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Abstract

This dissertation opens with a discussion and clarification of the Classical Computational
Theory of Mind (CCTM). An alleged challenge to this theory, which derives from
research into connectionist systems, is then briefly outlined and connectionist systems are
introduced in some detail. Several claims which have been made on behalf of
connectionist systems are then examined, these purport to support the conclusion that
connectionist systems provide better models of the mind and cognitive functioning than
the CCTM. It is argued that most claims made on behalf of connectionism often amount
to little more than myths. A significant difficulty with standard connectionist research
methodology is then described. This difficulty derives from the fact that connectionist
systems are seldom subject to detailed analysis and interpretation after training and has
serious consequences for the plausibility of connectionist research in cognitive science
and as the basis for a challenge to the CCTM. A technique for network analysis is
described in detail and the results from the analysis of a particular network are then
introduced, in order to show how these difficulties can be overcome. The analyzed
network exhibited a number of surprising and intriguing properties. These properties
provide the basis for a detailed assessment of the network with respect to the CCTM.
There then follows a discussion of the results of the network analysis, with respect to two
features which are commonly associated with the CCTM, namely systematicity and
compositionality. It is argued that the network has some properties similar to those
associated with the CCTM and exhibits, in a weak sense, compositionality and

systematicity. It is also argued that the network amounts to a genuinely cognitive theory.



This suggests that there is insufficient evidence at the current time to determine whether
or not connectionism presents a genuine challenge to the CCTM. The plausibility of the
claim that networks provide the basis of an alternative to the CCTM is then traced, in
part, to a revisionist tendency in some contemporary histories of connectionist research.

Finally, future research directions in philosophy and cognitive science are suggested.
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In tion
Issues arising from the computational view of the mind will be central to this dissertation.
There is a long tradition of philosophers taking inspiration for their philosophical
theorizing from mechanical devices. This was as true at the time of Descartes, as it is
today (see Meyering 1989). One particular contemporary instance of this tendency is the
consideration of computational systems as a structuring metaphor for the mind (see
Boden 1981). This structuring metaphor has inspired an ambitious research program in
cognitive science which, in turn, has inspired a considerable body of philosophical
theorizing about the mind. Central to both avenues of research are questions concerning
representations or tokens. These questions arise as a direct consequence of the adoption
of the computational metaphor. There are certain presumptions that have been made
about the nature of representation or tokens, which have been central to both the
philosophical and technical research programs. These presumptions define what has been
called (e.g. by Fodor and Pylyshyn 1988) “classical’ cognitive science and philosophical
theorizing about the mind. However, recently these suppositions have come under attack.
Advocates of the ‘connectionist’ approach have claimed that these suppositions are
incorrect. Although it is usually assumed that there is some kind of incompatibility
between the connectionist and classical positions, I will argue in this dissertation that

these incompatibilities are not as great as has been assumed.

In the chapter which immediately follows this one, introduce a paradigm example of a

computational device, the Turing machine. Turing machines have played a significant



role in philosophical theorizing about the mind, especially with respect to functionalism.
This Turing machine-like conception of the mind has (in conjunction with other factors,
such as Fodor’s (1975) language of thought hypothesis) underwritten a view of the mind,
which I term the ‘classical computational theory of mind’ (CCTM), which is central to
much of both contemporary philosophy of mind and cognitive science. In this chapter I
attempt to consider in detail the properties which are supposed by the CCTM to be shared
by both Turing machines and minds. The purpose here is to develop a clear picture of the
position, so that the alleged challenge to the CCTM posed by connectionist systems can

be assessed.

Although the CCTM is well established in the philosophical literature, it has not been
without its critics. Philosophers, such as Searle (1980), and Dreyfus (1991), have argued
on a number of grounds that this position is deeply flawed. A further challenge to the
CCTM has come about due to the increase in interest in what are known as
‘connectionist’ style models. Both Dreyfus and Searle are cautiously optimistic that this
style of model may offer a means of answering their objections to the CCTM. The third
chapter will briefly introduce and discuss the positions of Dreyfus and Searle, with
respect to the CCTM and the alleged connectionist alternative to it. However, the bulk of
the third chapter will be taken up by a detailed description of the major features and
components of connectionist models, concentrating especially upon the class of such
models which undergo training. In the conclusion of this chapter, a number of strong and
philosophically significant claims that have been made about connectionist systems,

especially with respect to the CCTM, will be introduced.



The purpose of chapters two and three is to set out the classical and connectionist
positions which, it has widely been supposed, are in opposition to one another. This
provides a basis upon which a more careful assessment of the alleged conflict can take
place. One of the problems with the literature on connectionism is that, although there is
quite widespread agreement that connectionist systems offer some kind of challenge to
the traditional position, the details and precise nature of the challenge is not always
explicit. This is, in large part, due to the fact that connectionist theorists usually define
their positions negatively, by saying in what respects they disagree with more traditional

positions.

The fourth chapter involves a discussion of a number of claims which have appeared in
the connectionist literature that provide (in part) an explanation of why philosophers of
mind have become so interested in connectionist systems. Most of the claims concern,
either directly or indirectly, the relationship between connectionist systems and the more
traditional, classical ones. There are a number of respects in which the empirical
adequacy of the traditional systems has been called into question. It has been claimed by
connectionists that their models have properties which enable them to address these
issues. If this claim were true, then there would be good grounds for believing that such
models provided the basis for a better account of human cognitive functioning and, as a
consequence, would also provide a sounder basis for philosophical theorizing about the
mind. Unfortunately, as I will argue in this chapter, none of these claims are as

unproblematic as their advocates would have us believe. Even where there are some



virtues to the claims in certain instances, the claims require careful qualification that is

seldom given.

Chapter five opens with a brief discussion of a further myth about connectionist systems,
conceming the representational structures and the operations which manipulate those
structures. This myth is of particular significance as, were it to be true, it would provide
strong grounds for maintaining that there were significant differences between the CCTM
and a theory of mind based upon connectionist systems. However, as with the myths
discussed in the previous chapter, there are significant problems with this claim. In fact,
consideration of this myth leads to an even more fundamental difficulty with
connectionist systems, if they are supposed to inform cognitive theorizing. This difficulty
arises, in part, because of the complexity connectionist systems after training and, in part,
because of problems with standard connectionist methodology. The main body of this
chapter though will be taken up with the detailed analysis and interpretation of a
particular connectionist network which was trained upon a logic problem originally
studied by Bechtel and Abrahamsen (1991). The purpose of undertaking this analysis is
to show that, in at least one instance, when connectionist systems are subject to detailed
scrutiny, they reveal properties (contrary to standard expectations) which, superficially at
least, appear to be surprisingly similar to those usually associated with systems which are

consistent with the CCTM.

Chapter six is focussed upon trying to draw firm philosophical conclusions, based upon
the proceeding chapters. In particular, I attempt to assess the extent to which the network

introduced in chapter five has the properties associated with the CCTM (which were



introduced in chapter two). It turns out, contrary to what might be initially expected, that
the network has a significant number of the properties associated with the CCTM. This is
not to say though that networks are entirely consistent with the CCTM in all respects
though. These differences become especially apparent when considering the extent to
which the network can be said to exhibit the properties of systematicity and
compositionality. The extent to which the network can have these properties ascribed to it
is somewhat limited, due to the nature of the task upon which it was trained. However,
the detailed analysis of the network does serve to show that the network is cognitive in
nature, contrary to what might be expected, given the claims of Fodor and Pylyshyn
(1988). The results also suggest that many of the claims which have made about
networks, with respect to the CCTM are much too simplistic, as the relationship between
networks and the CCTM is far more subtle and complex than is generally assumed. This
being the case, the straightforward claim that networks can form the basis of an

alternative to the CCTM is rejected.

In the concluding chapter, chapter seven, the results from the discussion of the previous
chapters are reviewed. A brief discussion of the bistory of network research is then
offered and it is argued that many modem histories of network research have over
emphasized the antagonism between the network and more traditional research programs,
at the expense of historical accuracy. This helps to explain, in part, why it is that the
differences between connectionist systems and the CCTM have become exaggerated.

This chapter concludes with a few suggestions about future directions of research. In



particular, a number of projects which fall within the scope of cognitive science are

suggested, as well as some complementary avenues of philosophical research.



I
The Classical Computational Theory of Mind (CCTM)
There is a long tradition of philosophers taking inspiration from mechanical and devices
and technological innovation. Consider for example, Descartes' analogy of two clocks,
offered in the Principles (IV, CCIV) in order to illustrate how superficially similar things
may have different causes, or the cosmology of La Monde being based upon optical
theory (see Meyering 1989). This tendency continues today. In contemporary
philosophical literature, it is common to find computational systems being used as a
structuring metaphor for the mind, especially in so-called functionalist theories (see
Boden 1981 for a discussion of the origins of this metaphor).! This view of the mind has
close affiliations and links with such philosophical positions as “The Language of
Thought Hypothesis” and has encouraged an ambitious research program in cognitive
science, which in turn has inspired a considerable body of philosophical theorizing.
Although these further ramifications of the metaphor are not the focus of this dissertation,
it is useful to note that a whole tradition has been generated from the starting point under

consideration here.

One problem is that the exact relationship between computers and minds is not entirely
clear. The difficulty with the computer metaphor? is knowing exactly which property or
properties of the base domain (in this case, computers) is shared by the target domain (in

this case, minds). The metaphor has, despite its shortcomings, nonetheless provided the

! Some (e.g. Pylyshyn 1984) believe more strongly that this not a metaphor at all. For these theorists,
slogans such as ‘cognition is computation’ are taken as literal statements.

2 Or ‘computer analogy’, if one wishes to make a technical distinction between analogies and metaphors.
Since such a technical distinction will not play a role in the discussion that follows, the two terms will be
used interchangably here.



basis of a significant position in the philosophy of mind and cognitive science, known as
the ‘Computational Theory of Mind' (CTM) or ‘The Computational Theory of Cognition’

(CTC).

Very roughly, the CTM is based upon the idea that cognition of any sort is just
information processing. The scope of this thesis is not always clear, insomuch as there are
grounds to be somewhat reticent about the strong claim that a/l mental phenomena are
also computational phenomena. Indeed, there also may be grounds for wondering
whether all mental phenomena are truly cognitive phenomena. However, provided that
either the class of cognitive phenomena is such that it includes a sizable portion of mental
phenomena, or that most mental phenomena arise from a common set of mechanisms,
then this particular issue need not be a concern here. However, even if it turns out that
only a portion of mental or cognitive phenomena are computational, this thesis is still
substantial, so long as it provides a means of studying a (significant) sub-set of mental

states.

The assumption that cognition is (in large part) computational in nature is foundational to
the discipline of cognitive science. It is also important in the philosophy of mind (see for
example Cummins 1989, Sterelny 1990 and Lloyd 1989). Cummins (1989: p. 13) gives a
fairly typical philosophical formulation of the thesis, when he remarks that,
By computational theories of cognition [ mean orthodox computational
theories--theories that assume that cognitive systems are automatic

interpreted formal systems...i.e. that cognition is disciplined symbol
manipulation.3

3 Putatively 'non-orthodox' theories will be the topic of the next chapter.



As a matter of fact though, it is quite difficult to give a definitive detailed account of the
computational theory of mind. This is because the position is so well known that it has
been formulated many times in many different contexts, and there is no one single
veridical version.* Moreover, it is neither entirely clear exactly which properties of
computational devices are relevant to the CTM, nor are the terms in which the CTM is
stated uniform and unambiguous with respect to how exactly they relate to computational
devices. Another difficulty with the CTM is that it is far from clear exactly which type of
computational device is the basis for the analogy. Clarification with respect to these
issues is necessary, if a clear picture of the properties essential to the CTM is to be
developed. This is important not only with respect to getting the position correct, but also
for accurately assessing the degree to which (and in which respects), allegedly 'non-

orthodox' theories differ from the standard position.

One way to explore in detail the metaphor which underlies the CTM, and thereby clarify
the position, is to consider a paradigm example of a computational device, in the
philosophical literature. The metaphor between minds and computers can be traced back
to a paper by Turing (1950).5 Since Turing's (1950) argument is (historically, at least) the
original source of the metaphor that underlies the CTM, it is appropriate to begin
clarifying the CTM by looking at the properties which Turing suggested as being
essential to computers and then looking more specifically at a kind of device which

exhibits the relevant properties. This (hopefully) will make the properties of the kinds of

4 See for example Fodor (1975), Field (1978), Schiffer (1981), Stich (1983), Pylyshyn (1984), Haugeland
(1985), Cummins (1989), Sterelny (1990) and Searle (1992) to cite just a few examples.

3 It is interesting to note that, according to Boden (1981: p. 31), the same relationship did not explicitly
appear in the psychological literature until ten years later.
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machines which form the metaphorical base of the classical (or 'orthodox) CTM explicit,
and thereby help to determine more precisely the properties which minds and machines
are supposed to have in common. From this point on, I will refer to the Classical version

of the CTM as the ‘CCTM".

Before proceeding to the exploration of the metaphor, I should make it clear that I will
not be addressing many of the traditional issues in the philosophy of mind, such as
intentionality, consciousness, qualia and so on. The focus instead will be limited to the
portion of mentality which has been classically associated with Turing machines. It might
be objected that this focus really amounts to the consideration of methods of problem
solving in general (which involve considerations broader than those directly connected to
the mind); however, the (alleged) contrast between classical verses connectionist
positions still arises even on this construal. Since philosophy of mind is the arena in
which the most substantial claims in the literature have arisen, I will continue to cast the

contrast in those terms.6

Turing (1950: p. 437) describes computational devices as having three parts. These are, in
Turing's terminology, a ‘store’, an ‘executive unit’ and a ‘control’. The ‘store’ is a
mechanism whereby information can be held and retrieved. Turing (1950: p. 437)
explicitly thinks of this as being analogous to human memory. The ‘executive unit’ is the
part of the device which actually carries out the various operations which take place upon

the information which the computational device operates upon. Finally, the ‘control’ is

6 I might also remark that the position that I favour with respect to theories of mind is some form of
functionalism allied with some sort of syntactic theory of mind, as will become apparent in the discussion
of this and following chapters (Cf. Fodor 1975, Stitch 1983, or Sterelny 1990).
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the part or property of the device which ensures that the operations performed upon

information are performed correctly.

One computational device which has all the parts Turing describes is the device which
bears his name: a Turing machine. A Turing machine is a simple, yet very powerful
computational device (for the original description of Turing machines and their power,
see Turing 1937, a more accessible account is provided by Hopcroft and Ullman (1979)).7
Turing machines consist of two basic components. The first of these is a tape which is
divided into discrete regions. Each of these regions can contain just one token from a
finite alphabet. In principle, the tape can be unlimited in length. The tape acts as the
Turing machine's ‘store’. The second major component is known as the ‘head’. It acts as
the machines ‘executive unit’. The head can move backwards and forwards along the

tape, one square at a time, and read, write and erase items on the tape.

Head
oo >
Tape Y|[|1]1|JAJA]-]Y] -|Y]|A
Figure 2-1

Diagram of a Turing Machine
The other important property of the head is that it can adopt internal states. The internal
state of the head at any particular time t, is dependent upon two factors; (a) the symbol
that the head is scanning at t,, and (b) the previous internal state of the head at time t,.

The set of internal states that the head of a Turing machine can assume is finite and is

7 For a non-mathematical treatment of Turing machines, see Haugeland 1985: pp. 133-140
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determined by what is known as the ‘machine table’ of the head. The machine table also

specifies the movement and read/write/erase operations of the head. It acts as the

‘executive control’ of the Turing machine.

Here is an example of a machine table, which comes from Haugeland (1985: p. 139);

Internal State of The Head
1 2 3 4 5 6 7
Symbol | Y -L1 -L1 YL3 YL4 YRS YR6 -R7
on - -L1 YR2 HALT YRS YL3 AL3 YR6
Tape 1 1L2 AR2 AL3 1L7 ARS AR6 1R7
Al 1L1 YR6 1L4 114 1RS 1R6 -R2
Table 2-1

Example of a Turing Machine Table
This machine table describes a Turing machine which can be in seven distinct states and
has a vocabulary of just four items (Y, -, 1 and A). Each cell in the machine table
specifies precisely the consequent actions of the head in terms of what it should write

onto the tape, the direction which it should move along the tape, and the next internal

state to adopt.?

Consider for example, what would happen if the machine with the above table were in
state 3 and the head was over an "A" on the tape. Under these circumstances, the head
would execute the command "1L4". That is to say, the head would write a "1" on the
tape, move one square to the left and adopt intemal state 4. The response of the machine

to every possible situation (given the finite vocabulary and number of internal states) is

8 As a matter of fact, a table of this kind is only one particular way of specifying the internal states of the
machine. All that is required is that whatever plays the role of the head in the machine be equivalent to

some finite state automaton.
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determined by (and predictable from) the machine table. It is also important to note that
(for a Turing machine with the machine table illustrated above) if the machine is in
internal state 3 and the symbol on the tape beneath the head is a "-", then the instruction
to the machine is "HALT". This special instruction is necessary in order to stop the

machine when it has completed executing a particular routine.

It is perhaps worth pausing briefly to wonder why the thesis that ‘cognition is
computational’ might be thought to be even remotely plausible at all. The answer to this
question comes in part from certain facts originally shown to be true of Turing machines
(and equivalent devices). Turing (1937) proved that there is a special class of Turing
machines, which are known as ‘Universal Turing Machines' which can simulate any other
Turing machine.” When this fact is combined with what is known as the Church-Turing
thesis, it serves to build a (potential) link between cognition and computation. One
formulation of the Church-Turing thesis (due to Minsky 1963: p. 108) states that,

Any process which could naturally be called an effective procedure can be

realized by a Turing machine.
Now, assuming that at least some cognitive processes of biological agents can be
described as ‘effective procedures’, it follows that a universal Turing machine can realize
them. Moreover, there do seem to be some cognitive processes of biological agents which
can be described as ‘effective procedures’. For example, effective procedures for

mathematical operations such as addition or multiplication can be so given. Thus, it is for

9 As a matter of fact, the machine table illustrated is a machine table for one of the simplest universal
Turing machines. If this machine table is supplied with a tape of infinite length, then the resulting machine
would be 'universal' in Turing's (1937) sense. For further details see Haugeland (1985: p. 139).
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these reasons that it is supposed that Turing machines can provide a link between

computational devices and cognitive abilities.

Strictly speaking, Turing machines are mathematical objects. However, this presents
something of a problem for the analogy between Turing machines and minds. If the
metaphor of the CCTM is supposed to be between real minds and an abstract,
mathematical object, then this is either a very poor one (as abstract items and ‘embodied’
items have very few properties in common), or it is not really a case of a metaphor at all.
In this latter case, rather than being a true metaphor, it would be something akin to a
scientific hypothesis, whereby the Turing machine is taken as a ‘model’ of the mind. In
order for the CCTM to be based upon a proper metaphor, the metaphor would have to
hold between minds and actual (or ‘instantiated’) Turing machines. This is a point
seldom noted in the literature on the computational metaphor (see Boden 1981), although
it makes a difference when it comes to the way that the CCTM is understood (especially

with respect to property (1), below).

Both Turing machines and minds, as conceived under the CCTM, are supposed to share a
number of properties. I will list and discuss each of these properties in turn. Turing

machines and minds share the property of having:

(1) A finite set of discrete tokens. !0
In a Turing machine, such as the one illustrated above, just one token can be contained

within each square of the machine tape. If a Turing machine is considered as a

10 It is common for these tokens to be simply called 'symbols’. However, I prefer the term ‘tokens' as it is
more neutral.
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mathematical entity, then by definition, these tokens are discrete from one another. It is
only in the case of embodied Turing machines that this becomes an issue, as it is
necessary that the machine’s head actually be able to distinguish tokens from one another.
The number of basic tokens (and the number of internal states) must be finite, as there has
to be a row of the machine table which specifies what the machine will do when it reads
each token, for each of the possible states of the machine head. Of course, this does not
preclude complex strings of tokens being constructed from the set of more basic ones.
Note also that there are no in principle constraints upon the kinds of things which may act
as tokens. The only condition which needs to be satisfied is that the tokens are

distinguishable from one another by the mechanism of the Turing machine.

The CCTM as traditionally interpreted, also supposes that Turing machines and minds

share:

(2) A capacity to store and retrieve sequences of tokens.
In a Turing machine, the tape provides a means of storing strings of tokens from the
Turing machine's finite vocabulary. The tape also provides a means by which tokens can
be retrieved after storage. These properties are important to the functioning of Turing
machines, as it is the tape alone (or whatever acts as what Turing (1950) calls the 'store")

which enables such machines to have the ability to store information over time.

There are reasons to believe that cognitive agents have properties which are at least
analogous to those of Turing machines in this respect. It certainly appears that biological

cognitive agents have an ability to store information (i.e. have memories). Likewise,
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information can be stored in the sequences of tokens upon the tape of a Turing machine.
Moreover, Turing (1950: p. 437) explicitly equates the store of a computational device
with the memory of human agents. However, although the analogy is appealing in some
respects, there are also some significant differences between Turing machines and human
beings. For example, there is a good deal of empirical evidence which suggests that
human memory is divided into short and long term storage components (See Best 1986:
pp. 111-220), as well as sub-components which handle different types of information. No
such mechanism are to be found in most common computational functional architectures.
This suggests that although Turing machines and minds may share the property of being
able to store and retrieve tokens (and thereby information), no inferences can be directly
drawn about how this is achieved in each case, so this is a point at which the analogy

between minds and machines is a little strained.

The third property which the CCTM supposes is shared by both Turing machines and

cognitive agents is:

(3) A capacity to perform a determinate set of precise and exceptionless
operations upon tokens.

The operations that a particular Turing machine performs are exceptionless, determinate
and predictable. This is because they apply in every case that a particular machine is in,

or subject to, a particular input token/head state combination.

Although any particular Turing machine's table of operations is necessarily finite, these

operations may be utilized to compute complex algorithms by the appropriate strings of
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symbols being placed upon the machine’s tape. Thus, from a finite set of resources, in
terms of head states, tokens and operations, considerable power can be gained, with
respect to the algorithms which can be computed. Indeed, it is the capacity of Turing
machines to do just this, which enables them to compute any particular computable
algorithm, when supplied with the appropriate machine table, amount of tape and initial

starting conditions (i.e. tokens upon the tape).

These three properties have a number of consequences which also have been influential
upon the CCTM. For example, given that the tokens of (1) are located in the tape, and
that the operations of (3) are located in the machine head, it follows that Turing machines
support a sharp and principled distinction between the tokens involved in computation
and the operations which manipulate those tokens. Thus, a further property of Turing
machines is that they have:
(4) A capacity to support a principled distinction between tokens
and operations which manipulate those tokens.
Moreover, this property is often believed to be important to the CCTM (see Cummins'

1989 formulation, quoted above).

Another property which is important for the CCTM is that Turing machines have a
capacity to place tokens adjacent to one another on the tape, so that they form complex or
compound strings, composed out of the individual tokens which have operations defined
for them in the machine table. Notice though, that there is a difference between this

capacity and the previous ones discussed. Turing machines just operate upon individual
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tokens.!! Although the results of successive operations may be complex strings of tokens
on the tape, it requires some external observer to notice this complexity. So in some
sense, this capacity is something like a Lockean ‘secondary property’ of a Turing
machine. Nonetheless, this property is important for the CCTM. The reason that this is
important is that it provides a means by which strings of arbitrary length can arise upon
the tape of a Turing machine, even though a Turing machine has only finite resources in
terms of the tokens which have operations defined for them in the machine table (cf.
Property (3) above). A closely related ‘secondary property’ of strings of tokens on a
Turing machine tape is that they can have structural complexity.!2 Turing machines, then,

have:

(5) A capacity to construct structurally complex strings of tokens.
Having this property guarantees that Turing machines can be interpreted as computing
algorithms which operate upon structurally complex strings of tokens. The reason this is
of significance to the CCTM is that human beings appear to have a analogous capacities.
Consider the case of language. In a language the individual words of the language are the
tokens and strings of words (i.e. phrases and sentences) and have structural complexity,
due to the grammar of the language. Human beings can construct structurally complex
strings of linguistic tokens (i.e. grammatical phrases and sentences), thus human beings

too can be interpreted as sharing this ability with Turing machines.

U1 Strictly speaking, this is not true of all possible Turing machines, as Turing machines can have more
than one head (see Hopcroft and Ullman 1979: pp. 154-163). However, it is true of the prototypical Turing
machine, which I am concerned with here.

12 An interesting twist which arises with respect to the question of complex tokens, as they have been
treated in the recent literature, is an appeal to the principle that ‘in order to token a complex token, it is
necessary to token its atomic parts’ (Fodor and Pylyshyn 1988). Strictly speaking, this principle is not
required by the basic version of the CCTM, but instead might be thought of as being an additional, eighth,
condition of the CCTM.
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The fact that Turing machines can be interpreted as producing structurally complex
strings of tokens, is closely related to yet another secondary property of Turing machines
which is also important to the CCTM. This property is:
(6) A capacity to differentially perform operations upon structurally

complex strings of tokens, dependent upon the order of the tokens in

the string.
In some ways, the fact that this property can be ascribed to Turing machines is not
especially surprising, given that the precise nature of each individual operation is a
function of the token on the tape beneath the machine head and the state of the machine
head. However, the fact that the states of the machine's head are determined by the
previous operations performed means that the same set of tokens in two strings can, by

being ordered differently, produce very different results. It is the order of the tokens in the

string which makes the crucial difference.

Property (6) of Turing machines is closely related to one of the most distinctive features
of the CCTM. The CCTM (for example Cummins's 1989 version, quoted above) makes
an appeal to the notion of ‘formality’ (or often ‘syntax’). The ‘formality condition’
(Fodor 1980: p. 63) is the requirement that,

...mental processes have access only to formal (nonsemantic) properties of

the mental representations over which they are defined.
A formal system is a system which consists of a specified set of tokens and rules for
operating upon those tokens (see Martin 1991: p. 90). Fodor (at least in 1980, p. 65),

seems to endorse this view, as is evidenced by his comment that,
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[ take it that computational processes are...formal because they apply to
representations in virtue of (roughly) the syntax of the representations.

Turing machines are clearly interpretable as being formal in this sense, at least with
respect to the tokens for which rules are defined in the machine table. The fact which
makes plausible the attribution of property (6), namely that previous operations have an
influence upon subsequent operations, also means that Turing machines can be

interpreted as satisfying a formality condition for structurally complex strings of tokens.

A further significant, though secondary, property which can be ascribed to Turing
machines (and which is commonly incorporated into the CCTM), is that the strings of
tokens upon the tape of a Turing machine (under the appropriate circumstances) can be
interpreted as ‘standing for’ various other things, including mental entities of various
kinds. Fodor (1980: p. 65) is fairly explicit about the importance of this fact when he

notes that,

.[W]e will think of the mind as carrying out whatever symbol
manipulations are constitutive of the hypothesized computational
processes. To a first approximation, we may thus construe mental
operations as pretty directly analogous to those of a Turing machine. There
is, for example, a working memory (corresponding to a tape) and there are
capacities for scanning and altering the contents of memory
(corresponding to the operations of reading and writing to the tape)....If
mental processes are formal, they have access only to the formal properties
of such representations...13

Interpretability then is the crucial property of Turing machines, which makes the
analogical link between such machines and minds. Furthermore, the property of Turing

machines, that they can:

13 Notice Fodor’s use of phrases such as “..we will think of the mind...” and terms like “...construe...”.
This I take to be indicative of the fact that the properties are ‘secondary’.
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(7) support principled interpretations
is also important for the CCTM, at least as conceived of by Fodor (1980). Although it is
debatable whether or not mental representations themselves really are such that they are
the kind of items which can be subject to ‘principled interpretations’, a commitment to
the CCTM brings along with it a presumption that mental representations are also
interpretable in the relevant manner (see Haugeland 1985: p. 100). This is a situation
where the analogy between minds and machines attributes properties of machines to

minds. 4

It is particularly important (at least in the case of Turing machines) that interpretations be
‘principled’. This is because without this additional condition, the point becomes trivial.
In the case of a Turing machine, an interpretation specifies a set of mapping relations
between strings of tokens on the Turing machine tape, and some other set of states (such
as mental states). An interpretation is principled just in case it provides a coherent
mapping from the strings of tokens to the other set of states.!5 It is worth considering an
example of interpreted tokens in a Turing machine, as this will serve to clarify the idea
and ward off some possible confusions. However, before doing this, a few words are in

order about the source of ‘interpretation’.

Although a discussion of interpretation is commonly found in associated with discussions

of the CCTM, by an large, these are far from satisfactory. This is because, it is unclear

14 There are a number of complex issues which arise here. For a detailed discussion and an argument for
roughly the stance I am taking, see Egan (1995).

15 Although coherence is something of a minimal requirement for an interpretation to be principled, it
should suffice for current purposes. For a more detailed discussion of the issues which arise under the
heading of interpretation, see Haugeland (1985: pp. 93-112) or Cummins (1989: pp. 102-113).
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where interpretations come from. For example, Haugeland (1985: pp. 87-123) discusses
interpretation at length, without being able to resolve this question. Instead he simply
refers to it as “the mystery of original meaning”. Similarly, Cummins’ (1989) discussion
of the topic is, by his own admission, incomplete.!6 Given these facts, I will not even try
and develop an answer to the ‘mystery of original meaning’, here. However, given that
the clearest case is one in which some observer attributes an interpretation (i.e. the
interpretation is a secondary property) to a Turing machine, this is the kind of case I will

consider. [ will attempt to remain neutral with respect to other possibilities.

Consider the maze illustrated below in figure 2-2. One could imagine a Turing machine
which might be interpreted in a manner such that, when provided with strings of tokens
which described a location within the maze, would output another string of tokens which

would describe a route from that location to the exit of the maze.

Entrance

Figure 2-2

16 Even Pylyshyn (1984: pp. 40-48), who is a literalist about cognition being information processing (as
opposed to taking this as a metaphor), has some difficulties with the issue of interpretation.
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Under these conditions, the initial string of tokens would just be interpreted as ‘current
location within the maze’ and the string of tokens on the tape after the Turing machine
had finished all its operations would be interpreted as ‘route out of the maze from current

location’.

It is important to emphasize that the interpretation, as described, would be imposed upon
Turing machines. In an example such as this, the interpretation is not something which
are intrinsic to Turing machines itself (although the capacity to support interpretations
may well be). A consequence of this is that, subject to certain conditions (such as the
coherence criterion), there is considerable latitude in possible interpretations of token

strings of Turing machines.

Suppose for example a particular Turing machine had operations defined for 4 tokens -
'N', 'S', 'E', and "W’ in its machine table. Suppose further that the Turing machine was set
up such that it computed the maze problem, in a manner such that each token could be
interpreted as being a direction of movement from a branching point in the maze. So, for
example, under this interpretation the position X could be specified by the string of
tokens N N E E S'. If this string of tokens was to be the input to such a Turing machine,

the output would be 'S EE'.

In this case, the interpretation takes place at the level of individual tokens. Some theorists
(for example Haugeland 1985: p. 91) have assumed that interpretation must take place at
this level, however there is no reason why this has to be the case. Indeed, it is more

common for interpretations to be specified over complex strings of tokens. The point here
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is that there is a choice about the level at which the interpretation is specified.!” It is
certainly not essential that an interpretation be specified for each of the individual
symbols for which operations are defined within the machine table.!8 All that really
matters is that strings of tokens can be provided with principled interpretations. However,
once this is established, there is nothing to prevent an interpretation of strings of tokens
which maps (subject to the coherence criterion) strings of tokens onto mental states. It is
the interpretability of Turing machine tokens then (in addition to properties (5) and (6)),
which provides the link between the formality condition for mental states and the strings

of tokens on a Turing machine tape, under the appropriate circumstances.

The seven properties outlined here lie at the heart of the metaphor which is made between
Turing machines (or other computational devices) and the mind (or cognition) and form
the core of the CCTM. The CCTM supposes, for the reasons described, that because
computational devices such as Turing machines have these properties, then so too do
minds. Of course, the analogy between minds and machines if far from perfect, or
precise. There is a degree of slippage (as I illustrated whilst discussing property (2), for
example), depending upon precisely the kind of computational device under
consideration and the exact properties of minds which are taken to be relevant. The

imprecision of the analogy undoubtedly accounts for the variations in the precise

17 Consider the case of the English language. In written form, English is just presented as a string of
tokens. However, the interpretation of these strings of tokens occurs at the level of individual words. In
principle (provided that the coherence criterion could be satisfied), there is no reason why an interpretation
could not be specified at the level of the individual letter, under the appropriate conditions. The situation is
similar with the tokens on a Turing machine tape.

18 Indeed, there are instances of Turing machines where doing this may present very real difficulties.
Consider the case of a Turing machine with multiple heads and tapes, discussed by Hopcroft and Ullman
(1979: pp. 161-163), or Turing machines with multiple tracks upon its tape (Hopcroft and Ullman 1979:
pp. 154-155).
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formulations of the CCTM which have been proposed. However, if it is correct that these
seven properties form the core of the position, then we will be able to use these properties
to asses the degree to which allegedly non-traditional counter-proposals to the CCTM
really differ from the position, and in which respects. In particular, the properties of
‘systematicity’ and “‘compositionality’, which arise because of these seven properties, will
turn out to be crucial to assessing and evaluating proposed altematives to the CCTM.

However, discussion of these properties will be deferred until later (Chapter VI).

One significant alleged alternative to the CCTM is called ‘connectionism’. The
consideration of connectionist systems in this respect will be the main focus of this
dissertation. The purpose of the next chapter then, will be to introduce connectionist
systems, so as to begin the process of assessing the ways in which such systems differ

from those presupposed by the CCTM.
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m
What is Connectionism?

Introduction

In the previous chapter I introduced the Classical Computational Theory of Mind
(CCTM). Although this position is well established in the philosophical literature, it has
not been without its critics. Philosophers, such as Searle (1980) and Dreyfus (1991), have
argued on a number of grounds that this position is deeply flawed. I want to begin here by
briefly discussing some of these objections. These discussions will provide a natural
bridge between the material discussed in the last chapter and the main topic of this

chapter, connectionist systems.

Philosophical Objections to The Classical Computational Theory of Mind

Probably the earliest well known criticism of the CCTM came from Hubert Dreyfus. In
1965 Dreyfus wrote in a report for the RAND Corporation that "...work in Al resembled
alchemy more than science..." (Dreyfus, 1991: p. 2). Right up to the current day, Dreyfus
has remained a trenchant critic of the research program. His four best known objections
which appear in their most recent form in his 1991 book, What Computers Still Cannot

Do.!

Dreyfus argues that there are four assumptions which are foundational to the artificial
Intelligence research program. As at least three of these assumptions are shared with (or

have close parallels to aspects of) the CCTM, they are important in the current context,

1 This book is the third edition of Dreyfus’ What Computers Cannot Do, which was originally published in
1972. The third edition contains a substantial volume of material not included in earlier editions. All
references to this work will be to this latest version.
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because Dreyfus argues that all of these assumptions are false. Dreyfus (1991: p- 156)
describes the four objectionable assumptions as follows;
-.the assumption that man functions like a general-purpose symbol-
manipulating device [i.e. like a Turing machine] amounts to
1. A biological assumption that on some level of operation—-usually
supposed to be that of the neurons--the brain processes information in
discrete operations by way of some biological equivalent of on/off
switches.
2. A psychological assumption that the mind can be viewed as a device
operating on bits of information according to formal rules....
3. An epistemological assumption that all knowledge can be formalized,...
4. ...[T]he ontological assumption that what there is, is a set of facts each
logically independent of all others.
Strictly speaking, the biological assumption amounts to nothing more than an empirically
testable hypothesis about brain function. As such, this assumption is of no direct
relevance to the CCTM. For this reason I will not consider it here.2 The other three

assumptions on Dreyfus' list though are of more import.

The psychological assumption is clearly relevant to the CCTM, as Turing machine tables
are just made up of formal rules which operate upon the ‘bits of information' encoded
upon the machine's tape (Cf. properties (1), (2), (3), (4) and (6) discussed in the previous
chapter). According to Dreyfus though this assumption should also be rejected. Dreyfus
has no objection, in principle, to the psychological assumption as a hypothesis. What he
takes to be problematic is when the assumption is adopted a priori. Unfortunately, he
believes, these two statuses of the assumption have been confused in the literature. If the

psychological assumption is treated as an empirically testable hypothesis, then it runs into

2 Dreyfus believes this assumption is false, on the grounds that it is not supported by the neurological
evidence. Of course there is always the possibility that as research into the brain advances, this could
change.
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problems due to the fact that the empirical results of computational simulations are, in
Dreyfus' (1991: p. 187) opinion
-.riddled with unexplained exceptions, and unable to simulate higher-

order processes such as zeroing in and essential/inessential
discrimination....

In contrast, the psychological assumption is untenable as an a priori truth, as there are no
valid a priori arguments which can be given for the assumption. Thus, Dreyfus urges that

the psychological assumption cannot be justified and consequently should be abandoned.

Crucial to Dreyfus’ objection here is his assessment of the success of the CCTM inspired
research program. Most cognitive scientists would not even attempt to argue that this
assumption is an a priori truth, but rather take it as a working hypothesis, which may or
may not prove to be fruitful. However, assessments such as Dreyfus’ here are notoriously
unreliable. One need only recall Kant’s assessment that logic was a completed science, or
the case of the U.S. President who wanted to shut down the patent office, on the grounds
that he believed that everything which could be invented already had been, to realize the
dangers inherent in such assessments. The other significant point here is that Dreyfus’
assessment is defeasible. As such, his objection does not provide a knock down argument
against the continuation of a research program based upon the CCTM. Thus his
conclusion, that research programs, such as that based upon the CCTM, which embrace
the psychological assumption should be abandoned, does not necessarily follow. The
alternative conclusion, that such research programs should be pursued with greater vigor,

is also, strictly speaking, compatible with Dreyfus’ premises.
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The link between what Dreyfus terms the “epistemological assumption’ and the CCTM is,
perhaps, not immediately apparent. However, the connection becomes more obvious
when Dreyfus (1991: p. 190) suggests that the assumption actually involves the two sub-
claims,

(a) that all nonarbitary behavior can be formalized, and
(b) that the formalism can be used to reproduce the behavior in question.

There are many ways in which the epistemological assumption, seen in this light, is
similar to the psychological assumption, though weaker. Whereas those who accept the
psychological assumption suppose that the very same rules are used by biological
cognitive agents as those used in the formalization of behavior, those who accept just the
epistemological assumption are only committed to the claim that there is some set of rules
which can be used to formalize behavior and which are sufficient to produce the behavior
in question. The link between this assumption and the CCTM is consequently in many

ways similar to that between the CCTM and the psychological assumption. 3

Dreyfus argues against both of the constitutive sub-claims of the epistemological
assumption. He suggests that sub-claim (a) amounts to an unjustified generalization from
physical science. Sub-claim (b), he believes, is not only false, but also untenable. This is
because, on Dreyfus' analysis, the behavior of natural cognitive systems is such that
formalisms of the relevant type cannot reproduce the required behaviors, as to do so
would require a non-terminating regress of rules. As a consequence, Dreyfus urges the

rejection of the epistemological assumption too.

3 It is instructive to compare Dreyfus' distinction between the two assumptions and Pylyshyn's (1984)
distinction between strong and weakly equivalent systems.
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The ontological assumption is fundamental to research undertaken within the scope of the

CCTM because, in Dreyfus' (1990: p. 206) words,

..the data with which the computer must operate..must be discrete,
explicit, and determinate; otherwise, it will not be the sort of information
which can be given to the computer so as to be processed by rule.

The tokens of Turing machines (the ‘data’ upon which they operate) have all these

properties (Cf. properties (1), (2), (3) of the previous chapter).

Dreyfus (1990: pp. 211-212) believes that one reason that the ontological assumption is
so readily accepted, is because this idea has a very long philosophical tradition. However,
he goes on to argue that the ontological assumption is false. In making this argument he
cites the difficulties which computational systems have run into when dealing with very
large databases and the so-called 'problem of commonsense® as evidence for the
falsehood of the assumption. In Dreyfus' view, there just is no logically independent list
of objects and facts about each object, and consequently the ontological assumption, like

the other assumptions, should be rejected.

The importance of Dreyfus' work in the current context lies not so much in his objections
to aspects of the CCTM, but rather in the strategy he seems to favor to avoid these
objections. Dreyfus believes that the way to avoid the problematic assumptions is to
employ a connectionist approach to understanding the mind. In his (1991: p. xiv) opinion,

...the neural-network modelers had a much more plausible answer to the
question, If not symbols and rules, what else?

4 See Baumgartner and Payr (1995: pp. 17-18) for a brief description of this problem.
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Dreyfus is none the less cautious about networks. Although he sees a great deal of
potential in the network based approach, he (1991: pp. xv-xvi) maintains that it has yet to
be seen whether the full potential will be actualized. Nonetheless, in a recent interview
(Baumgartner and Payr 1995: p. 82) he made the following prediction;

I predict that within ten years there won't be any cognitivism [Dreyfus’

term for the traditional view of the CCTM] or symbolic Artificial

Intelligence around and the researchers will have turned to neural network
simulation...

Dreyfus is not alone in believing that network models provide a radical, and perhaps
more tenable, way of understanding the mind than the CCTM. In recent years, a number
of philosophers have thrown their support behind the connectionist research program for
a variety of reasons. Amongst these philosophers is the other trenchant critic of the
computational theory of mind, John Searle. Searle (1992: pp. 246-247) defends
connectionism (albeit in a limited way) as an alternative to the CCTM. He claims that,
Amongst their other merits, at least some connectionist models show how
a system might convert a meaningful input into a meaningful output
without any rules, principles, inferences, or other sorts of meaningful
phenomena in between. This is not to say that existing connectionist
models are correct--perhaps they are all wrong. But it is to say that they

are not all obviously false or incoherent in the way that the traditional
cognitivist models...are.5

So, if Searle and Dreyfus are correct, then network based (or ‘connectionist’) models
provide a basis for an alternative to the traditional CCTM. However, what is less clear is
exactly in which respects connectionist models provide such an altemnative. Is it the case
that network models have none of the properties associated with the CCTM, as discussed

in the last chapter, or do they only differ with respect to some properties? If the latter is

5 In a recent interview (Baumgartner and Payr, 1995: pp. 203-213) Searle also affirms his optimism for the
network research program.
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the case, then which properties do network models have in common with the CCTM? To
begin to answer such questions, I will first describe the features of one class of network

models.

What Is Connectionism?

Connectionism is a style of modeling based upon networks of interconnected simple
processing devices. This style of modeling goes by a number of other names too.
Connectionist models are also sometimes referred to as Parallel Distributed Processing'
(or PDP for short) models or networks.® Connectionist systems are also sometimes
referred to as 'meural networks' (abbreviated to NNs) or 'artificial neural networks'
(abbreviated to ANNs). Although there may be some rhetorical appeal to this neural
nomenclature, it is in fact misleading as connectionist networks are commonly
significantly dissimilar to neurological systems. For this reason, I will avoid using this
terminology, other than in direct quotations. Instead, I will follow the practice I have

adopted above and use ‘connectionist’ as my primary term for systems of this kind.

The basic components of a connectionist system are as follows;

1) A set of processing units
2) A set of modifiable connections between units
3) A leamning procedure (optional)

6 Although in current usage, the terms 'connectionist' and PDP' have effectively become synonyms, the
two terms once had different meanings. Originally, so-called 'Connectionist models were generally
associated with Ballard's work at the University of Rochester. So-called 'PDP' models, on the other hand,
were associated with the PDP Research Group of San Diego (for more details on the etymology of these
terms, see Smolensky 1991: p. 225, fn. 5). I will follow what is now current practice and use the two terms

as synonyms.
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I will describe each of these components in turn. Readers who require further technical
details should consult the general framework for connectionist systems described by

Rumelhart, Hinton and McClelland (1987).

Processing Units
Processing units are the basic building blocks from which connectionist systems are
constructed. These units are responsible for performing the processing which goes on
within a connectionist network. The precise details of the processing which goes on
within a particular unit depends upon the functional subcomponents of the unit. There are
three crucial subcomponents. These are,

a) The net’ input function

b) The activation function

c) The output function

The various components of a processing unit can be represented as follows,

iz T~ !
-. Input -
-. Output
T Function Function °
.- - Activation | = Koooccccocoooeoo-es
LT #ike) Function |°®=9% e .
. a ()= F(net;) - o
i o
Inputs to Unit Processing Unit Outputs From Unit

Figure 3-1

7 The term 'net’ here is not meant as an abbreviation of the term 'metwork’. The intended sense is that of
'net’ as opposed to 'gross’.
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The net input function of a processing unit determines the total signal that a particular
unit receives as a function of all the inputs to the network at time z. The net input function
takes as input the signal which a unit receives from all sources (i;_p,), including the other
units which it is connected to. It is often the case that the net input function of a unit is
relatively simple. Commonly, the net input function for a unit will just sum the of the

input signals the unit receives at a particular time (f).

The activation function of a particular unit determines the internal activity of the unit,
depending upon the net input (as determined by the net input function) that the unit
receives. There are many different kinds of activation functions which particular units can
employ. The 'type’ of a particular unit is determined by its activation function. Perhaps

the simplest kind of activation function is illustrated below,

| Step Activation Function
Level of
Activation
0
- 0 +
Net Input
Figure 3-2

Activation functions such as this act rather like switches and are sometimes called 'step

functions'. If the net input to a unit employing such an activation function is greater than
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some threshold value, 6, the unit becomes fully active.® If the net input is below this
level, the processing unit is totally inactive. The activation function, a;, for such a unit, /,

can be expressed more formally as follows;

0ifi, <
1if§ >4

k]
|

where ; is the net input received by the unit at time ¢ and g is the threshold value for unit
J-

Activation functions of this kind were used in the very earliest days of network research.
Unfortunately though they are subject to certain significant limitations (see Minsky &

Papert 1968). In particular, it is not possible to train networks which employ this kind of

unit arranged into more than two layers.

Currently, within the domain of trainable networks, by far the most common kind of
processing unit employed by connectionists is what Ballard (1986) has called an
'integration device'. The logistic function described by Rumethart et al (1986a: pp. 324-
325), for example, is an instance of an integration device. Integration devices have a
sigmoidal activation function, similar to the one illustrated below, and can be described

as a continuous approximation of a step function.

8 Note, the activation levels need not be 0 and 1. These values are employed merely for illustrative
purposes.
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Sigmoidal Activation Function
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Figure 3-3
The activation function, a;, for a unit, j, of this variety, receiving net input i; is;

1
1 + e—ll+9,

a =
Integration devices include in their activation function something known as 'bias'. Bias
serves to alter the level of input to a unit which is needed for that unit to become active
and is therefore analogous to the threshold of a step function. In more technical terms,
bias serves to translate the activation function along an axis representing net input,

thereby altering the location of the activation function in net input space. The 6, term in

the logistic equation is the bias term of that activation function.

One important feature of sigmoidal activation functions is that they be differentiable. The
reason this is important is that it make it possible to train networks with more than two
layers of processing units, using powerful learning rules such as the generalized delta
rule, described by Rumelhart, Hinton and Williams (1986a: pp. 322-328). This ability to

train networks with multiple layers has greatly increased the power of networks.
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Although integration device units are arguably the most commonly employed unit type in
trainable networks at the current time, other activation functions have also been explored.
Recently, Dawson and Schopflocher (1992) have described a kind of processing unit
which they call, following Ballard's (1986) terminology, a 'value unit' . Value units

employ a Gaussian activation function, such as the one below,

Gaussian Activation Function

Level of
Activation

Net Input

Figure 34

The activation function, a;, for a unit, /, of this variety, receiving net input i; is;

a;= ep|-ni, ‘“1)2]
As the net input, i, to a value unit increases, the level of activation of the unit, a;
increases, but only up to a certain point, 4. When i; = u, the activation a; is maximized
and has a value of 1. If the unit receives net input greater than H;, the activation of the unit
begins to decline again, down to 0. As a consequence of having this kind of activation
function, value units will only generate strong activation for a narrow range of net inputs.
Value units, like integration devices, can be used to construct trainable multilayered

networks.
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A unit in a connectionist network typically sends a signal to other units in the network or
to outside the network. The signal that a unit sends out is determined by the outpur
function. The output function depends upon the state of activation of the unit. It is
common practice, at the current time, that the output function of a particular unit is such
that it just sends out a signal equivalent to its activation value. However, there is no

theoretical reason why this must necessarily be the case.

Maodifiable Connections

In order for a particular connectionist network to process information, the units within the
network need to be connected together. It is via these connections that the units
communicate with one another. The connections within a network are usually 'weighted'.
The weight of a connection determines the amount of the signal input into the connection
which will be passed between units. Connection weights (sometimes also called
‘connection strengths’) are positive or negative real numerical values. The amount of input
a particular connection supplies to a unit to which it is connected is the value of the result

of the output function of the sending unit, multiplied by the weight of the connection.

Input

Activation Wi from Unit i
= =a)w
= afy) Weighted Connection { v

. Processing

Processing o s

Unit i Unit j
Figure 3-§

In principle, there is no limit to the number or pattern of connections which a particular

unit may have. Units can have weighted connections with themselves and there can even
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be loops or cycles of connections. However, for current purposes there is no need to
explore such complexities. Instead, attention will be limited to simple three layered

systems like the one illustrated below.
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If particular processing units within a system can receive inputs from sources external to
the network itself, then these units are usually called imput unmits. Altematively, if
particular processing units can send signals outside the network itself, then these units are
usually called output units. Finally, processing units which can only directly
communicate with other units within the network (i.e. units which have no direct inputs
or outputs which are external to the network) are usually called hidden units. Layers of
hidden units are not an essential feature of networks, although many networks require a
single layer of hidden units to solve particular problems. It is also the case that there is no

reason why a network should just have a single layer of hidden units. For example, a
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network described by Bechtel and Abrahamsen (1991: p. 169) has two layers of hidden

units.

Learning Rules

A learning rule is an algorithm which can be used to make changes to strengths of the
weights of the connections between processing units. Whereas all connectionist systems
have processing units and patterns of connections between the units, not all systems have
learning rules. Some networks (e.g. the Jets and Sharks Interactive Activation and
Competition network, described in McClelland and Rumelhart (1988)) are built by hand
(or 'hand-coded"). Hand-coded networks have the weights of the connections between the
processing units set manually by the network's builder. However, in most connectionist
networks a leaming rule of some kind is employed. In this dissertation I will be

concerned primarily with networks that employ learning rules.

A learning rule is used to modify the connection weights of a network so as (hopefully) to
make the network better able to produce the appropriate response for a given set of
inputs. Networks which use learning rules have to undergo training, in order for the
learning rule to have an opportunity to set the connection weights. Training usually
consists of the network being presented with patterns which represent the input stimuli at

their input layer. It is common for connection weights to be set randomly prior to

training.

For example, consider one of the most popular leaming rules for connectionist networks,

Rumelhart, Hinton and McClelland’s (1986) generalized delta rule. When using this rule,
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the network is shown example patterns from a training set. The purpose of the
generalized delta rule is to modify the network’s connection weights in such a way that

the network generates a desired response to each pattern in the training set.

More specifically, with the generalized delta rule learning proceeds by presenting one of
the patterns from the training set to the network’s input layer. This causes a signal to be
sent to the hidden layer(s), which in turn results in a signal being sent to the output layer.
In the generalized delta rule, the actual activation values of each output unit are compared
to the activation values that are desired for the input pattern. The error for each output
unit is the difference between its actual and desired activation. The generalized delta rule
uses this error term to modify the weights of the connections that are directly attached to
the output units. Error is then sent through these modified weights as a signal to the
hidden units, which use this signal to compute their own error. The error computed at this
stage is then used to modify the connection weights between the input units and the
hidden units. In every case, when a weight is changed, the generalized delta rule

guarantees that this change will reduce the network’s error to the current input pattern.

Usually, the learning rule only makes small changes to the connections weights between
the layers each time it is applied. As a result training often requires numerous
presentations of the set of input patterns. By the repeated presentation of the training set
and application of the learning rule, networks can learn to produce the correct responses
to the set of inputs which make up the training set. Learning rules thus offer a means of
producing networks with input/output mappings appropriate to particular tasks or

problems. Each presentation of the set of input patterns and output patterns is known as
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an ‘epoch’ or a ‘sweep’. When the network produces an output for each input pattern
which is close enough (as determined by the experimenter) to the desired output for each

pattern, training stops and the network is said to have ‘converged’.

Conclusion

In the previous chapter the CCTM, which is based upon devices such as Turing machines,
was described. Intuitively, it seems obvious that connectionist networks, as described
here, are very different from Turing machines. For example, whereas the heads of Turing
machines process tokens on the tape one at a time, connectionist systems employ many
simple processors which can operate in parallel. Similarly, the tokens upon which a
Turing machine operates are located upon the machine’s tape and the operations are
specified separately in the machine table, yet there does not seem to be any such obvious
analogous distinction in the case of connectionist networks. Reasons such as these,
provide some prima facie plausibility to the claim that connectionist networks might

provide the basis for an alternative conception, or interpretation, of the CCTM.

Indeed, a number of significant and strong claims have been made about connectionist
systems, with respect to the CCTM. For example, Schneider (1987) has argued that
connectionist research represents a 'paradigm shift’ (in the Kuhnian sense) away from the
CCTM for psychology. Similarly, Smolensky (1988: p. 3) has even claimed that,
[Connectionist models] may possibly even challenge the strong construal

of Church’s Thesis? as the claim that the class of well-defined
computations is exhausted by those of Turing machines.

9 This is the same thesis that [ have been referring to as the ‘Church-Turing Thesis'.
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Moreover, strong philosophical claims have been advanced, based upon connectionist
models. Smolensky (1988: p. 3) again provides us with a good example when he claims

that,

It is likely that connectionist models will offer the most significant
progress of the past several millennia on the mind/body problem.

Churchland P. M. (1990: p. 165) believes that similarities between the brain and
connectionist systems are sufficient for networks to "...give some real substance..." to the
eliminative materialist position in the philosophy of mind (see also Churchland P. M.

1989).

In the philosophical literature, connectionist models have been claimed to have particular
significance for representational issues. Clark (1989: p. 124) maintains that,
...the use of a PDP architecture opens up new and qualitatively different
avenues of searches and representations to those so far explored in

conventional Al.

Sterelny (1990: p. 168) introduces connectionism (although he ultimately rejects the

view) by noting that,

Connectionists offer a rival view [to the CCTM] of the architecture of the
mind, the nature of mental representation, and the nature of operations on
those representations.

In the context of his discussion of the CCTM, Cummins (1989: p. 157, fo. 6) highlights

the difference between the CCTM and connectionist inspired theories when he notes that,

Connectionists do not assume that the objects of computation are objects
of semantic interpretation.
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In the light of claims such as these, it is small wonder that both Dreyfus and Searle view

connectionism as a potential source of an alternative to the CCTM!

However, there are reasons to be cautious about accepting connectionism as a dramatic
altemative to the CCTM. In the next chapter, I will describe in more detail arguments for
distinguishing connectionism from the CCTM. But, I will also show that these arguments
are less impressive than they initially appear. Understanding the limitations on the claims
which have been made about connectionist systems is especially important for
philosophers. This is because philosophers are amongst those who are most likely to be
mislead by these claims, as by and large philosophers lack the technical background to
correctly disambiguate the claims. As a consequence, philosophers are most at risk of
taking these claims to be true in cases where they are not, and as a result inadvertently

including such claims as premises in their arguments.
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The Myths of Connectionism

Introduction

In the previous chapter, connectionist systems were introduced. Although the idea that
networks might offer an alternative to the traditional CTM has some prima facie
plausibility from the nature of such networks themselves and some broad philosophical
support, the exact reasons why networks might be thought to challenge the traditional

CTM have not been examined in detail

There are a number of reasons which have been given in the literature for the contention
that connectionist systems are not only substantially different from the kinds of systems
which are usually associated with the traditional CTM, but also, in a significant sense,
offer a better framework within which to model aspects of cognitive functioning. These
reasons, as often as not, depend upon claims about the properties of connectionist
systems. Unfortunately, it is often the case that the claims upon which these proffered
reasons rest do not stand up to close critical scrutiny and, at the very least, require very
careful qualification. These claims form what I call ‘The Myths of Connectionism’. The
goal of this chapter is to discuss several of the more significant and commonly
encountered connectionist myths, so as to clear the way for a more careful assessment of

the relationship between connectionist systems and the traditional CTM.

Before proceeding to the discussion of the first of these myths, it is worthwhile
introducing the term ‘GOFAI’. ‘GOFAI’ is term coined by Haugeland (1985: p. 112),

which is short for ‘Good Old Fashioned Artificial Intelligence’. GOFAI systems are,
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according to Hagueland’s usage of the term, systems based on the traditional conception
of the CTM (See Chapter 2 for details). The purpose of introducing this term is that it
provides a useful shorthand for the discussion of the relationship between connectionist

systems and systems of this (allegedly different) type.

Myth 1: ‘Connectionist systems are biologically plausible’.

One important series of related claims made by advocates of the connectionist approach
(such as McClelland, Rumelhart and Hinton (1987), Rumelhart (1989), for example) is
that, in a significant sense, connectionist architectures are considerably more brain-like
because they are more biologically plausible than GOFAI architectures. This myth is
often appealed to by both philosophical friends and foes of connectionism. For example
Sterelny (1990: p. 175) and Cummins (1989: p. 155), though neither of them are great

fans of the connectionist approach, both appeal to this myth.

It is the advocates of the connectionist approach though, who most frequently appeal to
this myth. Clark (1989: p. 4), for example, talks of "...the brain-like structure of
connectionist architectures." Similarly, Bechtel and Abrahamsen (1991: p. 17), in
describing the rise of the new connectionism, claim that "..network models were
attractive because they provided a neural-like architecture for cognitive modeling".
Perhaps the most explicit endorsement of this myth though, is due to Paul Churchland.
Churchland (1989: p. 160) introduces connectionist networks as follows,

The networks to be explored attempt to simulate natural neurons with

artificial units...Each unit receives input signals from other units via

"synaptic" connections...the "axonal" end branches from other units all
make connections directly to the "cell body" of the receiving unit.
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Churchland makes similar claims elsewhere too (see Churchland 1988: p. 156, for
example). Even Dennett (1991: p. 239) makes reference to "...'"connectionist' architectures
of neuron-like elements...". Given these examples, I hope it is clear that this claim is well

established in the philosophical literature.'

There are, in fact, two particular related claims which are frequently confused in the

literature. These are,

(a) Connectionist systems are biologically plausible, and

(b) Connectionist systems are more biologically plausible than GOFAI
architectures.

Although there may be some credibility to the second claim (b), it is the first claim (a)
which is, unequivocally, a myth. A careful comparison of the various components of a
connectionist system with the supposedly analogous components of the brain shows that
there is only the most minimal similarity between the biological and connectionist
systems. As, to some degree, claim (b) rests upon claim (a), these facts cast some doubt
on the plausibility of this claim too.

Processing Units

Let us begin by examining the claim that a connectionist processing unit is in some sense
similar to a biological neuron. For example, Rumelhart (1989: p. 134) has claimed that a

"...[connectionist ] processing unit [is] something close to an abstract neuron." This claim

' One immediate concern which might arise over the claims about the relationship between connectionist
networks is the question of why the biological plausibility (or otherwise) of particular systems, is relevant
to assessing the appropriateness of a particular class of systems as models of cognitive function. After all,
for the traditional CTM, when wedded to functionalism, this is not an issue (for a discussion of the reasons
why this is the case, see Sterelny 1990: pp. 1-6). I take it that this concern with what Pylyshyn (1984)
would call the ‘implementational level’ is a symptom of connectionists wishing to distance themselves
from standard positions.
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should arouse immediate suspicion, given the fact that, as Winlow (1990a: p- 1) notes "It
has always been very clear to neuroscientists that there is no such thing as a typical
neurone,...". There are, as a matter of fact many different types of neurons (see Kolb and
Whishaw (1990: p. 5) and deGroot and Chusid (1988: p. 5) for illustrations of some of
these types). Indeed, according to Churchland and Sejnowski (1994: pp. 43) there are
twelve different kinds of neurons in the neocortex alone. Given these facts, it seems
reasonable to ask, just which kind of neuron connectionist processing units are an
abstraction from. Connectionists though, as a rule, have little if anything to say on this

matter.

If the 'abstract neurons' employed within connectionist systems are supposed to capture
the significant features of the class of a/l neurons, then it is reasonable to ask how the set
of features selected were decided upon. Regrettably though, the selection of features and
functional properties employed in ‘abstract neurons' has yet to be justified or defended in
any detail. Thus, until some better account of the relationship between connectionist
processing units and actual biological neurons is forthcoming, it seems reasonable to treat
this claim about processing units with some skepticism. A bold unsubstantiated claim

will not suffice, where argument is required.

A related concem derives from the fact that many, if not most, connectionist systems
involve homogeneous processing units.2 This homogeneity does not reflect the
complexity of the biological situation. Getting (1989: p. 187) remarks that "No longer can

[biological] neural networks be viewed as the interconnection of many like elements....".

? A notable exception to this general rule can be found in Dawson and Schopflocher (1992: pp. 25-26).
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In fact, Churchland and Sejnowski (1994: p. 51) claim that, in the brain "[m]ost
connections are between, not within, cell classes.” If connectionist networks were to be
really biologically plausible, it is reasonable to expect them to reflect these facts about
biological systems. The discrepancy between the state of affairs in connectionist networks
as compared to biological neural networks merely serves to undermine the tenability of

the claim that connectionist systems are biologically plausible.

Finally, it is common practice for connectionist models (which undergo training
employing a learning rule) to have the bias trained at the same time as their connection
weights are trained. However, there is little or no evidence that threshold membrane
potentials (the most natural biological equivalents of bias) in biological systems can be
modified in any analogous way. In natural neurons, there is no evidence that the
thresholds of neurons exhibit any plasticity at all (for more details, see Dawson and
Shamanski (1993)). This shows that connectionists, whose systems involve trainable
biases, standardly take it upon themselves to add an extra degree of freedom into their
networks. However, this degree of freedom lacks any biological justification. Again, this
counts against the biological plausibility of such systems.

Connections

In biological nervous systems, neurons have two components which are roughly
equivalent to the weighted connections between processing units in a connectionist
network. These components are axons and dendrites. Dendrites receive signals into the
neuron and axons send signals from particular neurons to others. One immediate (though

relatively trivial) difference between connectionist systems and biological ones is that, in
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biological systems, axons and dendrites are components of neurons themselves, whereas
in connectionist systems the connections between units are distinct from the units

themselves. This however, is not the only difference.

It is standard practice for connectionists to make their networks 'massively parallel’. That
is to say, each unit of a particular layer is normally arranged so that it has connections to
every unit of both prior and subsequent layers in the network (even if these connections
are zero-weighted). However, there are no results which suggest that this is the situation
in biological systems (see Dawson and Shamanski 1993). Indeed, what evidence there is
suggests that this is not the case. Churchland and Sejnowski (1994: p. 51), whilst
discussing the patterns of connectivity found in the brain cortex note that,

Not everything is connected to everything else. Each cortical neuron is

connected to a roughly constant number of neurons, irrespective of brain

size, namely about 3% of the neurons underlying the surrounding square

millimeter of cortex. Hence,...cortical neurons are actually rather sparsely

connected...
It is also the case that in standard small connectionist networks individual units from one
layer can have a significant impact on the activation level of particular units at the next
layer. In biological systems though, the influence of one neuron upon the state of another
is, in most cases (there are important exceptions), relatively weak. Usually, the influence
of one neurons activity upon another is in the order of 1%-5% of the firing threshold (see

Churchland and Sejnowski 1994: p. 52). In the connectionist literature, no attention is

paid to this particular subtlety.
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Another sharp discrepancy which exists between standard connectionist models and
biological systems is in their differing ways of transmitting signals between units or
neurons. In connectionist networks, the signals which are sent via the weighted
connections take the form of continuous numerical values. But in real neurological
systems, signals are sent in the form of spiked pulses of signal (for an illustration of this,
see Churchland and Sejnowski (1994: p. 53)). This would not be a decisive objection
against connectionist models, were it to be the case that continuous values could capture
the essential properties of the signals transmitted by the spiked pulses. However, this is
not the case. Firstly, different types of neurons have different firing patterns. Secondly,
some neurons firing patterns are a function of their recent firing history. Thirdly, some
neurons have oscillatory firing patterns. Fourthly, most neurons spike randomly, even in
the absence of input (Churchland and Sejnowski 1994: pp. 52-52). Finally, it is also the
case that signals between neurons in biological systems are sent by more than one
medium. Synaptic transmission occurs by both electrical and chemical means (Getting
1989: p. 191). Although it may be possible to capture at least some aspects of these
complexities with the continuous values standardly employed in connectionist networks,
there is no reason to believe that this is entirely the case without an argument to this
effect. Connectionists have yet to come up with such an argument. Indeed, there seem to
be good grounds to believe that the properties just mentioned will be highly significant to
the functioning of actual neural systems. This being the case, there seem to be good

grounds for doubting the putative biological plausibility of connectionist networks.
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In most connectionist networks, the relationship between the signal sent down a
connection and the influence of that connection (with the associated weighting) upon the
receiving unit is fairly straightforward. This is not the case in real neural systems though.
Dreyfus (1993: pp. 161-162) briefly describes work by Lettvin which suggests that axon
branches may serve to act as "low pass filters with different cutoff frequencies"”, with the
precise frequency being dependent upon the physical diameter of the actual axon branch.
This being the case, there will be a complex and functionally significant relationship
between the frequency and pattern of neuronal firing, and the length and diameter of the
connections between neurons. This relationship will be functionally significant as it will
have a direct effect upon the influence of one neuron upon another. However, there is
nothing in standardly described connectionist systems which is even remotely similar to
such a mechanism. This being the case, there must be at least some functionally
significant properties of biological systems which are not captured in connectionist
systems. This, again, mitigates against the tenability of connectionist claims to biological

plausibility.

Hopefully the facts from neuroscience cited above are sufficient to show that
connectionist claims to biological plausibility are not as straightforward as many of the
proponents of the myth would have us believe. Indeed, there are significant functional
differences between connectionist systems and biological ones. Given these facts, it
seems reasonable to conclude that the claim that connectionist systems are biologically

plausible, at the current time at least, is in large part a myth.
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As [ noted above though, even if the claim that connectionist systems are biologically
plausible is not tenable, there is a weaker claim, to the effect that connectionist systems
are more biologically plausible than their GOFALI counter-parts. As a matter of fact, it is
not too uncommon to find both the stronger and weaker claims being made at the same
time in the literature. For example, McClelland, Rumelhart and Hinton (1986: p- 12)
seem to be doing just this when they remark that,

One reason for the appeal of PDP models is their obvious “physiological”

flavor: They seem so much more closely tied to the physiology of the

brain than other [i.e. GOFAI] kinds of information-processing models.
There is perhaps more plausibility to the weaker claim, although it too has problematic
aspects (for example, it is far from clear what the appropriate metric should be for

assessing comparative biological plausibility). However, a prima facie case for the

plausibility of the weaker claim can be made.

Consider the case of two computational systems which both model some cognitive
capacity. Let us suppose further that one system is connectionist and the other is a
production system (production systems are usually fairly prototypical cases of GOFAI
models). If for some reason (perhaps a desire to develop a system which was strongly
equivalent to human beings) we wished to try to make each system more biologically

plausible, how would we fare?

In the case of the connectionist system, there are a number of steps which might be taken.
These range from substituting non-homogeneous processing units with activation

functions similar to the biological neurons of the relevant type, to utilizing more complex
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mechanisms to mediate the transmission of signal between units. Shastri and Ajjanagadde
(1993), for example, have described a system which mimics in a rudimentary manner, the
spiking of neural firing.’ How, on the other hand might we go about making a production
system more biological? There does not seem to be any straightforward manner of doing
this. Adding more productions is very unlikely to do the trick! So, in theory,
connectionist systems could be made more biologically plausible than their GOFAI
cousins. This, though, is not the same as the claim that connectionist systems actually are
more biologically plausible at the current time. Once again, this claim, if made in the
present tense (C.£. the remark made by McClelland, Rumelhart and Hinton (1986: p. 12),

cited above), is little more than a myth.*

Myth 2: 'Connectionist Systems Are Consistent With Real Time Constraints Upon
Processing'

There is another claim which is sometimes made on behalf of connectionist systems,
which is based upon comparing them with biological cognitive entities. This claim too

has a significant mythological component.

One of the astonishing things about biological cognitive systems is the speed at which
they are able to perform tasks which (apparently) require many complex calculations.
Somehow or other, the neurological components of humans and animals are able to

successfully perceive the world, remember things and so on, despite the fact that

* Not too much weight should be put on this system though - it is very far from being biologically
?lausﬂ)le. See Dawson and Berkeley (1993).

For a further discussion of the claim that connectionist networks have some kind of biological
plausibility, see Quinlan (1991: pp. 240-244). Quinlan’s assessment of the current state of the art is similar
to mine.
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individual neurological components (such as neurons) operate slowly, when compared,
for example, to the speed of a modern microprocessor. These facts have lead some
connectionists (for example, Feldman and Ballard 1982, Bechtel 1985, Rumelhart 1989,
Shastri 1991) to argue for the adoption of their approach. Such arguments frequently
appeal to the problems which can arise with GOFAI systems, with respect to real time

constraints upon processing.

One of the best known versions of this type of argument is the so called "100 step”
argument (This nomenclature originates from Feldman and Ballard 1982). It is argued
that, from what is known about the speed of firing of neurons in the brain, many basic
human cognitive capacities (those which take under a second for humans to process in
real time) cannot involve more than about one hundred processing steps. This is because
actual neurons cannot go through more than about one hundred states in under a second.
As standard GOFAI architectures are serial in nature and usually require considerably in
excess of one hundred steps, connectionists argue that they cannot provide a good model

of actual cognitive function.

Rumelhart's (1989: p. 135) version of the argument goes like this;

Neurons operate in the time scale of milliseconds, whereas computer

components operate in the time scale of nanoseconds—a factor of 100
faster. This means that human processes that take on the order of a second
or less can involve only a hundred or so time steps.

Rumelhart then goes on to list several processes which occur in a second or so. The
processes listed are all significant for the study of cognition and include linguistic
capacities, perception and memory retrieval. The claim is that the facts about the speed of

operation of neurons means that realistic computational accounts of these cognitive
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processes must either involve less than one hundred or so operations, or some account
must be given for how it is that more than one hundred operations can occur in less than a

second.

Rumelhart (1989: p. 135) believes that the correct way to explain phenomena of this type

is a follows:

Given that the processes we seek to characterize are often quite complex
and may involve consideration of large numbers of simultaneous
constraints, our algorithms must involve considerable
parallelism.... Although the brain has slow components, it has very many of
them....Rather than organize computation with many, many serial steps, as
we do with systems whose steps are very fast [i.e. GOFAI systems), the
brain must deploy many, many processing elements cooperatively and in
parallel to carry out its activities.

Devices such as a Turing machines or von Neumann machines (usually) have a single
processor which performs operations one at a time, one after another. This is often called
“serial’ processing. One of the features of connectionist systems, by contrast, is that they
are constructed from many simple processing devices which operate at the same time as
one another. This is often referred to as ‘parallel’ processing. The paraliel nature of
connectionist systems means that they can (theoretically) perform many operations within
each time step and thus, it is claimed, they do not (necessarily) violate the 100 step

constraint.

The argument sketched above is, pretty clearly, another connectionist argument for the
biological plausibility of their systems. It differs from the arguments of the previous
section though, in so much as the arguments plausibility depends upon the presumption

that there is some functionally significant similarity between connectionist processing
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units and biological neurons (this point is noted by Fodor and Pylyshyn 1988: p. 55). As
we have seen in the previous section though, the claim that connectionist units are
neuron-like is largely a myth. This is not the only reason why the claim that connection

systems are consistent with real time constraints upon processing is dubious, however.

The entire 100 step argument turns upon the premise that the individual neuron is the
computationally significant level, as far as speed constraints go, in the brain. Should it
turn out that there is significant processing which occurs at the sub-neuronal level (for
example, at the level of synaptic clefts, see Kolb and Whishaw 1990: pp. 46-47) in the
brain, then this argument would loose much of its plausibility. The additional processing
steps which standard architectures seem to require may be being done at this sub-
neuronal level. Furthermore, Fodor and Pylyshyn (1988: p. 55, n31) note that there are
many chemical processes of the dendrites of biological brains which take place over a
wide range of time scales. This being the case, there are grounds for wondering why
advocates of the 100 step argument choose the rate of neuronal firing as the relevant time

scale for their argument. There is no defense of this choice in the connectionist literature.

As a matter of fact, what is known about the behavior of biological systems tends to make
the appeal to the speed of neurons implausible. In particular, the claim that "neurons
operate in the time scale of milliseconds..." (Rumelhart 1989: p.135), which is crucial to
the 100 step argument, involves a considerable oversimplification of the neurological
facts. For example, cortical neurons have variety of different intrinsic firing patterns and
rates (see Churchland and Sejnowski 1994: p. 53). It is also the case that the rate of firing

of a particular neuron will be determined, in part, by the kind of nerve fiber which makes
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connections with it. deGroot and Chusid (1988: pp. 23-24) describe three distinct types of
nerve fiber which have differential rates of signal conductance. Given these complexities,
The simple temporal claim which is central to the 100 step argument, lacks plausibility
without being defended in detail. Once again though, such a defense has not been

attempted within the connectionist literature.

Even if these difficulties with the 100 step argument are overlooked, the argument still
fails to unambiguously establish the conclusion its connectionist proponents propose. As
Sterelny (1990: p. 172) notes, there are two possible conclusions from the 100 step
argument. The weaker conclusion is that, however human brains actually work they do
not run the same programs as computers do. Of course, this conclusion is almost certainly
(though somewhat trivially) correct. The stronger conclusion is that the 100 step
argument shows that a certain class of theories about cognition (i.e. those which are based
upon GOFAI models) are fundamentally incorrect. The stronger conclusion is
presumably the one which connectionists wish to endorse. The stronger conclusion is

highly problematic, however.

The strong conclusion of the 100 step argument should persuade us that explanations of
cognitive phenomena which are rooted in serial processing are defective. However, this
alone is not sufficient to justify the adoption of a connectionist approach, rather than a
GOFAI one. There are examples of GOFAI models which are parallel. Sterelny (1990: p.
172) mentions (although he does not give a reference) that "...some version of the "Marcus
parser’, which models sentence comprehension by incorporating a Chomskian

transformational grammar, use parallel processes.” A similar point is made in both
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Pylyshyn (1984) and Fodor and Pylyshyn (1988). It is also the case that the argument
could turn out to be just as fatal to the plausibility of connectionist systems, if it could be
shown that they required foo few basic operations to compute certain functions.

Connectionist advocates of the 100 step argument do not discuss this possibility though.

Another difficulty with the strong conclusion is that it is far from clear at what level the
excessive (i.e. those in excess of 100) number of steps is supposed to arise. Would a
computer program which involved more than 100 function calls be deemed unacceptable?
Are the '100 steps' supposed to be basic processor operations? Without a clearer notion of
what is to count as a step, it is hard to tell how the 100 step constraint could even be met

by a serial processing system!

Given the problems just raised, it is reasonable to conclude that the 100 step argument
should not be taken as providing support for the claim that connectionist systems are
consistent with real time constraints upon processing. This, at least as a general claim

about connectionist systems, is just another connectionist myth.

Myth 3: 'Connectionist Systems Exhibit Graceful Degradation’

The connectionist myths discussed above have focused primarily upon the supposed
similarities between connectionist systems and biological entities. There is however
another species of myths which concentrate upon attempting to show that connectionist
systems are in some way preferable to GOFAI ones. These two types of myth are not
totally distinct though. The claim about real time constraints discussed above for

example, involves elements of both kinds of myth. I shall now consider a few of the
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connectionist myths which are supposed to foster support for the belief that connectionist

systems are to be preferred to their GOFAI counterparts.

A cognitive system which has to interact with the real world is often faced with imperfect
input data. For example, humans by and large are pretty good at reading one another’s
handwriting, even though handwriting usually looks very different from the block print
which most people initially leam to read. Similarly, we are also pretty good at
understanding what is being said to us by someone even if the speaker has a heavy
accent, or the context of utterance is such that part of the utterance is obscured by
background noise. We still succeed in identifying everyday objects even when they are
viewed under unusual lighting conditions, or when they are viewed from unfamiliar
angles. This being the case, a desirable property of computational models of cognitive
processes is that such models should also be able to deal with degenerate input. Ideally,
when a system is faced with incomplete, corrupt or even inconsistent input, the system
should be able to make intelligent guesses about what the input should have been and
make appropriate responses accordingly. If one briefly glimpses out of the corner of ones
eye a bear charging towards one, waiting for more information is not an especially
helpful response! The ability to handle incomplete, inconsistent or otherwise imperfect

input data is sometimes called 'graceful degradation’ (See Clark 1991: p. 62).°

One advantage often claimed for connectionist systems over their traditional CTM based
counterparts is that connectionist systems exhibit graceful degradation, whilst GOFAI

systems do not. Churchland (1990: p. 120) makes the point thus,

* Actually, the notion of ‘graceful degradation’ is somewhat more technical than this. Clark’s (1991)
characterization will suffice for current purposes though.
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-..you can recognize a photo of your best friend's face, in any of a wide
range of poses, in less than half a second. But such a recognitional
achievement still eludes the best [GOFAI] pattemn-recognition programs
available,...

Churchland (1990: p. 120) goes on to note that "even strongly simplified recognitional
problems” are very difficult indeed for GOFAI systems. Similar claims can be found in

McClelland, Rumelhart and Hinton (1987).

Now the mythological component here derives not so much from the facts, so much as
the conclusion which is drawn from these facts. From the fact that many GOFAI systems,
at the present time, do not exhibit graceful degradation, it does not follow that they
cannot in principle be made to exhibit this property. The facts amount to nothing more
persuasive than prima facie evidence. They certainly cannot be used to support the more
general conclusion that connectionist systems are preferable to GOFAI ones. There are a
(at least) two reasons why this is the case. First, GOFAI systems which exhibit graceful
degradation to the same degree that conmectionist systems apparently do, may be
developed at any time.® Indeed, this is an area of active research. For example, systems
known as 'Truth Maintenance Systems' (See Forbus and de Kleer 1992) have been
developed which are able to reason effectively on the basis of incomplete information.
Second, just because one type of system is apparently superior to another type with
respect to one set of properties, does not mean that such a system is superior with respect
to all relevant properties. It may well be the case that there are difficulties with

connectionist systems which GOFAI systems can easily over come (for example, Fodor

° This objection is also raised by Sterelny (1990: pp. 173-175).
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and Pylyshyn (1988) claim that connectionist systems have significant limitations when it

comes to dealing with compositionality or systematicity).

Connectionists who argue in favor of their approach on the basis of the graceful
degradation of their systems over look these considerations. The upshot of this is that the
putative superiority of connectionist systems over GOFAI systems is not established by
the simple appeal to one or two apparent properties of these systems. In order for such
arguments to be persuasive, it would be necessary to consider all the relevant properties.
Consequently, although the factual claims about the graceful degradation of connectionist
systems may, at the current time, suggest that such systems may have advantages over
GOFALI systems for certain types of tasks, graceful degradation alone is not sufficient to
support the conclusion that connectionist systems are superior to GOFAI ones in general.
It follows from this that claimed superiority of connectionist systems, based solely upon
an appeal to graceful degradation, is nothing more than a myth. Of course, if ‘graceful
degradation’ is treated as a comparative notion and it is argued that it is easier for
connectionist systems to exhibit it than GOFALI ones, then the objectionable nature of
such claims is considerably reduced. The older, more absolute claims have recently been
replaced by the comparative claims (see for example Bates 1996 discussion of Ling

1996).

There are a variety of other allegedly desirable properties which connectionist systems
are claimed to have, which GOFAI systems do not. These include being resistant to
damage, being good pattern recognizers, being good at retrieving information on the basis

of the content of the information and being able to handle multiple constraint satisfaction
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problems (See McClelland, Rumelhart and Hinton 1989, for example). All these claims
however, fail to adequately support the conclusion that connectionist systems are
intrinsically superior to GOFAI systems, for reasons very similar to those described
above for graceful degradation. For this reason, I will not go through the arguments here.
The important point I wish to urge though is that general claims about the superiority of
connectionist systems over GOFAI ones, which are made on the basis of connectionist
systems apparently having some desirable property which GOFAI systems apparently
lack, are (generally speaking) not adequately supported. This being the case, such claims

may constitute nothing more than connectionist myths.

Myth 4: 'Connectionist Systems Are Good Generalizers'

The claim that connectionist networks exhibit graceful degradation is sometimes made in
conjunction with a claim that networks are good at ‘generalization’ (See for example,
McClelland, Rumelhart and Hinton 1986: pp. 29-30). As is the case with the graceful
degradation claim, a commonly implied conclusion from the generalization claim is that
connectionist systems are to be preferred to GOFAI systems as models of cognitive
function. This claim is a little more interesting than the graceful degradation claim (and
related claims), as such it deserves special treatment (this is not to say that the objections
outlined above may also apply to this claim). However, like the connectionist claims

above, the generalization claim has a mythological component.

As a rough first approximation, a system can be said to generalize when it can produce
outputs which are appropriate for a particular input or class of inputs, which it has not

been previously given information about. The first difficulty with the claim about the
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generalization of connectionist systems is that it is often the case that generalization is
specified in 2 manner which is only appropriate for connectionist systems (or some sub-
set of connectionist systems). For example, Clark (1993: p. 21) describes generalization

thus,

A net is said to generalize if it can treat novel cases sensibly, courtesy of
its past training.

This notion of generalization is inordinately narrow though. For example, it would not be
applicable to systems which do not undergo training. The famous Jets and Sharks
network (described in McClelland, Rumelhart and Hinton 1987: pp. 26-31, McClelland
and Rumelhart 1988: pp. 38-46, Clark 1991: pp. 86-92, and Bechtel and Abrahamsen
1991: pp. 21-34) is said to exhibit 'generalization' (albeit, not very good generalization, in
this case), yet does not undergo traim’ng.7 If generalization is specified broadly though
(for example, as I do with the ‘rough, first approximation’ above), then many GOFAI
systems would seem to exhibit generalization too. For example, Rip's (1983) ANDS
system, which is a paradigm example of a GOFAI system, might plausibly be said to
generalize in this sense.’ This being the case, an appeal to generalization cannot
adequately support the contention that connectionist systems are preferable to GOFAI

ones.

It is also the case that, even if a narrow conception of generalization such as Clark's is

employed, only some connectionist networks exhibit this property. A common difficuity

" In fact, Clark (1991: p- 92) even makes a claim about the generalization abilities of the Jets and Sharks
network.

* Actually, the situation is somewhat more complex than this, in so much as it is unclear whether or not the
inference rules within ANDS are to count as containing information about every inference of a particular
syntactic type. This complication does not effect my main point though, so I will not discuss it further here.
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encountered by network researchers is that, even with identical network architectures,
training regimes and similar starting parameters, different versions of the same network
will exhibit different degrees of generalization, due to the practice of setting initial weight
and biases values randomly. Sometimes, if a network has too many hidden units and is
trained to too strict a convergence criterion, a network may simply instantiate a "look-up
table' for the training set, and produce responses upon generalization testing which are
equal to, or worse than mere chance! Generalization (no matter which conception is
employed) is a property of only some networks, and not a general property of all

networks.

An additional complication which arises with the claim about generalization is that it is
very sensitive to the particular task being considered. This fact is frequently not made
explicit in the descriptions of generalization in the connectionist literature though. This is
very nicely exemplified by another example from Clark. Clark (1993: p. 21) briefly
describes a connectionist network, originally due to McClelland and Rumelhart (1987,
Vol. 2: pp. 170-215), which was trained to recognize dogs and was trained upon sets of
dog features which were supposed to correspond to the features of individual dogs. Clark
(1993: p. 21) cites as an example of generalization (in accordance with the conception

quoted above) the fact that,
-..a novel instance of a dog (say, one with three legs) will still be expected
to bark so long as it shares enough of the doggy central tendencies to

activate the knowledge about prototypical dogs.

Although the facts are correct, this example does not do justice to the influence of the

chosen task domain upon generalization. Suppose that the network was trained not only
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to recognize dogs, but was also trained to recognize common items of furniture. Now, if
the only three legged object in the entire training set were to be a small stool, it is quite
possible that the network would classify the three legged dog as a non-barking object (i.e.
like a stool), rather than as a barking one. The performance of such a network would be
dependent upon the ratio of dogs to furniture in the entire training set, as well as various

other specific details of the training regime.’

An additional difficulty which undercuts connectionist claims about generalization comes
from a recent paper by Clark and Thomton (1996). In this paper Clark and Thornton
argue that there is a whole class of problems (so called “Type-2’ problems - see Clark and
Thornton 1996, for details) which connectionist networks will not, in principle, be able to

exhibit any generalization whatsoever upon.

Given all the difficulties I have outlined above, it is not unreasonable to conclude that the
claim that connectionist systems are good generalizers is so problematic, that in many
instances, it may amount to nothing but a myth. It is far from clear that there is even a
uniform notion of generalization which is used amongst connectionists, let alone a
conception which is common to both connectionism and GOFAL'® Without detailed
clarification of the notion, it is not a suitable basis for comparison at all. Moreover, the
actual evidence for the claim that networks are good generalisers is far from unequivocal.
Thus, claims about generalization cannot provide an adequate basis to judge between

connectionist and GOFAI systems. Furthermore, although some connectionist systems

? Cf. the example of a network for assessing bank loan applications, discussed by Clark (1993: p. 71).
" Indeed, the considerations discussed above might be taken as being indicative that the term
‘generalization’ exhibits what Waismann (1951) calls ‘open texture’.
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may exhibit something which might plausibly be termed generalization, it is certainly not
universally the case. Thus, claims about connectionist systems and generalization which
are not very carefully hedged (as they almost never are) are going to be false of many
connectionist systems. Hence, the unqualified claim that connectionist systems are good

generalisers is largely a myth.

Not all connectionist myths, concerning the desirable properties which networks are
supposed to have, are as vague as the claims about generalization. Historically, networks
have been subject to detailed technical criticism, with respect to their computational
power. Perhaps the best known criticism was that offered by Minsky and Papert (1969) in

their book Perceptrons. t

Myth S: 'Recent Connectionists Systems Have Shown That Minsky and Papert

Were Wrong'

In their book Perceptrons (1969), Minsky and Papert argued that Rosenblatt's perceptrons
(an early kind of connectionist system) were subject to a number of significant
limitations. One of the claims of the recent connectionist researchers is that these
limitations have been overcome. For example, Rumelhart, Hinton and McClelland (1987,

Vol. 1: pp. 65-66) claim that,

It was the limitations on what perceptrons could possibly learn that led to
Minsky and Papert's (1969) pessimistic evaluation of the perceptron....As
we shall see in the course of this book, the limitations of the one-step
perceptron in no way apply to the more complex networks.

"' Minsky and Papert’s role in the history of network research is significant. It will be discussed in some
detail in a later chapter.
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As with the other myths discussed above, although there is a grain of truth which lies at
the heart of this myth, strictly speaking, the above claim is largely false. Despite the facts
though, the claim that modem connectionist systems have shown that Minsky and Papert
were incorrect in their assessment of networks has become widely accepted. Clark (1989:

p- 85) for example, describes the contemporary enthusiasm for,
...the work of a recent wave of connectionists who found ways to
overcome many of the problems and limitations of the linear-thresholded
architectures of perceptrons.
This particular myth seems to have its origins in a none too careful reading of Minsky
and Papert’s conclusions. Bechtel and Abrahamsen (1991: p. 15) describe a pretty typical
(C.f. Rumelhart, Hinton and Williams 1987) reading of their conclusions,
The centerpiece of their [Minsky and Papert's] criticism was their
demonstration that there are certain functions,.., which cannot be
evaluated by such a network [i.e. a two-layer perceptron]. An example is
the logical operation of exclusive or (XOR). While Minsky and Papert
recognized that XOR could be computed by...a multi-layered network,

they raised an additional problem: there were no training procedures for
multi-layered networks that could be shown to converge on a solution.

Now, if this really was Minsky and Papert's conclusion, then the demonstration of a
training procedure which could converge on a solution for the XOR problem would seem
to suffice to show that their conclusions were indeed wrong. Furthermore, Rumelhart,
Hinton and Williams (1987) describe just such a result. Unfortunately, this is nor an

accurate description of Minsky and Papert's conclusion.

Minsky and Papert (1969: pp.3-5 and pp.22-30) are careful to specify the class of devices
which they intend to study in Perceptrons. The scope of their conclusions were

specifically limited to networks of linear threshold units without any feedback loops. The
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units standardly employed in modern connectionist networks are not linear threshold
elements (for example, many units have continuous sigmoidal activation functions).
Strictly speaking, such units are beyond the scope of Minsky and Papert's conclusions.
Indeed, it was the adoption of continuously valued activation functions which enabled
training procedures for multilayed networks to be derived. Given these facts, it is pretty
clear that recent work in connectionism has not succeeded in showing that Minsky and

Papert's conclusions were false.

Minsky and Papert in fact do raise 2 number of points in Perceptrons which are salient to
modern work on network systems though. Perhaps the most significant of these concerns
is what has come to be known as ‘'the limited order constraint’. Minsky and Papert's
(1969: pp. 5-14 and 30-32) discussion of limited order is both complex and technical. In
order to avoid these technicalities, I will offer a rough and ready version of this
constraint. This will suffice for current purposes. The limited order constraint just
amounts to the condition that the units in one layer of a network do not have connections

to all the units in the next layer.

One reason why the limited order constraint is reasonable and should be considered
significant (at least by connectionists interested in cognitive modeling) was mentioned
earlier; biological brains seem to satisfy this constraint. That is to say, layers of neurons
have comparatively sparse patterns of interconnection between them. Unfortunately
though, standard connectionist practice involves violating this constraint. The limited
order constraint is important to many of Minsky and Papert's conclusions. In fact, even

the networks discussed by Minsky and Papert (1969: p. 250) can evaluate XOR and
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connectedness, if this constraint is violated. This being the case, it is no surprise that
networks of modem connectionist units, with their more complex activation functions
which also violate the limited order constraint can be used to construct networks which
can evaluate functions which Minsky and Papert show to be beyond the systems they
consider. Without the limited order constraint, the difficulty of solving many classes of
problems is greatly reduced. The important point in the current context is that the results
from modern connectionist systems do not serve to show that Minsky and Papert were
wrong. The problems which the modemn systems solve, although similar, are not the same
as those considered by Minsky and Papert.””> Given these facts, it should be reasonably
clear that the connectionist claim that their systems serve to show that Minsky and Papert

were wrong is, like the other claims discussed in this chapter, nothing more than a myth.

Conclusion

Each of the five myths which have been discussed in this chapter would offer some
support for the contention that connectionist systems offer a good means of modeling
cognitive function, were it to be the case that they were true. Similarly, many of the
myths would also offer grounds for considering connectionist models superior to GOFAI
ones, again subject to the condition that the myths were true. However, as I hope has
become clear through the above discussion, each of the claims contains a substantially
mythological component. It is only if these claims are very carefully qualified and

selectively applied that they are truths. Under any other condition, especially if the claims

"> Another important problem raised by Minsky and Papert which modem connectionists have a bad habit
of overlooking what is known as ‘The scaling problem’. Although networks may work well for small "toy’
problems, Minsky and Papert argue that networks will rapidly become unmanageably massive when faced
with more complex problems. Connectionists seem to be happy to make generalizations on the basis of
their toy systems, whilst ignoring this difficulty.
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are made as being putative general truths about the class of connectionist systems as a

whole, the claims are just myths.

This conclusion is important, because the myths are often employed to support the further
conclusion that network models offer a better means of modeling biological cognitive
functioning than GOFAI models do. Notice however, that this second conclusion
presupposes that there is are, in fact, two distinct classes of models. Although this fact
might seem intuitively obvious, given the apparent difference between network models
and the kinds of devices associated with the traditional interpretation of the CTM, it has
yet to be substantiated. As should be clear by now, the myths of connectionism do not

provide such a substantiation.

It seems to me that the lesson to be leamed from the myths of connectionism is that
generalizations about the properties of such systems have to be very carefully stated and
conservatively made. This being the case, there are good grounds for proceeding by
considering particular systems in detail and determining the significant properties of
those systems, with respect to the traditional CTM. Although this is not as
methodologically straightforward as one might wish, it is both a useful and feasible
strategy. In the next chapter, I will discuss one particular connectionist system in detail.
The purpose of this discussion is to get a clear picture of the system, such that an
assessment of the extent to which the systems shares the properties associated with the
traditional CTM can be made. Doing this should, in turn, throw light upon the nature of
the putative proposed alternative to the CTM, which networks are supposed to give rise

to.
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v
An Empirical Study: The interpretation of the Logic Network, L10

Introduction

In the previous chapter, a number of ‘myths’ about connectionist systems were discussed
and shown to be problematic. There is one further myth though which was not considered
there. It concerns a series of related claims which have been made about representations
(or ‘tokens’ in the terminology of Chapter 2) and the operations which manipulate such
entities in connectionist systems. The purpose of discussing this myth separately from all
the other myths is two-fold. First, this myth cannot be dismissed as summarily as the
myths in the previous chapter. As will become clear, clarifying what is going on with this
set of claims requires further exposition and consideration of a range of topics. As such,
this myth is best discussed in isolation from the others. Second, as I think that this myth
relates much more directly to the putative challenge which connectionist systems are
supposed to present to the CCTM than do the other myths, it seems appropriate for me to

treat this myth separately and in greater detail than the myths discussed so far.

Rules, Representations and Connectionist Systems

The claims quoted at the end of Chapter III from Clark (1989: p. 124), Sterelny (1990: p.
168) and Cummins (1989: p. 157, fn. 6) have a ‘family resemblance’ to one another, in so
much as they deal with either representations or the operations which manipulate those
representations. A reasonably representative statement of the myth can be found in Clark
and Lutz (1992a: p. 12), when they remark,

Connectionist models...differ from those of conventional Al [i.e. systems
which are straightforwardly compatible with the CCTM] in (amongst other
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things) appearing to operate without traditional symbolic data structures
over which computational operations may be defined.

Similar claims can be found in many places in the connectionist literature. For example,
Rumelhart, Hinton and McClelland (1986: pp. 75-76), Bechtel and Abrahamsen (1991:
pp. 151-163, passim), Fodor and Pylyshyn (1988: p. 5) Schneider (1987: p. 74) and

Smolensky (1988: p. 1), all make roughly this claim.

There are two distinct components to this myth. The first concerns whether or not there
are entities similar to ‘traditional symbolic data structures’ which can be said to play a
crucial role in the functioning of connectionist systems. The central claim here is that the
representational/token/symbol structures of networks are significantly different in kind
from the items which play (roughly) the same role in the CCTM. The second component
of the myth concerns the operations which occur within a network. Here, the central
claim is that networks operations are significantly different from those supposed by the
CCTM. As Clark and Lutz’s remark cited above is not entirely unequivocal with respect
to such operations, it is worth drawing upon another source for a univocal statement of
this component of the myth. Churchland (1989: p. 170) claims of a system called
‘NETtalk’, that one of the most important features of the system is the fact that the
network,

...contains no explicit representations of any rules, however much it might

seem to be following a set of rules.
Claims pertaining to operations (or ‘rules’) and representations (or ‘symbols’) in
connectionist networks lie at the heart of the current myth and are closely intertwined

with one another in the literature. This being the case, provides grounds for considering
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both components of the myth together, rather than separately. In addition, as it turns out
that there is common problem which all claims of this nature (regardless of their
emphasis) must face up to, this provides further reasons for treating the myth as a single

entity.'

The problem with the claims which constitute this myth is epistemological in nature and
methodological in origin. To put it simply, current connectionist practice is such that it
does not provide sufficient evidence to support this claim.2 As a consequence, we really
have no idea whether what kind of rules, representations and the like are deployed by
connectionist networks. Indeed, the reluctance of connectionists to analyze the internal
structure of their networks has been a central concern of some recent critics (e.g.
McCloskey, 1991) who argue that connectionism may not be able to contribute to

cognitive science. Such criticisms are considered in detail in the next section.

McCloskey’s Critique of the Connectionist Research Program
McCloskey (1991) considers, in detail, the relationship between recent connectionist
models and cognitive theorizing. His conclusions are, by and large, pessimistic.

McCloskey (1991: p. 387) concludes that,

' It is also the case that certain related, though distinct, claims about the alleged ‘autonomy’ of networks
also focus upon similar issues. I will not pursue these particular claims further here however. See Dawson
and Schopflocher (1992) for further details.

* It might be thought that there is a difference in principle between connectionist representations and those
of the CCTM because, in theory, any individual connectionist processing unit can assume an infinite
number of distinct states (activation levels), each of which could be construed as being representational,
whereas the CCTM is committed to there being only a finite number of such states (see Smolensky 1994).
However, as any actual connectionist system will always contain a finite number of units, each one of
which takes on some specific value, it follows that there is only a finite number of distinct states that any
such systems can have. And so the issue then becomes one of the nature of these finite states. This is an
issue which requires empirical investigation.
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...connectionist networks should not be viewed as theories of human
cognitive functions, or as simulations of theories, or even as
demonstrations of specific theoretical points.
Throughout his discussion, McCloskey focuses upon one particular connectionist model,
the word recognition and naming network described by Seidenberg and McClelland
(1989). However, McCloskey (1991: p. 387) takes his conclusions to apply to the class of
all networks which employ distributed representations, include hidden units and have

connection weights set by a training procedure.

McCloskey argues that networks such as Seidenberg and McClelland's do not qualify as
cognitive theories themselves. He argues this point by analogy with a black box.
McCloskey supposes that there is a black box which appears to model a cognitive
phenomenon pretty well. That is to say the black box's performance on the task roughly
mimics (though does not quite duplicate) the performance of human subjects on the same
task. Fairly obviously, unless there was a description (in terms of the structure and
functioning of the components of the box) of exactly how such a device produced outputs
as a result of particular inputs, the box would be nothing more than an interesting artifact.
The box would certainly not constitute a theory. According to McCloskey, network
models are frequently treated in a manner similar to such a black box. Although they can
perform interesting tasks, they do not support an explanation of how they perform these

tasks. As such, networks themselves do not constitute theories.

McCloskey also maintains that even if additional information, such as a detailed
description of the network architecture, the input and output representations employed,

information on the functioning of individual units and the details of the training
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procedure employed are supplied, the network still does not amount to a theory. For, he
says (1991: p. 388), as there are still questions which the network cannot be used to
answer, the network itself does not constitute a theory. Such questions as the relevance of
the representations employed to the performance of the network need to be answerable

before the network can count as a theory, in McCloskey's opinion.

According to McCloskey (1991: p. 389), connectionism fails to provide information
useful to cognitive theorizing for two reasons. First, connectionist ‘theories' are not stated
in sufficient detail. Second, there are serious problems with regards to tying particular
theoretical proposals to implemented networks. To illustrate these points, McCloskey
notes that Seidenberg and McClelland's network and so-called theory fails to explain
exactly how their network deploys the appropriate knowledge under just the appropriate
circumstances. There is nothing in the theory which accompanies Seidenberg and
McClelland's network, for example, which can account for how the letter 'a' should be

processed so as to distinguish its use between "gave" and "have".

Of course, the way that connectionists could meet McCloskey's challenges would be to
claim that the network itself is supposed to provide the details of the theory. Although
initially appealing, such a simple response is not satisfactory. McCloskey (1991: p. 390)
notes that any simulation involves the implementation of both theory-relevant and theory-
irrelevant details, and as a consequence there is no way to determine which aspect of a
model are significant for the theory and which are not. For example, the ‘theory’ (so
construed) makes no distinction between issues such as the leaming rate employed in a

simulation (which is unlikely to be too theoretically significant) and the pattern of
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weights of the trained network (which is likely to be highly theoretically significant),
rather it simply implements them both. If, say, a network implemented a theory of how to
solve some logic problems, the network would have both employed a learning rate and
generated a final pattern of weights. Yet the pattern of weights would be crucial to which

theory was implemented, whereas the learning rate would be irrelevant.

McCloskey's point here seems to just amount to an appeal to the familiar observation
concerning the underdetermination of theory by evidence; even by all possible evidence
(See Quine 1951, Glymour 1980 and Kitcher 1993: pp. 247-249 for a detailed
discussion). Although this might initially appear to blunt the force of McCloskey’s
criticism, it should not be taken as doing so. In many cases of underdetermination,
sensible choices can be made with respect to which theories to accept and which to reject
on the basis of considerations such as admissible cost functions, prior practice and the
like (see Kithcher 1993: pp. 250 - 252). However, in the case of attempts to determine
precisely which cognitive theory a particular network simulation instatiates no such
additional constraints appear to be straightforwardly applicable. For example, how could
one apply a cost function to a claim that a particular network instantiates one theory

rather than another, especially if the two theories are similar to one another?

McCloskey also raises another problem which is of deeper significance. McCloskey

(1991: p. 390) describes the difficulty thus;

...the problem is that connectionist networks of any significant size are
complex nonlinear systems, the dynamics of which are extremely difficult
to analyze and apprehend.... At present, understanding of these systems is
simply inadequate to support a detailed description of a network's
knowledge and functioning.
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Indeed, this observation is perhaps the most important point of McCloskey's critique of
connectionism. Although there are techniques for analyzing trained networks, they are, in
McCloskey's evaluation, not sensitive enough to provide the detailed information that
would be required of a serious candidate for a theory. This fact also makes deciding
whether or not a particular network actually implements a particular cognitive theory
impossible to determine. And so, the justification of claims about the relationship

between networks and the CCTM are impossible to clarify in any detail.

If McCloskey is correct then, it would seem that, despite the potential contribution of
connectionist networks to cognitive theory, in practice such networks cannot make any
such contribution. On the one hand, if networks are taken as theories themselves, then
there is no way of determining exactly what the details of this theory are. On the other
hand, if a network is supposed to be an implementation of a particular theory, then there
is no way of determining whether or not the network actually succeeds in implementing
that theory. In both cases, the difficulties derive from the fact that there is no way of
understanding the details of the networks knowledge and functioning. Like black boxes,
the networks cannot be used to elucidate the structures and functions needed to explain
how the task is performed. As a consequence, even if it were to be the case that networks
provided a basis upon which an alternative to the CCTM could be developed, the precise

nature and details of that alternative would be radically unclear.

Given the difficulties surrounding evidence from connectionist systems informing

cognitive theory, it also seems reasonable to wonder about the status of the theoretical
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claims advanced by connectionists on the basis of their models. Bechtel and Abrahamsen
(1990), for example, describe two networks which they trained upon logic problems. The
networks performed the tasks moderately well once they were trained, though not
perfectly. On the basis of the networks performance, Bechtel and Abrahamsen (1990: p.
173) conclude that,

The ability to reason using logical principles may not need to be grounded

in proposition-like rules...
If this claim were true, then it would suggest that networks differ from the CCTM, at
least with respect to property (3) of the CCTM, described in Chapter I Since Bechtel
and Abrahamsen offer no analysis of the structure of their trained networks, the basis for
this conclusion seems somewhat mysterious. After all, if they have no idea about how
their networks go about solving the problems, it seems odd to make such a claim. The
networks could be employing proposition like rules, but without analysis there is no way
of knowing one way or the other. Bechtel and Abrahamsen’s conclusion consequently
appears to be unwarranted on the basis of the evidence they present. Their conclusion
appears only to follow if one subscribes to the myth about the representational structures

and rules in connectionist systems.

So, it seems that McCloskey’s critique has two consequences. First, it indicates that even
if connectionist systems do provide the basis of a genuine alternative to the CCTM,
contemporary connectionist methodology can give little evidence about the nature of this

alternative. Second, it seems that the possibility of connectionist models being able to

* Property (3) is the property of having “A capacity to perform a determinate range of precise and
exceptionless operations upon tokens”.
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make a contribution to cognitive theorizing is threatened by the fact that networks are
treated as black boxes. These consequences suggest that understanding trained
connectionist systems is of crucial importance to connectionists, and so we turn to that

topic.

Understanding Trained Connectionist Networks
McCloskey is unimpressed by current attempts at the analysis of trained connectionist
networks. His (1991: p. 309) assessment is that "...techniques for network analysis are
currently rather crude.” Furthermore, he is not optimistic about the future prospects of
analytic techniques. In McCloskey's (1991: p. 394) opinion,
-..it is not clear how fast and how far we will progress in attempting to
analyze connectionist networks at levels relevant for cognitive theorizing.

Robinson (1992: p. 655), urges a similar conclusion and suggests that,

We may have to accept the inexplicable nature of mature networks.
When Hecht-Nielson (1990: p. 10) considers the future prospects of analyzing networks
and trying to answer questions about exactly how networks produce the results they do,
he notes that,
...there is a growing suspicion that discovering answers to questions of this
type may require an intellectual revolution in information processing as
profound as that in physics brought about by the Copenhagen
interpretation of quantum mechanics.

Mozer and Smolensky (1989: p. 3) make the same point more colorfully when they note

that,
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...one thing that connectionist networks have in common with brains is

that if you open them up and peer inside, all you can see is a big pile of

goo.
If this widespread pessimism about the possibility of analyzing and interpreting trained
networks is well founded, then the prospects of networks being able to play theoretically

significant role in cognitive science, so as to provide the basis of a challenge to the

CCTM would seem to be similarly adversely affected.

However, the pessimism expressed above notwithstanding, there are a number of
techniques which have been developed and applied to the analysis and interpretation of
trained connectionist systems. Many different types of techniques exist for this type of
analysis. For example, Hanson and Burr (1990) review a number of techniques for
analyzing weights, including compiling frequency distributions of connection strengths,
quantifying global patterns of connectivity with ‘star diagrams’, and performing cluster
analyses of hidden unit activations. Techniques frequently employ statistical approaches
and factor analytic strategies. Indeed, these approaches have even received some

discussion in the philosophical literature (See Clark 1993).

Another analytic technique was recently described by Berkeley, Dawson, Medler,
Schopflocher and Homsby (1995). This approach seems to offer considerable promise in
revealing the kinds of information about trained networks which would be salient to the
relation between connectionist systems and the CCTM, and so I will consider and

describe it, and some of the results obtained using it, in detail.
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In order to illustrate this analytic technique in practice, it is worth considering its
application to a particular network. To this end, I will discuss the network known as
‘L10’, that Berkeley et al. trained to solve a set of logic problems, originally studied by
Bechtel and Abrahamsen (1991). I shall begin by describing the problem set in a little

detail.

Bechtel and Abrahamsen's Logic Problem

Bechtel and Abrahamsen (1991) and Bechtel (1994) describe a logic problem which they
trained a network to solve. All the input patterns had two premises and a conclusion. The
first premise contained two variables, both of which could be negated, and a connective.
All the second premises and the conclusions were made up of single variable letters,
which could also be negated. There were three possible connectives in the first premise,
IF..THEN..,, ...OR... and NOT BOTH...AND.... This meant that there were four distinct
classes of problems (Modus Ponens, Modus Tollens, Alternative Syllogism and
Disjunctive Syllogism), although there were two versions of both the Alternative

Syllogism and the Disjunctive Syllogism types.

Different examples of each argument type were constructed with four possible values
(A,B,C,D) for the variables in the premises and conclusion. As the variables could be
negated, this gave rise to 48 valid and 48 invalid instances for the Modus Ponens and
Modus Tollens problem types and both kinds of the two Alternative Syllogism and the
Disjunctive Syllogism types. Thus in total, the training set consisted of 576 patterns (i.e.

(48 + 48) * 6). The task for the network, after training, was to be able to identify the type
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of problem and determine whether or not a particular argument was valid. Table 5-1 gives

an example of a valid instance of each problem type.

Problem Type Problem Example Descriptive Notation
Modus Ponens (MP) If AThen B Connective: If...then...
A S1(V1): A
e ———— S1(V2):B
Therefore B S2: A
C:B
Modus Tollens (MT) IfAThen C Connective: If...Then...
Not C SI(V1): A
 —— S1(V2): C
Therefore Not A S2:C
S2 is negated
C:A
C is negated
Alternative Syllogism (AS) DOrA Connective: ...Or...
Type 1 NotD S1(V1):D
 ——— SI(V2): A
Therefore A S2:D
S2 is negated
C:A
Alternative Syllogism (AS) BOrC S1(V1):B
Type 2 Not C S1(V2):C
——————— S2:C
Therefore B S2 is negated
C:B
Disjunctive Syllogism (DS) | Not Both C and D SI(V1):C
Type 1 C SI1(V2):D
S2:C
Therefore Not D C:D
C is negated
Disjunctive Syllogism (DS) NotBoth A and D SI(V1): A
Type 2 D S1(V2):D
S2:D
Therefore Not A C:A
C is negated
Table 5-1

Examples of valid inferences from Bechtel and Abrahamsen’s (1991) logic problem

set. Notation: S1(V1) - The first argument place (V1) of the first premise (S1) of an

argument. S1(V2) - The second argument place (V2) of the first premise (S1) of an
argument. S2 - The second premise of an argument. C - The conclusion of an

argument.
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In order to facilitate easy discussion of the interpretation of the network Berkeley et al.
developed a special descriptive notation. This too is introduced in Table 5-1. In this
descriptive notation, each of the argument places in the problems was assigned a unique
descriptive code. In addition to these letter codes, other important information, such as
the type of connective in the first premise and whether or not particular letters are
negated, can also be represented in the full description of a particular problem in the
descriptive notation (as illustrated in Table 5-1). It is also necessary to be able to compare
particular pairs of variables, with respect to whether they were both negated or not.
Berkeley et al. describe these relationships in terms of the variables relative 'signs". If two
variables are both negated or both non-negated, then they are deemed to be of the 'same
sign'. Otherwise, the variables were said to be of 'opposite sign'.

The Network L10

Bechtel and Abrahamsen's original network for this logic problem had two layers of
hidden units, each with ten units in it. The processing units which they used were the
standard kind, with sigmoidal activation functions. However, Berkeley et al. (1995)
found that by using a network constructed from Dawson and Schopflocher’s (1992) value
units, the task could be learned by a network with a single layer of ten hidden units.* It
was a network of this architecture which Berkeley e al. (1995) successfully trained upon
the problem and which they then analyzed and interpreted. For ease of reference, I will

call this network ‘L10°.

* See Chapter III for a brief discussion of the differences between these kinds of units.
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The L10 network had fourteen input units, three output units and ten hidden units. Each
of the units in each layer had modifiable weighted connections to each of the units in the
next layer. The pattern of interconnection between the processing units in the network is

illustrated in Figure 5-1.

Output Problem
Encodings Type Validity

S\

[Conneetive]
Sign Sign Sign Sign
S1(V1) S1(V2) S2 C
Figure §-1

The pattern of interconnections between processing units and the input and output
encoding scheme used with network L10.
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The Problem Encoding Scheme of L10

Berkeley et al. (1995) encoded the problems of the training set upon the 14 input units,
using the representational scheme devised by Bechtel and Abrahamsen (1991). This too is
illustrated in Figure 5-1. The four variables in each particular problem were encoded
across pairs of units. Numbering from left to right of the network diagram, input units 1
&2,6& 7,9 & 10 and 12 & 13 encoded the four possible variables. When the variable
‘A’ occurred in the training set in a particular argument place, the pair of input units
which represented that argument place were set to ‘0 1°. When the variable ‘B’ occurred
in the training set in a particular argument place, the pair of input units which represented
that argument place were set to ‘1 0°. When the variable “C’ occurred in the training set in
a particular argument place, the pair of input units which represented that argument place
were set to °1 1°. Finally, when the variable ‘D’ occurred in the training set in a particular
argument place, the pair of input units which represented that argument place were set to
‘0 0°. The assignment of particular bit patterns to particular variables was essentially
arbitrary. The significant point was only that each letter had a unique encoding. Which

particular bit pattern was assigned to which letter was of no consequence.

Whether or not particular variables were negated was indicated by single units adjacent to
the unit pairs representing each variables. Thus, input units 0, 5, 8 and 11 all indicated the
signs of the relevant variables. If a letter was negated, the negation units were set to 1,

otherwise they were set to 0.



87

Finally, two units (3 and 4) were used to encode the three possible connectives in a
manner similar to the way that two units encoded letters. Problems containing
IF..THEN... as the main connective had units 3 and 4 set at ‘1 1°. Problems containing
--OR... as the main connective had umits 3 and 4 set at “0 1°. Problems containing NOT
BOTH...AND... as the main connective had units 3 and 4 set at ‘1 0°. As there were only

three possible connectives in the training set, the encoding ‘0 0’ was not used.

This encoding scheme ensured that each problem had a unique encoding, which consisted
of a string of 14 binary bits. For example, the following problems
(a) If A Then B, (b) Not Both Not D And A

A Not A

—]-3----- NotD
would be represented to the network on the input layer as,
010001010
001101100
A similar set of representational conventions were employed for the three output units of
the network. Two of the output units, units 0 and 1, were used to encode the problem
type. The now familiar two bit encoding systems was used again. Modus Ponens
problems were signified, under ideal conditions, by these two units being set to the values
‘0 17, respectively. Modus Tollens problems were signified, under ideal conditions, by
these two units being set to the values 1 0’, respectively. Alternative Syllogism problems

were signified, under ideal conditions, by these two units being set to the values ‘1 1°,
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respectively. Finally, Disjunctive Syllogism problems were signified, under ideal

conditions, by these two units being set to the values ‘0 0, respectively.

Validity was represented by a single output unit. It was assigned the value of ‘1’ to
indicate a valid argument and ‘0’ to represent an invalid argument. Further details on this
encoding scheme and the training set can be found in Bechtel and Abrahamsen (1991: pp.

167-171).

The Training of L10

Berkeley et al. (1995) trained the L 10 network using Dawson and Schopflocher’s (1992)
extension of the generalized delta rule. They used a leaming rate of 0.03 and a
momentum of 0.0. They also randomly set the connection weights and biases in the range
from -0.3 to 0.3. During training, the strengths of connection weights were altered, but
the biases were held constant at their randomly set values. Connection weights were
changed after each pattern was presented to the network and the order in which the
patterns were presented to the network was randomized after each complete presentation

of the entire training set.

Berkeley et al. (1995) trained the L10 network until the network produced the correct
response on all three output units, for every single pattern in the 576 pattern training set.
They operationalised “correct responses’ such that, if the desired response of a particular
output unit to a particular pattern was 1, then an activation of 0.9 or greater would count

as being correct, and if the desired response was over an activation of 0.1 or less would



89

count as being correct. The L10 network reached convergence, that is to say produced the
correct response on each of the output units for every pattern in the training set, after

5793 presentations of the training set (‘epochs’).

The Network Analysis Technique

One standard technique for understanding aspects of brain function employed by
neuroscientists is what is known as “single unit recording’ (see Churchland & Sejnowski,
1992: pp. 440-442). This technique involves the insertion of a micro-electrodes into a
brain, so as to enable recordings of intracellular and extracellular potentials to be made,
whilst the organism is exposed to various stimuli. Using this technique for example,
neurons which are responsive to lines of various orientations in the visual field have been

identified within the visual cortex of cats and monkeys (Kolb & Wishaw 1990: p. 48).

The reason for mentioning this fact here is that the analytic technique described by
Berkeley er al. (1995) starts by requiring that a roughly analogous procedure be
performed upon the hidden units of a network after it has learned to solve a particular
problem. Once L10 had been trained to convergence, Berkeley et al. (1995) re-presented
the training set to it and recorded the levels of activation of each hidden unit, for each

problem in the training set.

The step of recording hidden unit responses to the training set is crucial to analytic
technique described by Berkeley et al. (1995). The information recorded from each

hidden unit was then illustrated by Berkeley et al. (1995) using what is known as a
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‘jittered density plot’ (see Chambers, Cleveland, Kleiner and Tukey, 1983). It is worth

pausing briefly to explain how such plots should be read.

.'.°..- -.°. ce . ©e -..°.. Random
e , ° ®e o.o.. .0... .‘o. * Vertical
:. .o s ° ° e e ©® ) * ° ° .. .o * Jlttenng
: A P -
=T | . | N
0.0 0.2 04 0.6 0.8 1.0
Level of Activation
Figure §5-2

An example of a jittered density plot.
A jittered density plot consists of a number of points plotted against a horizontal axis.
Each point on a particular jittered density plot, as these plots are used by Berkeley ez al.
(1995) in their analytic technique, corresponds to the level of activation in a particular
hidden unit, for one input pattern in the training set. The horizontal location of each point
is indicative of the level of activation which that particular input pattern caused in the
particular hidden unit. Consider a particular point in such a plot. The precise horizontal
location of a point on a jittered density plot is dependent upon the level of hidden unit
activation associated with that point. The vertical position of a particular point, by
contrast, has no such significance. When jittered density plots are generated, a random
component -- the vertical ‘jitter’ -- is added, so as to prevent points from overlapping with
one another. Thus, the height of a particular point above the horizontal axis is of no

significance.



91

Jittered density plots are of interest in the current context, because Berkeley et al. (1995)
showed that trained networks of value units often exhibit a marked ‘banding’ effect in
such plots, when the information from representing the training set is displayed in this
manner. This banding is crucial to technique for analyzing networks described by

Berkeley et al. (1995).

Figure 5-3
An example jittered density plot for a hidden unit of a value unit network.

Once bands have been identified, the next step in the analytic process is to find what
Berkeley et al. (1995) call the ‘definite features’ associated with each band. The purpose
of doing this is to identify common attributes or properties, in terms of input features, of

the patterns which fall into particular bands. Definite features came in two varieties,
unary and binary.
Berkeley et al. (1995: pp. 172-173) defined a unary definite feature as follows;

A definite unary feature [for a particular band] was defined as an input bit

that had a constant value for all the patterns within the band.
One advantage of this notion of a unary definite feature is that it permits their easy
identification by use of descriptive statistics on the input patterns which fall into a

particular band. A particular band has a unary definite feature just in case the mean value

of a particular input for all the patterns in the band is either 1 or 0 and the standard
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deviation for that input is also 0. Such statistical results indicated that the particular input

has zero variability and is consequently a constant for all the patterns which fell into the

band.
Berkeley et al. (1995: p. 173) defined a binary definite feature as follows;

A definite binary feature was defined as a perfect negative or perfect
positive correlation between pairs of binary [input] features, the former
representing the fact that two bits were always opposite in value, the latter
representing the fact that two bits were always equal in value.
As was the case with unary definite features, this definition of binary definite features
enabled Berkeley et al. (1995) to easily identify binary definite features by performing
descriptive statistics on the input patterns which fall into a particular band. A particular
band had a binary definite feature just in case there was a correlation of exactly 1 or -1
between pairs of bits in the input pattern. A binary definite feature reflects a particular
relationship between the values given to pairs of input units. It also reflects the fact that
this relationship holds for all the input patterns which fall into a particular band. For
binary input data, if a correlation of 1 is found between two input bits, it indicates that the
input bits have the same value for all the input patterns in the band. Similarly, if a
correlation of -1 is found between two input bits, it indicates that the input bits have the
opposite value for all the input pattemns in the band. That is to say, when one bit has the

value 1 the other will have the value 0, or when one has the value O the other will have

the value 1.
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The Analysis of Network L10
In order to illustrate this analytic technique, let us turn to the example of this technique
applied to the network L 10, described by Berkeley et al. (1995). Figure 5-4 illustrates the

Jittered density plots for the network’s ten hidden units.
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Figure 5-4
Jittered density plots for the 10 hidden units of the network L10, displaying the level
of activation in each unit for each of the 576 patterns in the L10 training set.
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It should be immediately apparent that the banding phenomenon is fairly clearly
exhibited by all the hidden units, with the exception of unit 1. Note also the convention
for naming bands which Berkeley et al. (1995) adopted. Individual bands in the jittered
density plot for a particular hidden unit are assigned a letter, starting with the leftmost

band. This facilitates easy reference to particular bands for the purposes of discussion.

In order to illustrate the procedure for identifying definite features, it is perhaps helpful to
consider how such an analysis is done on one particular band, which has both unary and
binary definite features. For this purpose, I will consider band B of hidden unit 4 of the

network L10, described by Berkeley et al. (1995).

Figure 5-5
The jittered density plot for hidden unit 4 of the L10 Network.

Band B of hidden unit 4 of L10 contained just 48 out of the possible 576 patterns in the
training set. When the appropriate descriptive statistics were computed with respect to the
input patterns for the 48 patterns in band B, a number of definite features were revealed.

Band B exhibited two unary definite features which are detailed in Table 5-2.

It turned out that the only unary definite features found for the 48 patterns in band B of

hidden unit 4 of L10 were associated with input units 3 and 4. Given the fact that each
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input unit was assigned a particular representational role, with respect to the training set,
this enabled Berkeley et al. (1995) to determine exactly which input features all the

patterns shared in common.

Input Unit Mean Value Standard Interpretation
Number Deviation
3 1 0 IF..THEN... is the
4 1 0 main connective
Table 5-2

The unary definite features found in band B of hidden unit 4 of network L10.
In the case of the unary definite features associated with this band, the features arise for
input units 3 and 4 only. As input units 3 and 4 were the two units which encoded the
connective of the problem, this enabled Berkeley et al. (1995) to determine that all the 48
patterns which fell within this band had in common the property of having ‘IF...THEN...’

as the main connective.

Band B of hidden unit 4 also exhibited six binary definite features. As in the case of the
unary definite features, because the input units of L10 had particular assigned
representational roles, this enabled Berkeley et al. to determine what properties of the

input that the patterns which fell into the band shared in common.

Input Unit Pair | Correlation Interpretation

0-11 1 S1(V1) is the same sign as C
1-12 1 S1(V1) is the same
2-13 1 letter as C

5-8 1 S1(V2) is the same sign as S2
6-9 1 S1(V2) is the same
7-10 1 letter as S2

Table 5-3

The binary definite features found in band B of hidden unit 4 of network L10.




96

The binary definite features identified in the 48 patterns which fell into band B of hidden
unit 4 of L10 are detailed in Table 5-3, along with the interpretations of those definite
features. This example illustrates nicely the power of the analytic technique described by
Berkeley et al. (1995). The process of first identifying bands, followed by identifying the
definite features associated with those bands, makes it possible to come up with a
reasonably detailed understanding of what particular hidden units in the network L10 are
sensitive to under various input conditions, when the network solves Bechtel and
Abrahamsen’s (1991) logic problem. In particular, identifying definite features makes it
possible to provide an interpretation of the bands by associating them with properties of

input patterns.

Berkeley et al. (1995) reported being able to recover definite features and associated
interpretations of those features for almost all the bands in the jittered density plots of the
hidden units of L10, displayed in Figure 5-4. The interpretations they discovered are
detailed in Table 5-4. The interpretations of the bands presented in Table 5-4 vary quite a
bit with respect to their complexity. Arguably, bands with the least complex
interpretations are those which just respond to the connective in the first premise, such as
all the bands of hidden units 8 and 6. These bands just have unary definite features. Other
bands respond to the relationships between letters in the various variable places of
arguments. Band C of hidden unit 3, for example, is such that any input pattern in which
the first variable of the first premise is the same letter as the variable in the conclusion
and the second variable of the of the first premise is the same letter as the variable in the

second premise, will cause the unit to adopt an activation which falls into this band. In
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this case, the band has four binary definite features which correspond to the input bits

which encode the four variables.

UNIT NUMBRER BAND NUMBER OF PATTERNS MEDIAN ACTIVITY INTERPRETATION OF DEFINITE FEATURES
(] A 456 0.00 No definite features
B k23 0.77 SI(V1) is the same letter a5 S2

SI(V2) is the same letrer a8 C
‘The compective is not IF..THEN
[ 43 0.99 SI(V1) is the same letter as S2
SI(V1) is opposite in sign to S2
SI(V2) is the same letter 28 C
S1(V2) is opposite in sign to C
The connextive is [F..THEN

1 A 516 0.00 No definite features
2 A 456 0.00 No definite features
8 9% 0.46 SI(V1) is the same letter 23 S2

SI(V1) is the same sign as S2

SI(V2) is the same letter as C

The connective is not NOT BOTH._AND
c 24 0.9 SI(V1) is the same letter 28 S2

S1(V1) and S2 are not negated

S1(V2) is the same letter 2 C

S1(V2) is opposite in sign to C

The connective is NOT BOTH...AND
3 A 456 0.00 No definite features
B 2 0.81 SI(V1) is negated
SI(V1) is the same letter as C
S2 and C are not negated
SI(V2) is the same letter as S2
The connective is OR
[od 86 0.99 SI(V1) is the same letter s C
S1(V2) is the same letter a3 S2
4 A 431 0.00 No definite features
B 43 0.56 SI(V1) is the same leter nd sign s C

S1(V2) is the same letter and sign as S2
The connective is IF..THEN

[+ 43 0.81 SI(V1) is the same letter and sign ;s C
SI(V2) is the same letter a3 S2

S1(V2) is opposite in sign to S2

The connective is NOT BOTH...AND
D 48 0.99 S1(V1) is the same leter snd sign as C
S1(V2) is the same letter as S2

S1(V2) is opposite in sign to S2

The connective is OR
s A 456 0.00 No definite features
B 24 0.51 S1(V1) is the same lewter s C

S1(V1) is opposite in sign 10 C

S1(V2) is the same letser as S2

S1(V2) and S2 are not negated

The connective is NOT BOTH._AND

[ 96 097 SI(V1) isthe same leter s C

S1(V2) is the same letter 28 S2

S1(V2) is opposite in sign to S2

‘The connective is not NOT BOTH...AND

Table 5-4a
Interpretations of the bands of the hidden units of network L10



98

UNIT NUMBER BAND NUMBER OF PATTERNS MEDIAN ACTIVITY INTERPRETATION OF DEFINITE FEATURES
6 A 84 0.00 The connective is not OR
B 192 1.00 The connective is OR.
7 A 96 0.06 S2 is negated.
The connective is NOT BOTH...AND
B %4 0.54 The connective is not NOT BOTH..AND
96 099 S2 i pusitive
The connective is NOT BOTH...AND
8 A 192 0.03 The connective is OR
B 192 0.11 The connective is IF... THEN
[of 192 0.82 The connective is NOT BOTH...AND
9 A 512 0.00 No definite festures
18_ 64 #S No definite features
Table 5-4b

Interpretations of the bands of the hidden units of network L10
Perhaps the most complex interpretations arise for bands in which units adopt activations
within the band on the basis of combinations of letter similarities, relationships between
the negated or unnegated status of those letters (what is referred to as sign, in the
descriptive notation) and the presence or absence of particular connectives in the first

premise. Band D of hidden unit 4 is an example of a band of this kind.

It is clear from Table 5-4 that there is some considerable redundancy in the set of
properties which the bands are sensitive to. For example, a simple valid Modus Tollens
problem with A in the antecedent position and B in the consequent position (e.g. If A
" Then B, Not B, Therefore Not A) would have the fact that the antecedent letter matched
the letter in the conclusion and that the consequent letter matched the letter in the second
premise represented (in conjunction with other information) by the pattern causing an
activation in band C of unit 3 and an activation in band C of unit 5. Similar redundancy
can be found for other input patterns too. Although the bands may not represent the
problems in the most efficient way though, they do have the virtue (in conjunction with

the network architecture) of being able to solve all the problem in the training set.
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Some bands, especially A bands, which often have mean activations close to 0, are
assigned the interpretations ‘No definite features’. However, in most of such cases, this
simply indicates that patterns that fall into the A band of a particular unit do not possess
any of the definite features that are associated with any of the other (non-zero) bands of

that unit.

Although the banding analysis technique described by Berkeley et al. (1995) does offer
considerable insight into the way that the network L10 succeeds in solving the set of logic
problems, it is not without its limitations. For example, the technique will not produce
good results for problems which do not have sparse problem spaces. Another apparent
limitation is exhibited by the results presented in Table 5-4. The analytic technique failed
to come up with an interpretation for hidden units 1 and 9 of L10. This can be either
because there were no definite features to be found in the unit’s bands (as in the case of
unit 9), or because the unit does not exhibit banding at all (as in the case of unit 1).
However, this apparent difficulty is merely indicative that, in all likelihood, with the
appropriate starting values, a network with fewer hidden units could be successfully

trained upon the logic problem.’

Berkeley at al. (1995) showed that their network L10 could be analyzed in some
considerable detail, using their banding analysis technique. Although the technique was
not entirely perfect, the analysis of L10 goes a long way to satisfying the requirements of
net analysis raised by McCloskey (1991), discussed above. As such, the analysis of the

network provides a good deal of information which is germane to assessing the

* Unpublished data from network simulations of this problem supports this conjecture.
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relationship of connectionist systems to the CCTM. However, although the definite
features described above clearly indicate which input properties each hidden unit of L10
was ‘paying attention’ to, they do not provide much insight into the way that the bands
(or their associated definite features) enable the network to solve the set of logic

problems.

Definite Features and Inference ‘Rules’

Berkeley et al. (1995) demonstrated that it was quite feasible to characterize the problems
in the training set, just in terms of the bands of hidden unit activity which they produced
in the hidden layer. More interestingly though, they showed that there are useful and
perhaps surprising generalizations which arise from characterizing problems with such
‘band descriptions’. For example, every valid Modus Ponens problem produced a unique
pattern of bands [0-A, 1-A, 2-B, 3-A, 4-A, 5-A, 6-A, 7-B, 8-B, 9-A] in the hidden layer.
That is to say, every valid Modus Ponens problem produced activity of hidden unit 0 such
that it fell into band A, produced activity of hidden unit 1 such that it fell into band B,

and so on.

Modus Ponens was not the only type of problem which produced a unique pattern of
activation, when these activations were characterized as band descriptions. Berkeley et al.
(1995) discovered that when band descriptions were produced for the various other
problem types, in a significant number of cases, there was a unique band description
which every problem of the kind fell into. Given that each band is associated with a set of
definite features which is in turn associated with input properties, this enabled Berkeley et

al. (1995) to determine the set of properties the network used to solve problems of each
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kind. Even more significantly, once Berkeley et al. had discovered these sets of

properties, they were then in a position to compare the network’s solutions to other means

of solving problems of the same kind.

PROBLEM FORMAL DEFINITION OF
RULE FOR VALID

PROBLEM TYPE

Valid Modus
Ponens (MP)

Valid Modus
Tollens (MT)

Valid Altemnative

Syllagism (AS)
0) SIGN SI(VI1)#SIGN S2
[There are two SIGN S1(V2)=SIGN C
versions of ASin | CONNECTIVE: OR
the training set]
(in)

Si(Vl)=82

Valid Disjunctive

NETWORK ‘RULE’

§2 IS NEGATED

NOTES ABOUT NETWORK ‘RULES’

The network ‘rule’ is the same as the formal
rule except that the network does not pay
attention to the signs of S1(V2) and C. Due
to the nature of the training set, though, this
iS not neces

Although the network does not pay attention
to the signs of SI(V1) or C, this is not
significant due to the nature of the training
set.

This is a ‘default rule’. Provided the
connective is OR and no other definite
features are true of the pattemn, then the
problem must be a valid AS.

Here the network is sensitive to exactly the
same set of properties as the traditional
inference rule.

This is another ‘default rule’. Provided that

SIGN S1(V2)=SIGN S2
CONNECTIVE: NOT
BOTH...AND

SIGN S1(V2)=SIGN S2)
S1(V2) IS NOT NEGATED
S2 IS NOT NEGATED

Syllogisms (DS) SI(V2)=C CONNECTIVE: NOT $2 is negated, the connective is NOT
(0] SIGN S1(V1)=SIGN S2 BOTH..AND BOTH...AND, and no other definite features
[There are two SIGN S1(V2) = SIGN S2 are present, then the problem must be a
versionsof DSin | CONNECTIVE: NOT valid DS.
the training set] BOTH...AND
(i) SI(VI)=C SI(V1)=C This network is sensitive to the same set of
SI(V2)=82 SI1(V2)=S82 properties as the second traditional
SIGN SI1(V1)2SIGNC SIGN S1(V2)#SIGNC inference rule for DS, apart from the

additional stipufation that S2 and S1(V2) are
not negated.

CONNECTIVE: NOT

BOTH...AND

SI(V1)=82 This network is sensitive to the same set of
SI(V2)=C properties as the first traditional inference
SIGN S1(V1)=SIGN S2 rule for DS, apart from the additional

SIGN S1(V2)#SIGNC stipulation that S2 and S1(V2) are not

S1(V1) IS NOT NEGATED
$2 IS NOT NEGATED
CONNECTIVE: NOT
BOTH...AND

negated.

Table 5-5

The patterns of bands produced by L10 for each problem type and the properties
associated with each band, as compared to the properties associated with the
inference rules of natural deduction. Grey shading indicates effective equivalence of
properties. (S1(V1) and S1(V2) are the first and second variables in sentence 1; S2 is
the variable in sentence 2; C is the variable in the conclusion; SIGN refers to
whether a variable is negated or not negated).
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Since traditional inference rules (see Bergmann et al. 1990) can be considered as
stipulating a specific set of relationship between variables, signs and connectives, then
they can be straightforwardly expressed in the descriptive notation introduced by
Berkeley et al. (1995) and described above. Berkeley ez al. (1995) did just this so as to
provide a simple means by which L10’s solution to the problem could be directly
compared with the properties and relations stipulated by the traditional rules. It turned out
that there are significant similarities between the set of properties and relationships to
which L10 is sensitive to and which it uses to operate upon problems of the various types,
and the set of properties and relationships stipulated by the traditional inference rules.

These similarities are illustrated in Table 5-5.

A close inspection of Table 5-5 shows that although there are significant similarities
between the sets of properties that the network was sensitive to, there were also some
quite significant differences. For example, in a number of cases, most notably with
respect to type (i) Alternative and Disjunctive Syllogism problems, the network appears
to employ what might be termed a ‘default rule’. In addition, in the case of valid type (i)
Disjunctive Syllogism problems, L10 differentially classifies (in terms of bands) and
processes problems, depending upon whether or not S1(V2) and S2 are negated. These
results are without a doubt intriguing and deserve further consideration. They, and the
conclusions which can be drawn from them, will be discussed in more detail in the next

chapter.



103

One brief further clarification is appropriate with respect to the use of the term ‘rule’, as
used to describe the properties to which the network is sensitive, in Table 5-5. This usage
follows that employed by Berkeley et al. (1995). One of the things which made the use of
the term ‘rule’ attractive to Berkeley et al. (1995) in their description of these sets of
properties, was the fact that, despite there being some cases of differences between the
features stipulated by traditional inference rules and the features to which L10 is
sensitive, these differences appear to be comparatively minor. For example, whereas the
traditional rule for Modus Ponens requires that the consequent be of the same sign as the
conclusion, L10 is not sensitive to this feature. But because the training set is such that all
instances of Modus Ponens problems in which S1(V1) is the same sign as S2 are also
instances in which S1(V2) is the same sign as the conclusion, there is no necessity for the
network to be also senmsitive to this latter feature. Hence the difference between the
features which L 10 is sensitive to and those stipulated in the traditional rule of inference
are trivial in this case. It is simply and artifact of the nature of the training set. An
analogous and equally inconsequential difference arises in the case of Modus Tollens

problems too.

There is a broad sense in which something is a ‘rule’ if it prescribes that, in circumstances
X, behavior of type Y ought or will be indulged in by agent or system Z (Cf. the
definition of ‘rule’ offered by Twining and Miers, 1976: p. 48). If ‘rules’ are understood
in this way, then there should be nothing objectionable about the use of the term ‘rule’ in
the context of Table 5-5, at least as a first approximation. The question of the status of

these supposed network ‘rules’ will be addressed in more detail in the next chapter.
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Conclusion

The results of analysis of the network L10 show, at least, that the objections and concemns
about connectionist methodology which McCloskey raised in his discussion can be met,
at the very least in principle. The information contained in the above tables and
discussion serves to describe in detail the mechanisms responsible for the network’s
behavior. Moreover, Berkeley et al.’s (1995) discovery of rules within the network
provides prima facie grounds for treating the claims of the advocates of the ‘myth’ which

opened this chapter with at least a cautious skepticism.

It is also significant that, as a consequence of Berkeley et al.'s (1995) analysis of L10
there is now evidence about the operation of a trained network which can be used to
assess whether or not networks can be said to have ‘tokens’, ‘representations’ and so on.
Such notions are crucial to the CCTM, and the evidence from the analysis will be crucial
in assessing the relationship between networks and the CCTM. This will also facilitate a
realistic evidence-based assessment of the extent to which connectionist networks really
do offer a challenge to the CCTM. The final outcome on these matters will depend upon
an assessment of the network L10 with respect to the notions of ‘systematicity’ and
‘compositionality’ and a number of associated notions that are crucially related to the

CCTM, which will be undertaken in the next chapter.
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A4
onnectionist Networks and The Classical Computational Th of Mind

Introduction

The last chapter began by raising some concemns about what was known about the
functioning of trained connectionist networks. In particular, an epistemological difficulty
with respect to the details of the operation of such systems after training was highlighted.
This epistemological difficulty, it was argued, not only had consequences for the
potential contribution that connectionist systems could make to cognitive theorizing in
general, but also presented special difficulties for assessing the relationship between
connectionist systems and the CCIM. The bulk of the chapter was taken up by the
detailed description of the analytic method of Berkeley et al. (1995) which offered a
means of resolving the epistemological problem and the results which they obtained from

a particular network, L10.

With the information from this network in hand, the comparison between the results from
at least one connectionist network (L10) and crucial properties, which have bearing upon
the CCTM, is now tenable. Considering the results from the analysis of the network L10
and locating the significance of those results in the context of recent debates on CCTM

related topics will be the main goal of this chapter.

The CCTM again
In the Chapter II, a discussion of the CCTM was presented to try to clarify this position.
As a result of this clarification, a list of properties was generated. As a result of this

clarification, it was apparent that the CCTM seemed to involve a commitment to the
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notion that CCTM computers (e.g. Turing machines) and minds share the following

properties:

(1) A finite range of discrete tokens,
(2) A capacity to store and retrieve sequences of tokens,
(3) A capacity to perform a determinate range of precise and exceptionless
operations upon tokens,
(4) A capacity to support a principled distinction between tokens and
operations which manipulate those tokens,
(5) A capacity to construct structurally complex strings of tokens,
(6) A capacity to differentially perform operations upon structurally
complex strings of tokens, dependent upon the order of the tokens in
the string,
(7) A capacity to support principled interpretations.
These properties are closely related to one another and concem a variety of interrelated
notions and issues. However, there is one particular pair of issues have come to the fore
in recent years, with respect to the relationship between connectionist systems and the
CCTM. These concern whether of not connectionist systems can exhibit the properties of
systematicity and compositionality. The claims of Fodor and Pylyshyn (1988), and more
recently Fodor and McLaughlin (1990) about connectionist systems with respect to
compositionality and systematicity, have generated a substantial controversy. They claim
that one of the principled differences between connectionist systems and what they
(Fodor and Pylyshyn 1988: p. 12-13, passim) call “classical’ ones (i.e. those which are
obviously consistent with the CCTM and also have the property mentioned in chapter 2,
fn. 12) is that classical systems have these properties, whilst connectionist ones do not.

Connectionists (e.g. Chalmers, 1990, Smolensky, 1990 and Pollack 1990) have made

substantial efforts to refute this claim.



107

The challenge posed here directly relates to the properties associated with the CCTM, as
it is in virtue of having of these properties, it is claimed, that CCTM machines exhibit
compositionality and systematicity. In particular, Fodor and Pylyshyn (1988) maintain
that having discrete tokens (i.c. property (1)) and a set of exceptionless operations defined
for those tokens (i.e. property (3)) in combination, is sufficient to produce systematicity
and compositionality. This point will be discussed further below. The issue of whether or
not the network L10 is compositional and systematic consequently provides a natural

starting place to begin considering the relationship between networks and the CCTM.

Systematicity
Fodor and Pylyshyn introduce systematicity in the context of linguistic capacities (1988:
p- 37). However, they do not believe that the phenomenon is limited to the linguistic
domain. They say (1988: p. 37),

What we mean when we say that linguistic capacities are systematic is that

the ability to produce/understand some sentences is intrinsically connected

to the ability to produce/understand certain others.
What they have in mind here is that the ability of someone to produce/understand the
sentence ‘John loves the girl’, is intrinsically related to the ability to produce/understand

the sentence “The girl loves John’. Their claim is that one cannot produce/understand one

without also being able to produce/understand the other.

However, one of the major problems with Fodor and Pylyshyn’s (1988) critique is that it

is far from clear exactly what they have in mind by the term ‘systematicity’ (See van
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Gelder & Niklasson 1994 and Niklasson & van Gelder 1994). Niklasson and van Gelder
(1994: pp. 288-289) note that,
In their 1988 paper Fodor and Pylyshyn discussed systematicity at length,
but provided no succinct and precise characterization of it; at best, they
gestured at the phenomenon with hints, analogies and anecdotal
observations.
In addition, despite the fact that Fodor and Pylyshyn (1988) claim that their systematicity
argument is a ‘traditional’ one, they do not supply any other examples of it and
(according to Niklasson and van Gelder 1994: p. 289) “...there is [almost] no occurrence
of the argument or the concept in the cognitive science literature before 1988....”. This
has presented some very real difficulties with respect to assessing whether or not certain

connectionist systems and techniques actually serve as refutations of Fodor and

Pylyshyn’s claims (e.g. Chalmers 1990 and Smolensky, 1990).

Hadley (1994) has argued that in order to properly understand the relationship between
Fodor and Pylyshyn’s (1988) claims and connectionist counter-claims and the
relationships of both sets of claims with respect to human performance, it is necessary to
distinguish various degrees, or kinds of systematicity. In order to assess the network
L10’s systematic capacities, it will be helpful to adopt Hadley’s framework. Hadley

(1994) proposes that there are three distinct degrees of systematicity.

Hadley’s (1994) descriptions of his three degrees of systematicity are couched in terms of
linguistic items (i.e. ‘words’, ‘sentences’ and so on). However, Hadley’s conceptions can
be quite natural extended by employing more general terminology (e.g. ‘tokens’). Doing

this serves to make the conceptions of systematicity more straightforwardly applicable to
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networks such as L10, which are not trained upon linguistic tasks. This move is entirely
consistent with the claims made about systematicity by Fodor and Pylyshyn (1988). With
the appropriate substitutions made, Hadley’s (1994) three conceptions of systematicity

are as follows:

1) Weak Systematicity. A system is said to be weakly systematic if it can

successfully process a novel set of strings of tokens which:

(1) contains no tokens that are not present in the set of strings of tokens
that the system was trained upon, and

(ii) that no token in the novel set of strings of tokens is in a position within
a string of tokens that it did not occur in (at some point) in the set of
strings of tokens that the system was trained upon.

2) Quasi-Systematicity. A system is said to be quasi-systematic if:
(i) it can exhibit weak systematicity, and
(ii) the system can successfully process novel strings of tokens which are
such that they contain embedded strings of tokens, and
(iii) both the novel embedded strings of tokens and the larger containing
strings of tokens are (respectively) structurally isomorphic to strings
of tokens in the set of strings of tokens that the system was trained
upon, and
(iv) for each successfully processed novel string of tokens that contains a
token in an embedded string of tokens, there is some string of tokens
in the training corpus which does not contain embedded strings of
tokens which contains the same token in the same position as it
occurs in the embedded sentence.

3) Strong Systematicity. A system is said to be strongly systematic if:

(i) it can exhibit weak systematicity, and

(ii) the system can successfully process novel strings of tokens (both with
and without embedding) which are such that they contain tokens
that are in positions that those tokens did not appear in the set of
strings of tokens which the system was trained upon, and

(iii) the novel set of strings of tokens which the system successfully
processes has a significant fraction of tokens in positions that those
tokens did not appear in in the set of strings of tokens which the
system was trained upon.

What is the relationship between the seven properties associated with the CCTM and the

notions invoked in the specification of the three kinds of systematicity?



110

Consider for example, the fact that weak systematicity presupposes some distinction
between tokens and strings of tokens which is mirrored by properties (1) and (5) of the
CCTM. The notion of weak systematicity also requires that strings of tokens be discrete
from one another (as is indicated by the use of the term “set’). It is unclear the extent to
which this kind of systematicity will presuppose property (2) of the CCTM, because this
will depend on the exact way that a particular systems is set up. Something like property
(3) of the CCTM is also presupposed by weak systematicity, although it appears to
require fewer (explicit) restrictions upon the nature of the operations than does the
CCTM. Similarly, although the notion of weak systematicity presupposes that there is
some distinction between tokens and the operations which manipulate those tokens (i.e.
property (4) of the CCTM), but it does not necessarily require that the distinction is
principled. Although some property broadly similar to property (6) of CCTM will be
presupposed by weak systematicity, it is not clear the extent to which such a property
would have to be identical to it. Finally, property (7) is only weakly required, in the sense
that there is no reason why the interpretation needs to be principled, provided that there is
some interpretation. So, despite the fact that there is an overall similarity between the
requirements for weak systematicity and the properties associated with the CCTM, the

requirements are considerably loosened, in a number of respects.

Quasi-systematicity has a condition that a system be weakly systematic. Consequently, it
will presuppose at least the same properties of the CCTM, to the same degree as does
weak systematicity. Notice though that there are some differences with respect to the

properties of the CCTM. In particular, a system which lacks property (6) of the CCTM
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will not be able to handle the embedding. Thus, in the case of quasi-systematicity,
property (6) becomes a requirement. Although the operations of property (3) of the
CCTM may not necessarily have to be exactly as specified in the CCTM, it seems highly
likely that systems which have exactly property (3) of the CCTM will be able to exhibit
quasi-systematicity. In the case of property (7) of the CCTM there would be an analogous
situation. Whilst it would certainly make quasi-systematicity easier to achieve if a
principled interpretation could be supplied, there is no way to rule out the possibility that

there may be non-principled means of achieving this.

In the case of strong systematicity, it would appear likely that exactly the seven properties
of the CCTM would be required. Of course, it may turn out to be the case that some of
the properties listed are not actually required. However, the precise issue with respect to
connectionism verses the CCTM turns upon whether or not the properties of the CCTM

are necessary for strong systematicity or not.

It is clear from the remarks of Fodor and Pylyshyn (1988) that what they have in mind
when they talk about ‘classical models’, are models of the kind which exhibit the
properties associated with the CCTM.! Indeed, Fodor and Pylyshyn’s (1988) central
claim is that, systematicity and compositionality emerge in classical models precisely

because such models exhibit the properties associated with the CCTM. This being the

' Fodor and Pylyshyn (1988) define what they take to be the two central properties of classical systems
(constituent structure and structure sensitive processing) with respect to internal mental representations, as
opposed to the external strings of tokens which were focussed upon in the discussion of the CCTM in
chapter 2. However, it is clear from Fodor and Pylyshyn’s (1988) discussion that they also believe that
internal representations have properties analogous to those possessed by strings. That is, their view is very
much a syntactic theory of mind. So, their overall view seems to be that this additional complexity is to be
accomodated by attributing the possession of constituent structure and structure-sensitive processing to
internal strings of tokens.
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case, it is appropriate to consider the network L10 with respect to systematicity and
(given the relation between the two notions) compositionality in order to see what, if

anything, the network can add to the debate.

In the previous chapter, the position was advanced, based on the claims of Berkeley et al.
(1995), that the network L10 had, during training, developed ‘rules’ for solving the
Bechtel and Abrahamsen logic problem set. In a number of cases, the rules were also
significantly similar to the rules of inference of “classical’ natural deduction systems.
This then would seem as likely a level at which to find systematicity within the network
as any other. Moreovér, working at this level also will provide some insights into the

similarities and differences between the network’s rules and “classical’ ones.

The nature of the rules which Berkeley et al. (1995) discovered in their network L10 are
such that, provided that novel inputs to the network can be represented without making
any fundamental changes to the representational conventions at the input layer, then the
network will be able to successfully process strings of tokens which contain novel tokens.
A ‘fundamental change’ here would be, for example, to increase the dimensionality of the
combinations of units used to represent the letters at the input layer (for example, by
encoding letters across three units rather than just two). The nature of the properties to
which the network is sensitive to at the hidden layer guarantee this capacity of the
network . What the network detects at the hidden layer is not the presence or absence of
particular letters in particular positions at the input layer, but rather the relationship
between variables at the input layer. Thus, subject to the constraint that encoding novel

tokens does not involve any fundamental change at the input layer, there is every reason
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to believe that the network would be able to successfully process problem containing

entirely novel tokens.

This evidence suggests that the rules of inference discovered in the network by Berkeley
et al. (1995) give rise to behavior which is at least weakly systematic. Indeed, if we
consider closely the properties that the network is sensitive to in Modus Ponens problems
for example, the reasons for this weak systematicity can be seen. Consider the properties

listed in Table 6-1.

PROBLEM FORMAL DEFINITION NETWORK ‘RULE’
TYPE OF RULE FOR VALID IDENTIFIED BY THE
PROBLEM TYPE INTERPRETATION

Valid Modus | S1(V1)=S2 S1(V1)=S82

Ponens (MP) | S1(V2)=C S1(V2)=C
SIGN S1(V1) =SIGN S2 SIGN S1(V1) =SIGN S2
SIGN S1(V2) =SIGN C CONNECTIVE: IF..THEN
CONNECTIVE: IF..THEN

Table 6-1
Network rule for Modus Ponens, as compared to the traditional rule.

The rule only specifies relations between variable letters and signs of those variables, in
addition to the fact that the main connective must be IF..THEN.... If part of the training
set had been held back from the network during training and the network had developed
the same rule, then under the right conditions, the network would have been able to
‘successfully process’ the withheld portion of the training set. For example, if the
withheld portion of the training set satisfied conditions (i) and (ii) for weak systematicity,
then the network may well exhibit weak systematicity. This is guaranteed by the
network’s inference rule. An analogous situation obtains with the rule for Modus Tollens

and the networks other rules (except for the default rules, which will be discussed
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momentarily). So, on the basis of the evidence from the network’s rules, it is reasonable

conclude that the network is weakly systematic.

Although there are definite similarities between the networks rules of inference and
traditional inference rules though, there are also important differences. The network is
sensitive to (almost) the same properties as the traditional rules for Modus Ponens,
Modus Tollens and so on, as specified by the requirement that there be a specific
connective and as a set of specific relations between variables and signs. However despite
these facts, the manner in which the connective and the variables and signs are available

to the network is not the same as it is in the more traditional case.

There is a further presupposition, in the case of the formal definition of the traditional
rules of inference, which the network does not share. This is the presupposition that either
the various properties which the rule is sensitive to will be tokened in a manner such that
the tokens are either themselves primitive, in so much as that they can be assigned
principled (i.e. non-disjunctive) interpretations, or are constituted (in a legal manner) out
of strings of tokens which are primitive in the required sense. Nonetheless, for the
problems which the network was trained upon, the network’s rules suffices to produce the
appropriate behavior. That is to say, it ‘successfully processes’ the problems. Moreover,
provided that novel problems can be presented to the network in a manner which does not
require a fundamentally change (in the sense described above) to the representational
conventions, then the network will continue (for the most part) to successfully process

such problems. However, this constraint is fundamentally different from that supposed in
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the classical case. In addition, it may well present some very real difficulties when it

comes to the generality (with respect to novel problem types) for the network.

In order for the network to be able to successfully process a Modus Ponens problem, for
example, such as ((A o B) > A), A O B, therefore A, it would be necessary to find some
means of representing such a problem without making a fundamental change in the
representational conventions of the network. Now, although it may be possible to develop
some convention which can satisfy this requirement, it is not obvious how best to
proceed. In the case of the traditional formal rule, by contrast, the presupposition about
the nature of the tokening of the components of the problem is such that it provides an

unambiguous manner in which to proceed.

These difficulties come to the fore especially strongly in the case of the so-called ‘default
rules’ developed by the network. Consider the network’s rule for valid type (i)

Alternative Syllogism problems, as presented in Table 6-2.

PROBLEM FORMAL NETWORK ‘RULE’
TYPE DEFINITION OF IDENTIFIED BY THE
RULE FOR VALID INTERPRETATION
PROBLEM TYPE
Valid Si(V1)=82 CONNECTIVE: OR

Alternative S1(v2)=C
Syllogism (AS) | SIGN S1(V1) = SIGN S2
® SIGN S1(V2) =SIGN C
CONNECTIVE: OR

Table 6-2
Network rule for type (i) Alternative Syllogism, as compared to the traditional rule.

In the case of problems of this type, the network is only explicitly sensitive to the fact

that the main connective of the problem is OR. It is reasonable to assume though that the
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network also presumably makes use of the fact that there are none of the other properties
to which it is sensitive, in successfully processing problems of this type from the training
set. That is to say, the network trades upon the idiosyncratic properties of the input
encodings, in conjunction with some general properties of the problem set as a whole, to
actually solve problems of this kind. However, once again for the network to successfully
process novel problems which are more complex, a means would have to be found of
presenting these problems to the network in a manner which at least did not require a

fundamental change in representational conventions.

Despite these apparently negative diagnoses of the network’s abilities, the rules recovered
from the network L10, suggest that the network could be weakly systematic in Hadley’s
(1994) sense, under the appropriate circumstances. In addition, other versions of the
network exhibited good generalization when trained upon fractions of the complete
training set and tested on the remainder. Results reported in Dawson ef al. (1997) suggest
that the system may even exceed Hadley’s (1994) requirements for a system to being
weakly systematic. Dawson et al. (1997) report a pilot study in which they trained a value
unit network in the same manner as L10. They then presented a set of problems to the
network that was identical to the training set except for the fact that in every instance
where there was a ‘0’ in a variable position in the original training set, the ‘0’ was
changed to 0.25, and where there was a ‘1’ in a variable position in the original training
set the ‘1’ was changed to 0.75. The network’s performance on these problems was
extremely good. In 94.3% of cases, the network gave an appropriate response (i.c.

successfully processed) to the problems.
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It must be admitted, however, that these results are not unequivocal. Condition (i) for a
system being weakly systematic requires that the novel set of strings of tokens contains
no tokens that are not present in the set of tokens that the system was trained upon.
Dawson et al.’s pilot study involved presenting the network with a set of problems which
were constructed out of activation values the network had not seen before. On the one
hand, these activation values could be taken as representing novel tokens. On the other
hand though, they could be taken as merely testing the ability of the network to handle
degraded input (i.e. exhibit graceful degradation). Only on the first reading would this
result be suggestive of more than weak systematicity. This is because (on this reading)
although the tokens were similar in kind to the ones which the network was trained upon,
and as such did not require a fundamental change in representational conventions, the
network had not been presented with exactly these tokens during training. A more
detailed investigation of this phenomenon would be an interesting line of future

investigation.2

Although it may not sound like too much of an achievement to produce a network which
is merely weakly systematic, Hadley (1994: p. 14) notes that, “Even the ability to
demonstrate weak systematicity is no small feat.” In fact, elsewhere Hadley and Hayward
(1997: p. 5) suggest that it is possible that even weakly systematic systems may be

sufficient to refute Fodor and Pylyshyn’s (1988) claims.’ Thus, the fact that systems such

% On this reading, the network’s rules might be interpreted as enabling it to exhibit what Niklasson and van
Gelder (1994) call ‘Level 3’ systematicity.

* Hadley (1994) assesses Chalmer’s (1990) network to be weakly systematic. In Hadley and Hayward
(1997: p. 5) it is stated that “...we believe that the work of Chalmer’s (1990) and Smolensky (1990) may
very well constitute counterexamples to F&P’s general claims.” Similarly, it is also noted that
“...Smolensky’s and Chalmers’ results may separately refute F&P,...”.
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as L10 may exhibit this kind of systematicity is far from trivial, as it provides the
beginning of a response to Fodor and Pylyshyn’s objections to the connectionist research
program. This is the positive conclusion which can be drawn from the network L10.

However, there is also a less positive conclusion which can be drawn from the network.

It should also be clear that the network L10 will not be able to exhibit either strong
systematicity or quasi-systematicity. The reasons for this are closely related to the
differences between the presuppositions made about tokens in formal inference rules and
the tokens operated upon by the networks rules. Both strong and quasi-systematicity
make appeal to the notion of ‘embedding’. However, in order for the rules of the network
to be able to handle embedding, significant and substantial extensions to the basic
structure of the model would be required.* This is because, as things stand, there is no
obvious means by which such embedding could be executed within the network L10, in a

manner which will guarantee that the networks performance will not degrade.

The fact that the rules in the network L10 are such that they can only support weakly
systematicity, also will have consequences, with respect to the networks ability to exhibit
compositionality. This is because of manner in which Fodor and Pylyshyn (1988) link the

two notions. It is now appropriate to consider these consequences.

Compositionality
Fodor and Pylyshyn (1988: p. 42) describe what they term the “Principle of

Compositionality” as follows;

4 Perhaps for example, if features similar to those found in Pollack’s (1990) RAAM architecture were
incorporated into value unit networks, then such network could exhibit higher degrees of systematicity.
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..insofar as a language is systematic, a lexical item must make

?pproximately the same semantic contribution to each expression in which

it occurs.
It is not unreasonable though to question the precision of Fodor and Pylyshyn’s (1988)
notion of compositionality, in the light of the problems which have been demonstrated
with their notion of systematicity, particularly given that the treatment of topics within
their paper is remarkably uniform. This being the case there are grounds for believing that
the notion of compositionality may also be in need of some conceptual clarification, in a
manner analogous to that done by Hadley (1994) for systematicity. In addition, the
evidence from the analysis of L10 by Berkeley e al. (1995) provides a context in which

the relevant questions can be addressed.

One point which needs to be addressed at the very outset though is Fodor and Pylyshyn’s
(1988) terminology.s When Fodor and Pylyshyn use the term ‘compositional’ they seem
to have in mind circumstances in which individual constituents of a complex expression
make (approximately) the same contribution to all expressions in which they occur. This
usage of the term is not standard however. It is far more common (van Gelder 1990: p.
356, fn. 1) for the term ‘compositional’ to be used for circumstances which Fodor and
Pylyshyn call ‘combinatorial’. Roughly speaking, combinatoriality (in the Fodor and
Pylyshyn’s sense) is a property of a language or representational scheme whereby the
meaning of complex expressions is a function of the meanings of the simpler parts which
make up the complex expression. For the sake of consistency, in what follows, Fodor and

Pylyshyn’s terminology will be employed. So, the crucial issue is whether or not

’ The confusion over terminology noted here may also serve as further evidence that there is a lack of
clarity and precision, analogous to that which arises with ‘systematicity’, with respect to Fodor and
Pylyshyn’s (1988) notion of ‘compositionality’.
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individual constituents of a complex expression make (approximately) the same

contribution to all expressions in which they occur in the rules of inference of the

network L10.

However, a further question arises in this context. The question concerns whether or not
the network L10 can be said to have ‘tokens’ at all, in the appropriate sense. There is an
argument which suggest that, at least in some sense, the network will have tokens. Any
system which processes information must have some means by which information can be
input into the system. Given that connectionist networks are reasonably unambiguously
information processing systems, it follows that connectionist networks must have some
mechanism for inputting information into them. As the role of ‘tokens’ (at least in the
CCTM) is to be the bearers of information, it follows that, there must be something which
is at the very least strongly analogous to tokens within the network L10. There is a

problem though.

In a Turing machine, an individual token plays a very precise role. This role is defined by
the machine table. The same is not straightforwardly the case in the network L10. This is
because of the employment of distributed encodings within the network. For example,
input units one and two are used to encode the variable letter in the first premise. A result
of this is that, if input unit one has the value of 1, then it is not clear what it is
contributing to the networks input. If input unit two is set to 0, then it could be indicating
that the input variable S1(V1) is a ‘B’. If input unit two is set to 1, then it could be
indicating that the input variable S1(V1) is a “‘C’. Although individual units may be such

that they can be subject to interpretation, they cannot be interpreted in a principled
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manner. That is to say, they do not make the same contribution to the network under all
circumstances. This is because they cannot be assigned a single interpretation which can
be coherently applied in all cases. This is obvious from the disjunctive nature of the
interpretation of, for example, input unit one. If input unit one has a value of 1, then the
input variable is either a ‘B’ or a ‘C’. If input unit one has a value of 0, then the input
variable is either a ‘A’ or a ‘D’. This suggests that individual processing units are not
tokens, in the all the respects relevant to the CCTM, although there are parts of the
network which function ‘as if’* they were tokens (i.e. the components which act as inputs

to the network’s inference rules).

It is clear that in order for a system to exhibit compositionality in Fodor and Pylyshyn’s
(1988) sense, it must support some distinction between simple and complex tokens. The
lack of any such distinction in networks is one of the main grounds Fodor and Pylyshyn
offer for why connectionist systems cannot have this feature. Notice though, that the
contrast between simple and complex expressions is ambiguous. On the one hand, it
could refer to the contrast between individual tokens verses strings of tokens. On the
other hand, it could refer to the contrast between strings of tokens which do not contain
any embedding, verses those which do contain embedding. For example, a single token,
say an ‘A’ would be simple in both senses, whereas ‘A > B’ would be complex in the
first sense, but not in the second. An expression like ‘(A > B) > A’ though would be

complex in both senses.

The differences between these two distinctions can be captured by thinking in terms of

the ‘degree’ of nesting of tokens, in a2 manner analogous to that sometimes employed in
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the study of certain logical properties (see Bermann, Moor and Nelson 1990: Ch. 6). A
simple “A’ can be thought of as a formula (i.e. an expression) of degree 0, as it contains a
single token. The expression ‘A > B’ can be though of as being of degree 1, as it contains
more than one token. In addition, although this expression contains a component (to wit,
the ‘>°) which can potentially support embedding, it does not actually do so. The
expression ‘(A > B) > A’ would count as being of degree 2 as it contains one instance of
embedding. The notion of degrees can be extended so as to capture arbitrary degrees of
complexity, with respect to embedding. The purpose of introducing the notion of degrees
here is that it enables the requirement of complexity, as employed by compositionality (in
Fodor and Pylyshyn’s sense), to be specified in a concise and non-ambiguous manner. In
addition, it makes an assessment of the compositionality which the entities upon which

the rules of the network L10 operate upon possible.

It seems likely that in order for a system to be entirely compositional in the sense
intended by Fodor and Pylyshyn, it will be necessary that individual constituents of a
complex expression make (approximately) the same contribution to all expressions
irrespective of the degree of embedding in an expression. This, it seems, is the strongest
type of compositionality possible. For this reason, it might be termed ‘strong
compositionality’. The choice on nomenclature here is intended to suggest an analogy

with Hadley’s (1994) notion of strong systematicity.

It is clear though that the rules of the network L10 do not exhibit strong compositionality.
The reason this is the case is that the network has no (obvious) means of handling

embedding. This, after all, was the reason why the network failed to be able to exhibit
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more than weak systematicity. Notice though, that with the newly introduced terminology
for degrees of embedding, we can specify with greater precision the exact extent of the
networks deficiency. In order for a network to exhibit embedding of the kind presupposed
by Hadley’s (1994) notions of strong and quasi-systematicity, what is required is
embedding greater than of degree 1. This is just what the network failed to be able to do.

The network was nonetheless able to exhibit embedding of up to degree 1.

There seems to be a sense in which the rules of the network were able to exhibit
something akin to compositionality. After all, the rules were able to solve the Bechtel and
Abrahamsen logic problem shows that to some degree, constituents of a complex
expression must have made (approximately) the same contribution to all expressions in
which they arose. If this were not the case, then the network would not have been able to
distinguish between valid cases of Modus Tollens problems and invalid cases of Modus
Ponens problems which involve affirming the consequent. This suggests that there may
be a sense in which it is legitimate to say that the network exhibited what might be
termed ‘weak compositionality’. Once again, the similarity with Hadley’s terminology is
intended. A system is weakly compositional in this sense, if individual constituents of
complex expressions (i.e. expressions with embedding of a degree greater than 0) make
(approximately) the same contribution to all expressions with embedding up to, but not
greater than, degree 1. So, this being the case, the rules of the network L10 not only were

capable of exhibiting weak systematicity, they also exhibited weak compositionality.

Given the nature of the training set that the network L10 was trained upon, it is no great

surprise that it did not develop rules which were more than weakly compositional. This is
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because the Bechtel and Abrahamsen logic problem does not contain any problems with
embedding greater than degree 1. It is reasonable to wonder then what would happen if a
slightly more complex problem was studied. For example, what if the training set were
expanded so that it contained problems with embedding of degree 2? Suppose a network
were to be able to successfully leam to solve all the problems of such an expanded
training set and be able to successfully process (in Hadley’s sense) novel strings which
included embedding to degree 2, but no greater degree. In such a case, the network would
clearly not be strongly compositional. On the other hand, it would be more than just
weakly compositional. Such a case seems to provide grounds for positing a third kind of
compositionality, which I will call, again following Hadley’s (1994) example, ‘quasi-
compositionality’. However, it is clear that the procedure used for specifying kinds of
compositionality used in the previous two cases cannot be employed here, unless we want
to say that there is a different kind of compositionality for each degree of embedding that
a system can handle. Clearly a more general approach must be found to “fill in the gap’,
so to speak between weak and strong compositionality. One approach would be to say
that a system can be said to exhibit quasi-compositionality if individual constituents of
complex expressions (i.e. expressions with embedding of a degree greater than 0) make
(approximately) the same contribution to all expressions with embedding up to, but not
greater than, degree n, where n is the highest degree of embedding found in the training
set of that system. Notice that a condition on any system exhibiting quasi-
compositionality will be that it is weakly compositional. However, such a system would

not be strongly compositional, unless individual constituents of complex expressions



125

made (approximately) the same contribution to all expressions with embedding up to

degree n+1 or greater.

Notice the strong analogy which exists between the three kinds of compositionality and
Hadley’s (1994) three kinds of systematicity. To some extent, this is intentional, however
it is also just what one would expect if the two notions are very closely related to one
another or, as Fodor and Pylyshyn put it (1988: p. 41), “..aspects of a single
phenomena.” Further evidence of the affinity between the two (sets of) notions comes
from the fact that it is exactly the same deficiency, the inability to handle strings of
tokens with embedding (greater than degree 1), which causes the rules of the network L10
to be only weakly systematic, which also causes them to be only weakly compositional.
Moreover, traditional rules of inference are strongly compositional, just because they
presuppose no limit to the degree of embedding, and this in turn explains why they can

give rise to strong systematicity.

What then, are we to infer from all this about the relationship between the network L10
and the CCTM? At the beginning of this chapter a brief discussion of the relationship
between the CCTM and Hadley’s various notions of the systematicity was presented.
Overall, properties broadly similar to those of the CCTM were required, although the
requirements upon those properties appeared to be far less stringent than was the case for
strong systematicity. Beyond this though, it is hard to be more specific. Not least because

of the limited nature of the evidence which could be gained from the network L10.
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The goal of Berkeley ef al. (1995) was just to investigate the interpretability of trained
networks and not consider issues such as systematicity and compositionality. Rather, the
unanticipated conclusions about the status of systematicity and compositionality, with
respect to the network, are significant benefits which comes from the network having
been interpreted. Although the strength of the conclusions which can be drawn in the
current context are limited to some extent, they nonetheless indicate that a potentially
fruitful direction of research would be to develop and analyze networks which could
handle embedding of various degrees. Such networks should be able to exhibit quasi-
compositionality and quasi-systematicity at the very least. This would produce
considerably more evidence about the exact relation between networks and the CCTM.
The development of connectionist networks which could exhibit strong compositionality

and consequently be strongly systematic would be the ultimate goal though.6

Of course, the extent to which such networks exhibited these features would only be one
element in developing a full response to Fodor and Pylyshyn (1988). In fact, their
arguments suggest that they think it highly likely that such networks could be developed.
This is because they do not believe that, as a matter of principle, that connectionist
systems cannot exhibit systematicity and compositionality. What they do believe though
is that any system which has these properties will just be an implementational variant of
what they call a ‘classical system’. Classical systems, in this sense, are those which have

just the properties associated with the CCTM. Whether or not there might be systems

® A network which exhibits strong systematicity has recently been described by Hadley and Hayward
(1997). However, they are cautious to say that, as the network is not purely connectionist (in Fodor and
Pylyshyn’s sense), their network does not provide a clear refutation of Fodor and Pylyshyn’s (1988)
claims.
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which could be strongly compositional and systematic, but which were not merely
implementational variants of systems with all the properties associated with the CCTM
has yet to be shown. However, the evidence from the analysis of L10 suggests that the
conclusion (that such systems are not possible) is less simple and straightforward than

Fodor and Pylyshyn suppose.’ This matter will be addressed in the next section.

Rules and Cognitive Systems®

Let us begin by sketching a little of the theoretical context in which Fodor and Pylyshyn’s
(1988) challenge arises. One of the intuitions which originally motivated the adoption of
the CCTM within cognitive science in general, and the philosophy of mind in particular,
was the intuition that cognition is information processing. One of the goals shared by
both these fields is the goal of being able to express useful generalizations about the mind
and cognitive functioning. However, it is generally agreed that in order to be able to offer
useful generalizations about cognitive functioning, it is necessary to draw a distinction (at
the very least) between the implementational level and the level at which the functional
architecture of a system is described. The reason this is the case is the fact that two
systems can do (roughly) the same thing computationally, whilst having precious few
physical properties in common. For example, both the average human being and the
average electronic calculator can add and multiply, despite the fact that the one is made
up of biological matter, whilst the other is constructed out of silicon. Such differences

exist, so the standard view goes (see for example Fodor 1975, Marr 1982 or Pylyshyn

7 I do not intend to imply by this remark that any connectionist system for which a GOFALI variant has not
been proposed will count as not being an implementational variant. See Dawson, Medler and Berkeley
(1997), for further details on this point.

* Part of the argument in this section is based upon that presented in Dawson, Medler and Berkeley (1997).
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1984), only at the implementational level. That is to say, at the level of the physical
substrate upon which each function is instantiated. By contrast, the regularity of two
systems performing multiplication is something which has to be captured at a higher

level.

The distinction between these two levels is important, in so much as there can be changes
at the implementational level which have no effect upon the state of a system as described
at a higher level. For example, both the multiplying human and the electronic calculator
could be heated up (within certain parameters) and this might have no effect whatsoever
upon the fact that both systems performed multiplication. This is not to say though that
the implementational level is of no consequence whatsoever for higher levels. The level
of the functional architecture (i.e. that above the implementational level) must be such
that there is some primitive set of information processing capacities which can be given
functional descriptions and which are ultimately explained by appealing to natural laws,
which operate at the implementational level. In order to be truly useful with respect to
cognitive theorizing though, a system must be such that it can also be given a description

at a third level. This is what Pylyshyn (1984) terms the semantic level.

In the current context, the crucial distinction is between the implementational level and
those above it. The reason for this is that the implementational level plays no direct role
in cognitive theorizing. So, in Pylyshyn’s view, any system which is merely an
implementational variant of another system, will have nothing new to add to cognitive
science. This is what gives Fodor and Pylyshyn’s objections to the connectionist research

project their teeth. If they are correct, then no matter what properties connectionist
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systems exhibits, all such a system will be able to provide are non-cognitive
implementational level accounts. However, if connectionism is to be informative to
cognitive science (or the philosophy of mind, for that matter), it will be necessary that

networks can give rise to accounts which are at a higher level, namely the cognitive one.

What then, it is reasonable to ask, is the cognitive level exactly? Pylyshyn (1991: p. 191)
answers this question when he states that,
The cognitive architecture...is the level at which the states (datastructures)
being processed receive a cognitive interpretation. To put it another way, it
is the level at which the system is representational...
Similarly, what is it exactly which distinguishes a cognitive theory from an
implementational one? Again, Pylyshyn (1991: p. 191) gives an answer when he remarks
that,
Notice that there may be many other levels of a systems organization
below this [the level of the cognitive architecture], but these do not
constitute different cognitive architectures, because their states do not
represent cognitive contents. Rather, they correspond to various kinds of
implementations, perhaps at the level of some abstract neurology, which
realize (or implement) the cognitive architecture.
However, if this is the case, then the analysis performed by Berkeley et al. (1995) seems
to provide good grounds for maintaining that the network was cognitive in the relevant
sense. The crucial distinction which divides the genuinely cognitive from the
implementational is the issue of whether or not a system is ‘representational’, or has

states which ‘represent cognitive contents’. However, the analysis of L10 showed that

this was just the situation within the network, as it demonstrated that particular network
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states (i.e. levels of activity in the hidden units) could be associated with particular

semantic interpretations.

This being the case, the analysis of the network L10 can be seen as providing evidence, of
sorts, for cognitive connectionist networks. The fact that the network was also weakly
systematic (in Hadley’s 1994) sense and also was what I termed ‘weakly compositional’,
suggests that the situation with networks may be less clear cut than Fodor and Pylyshyn

(1988) would have us believe.

The network L10 succeeded in coming up with an entirely novel theory of how to solve
the Bechtel and Abrahamsen (1991) logic problem set. This theory is embodied in the
seven inference rules discovered by Berkeley et al. (1995). This theory provides further
evidence that the network is not just an implementational level account, in two respects.
First, the seven rules succeed in capturing generalizations about the problem set. This is
Just the kind of thing that is required of a theory at the cognitive level. Second, the nature
of the theory developed by the network is such that, at least in principle, it would be
possible to run psychological experiments on human subjects to determine whether such
subjects solved the problems in an analogous manner.’ For example, it would be
interesting to see whether humans processed valid disjunctive syllogism problems with
negated second premises, in a manner different from those with non-negated second

premises.

° For example, subjects could be trained to solve the problem by being given only information about their
errors, similar to the back propogation proceedure used to train the network. The subjects could then be
asked to report how they solved the various kinds of problems in the training set and how their solutions
compared to the the way the network solved problems of the same kind.
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A brief word of caution is in order here though. In no way is any of the above intended to
imply that the network L10 actually had cognitive states. The point is rather that,
contrary to the claims of Fodor and Pylyshyn (1988), the network is a theory at the
cognitive level, albeit one which has limited plausibility. Showing that, in principle,
networks can be used as a means of generating theories at the cognitive level, is one of
the more significant conclusions which can be drawn from the analysis of network L10

(see Dawson et al. 1997).

The question of the status of the rules discovered in the network, has yet to be addressed.
In the above it has been useful to consider the rules recovered from the network, in the
light of Fodor and Pylyshyn’s challenges with respect to systematicity and
compositionality in networks. However, a question still remains about the nature of the
rules themselves, as compared to the rules of a Turing machine. The question is, in what

sense (if any) are these items rules in the classical sense of the term?

It would seem that there is a sense in which, for the network itself, the rules are not at all
classical, outward appearances notwithstanding. What is crucial here is the issue of the
tokens which are processed by the network in the course of the operation of the ‘rules’. If
it is taken to be the case that a crucial property of tokenhood in the classical sense is that
the tokens have a fixed interpretation (or to use the terms employed earlier, that tokens
have a non-disjunctive interpretation), then strictly speaking, there are no such items
within the network. After all, all information within the network is captured by unit
activations and, as was argued earlier, it is only in very rare and exceptional cases that

units can be assigned non-disjunctive interpretations. However, if this is the case, what
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are we to make of the ‘rules’ of the network, especially their apparently cognitive nature

Jjust argued for?

The situation which arises within the network L10 seems to be perfectly captured by what
Smolensky (1988) calls the ‘subsymbolic paradigm’. Smolensky (1988: p. 3) suggests
that,
...cognitive descriptions [can be] built up of entities that correspond to
constituents of the symbols used in the symbolic [i.e. CCTM] paradigm:
these fine grained constituents could be called subsymbols and they are the
activities of individual processing units in connectionist networks.
This seems to be exactly the situation within the network L10. The ‘rules’ discovered by
Berkeley et al. (1995) operate over tokens (or ‘symbols’ in Smolensky’s terminology),
but are not themselves instantiated in terms of tokens. This provides an explanation for
why the network can be described as having come up with a novel cognitive theory for
solving the Bechtel and Abrahamsen logic problem, yet does not itself appear to be a
bearer of tokens in the required (classical sense). The symbolic descriptions which

constitute the networks rules are just descriptions which map onto the underlying activity

of the processing units, which takes place at the subsymbolic level.

However, it is important to realize the significance of the analysis of the network
performed by Berkeley er al. (1995) in making this link between the levels explicit.
Indeed, Smolensky (1988: p. 3) clearly acknowledges the importance of establishing this

link when he remarks that,
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...it is often important to analyze connectionist models at a hi%her level; to
amalgamate, so to speak, the subsymbols into symbols.~ (emphasis
added)

Moreover, this view seems to be entirely consistent with that described by McCloskey in
his critique of connectionist methodology. Without network analysis and interpretation,
the mapping between subsymbolic operations and symbolic operations is left entirely

occult.

What the analysis of the network L 10 succeeds in showing is that, to at least some extent
(i.e. to the extent to which weak systematicity and weak compositionality can be
important as explanatory concepts within cognition), the subsymbolic operations of a
network can be used to provide explanatory accounts of cognitive functioning at the
symbolic level. Whilst this conclusion does not succeed in meeting the entire challenge to
connectionism proposed by Fodor and Pylyshyn (1988), it does suggest that there are
grounds for cautious optimism, with respect to the capacities of connectionist networks to
provide explanations of cognitive phenomena, including those which involve
compositionality and systematicity. Moreover, the evidence suggests that some of this
work needs to be done at the conceptual level in order to get a clear idea of exactly what
the notions of compositionality and systematicity involve. There is also work to be done

in developing and, all importantly, analyzing more powerful and sophisticated networks.

Conclusion
As a matter of fact, it should be no great surprise that the network L10 did not provide a

knock-down refutation to Fodor and Pylyshyn (1988). After all, this was not the goal

' Smolensky (personal communication, 1992) has confirmed and emphasized the importance he attaches
to network analysis, as a means of bridging the gap between the symbolic and the subsymbolic.
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which was being pursued when the network was developed. In fact, given the simplistic
nature of the encoding scheme used with the network and the comparatively simple
nature of the logic problems involved, it would have been more than surprising if the
network could be used to refute such a position! However, what the network does succeed
in doing is raising a number of important questions about the relationship between the
CCTM and networks. More importantly, the fact that the network exhibits weak
systematicity and the notion of weak systematicity seems to involve many notions which,
though not identical to, are broadly similar in some respects to those invoked by the
CCTM, shows that the relationship between networks and the position has yet to be fully
understood. Until, for example the relationship between the symbolic and the
subsymbolic is delineated clearly, it is too early to say that the final word on the matter

has been said.

It may be the case that the study of connectionist systems may make it necessary that
certain familiar notions are sharpened or broadened. Indeed, one might take Hadley’s
(1994) work on systematicity as being a first step in this process. Prior to its application
to networks by Fodor and Pylyshyn (1988), the notion of systematicity was employed
without too many difficulties or controversies. Now, through the work of Hadley, what
might be termed the ‘open texture’ (see Waismann 1951) has been revealed. I have also
suggested in this chapter that the term ‘compositionality’ may similarly require further
sub-division and refinement. However, the main ‘take-home messages’ from this chapter

are that there is good evidence that connectionist systems have a positive contribution to
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make to cognitive science and the philosophy of mind, and that it is much too simplistic

to just claim, as does Sterelny (1990: p. 168) for example, that

Connectionists offer a rival view [to the CCTM] of the architecture of the

mind, the nature of mental representation, and the nature of operations on

those representations.
Similarly, it is much too soon to proclaim a new Kuhnian ‘paradigm’ (Schneider, 1987).
There appear to be many subtle and complex relations which obtain between the CCTM
and any putative alternative which might be proposed on the basis of connectionist
models. Moreover, these relations are deserving of further concentrated study both within

cognitive science and philosophy, as it appears that they are only just beginning to be

understood.
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A% 11
Conclusion: Connectionism. Present, Past and Future

Introduction: The Present

In the preceding Chapters, the position I have been calling the Classical Computational
Theory of Mind (CCTM) was introduced. As the position lacked a clear formulation, an
attempt was made to come up with something like the bare bones of the position by
examing in detail the metaphor upon which it is based. By taking a Turing machine as the
paradigm case of a computational device, it was possible to find a set of seven properties
that appear to be shared by both minds and computers so conceived. This set of properties

then provided a basis upon which an alleged alternative to the CCTM could be evaluated.

The particular altemative to the CCTM which has been the main concern here is what has
come to be known as ‘connectionist systems’ or ‘networks’. These systems, it is claimed
by some (e.g. Searle and Dreyfus), appear to have just the kinds of properties needed to
meet some of the objections which have been raised against the CCTM. It has also been
claimed (e.g. Schneider, 1987) that the development of such systems represents a
‘paradigm shift’ (in the Kuhnian sense) within cognitive science, away from the CCTM.
One of the primary goals here has been to determine whether or not this is really the case.
This necessitated the introducing of connectionist systems in some detail. In particular,
attention was focused upon the class of connectionist systems which undergo training
using what is known as ‘back propogation’ style learning procedures. The reason for this
focus is that this class of systems is the most widely discussed in the philosophical

literature on the subject and because much of the philosophical excitement which has
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been generated by connectionist research stems in large part from the consideration of

systems of this class.

Once some of the technical details of connectionist networks had been introduced, some
of the claims which had been made about such systems were examined in detail. These
claims concemed both the relationship of connectionist systems to those more obviously
in the spirit of the CCTM, and the status of connectionist systems as models of cognitive
functioning. These claims were called ‘The Myths of Connectionism’, because upon
close examination it turned out that many of these claims were problematic. Some of the
claims were just false, others were only true when significantly qualified in an
appropriate manner. However, as much of the initial attractiveness of connectionism
(especially as the basis of an alternative to the CCTM) derived from the myths, it then
became reasonable to examine in some detail the real differences and similarities between

connectionist systems and the CCTM.

One particularly important set of claims about connectionist systems concerned the nature
of tokens and the operations upon tokens within connectionist systems. However, it was
argued that there was a significant epistemological and methodological problem which
had to be solved before such claims could be taken seriously. After networks had
undergone training their complexity was such that there was no way to determine what
was going on within them, unless they were subject to detailed analysis. Regrettably, the
detailed analysis and interpretation of trained networks is not commonly undertaken.
Without such analysis though, claims made about the nature of tokens and operations

within networks lack adequate justification. Moreover, the lack of such analysis
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significantly undermines the status of trained networks as models of cognitive function.
Given these facts, the only way to determine whether, and to what extent, networks
provide an alternative to the CCTM was to consider in detail a network which had been

subject to analysis and interpretation.

A technique for network analysis and interpretation, developed by Berkeley et al. (1995),
was then introduced. It tumns out that the results of applying this technique to a network
trained upon a set of logic problems, originally studied by Bechtel and Abrahamsen
(1991), gives the required detailed features of network functioning. Berkeley et al.’s
(1995) interpretation of this network thus provides the necessary evidence upon which a
close assessment of the relationship between the CCTM and networks can be based.
Perhaps more significantly though, the network developed a number of features which

seemed to run contrary to the claim that networks are a radical alternative to the CCTM.

When the features recovered from the interpretation of the logic network were compared
with the set of seven properties associated with the CCTM, it turns out that although there
are differences, the differences are not as radical as might be expected. In particular, the
network appeared to have tokens and operations of a kind which were fundamentally
similar in certain important respects to those associated with Turing machines (and
minds), by the CCTM. This shows that, whist there may be some grounds for
reconsidering some of the notions which are centrally associated with the CCTM, the
tenability of the claim that connectionist research offers a ‘radical alternative’ to the

position is undermined.
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This much having been said, it may be the case that connectionist research might provide
the basis for a reconception of some aspects of the CCTM. However, the extent to which
this is the case has yet to be fully determined. Rather, the analysis of the logic network, in
conjunction with other recent work (for example, that of Hadley 1994) shows that the
unqualified claim that there is a sharp and radical difference between connectionism and
the CCTM, typified for example by Fodor and Pylyshyn (1988), is just too simplistic.
There appears to be significant conceptual complexity lurking just below the surface
when familiar notions (such as ‘systematicity’ and ‘compositionality’) are considered in
the light of connectionist research. Instead of supporting the conclusion that there is a
radical alternative to the CCTM though, the correct conclusion appears to be that more
work needs to be done to refine the constituent concepts of the CCTM and allied

positions.

Before proceeding any further though, there is an outstanding historical matter, with
respect to the relationship between networks and the CCTM, which deserves some
attention. Although in recent years it has become a commonplace to contrast networks
with the CCTM (albeit incorrectly), this is a comparatively new phenomenon. Despite the
fact that some historical precedent for this opposition has been claimed, it can only be
plausibly claimed on the basis of a revisionist view of history. In the next section, I will
try and briefly make a case that something like the view I have been advancing here is in
fact entirely consistent with the much of the history of Artificial Intelligence and
cognitive science research (perhaps with the exception of the last decade or so). I will

then tumn my attention to the future by suggesting and briefly outlining some potentially
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fruitful lines of research which may serve to clarify further the relationship between the
CCTM and networks. In addition, I will attempt to suggests the kinds of evidence,
beyond that gained from the analysis of Berkeley et al.’s (1995) network, which will be
required to develop a more through understanding of important concepts such as

‘tokenhood’, ‘compositionality’ and so on.

History: The Past

According to the standard (recent) history of connectionism (see for example the accounts
offered by Hecht-Nielsen (1990: pp. 14-19) and Dreyfus and Dreyfus (1988), or Papert's
(1988: pp. 3-4) somewhat whimsical description), in the early days of CCTM based Al
research, there was also another allegedly distinct approach, one based upon network
models. The work on network models seems to fall broadly within the scope of the term
'connectionist’ (see Aizawa 1992), although the term had yet to be coined at the time.
These two approaches were “two daughter sciences” according to Papert (1988: p. 3). The
fundamental difference between these two ‘daughters’, lay (according to Dreyfus and
Dreyfus (1988: p. 16)) in what they took to be the paradigm of intelligence. Whereas the
early connectionists took learning to be fundamental, the traditional school concentrated

upon problem solving.

Although research on network models initially flourished along side research inspired by
the CCTM, network research fell into a rapid decline in the late 1960's. Minsky (aided
and abetted by Papert) is often credited with having personally precipitated the demise of

research in network models, which marked the end of the first phase of connectionist
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research. Hecht-Nielson (1990: pp. 16-17) describes the situation (as it is presented in
standard versions of the early history of connectionism) thus,
The final episode of this era was a campaign led by Marvin Minsky and
Seymour Papert to discredit neural network research and divert neural
network research funding to the field of “artificial intelligence”....The
campaign was waged by means of personal persuasion by Minsky and
Papert and their allies, as well as by limited circulation of an unpublished

technical manuscript (which was later de-venomized and, after further
refinement and expansion, published in 1969 by Minsky and Papert as the

book Perceptrons).!
In Perceptrons, Minsky and Papert (1969) argued that there were a number of

fundamental problems with the network research program. For example they argued that
there were certain tasks, such as the calculation of topological function of connectedness
and the calculation of parity, which Rosenblatt's perceptrons? could not solve. The
inability to calculate parity proved to be particularly significant, as this showed that a
perceptron could not learn to evaluate the logical function of exclusive-or (XOR). The
results of Minsky and Papert's (1969: p. 231-232) analysis lead them to the conclusion
that, despite the fact that perceptrons were “interesting” to study, ultimately perceptrons

and their possible extensions were a “sterile” direction of research.

The publication of Perceptrons was not the only factor in the decline of network research
in the late Sixties and early Seventies, though. A number of apparently significant
research successes from the non-network approach, also proved to be influential. Systems
such as Bobrow's (1969) STUDENT, Evan's (1969) Analogy program and Quillian's

(1969) semantic memory program called the Teachable Language Comprehender, were

1 Some of the hostility described in this account is confirmed by Papert (1988: pp.4-5).
2 Perceptron based systems were, arguably, the flag-ship variety of network systems at the time.
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demonstrated. These systems, which had properties like those associated with the CCTM,
did not appear to suffer from the limitations that afflicted network models.3 Indeed, these
systems seemed to show considerable promise with respect to emulating aspects of
human cognition. Bobrow's STUDENT program, for example, was designed to solve
algebra word problems. In doing this, the program would accept input in (a restricted sub-
set of) English. This property of the system lead Minsky (1966: p. 257) to claim that
"STUDENT...understands English". Although this is now seen to be highly misleading
(see, for example Dreyfus' 1993: pp. 130-145 critiques of all the systems mentioned
above), at the time it was a fairly impressive claim which did broadly seem to be
supported by Bobrow's program. Network research, by comparison, had nothing as
impressive to offer. Given Minsky and Papert's unfavorable conclusions and the apparent
fruitfuiness of non-network based approaches, it is not surprising that research into

network systems went into decline.

During the 1970s, there was very little work done on connectionist style systems. Almost
all the research done in Al concentrated upon the other approach. This is not to say that
there was no network research done during this period. A few individuals, most notably
Anderson (1972), Kohonen (1972) and Grossberg (1976), did continue to investigate
connectionist systems, however network researchers were very much the exception rather
than the rule. After a ten year hiatus though, connectionism reappeared on the scene as a

significant force. One reason for this resurrection was that a number of technical

3 It is worth noting that all the systems mentioned here were developed by Minsky's own graduate students,
according to Dreyfus (1993: p. 149). For a more detailed overview of each of these programs and the way
they were evaluated, see Dreyfus (1993: pp. 130-145).
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developments were made which seemed to indicate that Minsky and Papert had been

premature to write off such systems .

Minsky and Papert only considered Rosenblatt's perceptrons in their book of the same
name. One of the significant limitations to the network technology of the time was that
leaming rules had only been developed for networks which consisted of two layers of
processing units (i.e. input and output layers), with one set of connections between the
two layers. However, Minsky and Papert (1969: p. 232) had conjectured (based on what
they termed an “intuitive” judgment) that extensions of the perceptron architecture, for
example based upon additional layers of units and connections, would be subject to
limitations similar to those suffered by one-layer perceptrons. By the early 1980s more
powerful learning rules had been developed which enabled multiple-layered networks to
be trained. The results that such multiple-layered networks yielded indicated that Minsky
and Papert's ‘intuitive judgment’ was too hasty (see Rumelhart and McClelland 1987: pp.

110-113).4

Another important factor in the renaissance of network models, according to the standard
view, was a growing dissatisfaction with the traditional approach. Arguably the most
important event in this renaissance was the publication of the two volume work Parallel

Distributed Processing by Rumelhart, McClelland et al. (1987).5 Dreyfus and Dreyfus
(1988: pp. 34-35) describe the situation thus,

4 For a more detailed account of the work which underwrote the rebirth of connectionism, as well as a
more detailed account of network research during the 1970s and carly 1980s, see McClelland, Rumelhart
and Hinton (1987: pp. 41-44).

5 It is now standard practice to refer to this work by the title The PDP Volumes.
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Frustrated Al researchers, tired of clinging to a research program that Jerry

Lettvin characterized in the early 1980s as “the only straw afloat,” flocked

to the new paradigm [sic]. Rumelhart and McClelland's book...sold six

thousand copies the day it went onto the market, and thirty thousand are

now in print.
Smolensky (1988) describes how "...recent meetings [i.e. those circa 1988) of the
Cognitive Science Society have begun to look like connectionist pep rallies.”. Hecht-
Nielsen explicitly (1990: p. 19) describes those who came ‘flocking’ to the new
connectionism as ‘converts’. The religious analogy is not insignificant here. Just as it is
often the case that religious converts seek to vilify other belief systems, so the converts to
connectionism often attempted to emphasize what they believed to be the fundamental
differences between the connectionist and the CCTM based approach. Of course, such an

environment is highly conducive to the development of myths. (This may at least

partially account for the existence of the myths of connectionism, discussed in Chapter

V).

So, the history of connectionism as commonly characterized, is a history which, apart
from the early years, has been marked by a struggle with the approach which had roots in
the assumptions underlying the CCTM. Many recent descriptions of the relationship
between the approaches dwell almost exclusively upon the putative differences between
them. For example, Schneider (1987), Churchland (1989), Smolensky (1991), Sterelny
(1990), Cummins (1991), Tienson (1991), Bechtel and Abrahamsen (1991), Fodor and
Pylyshyn (1988) and Hecht-Nielsen (1991) all portray the two approaches as being in
direct competition with one another. Given the standardly told story of the history of

connectionism, such an antagonistic relationship between the two approaches is far from
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surprising. The standard version of this history also suggest that certain episodes (such as
the publication and circulation of Perceptrons) were marked by a certain guile and
personal crusading on the part of the anti-connectionist camp. Connectionism is usually
portrayed as a field of research which was unfairly retarded early on, but which, due to
the publication of The PDP Volumes and the empirical inadequacies of the alternative,
has only comparatively recently begun to bloom. This kind of perspective fits well with
the view that connectionism provides the basis of some kind of substantial alternative to
the assumptions underlying the CCTM. Unfortunately, this version of history is highly

selective, partial and in certain respects, down right misleading.

As a matter of historical fact, in the early days of AI research, a number of high profile
researchers in the field worked with both approaches. Even Papert (1988: p. 10) for
example, did work on network models. Another example is von Neumann, who worked
with McCulloch-Pitts nets and showed that such nets could be made reliable and
(moderately) resistant to damage by introducing redundancy (i.e. having several units do
the job of one). In fact, von Neumann published quite extensively on the topic of
networks (see von Neumann 1951, 1956 and 1966), although his name is most often

associated with classical systems.

There were a number of significant results which came to light in the 1940's and 1950's,
with respect to network models. Arguably the most important of these was McCulloch
and Pitt's (1943) demonstration that networks of simple interconnected binary units
(which they called ‘formal neurons’), when supplemented by indefinitely large memory

stores, were computationally equivalent to a Universal Turing Machine. Later, Rosenblatt
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(1958) developed an improved version of the units employed by McCulloch and Pitts.
Both McCulloch and Pitt's formal neurons and Rosenblatt's units had threshold activation
functions (by contrast, most modern connectionist units have continuous activations).6
The innovation which Rosenblatt made was to develop modifiable continuously valued
connections (i.e. weights) between the units. This enabled networks of these units to be
effectively trained. In particular, Rosenblatt's training procedure was supervised and such
that the system leamed only when it made a ‘mistake’ with respect to the desired output

for a particular input pattern. Rosenblatt called networks of his units ‘Perceptrons’.

The significance of Rosenblatt's innovation became clear when he (1962) demonstrated
the Perceptron Convergence Theorem. This theorem holds that if there is a set of
weighted connections of a perceptron, such that the perceptron gives the desired
responses for a set of stimulus patterns, then after a finite number of presentations of the
stimulus-response pairs and applications of the training procedure, the perceptron will
converge upon that set of weights which would enable it to respond correctly to each

stimulus in the set.?

Marvin Minsky, so often portrayed as a villain in the standard version of the history of
connectionism, has also made significant contributions to network research. In 1951
Minsky, in conjunction with Dean Edmonds, constructed a machine known as the
SNARC (Rumelhart and Zipster (1987: pp. 152-154)). The SNARC was the first
'learning’ machine and was constructed along what would now be thought of as

connectionist principles, according to Hecht-Nielson (1990: p. 15). Indeed, his work with

6 See the discussion of activation functions in Chapter III, for further details.
7 For a more detailed account of the history of network models, see Cowan and Sharp (1988).
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the SNARC formed the basis of Minsky's Ph.D. dissertation. Minsky (1954) even
included the phrase 'neural nets' in the title of his dissertation. According to Minsky
(personal communication, 1994) it wasn't until "...around 1955, largely at the suggestion
of my friend Ray Solomonoff... [that] I moved toward the direction of heuristic serial
problem solving.". That is to say, Minsky’s interest in network based system in fact

predates his interest in CCTM based systems.

It is also the case that in the early phase of connectionist research, there was relatively
little antagonism between the two approaches. The difference was rather one of attitude.
Minsky (personal communication, 1994) characterizes the situation as follows,

-.Nilsson [a network researcher from Stanford] was a good

mathematician, as were we, so this attitudinal split had no important effect

on what both sets of pioneers actually did; both groups did in fact try to

understand why each method worked on some problems but not on others.
These facts are perhaps somewhat surprising, given the malevolent role ascribed to
Minsky in the standard histories of connectionism. Perhaps, it might be conjectured, the
adversarial relationship between the approaches derives from Minsky and Papert's
critique of networks in Perceptrons. If this is the case for some though, this adversarial
perspective does not seem to be shared by Minsky himself Even long afier the
publication of Perceptrons, Minsky continued to do theoretical work upon network
models. In 1972 for example, Minsky (1972: p. 55) published a proof that showed that
"Every finite state machine is equivalent to, and can be 'simulated’ by, some neural net".

Indeed, Minsky does not endorse the adversarial view of the relation between the

approaches even today. Consider the following remark by Minsky (1990),
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Why is there so much excitement about Neural Networks today, and how

is this related to research on Artificial Intelligence? Much has been said, in

the popular press as though these were conflicting activities. This seems

exceedingly strange to me, because both are parts of the same enterprise.
These facts serve to show that the supposed distinction between the two approaches, at
least in the early days of network research, were not as sharp as some commentators
would have us believe (C.f. Dreyfus and Dreyfus (1988)). Furthermore, there seem to be
grounds for wondering just who is responsible for the putative conflict between the
approaches. Although he is frequently 'demonised’ in the connectionist literature, it does

not seem to be Minsky!

The responsibility for the antagonistic relation between the approaches, and the
consequently partial standard history, does not straightforwardly lie with any one
individual or group. It is rather the consequence of a number of factors. It is certainly the
case that the authors of the PDP Volumes must take some of the responsibility. For
example, McClelland, Rumelhart and Hinton (1987: p. 11) remark that
PDP models...hold out the hope of offering computationally sufficient and
psychologically accurate mechanistic accounts of the phenomena of
human cognition which have eluded successful explication in conventional
computational formalisms...

Such remarks are fairly clearly antagonistic to advocates of the more traditional approach.

There are many other similar examples which can be found in the PDP Volumes.

It is also the case that the authors of the PDP_Volumes make a number of claims about
the relationship between their systems and the ones discussed by Minsky and Papert in

Perceptrons which are not entirely accurate. Examples of misleading claims can be found
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in Rumelhart, Hinton and McClelland (1986: p. 65), Rumelhart and McClelland (1986: p.
113) and Rumelhart, Hinton and Williams (1986: p. 361), for example. Minsky and
Papert's responses to these specific claims are in the epilogue of the third edition of
Perceptrons (1988). Of course, the authors of the PDP_Volumes were not alone in
misunderstanding Minsky and Papert's work. Minsky (personal communication, 1994)

describes the situation thus,

It would seem that Perceptrons has much the same role as The
Necronomicon -~ that is, often cited but never read.
It is by no means the case though that the responsibility for the adversarial relationship
between connectionism and approaches which share assumptions with the CCTM
belongs just to the authors of the PDP Volumes. In fact, Rumelhart (personal
communication, 1994) still considers his work as part of the more general enterprise of

Al He also believes that the 'Al is dead' talk which arose just after the publication of the

PDP Volumes, was mistaken. Undoubtedly, the emergence of 'new' connectionism was

accompanied by a certain amount of jumping on the proverbial connectionist bandwagon.
It is almost certainly the case that a number of the new 'converts' to connectionism made
claims which were far too strong and thereby engendered the wrath of some of the
advocates of the other approach. This too is likely to have encouraged an antagonistic
relation between the two approaches. It is also certainly the case that some of the

antagonism between the approaches can be traced backed to Fodor and Pylyshyn’s (1988)

paper.
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Although it would be possible to pursue this theme in much greater detail, I hope that the
above is sufficient to make it clear that this putative antagonism between CCTM and
connectionist approaches to studying the mind is, for the most part, a comparatively
recent phenomenon. It is interesting and (I believe) significant to note that some of the
major figures in the fields (e.g. Rumelhart and Minsky) do not subscribe to this view of

the relationship.

The standardly told historical story clearly encourages the view that connectionism is an
alternative to the CCTM. This view, in conjunction with the superficial structural
differences between connectionist networks and devices such as Turing machines, helps
in part to explain why connectionist systems might seem an apparently plausible basis for
an alternative conception of a computational theory of mind. This plausibility
notwithstanding though, the facts of the matter, as described and discussed in the
previous chapters, show that such a conclusion does not follow. Rather, connectionist
research serves to open upon a host of possibilities with respect to refining the key
notions of the CCTM and related positions. In the next section, I will very briefly sketch

what [ take to be some of the potentially most fruitful lines of further inquiry.

Further Research Directions: The Future

The results described in the previous chapters open up a number of possible future
avenues of research. As these avenues divide quite naturally between research in
cognitive science and research in philosophy, it is perspicuous to describe them

separately. However, it is important to realize that they do together form part of a unified
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(though interdisciplinary) research strategy, as the results and conclusions from each area

will importantly influence the work in the other.

Cognitive Science

The potential of the analytic methodology described by Berkeley et al. (1995) has not
been fully explored. Given the promising nature of the results gained from analyzing the
network L10 though, it would be interesting and useful to see this methodology applied
to a range of other problems. Although Berkeley et al. (1995) do discuss the deployment
of their method in various domains (ranging from a variation of Hinton’s 1986 kinship
problem, to a 6-bit parity problem), there are still a large number of potentially interesting
problems which have yet to be tackled, for example Seidenberg and McClelland’s (1989)
word recognition and naming problem, upon which McCloskey based his critique of the
connectionist research methodology. In addition, it might be particularly interesting to
investigate the structures developed within networks trained upon a range of logic
problems, more extensive than the set described by Bechtel and Abrahamsen (1991), in
order to see whether such systems developed rules analogous to those described for the

network L 10.

However, it is unlikely that a single analytic technique will suffice for all classes of
problems or network types. For this reason, the work described in the previous chapters
lends further credibility to Clark’s (1993) call for the development of a variety of analytic
and interpretative methodologies which can be used to understand the functioning of
trained connectionist networks. Although there has been some pessimism expressed in

the literature about the possibility of understanding trained networks, the evidence
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discussed here shows that this pessimism may be unwarranted. Furthermore, because of
the importance of network interpretation to the viability of the connectionist research

program in cognitive science, further development in this direction is crucial.

Perhaps the most strongly indicated future direction for research though, is that towards
the development of connectionist models which exhibit higher degrees of systematicity
(in Hadley’s 1994 sense). Even though the network described by Berkeley et al. (1995)
was only weakly systematic, it served to provide results which were highly illuminating.
In particular, it provided grounds for proposing that the notion of ‘compositionality’ (as
understood by Fodor and Pylyshyn 1988) may come in degrees in a manner analogous to
the way that systematicity does. However, in order to do this, several steps need to be
taken. Probably the most important of these would be the development of a connectionist
model, or the extension of a currently existing model, so that embedding could be
handled. This alone would not be sufficient though. It would also be necessary to develop
training and test sets of data for such models that are sufficiently large and appropriately
structured so as to be able to meet all of Hadley’s (1994) conditions for the higher
degrees of systematicity. Steps are already being taken in this direction. For example,
Hadley and Hayward (1997) have recently developed a connectionist style model, based
upon Hebbian leaming, which can learn to exhibit strong systematicity. However, Hadley
and Haywards (1997) model is only a beginning. There are many other connectionist
architectures which need to be explored. Furthermore, some of the representational
assumptions made by Hadley and Hayward in their model are such that it does not enable

them to claim to have a full counter-example to Fodor and Pylyshyn’s (1988) thesis.
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There is also plenty of potential for the development of connectionist systems, which may
be able to exhibit compositionality of the higher kinds. For example, some time ago I
developed a representational format known as ‘Connectionist Polish Notation’ (CPN),
which enables connectionist systems to represent formulae of sentential logic with
embeddings of arbitrary degree.? A natural extension of the work on L10 would be to try
to develop and analyze a system which employed CPN, in the hope of producing a

network which could exhibit at least quasi-compositionality.

A final future direction for further investigation within the strictly cognitive domain
would be to study the performance of networks on various problems, in comparison to the
performance of biological cognitive agents. Only if a plausible case could be made that a
network was strongly equivalent (in Pylyshyn’s 1984 sense) to biological cognitive
agents will their be any basis upon which inferences could be drawn about human
cognitive functioning. This would be an important step in moving the argument about
connectionist systems on from merely showing that they could be in principle models of
cognitive functioning, to them actually being such models. It is only under this condition
that the full explanatory potential of trained network models could be evaluated. It may
turn out to be the case, for example, that it would only be possible to develop models
which were strongly equivalent, by integrating elements discovered in network models
into more traditional architectures. Nonetheless, further research on connectionist models
which can handle embedded structure will be necessary to determine the extent to which

this might be the case.

8 At the present time, this work is unpublished.
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Although such technical developments in cognitive science would be very helpful, they
alone would not serve to answer all of the questions raised by the analysis of the logic
network, with respect to the relationship between connectionist systems and the CCTM.

There is also a considerable amount of strictly philosophical work which will also be

required.

Philosophy

From the discussion in the previous chapter, the notion of ‘tokenhood’ is a prime
candidate for further philosophical consideration. In particular, it is unclear how the
potential complexity of embedding which can be supported relates to the status of an
entity as a token. Indeed, the consideration of token-like items within connectionist
networks may throw light upon hitherto unexpected degrees of freedom within the idea of
something being a ‘token’. Related notions, such as that of ‘symbolhood’ might also turn
out to require additional clarification. However, the kinds of data which such a
conceptual analysis would have to pay attention to would have to extend beyond the
standardly considered examples from language and logic. If the avenues of cognitive
science research discussed above were to be pursued successfully, a whole new class (or
even classes) of data might have to be factored into such reflections. In addition, any new
evidence about novel forms of compositionality in connectionist systems (should any turn

up) will be relevant to the conceptual analysis of the notion of tokenhood too.

Similarly, the whole idea of what it is for something to be a ‘rule’ or an ‘operation’ may
have to be extended in the light of ‘rules’ discovered within networks. For example, the

rules discovered in the network L10 had many of the properties usually associated with
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traditional rules of deductive inference. However, they were discovered by the network as
a result of a process which is fundamentally inductive in nature. This may make it appear
initially as if deduction is in fact based in induction. Such a conclusion would be no
surprise to those such as Dreyfus and Dreyfus (1986) who have argued, along with Ryle
(1949), that skills (knowing how to do something) are not reducible to declarative
knowledge (knowing that certain things are the case). However, the fact that the rules
discovered in the network are not (obviously) as widely applicable as those of natural
deduction,- would suggest caution, initially at least. Once again, the strength of the
conclusions which could be drawn about rules and operations would depend upon the

results of the further empirical work suggested above.

Hadley (1994) has already begun some of the conceptual work necessary in trying to get
the idea of systematicity clear, such that it can be usefully employed in the context of
connectionist systems. However, there are grounds for believing that this work could be
extended further. The fact that Hadley’s three degrees of systematicity all incorporate an
element of learning means that there may be cases in which it is unclear how they map
onto systems which do not explicitly undergo training.9 Although it might be argued that
the programming of a Turing machine is learning is some sense, it is far from clear
whether the relationship between learning in the context of an automated learning device,
such as a network, and learning in this sense are straightforwardly related to one another.
In addition, it has yet to be shown that either of these two types of leaming are have

relevant analogues in the case of biological cognitive agents.

9 It has recently come to my attention that Hadley (1996) has addressed the issue of systematicity in non-
learning systems.
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A related problem, which also may have potential impact on Hadley’s (1994) views on
systematicity, is the lack of a widely applicable metric for generalization. This problem
seems to relate to the difficulties already raised about the nature of rules and operations
and their relation to traditional philosophical difficulties surrounding induction. Perhaps,
with new evidence from connectionist systems in hand, some philosophical headway may

be made on these problems.

The results of analyzing connectionist networks may provide philosophical insights into
what Cummins (1989) has called the ‘problem of representations’ (plural). This is the
problem of determining the kinds of entities which can function as mental
representations, and the properties of those entities. This in tum may have an impact on
what Cummins calls the ‘problem of representation’ (singular). The problem of
representation (singular) is the problem of determining what it is for one thing to be a
representation of another. The two problems are closely related to one another because
(Cummins 1989: pp. 1-2) the solution accepted to the problem of representations (plural)
acts as a constraint upon the kinds of accounts which are acceptable to the problem of
representation (singular). For example, Cummins (1989: pp. 84-86) feels compelled to
reject Millikan’s (1984 and 1991) proposed solution to the problem of representation
(singular) on the grounds that her solution depends crucially upon a systems having a
history of the correct kind. His solution to the problem of representations (plural) is the
CCTM, which he believes is fundamentally ahistorical in nature. Given the standard
course of development of connectionist networks (including the pilot tests run by

experimenters, which are seldom reported in the literature), it might be possible to make a
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case that networks have a history of the appropriate kind so that Milikan’s account of
representation (singular) could be made to apply to them. This too would be an

interesting line of philosophical research which might be pursued.

Finally, many of the concepts mentioned above, which seem to be in need of further
philosophical treatment, have roles to play not only in cognitive science and the
philosophy of mind, but also in other areas of philosophy, such as the philosophy of
language and the philosophy of logic. This being the case, there may well be all sorts of
significant philosophical insights to be gained by applying the lessons learned from
considering the implication of network research for these notions in other domains. The
extent to which these insights prove helpful though, will depend upon the results of the
further investigation of the properties of connectionist systems and the philosophical
conclusions drawn from these results. In addition, should it turn out that these results
show that the connectionist approach is not much different from the CCTM, then a
number of the arguments which have been proposed against the CCTM (e.g. by Dreyfus

1991 or by Searle 1980 and 1992) might also turn out to apply to connectionism.!0

In concluding, a remark made by Pylyshyn (1984: p. 69) comes to mind. He observed
that,
...despite some 50 years of study (starting from Turing's famous paper on

computability), there is still no consensus on just what are the essential
elements of computing.

10 This might lead to the consequence that, contrary to current thought, what Searle and Dreyfus are really
attacking is the one thing which the CCTM and connectionism already agree upon, the representational
theory of mind (see Sterelny 1991).
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Determining the ‘essential elements of computing’ sounds like a prototypical example of
the kind of ontological question which has been the domain of philosophers for millennia.
Thus, this would seem to be a job not only for computer scientists, but also for
philosophers. Given the centrality that the notion of computation has come to play in
philosophical theorizing, especially about the mind, it can be little short of shocking that
no progress has been made on this topic. Indeed, it is only recently that such issues have
become subject to detailed and extensive philosophical scrutiny (see for example
Hardcastle 1996 and Smith 1996). However, one possible explanation for this state of
affairs is that, by and large until recently, central notions of computation have only been
considered within the domain of the CCTM. When it comes to questions like ‘what is a
token?’, ‘what is an operation?’, ‘what are systematicity and compositionality?”, it is only
the emergence of connectionist networks which has brought the difficulties inherent with
these notions to the fore. As Wittgenstein (1953: 593) famously observed,

A main cause of philosophical disease--a one-sided diet: one nourishes

one’s thinking with only one kind of example.
Considering the results from research into connectionist systems may well serve to offer
philosophers just the ‘dietary supplement’ they need to come to grips with such questions

and perhaps provide, at long last, substantial answers.
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