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Abstract

In the United States, investors of exchange-traded funds (ETFs) and mu-

tual funds are required to pay tax on the capital gains that their funds have

made throughout the year. However, ETFs are able to avoid making taxable

capital gains by taking advantage of a legal loophole, subsequently benefiting

ETF investors. This loophole is referred to as Wall Street’s “dirty little se-

cret”. By contrast, mutual funds do not benefit from this loophole, and their

investors must pay capital gains tax when the fund is selling appreciated assets.

In this thesis, we explore the impact that the ETF tax loophole has on investor

decisions and how an investor’s asset allocation would change in the event the

loophole is closed. However, investor biases have been observed between ac-

tive and passive funds, so a classical model cannot be used. As such, we use a

rank-dependent expected utility model allowing us to incorporate these biases.

Given a particular setting, the investor’s optimization problem can be solved

explicitly. In a more general model, this problem is not explicitly solvable, but

we can still obtain the approximate impact that the tax loophole has on an

investor’s portfolio. As the tax loophole allows ETF investors to defer capital

gains tax, its impact increases with the investor’s holding period. In the event

the loophole is closed, we estimate that for holding periods between three and

five years the investment in ETFs will decrease by approximately 2.75% to

7% of the total portfolio allocation, and the investment in mutual funds will

increase by approximately 2.5% to 5.5% of the total portfolio allocation.
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Chapter 1

Introduction

Investment in a fund provides an investor with instant diversification, reduc-

ing their inherent risk. There are numerous different types of funds that the

investor can choose from, and these funds can be actively or passively man-

aged. Active funds and passive funds have their own unique traits that can

attract potential investors. An active fund, like most mutual funds (MFs), has

a manager or a management team that make the investment decisions. These

investment decisions made by the MF’s management team can increase an

investor’s upside potential or minimize an investor’s potential losses. By con-

trast, exchange-traded funds (ETFs) are often passive funds, which commonly

mirror a specific index or security collection. As such, the ETF management

team is not able to make specific investment decision to minimize an investor’s

potential investor loss or increase an investor’s potential gain. ETFs do have

their own benefits nonetheless, as they are more cost efficient. Additionally,

ETFs in the United States are able to take advantage of a legal loophole that

allows ETF investors to defer paying tax on an ETF’s capital gains until they
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sell their position. ETFs are able to avoid making taxable capital gains by tak-

ing advantage of in-kind redemptions when performing a portfolio re-balance,

given the aid of a friendly investor. Consequently, an ETF investor will pay

capital gains tax only when selling their ETF holdings and not when the ETF

realizes a capital gain. This legal loophole is not used by MFs because they

rarely perform in-kind redemptions, as their investors typically prefer cash

payouts. Due to this loophole, it is estimated by Colon [3] that investors in

the top 25 ETFs on the US market benefit from roughly 60 billion USD of

tax-free capital gains per year. These tax benefits aid in making ETFs an

attractive investment opportunity to potential investors. In recent years, the

debate surrounding this legal loophole has primarily focused on its mechanics

and ethics considerations. We, however, intend to answer the question “how

will investment in ETFs change in the event this loophole is closed?”

In this thesis, we will analyze how an investor’s optimal portfolio, contain-

ing an MF and an ETF as the risky assets, is affected by the tax loophole and

investigate how the optimal allocation would change in the event the loophole

is closed. However, there is a catch. Prior work by Gruber [7] has shown

there exists an investor preference for actively managed funds over their pas-

sively managed counterpart, despite the fact that actively managed funds have

historically worse average performance than their passive fund equivalents.

Therefore, in this thesis we use a model for portfolio optimization that takes

into account investor bias. Polkovnichenko et al. [12] has shown that using

a rank-dependent expected utility (RDEU) model for portfolio optimization

is able to accurately represent this observed market behaviour for portfolios

containing active and passive funds. The ability to accurately model how an
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investor will alter their portfolio in the event of the loophole closure will pro-

vide a deeper understanding as to how future policy changes will influence

investments in a biased market. In doing so, valuable insight can be derived

to help determine the implications of future policies.

To determine the impact the tax loophole has on investor portfolios, we

will consider a one-period market model. In order to solve the portfolio opti-

mization while incorporating investor bias, we utilize a Taylor approximation

that will allow us to estimate the optimal strategy under a distorted probabil-

ity model. With an estimation of the optimal portfolio strategy, we then will

consider two investment scenarios: one where the loophole is open, and one

where the loophole is closed. This comparison will allow us to determine the

extent to which an investor benefits from the tax loophole. We expect that

in the event the ETF tax loophole is closed, investment in ETFs will decrease

and investment in MFs will increase. While this conclusion may seem obvious,

it is our intention to provide a numerical result for the magnitude of these in-

vestment changes. The notion that the ETF tax loophole significantly affects

investor portfolios is consistent with Moussawi et al. [11], who observe the im-

portance of tax considerations in flows from MFs to ETFs for high-net-worth

clients. Investment advisors for this clientele of highly tax-sensitive investors

have a much larger portion of ETF holdings in their portfolios, compared to

other investment advisors, as Moussawi et al. [11] report.

The structure of this thesis is as follows. First, we describe the necessary

background information required to understand the contents of this thesis in

Chapter 2, including active and passive funds, the ETF tax loophole, portfolio

optimization techniques, and portfolio optimization under a distorted proba-
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bility model. In Chapter 3, we explore a setting that allows us to solve the

portfolio optimization under a distorted probability model explicitly and we

analyze the solution’s sensitivity to a shift in the expected return. In Chap-

ter 4, we develop an approximation that will allow us to solve the optimal

portfolio weights under a general distorted probability model. This approxi-

mation is used to estimate how an investor’s strategy will change in the event

that the ETF loophole is closed. We provide concluding remarks in Chapter 5.
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Chapter 2

Necessary Background

In this chapter, we describe the background knowledge that is necessary to

understand the remainder of this thesis. In Section 2.1, we provide an expla-

nation of active funds and passive funds. We then introduce MFs and ETFs

and discuss their differences. In Section 2.2, we discuss the legal loophole that

allows an ETF to shield their investors from capital gains taxes. In Sections 2.3

and 2.4, we describe the fundamentals of portfolio optimization and expected

utility, a common portfolio optimization technique. In Section 2.5, we discuss

how expected utility can be extended to a distorted probability model that

incorporates investor biases on tail events.

2.1 Active and Passive Funds

Creating a diverse portfolio significantly reduces the amount of inherent risk

the portfolio has. A diverse portfolio is highly sought after among all kinds of

investors. However, if the investor lacks the time or knowledge to properly re-
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search investment opportunities, they may not be able to achieve the amount

of diversification they desire. Additionally, it is not cost efficient for an in-

vestor with a small amount of capital to invest directly into multiple stocks

due to numerous transaction fees. To aid in diversification and reduce costs,

the investor can choose to invest in a fund, in addition to other securities. A

fund represents a collection of assets and usually follows an index, commodity,

sector, or some other collection of securities. Investing in a fund has multiple

benefits, as it provides exposure to a large amount of assets providing instant

diversification, requires less knowledge and research for a time-strapped in-

vestor, and can be more cost efficient due to a smaller amount of transaction

fees than investing in multiple stocks.

A fund can typically be placed into one of two categories: actively man-

aged or passively managed. Both of these fund types have a fund manager.

The active fund manager makes the final decision as to what the fund should

invest in, which is a time consuming process. In addition to investment de-

cisions, the manager also oversees performance reporting, portfolio balancing,

and other duties related to the fund. For the manager’s expertise and hands-

on approach, an investor will typically pay a premium in order to invest their

capital into an active fund. This premium takes the form of a management

fee. A passively managed fund also requires a manager. The passive fund

manager is required to re-balance the fund after a change in the underlying

(e.g. an index, commodity, etc.), and to report performance among other du-

ties. However, the passive fund manager does not make investment decisions

like their active manager counterpart, as their fund mirrors some underlying.

The passive fund manager typically has less work than that of the active fund
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manager. As such, the management fees that accompany investment into an

active fund are significantly higher than those of a passive fund. While either

an MF or an ETF can be actively or passively managed, it is more common

for MFs to be actively managed and for ETFs to be passively managed.

It has been shown that actively managed funds (e.g. MFs) have histori-

cally worse average performance when compared to their passively managed

(e.g. ETFs) counterparts; see Gruber [7] and Polkovnichenko et al. [12]. De-

spite this historically inferior performance and higher associated management

fee, Gruber [7] found that investors prefer to invest in actively managed funds

over their passive counterparts. This observed investor behaviour is referred

to as the “mutual fund puzzle”. Polkovnichenko et al. [12] proposed that

an investor chooses to invest in an actively managed fund over its passively

managed counterpart as an investor believes that the presence of a hands-

on manager will protect them from significant losses and allow them to realize

larger gains than those of a passive fund. This belief results in an investor bias

between the two types of funds. For the assumed downside protection and up-

side potential, investors are willing to pay a relatively high management fee

for active funds when compared to the management fee of the passive coun-

terpart. This stands in contrast to what the standard mathematical models

for portfolio optimization dictate, as the investor is giving up an expected

higher average return due to a bias towards tail events. Therefore, we use

a mathematical model that incorporates a tail-overweighting bias to describe

the observed market behaviour between investment in actively managed and

passively managed funds. Investor bias towards tail events is one of many

possible explanations to the “mutual fund puzzle”. In this thesis, we take an
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MF to represent an actively managed fund and an ETF to represent the MF’s

passively managed counterpart. As such, when describing the observed market

behaviour for portfolios containing these funds, we use a model that incorpo-

rates investor biases. To do so, we will employ an RDEU model, which distorts

the underlying probability. This model is described in detail in Section 2.5.

2.2 The ETF Tax Loophole

Unlike MFs, ETFs were originally structured to have a high tax efficiency; see

Gastineau [6]. The lower management fees and high tax efficiency of ETFs

are partially responsible for driving a meteoric rise in their popularity among

investors. In 2020 alone, Rosenbluth [16] found that 290 billion USD was

invested into the top three ETF providers: BlackRock, State Street Global

Advisors, and Vanguard. Together, these three firms account for 81% of the

over 5 trillion USD invested in ETFs [16]. These firms, in addition to many

others, have been found to be taking advantage of in-kind redemptions, which

allow ETFs to avoid incurring taxable capital gains when selling appreciated

assets. Subsequently, this practice allows ETF investors to defer paying capital

gains taxes until they sell their ETF shares, as Mider et al. [10] report. While

some view this as a smart tax strategy, Colon [3] and Hodaszy [8] consider it

as a loophole in the tax code. We now describe the history of the tax loophole,

how it works, and its consequences.

In the US, it is typical that tax must be paid on capital gains that have

been realized on an asset when that asset is sold. Due to a 1969 tax law signed

by then US President Nixon, ETF investors are able to avoid paying capital
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gains taxes when the fund is selling an appreciated asset. This tax law in fact

precedes the first ETF by over 20 years. To explain how the loophole works,

we present a similar scenario as that described in Mider et al. [10], where an

ETF must undergo a re-balance.

First, imagine an ETF whose portfolio contains ten stocks labeled one

through ten. This portfolio mirrors some market index that contains the same

ten stocks. Further, we assume that the ETF holds this portfolio for one year.

At the end of the year, stock five has been removed from the index, so the

ETF must re-balance its portfolio due to this index adjustment. In order to

re-balance the portfolio to match the underlying index, the ETF must sell

its entire holding of stock five. If stock five has gained in value from a year

ago and the ETF sells stock five at its current value, the ETF investors will

incur a significant amount of capital gains tax. To avoid this, the ETF can take

advantage of a loophole in the US tax code that allows for in-kind redemptions

to withdrawing investors. To use this loophole, the ETF asks a friendly bank

to invest using stocks that mirror the ETFs portfolio prior to re-balancing at

the current value held of stock five. The next day, the bank withdraws its

investment and to satisfy their withdrawal, the ETF transfers to the bank the

appropriate amount of shares of stock five equal to the value of their original

investment. This is called an in-kind redemption. The remaining value of

stock five in the ETF’s portfolio, leftover from the banks original investment,

can be sold without incurring capital gains taxes, as the bank’s withdrawal

and stock sale typically takes place a day after the bank’s original investment,

so it is unlikely that a significant price change occurred. The ETF was able to

successfully sell off an appreciated asset without incurring capital gains tax,
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thanks to a friendly bank and the ability to perform in-kind redemptions. If the

ETF simply sold the appreciated asset in the traditional sense, then it would

have incurred taxable capital gains taxes for its investors. The previously

described transaction between the ETF and the bank is known as a “heartbeat

trade” [10], as the large inflow and outflow of the ETF’s capital when graphed

resembles that of a heart rate monitor. These “heartbeat trades” will often

occur when an ETF has to restructure its portfolio, and it allows an ETF to

negate the majority of the taxable capital gains on an asset. Depending on

the ETF issuer, it is generally known beforehand to external analysts when

this kind of trade will occur due to the ETF’s restructuring schedule. This is

shown in Figure 2.1, where a spike in the inflow and outflow of capital of an

ETF shows when restructuring occurs. In Mider et al. [10], this tax loophole

is called “Wall Street’s ‘Dirty Little Secret’” following a comment by an ETF

manager. The main driver of this loophole is an ETF’s ability to perform

tax-free in-kind redemptions.

Figure 2.1: Regularly occurring “heartbeat” trades in an ETF due to portfolio
restructuring, provided by Mider et al. [10]

The ability to perform in-kind redemptions is a highly desirable aspect of

ETFs. These types of redemptions allow the ETF manager to defer capital
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gains at the fund level to taxable gains at the investor level to when the

investor sells; compare to Colon [3]. This is advantageous for ETF investors

because they can keep a large investment in the ETF and decide to realize

their capital gains when it is optimal for them, taking tax considerations into

account. If the ETF did not take advantage of in-kind redemptions when

selling an appreciated asset, the incurred capital gains tax from the sale would

be paid by the ETF investors in that tax year, reducing their overall return.

MFs must typically sell securities in order to increase liquidity when there are

large withdrawals by investors, resulting in the MF incurring a capital gains

tax if the sold assets had appreciated. Meanwhile, when ETFs experience large

volumes of outflows, they are able to take advantage of in-kind redemptions

to significantly reduce the amount of capital gains tax that its investors must

pay [16]. In fact, as the ETF is not actually selling the security, the investors

do not incur capital gains tax. Further, due to the low turnover rate of their

portfolio securities, ETFs often do not incur any taxable capital gains. It is

estimated that a total of 94% of the ETFs managed by BlackRock, State Street

Global Advisors, and Vanguard did not incur any capital gains tax for 2020

due to the ETF tax loophole and a low asset turnover rate [16]. By supposedly

taking advantage of this legal loophole, State Street’s S&P 500 ETF has not

reported a taxable gain in 22 years as of 2019, while the corresponding MF run

by Fidelity Investments that also tracks the S&P 500 reported a taxable gain in

10 of the past 22 years [10]. Using this tax loophole, State Street’s ETF in 2018

was able to avoid paying taxes on approximately 4 billion USD of capital gains

by declaring a 309 million USD loss to the IRS [10]. At the maximum tax rate

for capital gains of 20% [8], that equates to 800 million USD of deferred taxes
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in 2018. Hodaszy [8] proposes a change in the tax code that would allow ETFs

to remain an attractive investment among investors, while allowing the ETF

investors to defer capital gains taxes from in-kind redemptions to a future year,

where the amount of tax the ETF would pay is proportional to the amount

of gain the fund realized on the in-kind redemption. It is interesting to note

that ETFs are a popular investment also in countries that do not have this

loophole or ability to perform tax-free in-kind redemptions [10].

This legal loophole is not a total removal of taxes on capital gains on ETF

investors, however. When an ETF performs a “heartbeat trade” to avoid

capital gains tax when selling an appreciated asset, the capital gains remain

in the ETF, increasing its value. As this capital gain is not taxed, it increases

the ETF’s return by an amount larger than if taxes were applied to the gain.

When an investor withdraws their investment, they are subsequently required

to pay more in capital gains tax due to this higher return. A mathematical

approach to determine the amount that an ETF’s return is increased due to

the loophole is discussed in Section 4.3.

2.3 Portfolio Optimization

When investing their capital, it is an investor’s desire to maximize their ex-

pected return in accordance to their risk preferences. Additionally, if an in-

vestor decides to divide their wealth between numerous assets, then the natural

question arises of how that wealth should be distributed in order to maximize

their expected return given their risk preferences and the riskiness of the as-

sets. This problem is the basis of portfolio optimization, and is one that retail
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investors and fund managers both share. Prior to exploring potential solu-

tions to this problem, we first explore the underlying mathematics of portfolio

optimization.

Since an investor does not know how their investment will behave over

the course of a holding period, we use a random variable to represent the

wealth at the terminus this period. The terminal wealth, denoted by WT ,

is represented by the equation WT = w0(1 + θ⊤YT ) = w0(1 +
∑︁n

k=1 θkY
k
T ).

This random variable assumes a market model with n risky assets, where each

component of the vector YT represents a risky asset’s return. Each component

of the vector θ, θk, represents the initial proportion of the investor’s starting

wealth allocated to the risky asset modelled by Y k
T . Thus, we refer to θ as

the weight vector. It is also sometimes referred to as a strategy. Each Y k
T

is itself a one-dimensional random variable, that has an associated expected

return µk and standard deviation σk. The expected returns of each risky asset

is compiled into an expected return vector denoted by µ = (µ1,...,µn)
⊤. The

standard deviation represents the riskiness of an asset. If an asset’s standard

deviation is high, then the asset’s return distribution is wider and there is a

greater chance of achieving a large return or significant loss. As there is a

higher chance of realizing an outlier event given a higher standard deviation,

the asset is a riskier investment. If Y k
T has a small σk, comparatively speaking,

then the asset is much safer as we are more confident we know the range

where the realized return will land in the return distribution. The components

of YT may additionally be correlated with one another. These correlations,

along with the standard deviations of the risky assets, can be used to form

a covariance matrix, which we denote by Σ and whose elements are given
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by Σi,j = Cov(Y i
T , Y

j
T ) = corr(Y i

T , Y
j
T )σiσj. Here, Cov(X, Y ) and corr(X, Y )

represent the covariance and correlation, respectively, between the random

variables X and Y . The initial wealth is represented by w0, and for simplicity

we set w0 = 1. With w0 = 1, the wealth equation takes the form WT =

1 + θ⊤YT .

In our market model, there also exists a risk-free asset. Typically, this asset

represents a bond or bank account, where the exact return is deterministic.

We represent the wealth allocated to the risk-free asset as θ0, and apply the

constraint that
∑︁n

k=0 θk = 1. In the case where
∑︁n

k=1 θk < 1, the remainder

of the investor’s wealth is allocated to a risk-free asset, which has the risk-free

interest rate of rf . In the event where
∑︁n

k=1 θk > 1, then θ0 takes a value less

than zero to represent a loan with interest rate rf from the risk-free asset. For

this thesis, we set rf = 0, but all results can be extended to non-zero risk-free

interest rates with simple adjustments.

Analyzing the equation for the terminal wealth, we see that it is dependent

on the initial weight vector θ. The goal of portfolio optimization is to find the

initial weight vector θ that will maximize the expected terminal wealth against

some predefined risk preferences. The application of the risk preferences is

dependent on the technique of portfolio optimization that is used. There are

numerous techniques of portfolio optimization, and in this thesis we focus on

an extension of the expected utility model. The expected utility model and

its subsequent extension are described in Sections 2.4 and 2.5, respectively.
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2.4 Expected Utility Portfolio Optimization

The technique of expected utility with regards to portfolio optimization is fairly

straightforward. A utility function, denoted by u, is applied to an investor’s

terminal wealth. It is the goal of this technique of portfolio optimization to

find the optimal portfolio weight vector, θ∗, such that the expectation of the

terminal wealth’s utility value is maximized. Mathematically, this optimiza-

tion problem is expressed as

argmax
θ

E[u(WT )].

Recall that the terminal wealth WT is dependent on weight vector θ, as dis-

cussed in Section 2.3. Depending on the utility function used and the dis-

tribution of the terminal wealth, this optimization cannot always be solved

explicitly. In that case, a solution can be approximated numerically. With a

continuously distributed WT , the expectation takes the form of an integral.

The choice of utility function will represent an investor’s risk preferences

and how they perceive wealth. A concave utility function is used to represent

an investor who is risk averse, and a convex function is used to represent an

investor who is risk seeking. For example, if we are risk averse we perceive

the difference between $100 and $150 to be much greater than the difference

between $1,000 and $1,050, despite the absolute difference of $50 being the

same in both cases. This is because in the first case, the addition of $50 is a

much larger proportion of the wealth than in the second case, and the impact

of a wealth change at a lower value has more influence over our decision. In

order to represent this, we use concave utility functions. Additionally, a utility
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function should be increasing, as a higher utility value of the wealth is more

desirable than a lower one. As the utility function is increasing and concave,

it is effortless to find that u(150) − u(100) > u(1,050) − u(1,000). Thus, an

absolute gain or loss at a lower wealth level has more impact on a risk averse

investor’s decisions than the equivalent absolute gain or loss at a higher wealth

level. To represent investors who are risk seeking a convex utility function is

used, and an analogous explanation is given.

To further demonstrate the use a utility function for a risk averse investor,

we explore a simple binomial model. Assume that a random variable W , rep-

resenting the terminal wealth, can take either $50 or $0 with equal probability.

It is simple to find that E[W ] = $25. With a concave utility function, we find

E[u(W )] = (u($50) + u($0))/2 < u($25) = u(E[W ]). This is also immedi-

ate from Jensen’s inequality. This inequality appropriately represents a risk

averse investor, as a negative outcome will have a larger effect on the invest-

ment decision more than a positive one. We can use a convex utility function

if the investor is risk seeking, and the logic and inequality would be reversed.

Due to these properties, utility functions are used to represent an investor’s

risk preferences. As an investor is typically risk averse, we will only focus on

concave utility functions in this thesis.

There are various different forms of utility functions, and each form ex-

hibits specific characteristics. An investor will choose a utility function in

accordance to the function’s characteristics that most accurately match their

risk preferences. Furthermore, the choice of utility function is also dependent

on the underlying random variable. Specifically, the domain of the utility

function must include the range of the random variable. We analyze three
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possible utility functions below in Sections 2.4.1, 2.4.2, and 2.4.3, in addition

to providing a visual representation of these in Figure 2.2.

Figure 2.2: Various concave utility functions

2.4.1 Power Utility

A power utility function exhibits the property of constant relative risk aversion

(CRRA). This property is represented by the ratio −u′′(x)
u′(x)

x. An example of a

power utility function is u(x) = x1−γ/(1− γ), which is shown in the left panel

of Figure 2.2 for different values of γ. The level of risk aversion in the case

of power utility is dependent on the parameter γ, and γ is also equal to the

CRRA measure. For γ > 1 and 0 < γ < 1, we obtain a concave function. A

larger value of γ increases the curvature, and thus represents an investor who

is more risk averse. The limiting case of γ → 1 is described in Section 2.4.3.

A drawback of using a power utility function is that the domain is restricted

to the positive domain. Consequently, the random variable it is being applied

to is not able to take negative values.
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2.4.2 Exponential Utility

An exponential utility function exhibits the property of constant absolute risk

aversion (CARA). This is measured by the ratio −u′′(x)
u′(x)

. An example of an

exponential utility function is u(x) = −e−γ x/γ, where γ represents the risk

aversion parameter and the CARA measure is found to be equal to γ. We

demonstrate the shape of exponential utility functions for different levels of

risk aversion in the middle panel of Figure 2.2. For positive values of γ, we

obtain a concave function that represents a risk averse investor. As in the case

of power utility, a higher value of γ corresponds to an investor who is more

risk averse. Unlike power utility functions, however, an exponential utility

function is able to map values from the whole real line, so we are able to use

any type of random variable in the optimization problem.

Using an exponential utility function and a random variable with a dis-

tribution from the exponential family will often allow one to explicitly solve

for the optimal weight vector θ∗ in the expected utility optimization problem.

For normally distributed wealth and utility function u(x) = −e−γ x/γ, this

solution takes the form of θ∗ = 1
γ
Σ−1µ, where Σ is the covariance matrix of

the risky asset returns and µ is the expected return vector of the assets with

the assumption that the risk-free interest rate is zero. Recall that our wealth

equation is given byWT = 1+θ⊤YT when the initial wealth is equal to one. We

introduce a new random variable XT , which is given by XT = WT −1 = θ⊤YT .

This new random variable represents a shift in the initial wealth level. When

using an exponential utility function for expected utility portfolio optimiza-

tion, the optimal weight vector θ∗ associated with WT is the same optimal
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weight vector that is associated with the random variable XT , as the optimal

weights do not depend on the initial wealth level.

2.4.3 Logarithmic Utility

Recall that in the case of power utility, the function is u(x) = x1−γ/(1 − γ).

By taking the limit as γ → 1 and applying L’Hôpital’s rule, we obtain

lim
γ→1

x1−γ

1− γ
= log(x),

where log(x) denotes the natural logarithm. The logarithmic utility function

exhibits the CRRA property, with its CRRA value equal to one. We show the

logarithmic utility function in the right panel of Figure 2.2. While both the

power and exponential utility functions have horizontal asymptotes at zero

when γ > 1, the logarithmic utility function has no horizontal asymptote.

As is the case with the power utility function, the domain of the logarithmic

utility function is restricted to positive values.

2.5 Rank-Dependent Expected Utility

When deciding what assets to invest their money into, an investor will some-

times overweight or underweight the probability of the extreme scenarios that

an asset can realize. This phenomenon has been shown empirically numerous

times, including by Camerer and Ho [2], and Tversky and Kahneman [17].

While a utility function can be used to represent an investor’s risk aversion,

it cannot properly represent an investor’s bias of the tail probabilities. There-
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fore, we must extend the expected utility model to incorporate these investor’s

biases.

To better understand the phenomenon of investor bias, we offer some exam-

ples. Let us imagine that a certain asset’s return follows a normal distribution

with standard deviation σ. The probability that a fund has a very large gain

(> 2σ) is very small and unlikely to occur. An eager investor would of course

be ecstatic if their investment had such a high return, and will subsequently

develop a bias. This investor will overweight the probabilities of the right tail

events as they believe that they will be the lucky one who will realize this

significant and unlikely return. Consequentially, this investor is more willing

to invest their money into this asset, despite the real world probability of ex-

periencing this significant gain being less than 2.5%. On the other side of the

distribution we have the investor’s losses. The probability of realizing a sig-

nificant loss (< −2σ) is also incredibly small. Despite this, a hesitant investor

will view this scenario and choose not to invest due to the possibility, not the

probability, of a significant loss. This hesitant investor is overweighting the

probability of the left tail events in the distribution. Meanwhile, a third and

perhaps more relatable investor is likely to overweight the probability of both

the left and right tail events when deciding to invest, as they not only believe

they can achieve a significant gain, they are also hesitant due to the risk of

a large loss. Despite certain events having an incredibly small probability of

occurring, investors believe that these low probability events will happen to

them. A more colloquial example of this phenomenon is someone who always

buys a lottery ticket but refuses to hike in the Rockies out of fear of animal

attacks. While both the probabilities of winning the lottery and being de-
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voured by a hungry grizzly bear are essentially zero, this person believes that

they are not only going to be the lucky winner of a lottery, but also that if

they step foot in the mountains an unfortunate encounter with a grizzly bear

is inevitable.

In order to represent these investor biases, a probability weighting func-

tion is used. A probability weighting function, which we will denote by G,

satisfies certain properties that correspond to the aforementioned biases. The

weighting function is monotonically increasing, continuous, has domain and

range equal to [0,1], with G(0) = 0 and G(1) = 1, and is differentiable on

(0,1). Additionally, G has an inverse S-shape which allows an overweighting

to be applied to the probabilities of tail events. The exact curvature of the

weighting function is typically parameter dependent. Examples of weighting

function and the possible curvatures are explored later in Sections 3.2 and 4.2,

and visual examples are provided in Figures 3.1 and 4.1. The curvature of a

weighting function produces a non-linearity on a distribution’s probabilities.

Further analysis of a weighting function is given by Wu and Gonzalez [18]. The

weighting function is applied to the cumulative distribution function (CDF)

of a random variable in order to distort the probabilities. This allows the

weighting function to model the investor’s risk attitude for the probabilities of

the ranked events [12].

When we use a probability weighting function, we are modifying the orig-

inal probabilities. When we use the modified probabilities with the expected

utility model, we obtain the RDEU model. The RDEU model is presented and

thoroughly analyzed by Quiggin [15]. Using this new framework and a contin-

uously distributed random variable, our classical expected utility integral for
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continuous random variables morphs into

∫︂ ∞

−∞
u(w) dG(FWT

(w)) =

∫︂ ∞

−∞
u(w)Z(FWT

(w)) dFWT
(w)

= E[u(WT )Z(FWT
(WT ))],

where Z represents the derivative of our weighting function G, and FWT
repre-

sents the CDF of the wealth WT . With this new integral, our expected utility

optimization problem under the RDEU framework now takes the form

argmax
θ

E[u(WT )Z(FWT
(WT ))].

Analyzing this expectation, we see that an investor will be overweighting

the probability of scenarios ω that satisfy Z(FWT
(WT (ω))) > 1 compared

to the real world probability. By contrast, the investor is underweighting

the probability of scenarios ω with Z(FWT
(WT (ω))) < 1. For scenarios ω with

Z(FWT
(WT (ω))) = 1, the investor has no bias when compared to the real world

probabilities. Scenarios with overweighted probabilities will have a greater im-

pact on the optimal solution, and those with underweighted probabilities will

have less of an impact on the optimal solution. Depending on the form of the

weighting function and its derivative, the utility function, and the distribution

of the wealth, we may or may not be able to solve the optimization problem

explicitly.

The RDEU model provides an explanation of the “mutual fund puzzle”, as

it is able to mathematically represent an investor overweighting tail probabili-

ties [12]. Additionally, Polkovnichenko et al. [12] found that the RDEU model
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allows one to represent the investor bias for active funds over passive funds

due to the perceived downside protection and upside potential. In this thesis

we use an RDEU model as we are interested in investor portfolios containing

MFs and ETFs, where the MF represents an active fund and the ETF repre-

sents a passive fund. Given the observed market behaviour of investment in

active and passive funds, it would be incorrect to use a classical model when

describing investor portfolios due to the investor biases.

As weighting function G is applied to a CDF of a random variable, the

rank orders of the outcomes for Z(FWT
) and Z(FXT

) are equivalent, where

WT = 1 + θ⊤µ and XT = WT − 1. Depending on the utility function chosen,

we are therefore able to find the same optimal strategy using either WT or

XT , in the RDEU framework. If we also use an exponential utility function,

discussed in Section 2.4.2, we will find the same optimal weight vector θ∗ using

either XT or WT under a distorted probability model.
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Chapter 3

An Explicit Case

In this chapter, we will investigate a specific setting that will allow us to

explicitly solve the RDEU optimization problem. We begin by specifying the

market model in Section 3.1. In Section 3.2, we introduce a specific weighting

function, analyze its properties, and solve for the optimal portfolio weights in

the RDEU model using this specific weighting function. Finally, in Section 3.3,

we analyze how the optimal portfolio weights vary given a theoretical change

in the ETF’s expected return.

3.1 The Market Model

We assume that our market has a risk-free asset and n risky assets, whose

returns follow a multivariate normal distribution with mean vector µ and co-

variance matrix Σ. These parameters µ and Σ correspond to a single holding

period. In a real-world setting, we can extract expected returns, volatilities,

and correlations for risky assets from historical data, market projections, and
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options. The risky asset return random vector is represented by YT . We as-

sume that Σ is invertible, therefore no arbitrage opportunities exist in the

market. The optimal portfolio weights will be denoted by θ∗, and these will

represent the proportion of initial capital that should be invested into the risky

assets at the start of the holding period that will maximize the rank-dependent

expected utility value. As stated in Section 2.3, we set the initial wealth w0

equal to one and the risk-free interest rate equal to zero. Therefore, the equa-

tion for our terminal wealth is given by WT = 1+ θ⊤YT . Since our risky assets

follow a multivariate normal model with mean vector µ and covariance matrix

Σ, our wealth will have distribution N(1 + θ⊤µ, θ⊤Σθ). As there exists a

possibility our wealth can realize a negative value, we will use an exponential

utility function of the form u(x) = − exp(−γx)/γ, previously described in Sec-

tion 2.4.2. As a consequence, we are able to use XT = WT −1 = θ⊤YT in place

of WT = 1+ θ⊤YT to represent the terminal wealth. The random variable XT

will have the distribution N(θ⊤µ, θ⊤Σθ). For the remainder of this thesis, we

will use the random variable XT . The CDF of XT we will denote by FXT
, and

its corresponding probability density function (PDF) by F ′
XT

.

In our model, we assume that the gains are only realized at the end of

the holding period. Therefore, we are only concerned with the distribution

of the terminal wealth. Further, we assume no interaction can take place

between the investor and their wealth after their initial investment until the

end of the holding period, when they realize their gains. As we have no

intertemporal consumption and are only interested at the beginning and end

of the investment period, we do not use a continuous time stochastic model.

Instead, we use a single-period model.
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3.2 Derivation

In this section, we determine the optimal portfolio weights in the distorted

probability model. As we are using an RDEU model, we require a weighting

function that will allow us to explicitly solve the optimization problem from

Section 2.5. To accomplish this, we will use the weighting function

G(P ) = Φ(αΦ−1(P )),

where Φ represents the CDF of the standard normal distribution and α rep-

resents the level of distortion. This weighting function was presented by Hu

et al. [9], however, they only consider the case where α = 1/
√
2. We will now

explore some key properties of this function. For α > 0, this function sat-

isfies the properties of a weighting function, which were previously described

in Section 2.5. When α ∈ (0,1) we obtain an overweighting of both the tail

probabilities that is symmetric about P = 1/2. This is shown in Figure 3.1 for

various values of α. This means that an investor will apply equivalent over-

weightings to both left and right tail probabilities. For α = 1, the weighting

function becomes G(P ) = P and we have no distortion. As α decreases from

one, the distortion increases symmetrically on both the right and left tails

of P . The inflection point of this weighting function, for α ∈ (0,1), is equal

to 1/2. For α in this range, the amount of tail distortion will increase as α

decreases. We will refer to this weighting function as the normal weighting

function.

In our RDEU optimization problem, recall that we are solving for the

weight vector θ that maximizes the expected value E[u(XT )Z(FXT
(XT ))],
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Figure 3.1: Effects of parameter α on normal weighting function curvature

where Z represent the derivative of a weighting function G. Taking the deriva-

tive of our normal weighting function, we obtain

Z(P ) = α
Φ′(αΦ−1(P ))

Φ′(Φ−1(P ))
.

We substitute into the above equation the normal CDF of our terminal wealth

XT given by FXT
(XT ) to find

Z(FXT
(XT )) = α exp

(︃
1− α2

2

(︃
XT − θ⊤µ√

θ⊤Σθ

)︃2)︃
.

Given the framework described in Section 3.1, we are able to explicitly solve
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for the optimal weights given the distorted probability. We do so by writing

E[u(XT )Z(FXT
(XT ))]

=

∫︂ ∞

−∞
u(x)Z(FXT

(x))F ′
XT

(x) dx

=
−α

γ
√
2πθ⊤Σθ

∫︂ ∞

−∞
exp

(︃
− γx+

1− α2

2

(︃
x− θ⊤µ√

θ⊤Σθ

)︃2

− 1

2

(︃
x− θ⊤µ√

θ⊤Σθ

)︃2)︃
dx

=
−α

γ
√
2πθ⊤Σθ

∫︂ ∞

−∞
exp

(︃
− γx− α2

2

(︃
x− θ⊤µ√

θ⊤Σθ

)︃2)︃
dx

=
−α

γ
√
2π

∫︂ ∞

−∞
exp

(︃
− γ

(︁
θ⊤µ+

√
θ⊤Σθy

)︁
− α2

2
y2
)︃
dy

=
−1

γ
exp

(︃
− γθ⊤µ+

γ2

2α2
θ⊤Σθ

)︃
.

From this point, we take the partial derivative of the above expression with

respect to θ, utilizing properties from matrix calculus. As the variable we are

optimizing over exists only in the argument of the exponential, it is enough to

take the partial derivative of the argument itself. We set this partial derivative

equal to zero, and find

[0, . . . ,0]⊤ =
∂

∂θ

(︃
− γθ⊤µ+

γ2

2α2
θ⊤Σθ

)︃
= −γµ+

γ2

α2
Σθ,

which yields the optimal solution for θ to be

θ∗ =
α2

γ
Σ−1µ. (3.1)

This solution is obtained when using either WT or XT to represent our wealth.

To verify that this indeed is a maximum, it is useful to check the second

partial derivative with respect to θ∗. This is equal to the positive definite

28



matrix γ2

α2 Σ, affirming that the solution in (3.1) is indeed the global optimizer.

In the case of α = 1, we recover the solution from classical expected utility

with exponential utility, described in Section 2.4.2. For values α < 1, the

investor will simply allocate less of their initial wealth to their risky assets

than they would in the case where no distortion is applied. This reduction is

proportional across all risky assets. This is despite the fact that the investor is

overweighting both the left and right tail probabilities equally. This reduction

in risky asset investment can be explained by the fact that for a concave utility

function, negative outcomes have a greater influence on the optimal weights

than positive outcomes. This influence grows as more distortion is applied, as

the weighted negative outcomes have more impact on the wealth’s utility value

than the weighted positive outcomes, due to the concavity of utility function.

It follows that the investor will increase their investment in the risk-free asset

due to the reduction in risky asset investment.

There are a few reasons why we were able to solve this optimization problem

explicitly despite using a distorted probability model. In our expected value,

the multiplication of our weighting function’s derivative, PDF of the wealth

distribution, and utility function resulted in a single exponential function. This

exponential had an argument directly containing the variable of integration in

a polynomial of degree less than two with a negative coefficient on the squared

term. These traits allowed us to explicitly solve for the optimal weights, and

will heavily influence our procedure in Chapter 4.

29



3.3 A Change in Expected Asset Returns

Now that we have an analytical result for the optimal portfolio weights under

our specific RDEU framework, we are able to analyze how the optimal weights

will change in a portfolio containing an MF and ETF in the event that the

ETF’s expected return shifts. We can obtain the optimal strategy for this

bi-variate market model using (3.1). This optimal strategy will be denoted

by θ∗ = [θ∗1, θ
∗
2]

⊤, where θ∗1 corresponds to the initial proportion of wealth

allocated to the MF and θ∗2 represents the proportion of wealth allocated to

the ETF.

We represent the ETF’s new expected return by shifting its original ex-

pected return, µ2, by some value τ , so that the new return is given by µ̃2 =

µ2−τ , while the expected return of the MF remains unchanged and equal to µ1.

We assume that τ > 0, so we have µ̃2 < µ2. We denote µ̃ = [µ1,µ̃2]
⊤ to be the

expected return vector of the risky assets under this new scenario. The distri-

bution of our terminal wealth with this shifted mean vector is N(θ⊤µ̃, θ⊤Σθ).

For this new distribution, we can compute the optimal strategy using (3.1).

We denote the optimal strategy under the shifted mean vector by θ̃
∗
. We are

interested in how the portfolio weights for the MF and ETF will change under

this shifted mean vector, so we calculate

θ̃
∗ − θ∗ =

α2

γ
Σ−1µ̃− α2

γ
Σ−1µ,

=
α2

γ
Σ−1(µ̃− µ).

This formula holds for multiple risky assets, but since we are only interested in
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the relationship between an MF and an ETF, we consider the two-dimensional

case. As a consequence, we can break this equation down into its components

without much difficulty. We first note that µ̃− µ = [0,− τ ]⊤. As the ETF is

the passive counterpart to the MF, we will assume a positive correlation, and

we denote the correlation by ρ. Consequently, the off-diagonal components of

Σ−1 will be negative. As Σ is a two-by-two matrix, we compute

Σ−1 =

⎛⎜⎝ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

⎞⎟⎠
−1

=
1

σ2
1σ

2
2(1− ρ2)

⎛⎜⎝ σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

⎞⎟⎠ .

Given this matrix inverse, we can directly calculate each component of θ̃
∗−θ∗.

These components, which we denote by ∆θ∗i for i = 1, 2, are given by

∆θ∗1 =
α2ρ

γσ1σ2(1− ρ2)
τ,

∆θ∗2 = − α2

γσ2
2(1− ρ2)

τ.

It is obvious from the above relations that the investment in the ETF

reduces and investment in the MF grows when the ETF’s expected return

decreases, assuming positive correlation ρ. The magnitude of the change in-

vestment strategy is sensitive to changes τ , the size of the expected return

shift, which is to be expected. Furthermore, we find that the absolute change

in weights for both θ∗1 and θ∗2 decreases with α. This is because as α decreases,

applying more distortion to the tail probabilities, the initial investment in

both assets decreases, resulting in a smaller shift in the optimal strategy. For

investors who are more risk averse, which is represented by a high γ value,
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their initial investment in both the ETF and MF is less than that of investors

who have a lower risk aversion, so the change in strategy for highly risk averse

investors is smaller as well. For ∆θ∗1 and a non-zero correlation, we find that

the investment in the MF will increase as the ETF’s mean is decreased because

the ETF becomes a less attractive investment, thus making the MF relatively

more attractive to investors. This is an example of the substitution effect.

If the correlation between the returns of the two assets is zero, then the

optimal weight of the MF will remain unchanged. That is, if ρ = 0, then

any change in the mean of the ETF will not alter the investment in the MF.

For positive and increasing correlation, the MF will become more sensitive

to changes in the ETF, and vice versa. In this case, it will become easier

to replace one asset by the other in the portfolio, due to their increasingly

similar return structure. We do not consider the case where ρ = 1, as this will

admit an arbitrage opportunity between the two risky assets. Interestingly,

∆θ∗1 still contains a term of σ2, so if the ETF has a high standard deviation,

there will be a smaller change in the portfolio weight of the MF. While this

is obvious mathematically, we also provide a financial explanation. Given

positive correlation, an investor is less willing to invest more of their capital

into the MF, as its return structure is still correlated to the ETF. If the ETF is

a significantly risky investment, then covariance between the MF and ETF will

be higher, leading to more volatility in the MF’s return structure, resulting in

the MF being a less attractive investment. Similar arguments can be made for

the case where we increase the ETF’s expected return, or in the case where

we alter the MF’s return.

We have analyzed using the normal weighting function how a change in the
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ETF’s expected return will result in a decrease in initial portfolio allocation to

an ETF and an increase in initial portfolio allocation to the corresponding MF.

The extent of the shift in optimal strategy is dependent on multiple factors,

including the shift in the ETF’s expected return, the distortion parameter of

the weighting functions, and the covariance structure of the model. While this

problem is relatively easy to solve given this chapter’s explicit framework, we

would like to consider this problem in a more general setting. We do so in the

following chapter.
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Chapter 4

An Approximation

In Chapter 3, we saw that if given a specific form of the weighting function’s

derivative, along with normally distributed wealth and an exponential utility

function, we were able to solve explicitly for the optimal weights. With our

normal weighting function from the previous chapter, shown in Figure 3.1,

the distortion applied to the probabilities is symmetric about P = 1/2, and

P = 1/2 is also the normal weighting function’s inflection point. Keeping

these properties in mind, we will form an approximation for the derivative of

a generic weighting function in Section 4.1. Using this approximation, we will

solve for the optimal portfolio weights using this in our RDEU model. In Sec-

tion 4.2, we analyze the accuracy of our approximation with numerical results.

Finally, in Section 4.3, using our approximation we answer our question of how

the ETF tax loophole will affect investor portfolios in the event it is closed.

As before, we only consider a single-period model.
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4.1 Derivation

We form an approximation on the derivative of our probability weighting func-

tion, as in the RDEU model the calculation of the expected value requires the

derivative of the weighting function. Firstly, we will assume for a general

weighting function G, with derivative denoted by Z, that the inflection point

is approximately 1/2, so we have G′′(1/2) = Z ′(1/2) ≈ 0. As before, we set

the risk-free interest rate to zero and initial wealth to one, and we use XT

in place of WT . We assume that the terminal wealth has an approximately

normal distribution. In other words, the CDF of the wealth, FXT
, can be

approximated by a normal CDF. We maintain the notation previously intro-

duced in Section 3.1, where µ represents the vector of expected returns, Σ

represents the covariance matrix of the risky assets, and θ represents the vec-

tor of portfolio weights. We again assume that Σ is invertible, and therefore no

arbitrage opportunities exist. Given our model parameters, for approximately

normally distributed wealth we have the approximations FXT
(E[XT ]) ≈ 1/2,

F ′
XT

(E[XT ]) ≈ 1/
√
2πθ⊤Σθ, and F ′′

XT
(E[XT ]) ≈ 0. We construct a second-

order Taylor approximation on Z(FXT
(XT )) centered about E[XT ], where in

our setting we have E[XT ] = θ⊤µ. This approximation is formed by

Z(FXT
(XT ))

≈ Z(FXT
(θ⊤µ)) + Z ′(FXT

(θ⊤µ))F ′
XT

(θ⊤µ)(XT − θ⊤µ)

+
Z ′(FXT

(θ⊤µ))F ′′
XT

(θ⊤µ) + Z ′′(FXT
(θ⊤µ))

(︁
F ′
XT

(θ⊤µ)
)︁2

2
(XT − θ⊤µ)2

≈ Z(1/2) + Z ′(1/2)F ′
XT

(θ⊤µ)(XT − θ⊤µ)
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+
Z ′(1/2)F ′′

XT
(θ∗⊤µ) + Z ′′(1/2)

(︁
F ′
XT

(θ⊤µ)
)︁2

2
(XT − θ⊤µ)2

≈ Z(1/2) +
Z ′′(1/2)

4πθ⊤Σθ
(XT − θ⊤µ)2

= Z(1/2)

(︃
1 +

Z ′′(1/2)

Z(1/2) 4πθ⊤Σθ
(XT − θ⊤µ)2

)︃
≈ Z(1/2) exp

(︃
Z ′′(1/2)

Z(1/2) 4πθ⊤Σθ
(XT − θ⊤µ)2

)︃
= c1 exp

(︃
c2

(︃
XT − θ⊤µ√

θ⊤Σθ

)︃2)︃
,

where we have set c1 = Z(1/2), and c2 = Z ′′(1/2)/(4πZ(1/2)). From this

point, we solve for the optimal weights using our approximation and an expo-

nential utility function by maximizing E[u(XT )Z(FXT
(XT ))] with respect to

θ. When computing this expectation, we perform a u-substitution to simplify

the integral to obtain

E[u(XT )Z(FXT
(XT ))]

=

∫︂ ∞

−∞
u(x)Z(FXT

(x))F ′
XT

(x) dx

≈ −c1

γ
√
2πθ⊤Σθ

∫︂ ∞

−∞
exp

(︃
− γx+ c2

(︃
x− θ⊤µ√

θ⊤Σθ

)︃2

− 1

2

(︃
x− θ⊤µ√

θ⊤Σθ

)︃2)︃
dx

=
−c1

γ
√
2π

∫︂ ∞

−∞
exp

(︃
− γ

(︁
θ⊤µ+

√
θ⊤Σθu

)︁
+ c2u

2 − 1

2
u2

)︃
du

=
−c1

γ
√
2π

√
π√︂

1
2
− c2

exp

(︃
γ2θ⊤Σθ

2− 4c2
− γθ⊤µ

)︃

=
−c1

γ
√
1− 2c2

exp

(︃
γ2θ⊤Σθ

2− 4c2
− γθ⊤µ

)︃
.

Similarly to Section 3.2, we take the partial derivative with respect to θ of the

exponential argument and set it equal to zero to solve for the optimal weight
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vector. Again, by using properties from matrix calculus we are able to find

[0, . . . ,0]⊤ =
∂

∂θ

(︃
γ2θ⊤Σθ

2− 4c2
− γθ⊤µ

)︃
=

2γ2

2− 4c2
Σθ − γµ.

This provides the solution for the approximate optimal weight vector to be

θ∗ ≈ 1− 2c2
γ

Σ−1µ. (4.1)

As was the case in Section 3.2, we can easily confirm that this is the global

solution by taking the second partial derivative. Using our approximation on

the derivative of the weighting function, we have estimated the solution to the

RDEU portfolio optimization problem as

argmax
θ

E[u(XT )Z(FXT
(XT ))] ≈

1− 2c2
γ

Σ−1µ.

It is clear to see that this solution for the approximated optimal weights is the

same when using either XT or WT to represent the wealth. If we were to use

WT , the approximation of the weighting function derivative is instead given

by

Z(FWT
(WT )) ≈ c1 exp

(︃
c2

(︃
WT − (θ⊤µ+ 1)√

θ⊤Σθ

)︃2)︃
.

In fact, for any approximately normal random variable X, we find the approx-

imation of a probability weighting function’s derivative centered about the

approximate inflection point of 1/2 to be

Z(FX(X)) ≈ c1 exp

(︃
c2

(︃
X − E[X]√︁

Var(X)

)︃2)︃
.
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To verify this approximation, we calculate the values for c1 and c2 for the

case of the normal weighting function G(P ) = Φ(αΦ−1(P )) from Chapter 3. If

this approximation is valid, we hope to return the exact solution found in (3.1).

We first compute c1. Since Φ−1(1/2) = 0, this is a fairly easy computation,

and we find

c1 = Z(1/2) = α
Φ′(αΦ−1(1/2))

Φ′(Φ−1(1/2))
= α

Φ′(0)

Φ′(0)
= α.

So far, this aligns with the normal weighting function from Chapter 3. For c2

we require the second derivative of Z, which for our normal weighting function

we compute as

Z(P ) =
αΦ′(αΦ−1(P ))

Φ′(Φ−1(P ))
,

Z ′(P ) =
α2Φ′′(αΦ−1(P ))(︁
Φ′(Φ−1(P ))

)︁2 − αΦ′′(Φ−1(P ))Φ′(αΦ−1(P ))(︁
Φ′(Φ−1(P ))

)︁3 ,

Z ′′(P ) =
α3Φ′′′(αΦ−1(P ))(︁
Φ′(Φ−1(P ))

)︁3 − 2α2Φ′′(αΦ−1(P ))Φ′′(Φ−1(P ))(︁
Φ′(Φ−1(P ))

)︁4
− αΦ′′′(Φ−1(P ))Φ′(αΦ−1(P )) + α2Φ′′(αΦ−1(P ))Φ′′(Φ−1(P ))(︁

Φ′(Φ−1(P ))
)︁4

+
3Φ′(Φ−1(P ))Φ′(αΦ−1(P ))

(︁
Φ′′(Φ−1(P ))

)︁2(︁
Φ′(Φ−1(P ))

)︁6 .

Substituting in P = 1/2, and using the fact that Φ−1(1/2) = 0, Φ′(0) =

1/
√
2π, Φ′′(0) = 0, and Φ′′′(0) = −1/

√
2π, we find that Z ′′(1/2) = 2πα−2πα3.

Thus, we calculate c2 as

c2 =
Z ′′(1/2)

4πZ(1/2)
=

2πα− 2πα3

4πα
=

1− α2

2
.
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We find that c2 is equal to the coefficient of our normal weighting function

from Chapter 3, which verifies our approximation. Furthermore, it is simple

to see that 1− 2c2 = α2, which agrees with the solution in (3.1).

In addition to approximating a general probability weighting function’s

derivative, we can also form an approximation on the utility function in a

similar manner. For this approximation, we will take a first order Taylor

approximation and centre it about zero, and find for wealth XT that

u(XT ) ≈ u(0) + u′(0)XT

= u(0)

(︃
1 +

u′(0)

u(0)
XT

)︃
≈ u(0) exp

(︃
u′(0)

u(0)
XT

)︃
= u1 exp

(︁
u2XT

)︁
,

where u1 = u(0) and u2 = u′(0)/u(0). With an exponential utility function, it

is trivial to show that u1 = −γ−1, and u2 = −γ which agrees with the form

of our exponential utility function from Section 2.4.2. With this additional

approximation, our approximation for the optimal weight vector in the RDEU

model now becomes

θ∗ ≈ 1− 2c2
u2

Σ−1µ, (4.2)

where

c2 =
Z ′′(1/2)

4πZ(1/2)
, u2 =

u′(0)

u(0)
.

The approximation of the utility function can also be used for classical
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expected utility optimization problems. However, for a more rigorous method

of utility function approximation applied to portfolio optimization problems,

we direct the reader to Fahrenwaldt and Sun [5], who provide a formula that

decomposes the expected utility value using Taylor polynomials in continuous

time and allows for the optimization to be solved explicitly.

4.2 Analysis of Approximation

To evaluate the accuracy of our approximation, we compare our approximated

solution for the optimal weights against numerically solved optimal weights.

For this analysis, we use the Prelec weighting function [14]. This weighting

function takes the form

G(P ) = exp(−(−β log(P ))α).

For this specific weighting function, the shape of the curvature is dependent

on the choice of parameters α and β. In the case where α = β = 1, we have

no distortion and we return the classic expected utility problem. We present

how the parameters α and β affect the shape of the weighting function in

Figure 4.1.

While an in-depth analysis of this weighting function was made by Polkov-

nichenko [12], we offer our own brief interpretation. Looking first at the curves

in the left panel of Figure 4.1, where we set β = 1, we obtain the desired inverse

S-shape of the weighting function. This shape becomes more pronounced for

lower values of α, and we find that the parameter α directly contributes to

40



Figure 4.1: Effects of parameters α and β on the Prelec weighting function
curvature

overweighting in both the left and right tails of the distribution. For β = 1,

the inflection point of the Prelec weighting function is equal to 1/e. As a

consequence, the distortion on the left and right tail is not symmetric.

Next, we briefly explore how changes in β affect the curvature of the weight-

ing function, while holding α = 1. This is shown in the right panel of Fig-

ure 4.1. We notice that the S-shape disappears, and the weighting function

simplifies to G(P ) = P β. For β < 1, the weighting function is concave, and its

curvature becomes more aggressive as we decrease β. We find that decreasing

β will increase the weighting of the left tail probabilities. Consequentially,

values of P close to one are weighted with less importance. In the case where

β ̸= 1, the inflection point of the Prelec weighting function is no longer guar-

anteed to be equal to 1/e, and for β < 1 and α = 1 the inflection point does

not exist.
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4.2.1 Experimental Setup

To validate our approximation using the Prelec weighting function, we com-

pare our approximate solution against a numerical solution for the optimal

weights. As we are only concerned with portfolios containing an MF (active

fund) and an ETF (passive fund), we validate the approximation using two

risky assets from a bivariate normal distribution. We set the first risky asset

in the model to represent the MF, and the second risky asset in our model to

represent the ETF. For our distribution parameters, we set µ = [0.08, 0.085]⊤

as our risky asset return vector, σ = [0.20,0.25]⊤ as the risky assets’ standard

deviations, and ρ = 0.5 as the correlation between the two risky assets. As

before, we set the risk-free interest rate rf = 0, and we use an exponential

utility of the form u(x) = − exp(−γx)/γ with γ = 5. We simulate 200,000

asset returns from a bivariate normal distribution, and with these simulated

returns compute the numerical solution for the RDEU optimization problem.

As we are simulating data, we expect there to be minor deviations between the

simulated distribution parameters and the original parameters. Consequently,

this will lead to deviations in the numerically computed optimal strategy and

the analytically calculated optimal strategy. We compute the mean and stan-

dard deviation of our two simulated risky assets, as well as the correlation

between them. We show this in Table 4.1. In this table we see deviations

µ σ ρ

True Parameter [0.08, 0.085]⊤ [0.20,0.25]⊤ 0.5

Estimated Parameter [0.0799,0.0849]⊤ [0.1999,0.2497]⊤ 0.4987

Table 4.1: Comparison of true and estimated parameters from simulation
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between the simulated distribution statistics and the original statistics. This

will cause discrepancies between the numerically computed and analytical so-

lutions for θ∗, even without probability weighting applied. As such, we can

attribute a small amount in the difference of the numerical and approximated

optimal weights to numerical and simulation error. This error will be clearly

demonstrated in the case where α = 1 and β = 1, when there is no probability

distortion applied, as we are using an exponential utility function and know

the true form of the optimal weights.

We will use (4.1) to approximate the optimal weights. However, we note

that we would obtain the same estimated solution using (4.2), as the two ap-

proximations are equivalent given our choice of an exponential utility function.

We compare the approximated optimal weights from (4.1) to the numerically

computed optimal weights across multiple different parameters of the Prelec

weighting function. For the Prelec weighting function parameters, we take

α ∈ [0.8, 1] and β ∈ [0.9, 1]. We chose these ranges for the parameters in

accordance to [13], where they found the approximate median values for α

and β of the Prelec weighting function to be 0.9 and 0.95 respectively, so we

take intervals such that these values are the centre of their respective interval.

These median values were found to represent an accurate level of observed

investor bias in the market. For values of α and β in their respective range,

the coefficient 1 − 2c2 in (4.1) is positive and less than one, so as we found

with (3.1), we expect to see a proportional decrease in the optimal weights

using our approximation.
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4.2.2 Analysis of Optimal Weights

First, we look directly at the approximated values compared to the numerical

results for the optimal weights θ1 and θ2 in Figures 4.2 and 4.3.

Figure 4.2: Approximated and numerical values for θ1

Figure 4.3: Approximated and numerical values for θ2

Examining these two figures, we see that for high values of α and β (i.e.

minor probability distortion) that approximation of the optimal weights is very

close to that of the numerical solution for both risky assets. In the case where

α = 1 and β = 1, the approximation is more or less equivalent to the numerical
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solution, and the difference between these values can be attributed to devia-

tions in the simulated distribution of the asset returns and numerical error.

For additional comparison, we compute the difference between the approxi-

mated and numerical optimal weights as well as the percentage of numerical

weight accounted for by the approximation, which are shown in Figures 4.4

and 4.5.

Figure 4.4: Comparison of approximated and numerical θ1

Figure 4.5: Comparison of approximated and numerical θ2

Analyzing Figures 4.4 and 4.5, we notice a trend when either α or β are held
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equal to one. First, we will examine the trend when we hold α = 1 and vary β.

In this case, we overestimate the numerical weight. This is due to the fact that

when α = 1, the Prelec weighting function takes the form G(P ) = P β, and it

subsequently does not have an inflection point. When this occurs, the Prelec

weighting function overweights the left tail probabilities and underweights the

right tail probabilities, as shown in the left panel of Figure 4.1. For α = 1

and β < 1, the investor is more hesitant to invest into risky assets due to

overweighting the left tail probabilities. Our approximation, however, assumes

that the inflection point of the weighting function is approximately 1/2, and

thus applies overweighting to both the left tail and right tail probabilities. As

our approximation assumes the investor is also overweighting the right tail

probabilities, we estimate larger optimal weights for the risky assets than if

the right tail probabilities were underweighted. As such, for the case where

α = 1, our approximation overestimates the numerical solution.

In the case where β = 1 and we vary α < 1, the Prelec weighting func-

tion has inflection point of 1/e, regardless of the value of the value α. This

inflection point is below our approximation’s assumed inflection point of 1/2.

An inflection point less than 1/2 results in a non-symmetric distortion on the

right and left tails, which is shown in the right panel of Figure 4.1. In fact,

this causes more weighting being applied on the right tail probabilities. Con-

sequentially, the investor is more willing to invest wealth into a risky asset

than in the case of a symmetric weighting function, as they are overweight-

ing the probabilities of realizing a large gain to a greater extent than with a

symmetric weighting function. Thus, our approximation underestimates the

optimal weights, as shown in Figures 4.4 and 4.5.
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Finally, are interested in measuring the proportion of risky wealth allo-

cated to the MF, the active fund, so we compute the ratio θ∗A =
θ∗1

θ∗1+θ∗2
. The

computation of θ∗A allows us to analyze the allocation of exclusively the risky

wealth in the portfolio. Analyzing this ratio for both the approximated and

numerical optimal weights will allow us to determine how the investor is al-

locating their wealth under different levels of probability distortion. Using

either (4.1) or (4.2), we find that θ∗A remains constant under different levels of

distortion. In other words, the approximated value of θ∗A is only dependent on

µ and Σ. Using the market model parameters previously defined, we calculate

the approximated value of θ∗A to be equal to 0.6725. This means that roughly

two thirds of the risky wealth is allocated to the MF, with the remaining third

allocated to the ETF. We present the numerical values of θ∗A in Figure 4.6.

We see that the numerical value of θ∗A remains approximately equal to two

Figure 4.6: Numerical values for θ∗A
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thirds. Even in a numerical setting, the value of θ∗A does not undergo signif-

icant deviation across different weighting function parameters. To determine

the accuracy of the approximated θ∗A against its numerical counterpart, we

compute the percentage of the approximation with respect to the numerical

value, which is displayed in Figure 4.7. We find that the approximation of the

Figure 4.7: Percentage of numerical θ∗A accounted for by approximation

active proportion of risky wealth is very accurate with respect to the numeri-

cal result, as for all tested levels of probability distortion we have less than a

0.7% error. Comparing with our previous numerical results, we find that the

approximation of the risky wealth allocated to the active fund is more accurate

than the approximation of the risky weights themselves.
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4.2.3 Analysis of a Change in Expected Asset Returns

We now apply a shift in the expected return to certain assets. We follow in a

similar fashion to that described in Section 3.3, where we defined a new return

vector µ̃ to represent the shifted expected returns of the assets. In addition

to the distribution with parameters (µ,Σ), we now have a second distribution

with model parameters given by (µ̃,Σ) and corresponding underlying random

variable Ỹ T , where µ̃ represents the shifted return vector. Now, we have a

second wealth equation which is given by X̃T = θ̃
⊤
Ỹ T . As was the case in

Section 3.3, Σ remains unchanged between the two distributions, since the

variance structure of our risky assets is not affected by a shift in the expected

returns. We wish to know how the optimal strategy changes between the

return vectors µ and µ̃, so we calculate θ̃
∗−θ∗, where θ̃

∗
is the optimal strategy

associated with the model parameters (µ̃,Σ). To determine what the change

in strategy will be, we simply subtract the two optimal weight vectors, which

can be approximated using (4.1) when using an exponential utility function,

to obtain

θ̃
∗ − θ∗ ≈ 1− 2c2

γ
Σ−1(µ̃− µ). (4.3)

As was the case in Section 3.3, we see that the change in optimal portfolio

weights is directly related to the magnitude of the shift in the expected return

vector. For a market with two risky assets, the analysis of (4.3) is equivalent to

the analysis performed in Section 3.3. Additionally, as we have 1− 2c2 < 1 for

the Prelec weighting function with α, β < 1, the shift in the optimal weights

will decrease as the probability distortion is increased. The optimal weight

decrease is proportional across all risky assets.
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To verify the approximation for the change in optimal strategy, we use the

same experimental set up that was described in Section 4.2.1, but now include

a second simulated distribution with parameters (µ̃,Σ). For our new return

vector µ̃, we decrease the expected return of the second risky asset, the ETF,

by 0.25%, so we set µ̃ = [0.08, 0.0825]. As was the case with our original

simulated distribution, we again will have deviations in the statistics of the

shifted simulated distribution, leading to an error between the approximated

and numerical solution. This error will again be clear when analyzing the

following figures for the case where α = β = 1. We compute the numerical

change in the optimal weights and compare it with the approximation given

in (4.3). First, we analyze the approximated and numerical shift values for each

component in Figures 4.8 and 4.9. For both the approximated and numerical

Figure 4.8: Approximated and numerical values for θ̃
∗
1 − θ∗1

shifts, we see an increase in the optimal weight of the first risky asset, which

did not undergo any change in expected return. Correspondingly, the optimal

weight of the second risky asset decreases when its expected return decreases.

The reasoning behind these findings is parallel to the analysis described in
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Figure 4.9: Approximated and numerical values for θ̃
∗
2 − θ∗2

Section 3.3. For both risky assets, we see that the absolute change decreases

as more distortion is applied for both α and β. For no distortion, that is

when α = β = 1, the largest shift in the optimal weights occur. This is clear

from (4.3), where the coefficient 1− 2c2 decreases the size of the shift as more

distortion is applied. So we find that in the event an ETF’s expected return is

decreased, the proportion of an investor’s portfolio allocated to the ETF will

decrease, but to a lesser extent than if there were no distortion present.

To determine the accuracy of (4.3) against the numerical solution, we cal-

culate the difference between the approximated shift in optimal strategy and

the numerical shift optimal strategy, as well as the percentage of the numerical

shift accounted for by the approximation. We display these comparisons in

Figures 4.10 and 4.11. For the shift in both risky assets, we see that for almost

all values of α and β, we are overestimating the numerically computed shift in

the optimal weights. This result is expected, given the findings of Section 4.2.2

where the approximation typically overestimated the optimal weight, and is

now amplified as we are approximating two sets of optimal weights. Despite
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Figure 4.10: Comparison of approximated and numerical change in strategy θ̃
∗
1−θ∗1

Figure 4.11: Comparison of approximated and numerical change in strategy θ̃
∗
2−θ∗2

losing some accuracy in our estimation, going back to Figures 4.8 and 4.9 we

see that the approximation of the change in optimal weights encompasses the

trend of how the numerically solved optimal strategy will change under various

distortion parameters. We can further make the argument that if given a real

world scenario where an ETF’s return is decreased, the shift in the optimal

strategies will be smaller than what is approximated by (4.3).

Finally, we compare how the active proportion of wealth between the two

scenarios. We calculate θ̃
∗
A = θ̃

∗
1

θ̃
∗
1+θ̃

∗
2

and θ∗A =
θ∗1

θ∗1+θ∗2
and analyze θ̃

∗
A − θ∗A for
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numerically computed weights in Figure 4.12. As was the case in Section 4.2.2,

the value θ̃
∗
A− θ∗A for the approximation is constant with respect to the distor-

tion parameter, as is evident with (4.3). The approximated value of θ̃
∗
A − θ∗A

is equal to 0.0207. Given the values from Figure 4.12, this result follows the

Figure 4.12: Numerical values for the shift in θA

theme of overestimating the numerical shift in active allocation that we have

seen so far in our analysis. Additionally, viewing the numerical active weight

allocation shift, we see this shift decrease as we increase both the α and β

parameters since this reduces the amount of distortion in the model. We now

present the percentage that our approximation accounts for of the numerical

active allocation shift in Figure 4.13. The values from this figure clearly shows

that we are over approximating the active allocation shift. It is noteworthy to

point out that the approximation of the active allocation is much more accurate

than the approximation of the change in weights themselves, an observation
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Figure 4.13: Percentage of numerical active proportion shift accounted for by
approximation

that follows over from Section 4.2.2. As such, we have further evidence that in

the distorted probability model, our approximation is overestimating the shift

in the active allocation of the risky wealth.

4.3 Impact of Closing the ETF Tax Loophole

on Investor Portfolios

In Section 2.2, we discussed how the ETF tax loophole is used to avoid having

ETF investors pay capital gains tax on gains realized by the ETF selling assets.

This allows the ETF to report a higher return. The tax is instead paid by

withdrawing investors, as these investors will have realized a larger return

due to the ETF’s use of the tax loophole. In turn, they must pay more in
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capital gains tax due to their higher return. In this section, we formulate an

expression to determine by how much an ETF’s return is inflated due to the

tax loophole. Using this expression, we then approximate how an investor’s

optimal portfolio containing only two risky assets, an MF and an ETF, will

change in the event the loophole is closed.

Our analysis and its results will depend on a variety of assumptions on the

fund returns, tax rates, the investor’s preferences, and their holding periods.

By nature, these are modelling assumptions that may not necessarily be satis-

fied in reality, which in turn would affect the results. Nonetheless, our analysis

will allow for a quantitative estimation and will demonstrate the significance

of the ETF tax loophole on investor portfolios.

First, we must determine the amount by which an ETF investor benefits

when the loophole is used. To do so, we investigate a withdrawing investor’s

return under two scenarios: one where the loophole is freely used by the ETF

and one where the loophole is closed. We assume that the ETF investment has

yearly return µl when the ETF uses the loophole, and µc when the loophole is

closed. The return of the ETF in the scenario where the ETF can no longer

take advantage of the loophole, µc, is determined by applying a capital gains

tax-rate to µl − d, where d is the dividend rate of the ETF. We must subtract

the dividend rate from µl as the dividend rate is included in the reported

return of the ETF, and capital gains taxes do not apply to the dividends

obtained from an investment. We denote this tax rate by rt, and we find that

µc = (1 − rt)(µl − d) + d. Next, we assume that a withdrawing investor has

held their investment for a period of T years. So in the event the loophole is

used by the ETF, the investor realizes a return of (1 + µl)
T , and in the event
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the loophole is closed the investor realizes a return of (1 + µc)
T . Note that

since µc < µl, we have (1 + µc)
T < (1 + µl)

T , so we find that the benefits

from the ETF tax loophole are compounding, and increase over the course

of the investor’s holding period T . In the scenario where the ETF paid no

capital gains tax, we assume that the withdrawing investor must pay the tax

rate of rt, as this was the corresponding tax rate that would have been applied

to the yearly capital gains distributions of the ETF to the investor. This

capital gains tax is given by ((1 + µl − d)T − 1)rt. The annualized return for

the withdrawing investor after capital gains tax has been applied is given by

((1 + µl)
T − ((1 + µl − d)T − 1)rt)

1
T − 1. With an analogous argument, we

determine the annualized return after capital gains tax in the scenario where

the loophole has been closed to be given by ((1+µc)
T−((1+µc−d)T−1)rc)

1
T −1,

where rc represents the tax rate on capital gains in addition to the yearly

capital gains tax. In order to compute the amount by which µl is inflated

over µc, we compute the difference of the annualized capital gains tax adjusted

returns from the two scenarios. We denote the annualized ETF return inflation

by τT , and we compute τT as

τT = ((1+µl)
T−((1+µl−d)T−1)rt)

1
T −((1+µc)

T−((1+µc−d)T−1)rc)
1
T . (4.4)

Analyzing τT , we see that this value is dependent on how long the investor

holds their investment prior to withdrawing. The value τT represents the

amount by which the ETF’s return is inflated due to the tax loophole. In

order to represent the ETF’s return after the loophole closure, we deduct the

ETF’s return by the value τT , as this shifted return will represent an ETF
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investor’s return in the event capital gains taxes are deducted from the fund

selling an appreciated asset.

For the expected returns and covariance structure of an ETF and an MF,

we annualize the data from Polkovnichenko et al. [12], where they collected

historical data from the period 1985 to 2008 for active funds and the market to

generate bootstrapped samples of monthly returns. They form samples for two

types of active funds, a large value (LV) fund and a large growth (LG) funds, as

well as a sample for the market to represent a passive fund. For our purpose, we

take the LV fund and LG fund to represent two generic MFs, and the market to

represent a generic ETF. We use the annualized statistical moments generated

for the net reported returns of the active funds and market. For the active

funds, the net reported returns represent the returns after management fees

are deducted. The sample parameters for the ETF do not change between the

gross returns and net reported returns. Using the net reported returns allows

us to better represent the investor’s perspective, as an investor is required to

pay noticeable management fees on their active fund investments. We use the

provided funds’ beta coefficient to the market to calculate the covariance and

correlation of the active funds with respect to the market. As only the rounded

monthly values were reported by Polkovnichenko et al. [12], we acknowledge

a rounding error in our annualization. We summarize the relevant statistical

moments in Table 4.2. We see that the annualized returns of all funds are

equivalent, with varying standard deviations. The MFs are highly correlated

to the ETF, so we expect that the substitution effect, briefly discussed in

Section 3.3, will be very noticeable in this analysis. In other words, if we lower

the expected return of the ETF, then investment in the ETF will decrease
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Fund µ σ Covariance with ETF Correlation to ETF

LV 0.10 0.1455 0.020 0.882

LG 0.10 0.1836 0.026 0.908

ETF 0.10 0.1559 - -

Table 4.2: Annualized sample parameters of MFs and ETF

and a greater investment into the MF will occur due to the highly correlated

return structure of the two funds. Recall that in the investor’s portfolio, the

two risky assets that are held are a mutual fund, represented by either the LV

fund or the LG fund, and an ETF.

In 2018, it is assumed that investors in 400 US equity ETFs avoided paying

tax on more than 211 billion USD in gains due to the tax loophole, which

is approximately 23 billion USD in taxes [10]. That $23 billion, which was

reinvested into the ETFs, equates to an approximate tax rate of 10.9%. We

use this value as the capital gains tax rate rt that would be applied to an

ETF in the event the loophole is closed. Using the value rt, (4.3), and (4.4),

we will approximate how an investor’s optimal portfolio will shift in the event

the ETF loophole is closed. We adjust the expected return of the ETF from

Table 4.2 in accordance to (4.4) for holding periods of 3, 5, 10, and 15 years,

with rt = 10.9%. We assume the ETF has an annual dividend rate of 2.5%. In

the event the loophole is closed, we assume that a withdrawing investor does

not have to pay any capital gains taxes in addition to the yearly capital gains

taxes, so we set rc = 0%. We calculate the value τT using (4.4) for various

holding periods. These values are shown in Table 4.3. With this choice of

rc and a holding period of 1 year, we find that τ1 = 0, and the investor has

no benefits from the tax loophole. Analyzing Table 4.3, we find that the tax
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Holding Period (Years) 3 5 10 15

τT 0.00087 0.00162 0.003189 0.00436

Table 4.3: Amount of ETF return increase due to tax loophole for various holding
periods

loophole benefits increase with the investor’s holding period. This is due to

the fact that the deferred tax amount, resulting from the tax loophole, is kept

within the fund. For long term holding periods, the return on this amount

compounds annually, providing a benefit to a holding investor. As previously

mentioned, a withdrawing investor will have to pay more in capital gains tax

at the end of the holding period, and this amount increases for longer holding

periods.

To continue with our goal of estimating how an investor’s portfolio will

change in the event of the ETF loophole closure, we require a few more pieces

to complete (4.3). We calculate the value 1 − 2c2 using the Prelec weighting

function and the approximate median values of α = 0.9 and β = 0.95 [13].

Polkovnichenko et al. [12] has shown that the Prelec weighting function can

accurately portray the observed behaviour for preference of active funds over

passive funds. Using the median values of α and β, we obtain 1− 2c2 = 0.805.

The choice of risk aversion parameter, γ, is dependent on the level of risk

aversion the investor exhibits. Ang [1], after compiling multiple risk aversion

studies and surveys, found the risk aversion parameter to be generally between

one and ten. This relatively large range was due to multiple underlying factors

of the participants in these studies, such as gender and socioeconomic status.

We set our risk aversion parameter γ equal to five, the approximate mid-range

value of this interval. This choice of γ will also appropriately represent a risk
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averse investor. Using the fund distribution parameters from Table 4.2 and

the values τT from Table 4.3 to shift the mean of the ETF, we calculate the

change in optimal strategy for a portfolio containing an MF, represented by

the LV fund or LG fund, and an ETF using (4.3). We display the results in

Table 4.4 and Table 4.5 for the portfolio containing the LV fund and LG fund,

respectively. In addition to computing how the optimal weights will change, we

also compute the change in the optimal active allocation of the risky wealth,

given by θ̃
∗
A − θ∗A.

Holding Period (Years) 3 5 10 15

LV Fund Weight Change 0.0267 0.0505 0.0993 0.1358

ETF Weight Change −0.0279 −0.0528 −0.1039 −0.1420

Change in Active Allocation 0.0360 0.0683 0.1347 0.1845

Table 4.4: Optimal weight changes for a portfolio containing an LV fund and an
ETF

Holding Period (Years) 3 5 10 15

LG Fund Weight Change 0.0296 0.0560 0.1102 0.1506

ETF Weight Change −0.0378 −0.0716 −0.1408 −0.1924

Change in Active Allocation 0.0387 0.0741 0.1490 0.2072

Table 4.5: Optimal weight changes for a portfolio containing an LG fund and an
ETF

As expected, we see from Tables 4.4 and 4.5 that the optimal portfolio

weight of the ETF decreases and a greater preference for mutual funds takes

hold in the event the loophole is closed. This preference for the mutual fund

increases as the holding period increases, as the benefits from the ETF tax

loophole that were once compounding are now gone. As we observed with
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the numerical experiments from Section 4.2.3, these results are likely overes-

timating how the loophole closure will change an investor’s portfolio. We can

conclude, however, that in the event the loophole is closed, there will be a

greater preference for mutual funds over ETFs for long-term investors. Due

to the high amount of correlation between the two risky assets, the increase in

the MF’s allocation in an investor’s portfolio will be similar to the decrease in

the ETF’s allocation. For investors who hold their portfolio for three to five

years, we can expect investment in ETFs to decrease by approximately 2.75%

and 7% of the total portfolio allocation and investment in MFs to increase be-

tween approximately 2.5% to 5.5% of the total portfolio allocation. Further,

for holding periods between three and five years, the proportion of the risky

wealth allocated to the MF is estimated to increase by approximately 3.5%

and 7.5%. For long holding periods of 10 to 15 years, we find that the im-

pact of the tax loophole closure will produce a significant shift within investor

portfolios, with the ETF’s allocation will decrease between approximately 10%

and 19.5% while the MF’s allocation will increase between approximately 10%

and 15%. The proportion of risky wealth allocated to the MF will increase

between approximately 13% and 21% for holding periods between 10 and 15

years. Our findings that the ETF tax loophole has a significant impact on

investor portfolios are consistent with the findings from Moussawi et al. [11].

Recall that in 2020 alone, Rosenbluth [16] found that 290 billion USD was

invested into the top three ETF providers, whose holdings are over 4 trillion

USD. Given this fact, our estimation indicates that the closure of the ETF tax

loophole could cause investors to shift billions of dollars from ETFs to MFs.

While we have explored the impacts that the closure of the ETF tax loop-
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hole would have on investor portfolios, it is also noteworthy to briefly discuss

the proposed tax plan of US President Biden and its potential ramifications

for ETFs and MFs. President Biden’s administration is considering to raise

the capital gains tax from 20% to 39.6% for investors whose household income

is more than 1 million USD per year [4]. In the event the ETF tax loophole

remains open and this tax plan becomes legislation, the comparative advan-

tage ETFs have over MFs from using the tax loophole will increase, as MF

investors affected by the tax plan would need to pay higher capital gains taxes

in the relevant tax year while ETF investors could defer them, benefiting from

higher compound returns and flexibility in making taxable capital gains. This

would likely result in further inflows of capital into ETFs from MFs and other

funds.
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Chapter 5

Conclusion

This thesis adds to the increasing discussion surrounding the ETF tax loophole

in the United States, by providing an approximate result on the impact that

the ETF loophole and its possible closure would have on investor portfolios.

We take no stance on whether benefiting from this legal loophole is ethical or

not, but are fundamentally interested on the effects it has on portfolios con-

taining MFs and ETFs. To properly represent observed investor behaviour for

active and passive funds, we had to use a distorted probability model. While

portfolio optimization using this distorted probability model typically does not

allow for an explicit solution, we formed an approximation on the probability

weighting function’s derivative that allowed us to explicitly solve the RDEU

portfolio optimization problem. Furthermore, we developed an equation to

measure the impact of the ETF tax loophole on an investor’s return, with

respect to the holding period of the investment. Using our approximation and

this equation, we were able to produce an estimate of how the closure of the

ETF tax loophole would alter an investor’s optimal portfolio allocation. We
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found that investment in ETFs would decrease and investment in MFs would

correspondingly increase by a slightly smaller amount. The magnitude of the

change in portfolio allocations crucially depended on the investor’s holding

period, as the tax benefits gained from the loophole’s use compounded annu-

ally. For holding periods from three to five years, we found that an investor’s

portfolio allocation to ETFs would decrease between approximately 2.75% to

7% of the total allocation, while the allocation to MFs would increase between

approximately 2.5% to 5% of the total portfolio allocation. As this legal loop-

hole is in the US tax code, its closure would mainly impact the portfolios of

American investors. Even so, as many Canadians choose to invest in American

securities, and 50% of the total value of capital gains are taxable in Canada,

the loophole’s closure would also significantly influence the portfolio allocation

of Canadian investors.

As this thesis only considered a single-period model, future work can extend

our approximation of a general weighting function to a multi-period model

and to a continuous-time model, potentially including stochastic volatility,

with help from the prior work of Hu et al. [9]. Additionally, future work can

include addressing how portfolio allocation will change under multiple closure

scenarios of the ETF tax loophole, including a partial closure of the loophole,

a restriction of “heartbeat” trades, or a capped amount of capital gains tax

that the ETF can avoid yearly. The work and analysis performed in this

thesis highlight the importance to consider effects on investor portfolios when

determining the tax treatment of MFs and ETFs.
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