment and/or the direction of mining are represented by the shape

and size (rectangular or non-rectangular) of a floating selection unit. A fast heuristic algo-

rithm called the Advanced Grade Control-Dig Limits (AGC-DL) is developed to solve the

optimization problem and obtain mineable dig limits.

All the elements of AGCmay operate in a chained fashion automatically or nearly auto-

matically. This may allow integrating the system as a part of a mine’s short-term planning

workflow.

8.1 Key Research Contributions

The main contributions of this dissertation are related to improving and standardizing grade

control practice in open pit mines and developing practical tools for solving grade control

problems. Some of the developed tools like the improved mass moment of inertia tensor

(MOI) method for determining directions of geological anisotropy or the AGC-DL algo-

rithm may potentially be applied in other areas of geostatistical modeling and mine plan-

ning.

8.1.1 Local Multivariate Simulation Algorithm

The benefits of using geostatistical simulation in a combination with economic functions

over estimation methods like kriging or inverse distance in grade control were previously

discussed (Dimitrakopoulos & Godoy, 2014; Verly, 2005). Assuming global stationarity
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for a modeling domain may be unrealistic. Performing simulation with locally varying

anisotropy (LVA) requires special modeling tools such as described in Leuangthong et al.

(2006) and Boisvert and Deutsch (2011). Multiple grade variables may be involved in profit

calculations; in such case, it may be beneficial to model the multivariate relationships be-

tween grades to improve the final classification of mined material. Using a simulation-

based grade control method may require a certain level of expertise in geostatistical mod-

eling even for relatively simple grade control cases with only one grade variable and two

grade control destinations, ore and waste. Manual implementation of the local multivariate

simulation may be challenging and prone to errors. In addition, it may require significant

time to complete all modeling operations. Therefore, industry practitioners often choose

simple estimation methods, which may result in a loss of profit in some cases.

The AGC-EP algorithm addresses the issues described above. It performs a full local

multivariate simulation workflow nearly or fully automatically. The simulation procedure

is approached partially as an optimization problem. The main goal is minimizing the mean

squared error between the true and predicted expected profit using a k-fold cross-validation

procedure. The decision of stationarity is reassessed locally. Main modeling operations at

each location include: i) normal score transformation (multivariate for more than one grade

variable), ii) anisotropy determination, iii) simulation, and iv) expected profit calculation.

Internal validation checks are included to ensure reasonable modeling results. AGC-EP

may be run on a coarse grid to increase the speed of operation. Expected profit estimates

generated by AGC-EP may be post-processed by a smoothing filter to achieve better mod-

eling results. It has been demonstrated with two multivariate grade control cases studies

that the AGC-EP algorithm run fully automatically outperforms carefully applied kringing

estimation in terms of profit achieved from a mine bench.

The AGC-EP modeling algorithm supports automatic grade control modeling. It may

be used separately or as a part of another grade control system based on the expected profit

approach for grade control decision making.
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8.1.1.1 Improved MOI Method

The MOI method implemented for determining local directions of geological anisotropy is

described by Hassanpour (2007). The method relies on the calculation of local correlation

maps. The accuracy of the method may be decreased when the correlation maps contain

artifacts.

An algorithm for fixing correlation maps with artifacts is described. It is demonstrated

that using the MOI method with the fixing algorithm significantly improves the accuracy

of the method and, as a result, the quality of local predictions. The MOI algorithm is incor-

porated within the AGC-EP local multivariate simulation algorithm.

The method is implemented both on a grid and at arbitrary locations. It is fast and

straightforward to automate. The only required input information is correlation maps.

8.1.2 Optimization Approach for Blast Movement Modeling

The are two main approaches for modeling blast movement in grade control: i) modeling

based on the physics of rock breakage, and ii) modeling based on direct blast movement

measurements. Due to the complexity of the blasting process and the uncertainty in input

information and boundary conditions, using the fully theoretical approach may result in a

significant error and the loss of profit (La Rosa & Thornton, 2011). Specialized systems

such as the one described by Adam and Thornton (2004) may be used to obtain pre-and

post-blast positions of specialized transmitters defining blast movement vectors. The main

disadvantage of this approach is that only a limited number of the transmitters is used due to

their high costs. Also, there is currently a lack ofmethods to use these limitedmeasurements

for reliable blast movement modeling. Pre- and post-blast topography provides another

important source of information about blast movement. It can be obtained using mine laser

scanners or drones.

The AGC-BM optimization algorithm is developed to model blast movement in 3-D

using gridded pre- and post-blast topography and direct measurements. The blast movement

problem is expressed as an optimization assignment problem approximately solved by the

heuristic algorithm. Details about the objective function and optimization are described.
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The AGC-BM algorithm is suitable for mapping pre-blast grades, categories, expected

profit, or other information onto the post-blast configuration of a muckpile in 3-D. It can

be used separately or within another grade control system.

8.1.2.1 Blast Movement Modeling with Limited Information

There are situations in open pit mines when only limited information is available about

blast movement. Pre- and post-blast topography may be unavailable. Blast movement

measurements may be limited or deemed unreliable.

A method to perform blast movement modeling with approximate topography is pro-

posed. Approximate pre- and post-blast topographic surfaces are inferred within AGC-BM

using the following information: i) bench bottom elevation, ii), bench height, iii) swell fac-

tor, iv) the principal direction of blast movement, and v) a pre-blast polygon with a free

face indicated.

A method to infer approximate blast movement vectors based on the firing sequence

of a blast and limited blast movement vectors is proposed. Firing sequence is used to ob-

tain the direction of blast movement while the sparse blast movement vectors inform on

the magnitude of displacement. An optimization algorithm to perform this operation is

proposed.

8.1.3 Dig Limits Optimization Algorithm

Profit predictions obtained in the first grade control stage and corrected for blast movement

(if blasting is performed) should be used with a cutoff grade or a profit function to clas-

sify mined material for further selection. Using the high resolution profit predictions for

classifying mined material may result in complex ore/waste contacts. It may be impossible

for excavating equipment to follow such complex dig lines, which results in misclassifica-

tion errors and a loss of profit. Methods described by Isaaks, Treloar, and Elenbaas (2014)

and M. Deutsch (2017) are similar to the method proposed in this thesis; however, it is not

clear how to implement them due to a lack of details. The AGC-DL algorithm proposed

in this thesis is based on a new heuristic algorithm for dig limit optimization. The algo-
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rithm is simple, fast, and easily modified; it is described in detail and is demonstrated with

examples.

The AGC-DL algorithm uses high resolution expected profit models to optimize classi-

fication maps subject to site specific rectangular or non-rectangular excavating constraints.

This optimization problem defies traditional closed form analytical solutions; a practical

heuristic algorithm has been developed to quickly determine the optimum final destination

for material subject to realistic constraints. The optimization is fast and generates results

that achieve up to 98-99 % of the total expected profit achieved with free selection. This

algorithm provides a fast viable option for practical application in short-term grade control

and in managing multiple realizations in long-term resource estimation.

8.2 Limitations and Future Work

There are limitations related to the application of the AGC system. Most of the limitations

are due to the heuristic nature of the main optimization algorithms and the limited testing

with real data. Another important limitation is considering grade control on a single mine

bench basis, whereas blending ore from several mine benches and/or stockpiles may be

utilized. Main areas of future work are discussed below.

8.2.1 Local Multivariate Simulation

AGC-EP is a complex algorithm consisting of several elements performing modeling op-

erations automatically. Some of its elements are complex algorithms themselves and may

require several input parameters specified. Ideally, k-fold cross-validation should be used

to optimize all the input parameters. The operation time of AGC-EP would grow signifi-

cantly in this case. Therefore, many input parameters are fixed within the algorithm. Using

fixed parameters may lead to sub-optimal modeling results for some deposits. It may be

required to tune the AGC-EP algorithm to site specific conditions.

AGC-EP usually performs better with many local conditioning samples (100 and more).

The number of local samples should be sufficient for local normal score transformation (es-
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pecially, multivariate), determination of local anisotropy, and variogram modeling. Using

AGC-EP for small domains having less than 50 samples may result in poor performance.

Multivariate simulation requires collocated samples (homotopic observations). Before

using AGC-EP, a multivariate imputation procedure should be performed and homotopic

observations obtained. The current version of AGC-EP does not have tools for multivariate

imputation of missing data.

The current version of AGC-EP assumes 2-D conditioning data from blastholes. Data

from a bench above or dedicated grade control drilling cannot be incorporated for modeling

expected profit in 3-D with the current version of the program.

8.2.2 Blast Movement Modeling

The AGC-BM algorithm proposed for blast movement is tested with artificial data only.

Additional validation and comparison to existing alternatives and industrial experiment are

required.

The modeling algorithm is based on the assumption that there is no mixing and collision

of particles during blasting. It is assumed that sparse blast movement vectors allow avoiding

modeling the complex physics of rock breakage and directly link the blocks of pre- and post-

blast models.

The size of 3-D models is an important factor for blast movement modeling. The blast

movement optimization problem is approximately solved by a heuristic optimization al-

gorithm based on random perturbations. Having more than 15 000 blocks significantly

increases the operation time. Due to the stochastic nature of the optimization algorithm,

there is a possibility of being trapped in a local minimum during optimization. A better

optimization strategy may result in improved performance of AGC-BM.

8.2.3 Dig Limits Optimization

The AGC-DL algorithm for dig limits optimization is heuristic. Results are obtained fast,

but optimality is not guaranteed.
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The main focus of the algorithm is selection optimization subject to rectangular selec-

tion frames. While using non-rectangular selection frames is possible, it is not thoroughly

tested.

The AGC-DL optimizes the classification of mined material. This is different from dig

limit polygon optimization, which may provide more flexible and suitable dig lines.

8.2.4 Future Work

Conventional grade control is based on available information on the pre-blast geological

composition of a deposit, limited information about blast movement, and characteristics of

available excavating and hauling equipment. Obtaining additional grade control informa-

tion may be expensive. The benefit of adding new information from dedicated drillholes

or other sources of information for grade control should be studied. A way to determine a

reasonable number of transmitters for blast movement modeling should be proposed.

Future research should focus on ways to account for ore blending from several mine

benches and/or stockpiles. The benefit of using a dynamic profit function to distinguish

between different types of mined material should be investigated.

Grade control modeling may be integrated into a mining complex that may include

several mineral deposits, waste dumps, stockpiles, and final products (Goodfellow & Dim-

itrakopoulos, 2017). Grade control could be used as one of the aspects influencing the net

present value of the entire mining complex in the face of geological uncertainty.

Multivariate imputation should be considered to be a part of AGC-EP. A profit func-

tion used to define expected profit for different mined material destinations may include

categorical variables. Some tools for modeling categorical variables may be incorporated

into AGC-EP if the values of the categorical variables are not provided at a high resolution.

An option to optimize more of the input parameters to the algorithm using cross-validation

should be added.

Alternative sources of information about blast movement should be considered. Video

obtained with ultra high speed cameras is one such source. More details about the blast de-

sign such as explosive properties and blasthole parameters could also be used for modeling.
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The heuristic optimization algorithms for blast movement modeling and dig limits opti-

mization should be improved or replacedwithmore efficient optimization techniques. Over-

all, the current implementation of the described optimization algorithms in computer codes

should be improved.

It is becoming popular in the mining industry to use precise sensors for tracking the

bucket position of an excavator using GPS (Trimble Inc., n.d.) or even measure and report

the characteristics of ore while it is being excavated or conveyed (MineSense Technologies

Ltd, n.d.). Such a level of control over theminedmaterial should enable a real-time updating

of the dig limit maps. In an ideal situation, the operator of an excavator should receive real-

time updated information on where to make each subsequent scoop. The use of augmented

reality for displaying the real-time grade control information should be considered.
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