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Abstract

In this thesis we consider problems where a self-interested entity, called the
principal, has private access to some data that she wishes to use to solve a pre-
diction problem by outsourcing the development of the predictor to some other
parties. Assuming the principal, who needs the machine learning solution, and
the potential providers of the solution are two independent, self-interested
agents, which is the case for many real-world situations, this then becomes
a game-theoretic problem. We propose mathematical models for variants of
this problem by borrowing techniques from the literature of mechanism de-
sign and provide principled solutions. We consider experimental design when
there are multiple self-interested agents involved in developing a solution for a
machine learning problem. A first case is when there is a public competition,
each agent offers a single solution and solutions are available off-the-shelf to
the agents: there is no development cost included. The problem considered
is to find a set of payment rules that guarantees to maximize the profit of
the principal on expectation even when the developers are self-interested. The
solution depends on the distribution of the skill-level of developers available,
which is assumed to be known. To deal with our problem, the standard mech-
anism design techniques are revisited and extended in a number of ways. In
particular, a general approach is given that allows the design of payment rules
(more generally, mechanisms) when such payment rules must depend on some
quantity that becomes known only after the mechanism is executed. This ex-
tension plays a key role in our solution to the machine learning payment-rule
design problem, where data must be kept private (otherwise the developers
could submit “overfitting” predictors), yet the principal’s profit (and thus the
payment) should depend on the performance of the predictor chosen on the



private data. Then, we address other interesting variants of the problem and
provide solutions : when a single developer can submit multiple solutions, and
when the solution is to be developed in multiple stages, or when the develop-
ment cost is non-zero.
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Chapter 1

Introduction

Machine learning competitions are becoming increasingly popular and more
companies are seeking to find predictors in such a way. There are several
contracts signed every day where finding predictors to be used on some data
is outsourced. A characteristic property of such deals is that the party that is
going to use the solution to achieve/maximize a real-world objective and the
party developing the solution are different. A good example is the Netflix prize:
an open competition launched in October 2006 which awarded the team with
the best (collaborative filtering) algorithm predicting user film ratings based
on previous ratings a prize of one million dollars.

A natural question to ask then is what is the best way of organizing a
competition. Do current practices achieve the desired results? How would a
competition designed to maximize profit (or social welfare) be run? Surely,
an ad-hoc procedure will not yield the best results possible, but it may and
even if it does, there are no guarantees. This thesis is an attempt to find
principled ways to tackle the problem of outsourcing the development of a
machine learning solution.

More precisely, in this thesis we focus on issues that arise when a company
wants to buy a machine learning solution from several developers. How should
then the price be set? What protocol yields to maximal profit for the company?
This is what we call the machine learning solution procurement problem. The
aim of this thesis is to initiate a rigorous way to study these problems. More
precisely, the goals of the thesis are to:
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1. Propose a mathematical framework that can be used to study machine
learning solution procurement problems so that the alternative solutions
can be analyzed and studied using the tools of mathematics in a rigorous
fashion.

2. Provide answers to simple, stylized instances of the machine learning
solution procurement problem.

3. Develop general tools and techniques to tackle the specific issues that
come up when solving these problems.

The framework used to achieve the above goals is that ofmechanism design,
a subfield of game theory that was born in the 1960s (Arrow and Debreu, 1954)
and has been the subject of extensive study since then, mainly in the field
of economics (Bolton and Dewatripont, 2005; Laffont and Martimort, 2002).
Within the framework of mechanism design, we study stylized versions of
machine learning procurement problems. Extension to related problems, such
as the problem of optimizing machine learning competitions, will be shortly
discussed at the end of the thesis.

1.1 Contributions

The contributions of the thesis are the following:

1. A single unified equilibrium concept is developed that unifies several
existing equilibrium concepts (Nash, Dominant Strategies and Bayesian-
Nash equlibria) is offered (Definition 2.2.6). The benefit of the unified
concept is that open up a new alley of thinking about equilibria in games.
Whereas previous practice in game theory was to proove a statement
individually for each equilibrium concept, the unified concept allows a
single proof, as we shall demonstrate on several occasions. Further, the
new definition allows one to discover the key distinguishing properties of
equilibria that are needed in these proofs and thus it increases our depth
of understanding equilibria.
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2. The concept of admissible counter-strategy map schemas is introduced
(Definition 2.3.8) and it is shown that admissibility of a counter-strategy
map schema C is a sufficient condition for the revelation principle to hold
for the generalized equilibria the uses C (Theorem 2.3.1).

3. A characteristic feature of the machine learning procurement problem,
unpreventable information leakage, is formalized (Definition 4.1.1). Two
sub-cases, the ex-ante and ex-post information leakage problem are iden-
tified and formalized (Section 4.1.1).

4. It is shown how the procurement problem of machine learning solutions
can be formalized as an example of a mechanism design problem with
information leakage (Section 4.1.2).

5. A reduction-based solution for mechanism design problems with ex-ante
information leakage is offered (Theorem 4.2.2) and applied to solve the
problem of machine learning procurement (Section 4.2.3).

6. A model of mechanism design problems with exogenous signals is intro-
duced (Definition 5.1.1 and Definition 5.1.2)

7. Two reductions for solving mechanism design problems with exogenous
signals are introduced: A general reduction (Theorem 5.2.1) and a sim-
plified reduction that applies only in a specific, yet practical setting
(Therorem 5.2.2). As an example, it is shown how a company who
wants to hide its profit predictions can do so without a decrease of the
profit that can be achieved in a machine learning solutions procurement
problem.

8. The procurement problem when developers have multiple machine learn-
ing packages to offer is formalized (Section 6.1) and solved (Theorem 6.2.1).

1.2 An Example

One option for the company then is to hold a competition with a sizeable
monetary award to be given to the competitor who submits the best solution.
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However, a sizeable portion of the sales of the company happens in Nonex-
traenusia, a country in which advertising is prohibited due to social reasons
and so if the company declared the name of the company who did the best
job, this would be considered as advertisement and Aleph Corp. would lose
its sales in Nonextraenusia. If Aleph Corp. still wants to run the competi-
tion, it won’t be able to publicly announce the identity of the winner. As a
result, no organization would participate in such a competition unless it could
at least recover the cost of the submitted solution on expectation. (In eco-
nomic terms, it can be said that there exist no reasons external to the trade
procedure to participate in the competition, thus participation will be based
on pure utilitarian reasoning.) Thus, participation may be hard to predict and
the selection of the prize amount may dramatically influence the surplus of the
competition. This choice is made especially difficult since the quality of the
data, which is unknown at the time when the prize needs to be announced, will
influence how good the recommendations will be, and thus, the profit. This
creates a vicious circle, making it impossible to select the prize to optimize
the expected profit.

Aleph Corp. has two alternatives to holding a competition: (i) to procure a
solution in a process where the suppliers would be incentivized to participate,
or (ii) to enter into a work contract with some of the suppliers selected in
some principled fashion. However, Aleph Corp. prefers a one-shot deal, i.e., a
procurement so as to avoid complication of contracting (verification of work,
legal issues, etc.) and because it needs a solution in a short amount of time. In
this thesis we will consider how Aleph Corp. should conduct its procurement
process so as to maximize its expected profit.

1.3 The Problem

The goal of Aleph Corp. is to obtain the best quality solution for the least
price on expectation. In this thesis we suggest a game theoretic approach this
problem, and apply the methodology of mechanism design. To manage to get
the best solution-price trade-off, there are several issues for the company to
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face with. How can the subcontractors be incentivized to obtain fair prices?
How should the data be used in deciding who to buy the solution from? In this
work, we provide some initial answers to these questions for some simplified
versions of this problem. In this problem we assume that the subcontractors
have possibly multiple off-the-shelf solutions, which they agree to submit for
testing to the company. The problem is a special case of of buying some good
from a set of sellers.

In the standard setting, the sellers are interested in maximizing their profit,
which conflicts with the goal of the buyer who wants to maximize her own
profit. The (standard) solution to such procurement problems (to be described
in detail in Chapter 3) is to run a so-called reverse sealed-bid auction where the
sellers submit their bids privately and simultaneously to the buyer. The buyer
then calculates the “virtual” profitability of each of the bids with a specific
formula where the actual profits are decreased by an amount that depends
on the buyer’s initial uncertainty concerning the “fair price” of the individual
goods offered for sale. The seller whose bid has the highest virtual value is
the winner and he receives a payment, which is guaranteed to be at least as
large as the price he submitted. The difference between the price submitted
and the actual payment is the price that the buyer needs to pay to make up
for her lack of knowledge of the “true fair prices” of the goods offered for sale.

In machine learning procurement, one difference to the standard procure-
ment problem is that through submitting their solutions (for testing), the
developers reveal information to the company. How should then the above
solution be modified? Another difference is that each developer might offer
multiple solutions. Finally, the selection of the winner depends on predictions
of the profitability of the individual solutions. However, companies might be
reluctant to reveal this information. However, by hiding this information the
company cannot reveal the rules of selecting the winner of the reverse auction.
Is it possible for a company to hide this information and yet achieve the best
possible profit or is there some price to be paid?
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1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 explains the basics of game
theory and mechanism design: we start by an introduction of game theory in
section 2.1 and follow up with mechanism design in Section 2.3. Chapter 3
explains the problem of reverse auction as a basic model for the problem of ma-
chine learning procurement and presents the well-known optimal solution for
it. The first issue specific to machine learning solution procurement problem,
the unpreventable information leakage due to the developers submitting their
solutions for evaluation, is formally defined in Chapter 4, where a reduction-
based solution is also given. A second specific issue, when the company does
not want to publicize his profit predictions, is considered in the next chap-
ter (Chapter 5). More generally, in this chapter we introduce the concept of
games with exogenous signals. Again, a reduction-based solution is presented.
Chapter 6 considers the problem when the developers can submit multiple
solutions. The results of Chapter 3 are extended to this case. In Chapter 7.
we give a comprehensive solution to the case when the developers may submit
multiple solutions which get evaluated on some test data, but the company
withholds its profit predictions. We conclude the thesis in Chapter 8.
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Chapter 2

Basics of Mechanism Design

Game theory is defined as “the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers” by Myerson (1997).
In a game several players (also called agents) interact in some well-defined way,
governed by the rules of the game: the players choose actions, and these choices
result in some outcomes of the game. The players have their own assessment
about the value of different outcomes; the difference in evaluating the outcomes
may come from different positions of the players, or simply because the players
are of different kinds (e.g., the value of an object in an auction is likely to be
different for different participants).

In classical game theory the agents are assumed to act rationally, that is,
in a selfishly optimal fashion to reach the outcome most desirable for them-
selves. This strategically rational behavior of the agents, which also takes into
account that other agents will behave rationally, allows us to define equilibria
in games: in an equilibrium, no single agent can improve the outcome of the
game (for herself) by modifying her actions. A large part of the literature
in game theory concerns the analysis of equilibrium in games. Throughout
this thesis we will assume that the agents act rationally (an alternative to the
rationality assumption is to model the agents’ behavior, leading to behavioral
game theory). In the thesis we will consider a special area of game theory,
called mechanism design, which studies methodologies of designing games in
order to achieve a specified objective. Mechanism design suites well to the
original problem we wish to consider: to design the rules of machine learning
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procurement problems.
In this chapter we introduce the basic concepts of of game theory and

mechanism design (for more detailed description of these topics the reader is
referred to, e.g., the books by Myerson, 1997 and Mas-Colell et al., 1995).
Furthermore, we define and analyze a unified equilibrium concept.

2.1 The Formal Definition of Games

We define multi-agent games with a fixed number of players, also called agents.
To keep things simple, let us assume that the number of players n is finite. In
the games considered, the player at a fixed position has a fixed set of actions,
or a fixed set of messages. The player positions are numbered from 1 to n
and we let I “ t1, . . . , nu to denote the set of player positions. For i P I, let
Σi be the set of messages available to the agent playing at position i (these
sets may depend on the position of the player in the game). Let O be the
set of outcomes of the game. Then, the rules of the game simply specify the
outcome as a function of the individual messages chosen by the individual
agents playing the game. Thus, the rules of the game can be specified using a
mapping g : Σ Ñ O, where Σ “

Ś

iPI Σi is the Cartesian product of the sets
Σi, also called the joint message space.

In summary, we have the following definition:

Definition 2.1.1 (Game). A game is a tuple G “ pΣ, O, gq where given a set
I indexing the agents, Σ “

Ś

iPI Σi is the set of messages agents send, O is the
set of outcomes for the game and g : Σ Ñ O is a function called the outcome
function.

To specify the agents’ preferences we will use utility functions. According
to a theorem of von Neumann and Morgenstern (1947), if an agent’s prefer-
ence relations over experiments with two probabilistic outcomes satisfy four
(reasonable) assumptions then the agent’s preferences over arbitrary lotteries
(experiments with probabilistic outcomes) can be described as the expectation
of utilities assigned to the elementary outcomes.
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Definition 2.1.2. A function that maps outcomes to real values is called a
utility function.

By consensus, it is assumed that agents prefer outcomes with higher util-
ities. Formally, a utility function is thus a mapping u : O Ñ R. In a game,
each agent may have their own utility functions: The utility function of the
agent playing at position i will be denoted by ui (at this stage it is not yet
important whether the utility functions belong to the agent or the position).

Since agents may choose their actions randomly and in general we will be
interested in the resulting expected utility (from the point of view of some of
the agents), we introduce some extra notation to avoid writing expectations
or integrals in an explicit form. Also, this increases the burden on the reader
at this stage, the notation introduced here will lead to a more comprehensible
presentation of the concepts that come next.
Notation.

Distributions, densities, support:
If V is a measurable space1, the space of probability distributions
over V will be denoted by M1pV q. If a distribution P P M1pV q

is absolutely continuous w.r.t. some fixed reference measure (that
will always be clear from the context and is usually a Lebesgue
measure when V is a subset of a Euclidean space), we denote the
resulting density by the corresponding lower case letter, as in p.
Lastly, we let supppPq denote the support of the distribution P.

Overloaded functions:
Let γ : V Ñ R be an arbitrary measurable real-valued function.
We introduce a convention to overload the notation of function
application for the case where a distribution P PM1pV q is used as
the argument of the function:

γpPq “

ż

V

γpvqdPpvq .

1For readers not familiar with measure theory, it suffices to say at this stage that count-
able sets can be viewed as measurable space with no further difficulties. Further, Euclidean
spaces and their subsets are also standardly equipped with the appropriate structure to
make them “measurable” spaces where the usual calculus with probability measures works.
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We can use this definition for functions of two (or more) variables
v and w where both are respectively replaced by distributions Pv
and Pw. In that case the order of integration will be denoted with
numbers, e.g.:

γpP
2
v , P

1
w q “

ż

V

ż

W

γpv, wqdPwpwqdPvpvq .

Note. We will drop the ordering if the ordering of integrals can
be interchanged (due to an application of Fubini’s theorem), as it
will be common. In this case we will just write γpPv, Pwq, meaning
that both orders are acceptable. In particular, when the function to
be integrated is bounded, the result of the integral is guaranteed
to be independent of the order of integration. Since we will use
this notation in connection to utility functions, in what follows we
assume that all utility functions have a bounded range.

Note. From now on, when we use probability distributions over some space V ,
we automatically assume that an appropriate measurability structure for the
space V was fixed in advance. In particular, in what follows we assume that
Σi (i P I) and O are equipped with an appropriate measurability structure.

We need one more bit of notation before moving to the definition of “ra-
tional play”. As said before, we shall allow agents to use randomization to
choose their messages. In effect, the agent playing at position i P I chooses a
distribution from the Si “M1pΣiq, the space of distributions over the message
space Σi.

Terminology 2.1.1 (Strategies). The elements of Si “M1pΣiq will be called
mixed strategies (or simply, strategies) and are usually shown by si P Si. We
also introduce S “

Ś

iPI Si, which will be viewed as a subset of M1pΣq the
set of distributions over Σ with the natural embedding ι : S ÑM1pΣq, where
ps1, . . . , s|I|q P S is viewed as a product measure over Σ. At times, we will
denote S byMˆ

1 pΣq. Simple actions (degenerate, “Dirac” distributions) of the
agents are also called pure strategies.
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2.1.1 Equilibrium Concepts

Next, we formalize the notion of agents who act ‘selfishly optimal’: We start
some more notation that will prove to be useful later.
Notation.

Components:
Subscripts are used to denote a value belonging to an agent, e.g., vi
for i P I denotes the v belonging to agent with index i.

Profiles:
Unsubscripted letters, most of the times, are used to denote vec-
tors, e.g., v “ pviqiPI , and are usually called profiles, e.g., if vis
(i P I) are ‘values’ for different agents, v is usually called a ‘value
profile’. When the vectors belong to some linear space, they will
be viewed as column vectors, unless otherwise declared.

Counter-components:
It is customary in game theory literature to denote by v´i, the
vector of all vi1s except for vi:

v´i “
`

v1, v2, v3, . . . , vi´1, vi`1, . . . , v|I|
˘

“ pvi1qi1PIztiu .

Sets and ranges:
If a value is denoted by a letter, e.g., v, the set it belongs to is
usually shown by the capital letter, V in this case. Some examples
would be vi P Vi, v P V and v´i P V´i. Also if V Ă R has a range,
the infimum of V is denoted by V and the supremum of V is shown
by V .

Complementary pairs:
For any symbol v, for all i P I, at a slight abuse of notation, we
define pvi, v´iq “ v. Likewise, Vi ˆ V´i “ V .

An agent playing at position i (in what follows: agent i) knowing the distri-
butions (strategies) that its opponent play would naturally select a distribution
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(strategy) that leads to the largest possible expected utility for himself. Any
strategy with this property is called a best-response strategy to the opponent’s
joint strategy:

Definition 2.1.3 (Best-response). Fix an outcome function g : Σ Ñ O and
the utility functions u “ puiqiPI . For i P I, s´i P S´i, introduce the set

Bipg, ui, s´iq “

#

s˚i P Si : uipgps˚i , s´iqq ě sup
s1iPSi

uipgps
1
i, s´iqq

+

,

the set of best responses for agent i given g, ui and the strategies s´i for the
other agents.

We call an agent rational when for any given g, ui, s´i, the agent chooses
a strategy from Bipg, ui, s´iq (here, g essentially stands for the game).

Since agents in general cannot know how the other agents are going to act,
it is not possible for the agents simply play a best-response. To find a way out
of this apparent dead-end, remember that our goal is mainly to design games
so that some desired outcome happens when rational agents are playing the
game. Hence, our main concern is to predict properties of the joint strategy
profile when rational agents play a game.

For starters, assume that there exists a joint strategy profile such that for
each agent, the strategy of the agent in the profile is a best-response to every
possible counterstrategy. It is very likely that if such a joint profile exists, a set
of rational agents would adapt this profile. A joint strategy profile with this
property is called a dominant strategies equilibrium:

Definition 2.1.4 (Dominant strategies equilibrium). Fix G “ pΣ, g, Oq and
u “ puiqiPI and let S be the joint strategy space corresponding to Σ. A strategy
s˚ P S is said to be a dominant strategies equilibrium for pG, uq if, for all i P I,
it holds that

s˚i P
č

s1
´iPS´i

Bipg, ui, s
1
´iq . (2.1)

12



A dominant strategies equilibrium is also called strategy-proof. The prob-
lem with this approach that many games lack a dominant strategies equilib-
rium.

Another possibility, which does not suffer from this latter problem (at least
in the case of finite games), goes back to von Neumann and Morgenstern
(1947) and completed by Nash (1951) . Here, the assumption is only that
when sufficiently intelligent agents play a game then in the strategy profile
arising none of the players will have any incentive to deviate from the profile. In
this case, we say that the joint strategy profile constitutes a Nash equilibrium.
Formally, we have the following definition:

Definition 2.1.5 (Nash equilibrium). Fix G “ pΣ, g, Oq and u “ puiqiPI and
let S be the joint strategy space corresponding to Σ. A strategy s˚ P S is said
to be a Nash equilibrium for pG, uq if, for all i P I, it holds that

s˚i P Bipg, ui, s
˚
´iq . (2.2)

Both of these concepts distinguish a certain subset of S. More gener-
ally, game solution concepts define special subsets of S with various desirable
properties (Fudenberg and Tirole, 1991; Leyton-Brown, 2008; Mertens, 1989;
Shoham and Leyton-Brown, 2008). Since in many cases the various statements
that we will be interested in remain valid for at least the two above concepts
(and some generalizations of them considered later), we introduce a common
generalization of these two equilibrium concepts:

Definition 2.1.6 (Generalized equilibria). Fix G “ pΣ, g, Oq and u “ puiqiPI
and let S be the joint strategy space corresponding to Σ. For each i P I, fix
a mapping `´i : S Ñ 2S´i , which we shall call the counter-strategy mapping
and let C “ pC´iqiPI the collection of these mappings. We say that s˚ P S is
a generalized equilibrium (GE) strategy of pG, u, Cq if for all i P I,

s˚i P
č

s1
´iPC´ips

˚q

Bipg, ui, s
1
´iq .

The set of all generalized equilibrium strategies shall be denoted by EpG, u, Cq.
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In words, the idea is that agent is expectation is to be able to play the best
response to all the counterstrategies in C´ips˚q.

The following result is an immediate corollary of the definitions:

Proposition 2.1.1. The generalized equilibrium defined above encompasses
both Nash and dominant strategies equilibria. In particular, to get the Nash
equilibria choose C´ipsq “ CN

´ipsq “ ts´iu (s P S), while to get the dominant
strategies equilibria choose C´ipsq “ CDS

´i psq “ S´i (s P S).

Proof. The proof follows immediately from the definitions.

2.2 Bayesian Games: Towards Mechanism De-
sign

In the problems we are interested in, the utility functions of the agents are
typically unknown. More precisely, each of the agents are assumed to know
their own utility functions, but neither the designer of the game, nor the other
agents know the utility function of a specific agent. How can one then design
games for the agents so that if the agents are rational the outcome of the game
will be as desired when the agents play some type of equilibrium? In general,
this is only possible when the requirements are relaxed.

One (standard) way of relaxing the requirements is as follows: In the new
approach, it is assumed that for each position i P I, the agent playing at that
position is chosen from a known, fixed set of agents Θi such that for each
θi P Θi, the utility function for position i and agent θi is known. Furthermore,
it is assumed that the distribution from which the agent for position i is chosen
is known both to the game designer and all the agents who will play the game
(i.e., everyone knows all the |I| distributions). Since the agents do not know
the utility functions of the other agents playing the game, but they know the
distribution over these, the equilibrium concepts are adapted so that the agents
play a best-response “in expectation” with respect to these distributions. Since
the agents know their own identity (θi is known to agent playing at position
i), the equilibrium strategy in general must depend on θ “ pθiqiPI .

14



For the formal definitions, let us start with the generalization of best-
responses. However, first let us fix some extra notation. In what follows, an
element of Θi shall be called a possible type for the agents playing at position
i. The utility functions will depend on the position i and also on which agent
(what agent with what type) is playing at the given position. Thus, from now
on, the utility functions will take the form

ui : O ˆΘi Ñ R, i P I .

For θi P Θi we will also use the notation ui,θ to denote the function o ÞÑ

uipo, θiq. We also call ui a typed utility function when we want to emphasize
that the utilities also depend on the agent types.

With this, we arrive at the definition of Bayesian games:

Definition 2.2.1 (Bayesian Game). A Bayesian game is defined by a tuple
pG,Θ, u, Pθq, where G “ pΣ, O, gq is a game, Θ “

Ś

iPI Θi is the set of agent
type profiles, u “ puiqiPI are typed utility functions with ui : OˆΘi Ñ R and
Pθ “ pPθ1 , . . . , Pθ|I|q P

Ś

iPIM1pΘiq is a product distribution over the space of
types.

The counterpart of best-response for “simple games” assumes that the
agent knows what strategy its opponent would play. Since the opponent’s
strategy is a function of their own types, this means that the best-response is
defined for a s´i : Θ´i Ñ S´i type-to-strategy mapping. Even though s´i is
given, the agent does not have access to the opponent’s types θ´i. An agent
playing a Bayesian best-response addresses this by playing a response which
is best on expectation when the uncertainty over θ´i is integrated out using
Pθ´i . Finally, we need a best response for each type θi (the agent knows his
own type!), leading to the concept of Bayesian best-response maps:

Definition 2.2.2 (Bayesian best-response maps). Let B “ pG,Θ, u, Pθq be a
Bayesian game and let s´i : Θ´i Ñ S´i be a function mapping (incomplete)
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type-profiles to (incomplete) strategy profiles. Given i P I and s´i define

Bipg, ui, s´i, Pθ´iq “
!

s˚i : Θi Ñ Si : ui,θipgps
˚
i pθiq, s´ipPθ´iqqq ě sup

s1iPSi

ui,θipgps
1
i, s´ipPθ´iqqq,

θi P supp pPθiq
)

,

the set of Bayesian best-response maps for agent i.

As before, an agent playing in a Bayesian game B is called rational if
knowing that his opponents will play according to s´i would play s˚i pθiq for
some Bayesian best-response map s˚i P Bipg, ui, s´i, Pθ´iq, where θi is his own
type.

With this, we can generalize previous equilibrium concepts. We start with
the the generalization of dominant strategies equilibria. Howewer, first we
need the notation of separable maps:

Definition 2.2.3 (Separable map). Given the product spaces A “
Ś

iPI Ai,
B “

Ś

iPI Bi, a function s : A Ñ B is called separable if for some func-
tions si : Ai Ñ Bi, s “ ps1, . . . , s|I|q in the sense that for any a P A it
holds that spaq “ ps1pa1q, . . . , s|I|pa|I|qq. We let SpA,Bq denote the set of
separable s : A Ñ B maps. Further, for a separable map s and i P I

we can define s´i : A´i Ñ B´i by s´i “ ps1, . . . , si´1, si`1, . . . , s|I|q, i.e.,
s´ipa´iq “ ps1pa1q, . . . , si´1pai´1q, si`1pai`1q, . . . , s|I|pa|I|qq, a´i P A´i.

We can now give the definition of Bayesian dominant strategies equilibria.

Definition 2.2.4 (Bayesian dominant strategies equilibria). LetB “ pG,Θ, u, Pθq
be a Bayesian game. A strategy map s˚ : Θ Ñ S is said to be a Bayesian
dominant strategies equilibria map if s˚ is separable and for all i P I it holds
that2

s˚i P
č

s´iPpS´iq
Θ´i

Bipg, ui, s´i, Pθ´iq . (2.3)

2 If Θ´i has a non-trivial measurability structure, instead of pS´iqΘ´i the set of all
measurable mappings should be used. For simplicity, we disregard measurability issues.
The reader who is worried about this may assume that Θ´i is countable.
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We note in passing that this definition is somewhat vacuous: It is not hard
to see that an equilibrium of a Bayesian game pG,Θ, u, Pθq is a Bayesian domi-
nant strategies equilibrium if and only if it is a dominant strategies equilibrium
of of the pair pG, uq. Nevertheless, for the sake of completeness we keep this
definition.

The generalization of Nash equilibrium leads to the following definition
(Harsanyi, 1968a):

Definition 2.2.5 (Bayesian Nash Equilibria). Let B “ pG,Θ, u, Pθq be a
Bayesian game. A strategy map s˚ : Θ Ñ S is said to be a Bayesian Nash
Equilibrium map if s˚ is separable and for all i P I it holds that

s˚i P Bipg, ui, s
˚
´i, Pθ´iq . (2.4)

Thanks to Nash (1951) , it is well known that the set of Nash equilibria
is always non-empty. It is also known that the set of Bayesian Nash equilibria
is non-empty (Shoham and Leyton-Brown, 2008, Section 6.1).

Finally, the notion of generalized equilibria can also be extended:

Definition 2.2.6 (Generalized Bayesian Equilibria (GBE)). LetB “ pG,Θ, u, Pθq
be a Bayesian game. For each i P I, fix a mapping C´i : SpΘ, Sq Ñ 2S

Θ´i
´i ,

which we shall call the counter-strategy mapping and let C “ pC´iqiPI the col-
lection of these mappings. We say that s˚ P SpΘ, Sq is a generalized Bayesian
equilibrium (GBE) strategy map of pB, Cq if for all i P I,

s˚i P
č

s1
´iPC´ips

˚q

Bipg, ui, s
1
´i, Pθ´iq .

Given B, C, the set of all generalized Bayesian equilibrium strategy maps shall
be denoted by EpB, Cq.

The following result is an immediate corollary of the definition:

Proposition 2.2.1. The generalized Bayesian equilibrium defined above en-
compasses both Bayesian dominant strategy equilibrium maps and Bayesian
Nash equilibrium maps. In particular, Bayesian dominant strategy equilib-
ria maps can be obtained by choosing CBDS

´i psq “ pS´iq
Θ´i, while Bayesian
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Nash equilibrium maps can be obtained by choosing CBN
´i psq “ ts´iu. Further,

EpB, CDSq Ă EpB, CBNq.

Proof. The statement follows immediately from the definitions.

It is also easy to see that the Bayesian equilibrium concepts generalize the
previous concepts:

Proposition 2.2.2. The generalized Bayesian equilibrium concept encom-
passes the generalized equilibrium concept.

Proof. Simply define Θi to be a singleton for each i.

The significance of these results is that they show that if the generalized
Bayesian equilibrium maps are shown to satisfy some desired property then it
follows that all the other (specialized) equilibria concepts satisfy this property,
too. Thus, it suffices to prove such statements for the generalized Bayesian
equilibrium maps.

Building on top of game theory a new field of mechanism design was es-
tablished with a paper by Vickrey (1961) . Mechanism design is an attempt
to find games such that an objective is met or some quantitative criterion is
maximized. A short introduction on mechanism design will be given next. A
good reference for further study would be (Myerson, 2008) and (Fudenberg
and Tirole, 1991, Chapter 7).

2.3 Mechanism Design

Having laid out the basic concepts of game theory, we are now ready to address
the problem of mechanism design.

To design a mechanism means to find or design a game such that a certain
objective is achieved. Without loss of generality, we will assume that there is
a designer of the game, whom, following the economics literature we shall call
the principal. In a nutshell, the principal chooses a game and announces the
rules publicly. The rules are binding for both the principal and the agents. 3

3In the real-world this could be difficult to arrange because of privacy and security
concerns. However, in theory secure cryptographic protocols can often be used to guarantee
no cheating without revealing valuable extra information.
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The game specification, as usual, involves the messages that the agents may
send, together with the rules that determine the outcome given the messages.
(The game to be designed may have external constraints on it. For example,
oftentimes the agents can decide on their own whether they want to participate
in the game. This can be captured, for example, by allowing the agents to send
the message “I opt out”, which puts a constraint on the games.) The agents,
after some deliberation, simultaneously send their messages to the principal,
who, after receiving all the messages announces the outcome by following the
rules of the game. The outcome bears various consequences to the principal, as
well as to the agents (which are known beforehand to all parties involved): For
example, as a “tangible” consequence of the outcome some agent (or agents)
may do some work for the principal, and/or the principal may pay some money
to one (or more) agents, or the principal may obtain some information that she
did not posses beforehand. Just like the agents preferences, the preferences
of the principal will also be captured using a utility function, u0 : O Ñ R,
assuming that the outcome space is O.

To make inferences about the outcome of the designed game, the princi-
pal typically assumes that the players are rational, which, in accordance with
the previous section, is captured using a notion of the equilibrium. When the
utility functions of the agents are unknown, the principal’s objective is to max-
imize her utility no matter what agents “show up” (of course, the maximum
utility that can be achieved will be limited by the “types” of agents that show
up). When agents are chosen at random from some distributions, and the
distributions for each player position are common knowledge, one possibility,
which we shall follow, is to adopt the generalized Bayesian equilibrium concept
to capture the notion of rational agents.

This leads to the formal definition of Bayesian mechanism design problems.

Note. One thing that should be minded for selecting equilibrium concepts
is that while a Nash equilibrium will definitely exist and may be easier to
find, it is too demanding on the agents and may give rise to problems of
coordination (it is not a robust equilibrium concept). Dominant strategies, on
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the other hand, are not very demanding from the agents and are very robust
but require more work on the part of mechanism designer. Moreover, they
might not always exist. Bayesian equilibria stand somewhat in the middle
ground between these two ends, but they require the distribution of types to
be known both to the principal and the agents which may prove to be a big
assumption. It is also notable that in some cases, the mechanism designed will
be very sensitive to these distributions and any inaccuracy in the distribution
may take a big toll from the principal or the agents.

2.3.1 Bayesian Mechanism Design

The purpose of this section is to formally introduce the concepts and key
techniques of (Bayesian) mechanism design. Let us start with the definition
of a mechanism. In what follows, we shall assume that an outcome space O
and a player position set I are given.

Definition 2.3.1 (Mechanism). A mechanism for an outcome space O and
player position set I is a pair M “ pΣ, gq, where Σ “

Ś

iPI Σi is a message
space and g : Σ Ñ O is an outcome function.

As suggested beforehand, the outcomes are rated from the perspective of
the principal using the principal’s utility function,

u0 : O Ñ R.

Assume for now that the agents utility function participating in the game are
unknown, but that the agents’ types pθiqiPI P

Ś

iPI Θi “ Θ for each position
i P I are selected at random from some distribution Pθi , independently from
each other. It is assumed that the distributions, Pθ “ pPθiqiPI are common
knowledge. Furthermore, the utility functions ui : O ˆ Θi Ñ R are also
common knowledge.

The principal adopts a generalized Bayesian equilibrium concept for mod-
eling rational play. For this, the principal needs to select for each Σ its de-
sired counter-strategy map collection CΣ : SpΘ, Sq Ñ 2S

Θ´i
´i .4 For a game

4For example, if the principal wants to the adopt Bayesian Nash equilibria, she can use
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G “ pΣ, O, gq, it will be assumed that the rational players whose randomly
selected, unknown to the principal, joint type is θ will play a joint s˚pθq strat-
egy, where s˚ is an equilibrium map, s˚ P EpB, CΣq, where B “ pG,Θ, u, Pθq
(cf. Definition 2.2.6).When it is important to emphasize that B depends on
M “ pΣ, gq, we will use BM .

With this, we can capture the notion of the expected utility that the prin-
cipal can achieve with some fixed mechanism M :

u˚0pMq “ sup
s˚PEpBM ,CΣq

ż

u0pgps
˚
pθqqqdPθ .

By taking an optimistic viewpoint, the optimum is defined by taking the best
of the possible equilibria. The main reason is technical, though in general it
is commendable to avoid mechanisms with multiple equilibria because then
coordination problems can also arise.56 Finally, note that for some equilib-
rium concepts (i.e., counter-strategy maps) and some mechanisms M , the set
EpBM , CΣq may be empty. As usual, we use the convention supH “ ´8,
thus effectively restricting the set of mechanism considering in the optimiza-
tion problem to those for which EpBM , CΣq is non-empty. We also note in
passing that further restrictions on the considered equilibria are also possible,
but we consider these out of the scope for the time being.

Let the space of all mechanisms with index set I and outcome space O be
MpI, Oq:

MpI, Oq “

#

pΣ, gq : Σ “
ą

iPI

Σi, g : Σ Ñ O

+

.

With this, we can define the Bayesian optimal mechanism design problem:

Σ ÞÑ CΣ, where CΣ “ pC´iqiPI (for brevity Σ is dropped from C´i) with C´i : SpΘ, Sq Ñ
2S´i , C´ipsq “ ts´iu (s P SpΘ, Sq), where S “

Ś

iPIM1pΣiq.
5The coordination problem is what the agents face when they play a game with multiple

equilibria. When the principal, the designer of the game, also has the ability to communicate
the agents which equilibrium they all should play, the rational agents, given this information
and trusting that all other agents will act rationally and that the principal communicated
in a consistent fashion, would have no incentive to deviate from their respective parts of the
equilibrium strategy. Hence, when such pre-game communication is possible, the presence
of multiple equilibria should not be of no major concern.

6Implementation theory is the subfield of game theory where the focus is on tracking all
equilibria, as opposed in mechanism design, where the problem studied is to find a game
that has an equilibrium with some desired property (Jackson, 2001; Maskin and Sjöström,
2002).
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Definition 2.3.2 (Bayesian optimal mechanism design problem (BOMD)).
Given the tuple pI, O,Θ, u, Pθ, u0q and a counter-strategy map schema C : Σ ÞÑ
CΣ, the Bayesian optimal mechanism design problem is to find M˚ “ pΣ˚, g˚q
for which

u˚0pM
˚
q “ sup

MPMpI,Oq

u˚0pMq.

We call M˚ the optimal mechanism for pI, O,Θ, u, Pθ, u0q and C.

Note that since we took an optimistic viewpoint in the definition of u˚0pMq,
if a strong guarantee is required then a separate argument will be needed e.g.
to show that there exists mechanism which achieves the optimal value even
when its worst equilibrium is chosen.

A large body of works on optimal mechanism design is available in the liter-
ature. From this, we mostly build on the results of Myerson (1981) on optimal
auction design. Laffont, Maskin, and Rochet (1987) address the problem
of optimal nonlinear pricing or single-agent principal-agent mechanism design
problem with two-dimensional type spaces. Dasgupta and Spulber (1990)
design the optimal auction mechanism for single sourcing and multiple sourc-
ing a contract but the private information is one-dimensional. Chen (2007)
develops a two-stage implementation of (Dasgupta and Spulber, 1990). Che
(1993) designs 2-dimensional optimal reverse auctions where the sellers bid
price and quality but quality preferences are common knowledge and prices
are the only private information. Also, Rochet and Stole (2003) wrote a good
survey on multi-dimensional screening.

2.3.2 Mechanism Design with Voluntary Participation

As was mentioned before, oftentimes participation is voluntary, i.e., the agents
can opt out from the game. In those cases, the agents can be incentivized to
participate in the game. Assume that an agent of type θi playing at position i
by opting out from the game would achieve a utility of uipθiq. Here, ui : Θi Ñ R

is called the reservation utility function for position i. In these cases one option
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is to consider the constrained problem:

u˚0pMq Ñ max s.t.

M “ pΣ, gq PMpI, Oq,

Ds P EpBM , CΣq s.t. (2.5a)

u˚0pMq “ u0pgpspPθqqq and (2.5b)

uipgpspθi, Pθ´iqq, θiq ě uipθiq, for all θi P Θi and i P I. (2.5c)

The new condition (2.5c) constrains the mechanism such that at equilibrium,
any agent’s so-called expected interim utility, uipgpspθi, Pθ´iqq, θiq, is at least
as large as his reservation value. Since the condition requires that the interim
utility, i.e., the utility a rational agent who knows his type7 can expect to
achieve when participating, should exceed the value incurred when he decided
to opt out, a (Bayesian) rational agent when presented with the option of
participating in the game with the given rules should never prefer to opt out.

Naturally, adding the extra constraints (2.5a)–(2.5c) to the optimization
problem reduces the optimal value that the principal can achieve (as com-
pared to the problems where these constraints are not present). The con-
straints (2.5a)–(2.5c) are called the individual rationality (IR) or participation
constraints and thus we call the above problem a BOMD problem with IR
constraints. .

The IR constraints make sure that all rational agents will participate irre-
spective of their “qualities”. It is, however, possible that in certain cases agents
with “poor qualities” will not contribute in any useful way to the final outcome.
However, taking this into account seems to lead a challenging optimization
problem with a combinatorial structure and hence, following the mechanism
design literature, we will keep things simple (and feasible) by adding the above
constraint when necessary.

Note that if we allow uipθiq to take on the value ´8, then the class of
7 Note that in the economics literature, in connection to how utilities are calculated,

“ex-ante” (from neo-Latin, meaning “before the event’) means the time period when none
of the agents know their types, “interim” means the period when each agent knows their
own types, while “ex-post” (meaning, “after the event”) means the period when all agents
know all the types.
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BOMD problems with voluntary participation will subsume the class of BOMD
problems.

2.3.3 The Revelation Principle

For the remainder of this section we fix the counter-strategy map schema
C : Σ ÞÑ CΣ thus fixing the generalized Bayes equilibrium (GBE) concept. Fix
a mechanism M “ pΣ, gq. The mechanism gives rise to the set-valued map

fM : Θ Ñ 2O, fMpθq “ tgps
˚
pθqq : s˚ P EpBM , CΣqu .

Definition 2.3.3 (Implementation of social choice functions). A mechanism
M is said to implement a function f : Θ Ñ O in GBEpCq if fpθq P fMpθq holds
for each θ P Θ.

In line with the mechanism design literature, we call functions of the form
f : Θ Ñ O social choice functions (SCFs). Note that a game having multiple
equilibria and hence a mechanism may implement many SCFs. Extra effort is
needed usually to ensure the uniqueness of equilibria (when this is desired).
A natural question to ask is whether a given SCF can be implemented using
a mechanism.

A key idea in mechanism design is that, without any loss of generality,
the search space for the mechanisms can be restricted to the so-called truthful
direct-revelation mechanisms where the actions of the agents are type declara-
tions and rational agents truthfully declare their types. This is known as the
revelation principle and we will give a short proof of it later in this section.
The idea of the principle is that if there exists a mechanism that implements
some SCF then this mechanism can be used to construct the rules in a new
mechanism where the agents have to report their types. The new mechanism
requests the agents’ types. The outcome is determined by the outcome that
results from playing the equilibrium strategy corresponding to the reported
type in the old game (more specifically, the equilibrium that implemented the
chosen SCF should be used). Then, there is no reason for an agent to misre-
port his type, since this would only result in the new mechanism playing the
part of that agent suboptimally in the old game.
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Definition 2.3.4 (Direct-revelation mechanisms). A mechanism M “ pΣ, gq
is called a a direct revelation mechanism when Σi “ Θi for each i P I.

We will use idΘ to denote the identity map over Θ: idΘ : Θ Ñ Θ and
idΘpθq “ θ pθ P Θq.

Definition 2.3.5 (Incentive compatibility). We say that the direct-revelation
mechanism M “ pΘ, gq is GBEpCq incentive compatible if idΘ P EpBM , CΘq.

In words, in an incentive compatible direct-revelation mechanismM telling
the truth (truthfulness) is always a rational strategy. A related concept is as
follows:

Definition 2.3.6 (Truthful mechanism). Given a direct-revelation mechanism
M “ pΘ, gq that implements an SCF f : Θ Ñ O in GBEpCq, it is said to be a
truthful mechanism if the identity map idΘ is an equilibrium strategy map for
M : idΘ P EpBM , CΘq and gpθqp“ gpidΘpθqq “ fpθq. The identity equilibrium
strategy map is called the truthful map.

Note that the definition does not rule out that there are equilibrium strat-
egy maps other than the “truthful map” idΘ.

Definition 2.3.7 (Payoff equivalence). Given two games M “ pΣ, gq, M 1 “

pΣ1, g1q, two respective strategy profile maps s : Θ Ñ S, s1 : Θ Ñ S 1 are called
payoff equivalent if for any θ P Θ and i P I,

uipgpspθqq, θiq “ uipg
1
ps1pθqq, θiq .

We prove the revelation principle for counter-strategy map-schemas which
are admissible:

Definition 2.3.8 (Admissible counter-strategy maps). The counter-strategy
map schema C “ pCΣqΣ is called admissible if for any Σ, s P SpΘ, Sq, i P I, it
holds that

!

s´i ˝ ϑ´i : ϑ´i P CpΘq´i pidΘq
)

Ă C
pΣq
´i psq, (2.6)

where we use CpΣq´i to denote the ith component of CΣ.
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Note that the maps CpΣq´i psq “ CN
´ipsq “ ts´iu (defining Nash equilibria)

and CpΣq´i psq “ CDS
´i psq “ pS´iq

Θ´i (defining dominant strategy equilibria) are
trivially admissible.

With this, we are ready to state the revelation principle:

Theorem 2.3.1 (The revelation principle (RP)). Fix an admissible counter-
strategy map schema C “ pCΣqΣ and assume that some mechanism M “ pΣ, gq
implements a social choice function f in GBEpCq. Then, there exists a truthful
direct-revelation mechanism M 1 “ pΘ, g1q which implements f . Further, the
truthful map inM 1 and the equilibrium map ofM that implements f are payoff
equivalent.

Proof. Let s˚ P EpBM , CΣq be the equilibrium map for which it holds that
fpθq “ gps˚pθqq and choose

g1pθq “ gps˚pθqq.

We claim that it suffices to show that truthfulness is an equilibrium strategy
of M 1, i.e., that idΘ P EpBM 1 , CΘq. Indeed, we have g1pidΘpθqq “ g1pθq “

gps˚pθqq “ fpθq. Thus, if idΘ P EpBM 1 , CΘq then in M 1 implements f and is
truthful. Payoff equivalence then follows from g1pidΘpθqq “ gps˚pθqq. Thus, it
remains to show that idΘ P EpBM 1 , CΘq.

By definition 2.2.6, for this we need to show that for any i P I,

idΘ,i P
č

ϑ´iPC
pΘq
´i pidΘq

Bipg
1, ui, ϑ´i, Pθ´iq .

By definition 2.2.2, this is equivalent to requiring that for all i P I, ϑ´i P
C
pΘq
´i pidΘq and θ1i P Θi,

ui,θipg
1
pidΘ,ipθiq, ϑ´ipPθ´iqqq ě ui,θipg

1
pθ1i, ϑ´ipPθ´iqqq . (2.7)

From now on fix i P I, ϑ´i P CpΘq´i pidΘq and θ1i P Θi. By the definition of idΘ,
the above inequality holds if and only if

ui,θipg
1
pθi, ϑ´ipPθ´iqqq ě ui,θipg

1
pθ1i, ϑ´ipPθ´iqqq .
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Now, by the definition of g1, and using that s˚ is separable,

ui,θipg
1
pθi, ϑ´ipPθ´iqqq “ ui,θipgps

˚
i pθiq, s

˚
´ipϑ´ipPθ´iqqqq.

Similarly,

ui,θipg
1
pθ1i, ϑ´ipPθ´iqqq “ ui,θipgps

˚
i pθ

1
iq, s

˚
´ipϑ´ipPθ´iqqqq.

Introduce s1´i “ s˚´i ˝ ϑ´i and s2i “ s˚i pθ
1
iq. Thus, (2.7) is equivalent to

ui,θipgps
˚
i pθiq, s

1
´ipPθ´iqqqq ě ui,θipgps

2
i , s

1
´ipPθ´iqqqq. (2.8)

Now, since s˚ P EpBM , CΣq, we have

s˚i P
č

ŝ1
´iPC

pΣq
´i pidΘq

Bipg, ui, ŝ
1
´i, Pθ´iq .

Equivalently, for any ŝ1´i P C
pΣq
´i ps

˚q and ŝ2i P Si,

ui,θipgps
˚
i pθiq, ŝ

1
´ipPθ´iqqq ě ui,θipgpŝ

2
i , ŝ

1
´ipPθ´iqqq .

Since C is admissible, s1´i P C
pΣq
´i ps

˚q and thus by choosing ŝ1´i “ s1´i and
ŝ2i “ s2i , we see that (2.8) indeed holds.

Background: The revelation principle was introduced by Gibbard (1973)
for dominant strategies. Later on, the revelation principle was proved for
Bayesian Nash equilibria by Holmström (1977) , Dasgupta et al. (1979)
and Myerson (1979) . Technically, the proof given here is new: We prove a
general version of the revelation principle for the generalized Bayes equilibrium
concept that we introduced. Nevertheless, unsurprisingly, the proof follows
closely previous proofs. Although the proof is slightly more complicated, it has
the benefit of showing that a single proof suffices, while pointing out the key
property (admissibility of the counter-strategy maps) of equilibrium concepts
that is sufficient for guaranteeing that the revelation principle remains true.

As noted above, the key consequence of the revelation principle is that it
allows the narrowing of the search for the mechanisms. However, the revela-
tion principle on its own does not guarantee that a truthful direct-revelation
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mechanism would exist that implements only the chosen SCF. Hence, other
type of mechanisms can still be interesting if one is interested in such strong
implementations (or extra effort is needed to make sure that this property
holds). Very often, however, the revelation principle is used to prove negative
results: If some SCF cannot be implemented using a direct mechanism, then
it cannot be implemented by any kind of mechanism. On the positive side, by
narrowing down the search space, the revelation principle can (sometimes) be
used to find a useful mechanism. In many cases, this is done by transforming
the search problem into an optimization problem.

Proposition 2.3.2. Fix D “ pI, O,Θ, u, Pθ, u0,Cq, where C is admissible. Let
g˚ : Θ Ñ O be the solution to the optimization problem:

ż

u0pgpθqqdPθ Ñ max s.t. (2.9a)

g : Θ Ñ O ,

idΘ P EpBpΘ,gq, CΘq. (2.9b)

Then, pΘ, g˚q is Bayesian optimal mechanism for D.

Proof. The result follows from the definition and the revelation principle.

The constraint (2.9b) is known as the incentive compatibility (IC) con-
straint as this constraint guarantees that truthfulness is rational.

Remembering that in the definition of the value of a mechanism an opti-
mistic viewpoint was taken, if a stronger guarantee is required then one should
try to achieve that idΘ is the only equilibrium of pΘ, g˚q (or that any other
equilibrium’s expected payoff is at least as large as that of idΘ.

For later reference, it is worthwhile to expand the abstract IC constraint
of (2.9b). Investigating the definitions, we see that this constraint is equivalent
to the following one:

ui,θipgpθi, s´ipPθ´iqqq ě ui,θipgpθ
1
i, s´ipPθ´iqqq

for all i P I, θi, θ1i P Θi, and s´i P CpΘq´i pidΘq .
(2.10)

When considering implementations in Bayesian Nash equilibria, CpΘqpsq “
CpΘq,BNpsq “ ts´iu, the constraint further simplifies to

ui,θipgpθi, Pθ´iqq ě ui,θipgpθ
1
i, Pθ´iqq for all i P I and θi, θ1i P Θi . (2.11)

28



When considering implementation in dominant strategies equilibria, CpΘqpsq “
CpΘq,BDSpsq “ pΘ´iq

Θ´i , the constraint becomes

ui,θipgpθi, θ´iqq ě ui,θipgpθ
1
i, θ´iqq for all i P I, θ´i P Θ´i, and θi, θ1i P Θi

(2.12)

(as it was noted earlier, the distributions Pθ play no role when implementation
in dominant strategies is chosen).

2.3.4 Voluntary Participation

Recall the BOMD problem with voluntary participation from Section 2.3.2.
The counterpart of Proposition 2.3.2 for BOMD problems with voluntary par-
ticipation is as follows:

Proposition 2.3.3. Fix D “ pI, O,Θ, u, u, Pθ, u0,Cq, where C is admissible
and u “ puiqiPI , ui : Θi Ñ R (for i P I, uipθiq is the reservation utility of
agent i with type θi P Θi). Let g˚ : Θ Ñ O be the solution to the optimization
problem:

ż

u0pgpθqqdPθ Ñ max s.t. (2.13a)

g : Θ Ñ O ,

idΘ P EpBpΘ,gq, CΘq,

uipgpθi, Pθ´iq, θiq ě uipθiq for all i P I and θi P Θi . (2.13b)

Then, pΘ, g˚q is the solution to the BOMD problem with voluntary participa-
tion.

Proof. The result follows from the definitions and the revelation principle not-
ing that the equilibrium in the IR constraint (2.5a)–(2.5c) is chosen to be
idΘ.

Note. There is an issue with Bayesian optimal mechanisms with voluntary
participation that should be noted: By definition Bayesian optimal mecha-
nisms with voluntary participation provide agents with an “opt-out” message.
However, direct revelation mechanisms require the space of messages to be ex-
actly equal to agent’s type space. This is a reason why we cannot search for a
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Bayesian optimal mechanism with voluntary participation using the revelation
principle. Thus, we are forced to solve a surrogate problem of Bayesian optimal
mechanisms with individual rationality constraint. However, this might cause
the resulting mechanism to be sub-optimal as there is no guarantee that the a
Bayesian optimal mechanisms with IR constraint would achieve the same value
as its counterpart Bayesian optimal mechanisms with voluntary participation
(see Figure 2.1).

MV P

MIR

MTDR

M MDR

RP

Figure 2.1: The problem with applying the revelation principle to voluntary
mechanisms: Bayesian optimal mechanisms with voluntary participation are
defined as to offer the agents the option to opt out: such actions must be
propagated by the rules to the outcome space and taken into account appro-
priately in the principal’s utility function. The set of these mechanisms is
labeled asMV P on the figure. On the other hand, (truthful) direct revelation
mechanisms accept no message other than agent’s type (the set of these is
labeled byMTDR on the figure). Thus, the intersection of these sets is empty
and thus the revelation principle fails. A Bayesian optimal mechanisms with
voluntary participation may also be a Bayesian optimal mechanisms with an
IR constraint, but in the process of applying the RP, it will nonetheless lose
the voluntary participation feature.
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2.4 Mechanisms in the World of Money

In a world with money, the outcome space has the form O “ E ˆ
Ś

iPI Ti

where Ti Ă R and the agents’ utility functions puiqiPI are assumed to take the
quasi-linear form pi P Iq:

uipo, θiq “ vipe, θiq ` ti , o “ pe, t1, . . . , t|I|q P O, θi P Ti ,

for some functions vi : E ˆ Θi Ñ R. In particular, in a world with money,
an outcome has the form pe, t1, . . . , t|I|q, where ti is the amount of money
transferred to agent i and the agent’s utility functions are linear in the “money
component”. The utility function is called linear when θi is an element of a
linear space and vipe, ¨q is also (affine) linear. In later chapters, we will often
make the natural assumption that the world has money and agents have quasi-
linear, or linear utility functions.

2.5 Solution Methodologies

How to solve a BOMD problem? From the point of view of mathematics,
once the problem is formally specified, it can be considered solved! However,
of course, in practice we want solutions that are actionable. Traditionally,
mechanism design problems were studied by economists, where the actual
form of the mechanisms and that of the equilibria is also of major interest
(cf. Gibbard 1973; Hurwicz 1969, 1973; Myerson and Satterthwaite 1983; Sat-
terthwaite 1975). However, closed-form solutions are only possible (or known)
when some rather specific assumptions are made on the problem (such as
assumptions on the distributions involved, or the form of the utility func-
tions). Although we will argue that in many cases these assumptions are
reasonable, another possibility is to use some numerical technique to solve the
optimization problem (after applying the revelation principle, or simplifying,
re-representing the problem in some other ways perhaps). In particular, note
that after the revelation principle is applied the problem takes the form of
a one-stage reinforcement learning problem with constrained policies: in this
viewpoint the mapping g becomes a “policy”, with the goal being, using this
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new terminology, to find a policy that maximizes the principal’s expected util-
ity while the policy should satisfy some stochastic constraints (the constraints
are stochastic in the sense that they involve integrals). This is also an instance
of stochastic programming. With the language of stochastic programming, the
constraints would be described as “chance constraints” and the problem would
be described as an instance of expected value maximization subject to chance
constraints. When the outcome space is a convex subset of a vector space and
the agents’ utility functions are linear in the outcome (e.g., see the example
in the next chapter), both the IC and IR constraints are linear in g, assuming
that u0 is concave the problem becomes an instance of convex optimization.

In this thesis, for the sake of simplicity, we decided not deal with such
computational approaches and thus will follow the economics literature in
specifying closed-form solutions at the price of making extra assumptions.
However, it remains an interesting and exciting avenue for future research to
the computational issues that arise from mechanism design.

2.6 Summary

In this chapter, the basic concepts of game theory and mechanism design were
explained to be used in next chapters. We started with basic definitions of
game theory, introduced a new construct for generalizing equilibrium con-
cepts and then we went on to describe mechanism design basics. After that,
we defined the problem of Bayesian optimal mechanism design (BOMD) and
elaborated about voluntary participation. Finally, we introduced the revela-
tion principle (RP) and how it translates to limiting our search for mechanisms
to the space of incentive-compatible mechanisms.

2.6.1 Known Limitations

• In Bayesian Nash equilibria, it is assumed that agent types are chosen
independently. Collusion is when this is not the case. The framework is
by definition unable to handle this.

• We assume the agents to be perfectly rational. This is most probably not
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the case in the real world. What would be more accurate is to assume
bounded rationality, which would make the problem of mechanism design
challenging or provide a relaxation of the concept of bounded rationality.
For example, a very good and realistic assumption would be to assume
that the agents are not neccessarily able to compute the equilibria of
a game but are able to verify equilibria when presented to them. This
would be a less challenging extension, but is still challenging.

• We assume priors and just do an expectation analysis. Many questions
remain, like: how big the variance is, for example, or what is the worst-
case? These questions are not addressed in this framework.

• Algorithmic game theory (Nisan et al., 2007) considerations are left
unanswered (competitive mechanism).

2.6.2 Future Work

• Here we are addressing only normal-form games. This is not necessar-
ily adequate. We may have to extend this equilibrium concept in order
to be able to deal with extensive-form games with incomplete informa-
tion. A good follow-up would be to integrate the equilibrium concepts
of extensive-form games, e.g., sequential equilibrium concept by Kreps
and Wilson (1982), into this framework and:

– Provide GBE for extensive-form games;

– Study the effect on the revelation principle (Myerson, 1986).

– In case of extensive-from games or multi-stage mechanisms, the
problem will become very similar to reinforcement learning. A
study of dynamic programming-like algorithms for solving this would
be well justified.

• Sometimes, information flow in is not under control by an agent (or the
principal) in the game. This is specially true for the case of machine
learning auctions. These unpreventable information flows should be ac-
counted for. This is the main focus of Chapter 4 and Chapter 5.
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• A characterization of equilibrium concepts under which the revelation
principle holds. The new equilibrium concept opens up ways to study
such problems, but a further study is needed. For example and question
would be on the need for admissibility for RP to hold.

• Randomized mechanisms have not been studied but are a very rational
step.

• Does voluntary participation conceals a back-door for an ad-hoc solu-
tion? The problem is that the revelation principle by definition does not
allow for opt-out actions by the agents. There are a number of questions
such as:

– You could hurt the agents with the individual rationality. But with
IR, maybe the search space is too constrained. Is this suboptimal?

– The relations between individual rationality and voluntary partici-
pation and multi-stage mechanisms need further study.

– Can we formulate a version of the revelation principle with extra
actions like opting out?

– Ex-post voluntary participation (agents realizing that participation
was indeed voluntary after everything is said and done) is another
interesting subject to study.

• Existence of an equilibrium by itself is not a guarantee that the mecha-
nism acts as intended. Indeed this is the subject of study of implementa-
tion theory and problems of coordination. For that we need to make sure
that the set of equilibria is a singleton and the equilibrium is unique. A
(naive) question is how to achieve that the equilibrium is unique so that
problems of coordination are avoided?

• Computational approaches to mechanism design is yet another interest-
ing subject that has not been addressed in this thesis and merits to be
studied.
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Chapter 3

Machine Learning Solution
Procurement

Assume that a company (the principal) owns some data and needs an algorithm
that solves a prediction problem defined based on the data. The company de-
cides to buy an off-the-shelf machine learning solution from some developers
that the company is in contact with instead of investing into in-house devel-
opment. Which solution should be bought? How much should be paid for the
solution? In this chapter we will study a simplified model where we assume
that each solution has already been evaluated on the data, and the evalua-
tions results have been transformed into how profitable each solution might be
(throughout the thesis we assume that the principal, and also the developers
are risk-neutral). The company then may decide for a number of procurement
formats (i.e., how the developers should submit their prices, what information
should flow between the participants, etc.). In any case, at the end the com-
pany will need to make a decision of which solution to buy and how much to
pay. The decision should maximize the company’s profit. To model this as an
optimization problem, we will use the last chapter’s framework and we require
that the implementation should be in Bayesian Nash equilibria.

An idea we will pursue in this thesis is casting this procurement of machine
learning solutions into the form of an auction. An auction is a form of trade in
which different parties bid for the acquirement of a good. A machine learning
problem is more properly cast into the form of a reverse auction. A reverse
auction is an auction where a principal wants to procure an item from a set
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of agents offering different items. Each item has a different value for the
principal and this is really what sets reverse auction apart from a normal
‘forward’ auction.

We are interested in this problem because it can model a very basic scenario
when we want to acquire a machine learning solution: A principal wants to
find the most profitable solution to her among what’s offered. Different agents
are offering different off-the-shelf solutions (no tailoring is made) and each
solution has a different quality for the principal and comes with a different
price.

This problem has been addressed many times in the literature of economics.
We adopt the solution by Myerson (1981) to the case of reverse auctions, which
is minor change to his results. Solutions to reverse auctions in our setting
where each item sold has the same value to the principal are described, e.g.,
in Narahari (2012).

3.1 Problem Description

An outline of the problem we solve is as follows: We assume that the principal
knows the profitability ρi of the individual solutions offered by the developers
(the developers are indexed by i P I). Let θi denote the price that agent i
values his solution at. The outcome of the mechanism is who wins and how
much each agent gets paid. The only information concerning agent i that
enters the agent’s utility function is θi: Thus we will take θi to be the type of
agent i. We assume that θi is drawn at random from Pθi , where Pθi (for all
i P I) is known for all participants.

The flow of information in the mechanism is as follows:

1. Agent i’s price θi is drawn from Pθi , i P I;

2. The principal declares the rules: who will win and how much is each
agent payed – as a function of ρi and the submitted bids

3. Agents offer their solutions with their bids θ̂i (i P I);
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4. Based on the previously announced rules, the winner is determined, the
right to freely use his solution is transferred to the principal and the
payments are made.

Let us now define the underlying BOMD problem formally. Instead of
simply determining a winner whose solution is taken in a deterministic fash-
ion, we consider a randomized choice (randomization can actually help in
increasing the value that the principal can achieve and is by no means a re-
striction and will help with the mathematical developments): Thus, upon
receiving all the information (for example bids and the test results, or any
other messages the actual mechanism requires), the principal determines a
subprobability distribution π P Mď1 pIq over I and a vector t P R|I| of pay-
ments whose ith component determines the money to be transferred to agent
i (here, Mď1 pIq “

 

π P r0, 1sI :
ř

iPI πi ď 1
(

is the space of subprobability
distributions over set I). Once, the outcome pπ, tq is determined, the following
events take place: With probability 1 ´

ř

iPI πi, the principal rejects all the
offers, while with probability πi the offer of agent i is accepted (that is, zero
or one offer is accepted). As said before, if the offer on agent is accepted,
the principal gains the right to use the solution qi of agent i. In any case, all
agents i are transferred the respective amounts ti. Thus, the outcome space
is O “ Mď1 pIq ˆ T , where T “

Ś

iPI Ti with Ti Ă R being the set of possible
payment values for agent i.

The utility function of the principal is defined by

u0pπ, tq “

˜

1´
ÿ

iPI

πi

¸

θ0 `
ÿ

iPI

πi ρi ´
ÿ

iPI

ti , (3.1)

where θ0 P R is the profit (possibly negative) that the principal makes when
no solution is accepted, and ρi is the profitability of solution offered by agent
i. Note that as usual with randomized mechanisms, the utility function deter-
mines the expected utility where the expectation is over the randomization of
the mechanism.

As hinted on before, we represent the type θi of developer (or agent) i by
the price λi P R the agent would be “happy with”. With this, the utility of
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agent with type θi, given the outcome pπ, tq P O is

ui,θipπ, tq “ ´πiθi ` ti, (3.2)

i.e., the agent is giving up the value θi when he is winning the competition,
while he receives the amount ti independently of whether he won the competi-
tion. Again, the utility function determines the expected utility for the agent
where the expectation is over the randomization of the mechanism.

To fully specify the optimal mechanism design problem it remains to choose
some counter-strategy map schema, C. In this chapter, we consider the case
when C is the Nash-choice: C´ipsq “ CN

´ipsq “ ts´iu, giving rise to implemen-
tations in Bayesian Nash equilibria.

Problem 3.1.1. For i P I, let Θi “ rθi, θis Ă R, θi ă θi, Pθi be a distribution
supported on Θi. Consider a BOMD problem where the outcome space is
O “Mď1 pIq ˆ T , T “ R|I|. Let the utility of agent i with type θi P Θi, given
pπ, tq P O, be

ui,θipπ, tq “ ´πiθi ` ti,

while the utility of the principal be

u0pπ, tq “

˜

1´
ÿ

iPI

πi

¸

θ0 `
ÿ

iPI

πi ρi ´
ÿ

iPI

ti ,

where θ0 and ρi (i P I) are given fixed real numbers. Let C be defined by
CΣpsq “ CN

Σ psq “ ts´iu (implementation in Bayes-Nash equilibria). The prob-
lem is to find a solution to the BOMD problem described by pI, O,Θ, Pθ, u, u0,Cq.

Under some extra assumptions, this reverse auction problem has a well-
known, closed-form solution Myerson (1981), which is described in the next
section.

3.2 The Form of the Optimal Reverse Auction

In what follows we will reuse the symbol Pθi to denote the cumulative dis-
tribution function Pθi : R Ñ r0, 1s corresponding to the distribution Pθi :
Pθipxq “

şx

´θi
dPθi , x P R (the meaning of Pθi should remain clear from the

context). We make the following assumption concerning these distributions:
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Assumption 3.2.1. For each i P I, the distribution Pθi has a density with
respect to the Lebesgue measure on Θi. Further, the density is bounded away
from zero on Θi.1

We will denote the resulting density by pθi . WLOG (without loss of gen-
erality) we seek the optimal mechanism amongst the set of truthful direct-
revelation mechanisms (that this can be done holds because of the revelation
principle, cf. Theorem 2.3.1). Thus, Σ “ Θ, i.e., in our case the agents’ mes-
sages will be prices. For i P I, introduce the function Vi : Θi Ñ R defined by

Vipxq “ ρi ´ x´
Pθipxq

pθipxq
. (3.3)

The function Vi assigns a “virtual value” to a price x submitted by agent i:
The agent’s offer is compared to the profit to be made and is adjusted by
Pθi pxq

pθi pxq
that reflects the uncertainty regarding the type of agent i (this term

is also known in the literature as the information rent (Myerson, 1981) as it
decreased the profitability by an amount that reflects the uncertainty of θi).

These functions form the basis of the solution to the reverse auction prob-
lem. In particular, the solution will take the form M “ pΘ, g˚q, g˚ “ pπ˚, t˚q
with π˚ : Θ Ñ Mď1 pIq, t˚ : Θ Ñ R are specified as follows: For every
vector of submitted prices θ, the mechanism will select a winner amongst the
agents, with the possibility that no agent is selected as a winner. We let
w˚ : Θ Ñ I Y t0u denote the function that determines the winner: the value
0 R I is used to allow the mechanism to reject all offers. To make the definition
of w˚ more concise (and maybe easier to comprehend) define

V0pxq “ x

Then, for θ P Θ,2

w˚pθq “ arg max
iPIYt0u

Vipθiq , (3.4)

where ties should be broken in an arbitrary, but systematic fashion indepen-
dently of x (i.e., by ordering IYt0u in some way and in the case of ties choosing

1This is the reason Θi has to be a bounded interval.
2Note that θ does not include θ0
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the index that precedes all the other tied indices in the chosen ordering). Ac-
cording to (3.4), the winner is selected as the agent whose virtual valuation at
the price he submitted is the largest. Now, define π˚ by

π˚i pθq “ Itw˚pθq“iu, i P I. (3.5)

To define the payment function t˚, first define the functions z˚i : Θ´i Ñ R,
i P I:

z˚i pθ´iq “ sup tθi P Θi : w˚pθq “ iu .

That is, z˚i pθ´iq specifies the largest price agent i can submit and still win
given that the other agents submit the prices θ´i. With this, define

t˚i pθq “

#

z˚i pθ´iq, if w˚pθq “ i;
0, otherwise .

(3.6)

Note that agent i gets paid if and only if he wins. When the agent wins, he
gets paid z˚i pθ´iq, which is guaranteed to be more than θi, otherwise he would
not have won.

Let us introduce one more technical assumption:

Assumption 3.2.2. The virtual valuation functions, Vi are strictly decreas-
ing.

Note that for some common probability distributions, such as the uniform
or exponential distributions, the virtual valuation functions are indeed strictly
decreasing. Myerson (1981) described a technique (“ironing”) that allows one
to avoid this assumption.

We can now state the main result of this section:

Theorem 3.2.1. Let Assumptions 3.2.1 and 3.2.2 hold and let g˚ “ pπ˚, t˚q,
where the functions pπ˚, t˚q are defined above. Then, the mechanism pΘ, g˚q
is a solution to Problem 3.1.1.

3.3 The Proof of Optimality

In this section we give a proof of Theorem 3.2.1. For a given pair of functions
π : Θ Ñ Mď1 pIq, t : Θ Ñ R|I| let gπ,t : Θ Ñ O be defined by gπ,tpθq “
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pπpθq, tpθqq. Further, for i P I, θi, θ1i P Θi, let

uipπ, t, θ
1
i, θiq “ ui,θipgπ,tpθ

1
i, Pθ´iqq ,

Uipπ, t, θiq “ uipπ, t, θi, θiq .

Thus, uipπ, t, θ1i, θiq is the interim expected utility of agent i when he chooses
to send θ1i while his type is θi and Uipπ, t, θiq is his interim expected utility
when he chooses to be truthful.

By Proposition 2.3.3 and also using that by our choice of Bayes-Nash im-
plementation the IC constraint (2.9b) is equivalent to (2.11), Problem 3.1.1 is
equivalent to the following functional optimization problem:

ż

u0pgπ,tpθqqdPθ Ñ max s.t. (OPT-1)

π : Θ ÑMď1 pIq , t : Θ Ñ R|I| ,

Uipπ, t, θiq ě uipπ, t, θ
1
i, θiq for all i P I and θi, θ1i P Θi (IC-1)

Uipπ, t, θiq ě 0 for all i P I and θi P Θi. (IR-1)

(3.7a)

For i P I, π : Θ ÑMď1 pIq, θi P Θi define

Eipπ, θiq “ πipθi, Pθ´iq.

Note that with this definition we can write uipπ, t, θ1i, θiq “ tpθ1i, Pθ´iq´Eipπ, θ
1
iqθi.

We claim that π, t satisfies (IC-1),(IR-1) if and only if it satisfies the following
constraints:

Eipπ, ¨q is decreasing for all i P I, (DEC-2)

Uipπ, t, θiq “ Uipπ, t, θiq `

ż θi

θi

Eipπ, θ̂iqdθ̂i for all i P I, θi P Θi, (INT-2)

Uipπ, t, θiq ě 0 for all i P I. (IR-2)

The proof of this equivalence actually holds for each index i P I, separately
and follows immediately from the following analysis lemma:

Lemma 3.3.1. Let X “ ra, bs be a closed subinterval of the real line, t : X Ñ

R and let e : X Ñ r0,8q be a function that is also integrable. For x, y P X,
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define upx, yq “ tpxq ´ epxqy, Upxq “ upx, xq. Then the inequalities

Upyq ě upx, yq for all x, y P X, (IC-ENV)

Upxq ě 0 for all x P X (IR-ENV)

are satisfied if and only if the constraints

e is decreasing, (DEC-ENV)

Upxq “ Upbq `

ż b

x

epxqdx for all x P X, (INT-ENV)

Upbq ě 0 (IR2-ENV)

are satisfied.

Note that the significance of the transformation of the constraints is that
in (INT-ENV) the effect of function t only shows up in Upbq, i.e., though an
additive term, which does not depend on x.

We use the following theorem in the proof of Lemma 3.3.1:

Theorem 3.3.2 (Envelope Theorem, Theorem 2 of (Milgrom and Segal,
2002)). Let f : X ˆ r0, 1s Ñ R be a function, V ptq “ supxPX fpx, tq, X˚ptq “

tx P X : fpx, tq “ V ptqu. Let ft denote the partial derivative of f w.r.t. t.
Suppose that the following hold:

a) fpx, ¨q is absolutely continuous for all x P X;

b) fpx, ¨q is differentiable for all x P X;

c) |ftpx, tq| ď bptq for all x P X and almost all t P r0, 1s, whereb : r0, 1s Ñ R

is integrable;

d) X˚ptq ­“ H almost everywhere on r0, 1s.

Then, for any measurable selection x˚ptq P X˚ptq,

V ptq “ V p0q `
ż 1

0
ftpx

˚
psq, sq ds . (3.11)

42



Lemma 3.3.1. We first show that (IC-ENV) is equivalent to

Upyq ´ Upxq ě px´ yqepxq for all x, y P X . (IC2-ENV)

Indeed, using the definition of u, we see that

Upyq ě upx, yq “ tpxq ´ epxqy “ Upxq ` epxqpx´ yq,

and reordering the terms gives the required equivalence. Also, note that (IC2-ENV)
clearly implies that U is decreasing thanks to e ě 0.
ñ: Clearly, (IR2-ENV) is implied by (IR-ENV). Swapping x and y in (IC2-ENV)
gives Upxq ´ Upyq ě py ´ xqepyq. Combining this with (IC2-ENV) we get

px´ yqepxq ď Upyq ´ Upxq ď px´ yqepyq for all x, y P X . (3.12)

This implies that e is decreasing (i.e., (DEC-ENV)). The plan now is to apply
Theorem 3.3.2 to fpx, tq “ upx, τptqq, where τ : r0, 1s Ñ X is an affine linear
function such that τp0q “ x0 with some x0 P X, τp1q “ b to show (INT-ENV).
With the notation of the theorem, V ptq “ maxxPX fpx, tq “ upτptq, τptqq.
Choose x˚ptq “ τptq. The conditions of the theorem can be readily verified.
Further, ftpx, tq “ B

Bt
ptpxq ´ epxqτptqq “ ´epxqτ 1ptq. Hence, Upbq “ V p1q “

V p0q `
ş1
0 ftpx

˚ptq, tqdt “ Upx0q ´
ş1
0 epτptqqτ

1ptqdt and thus by substituting
s “ τptq (ds “ τ 1ptqdt) we get Upx0q “ Upbq`

şτp1q
τp0q epsqds “ Upbq`

şb

x0
epsqdds.

Since x0 was arbitrary, we get (INT-ENV). This finishes the direction ñ.
ð: Since e is decreasing, starting from (INT-ENV) we get that

Upxq “ Upyq ´

ż x

y

epzqdz ě Upyq ´

ż x

y

epyqdz “ Upyq ´ px´ yqepyq

holds for any x, y P X. This implies (IC2-ENV), which was seen to be equiv-
alent to (IC-ENV) and to imply that U is decreasing. Since U is decreasing,
(IR2-ENV) implies (IR-ENV).

Let us now return to the optimization problem. Using the function Ui, we
can rewrite the objective function as

u0pgπ,tpPθqq “ λ0 `
ÿ

iPI

pρi ´ θi ´ λ0qπipPθq ´
ÿ

iPI

Uipπ, t, Pθiq. (3.13)
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Let us now write Uipπ, t, Pθq in a form that allows the separation of the terms
that involve t. Take any π, t satisfying the constraints (DEC-2), (INT-2),
(IR-2). Due to (IR-2) and the definition of Ei and Assumption 3.2.1,

Uipπ, t, Pθiq “

ż θi

θi

˜

Uipπ, t, θiq `

ż θi

θi

Eipπ, θ
1
iqdθ1i

¸

dPθipθiq

“ Uipπ, t, θiq `

ż θi

θi

ż θi

θi

Eipπ, θ
1
iq dθ1i dPθipθiq

“ Uipπ, t, θiq `

ż θi

θi

˜

ż θ1i

θi

dPθipθiq
¸

Eipπ, θ
1
iq dθ1i

“ Uipπ, t, θiq `

ż θi

θi

ˆ

Pθipθ
1
iq

ż

Θ´i
πipθ

1
i, θ´iqdPθ´ipθ´iq

˙

dθ1i

“ Uipπ, t, θiq `

ż

Θ
Pθipθiqπipθq dPθ´ipθ´iq

pθipθiq

pθipθiq
dθi (*)

“ Uipπ, t, θiq `

ż

Θ

Pθipθiq

pθipθiq
πipθq dPθpθq .

Note that we have indeed separated the term that includes t. The equation
where we used the positivity of pθi over its domain is denoted by (*). Plugging
the expression obtained for Uipπ, t, Pθiq into (3.13) and using the functions

V̂ipxq “ ρi ´ x´ λ0 ´
Pθipxq

pθipxq
px P Θiq,

we get

u0pgπ,tpPθqq “ λ0 ´
ÿ

iPI

Uipπ, t, θiq `

ż

ÿ

iPI

V̂ipθiqπipθq dPθpθq . (3.14)

For π fixed, let us maximize this in t subject to the constraints (DEC-2),
(INT-2), (IR-2). Since only the second term depends on t and in fact this term
has a negative sign, we maximize the objective if we minimize

ř

iPI Uipπ, t, θiq.
Let us consider the ith term of this sum for some i fixed. By (INT-2) and
plugging in the definitions of Ui and Ei, for any θi P Θi we get

Uipπ, t, θiq “ Uipπ, t, θiq ´

ż θi

θi

Eipπ, θ
1
iq dθ1i

“ tipθi, Pθ´iq ´ πipθi, Pθ´iqθi ´

ż θi

θi

πipθ
1
i, Pθ´iq dθ1i

“

«

tipθq ´ πipθqθi ´

ż θi

θi

πipθ
1
i, θ´iq dθ1i

ff

θ´iÐPθ´i

,
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where r¨sθ´iÐPθ´i is used to denote the substitution of θ´i by Pθ´i (and hence,
taking the integral of the expression). Thus, Uipπ, t, θiq depends on t only
through ti. By (IR-2), all feasible pairs pπ, tq must satisfy Uipπ, t, θiq ě 0.
Hence, the minimum of Uipπ, t, θiq is zero. This minimum is achieved if we
choose

t
pπq
i pθq “ πipθqθi `

ż θi

θi

πipθ
1
i, θ´iq dθ1i

and by choosing t this way (as a function of π), (INT-2), (IR-2) are satisfied
for any π. Thus, it remains to choose π.

When we choose t “ tpπq, we see that the only term that still depends on π
in (3.14) is the last term. Call this term: Υpπ, Pθq “

ş
ř

iPI V̂ipθiqπipθq dPθpθq.
Taking into account that πpθq is a subprobability distribution, we see that for
any feasible π

Υpπ, Pθq ď
”

maxp0,max
iPI

V̂ipθiqq
ı

θÐPθ

(if maxiPI V̂ipθiq ă 0 πipθq “ 0, i P I achieves zero inside the integral at θ).
Further, the upper bound on Υpπ, Pθq can be achieved by any π when πpθq

assigns zero to all indices i P I such that V̂ipθiq ă 0 and assigns nonnegative
values to indices in W pθq “

!

i P I : V̂ipθiq ě 0, V̂ipθiq “ maxjPI V̂jpθjq
)

. Now,
if Assumption 3.2.2 is satisfied then it can be shown that by choosing a single
nonzero entry from W pθq will result in π that satisfies (DEC-2). Denoting the
resulting choice π˚ and letting t˚ “ tpπ

˚q, after elementary transformation we
arrive at the desired statement, thus finishing the proof of Theorem 3.2.1.

3.4 Discussion

Let us return to the discussion of the optimal mechanism. An important
feature of the optimal mechanism is that the price submitted by an agent
influences his payment only through whether he wins or not: If the agent
does not win, he receives no payment, while if the agent wins, his payment is
determined solely by the prices submitted by the other agents. Furthermore,
since the virtual valuation function is a monotone decreasing function of the
price submitted, the higher the price that the agent submits, the smaller is
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the chance he is going to win the competition. Hence, to maximize his utility,
the agent should declare the minimum price that he still finds acceptable. In
fact, under these rules, even if the agent was given the prices submitted of
the other agents, the agent could not increase his profit by manipulating the
price he submits: The strategy of honest declaration of everyone’s prices is an
ex-post Nash equilibrium. This simple reasoning can be used by the principal
to convince each agent that they are best off by honestly submitting their
“reservation prices”. Thus, the agents need not do any calculations to verify
that honest declaration is in their best interests. An important consequence
of this is that honest declaration is actually a Bayes-Nash equilibrium even if
the agents beliefs about the prior distribution of prices differ from each other,
or the prior used by the principal. Thus, if the principal chooses a prior which
is different from the probability distribution the agents’ types are drawn from,
this “incorrect choice” will only influence the principal’s expected profit, but
not how the agent’s act as long as they are rational.

Let us now turn to the discussion of some limitations of the model used.
One such limitation is the assumption that both the agents and the principal
are risk-neutral (in games with money, a risk-neutral entity is one whose utility
is linear in money, a risk-seeking entity is one whose utility is superlinear in
money, and a risk-averse entity is an entity with a utility sublinear in money).
The assumption of risk-neutrality may very well be unrealistic as agents “in
the real world” may not risk-neutral: big companies are often risk-seeking and
individuals with low wealth are often risk-averse (Markowitz, 1959).

Another issue worth noting is the importance of effective communication
of the mechanisms’ incentivizing structure to the agents. The principal has to
argue informally, and also formally if need be, and convince the agents that
honesty is in equilibrium due to the structure of the mechanism. Even though
we have argued above that the argument that the principal has to make is not
complicated, some agents may still not “accept” such an argument.
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3.5 Summary

When the agents have different distributions, the agent with the largest virtual
valuation is not necessarily the agent with the lowest bid. Thus, the optimal
auction need to be what is called allocatively efficient,3 and therefore, need
not be ex-post efficient.4

In the case when no information is available about the participants of the
machine learning competition, perhaps it is more reasonable to assume com-
plete symmetry (i.e., Θi “ Θj and Pθi “ Pθj for all i, j P I). In this case,
the winner is the agent with the lowest bid. Further, the payment coincides
with the payment rules in second-price reverse auctions. In other words, the
second price reverse auction is an optimal auction when the agents are ho-
mogeneous. As a result, oftentimes, the optimal auction is also known as a
modified Vickrey auction (Vickrey, 1961)5.

Here, we assume that agent types are drawn independently. When this
assumption is not true, we say that we have a case of “collusion”.

3 A mechanism is allocatively efficient when it maximizes the sum of interim expected
utilities of the agents, also known as the total social surplus. The reverse auction is called
allocatively efficient when the winner is the agent with the lowest price.

4This means, that an omnipotent agent who has access to all the private information can
choose outcomes such that all agents are not worse off than with the current set of rules
and some of them are at least sometimes strictly better off.

5A Vickrey auction, or more correctly, a Vickrey–Clarke–Groves (VCG) auction, also
called a second-price, sealed-bid auction (SPA) is an auction where the aim is to maximize
a social welfare function defined as the sum of the utilities of all agents. See (Clarke, 1971;
Groves, 1973; Vickrey, 1961).
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Chapter 4

Machine Learning Competitions
with Public Test Results

In this chapter we look into the first version of our problem. In this simplified
version it is assumed that the agents participating in the competition will not
do any tailoring to their methods, but will submit off-the-shelf solutions. Once
the solutions are obtained, the principal tests the solutions on his data and
makes the results public so that the agents can adjust their prices accordingly.
More precisely, the participants interact as follows:

1. Agents are randomly drawn;

2. The principal declares the rules of determining the winner and that of
the payments;

3. The agents submit their solutions for evaluation to the principal;

4. The principal, upon evaluating the solutions, makes the results public;

5. The agents submit their offers to the principal;

6. The winner and payments are determined according to the rules declared
at the beginning based on the information that was made public earlier
and the offers of the agents;

7. Payments are made to the agents.

In addition to the rules of the game, this protocol is also public knowledge
and it is assumed that the participants will not deviate from the rules and
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they trust each other. Again, trust, privacy and security can be guaranteed
by appropriate cryptographic methods.

In the next chapter we will consider the case when the developers still
submit their solutions, but they do not receive information about how well
their solutions are doing on the data. The rest of this chapter is organized as
follows: in Section 4.1, we introduce the problem of machine learning auctions:
in Section 4.1.1 we model the situation of this problem with the concept of
‘information leakage’. Next in Section 4.1.2 we show how this model fits our
problem of machine learning competitions. We proceed to solve this problem
in Section 4.2. A summary of the chapter is given in Section 4.4. Finally
conclusions for this chapter are stated in Section 4.4.

4.1 The Formal Problem Definition

The purpose of this section is formalize the problem in a rigorous fashion.
Because information is leaked about the agent’s private information (i.e., they
need to submit their solutions whose results will be made public), the frame-
work of Chapter 2 has to be appropriately extended.

4.1.1 Bayesian Optimal Mechanism Design with Infor-
mation Leakage

Consider a mechanism design problem with the following structure: Let
I be the finite set of player positions, O an outcome space, Θ “

Ś

iPI Θi a
type-space, Pθ P Mˆ

1 pΘq (a product distribution over Θ), u “ puiqiPI be the
utility functions of the agents, C a counter-strategy map schema. Further,
assume that a separable function εfn : Θ Ñ E , E “

Ś

iPI Ei, is given and the
standard protocol of interaction is modified such that the value of εfnpθq gets
revealed once the types θ are assigned to the agents (i.e., agent i cannot help
the leakage of εfn

i pθiq about his type). Here, we consider two protocols: In one
case, the information is leaked after the agents learn their types and to all the
agents, while in the second case the information leaked is not available to the
agents at the time they have to decide about their messages. We call the first
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Ex-ante information leakage
1. A type profile is drawn:
θ „ Pθ;

2. Agents learn the rules of
the game;

3. The information εfnpθq is
leaked to everyone;

4. Agents submit their mes-
sages;

5. The outcome is deter-
mined.

Ex-post information leakage
1. A type profile is drawn:
θ „ Pθ;

2. Agents learn the rules of
the game;

3. Agents submit their mes-
sages;

4. The information εfnpθq is
leaked to everyone;

5. The outcome is deter-
mined.

Figure 4.1: Protocols of interaction with information leakage. The two proto-
cols differ in that when is the information is leaked. Note that in the ex-post
case, from the point of the strategies of the agent it does not actually matter
they also learn the information εfnpθq as they cannot use it in making their
decisions.

case a game with ex-ante information leakage, while the second a game with
ex-post information leakage.1 Figure 4.1.1 shows the two protocols. In both
type of games the rules of the game, g, depend on the revealed information:

g : Σˆ E Ñ O.

When agent i having type θi decides to send message si, the outcome of the
game is gps, εfnpθqq with s “ psiqiPI . The utility functions of agent i is allowed
to depend on the revealed information:

ui : O ˆΘi ˆ E Ñ R.

When considering optimal mechanism design, the principal’s utility is also
allowed to depend on εfnpθq:

u0 : O ˆ E Ñ R.
1 The modifier ex-ante and ex-post are concerned with the event when the agents commit

to a message. This use of these modifiers differs from when these modifiers refer to utilities.
However, since the context makes it clear what these modify (viz. information leakage, or
utility), this should not lead to any confusion.
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Formally, a game with information leakage is thus defined as follows:

Definition 4.1.1 (Bayesian games with information leakage). Let Θ be a
space of type profiles, Pθ the corresponding type distribution, Σ a compatible
message space, O a space of outcomes, εfn P SpΘ, Eq an information leakage
function. Further, let g : Σ ˆ E Ñ O be the mapping determining the rules
of the game G “ pΣ, O, gq. Then, pG,Θ, u, Pθ, εfnq is called a Bayesian game
with information leakage, where u “ puiqiPI and ui : O ˆΘi ˆ E Ñ R (i P I).

Since each agent knows that information about their types is involuntar-
ily revealed and also that this information is used to determine the output,
definition of best-response maps and equilibrium concepts need to be adjusted.

In this section we focus on games with ex-ante information leakage. In this
case, even the definition of strategy profile maps need to be modified as the
agents can use the information leaked to adjust their strategies. In this case a
strategy profile map will be a function of type

s : Θˆ E Ñ S,

such that for any fixed ε P E , θ ÞÑ spθ, εq is a separable function. The set of
these maps will be denoted by SEpΘ, Sq.

Let us now define the best-response maps. For the definition, we introduce
P
pε1
´iq

θ´i|ε´i
pdθ´iq “ Pθ´i|ε´ipdθ´i|ε1´iq, i.e., the conditional distribution of θ´i given

the condition that εfn
´ipθ´iq “ ε1´i, provided that θ´i „ Pθ´i . Further, define

P
pε1iq

θi|εi
pdθiq “ Pθi|εipdθi|ε1iq and P

pε1q
θ|ε pdθq “ Pθ|εpdθ|ε1q. We have the following

simple observation:

Proposition 4.1.1. P pε
1q

θ|ε is the product of its marginals pP pε
1
iq

θi|εi
qiPI : P pε

1q

θ|ε pdθq “
ś

iPI P
pε1iq

θi|εi
pdθiq.

Proof. This follows from the fact that Pθ is the product of its marginals and
that ε is separable.

With this, we are ready to define best-responses:
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Definition 4.1.2 (Bayesian best-response maps with ex-ante information
leakage). Let B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with information
leakage and let s´i : Θ´i ˆ E Ñ S´i be a function mapping (incomplete)
type-profiles to (incomplete) strategy profiles. Define ui,θpo, εq “ uipo, θ, εq,
po, εq P O ˆ E . Given i P I, s´i, define

Băi pg, ui, s´i, Pθ´i , εq “
!

s˚i : Θi Ñ Si :

ui,θi

´

gps˚i pθiq, s´ipP
pε´iq
θ´i|ε´i

q, εq, ε
¯

ě sup
s1iPSi

ui,θi

´

gps1i, s´ipP
pε´iq
θ´i|ε´i

q, εq, ε
¯

,

θi P supp pPθiq
)

,

the set of Bayesian best-response maps for agent i under ex-ante information
leakage.

The reader may be surprised that, despite that it was emphasized that best-
responses should depend on the information leaked, the elements of Băi p. . .q do
not depend on ε. However, this is done only for convenience with later proofs:
in the definition the dependence of the maps on the revealed information still
exist: it is implicit in that we let the Băi p. . .q depend on ε. Intuitively, agent
i learns ε and given this information and some assumed counter-strategy map
s´i calculates the best responses.

The following simple observation that characterizes these best-response will
prove to be useful later:

Proposition 4.1.2. Let B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with infor-
mation leakage, where G “ pΣ, gq, g : S ˆ E Ñ O. For each value of ε P E,
define the Bayesian game Bε “ ppΣ, gεq, upεq, P pεqθ|ε q, where gε : Σ Ñ O is de-
fined as gεp¨q “ gp¨, εq and upεq “ puεi qiPI , u

pεq
i po, θq “ uipo, θ, εq, po, θq P OˆΘ.

Fix i P I and s´i : Θ´i Ñ S´i, ε P E. Then

Băi pg, ui, s´i, Pθ´i , εq “ Bipgε, u
pεq
i , s´i, P

pε´iq
θ´i|ε´i

q. (4.1)

Note that Bε is well-defined thanks to our previous observation that P pεqθ|ε

is the product of its marginals (cf. Proposition 4.1.1).
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Proof. The statement follows immediately from the definitions.

Definition 4.1.3. The collection pBεqεPE is called the ex-ante decomposition
of the Bayesian game B.

The definition of generalized Bayesian equilibria under ex-ante information
leakage is as follows:

Definition 4.1.4 (Generalized Bayesian Equilibria (GBE) with ex-ante infor-
mation leakage). Let B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with informa-
tion leakage and let C be a collection of counter-strategy mappings. Define

EăpB, Cq “
$

&

%

s˚ P SEpΘ, Sq : s˚i p¨, εq P
č

s1
´iPC´ips

˚p¨,εqq

Băi pg, ui, s
1
´i, Pθ´i , εq, i P I, ε P E

,

.

-

.

This set may be empty for some choices of C. The following result, however,
gives an explicit construction that shows exactly when this equilibrium set is
empty. The results follows easily from Proposition 4.1.2:

Theorem 4.1.3. Let C be a collection of counter-strategy mappings and let
B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with information leakage, where
G “ pΣ, gq, g : S ˆ E Ñ O. Consider the ex-ante decomposition pBεqεPE of B.
Then

EăpB, Cq “ ts P SEpΘ, Sq : spθ, εq “ sεpθq, sε P EpBε, Cq, ε P E , θ P Θu .

Proof. Proposition 4.1.2 and the definition EăpB, Cq combined give

EăpB, Cq “
$

&

%

s P SEpΘ, Sq : sip¨, εq P
č

s1
´iPC´ipsp¨,εqq

Bipgε, u
pεq
i , s´i, P

pε´iq
θ´i|ε´i

q, i P I, ε P E

,

.

-

,

from which the result follows immediately.

LetMpI, O, Eq “ tpΣ, gq : g : Σˆ E Ñ Ou be the space of possible mecha-
nism for Bayesian mechanism design with information leakage. The Bayesian
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Optimal Mechanism Design problem with ex-ante information leakage is de-
fined as the problem of finding a mechanism M “ pΣ, gq P MpI, O, Eq such
that

sup
sPEăpBM ,CΣq

ż

u0

´

g
`

spθ, εfn
pθqq, εfn

pθq
˘

, εfn
pθq

¯

dPθ

is maximal overMpI, O, Eq, where BM “ ppΣ, O, gq, u, Pθ, εq.

4.1.2 Formal Problem Definition for Machine Learning
Auctions with Public Testing

In this section we formalize the design problem of machine learning auctions
as described in the introduction in the framework of the previous section.

Let the finite set of player positions be I and for i P I let Qi Ă Q be the
set of solutions that i may posses, where Q is the set of possible solutions.
Further, let εfn : QÑ E be a mapping that is used by the principal to evaluate
solutions. Thus, εfn depends on the data. The evaluation result can be a single
numerical quantity (e.g., accuracy of predictions), or it can be a more detailed
set of values (precision, recall, a ROC curve, etc.). The key property of εfn is
that the principal, who is running the auction, should be able to ascertain the
profitability of a particular solution q P Q based on the results of the εfnpqq.
That is, it is assumed that the profitability ρi of qi (which will enter the utility
function u0 of the principal) depends on qi only through εi “ εfnpqiq, i.e., there
exists a function ρE : E Ñ R such that ρi “ ρEpεiq.

As earlier in Chapter 3, instead of simply determining a winner whose
solution is taken in a deterministic fashion, we consider a randomized choice
(randomization can actually help in increasing the value that the principal can
achieve and is by no means a restriction): Upon receiving all the information
(bids and the the test results), the principal determines a subprobability dis-
tribution π P Mď1 pIq and a vector t P R|I| of payments whose ith component
determines the money to be transferred to agent i. Once, the outcome pπ, tq
is determined, the following events take place: With probability 1 ´

ř

iPI πi,
the principal rejects all the offers, while with probability πi the offer of agent
i is accepted (that is, zero or one offer is accepted). If the offer on agent is
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accepted, the principal gains the right to use the solution qi of agent i. In any
case, all agents i are transferred the respective amounts ti. Thus, the outcome
space is O “ Mď1 pIq ˆ T , where T “

Ś

iPI Ti with Ti Ă R being the set of
possible payment values for agent i.

The utility function of the principal is defined by

u0pπ, t, εq “

˜

1´
ÿ

iPI

πi

¸

λ0 `
ÿ

iPI

πi ρi ´
ÿ

iPI

ti , (4.2)

where λ0 P R is the profit (possibly negative) that the principal makes when
no solution is accepted, and ρi “ ρEpεiq. (Thus, the difference to (3.1) is that
the utility function now depends on ε.) Note that as usual with randomized
mechanism, the utility function determines the expected utility where the
expectation is over the randomization of the mechanism.

We will represent the type θi of developer (or agent) i by a pair pqi, λfn
i q,

where qi P Qi and λfn
i : E |I| Ñ R is a pricing function. We let the set of possible

pricing functions for agent i be Λi (i.e., Θi “ QiˆΛi). Here, λfn
i pεq determines

the minimum price developer i is willing to accept given the knowledge of the
result of evaluating everyone’s solution.2 With this, the utility of agent with
type θi “ pqi, λfn

i q, given the outcome pπ, tq P O is

ui,θipπ, t, εq “ ´πiλ
fn
i pεq ` ti, (4.3)

i.e., the agent is giving up the value λfn
i ‘ when he is winning the auction,

while he receives the amount τi independently of whether he won the auction.
(Thus, the difference to (3.2) is that the utility function now depends on ε.)
Again, the utility function determines the expected utility for the agent where
the expectation is over the randomization of the mechanism.

With this, the problem is put into the framework of the previous section:
Obviously, the information leakage function is εfn

i : Θi Ñ E , εfn
i pqi, λ

fn
i q “

εfnpqq. At this point modeling Pθ may look very demanding. As we will
see soon, however, the optimal solution depends only on lower-dimensional
distributions, which may be easier to model.

2In a special case, λfn
i is the constant function, i.e., when the developer is “happy” with

a fixed price independently of how well everyones’ algorithms are doing.

55



To put the problem into the Bayesian framework, one needs the distribution
over the agent types. Modeling the whole joint distribution over Θi of “random
developers” might look quite demanding. However, luckily, as we will see soon,
this is not necessary as the solution will only depend on certain marginals of the
full distribution and in fact these marginals might be much easier to estimate
from past data.

To fully specify the optimal mechanism design problem it remains to choose
some counter-strategy map schema, C. In this chapter, we consider the case
when C is the Nash-choice: C´ipsq “ CN

´ipsq “ ts´iu, giving rise to implemen-
tations in Bayesian Nash equilibria.

4.2 Solution

In this section we present the solution to the Bayesian optimal mechanism
design (BOMD) problem of Section 4.1.2. The solution is based on the obser-
vation that in this case the problem is closely related to what is studied under
the name procurement problems in the economics literature (see, e.g., Laffont
and Tirole 1993and (Bajari and Tadelis, 2001)). In a standard procurement
problem the principal is buying an “item” from the suppliers (agents). The
principal knows his valuation of the item, but by an appropriate mechanism
he wants to maximize his profit by keeping the cost of buying the item as
low as possible. Each agent may have a different expectation for the lowest
price they are willing to accept for the item. The standard solution to this
problem is a reverse auction where the agents privately submit their offers to
the principal who then selects the winner (the rules would then be chosen to
maximize the principal’s profit, while still incentivizing the agents to partici-
pate). The principal then buys the item from the winner, i.e., the winner gives
up the right to the item and the principal makes the payments. In a slightly
more complicated version of the problem each player position is associated
with a different item that the principal assigns different values to. The key to
solving problems like this is the realization that WLOG the agents’ types can
be chosen to be their private prices (no other qualities of the agent influence

56



the solution to the BOMD). Thus, each agent’s private information is a single
one-dimensional quantity, which greatly simplifies the analysis. The resulting
class of problems, known as single-parameter optimal mechanism design prob-
lems, is extensively studied in the economics literature. The book by Laffont
and Martimort (2002) provides a good starting point.

The difference of the problem of the previous section to the standard pro-
curement problem is that in our case the “items offered for sale” come with
the agents, i.e., our problem is a BOMD with information leakage. However,
as we will next show, this problem can be reduced to solving a collection of
standard procurement problems with no information leakage. This is the sub-
ject of the next section. Next, the solution to the standard procurement (or
reverse auction) problem is given.

With this, the problem is put into the framework of the previous section:
Obviously, the information leakage function is εfn

i : Θi Ñ E , εfn
i pqi, λ

fn
i q “

εfnpqq. At this point modeling Pθ may look very demanding. As we will
see soon, however, the optimal solution depends only on lower-dimensional
distributions, which may be easier to model.

Thus, the subproblem (4.8) to be solved, after simplifying the notation, is
equivalent to the following BOMD problem:3

4.2.1 Reduction of Solving a BOMD with Ex-Ante In-
formation Leakage to Solving Standard BOMDs

The purpose of this section is to show how the BOMD problem with ex-ante
information leakage can be reduced to solving a collection of standard BOMD
problems. In particular, the reduction will use the solutions to the BOMD
problems defined using Dε “ pI, O,Θ, Pθ|ε, upεq, upεq0 p¨q,Cq for each different
value of ε P E . Here, Pθ|ε is the product distribution of the distributions Pθi|εi ,
where Pθi|εi is the conditional of Pθi given εfn

i pθiq. Further, upεq0 : O Ñ R is
defined by

u
pεq
i poq “ u0po, εq

3Note that we are redefining of the meaning of the quantities involved in the subproblem.
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and upεqi po, θiq “ uipo, θi, εq, i P I and upεq “ pupεqi qiPI .
Fix ε P E and let M˚

ε “ pΣε, g
˚
ε q be the mechanism that solves the BOMD

problem Dε. Assume that C is admissible. Then, thanks to the revelation
principle (Theorem 2.3.1), WLOG we can assume that Σε “ Σ, i.e., that the
action spaces do not depend on ε. Consider the mechanism M˚ defined by
M˚ “ pΣ, g˚q PMpI, O, Eq, where

g˚p¨, εq “ g˚ε p¨q. (4.4)

The following theorem is the main result of this section.

Theorem 4.2.1 (Reduction of BOMD with ex-ante information leakage).
Assume that C is admissible. Then M˚, as defined in the previous paragraph,
solves the BOMD problem under ex-ante information leakage specified by

pI, O,Θ, Pθ, u, u0, ε,Cq.

Proof. We need to show that

M ÞÑ sup
sPEăpBM ,CΣ1 q

ż

u0

´

g
`

spθ, εfn
pθqq

˘

, εfn
pθq

¯

dPθ

is maximized by M˚.
To prove this, first notice that by Theorem 4.1.3,

EăpBM˚ , CΣq “
 

s P SEpΘ, Sq : spθ, εq “ sεpθq, sε P EpBM˚
ε
, Cq, ε P E , θ P Θ

(

.
(4.5)

To show that M˚ is the solution of the BOMD problem under ex-ante infor-
mation leakage, pick some mechanism M̂ “ pΣ̂, ĝq P MpI, O, Eq and some
ŝ P EăpBM̂ , CΣ̂q. Write

ż

u0

´

g
`

ŝpθ, εfn
pθq

˘

, εfn
pθqq

¯

dPθ “
ż
"
ż

u0

´

g
`

ŝpθ, εfn
pθq

˘

, εfn
pθqq

¯

Pθ|εpdθ|εq
*

Pεpdεq .

Now, fix some ε P E . We claim that
ż

u0

´

g
`

ŝpθ, ε
˘

, εq
¯

Pθ|εpdθ|εq ď

sup
M 1“pΣ1,g1qPMpI,Oq

sup
sPEpBM 1 ,CΣ1 q

ż

u
pεq
0 pg

1
pspθqqqPθ|εpdθ|εq .

58



Indeed, take the ex-ante decomposition pB̂εqεPE of BM̂ . According to The-
orem 4.1.3, ŝp¨, εq P EpB̂ε, CΣ̂q. Since B̂ε “ BM 1 for some M 1 “ pΣ̂, g1q P
MpI, Oq, the above inequality indeed holds. Now, by definition the right-
hand side of the above inequality equals

sup
sPEpB

M˚ε
,CΣq

ż

u
pεq
0 pg

˚
ε pspθqqqPθ|εpdθ|εq.

Asume for simplicity that in this expression the supremum is taken at some
equilibrium map, say s˚ε P EpBM˚

ε
, CΣq (if the optimum is not taken, the result

can still be obtained by taking limits). Let s˚ be defined by

s˚pθ, εq “ s˚ε pθq, θ P Θ, ε P E .

By Theorem 4.1.3, s˚ P EăpBM˚ , CΣq, with M˚ “ pΣ, g˚q, g˚ defined by (4.4).
Putting things together, we obtain
ż

u0pgpŝpθq, ε
fn
pθqqqdPθ ď

ż
"
ż

u
pεq
0 pg

˚
ε ps

˚
ε pθqqqPθ|εpdθ|εq

*

Pεpdεq

“

ż
"
ż

u0pg
˚
ps˚ε pθq, εqqPθ|εpdθ|εq

*

Pεpdεq

“

ż

u0pg
˚
ps˚εfnpθqpθq, ε

fn
pθqqqPθpdθq

“

ż

u0

´

g˚
`

s˚pθ, εfn
pθqq, εfn

pθq
˘

¯

Pθpdθq

ď sup
sPEăpBM˚ ,CΣq

ż

u0

´

g˚
`

spθ, εfn
pθqq, εfn

pθq
˘

¯

Pθpdθq .

Since M̂ and ŝ were arbitrary, the optimality of M˚ is proven.

Note. We could prove this even without relying on the revelation principle if
we define Σ “ p

Ś

εPE Σεq and g to be gpσ, εq “ gεpσεq, noting that σε P Σε

holds for any ε P E . The benefit is that we would not need to assume that C
is admissible.

4.2.2 BOMD with Ex-Ante Information Leakage and
Voluntary Participation

When agent participation is voluntary (cf. Section 2.3.2, the principal needs
to incentivize the agents to participate. In the standard BOMD case, this is
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done by means of constraining the space of acceptable mechanism to the ones
where in equilibrium the so-called IR constraints are satisfied. The effect of
these constraints is that all feasible mechanisms will have the property that
all rational agents will be better off by participating than by opting out of the
game (i.e., the game becomes a “free ride”).

In this section we consider BOMD problems with ex-ante information leak-
age when agent participation is voluntary. In this case there are two points in
time when the agents may decide to quit the game: Before the game starts, or
after they receive the extra information. A principal who cannot enforce the
agents to stay in the game has thus to incentivize the agents to stay in the
game at both decision points. When the agents incur no cost by the time they
receive the extra information, there is no reason they should be incentivized
at the beginning if the principal commits to incentivize them given the ex-
tra information they have received. This is because any mechanism with this
property will result in game that is guaranteed to be a free ride for all agents
who act rationally.

Formally, this means that the principal needs to consider the following op-
timization problem: Remember that MpI, O, Eq “ tpΣ, gq : g : Σˆ E Ñ Ou

is the space of possible mechanism for Bayesian mechanism design with infor-
mation leakage. For M “ pΣ, gq PMpI, O, Eq and s P EăpBM , CΣq let

u0pg, sq “

ż

u0

´

g
`

spθ, εfn
pθqq, εfn

pθq
˘

, εfn
pθq

¯

dPθ

and let
u˚pMq “ sup

sPEăpBM ,CΣq
u0pg, sq.

As before let ui,θpo, εq “ uipo, θ, εq, po, εq P O ˆ E , i P I and consider the
problem

u˚0pMq Ñ max s.t. M “ pΣ, gq PMpI, O, Eq and

Ds P EăpBM , CΣq s.t. (4.6a)

u˚0pMq “ u0pg, sq and (4.6b)

ui,θi

´

gps˚i pθiq, s´ipP
pε´iq
θ´i|ε´i

q, εq, ε
¯

ě uipθiq, (4.6c)

for all ε P E , θi P Θi and i P I.
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Condition (4.6c), a version of the individual rationality (RO) constraint pre-
vents the selection of mechanism when a rational agent’s expected utility given
the received information would be below his reservation utility. We call this
problem the Bayesian Optimal Mechanism Design (BOMD) problem with ex-
ante information leakage under voluntary participation.

Let us now state the analogue of Theorem 4.2.2 for this case. For this,
define for each value value of ε P E the BOMD problems with voluntary
participation: Dε “ pI, O,Θ, Pθ|ε, upεq, u, upεq0 p¨q,Cq.4 Fix ε P E and let M˚

ε “

pΣε, g
˚
ε q be the mechanism that solves the problem Dε. Assume that C is

admissible. Then, thanks to the revelation principle (Theorem 2.3.1), WLOG
we can assume that Σε “ Σ, i.e., that the action spaces do not depend on ε.
Consider the mechanism M˚ defined by M˚ “ pΣ, g˚q PMpI, O, Eq, where

g˚p¨, εq “ g˚ε p¨q. (4.7)

With this, we have the following counterpart of Theorem 4.2.1:

Theorem 4.2.2 (Reduction of BOMD with ex-ante information leakage and
voluntary participation). Assume that C is admissible. ThenM˚, as defined in
the previous paragraph, solves the BOMD problem under ex-ante information
leakage and information leakage specified by

pI, O,Θ, Pθ, u, u, u0, ε,Cq.

Proof. The proof follows that of Theorem 4.2.1 with the modifications that
now one needs to also argue that (i) M˚ satisfies the IR constraints (4.6c) and
(ii) the decomposition of a feasible mechanism M̂ gives rise feasible mecha-
nisms for the BOMDP problems Dε with voluntary participation constraint.
However, these are obvious from the definitions. Then, the argument of the
proof of Theorem 4.2.1 goes through.

4Mathematically, we would be able to deal with the case when the reservation utilities,
u, are allowed to depend on the revealed information (by incorporating this into (4.6c)).
However, this would not add much and would just complicate the presentation further, and
hence we decided not to pursue this.
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4.2.3 Solution to the Machine Learning Procurement
Problem

To finish the solution to the machine learning auctions problem defined in
Section 4.1.2, it remains to consider the problems

Dε “ pI, O,Θ, Pθ|ε, upεq, upεq0 p¨q,Cq. (4.8)

In this section, we will first make the form of these problems explicit and then,
by introducing some extra assumptions, we will present closed-form solutions
for the resulting problems.

Remember that Qi is the solution space for agent i, qi is the solution
submitted by agent i, εfn : QÑ E is the function that provides the evaluation
results for the submitted solutions, ρE : E Ñ R is the function that maps
evaluation results into profit predictions used by the principal, ρi “ ρEpε

fnpqiqq

is the profitability of the ith solution (i P I). Further, the outcome space is
O “Mď1 pIq ˆ T , where T “

Ś

iPI Ti is the space of payments for the agents,
and Mď1 pIq is the space of subprobability distributions over I. An individual
outcome pπ, tq is implemented by choosing to refuse all the solutions of the
agents with probability 1´

ř

iPI πi, and choosing the solution of agent i with
probability πi. In any case, agent i receives ti as his payment.

Given an outcome and the results εi “ εfnpqiq, ε “ pεiqiPI of the evaluation
of the submitted solutions, the principal’s utility is

u0pπ, t, εq “

˜

1´
ÿ

iPI

πi

¸

λ0 `
ÿ

iPI

πi ρi ´
ÿ

iPI

ti ,

(cf. (4.2)), while the utility of agent i is

ui,θipπ, t, εq “ ´πiλ
fn
i pεq ` ti

(cf. (4.3)). For technical reasons that will be explained later, we will assume
that

λfn
i pεq “ λfn

i pεiq

where we overloaded λfn
i .5 The meaning of this assumption is that the devel-

opers decide about the prices they are willing to accept as a function of how
5That is, λfn

i denotes two functions, one mapping EI to the reals and another one mapping
E to the reals, which are distinguished based on their arguments.
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well their own solutions was doing on the tests, and independently of how well
the other agents’ solutions performed. However, we should remind the reader
here that the developers can still take ε into account in their strategic decisions
when they are submitting an “offer” (which, a rational agent would indeed do
by adjusting their models of the type distributions of the other agents). The
revealed information in our setting is ε. Notice that given ε, the solutions q
themselves do not play any rule in the optimal mechanism: Given ε, the util-
ity functions depend on q only through ρ “ ρEpεq and λi “ λfn

i pεq. Here, the
only remaining random quantity is λi. Hence, in the subproblems (4.8), we
may replace the conditional distribution of type i of agent given the revealed
information with the conditional distribution of λi given εi, i.e., by Pλi|εi .

Now, this (Theorem 4.2.2) makes the individual subproblems instances of
the problem studied in Chapter 3. In short, the optimal mechanism for the
machine learning problem works as follows:

1. The principal announces the rules (which are as follows):

2. Agents submit their solutions (qi for all i P I);

3. The principal evaluates the agent’s solutions (principal gets εi for all
i P I);

4. Each agent learns how well the solutions did (εi for all i P I is publicly
declared);

5. The agents submit their bids (λfn
i for all i P I);

6. The principal computes the virtual valuations of the agent’s bids with
(3.3). The agent with the highest virtual valuation wins (3.5). The
payment to the agent equals to the highest bid that would have still
allowed the agent to win the auctions (3.6).

4.3 Diversion: Ex-post Information Leakage

In this section, for completeness, we define the equilibria in Bayesian games
with ex-post information leakage. When the leaked information remains hid-
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den to the agents by the time they have to submit their messages, the agents
can only reason using the “expected” information about εfn

´ipθ´iq (they may
reason about this information as they know that this information got revealed
and will be used in determining the outcome of the game). Before jumping
into the definitions, note that since εfn

´ipθ´iq is not available to the agents, the
agents’ utility functions do not depend on it, i.e., the utility function of agent
i is of the type ui : OˆΘi Ñ R, as opposed to the case of ex-ante information
leakage. The best-response definition now becomes:

Definition 4.3.1 (Bayesian best-response maps with ex-post information
leakage). Let B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with information
leakage and let s´i : Θ´i Ñ S´i be a function mapping (incomplete) type-
profiles to (incomplete) strategy profiles. Given i P I, s´i and g define
ui,s´i,g,εfn : S´i ˆΘ Ñ R by

ui,s´i,g,εfnpsi, θq “ ui,θi

´

g
`

si, s´ipθ´iq, ε
fn
pθq

˘

¯

,

the utility of agent i when the agent plays the strategy si and the type profile
of the agents is θ given s´i. The set

Bąi pg, ui, s´i, Pθ´i , ε
fn
q “

!

s˚i : Θi Ñ Si : ui,s´i,g,εfnps
˚
i pθiq, θi, Pθ´iq ě sup

s1iPSi

ui,s´i,g,εfnps
1
i, θi, Pθ´iq

θi P supp pPθiq
)

,

is called the set of Bayesian best-response maps for the game B under ex-post
information leakage.

Note that in the ex-post information leakage scenario agents know less at
the time they have to figure out their messages. In an optimal mechanism
design scenario, this is expected to drive up the cost for the principal. This is
what is known as the linkage principle in auction theory.6

6 In auction theory, the linkage principle asserts that when the principal possesses private
information that is a function of the types of the agents, the principal’s utility is enhanced
(on average over the principal’s information) when the principal commits to a policy of
always revealing her private information. Milgrom and Weber (1982) were the first to
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Generalized Bayesian equilibria with ex-post information leakage is defined
next:

Definition 4.3.2 (Generalized Bayesian Equilibria (GBE) with information
leakage). Let B “ pG,Θ, u, Pθ, εfnq be a Bayesian game with information leak-
age and let C be a collection of counter-strategy mappings. Define

EąpB, Cq “

$

&

%

s˚ P SpΘ, Sq : s˚i P
č

s1
´iPC´ips

˚q

Bąi pg, ui, s
1
´i, Pθ´i , ε

fn
q, i P I

,

.

-

,

the set of generalized Bayesian equilibrium strategy maps with ex-post infor-
mation leakage.

LetMpI, O, Eq “ tpΣ, gq : g : Σˆ E Ñ Ou be the space of possible mech-
anism for Bayesian mechanism design with information leakage. The Bayesian
Optimal Mechanism Design problem with ex-post information leakage is defined
as the problem of finding a mechanism M “ pΣ, gq such that

sup
sPEąpBM ,CΣq

ż

u0

´

g
`

spθq, εfn
pθq

˘

, εfn
pθq

¯

dPθ

is maximized, where BM “ ppΣ, O, gq, u, Pθ, ρq.

4.4 Summary

In this chapter we tried to reduce the problem of procurement of machine
learning solutions to a reverse auction.

Our contribution in this chapter was in the introduction of the concept
of information leakage and presenting a way to handle ex-ante information
leakage. We followed that by reducing the problem of procurement of machine
learning solution to a reverse auction using that concept.

Much remains to be done. This was only a very simple first model. Here,
principal had to indirectly reveal her utility by declaring the rules of the game.
In the next chapters, we extend the results to the case where this is not required
and when multiple solutions are offered by each agent.
uncover the linkage principle and proved that the principle holds when a single indivisible
unit is sold through either first-price (sealed-bid) auction or a Vickrey auction. Although
for some time the linkage principle was widely considered one of the fundamental lessons
provided by auction theory, later work by Perry and Reny (1999) has shown that it fails
even if in two-unit auction, i.e., if one deviates only slightly from the original setting.
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4.4.1 Known Limitations

We rely on the revelation principle in the reduction (Theorem 4.2.1). The
theorem continues to hold even when the revelation principle is not used (this
is important when the RP cannot be used).

4.4.2 Future Work

• A reduction for mechanism design problems with ex-post information
leakage is left.

• An interesting question that follows is a comparison between mechanisms
with ex-post information leakage versus mechanisms with ex-ante infor-
mation leakage: Does any of these two have an upper-hand in providing
more utility to the principal? Our conjecture is that ex-ante mecha-
nisms might be preferable for the principal because it might provide
more profit due to similar problems discussed under the term linkage
principle in economics (Milgrom and Weber, 1982).

• Next chapter considers a similar, yet different problem when the principal
does not want to reveal her profit information to the agents. 7

7 In the problem considered by Myerson (1983), the principal has also a type which
determines her utility. Further, the principal also takes part in the mechanism by sending
some message which also influences the outcome, the principal also has a type and agent
participation is voluntary. Hence, the agents’ expected utilities (conditioned on what they
know when they decide about their messages) will depend on what they know about the
principal’s type. The principal, by announcing the mechanism may reveal information about
her type (which he knows). Myerson, considering incentive compatible direct-revelation
mechanisms, then concludes the need for additional IC constraints that take into account
the information revealed by the announcement of the mechanism. Thus, the problem is
similar to ex-ante information leakage. Myerson argues that the principal should select
with no loss of generality an incentive compatible direct-revelation mechanism that reveals
no information about the principal’s type (i.e., the principal should be “inscrutable”). He
then puts the optimal mechanism design problem into a two-stage sequential framework,
where he considers implementation in sequential (Bayesian Nash) equilibria. He shows the
existence of solutions and considers various refined concepts.
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Chapter 5

Mechanism Design with
Exogenous Effects

In the last chapter we tried to model the problem of procurement of machine
learning solution to a reverse auction. However, by declaring the rules of
the game, the principal is her profit predictions to the agents. This may be
due to different reasons, for example, revealing utility information might have
negative side-effects. A similar case is when the principal does not posses the
data yet but wants to procure a solution nonetheless, or the agents might
not have yet developed a solution, or tuned their solutions to the specific
machine learning problem. In fact, by running a “blind-auction” the company
can possibly eliminate bidders whose bids are dominated before the bidders
even would have a solution that could be submitted for evaluation. This is
advantageous from the point of the eliminated bidders (they do not need to
work) and the company as well (as fewer solutions need to be evaluated). This
chapter addresses this problem.

5.1 Games with Exogenous Signals

The concept of random exogenous signals that could affect the desirability of
outcomes is something that comes up as a part of designing mechanism for
machine learning solutions. We extend mechanism design with such a concept.

In this chapter we introduce the concept of mechanism design for problems
with exogenous signals. In these problems, an exogenous signal (selected by

67



“Nature”) enters both the utility of the principal and the outcome of the game.
The exogenous signal is not under the control of the agents, nor is it under
the control of the principal. None of the parties know about the value this
exogenous signal takes by the time they take their actions (in the case of the
principal, this means the time when she designs the auction).

To develop the theory for this case, we will first considers games with exoge-
nous signals and introduce an equilibrium concept. In a game with exogenous
signals, the outcome of the game is introduced by the exogenous signal. Again,
the agents have no knowledge of the value of this signal, nor can they control
the value it takes. In the equilibrium concept we propose the agents follow
strategies such that none of them would have an incentive to deviate in an uni-
lateral fashion no matter what the value the exogenous signal takes. Although
this may look restrictive (the set of such “strong” equilibria may be empty
for many games), we show that this concept actually gives rise to a strong,
pointwise, solution to the optimal mechanism design problem.

From now on, we use I to denote the index set of player positions, while
we will use R to denote the set of values that the exogenous signal may take.

Definition 5.1.1 (Game with exogenous signals). A 4-tuple GR “ pΣ, g, O,Rq
is called a game with exogenous signals R if Σ “

Ś

iPI Σi and g : ΣˆRÑ O.

The information flow in the game is as follows:

1. The types of the agents are drawn from Pθ;

2. The agents choose their actions simultaneously, leading to the joint ac-
tion σ P Σ;

3. Nature picks the exogenous signal ρ P R;

4. The outcome of the game, gpσ, ρq is announced to all the players.

By saying that it is Nature who is picking the exogenous signal, our goal is to
make it clear that the signal is picked by a disinterested party.

As before, we add types pΘ, Pθq and type-dependent utility functions u “
puiqiPI , ui : O ˆΘi Ñ R to arrive at Bayesian-games:
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Definition 5.1.2 (Bayesian game with exogenous signals). Let Θ “
Ś

iPI Θi

be a type-space and Pθ a distribution over the types that has a product form:
Pθpdθq “

ś

iPI Pθipdθiq. Further, let u “ puiq be a collection of typed-utility
functions. Let GR be a game with exogenous signals. Then, we call the 4-tuple
B “ pGR,Θ, u, Pθq is a Bayesian game with exogenous signals.

As before with Bayesian games, a Bayesian game starts with every agent
learning their own type θi, which are drawn independently from each other
from the respective distributions, Pθi . Then, the game continues as before.

Next, we define our desired equilibrium concept. Our aim is to define a
strong equilibrium concept since, as we will see soon, from an implementation
point of view even this strong concept will be tractable. For the definition, let
us first define the decomposition of game with exogenous signals:

Definition 5.1.3 (Decomposition of game with exogenous signals). Let B “

pGR,Θ, u, Pθq be a Bayesian game with exogenous signals, whereGR “ pΣ, O, g, Rq.
For ρ P R, define gρp¨q “ gp¨, ρq. We call the collection of Bayesian games
pBρqρPR the decomposition of B if Bρ “ pGρ,Θ, u, Pθq where Gρ “ pΣ, O, gρq.

Note that when R is a singleton, we get back to the usual definition that
does not concern exogenous signals. This property will remain true throughout
this section, i.e., the theory developed here for the case of exogenous signals
is a strict generalization of the previous theory.

With this, we are ready to introduce our equilibrium concept:

Definition 5.1.4 (Strong equilibria for games with exogenous signals). Let
B be a Bayesian game with exogenous signals R, action set Σ and outcome
set O and let pBρqρPR be the decomposition of B. Let C be a counter-strategy
map over the message set Σ. Then, σ P S is an equilibrium action profile for
B w.r.t. C if it is an equilibrium action profile for Bρ and C for every ρ P R.
The set of these equilibria is denoted by EpB, Cq. Thus,

EpB, Cq “
č

ρPR

EpBρ, Cq. (5.1)
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Note that σ P EpB, Cq means that σi is simultaneously a best-response for
all the different games that arise from the exogenous signal. Hence, for many
games EpB, Cq could well be empty. The essence of the definition is for the
agents who have no knowledge or control of the exogenous signal it is rational
to use any strategy map σ P EpB, Cq assuming that such a map exists.

We now define the product of a collection of Bayesian games, a construction
that will allow us to solve optimal mechanism design problems in a strong
sense (to be discussed in the next section). For the construction, let pBρqρPR

be a collection of Bayesian games that share the same action set, outcomes,
utility function and priors: Bρ “ pGρ,Θ, u, Pθq with Gρ “ pΣ, O, gρq.1 Now,
consider the Bayesian game with exogenous signals, B “ pG,Θ, u, Pθq, which
is obtained as follows: G “ pΣ1, O, g, Rq, where Σ1 “

Ś

iPIpΣiq
R and where

g : Σ1 ˆRÑ O is defined follows: Pick σ1 “ pσ1iqiPI P Σ1 and ρ P R. Note that
σ1i : RÑ Σi. Define σ1pρq “ pσ1ipρqqiPI . Then, we define2

gpσ1, ρq “ gρpσ
1
pρqq, σ1 P Σ1, ρ P R. (5.2)

Definition 5.1.5. We say that G as defined in the previous paragraph is the
product of the games pGρqρPR. Similarly, B is said to be the product of the
games pBρqρPR.

It will prove to be useful to define the projection maps Pρ : SpΘ, S1q Ñ
SpΘ,Σq that take a strategy map s1 P SpΘ, S1q and project it by fixing the
exogenous signal to ρ: pPρs

1qpθq “ s1pθqpρq (note that s1pθq itself is a R Ñ S

function). We will also need the analogously defined maps for the ith com-
ponent of strategy maps: pPρs

1
iqpθq “ s1ipθqpρq, as well as for counter-strategy

maps: pPρs
1
´iqpθq “ s1´ipθqpρq. We further introduce the convention that for

any function G : A Ñ B and any set U Ă A, GpUq will denote the set
1 Notice that we assume that all the games share the same action set. This is not a crucial

assumption and is adopted only for the sake of simplifying the notation. The definitions
and results below can be easily modified to accommodate the general case when each game
Gρ has its own action set Σρ.

2 When the action set of Gρ is Σρ, ΣRi in the definition of Σ1 must be replaced by the set
tf : RÑ YρPRΣρ : fpρq P Σρu, where as assumed WLOG that the sets pΣρqρPR are disjoint.
Then, the rest goes through with some obvious modifications.
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tGx : x P Au. When no ambiguity arises, we will often write GU instead of
GpUq.

We have the following result:

Theorem 5.1.1 (Equilibria of Product Games). Let B be the product of the
games pBρq and let C be a counter-strategy map schema that commutes with
P¨ in the sense that

PρC
pΣ1q
´i ps

1
q “ C

pΣq
´i pPρs

1
q for all s1 P Σ1 . (5.3)

Then,

EpB, CΣ1q “ t s
1
P SpΘ, S1q : Pρs

1
P EpBρ, CΣq, ρ P R u . (5.4)

In particular, s1 is an equilibrium of EpB, CΣ1q if and only if it can be written
in the form

s1pθqpρq “ sρpθq , ρ P R, θ P Θ (5.5)

with some sρ P EpBρ, CΣq. Equivalently,

PρEpB, CΣ1q “ EpBρ, CΣq, for all ρ P R . (5.6)

From the second part of the theorem we obtain an explicit way of construct-
ing the equilibria of the product game B given the equilibria of its constituent
games by “patching them up” using (5.5). Note that the counter-strategy
map schemas defining dominant equilibria and Bayesian Nash equilibria both
commute with P¨.

Proof. The second part (i.e., the result about “patching”) immediately follows
from (5.4). It is also clear that (5.6) is equivalent to (5.4). Hence, it remains
to prove (5.4).

For this, let pBpdq
ρ qρPR be the decomposition of B and let gpdqρ : Σ1 Ñ O be

the outcome map of Bpdq
ρ . Then, thanks to the construction of B,

gpdqρ pσ
1
q “ gpσpρq, ρq . (5.7)
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Fix ρ P R, i P I, s1´i P SpΘ´i, S
1
´iq. By the definitions and (5.7), we find that

Bipg
pdq
ρ , ui, s

1
´i, Pθ´iq

“
č

θiPsupppPθi q

!

s1i : Θi Ñ S 1i :

ui,θipg
pdq
ρ ps

1
ipθiq, s

1
´ipPθ´iqqq ě sup

s2i PS
1
i

ui,θipg
pdq
ρ ps

2
i , s

1
´ipPθ´iqqq

)

“
č

θiPsupppPθi q

!

s1i : Θi Ñ S 1i :

ui,θipgps
1
ipθiqpρq, s

1
´ipPθ´iqpρq, ρqq ě sup

s2i PS
1
i

ui,θipgps
2
i , s

1
´ipPθ´iqpρq, ρqq

)

“
 

s1i : Θi Ñ S 1i : Pρs
1
i P Bipgρ, ui,Pρs

1
´i, Pθ´iq

(

. (5.8)

Now, let us expand the definition of EpB, CΣ1q. We have

EpB, CΣ1q “
č

ρPR

EpBpdq
ρ , CΣ1q .

Hence, s1 P EpB, CΣ1q if and only if s1 P EpBpdq
ρ , CΣ1q for all ρ P R. Fix some

ρ P R and s1 P SpΘ, S1q.
We have have that s1 P EpBpdq

ρ , CΣ1q holds if and only if

s1i P Bipg
pdq
ρ , ui, s

1
´i, Pθ´iq for all i P I, s1´i P C

pΣ1q
´i ps

1
q. (5.9)

By (5.8), s1i P Bipg
pdq
ρ , ui, s

1
´i, Pθ´iq holds if and onlyPρs

1
i P Bipgρ, ui,Pρs

1
´i, Pθ´iq

holds. Hence, by the condition that Pρ commutes with C (cf. (5.3)), (5.9) is
equivalent to

Pρs
1
i P Bipgρ, ui, s´i, Pθ´iq for all i P I, s´i P CpΣq´i pPρs

1
q ,

which in turn is equivalent to

Pρs
1
P EpBρ, CΣq ,

where we used that pPρs
1qi “ Pρs

1
i holds for any s1 P SpΘ, Sq, ρ P R and i P I.

This shows that

EpBpdq
ρ , CΣ1q “ ts

1
P SpΘ, S1q : Pρs

1
P EpBρ, CΣqu .
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Hence,

EpB, CΣ1q “
č

ρPR

EpBpdq
ρ , CΣ1q

“
č

ρPR

ts1 P SpΘ, S1q : Pρs
1
P EpBρ, CΣqu

“ ts1 P SpΘ, S1q : Pρs
1
P EpBρ, CΣq, ρ P Ru ,

finishing the proof.

An easy corollary of the previous result is as follows:

Corollary 1. If all the games Bρ have a unique equilibrium, then the product
game B has also a unique equilibrium.

5.2 Mechanism Design with Exogenous Sig-
nals

Let us now consider the problem of optimal mechanism design for problems
when an exogenous signal that is neither known, nor controlled by either the
agents or the principal is bound to influence the utility of the principal. What
can the principal achieve in this case?

Below we pick up a rather bold goal: we search for a mechanism that
achieves the best possible ex-ante expected utility for the principal for all
values of the exogenous signal, i.e., to maximize the principal’s utility in a
pointwise fashion. We formulate this optimization problem next.

Let the principal’s utility function be u0 : OˆRÑ R and fix some counter-
strategy map schema C. Let us denote byMRpI, Oq the space of mechanisms
of the form M “ pΣ, gq, where g : OˆRÑ R. Given M “ pΣ, gq PMRpI, Oq

let BM “ pGR,Θ, u, Pθq, where GR “ pΣ, O, gM , Rq. Define the principal’s
expected utility underM , for a given value of ρ P R and for a given equilibrium
strategy map s P EpBM , CΣq by

u0pM, s, ρq “

ż

u0pgMps
θ
q, ρq, ρqdPθ .

For ρ P R, define

u˚0pρq “ sup
M“pΣ,gqPMRpI,Oq

sup
sPEpM,CΣq

u0pM, s, ρq ,
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the largest utility that the principal can achieve given the exogenous signal
ρ. We define the Bayesian optimal mechanism design problem for games with
exogenous signals as follows:

Definition 5.2.1 (Bayesian optimal mechanism design problem for games
with exogenous signals (BOMDX)). Given the set R of exogenous signals, the
tuple pI, O,Θ, u, Pθ, u0q (u0 : OˆRÑ R) and a counter-strategy map schema
C : Σ ÞÑ CΣ, we say that M˚ “ pΣ˚, g˚q P MRpI, Oq is a solution to the
Bayesian optimal mechanism design problem with exogenous signal from R if
there exists an equilibrium strategy map s˚ P EpM˚, CΣ˚q such that

u˚0pM
˚, s˚, ρq “ u˚0pρq , for all ρ P R .

We call M˚ am optimal mechanism for the corresponding BOMDX problem.

The extension of BOMDX to problems with voluntary participation holds
no surprises: When considering voluntary participation, we need to constrain
the optimization problem to those mechanisms that have an optimizing equilib-
ria that yields expected utilities that exceed the agents’ respective reservations
utilities. However, in this case these “individual rationality” constraints must
be met for all values of the exogenous signal. Since the extension is trivial,
we omit the details (Theorem 5.2.1 given below can be extended to this case
without any problems).

The next result shows that the goal of finding pointwise maximizing mech-
anism is not that bold. Intuitively, the principal can ask the agents to send
messages where they describe how they will behave for each value of the exoge-
nous signal and then find the best mechanism for each value of the exogenous
signal. Note that for this mechanism, the principal does not need to know the
value of the exogenous signal. The same idea also works when the goal is to
hide some details of the principal’s utility function, which may be interesting
if the utility function could reveal sensitive information.3

3 Myerson (1983) essentially describes the same idea for the case when R and Θ are
finite and for a slightly different setting when the mechanism is symmetric in that the
principal also sends a message. He calls this the case of “informed principal” and a principal
“inscrutable” if the principal’s mechanism does not reveal information about her type.
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An explicit solution to the BOMDX problem can be obtained as follows:
For ρ P R, let upρq0 : O Ñ R be given by

u
pρq
0 p¨q “ u0p¨, ρq

and let M˚
ρ “ pΣ˚ρ, g˚ρ q be the solution to the BOMD problem specified by the

tuple pI, O,Θ, u, Pθ, upρq0 q and C. We assume that C is admissible, hence, by
Theorem 2.3.1, WLOG we can assume that Σ˚ρ “ Σ˚ (i.e., the action sets do
not depend on ρ).4 Let G˚ρ “ pΣ˚, O, g˚ρ q and let G˚ “ pΣ˚ˆ, O, g˚ˆq be the
product of pG˚ρqρPR. Let M˚ “ pΣ˚ˆ, g˚ˆq be the mechanism underlying G. We
have the following result:

Theorem 5.2.1. Let B denote the BOMDX problem specified by the set R,
the tuple pI, O,Θ, u, Pθ, u0q and and a counter-strategy map schema C, where
u0 : O ˆ R Ñ R is the principal’s utility. Assume that C is admissible and
commutes with P¨ in the sense of (5.3). Further, assume that for any ρ P R,
M˚

ρ is well-defined and assume that there exists s˚ρ P EpM˚
ρ , C

˚
Σq such that

ż

u
pρq
0 pg

˚
ρ ps

˚
ρpθqq dPθ “ sup

sPEpM˚
ρ ,C

˚
Σq

ż

u
pρq
0 pg

˚
ρ pspθqq dPθ . (5.10)

Then M˚ as defined in the preceding paragraph is an optimal solution to the
BOMDX problem B.

Proof. Let M “ pΣ, gMq P MRpI, Oq be any mechanism for the BOMDX
problem and let s P EpBM , CΣq be any strong equilibrium of the result-
ing Bayesian game. Define pMρqρPE to be the decomposition of M : Mρ “

pΣ, gpρqM q PMpI, Oq, where g
pρq
M : Σ Ñ O is given by gpρqM pσq “ gMpσ, ρq, σ P Σ,

ρ P R.
By (5.1) (i.e., the definition of strong equilibria), s P EpMρ, CΣq. Define

s1 P EpM˚, CΣ˚
ˆ
q by Pρs

1 “ sρ˚ . Note that s1 is well-defined by Theorem 5.1.1.

4 In fact, this assumption is not necessary as it was hinted upon earlier.
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We have

u0pM, s, ρq “

ż

u0pgMpspθq, ρq, ρq dPθ

“

ż

u
pρq
0 pgMpspθq, ρqq dPθ

“

ż

u
pρq
0 pg

pρq
M pspθqqq dPθ

ď sup
sPEpM˚

ρ ,C
˚
Σq

ż

u
pρq
0 pg

˚
ρ pspθqq dPθ

“

ż

u
pρq
0 pg

˚
ρ ps

˚
ρpθqq dPθ

“

ż

u0pgM˚ps1pθq, ρq, ρq dPθ ,

where the inequality follows since Mρ˚ is an optimal solution to the BOMD
problem specified by pI, O,Θ, u, Pθ, upρq0 q and C, while the last equality uses
the definition of M˚ and s1. Taking the supremum of both sides w.r.t. M and
s P EpBM , CΣq, we get that

u˚0pρq ď

ż

u0pgM˚ps1pθq, ρq, ρq dPθ “ u0pM
˚, s1, ρq ,

which proves the statement.

By the revelation principle, a mechanism is often implemented by truthful
declarations. If, such a mechanism is used for all problem Mρ ρ P R, then
the message space of the agents can be significantly simplified. Intuitively, if
independently of the value ρ, the same equilibrium strategy “works” then the
principal can explain to the agents that although she could require them to
send a vector of actions with one component for each possible value of ρ, since
they would send the same action each time (more precisely, same strategy),
they may just compress this and send the action only once. This is made
formal by the following result:

Theorem 5.2.2. Assume that C is admissible and commutes with P¨ in the
sense of (5.3). Further, assume that for any ρ P R, M˚

ρ “ pΣ, g˚ρ q PMpI, Oq
is well-defined and the optimizing equilibrium maps, s˚ρ defined by (5.10) can
be all taken to be equal:

s˚ρ “ s˚ρ1 , ρ, ρ1 P R . (5.11)
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Define M˚ “ pΣ, g˚q PMRpI, Oq by g˚ : Σ ˆ R Ñ O, g˚p¨, ρq “ gρ˚p¨q. Then
M˚ is an optimal solution to the BOMDX problem B of Theorem 5.2.1.

Proof. Let M˚ be as in the statement. Let B “ BM˚ be the corresponding
Bayesian game and let pBρqρPR be its decomposition. Then, for any ρ P R,

EpBρ, CΣq “ EpBM˚
ρ
, CΣq ,

where BM˚
ρ
is the Bayesian game corresponding to M˚

ρ . and hence

EpB, CΣq “
č

ρPR

EpBρ, CΣq “
č

ρPR

EpBM˚
ρ
, CΣq .

Let s˚ be the common value of the optimizing equilibrium maps in (5.11).
Then, s˚ P EpBM˚

ρ
, CΣq for each ρ P R and hence s˚ P EpB, CΣq.

Now, proceeding as in the proof of Theorem 5.2.1, let M “ pΣ, gMq P
MRpI, Oq be any mechanism for the BOMDX problem and let s P EpBM , CΣq

be any strong equilibrium of the resulting Bayesian game. Then,

u0pM, s, ρq ď

ż

u
pρq
0 pg

˚
ρ ps

˚
ρpθqq dPθ

“

ż

u
pρq
0 pg

˚
ρ ps

˚
pθqq dPθ

“

ż

u0pg
˚
ps˚pθq, ρq, ρq dPθ .

Taking the supremum of both sides with respect to M and s P EpM,CΣq, we
get

u˚0pρq ď

ż

u0pg
˚
ps˚pθq, ρq, ρq dPθ .

Since s˚ P EpB, CΣq, it follows that M˚ is indeed an optimal mechanism.

5.3 Application to Machine Learning Auctions

Let us now apply the results of this chapter to machine learning procurement
problems. For example, take the situation that was addressed in Chapter 3.
In addition, let ρi P R for all i P I denote possible profit values of solution
of agent i which are now unknown to the agents. This too can be a single
numerical quantity, or it can be a more detailed set of values. The utility
function are exactly as defined in (3.1) and (3.2).
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We can solve this problem using Theorem 5.2.1, but in fact, even the
solution, which is more convenient for the parties involved, of Theorem 5.2.2
is applicable. The reason is because the mechanism is such that for any value
of pρiqiPI , at equlibrium, the agents should declare the “true” price of their
solutions honestly. Hence, Theorem 5.2.2 applies.

The solution then will be as follows:

1. The principal announces the rules (which are as follows):

2. Agents submit their bids;

3. The principal evaluates the agent’s solutions (principal gets ρi for all
i P I, but he keeps these values secretly);

4. The principal computes the virtual valuations of the agent’s bids with
(3.3). The agent with the highest virtual valuation wins (3.5). The
payment to the agent equals to the highest bid that would have still
allowed the agent to win the auctions (3.6).

Now, the principal also explains to the agents that the mechanism is designed
in such a way that at equilibrium they should submit the fair price of their
solutions, or they are risking losing utility.

5.4 Summary

What we did in this chapter is similar to what was done in Chapter 4. There
are differences though: BOMD with ex-ante information leakage reveals the
principal’s utility information but has a short and concise form and is guar-
anteed optimal. There, agents change their expectations (ex-ante expected
utilities change) according to distributional information about the signal that
will be used at the end in the calculation of the outcome. BOMD with ex-
ogenous signals, on the other hand, is used for the cases when the principal
wants to hide her utility information and may not be optimal in the sense
of BOMD with ex-ante information leakage. In this case, there is no such
distributional information available to the agents and rationality is defined as
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playing best response for all possible values of the exogenous signal. One could
use the BOMDX framework to address the ex-ante problem, in theory, but the
solution may not be optimal. This is analogous to the certainty equivalence
principle in control theory in the fact that the agents do not have the “true”
model, but only an estimate, and yet they react as if they had the model.
This is similar to using BOMDX and asking the agents to plan for all possible
values of the signal (but clearly, the solution arising may not be optimal in
expectation).

5.4.1 Known Limitations

A known limitation is the use of the revelation principle. This has been dis-
cussed in previous chapters why revelation principle might provide a back-door
and the solution may be sub-optimal when faced with voluntary participation.

5.4.2 Future Work

• Because we used a reduction, we can combine the results of this chapter
with the results from the last chapter. For example, principal wants
to hide profit figures but prefers ex-ante evaluation of the solutions of
the developers. The result is the following mechanism: She would use
BOMDX as an outer shell and inside, she would employ the results from
Chapter 4 for each case.

• Another things that would be interesting to see is a common generaliza-
tion of the mechanism design with exogenous information to extensive
form-games and multi-stage auctions: A sequential framework, for ex-
ample.
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Chapter 6

Developers have Multiple
Machine Learning Packages

Let us consider again a machine learning solution procurement problem. Imag-
ine now, however, that each of the developers have multiple off-the-shelf so-
lutions that worth different amounts (e.g., because some of them cost less to
develop than others). In the previous chapters we assumed that each devel-
oper submits a single solution. How should a developer decide which solution
to submit? If the cost of evaluating solutions is negligible then instead of re-
quiring each developer to submit a single solution, we may ask them to submit
all of their solutions, leaving it to the principal to choose the (single) solution
that represents the best trade-off between cost and profit. How should then
the principal change the allocation and payment rules of the auction to maxi-
mize her expected profit? This is the question that is answered in this chapter.
If we abstract away the details of this problem, the resulting auctions should
perhaps be called multi-item reverse auctions (see for the formal definition
below). Note that multi-item (reverse) auctions should not be confused with
the commonly studied multi-unit auctions where multiple copies of identical
items are offered for sale (respectively, are procured). Although multi-unit
auctions are well researched, we were not able to identify any relevant papers
for the multi-item problem studied here. Again, this is only probably because
of our unfamiliarity with the literature, although maybe the problem described
is specific enough for machine learning and it does not come up that often in
the economics literature and thus it remained unstudied.
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Before diving into the details, let us first briefly consider whether the so-
lution of Chapter 3 would work for this setting. In this solution the principal
decides about which solution to buy by first computing the virtual values for
each of the solutions and then, assuming that there exists a solution whose
virtual value is above the reservation utility, buys the solution whose virtual
value is the highest. The price that the principal pays for the solution is the
price that would make the same item still win. At this stage we may sus-
pect that this payment rule will not work as the price could be manipulated
by a developer by manipulating the prices of the solutions that he submits.
However, as we will see the actual optimal solution to the multi-item optimal
reverse auction will be very close to this solution, but the amount to be paid
will be the maximum amount under which the current winner will stay remain
a winner. The proof is a fairly straightforward generalization of the proof pre-
sented in Chapter 3 (with some minimal technical difficulties) and is presented
mainly for the sake of completeness.

Note that the solution of multi-item reversed auctions presented in the next
section can, naturally and in an obvious fashion, be used in the more compli-
cated settings of the previous two chapters. In fact, this is a nice illustration
of the strength of the reduction approach followed in the thesis. The obvious
details of these combinations are left for the reader.

6.1 Problem Description

Fix I, the set of developer positions. For i P I, let Ji “ t1, . . . , |Ji|u be indices
used to index the items offered by developer i for sale (i.e., the machine learning
solutions). Let

K “ tpi, jq : i P I, j P Jiu

be the index set for the solutions (items). The outcome space isO “Mď1 pKqˆ

R|I|: For some pπ, tq P O where π “ pπqi,jPK and t “ ptiqiPI the meaning of
π and t are as follows: The item pi, jq P K is bought with probability πi,j

and the payment to developer i is ti. (With probability 1 ´
ř

pi,jqPK πi,j the
principal buys none of the items.) We will also use πi “ pπi,jqjPJi and we will
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treat this as a column vector of R|Ji|. The inner product of two vectors,
a, b, of identical dimensions will be denoted by xa, by. Further, we extend The
vector whose components are one is denoted by 1 (the same symbol is used
independently of the dimension of the vector – the dimension should be clear
from the context).

The utility function of the principal is given by

u0pπ, tq “

˜

1´
ÿ

iPI

xπi,1y

¸

λ0 `
ÿ

pi,jqPK

πi,jρi,j ´
ÿ

iPI

ti , (6.1)

where λ0 P R is the profit that the principal makes when no solution is ac-
cepted, and ρi,j is the profit made when item pi, jq offered by agent i is acquired.
Note that as usual with randomized mechanisms, the utility function deter-
mines the expected utility where the expectation is over the randomization of
the mechanism.

We will represent the type of developer (or agent) i by a vector θi “
pθi,jqjPJi P Θi “

Ś

iPI Θi,j, where Θi,j “ rθi,j, θi,js Ă R, θi,j ă θi,j. Thus, Θi is
a box in R|Ji|. The utility function of developer i will be

ui,θipπ, tq “ ´xπi, θiy ` ti, pπ, tq P O (6.2)

i.e., the agent is giving up the value θi,i when the principal buys item pi, jq P K,
while he receives the amount τi independently of whether he won the auction.
Again, the utility function determines the expected utility for the agent where
the expectation is over the randomization of the mechanism.

To fully specify the optimal mechanism design problem it remains to choose
some counter-strategy map schema, C. In this chapter, we consider the case
when C is the Nash-choice: C´ipsq “ CN

´ipsq “ ts´iu, giving rise to implemen-
tations in Bayes-Nash equilibria.

6.2 The Form of the Optimal Multi-Unit Auc-
tion

In what follows we will reuse the symbol Pθi,j to denote the cumulative dis-
tribution function Pθi,j : R Ñ r0, 1s corresponding to the distribution Pθi,j :
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Pθi,jpxq “
şx

´θi,j
dPθi,j , x P R (the meaning of Pθi,j should remain clear from

the context). We make the following assumption concerning these distribu-
tions:

Assumption 6.2.1. For each pi, jq P K, the distribution Pθi,j has a density
with respect to the Lebesgue measure on Θi,j. Further, the density is bounded
away from zero on Θi,j.1

We will denote the resulting density by pθi,j . We also introduce Pθipθiq “
ś

jPJi
Pθi,jpθi,jq and pθipθiq “

ś

jPJi
pθi,jpθi,jq.

WLOG we seek the optimal mechanism amongst the set of direct-revelation
mechanisms that are truthful (that this can be done holds because of the
revelation principle, cf. Theorem 2.3.1). Thus, Σ “ Θ, i.e., in our case the
agents’ messages will be prices. For i P I, introduce the function Vi,j : Θi Ñ R

defined by
Vi,jpxq “ ρi,j ´ x´

Pθipxq

pθipxq
. (6.3)

The function Vi,j assigns a “virtual value” to a price-vector x submitted by
agent i for solution j P Ji: The function compares the agent’s offer to the
profit to be made if the item is accepted and is adjusted by Pθi pxq

pθi pxq
that reflects

the uncertainty regarding the type θi of agent i, i.e., the information rent that
decreases the profit that can extracted from the given agent.

These functions form the basis of the solution to the reverse auction prob-
lem. In particular, the solution will take the form M “ pΘ, g˚q, g˚ “ pπ˚, t˚q
with π˚ : Θ ÑMď1 pKq, t˚ : Θ Ñ R are specified as follows: For every “table”
of submitted prices θ, the mechanism will select the item to be bought, with
the possibility that no item will be selected. We let w˚ : Θ Ñ K Y t0u denote
the function that determines the item bought: the value 0 R K is used to allow
the mechanism to reject all offers. To make the definition of w˚ more concise
define

V0,0pxq “ x

and define θ0 “ λ0 so that V0,0pθ0q becomes the profit of the principal when
1This is the reason Θi,j has to be a bounded interval.
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she decides not to buy the item. Then, for θ P Θ,2

w˚pθq “ arg max
pi,jqPKYtp0,0qu

Vi,jpθiq, (6.4)

where ties should be broken in an arbitrary, but systematic fashion indepen-
dently of x (i.e., by ordering IYt0u in some way and in the case of ties choosing
the index that precedes all the other tied indices in the chosen ordering). Ac-
cording to (6.4), the item to be bought is selected as the one whose virtual
valuation at the submitted prince is the largest (with item p0, 0q representing
no trade). Now, define π˚ by

π˚i pθq “ Itw˚1 pθq“iu, i P I , (6.5)

where w˚1 pθq denotes the first component of w˚pθq. To define the payment
function t˚, first define the functions z˚i : Θ´i Ñ R, i P I:

z˚i pθ´iq “ sup
!

θw˚2 pθq : θi P Θi, w
˚
1 pθq “ i

)

.

That is, z˚i pθ´iq specifies the largest price agent i can submit and still win
given that the other agents submit the prices θ´i (and regardless of which
item of him makes him win). With this, define

t˚i pθq “

#

z˚i pθ´iq, if w˚1 pθq “ i;
0, otherwise .

(6.6)

Note that agent i gets paid if and only if he wins. When the agent wins, he
gets paid z˚i pθ´iq, which is guaranteed to be more than θi,w˚2 pθq, the price of
the item bought, otherwise he would not have won.

Let us introduce one more technical assumption:

Assumption 6.2.2. The virtual valuation functions, Vi,j are strictly decreas-
ing.

Note that for some common probability distributions, such as the uniform
or exponential distributions, the virtual valuation functions are indeed strictly
decreasing. Again, if the assumption is not met, the “ironing” technique of
Myerson (1981) can be used.

We can now state the main result of this section:
2Note that θ does not include θ0
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Theorem 6.2.1. Let Assumptions 6.2.1 and 6.2.2 hold and let g˚ “ pπ˚, t˚q,
where the functions pπ˚, t˚q are defined above. Then, the mechanism pΘ, g˚q
is a solution to the BOMD problem of Section 3.1.

The proof is presented in the next section.

6.3 Proof of Theorem 6.2.1

The proof follows closely that of Theorem 3.2.1. For a given pair of functions
π : Θ Ñ Mď1 pKq, t : Θ Ñ R|I| let gπ,t : Θ Ñ O be defined by gπ,tpθq “

pπpθq, tpθqq. Further, for i P I, θi, θ1i P Θi, let

uipπ, t, θ
1
i, θiq “ ui,θipgπ,tpθ

1
i, Pθ´iqq ,

Uipπ, t, θiq “ uipπ, t, θi, θiq .

Thus, uipπ, t, θ1i, θiq is the interim expected utility of agent i when he chooses
to send θ1i while his type is θi and Uipπ, t, θiq is his interim expected utility
when he chooses to be truthful.

By Proposition 2.3.3 and also using that by our choice of Bayes-Nash im-
plementation the IC constraint (2.9b) is equivalent to (2.11), our problem is
equivalent to the following functional optimization problem:

ż

u0pgπ,tpθqqdPθ Ñ max s.t. (OPT-M1)

π : Θ ÑMď1 pIq , t : Θ Ñ R|I| ,

Uipπ, t, θiq ě uipπ, t, θ
1
i, θiq for all i P I and θi, θ1i P Θi (IC-M1)

Uipπ, t, θiq ě 0 for all i P I and θi P Θi. (IR-M1)

For i P I, π : Θ ÑMď1 pKq, θi P Θi define

Eipπ, θiq “ πipθi, Pθ´iq.

Note that πi and Ei are both vector-valued functions. With the above defini-
tion we can write

uipπ, t, θ
1
i, θiq “ tpθ1i, Pθ´iq ´ xEipπ, θ

1
iq, θiy .

85



In this section we call a vector valued function v : Rk Ñ Rp decreasing if
vpxq ď vpyq holds whenever x ě y. Here, and in what follows, when using
ď (or ă, ě, or ą) we will mean the operator that compares the vectors in a
componentwise manner. For example, for x, y P Rd, x ď y if xp ď yp holds for
all 1 ď p ď d.

We claim that π, t satisfies (IC-M1),(IR-M1) if and only if it satisfies the
following constraints:

Eipπ, ¨q is decreasing for all i P I, (DEC-M2)

Uipπ, t, θiq “ Uipπ, t, θiq `

ż θi

θi

xEipπ, θ̂iq, dθ̂iy for all i P I, θi P Θi, (INT-M2)

Uipπ, t, θiq ě 0 for all i P I. (IR-M2)

The proof of this equivalence actually holds for each index i P I, separately
and follows immediately from the following analysis lemma:

Lemma 6.3.1 (Vector Envelope Theorem). Let X “
Śd

i“1rai, bis be a closed
box in Rd, t : X Ñ R, e : X Ñ r0,8qd be integrable. For x, y P X, define
upx, yq “ tpxq ´ xepxq, yy, Upxq “ upx, xq. Then the inequalities

Upyq ě upx, yq for all x, y P X, (IC-VE)

Upxq ě 0 for all x P X (IR-VE)

are satisfied if and only if the constraints

e is decreasing, (DEC-VE)

Upxq “ Upbq `

ż b

x

xepxq, dxy for all x P X, (INT-VENV)

Upbq ě 0 (IR2-VE)

are satisfied.

Proof. We first show that (IC-VE) is equivalent to

Upyq ´ Upxq ě xx´ y, epxqy for all x, y P X . (IC2-VE)

Indeed, using the definition of u, we see that

Upyq ě upx, yq “ tpxq ´ xepxq, yy “ Upxq ` xepxq, x´ yy,
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and reordering the terms gives the required equivalence. Also, note that (IC2-VE)
clearly implies that U is decreasing thanks to e ě 0.
ñ: Clearly, (IR2-VE) is implied by (IR-VE). Swapping x and y in (IC2-VE)
gives Upxq ´ Upyq ě xy ´ x, epyqy. Combining this with (IC2-VE) we get

xx´ y, epxqy ď Upyq ´ Upxq ď xx´ y, epyqy for all x, y P X . (6.11)

This implies that e is decreasing (i.e., (DEC-VE)). The plan now is to apply
Theorem 3.3.2 to fpx, tq “ upx, τptqq, where τ : r0, 1s Ñ X is a smooth function
such that τp0q “ x0 with some x0 P X, τp1q “ b to show (INT-ENV). With
the notation of the theorem, V ptq “ maxxPX fpx, tq “ upτptq, τptqq. Choose
x˚ptq “ τptq. The conditions of the theorem can be readily verified. Further,
ftpx, tq “

B

Bt
ptpxq ´ xepxq, τptqyq “ ´xepxq, τ 1ptqy. Hence, Upbq “ V p1q “

V p0q `
ş1
0 ftpx

˚ptq, tqdt “ Upx0q ´
ş1
0xepτptqq, τ

1ptqydt. Here,
ş1
0xepτptqq, τ

1ptqydt

is the path integral of epxq from τp0q “ x0 to τp1q “ b. Hence, Upx0q “

Upbq `
şb

x0
xepsq, dsy. Since x0 was arbitrary, we get (INT-ENV). This finishes

the direction ñ.
ð: Since e is decreasing, starting from (INT-VENV) we get that

Upxq “ Upyq ´

ż x

y

xepzq, dzy ě Upyq ´

ż x

y

xepyq, dzy “ Upyq ´ xx´ y, epyqy

holds for any x, y P X. This implies (IC2-VE), which was seen to be equivalent
to (IC-VE) and to imply that U is decreasing. Since U is decreasing, (IR2-VE)
implies (IR-VE).

Let us now return to the optimization problem. Using the function Ui, we
can rewrite the objective function as

u0pgπ,tpPθqq “ λ0 `
ÿ

iPI

xρi ´ θi ´ λ01, πipPθqy ´
ÿ

iPI

Uipπ, t, Pθiq , (6.12)

where we use ρi “ pρijqjPJi . Let us now write Uipπ, t, Pθq in a form that
allows the separation of the terms that involve t. Take any π, t satisfying
the constraints (DEC-M2), (INT-M2), (IR-M2). Due to (IR-M2) and the
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definition of Ei and Assumption 6.2.1,

Uipπ, t, Pθiq “

ż θi

θi

˜

Uipπ, t, θiq `

ż θi

θi

xEipπ, θ
1
iq, dθ1iy

¸

dPθipθiq

“ Uipπ, t, θiq `

ż θi

θi

ż θi

θi

xEipπ, θ
1
iq, dθ1iy dPθipθiq

“ Uipπ, t, θiq `

ż θi

θi

˜

ż θ1i

θi

dPθipθiq
¸

xEipπ, θ
1
iq, dθ1iy

“ Uipπ, t, θiq `

ż θi

θi

ˆ

Pθipθ
1
iq

ż

Θ´i
xπipθ

1
i, θ´iq,1ydPθ´ipθ´iq

˙

dθ1i

“ Uipπ, t, θiq `

ż

Θ
Pθipθiqxπipθq,1y dPθ´ipθ´iq

pθipθiq

pθipθiq
dθi (*)

“ Uipπ, t, θiq `

ż

Θ

Pθipθiq

pθipθiq
xπipθq, dPθpθqy .

Note that we have indeed separated the term that includes t. The equation
where we used the positivity of pθi over its domain is denoted by (*). Plugging
the expression obtained for Uipπ, t, Pθiq into (6.12) and using the functions

V̂i,jpxq “ ρi,j ´ xj ´ λ0 ´
Pθipxq

pθipxq
px P Θiq

and for i fixed collecting these functions into the function V̂i : Θi Ñ R|Ji| we
get

u0pgπ,tpPθqq “ λ0 ´
ÿ

iPI

Uipπ, t, θiq `

ż

ÿ

iPI

xV̂ipθiq, πipθqy dPθpθq . (6.13)

For π fixed, let us maximize this in t subject to the constraints (DEC-M2),
(INT-M2), (IR-M2). Since only the second term depends on t and in fact
this term has a negative sign, we maximize the objective if we minimize
ř

iPI Uipπ, t, θiq. Let us consider the ith term of this for some fixed index
i. By (INT-M2) and plugging in the definitions of Ui and Ei, for any θi P Θi

we get

Uipπ, t, θiq “ Uipπ, t, θiq ´

ż θi

θi

xEipπ, θ
1
iq, dθ1iy

“ tipθi, Pθ´iq ´ xπipθi, Pθ´iq, θiy ´

ż θi

θi

xπipθ
1
i, Pθ´iq, dθ1iy

“

«

tipθq ´ xπipθq, θiy ´

ż θi

θi

xπipθ
1
i, θ´iq, dθ1iy

ff

θ´iÐPθ´i

,
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where r¨sθ´iÐPθ´i is used to denote the substitution of θ´i by Pθ´i (and hence,
taking the integral of the expression). Thus, Uipπ, t, θiq depends on t only
through ti . By (IR-M2), all feasible pairs pπ, tq must satisfy Uipπ, t, θiq ě 0.
Hence, the minimum of Uipπ, t, θiq is zero. This minimum is achieved if we
choose

t
pπq
i pθq “ xπipθq, θiy `

ż θi

θi

xπipθ
1
i, θ´iq, dθ1iy

and by choosing t this way (as a function of π), (INT-M2), (IR-M2) are satisfied
for any π. Thus, it remains to choose π.

When we choose t “ tpπq, we see that the only term that still depends on π
in (6.13) is the last term. Call this term Υpπ, Pθq “

ş
ř

iPIxV̂ipθiq, πipθqy dPθpθq.
Taking into account that πpθq is a subprobability distribution, we see that for
any feasible π

Υpπ, Pθq ď
„

maxp0, max
pi,jqPK

V̂i,jpθiqq



θÐPθ

(if maxpi,jqPK V̂i,jpθiq ă 0 πipθq “ 0, i P I achieves zero inside the integral at θ).
Further, the upper bound on Υpπ, Pθq can be achieved by any π when πpθq as-
signs zero to all indices pi, jq P K such that V̂i,jpθiq ă 0 and assigns nonnegative
values to indices inW pθq “

!

pi, jq P K : V̂i,jpθiq ě 0, V̂i,jpθiq “ maxpi1,j1qPK V̂i1,j1pθj1q
)

.
Now, if Assumption 6.2.2 is satisfied then it can be shown that by choosing
a single nonzero entry from W pθq will result in π that satisfies (DEC-M2).
Denoting the resulting choice π˚ and letting t˚ “ tpπ

˚q, after elementary trans-
formation we arrive at the desired statement, thus finishing the proof of The-
orem 3.2.1.

Note. Although the optimality of mechanism is still intact, as the number
of agents vary, the ex-post expected utility of the principal will change. For
instance, as the number of participating agents tend to infinity, there will be
an agent of the highest type with high probability and also an agent of the
second highest type, thus the ex-post expected utility of the principal will be
at the maximum possible.
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6.4 Summary

In this chapter, we extended the results of Chapter 3 and Chapter 4 to the case
when agents have multiple machine learning packages to offer. This is a useful
result that captures the real world situation more closely. The conclusions
here are similar to Chapter 3 and Chapter 4 but with this added power.

6.4.1 Future Work

In reality, the cost of evaluating solutions is not negligible, but we assumed
so here to be able to continue the analysis. Now, if we consider a price for
evaluating solutions, which may be due to both practical reasons and learning-
theoretic considerations (the more solutions we try, the closer we get to having
an overfit solution), perhaps by addition of a penalty for number of solutions,
the impact on voluntary participation will be significant and we will face a
very different problem that needs to be solved for itself.
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Chapter 7

A Comprehensive Procurement
Process

In this chapter we bring an example of a sample comprehensive procurement
process to put the results of the thesis in context.

We used reduction in proving the main results of Chapter 4 and Chapter 5.
This proves to be a powerful tool because now, we can combine the results
throughout this thesis to introduce a comprehensive solution to the problem
of machine learning procurement.

7.1 Solution to the Example of Section 1.2

Consider the problem faced by Aleph Corp. introduced in Section 1.2. To
recap Aleph Corp. supplies books and it has gathered a database of different
users’ interest in books over the years. Alpeh Corp. wants to obtain a book
recommendation system so to increase its sales and profit. Because of the
reasons mentioned in Section 1.2, Aleph Corp. decides to go for a procurement
mechanism: Aleph Corp. calls for solutions, while it does not want to publicly
announce its profit information. Moreover, Aleph Corp. does not want to limit
the number of packages each developer has to offer to one because it might
have a negative impact on its profit and will publicly declare how good each
agent did, but not her profit information.

Now, Aleph Corp. can combine these solution to find an optimal procure-
ment procedure. Then, by results of Chapter 4, Chapter 5 and Chapter 6, the
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timeline for an optimal procurement procedure would be as follows:

1. Aleph Corp. announces the rules, which are as follows:

2. Developers submit all their solutions. They may offer multiple solutions;

3. Aleph Corp. evaluates the offered solutions on the dataset;

4. Aleph Corp. publicly announces the results of this evaluation;

5. Developers submit their bids for each of their solutions (they will not be
different for different cases of solution performance because the optimal
action for them is honesty);

6. Aleph Corp. computes the profitability of each solution; and

7. Aleph Corp. computes the virtual valuations of all solutions with (6.3).
The solution with the highest virtual valuation wins (6.5). The developer
that offered that solution will be compensated an amount equal to the
highest bid that would have still allowed it to win according to (6.6).

In this way, Aleph Corp. has a solution that is maximizing the profits. One
thing that needs to mentioned is that Aleph Corp. needs to effectively com-
municate the inherent incentive-compatible structure of the mechanism to the
agents. In, words the Aleph Corp. will say that if the developers underbid,
they may increase their chances of winning but in doing so, they will lose in
expectation. Also, if they overbid, they will decrease their chances of winning
and will not increase their payments in case they win, so they will lose in ex-
pectation. Thus, Aleph Crop. will show that honesty is going to be the most
profitable course of action by the developers. Aleph Corp. will use the results
of this thesis to communicate this in a more rigorous manner, if need be.
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Chapter 8

Conclusions

In this thesis, we introduced additions to the framework of mechanism design
in order to make it ready to be appropriate for finding principled ways to do
procure machine learning solutions in an optimal fashion. We used reverse
auctions as a base model to deal with this situation. Much work needs to
be done and in fact the results in this thesis are preliminary. However, the
hope is that this thesis calls the game theoretical aspects of machine learning
problems to the attention of machine learning researchers. One immediate
next step for future research is to address the problem of how the data held
by the principal should be split to avoid overfitting. The issue here is that the
principal wants to release data to give the developers a chance to build good
solutions. An obvious approach is to split the data equally. However, it is
far from clear whether this is the best the principal can do to achieve a good
utility with high probability (or on average).

8.1 Future Work

In addition to all the issues stated in ‘Future Work’ sections of different chap-
ters which were not addressed in later chapters, these problems seem to be
good next steps:

• A logical next step to this thesis is to find and formalize a way to ac-
cept and combine multiple solutions. An important consideration, then,
would be considerations of aggregation versus model selection. This will
also correlate to the problems of crowdsourcing for the development of
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machine learning solutions. Recently, Abernethy and Frongillo (2011)
proposed a mechanism based on collaboration for solving such problems.

• Multi-stage auction also seem a logical next step. In fact, we did try to
extend the framework to a multi-stage auction, but the results were too
immature to be presented.

• Another problem we face in procurement of machine learning packages
is that the principal may be faced by an unknown number of agents.
We did some work on formalizing this problem but unfortunately, these
results were not fit to be presented in this thesis in their current form.
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