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Abstract: The study of population persistence in river ecosystems is key for understanding population
dynamics, invasions, and instream flow needs. In this paper, we extend theories of persistence measures
for population models in one-dimensional rivers to a benthic-drift model in two-dimensional depth-
averaged rivers. We define the fundamental niche and the source and sink metric, and establish the net
reproductive rate R0 to determine global persistence of a population in a spatially heterogeneous two-
dimensional river. We then couple the benthic-drift model into the two-dimensional computational
river model, River2D, to study the growth and persistence of a population and its source and sink
regions in a river. The theory developed in this study extends existing R0 analysis to spatially
heterogeneous two-dimensional models. The River2D program provides a method to analyze the
impact of river morphology on population persistence in a realistic river. The theory and program
derived here can be applied to species in real rivers.
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1. Introduction

In water resource planning, to quantify the flow requirements in space and time that are necessary
to sustain desired ecosystem services [8, 40] is referred to as instream flow need (IFN) assessment [3].
Ecologists, mathematicians and environment managers have paid increasing attention to the
investigation of spatial population dynamics and invasions of stream or river species, which suggests
solutions to IFNs and provides evidence on the influence of flows on ecosystems.

River ecologists are interested in the “drift paradox” problem, which asks how river organisms can
persist in a river with unidirectional water flow [34, 35]. Population persistence over large spatial and
temporal scales is an important component of instream flow need assessment studies [3]. Krkosĕk and
Lewis [25] proposed three measures for population persistence that relate to lifetime reproductive
output of a species in a spatially variable environment and they previously have been applied to river
population models [20, 31]. These measures are connected through the next-generation operator,
which maps the population forward in time from one generation to the next. The first measure,
Rloc(x), describes the fundamental niche of the species. It represents the local persistence at any
location x in the absence of dispersal, depending only on reproduction and survival at the location x.
The second measure, Rδ(x), describes the realized niche. It is the lifetime reproductive output of an
individual, initially introduced at x, undergoing survival, reproduction, and dispersal, and hence, its
value, larger than one or less than one, also determines the source and sink regions in the habitat. The
third measure is the net reproductive rate R0. It represents the average number of offspring produced
by a single individual over its lifetime where the spatial distribution of the individual is given by the
dominant eigenfunction of the linearized next-generation operator; see theories for R0 in e.g., [9, 47].
The net reproductive rate has a long history as measures for population persistence/extinction in
ecological modeling. Intuitively, if R0 > 1 the population will grow, but if R0 < 1 the population will
likely become extinct. While this has the potential to make R0 a powerful tool for studying population
persistence, further mathematical work is required if R0 is to be linked rigorously to behavior of the
associated nonlinear model. Existing studies of the three measures for river species have revealed the
influence of hydrodynamics on long term behaviors of river populations, especially of the net
reproductive rate R0, but it is only for idealized spatially homogeneous or one-dimensional
(longitudinal) varying rivers (see e.g., [20, 31]). Therefore, it is necessary and important to establish
persistence theories in more realistic two or three-dimensional rivers.

Most population models in river ecology have been investigated under simple assumptions for
hydrodynamics, such as a constant water depth or a constant flow velocity throughout the river (see
e.g., [19, 29, 38, 39, 41]). A few have taken into account spatial or temporal variations in riverbed
structure or the flow regime, but only for simplified and essentially one-dimensional structures (see
e.g., [20, 23, 24, 28]). The results from these models are interesting but only provide limited
information about the influence of realistic hydrodynamics on spatial population dynamics. There
also have been methodologies relying on habitat suitability models and physical habitat availability as
a proxy for population status (see e.g., [3, 14, 21, 26, 40]). They link flow regimes with ecology
qualitatively, but lack a mechanistic foundation, and hence they can well predict habitat quality rather
than species long term behavior in the habitat. Thus, direct integration of ecological systems into
water flow dynamics and quantitative analysis of the impact of flows on ecology are still rare but in
urgent need. A hybrid modeling approach was proposed to simulate the spatial dynamics of
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macroinvertebrates in a section of the Merced River in central California in [2]. The hydrodynamic
model in MIKE 21 Flow Model FM [11] was used to characterize the two dimensional flow field in
the longitudinal and lateral directions through the Robinson Reach of this river. The hydraulic
prediction from the two dimensional model was then coupled with a particle tracking algorithm [12]
to compute the drift dispersal. While the work focused on the effect of hydraulic flow on population
dispersal in a two dimensional river, the main work of integration of hydraulic dynamics and ecology
was simplified to the study of the steady state of a one dimensional representation model. In [22], a
hybrid physical-biological modeling approach was presented to directly link river hydrology with
river population models. A governing equation for the gradually varied flow was first coupled to a
single population equation in one-dimensional rivers and then in two-dimensional rivers. Moreover,
population spread and invasion ratchet phenomenon were studied for these models.

By coupling hydrodynamics and ecological dynamics, one can explicitly investigate the influence
of physical factors and hydraulic conditions on spatiotemporal dynamics of a population in a river,
which strengthens the ecological component of environmental flow assessments that is currently still
lacking. By using the hybrid physical-biological modeling approach coupled to River2D [22], one can
observe the evolution of the density of a single stage drifting population in a two-dimensional river.
While such calculation can certainly predict the long-term dynamics of persistence or extinction of a
population in a specific river, the calculation itself is expensive and the transient running time may be
long. Therefore it is advantageous to develop qualitative and quantitative methods that can directly
determine population persistence in a two dimensional river.

In this paper, we are interested in species living both in the flowing water and on the benthos of a
river (see e.g., [1, 13, 20, 28, 38]). We extend the results of persistence measures (Rloc, Rδ and R0) for a
benthic-drift population [20] in a one-dimensional river to a benthic-drift model in a two-dimensional
depth-averaged river environment, in order to see how different factors, especially hydraulic factors,
influence population persistence, and to distinguish how the sedentary stage helps populations persist
in a two dimensional river. Our hybrid biological-physical modeling approach, coupled to the River2D
program, provides a method to analyze the impact of river morphology on population persistence in
a realistic river. It can be used to calculate not only the benthic and drift population densities but
also the net reproductive rate of a specific species and its source/sink regions in any depth-averaged
river model, given the river morphologic information and population demographic information. To
our knowledge, this is the first study that quantitatively describes population persistence in a two-
dimensional river environment based on the explicit bio-physical coupling of hydrology and benthic
and drift compartments. It is expected that this work could provide an important methodology for
ecologists or environment managers to determine population dynamics of a specific species in a specific
river.

This paper is organized as follows. In Section 2, we introduce a benthic-drift model for a population
in a two-dimensional depth-averaged model of a river. In Section 3, we define the next generating
operator for the linearized system and derive three measures of persistence, Rloc(x, y), Rδ(x, y), and R0.
We show that R0 can be used as a threshold to determine global population persistence or extinction
for the nonlinear model. In Section 4, we present a numerical method to calculate R0 and Rδ when
coupling the population model and hydrodynamic model in River2D. In Section 5, we choose two
typical rivers and investigate how the water flow, birth rate, transfer rates, diffusion rate, river bottom
slope, and river bottom roughness influence population persistence via numerical simulations for R0
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and Rδ under different conditions. Finally, a short section of discussion completes the paper.

2. Model

Denote the two dimensional river region by a bounded and smooth domain Ω in R2 with boundary
∂Ω. Consider the following two dimensional benthic-drift population model, a derivation of which is
provided in Appendix A:

∂Nd
∂t =

µ(x, y)
h(x, y)

Nb︸     ︷︷     ︸
transfer from Nb

−σ(x, y)Nd︸     ︷︷     ︸
transfer to Nb

−md(x, y)Nd︸      ︷︷      ︸
death

−
1

h(x, y)
O · (v(x, y)h(x, y)Nd)︸                             ︷︷                             ︸

advection

+
1

h(x, y)
O · (D(x, y)h(x, y)ONd)︸                                ︷︷                                ︸

diffusion

, (x, y) ∈ Ω, t > 0,

∂Nb
∂t = f (x, y,Nb)Nb︸         ︷︷         ︸

reproduction

−mb(x, y)Nb︸      ︷︷      ︸
death

− µ(x, y)Nb︸    ︷︷    ︸
transfer to Nd

+σ(x, y)h(x, y)Nd︸              ︷︷              ︸
transfer from Nd

, (x, y) ∈ Ω, t > 0,

Nd(x, y, 0) = N0
d (x, y), Nb(x, y, 0) = N0

b (x, y), (x, y) ∈ Ω,

a(x, y)Nd + b(x, y)∂Nd
∂~n = 0, (x, y) ∈ ∂Ω, t > 0,

(2.1)

where Nd(x, y, t) is the population density in the drifting water (unit: 1/volume) at location (x, y) and
time t, Nb(x, y, t) is the population density on the benthos (unit: 1/area) at location (x, y) and time t,
N0

d and N0
b are initial population densities, f is the reproduction rate of the population (unit: 1/time),

md(x, y) is the mortality rate of the drift population at location (x, y) (unit: 1/time), mb(x, y) is the
mortality rate of the benthic population at location (x, y) (unit: 1/time), D(x, y) is the diffusion rate
(unit: area/time), µ(x, y) is the per capita rate at which individuals on the benthos enter the drift (unit:
1/time), σ(x, y) is the per capita rate at which individuals return to the benthos from the drift (unit:
1/time), h(x, y) is the river depth at location (x, y) (unit: length), v(x, y) = (v1(x, y), v2(x, y)) is the
depth-averaged flow velocity at location (x, y) with v1(x, y) the flow velocity (unit: length/time) in the x
direction and v2(x, y) the flow velocity (unit: length/time) in the y direction, O = (∂/∂x, ∂/∂y), ~n is the
unit outward normal vector on the boundary, and a(x, y) and b(x, y) are nonnegative bounded functions
on ∂Ω satisfying a2 + b2 , 0. For each t ≥ 0, the solutions Nb(·, ·, t) and Nd(·, ·, t) are in the function
space X, which is the continuous function space C(Ω̄,R) or the subspace of C(Ω̄,R) consisting of
continuously differentiable functions vanishing on the boundary if Dirichlet conditions are applied to
some part of the boundary.

The boundary conditions of (2.1) can be Dirichlet, Neumann or Robin conditions. The following
typical conditions could be assumed in different portions of the boundary of a river.

(BI) At the river inflow (upstream boundary condition): zero-flux or zero density.

(i) Zero-flux (individuals cannot enter or leave at the source). The condition is
a(x, y)Nd +b(x, y)∂Nd

∂~n = 0 with a(x, y) = −v(x, y) ·~n > 0 since v and ~n have opposite directions
and b(x, y) = D(x, y).

(ii) Zero density (hostile condition) (e.g., the living condition at the upstream end is extremely
bad so that individuals die whenever they reach there): Nd = 0.

(BB) Along the bank: zero-flux a(x, y)Nd+b(x, y)∂Nd
∂~n = 0 with a(x, y) = −v(x, y)·~n and b(x, y) = D(x, y).
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(i) If no discharge flows into the river through the bank, then v and ~n are perpendicular along the
bank, hence a = 0. Thus, the boundary condition becomes ∂Nd

∂~n = 0.
(ii) If water flows into the river from the bank of the river (e.g., small streams or tributaries or

groundwater flow entering the larger main river), then we have a(x, y)Nd + b(x, y)∂Nd
∂~n = 0

with a ≥ 0 since v and ~n have opposite directions.

(BO) At the river outflow (downstream boundary condition): free-flux or zero density.

(i) Free-flux (Danckwert’s condition): ∂Nd
∂~n = 0. Individuals can freely leave the river with water

flow.
(ii) Zero density (hostile condition) (e.g., all individuals die at the downstream boundary): Nd =

0.

We make the following assumptions throughout this paper.

(H1) D, h, v1, v2, ∈ C2(Ω̄, (0,∞)).
(H2) µ, σ,md,mb are positive continuous functions in Ω.
(H3) The function f (x, y,Nb) is Lipschitz continuous with respect to Nb with Lipschitz constant c,

f (x, y, 0) − mb(x, y) < ∞, f (x, y,Nb) is monotonically decreasing in Nb and for each (x, y) there
exists a unique value K(x, y) > 0 such that f (x, y,K(x, y)) − mb(x, y) = 0, f (x, y, 0) − mb(x, y) −
µ(x, y) ≤ 0 on Ω.

(H4) µ, σ,md,mb, D, f , a and b do not depend on the vertical height of the location in the river.

3. River metrics for population persistence

In this section, we extend the theories of persistence measures for a one-dimensional benthic-drift
model in [20] to obtain three river metrics for population persistence based on the linearized system of
(2.1) at the trivial solution (0, 0). To this end, we first introduce the next generation operator.

3.1. The next generation operator

Linearizing system (2.1) at the trivial steady state (N∗d ,N
∗
b) ≡ (0, 0) yields

∂Nd
∂t =

µ(x,y)
h(x,y) Nb − σ(x, y)Nd − md(x, y)Nd +LNd, (x, y) ∈ Ω, t > 0,

∂Nb
∂t = f (x, y, 0)Nb − mb(x, y)Nb − µ(x, y)Nb + σ(x, y)h(x, y)Nd, (x, y) ∈ Ω, t > 0,

Nd(x, y, 0) = N0
d (x, y), Nb(x, y, 0) = N0

b (x, y), (x, y) ∈ Ω̄,

a(x, y)Nd + b(x, y)∂Nd
∂~n = 0, (x, y) ∈ ∂Ω,

(3.1)

where L is the linear partial differential operator defined as

LNd := −
1

h(x, y)
O · (v(x, y)h(x, y)Nd) +

1
h(x, y)

O · (D(x, y)h(x, y)ONd),

for any Nd ∈ C2(Ω,R).

Remark 1. If f (x, y, 0) − mb(x, y) − µ(x, y) > 0 on Ω, then

∂Nb
∂t = ( f (x, y, 0) − mb(x, y) − µ(x, y))Nb + σ(x, y)h(x, y)Nd

≥ ( f (x, y, 0) − mb(x, y) − µ(x, y))Nb,
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which implies that Nb grows exponentially as t → ∞ and (0, 0) is unstable for (3.1). Hence, population
persists for (2.1) regardless of other conditions. For this reason, we impose the last condition in (H3)
in the rest of the paper for interesting results.

Suppose that a population is introduced into the river environment Ω̄ with initial distribution
(ψ0

d, ψ
0
b) ∈ X × X. The individuals in this population then experience dispersal, transfer between

mobile and stationary classes and reproduction until they die, so the distribution of these initially
introduced individuals at time t, denoted by (ψd(x, y, t), ψb(x, y, t)), is governed by the following
system 

∂ψd
∂t =

µ(x,y)
h(x,y)ψb − σ(x, y)ψd − md(x, y, 0)ψd +Lψd, (x, y) ∈ Ω, t > 0,

∂ψb
∂t = −mb(x, y, 0)ψb − µ(x, y)ψb + σ(x, y)h(x, y)ψd, (x, y) ∈ Ω, t > 0
ψd(x, y, 0) = ψ0

d, ψb(x, y, 0) = ψ0
b(x, y), (x, y) ∈ Ω,

a(x, y)ψd + b(x, y)∂ψd
∂~n = 0, (x, y) ∈ ∂Ω.

(3.2)

Then f (x, y, 0)ψb(x, y, t) is the rate of reproduction by the initially introduced individuals at location
(x, y) at time t, and therefore the total reproduction by the initially introduced individuals during their
lifetime at (x, y) is given by

∫ ∞
0

f (x, y, 0)ψb(x, y, t)dt. Noting that offsprings are reproduced only on the
benthos, we have the following definition.

Definition 2. The next generation operator Γ : X × X → {0} × X associated with (3.1) is defined by

Γ

 ψ0
d

ψ0
b

 (x, y) =

∫ ∞

0

 0 0
0 f (x, y, 0)

  ψd(x, y, t)
ψb(x, y, t)

 dt =

 0
f (x, y, 0)

∫ ∞
0 ψb(x, y, t)dt

 , (3.3)

where (ψd(x, y, t), ψb(x, y, t)), the distribution of the initially introduced individuals in the river at time
t, is the solution of (3.2).

This next generation operator Γ maps an initial population distribution to its “next generation”
(offspring) distribution.

3.2. River metrics

Now we define three river metrics for population persistence as those in [20, 31].

River metric 1: Fundamental niche Rloc(x, y) – a local persistence metric that describes the full range
of environmental conditions and resources (biological and physical) that the organism can possibly
occupy and use, especially when limiting factors are absent.

Assume that an individual only experiences birth and death after being introduced into the river but
does not disperse during its lifetime. Define Rloc(x, y) as the number of offspring produced over its
lifetime by an individual introduced at location (x, y) in the benthic zone. For (x, y) ∈ Ω,

Rloc(x, y) = f (x, y, 0)
∫ ∞

0
nb(x, y, t)dt =

f (x, y, 0)
mb(x, y)

, (3.4)

where nb(x, y, t) = e−mb(x,y)tdt is the solution of
dnb
dt = −mb(x, y)nb(x, y, t), x ∈ Ω, t > 0,

nb(x, y, 0) = 1, x ∈ Ω.
(3.5)
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Then Rloc(x, y) > 1 implies that an individual introduced at (x, y) will produce more than one offspring
at (x, y) in the next generation, hence the population size at (x, y) will increase over generations.
Therefore, locations with Rloc(x, y) > 1 correspond to the fundamental niche of the species.

River metric 2: Source-sink distribution Rδ(x, y) – a local persistence metric that determines source
and sink regions in the river.

Assume that an individual undergoes birth, death and dispersal after being introduced into the river
and we use Rδ(x, y) to describe the number of offspring produced over its lifetime by an individual
introduced at location (x, y) in the benthic zone.

Note that the next generation distribution from a single individual introduced at location (x0, y0) is
defined by

f (x, y, 0)
∫ ∞

0
ψb(x, y, t)dt,

where (ψd(x, y, t), ψb(x, y, t)) is the solution of (3.2) with initial conditions ψd(x, y, 0) = 0, ψb(x, y, 0) =

δ(x − x0)δ(y − y0) and δ(·) is the Dirac delta distribution. Then Rδ(x0, y0) is defined as

Rδ(x0, y0) =

∫
Ω

f (x, y, 0)
∫ ∞

0
ψb(x, y, t)dtdxdy. (3.6)

If Rδ(x0, y0) > 1, then an individual introduced at location (x0, y0) will produce more than one offspring
in the whole river, we call location (x0, y0) a source. If Rδ(x0, y0) < 1, then an individual introduced at
location (x0, y0) will produce less than one offspring in the whole river, we call location (x0, y0) a sink.

River metric 3: Net reproductive rate R0 – a global persistence metric that determines population
persistence or extinction in the whole river.

For any nonnegative initial distribution (N0
d (x, y),N0

b (x, y)) of the model (3.1), the associated next
generation distribution is

Γ

(
N0

d
N0

b

)
(x, y) =

(
0
f (x, y, 0)

∫ ∞
0

Nb(x, y, t)dt

)
, (3.7)

where (Nd(x, y, t),Nb(x, y, t)) solves (3.2) with initial condition (N0
d ,N

0
b ).

Define
R0 := r(Γ), (3.8)

where r(Γ) is the spectral radius of the linear operator Γ on X × X. Then R0 represents the average
number of offspring an individual may produce during its lifetime. We call R0 the net reproductive
rate. Similarly as we did in [20], we can show the following result. A sketch of the proof is given in
Appendix B.

Theorem 3. Assume (H1)–(H4) for (2.1). The following statements are valid:

(i) If R0 < 1, then the extinction equilibrium (0, 0) is asymptotically stable for (2.1) for all
nonnegative initial value conditions.

(ii) If R0 > 1, then there exists ε0 > 0 such that any nonnegative solution (Nd(x, y, t),Nb(x, y, t)) of
(2.1) with (N0

d ,N
0
b ) ≥,. 0 satisfies

lim sup
t→∞

‖(Nd(·, ·, t),Nb(·, ·, t)‖∞ = lim sup
t→∞

max
(x,y)∈Ω̄

{Nd(x, y, t),Nb(x, y, t)} ≥ ε0. (3.9)
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Remark 4. Theorem 3 implies that R0 is a threshold for global dynamics of the population in the whole
river. Population persists in the river in the sense that the inequality (3.9) is valid if R0 > 1; population
will be extinct in the river if R0 < 1.

4. Numerical methods for computing R0 and Rδ in River2D

River2D is a hydrodynamic and fish habitat model developed specifically for use in natural streams
and rivers. We implemented the population model into River2D to calculate river metrics R0 and Rδ

for a species in a river with two dimensional depth-averaged velocities. Starting with creating a
preliminary bed topography file from the raw river field data, we edited and refined the data,
developed a computational discretization of the river, and then solved for the water depths and
velocities throughout the discretization under given inflow and outflow conditions. To obtain steady
river flow conditions the River2D model is run from an initial set of conditions with constant inflow
and outflow conditions until a steady state of the river is obtained. We then implemented the two
dimensional population model equations into the steady river flow in River2D to calculate R0 (see
(3.8)) as well the next generation distribution and Rδ (see (3.6)). River2D is a finite element model,
based on a conservative Petrov-Galerkin upwinding formulation (see e.g., [7]). The hydrodynamic
component of the River2D model is based on the two-dimensional, depth averaged Saint Venant
Equations expressed in conservative form. See [15, 16, 43] for more details about River2D.

In what follows, we present the methods to calculate Rδ and R0 for a benthic-drift model in a
spatially two-dimensional (longitudinal-lateral) river in River2D.

For numerical calculation convenience, we introduce a new variable Nv for the offspring that the
initially introduced individuals reproduce and consider the following system based on the linearization
of model (2.1):

∂Nd(x, y, t)
∂t

= −σ(x, y) · Nd(x, y, t) +
µ(x, y)
h(x, y)

· Nb(x, y, t) − md(x, y) · Nd(x, y, t)

−
1

h(x, y)
∂

∂x
[
v1(x, y)h(x, y)Nd(x, y, t)

]
+

1
h(x, y)

∂

∂x

[
D(x, y)h(x, y)

∂Nd(x, y, t)
∂x

]
−

1
h(x, y)

∂

∂y
[
v2(x, y)h(x, y)Nd(x, y, t)

]
+

1
h(x, y)

∂

∂y

[
D(x, y)h(x, y)

∂Nd(x, y, t)
∂y

]
∂Nb(x, y, t)

∂t
= σ(x, y) · Nd(x, y, t) · h(x, y) − µ(x, y) · Nb(x, y, t) − mb(x, y) · Nb(x, y, t)

∂Nv(x, y, t)
∂t

= f (x, y, 0)Nb(x, y, t)

Nd(x, y, 0) = 0, Nb(x, y, 0) = N0
b , Nv(x, y, 0) = 0,

a(x, y)Nd + b(x, y)∂Nd
∂~n = 0, (x, y) ∈ ∂Ω, t > 0.

(4.1)

Note that individuals can stay on the benthos or drift in water but the recruitment only occurs when
they stay on the benthos. Here Nb and Nd are densities of benthic population and drift population of the
first generation (i.e., initially introduced population), respectively; Nv is the population density of the
second generation (i.e., offspring of the first generation population). Individuals are only introduced
on the benthos. The boundary condition along the river bank is chosen as the no-flux condition and
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two different boundary conditions. Under the hostile boundary condition at the upstream, the
upstream end is the sink region and the source regions are concentrated in the shallow areas in the
river (see Figure 9). However, under the zero-flux condition at the upstream, Rδ attains its maximum
at the upstream end and the upstream end becomes the most important source region for the
population; see Figure 15. The different scales in the lower part of Figure 15 also illustrate why R0 is
higher when Q = 10 than when Q = 0.1; Rδ is an order of magnitude larger when Q = 10 compared to
when it is Q = 0.1. We also see a strange phenomenon, unlike in Figure 7, about the next generation
function distribution for system (4.1) under the zero-flux upstream boundary condition (4.3), when
varying the flow discharge; see Figure 14. When the flow discharge increases, the net reproductive
rate first increases and then decreases. This seems to be hard to understand. When the water discharge
increases, the water depth and flow velocity increase throughout the river. It is hard to see which
parameter causes the drop of the net reproductive rate when the discharge increases from 5 to 10.

Next generation function in the last period of the river 

�^���A�ì�X�ì�ì�ì�î�U���Z���A�í�X�ì�ñ�í�ô�� 

�^���A�ì�X�ì�ì�ì�ñ�U���Z�����A�ì�X�õ�ô�ò�ï�ð�í 

Figure 13. The net reproductive rate R0 with corresponding next generation functions related
to different rivers bottom slopes. Only the last period of the river is shown. Parameters are:
Q = 0.1m3/s, D(x, y) ≡0.24 m2/s, σ(x, y) ≡ 0.001/s, µ(x, y) ≡ 0.004/s, f (x, y, 0) ≡ r =

0.0005/s and mb(x, y) ≡ md(x, y) ≡ m = 0.0001/s. Boundary conditions are given in (4.2).

Next generation functions 

Q=10, 𝑅0=6.42814  

Q=5, 𝑅0=6.42828  

Q=0.1, 𝑅0=6.28048  

Figure 14. The next generation function distribution. Parameters are: D(x, y) ≡0.24 m2/s,
σ(x, y) ≡ 0.001/s, µ(x, y) ≡ 0.004/s, f (x, y, 0) ≡ r = 0.0008/s and mb(x, y) ≡ md(x, y) ≡ m =

0.0001/s. Boundary conditions are given in (4.3).
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Q=0.1, 𝑅0=6.28048

Q=10, 𝑅0=6.42814

𝑅𝜹 distribution  in the river

𝑅𝜹 distribution
in the first 
period 
of the river

Q=0.1
Q=10

Figure 15. The Rδ(x, y) distribution under different flow conditions. Parameters are:
D(x, y) ≡0.24 m2/s, σ(x, y) ≡ 0.001/s, µ(x, y) ≡ 0.004/s, f (x, y, 0) ≡ r = 0.0008/s and
mb(x, y) ≡ md(x, y) ≡ m = 0.0001/s. Boundary conditions are given in (4.3).

6. Discussion

Understanding hydrodynamics and ecological dynamics is crucial in stream and river
management. While there is a need to integrate hydraulic and biological features to discover how
river morphology and water flows affect the ecological status of rivers [8, 40], a reasonable and
efficient method for such integration becomes critical. Based on the fruitful development of habitat
models in river habitat assessment, most existing methods (e.g., the physical habitat simulation model
(PHABSIM), ecological limits of hydrologic alteration (ELOHA) framework, Software for Assisted
Habitat Modeling (SAHM), etc.) link habitat suitability index of river species (e.g., fish) to physical
conditions, focusing primarily on habitat suitability and availability; see
e.g., [4, 32, 33, 36, 40, 43, 44, 46, 48].

A few works have attempted to incorporate ecological factors explicitly into hydrodynamic
modeling analysis; see e.g., [2, 6, 18, 22, 30]. The modelling framework in this paper extends the
approach in [22]. The results therein have made it possible to directly analyze how river morphology
influences short and long term behaviors of a population in a river. In the current work, by analyses
and calculations for the coupled hydrodynamics and population models in partial differential
equations, we are able to determine the source/sink regions and global dynamics of a specific
population in a two-dimensional depth-averaged river model. Hydraulic, physical and demographic
features are explicitly incorporated into the model and their effects on suitable habitat or population
persistence/extinction can be numerically analyzed.

Our results showed that the increase of the growth rate and the diffusion rate yields larger net
reproductive rate and helps population persistence while larger transfer rate decreases the net
reproductive rate and drives population to be extinct. Moreover, higher river bottom roughness height
helps population persist but higher bottom slope leads to population extinction more quickly, which
might be due to the fact that changes to these parameters change the flow velocity, to a lower level in
the former case and to a higher level in the latter case. When the upstream end is imposed with hostile
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boundary condition, the offspring concentrate in the downstream region and the source regions are in
the shallow areas throughout the river. When the upstream end is imposed with the zero-flux
boundary condition, the offspring concentrate in deep water regions and the source regions are mainly
in the shallow water regions with the most significant source at the upstream end. We also saw a
challenging phenomenon which is very hard to understand: When the upstream end is imposed with
the zero-flux conditions, when the flow discharge increases, the net reproductive rate may increase
first and then decrease.

In order to use the River2D program to calculate Rδ and R0 for a population in a river, the following
data need to be collected by ecologists and river managers: Biological data including the birth rate, the
death rate, the diffusion rate, transfer rates between the benthos and the drifting water, and population
boundary conditions; river bed topography data including bed location (x-coordinate, y-coordinate),
bed elevation, bed roughness height, and boundary type; and flow data such as the upstream inflow and
the downstream water surface level. It is our hope that this work would be a useful tool for ecologists
to predict or control long term behaviors of river and stream species and for water resources managers
in identifying more accurately the targets for flow regulation.

In the current River2D program, the biological parameters (birth, death, diffusion, and transfer rates)
are assumed to be constants. We will further incorporate spatial heterogeneities of these parameters
in the program so that it can be widely used to investigate population persistence and source-sink
dynamics in more realistic scenarios. Moreover, since the living conditions for aquatic species in rivers
can vary seasonally, the theory developed in this work could be extended to more general situations
by incorporating temporal variations in population demography features and flow regime. As a future
work, we may consider dynamics of interacting species models coupled with hydrodynamic equations
and hence provide better river ecology management strategies.
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Appendix

A. Derivation of model (2.1)

We first develop a single-compartment model, and then extend it to a benthic-drift model by dividing
the river channel into two zones and the population into two corresponding groups.

Let N(x, y, t) be the population density (unit: quantity/volume) at location (x, y) and time t. Let
h(x, y) be the water depth (unit: length) at location (x, y) and v(x, y) = (v1(x, y), v2(x, y)) be the depth
averaged flow velocity (unit: length/time) at (x, y) with v1 and v2 being the flow velocities in the x and
y directions, respectively.
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Figure 16. A water flow box.

Consider a water flow box containing the cross-section through (x, y) with the volume estimated
by ∆V = ∆x∆yh(x, y) (see Figure 16). We want to understand how the population density in the
box changes over time due to flows of population into and out of the box. In the x-direction, the
population enters the box with a flux Jx and leaves the box with a flux Jx+∆x. In the y-direction, the
population enters the box with a flux Jy and leaves the box with a flux Jy+∆y. The flux expresses the
density of population that passes a unit area per unit of time. It has dimension density/(area·time). The
population density that flows into or out of the box in the x direction per unit time can be estimated by
the product of the flux in the x direction and the area of the surface over which the flux occurs, Jx · Ax,
or Jx+∆x · Ax+∆x. Similar formulas apply for the population inflow and outflow in the y direction. We
then have the balance equation:

∂N
∂t

=
Jx · Ax − Jx+∆x · Ax+∆x + Jy · Ay − Jy+∆y · Ay+∆y

∆V

=
Jx∆yh(x, y) − Jx+∆x∆yh(x + ∆x, y) + Jy∆xh(x, y) − Jy+∆y∆xh(x, y + ∆y)

∆x∆yh(x, y)
+ o(∆x) + o(∆y).

(A.1)

Letting ∆x,∆y→ 0, we have
∂N
∂t

= −
1
h

[
∂(hJx)
∂x

+
∂(hJy)
∂y

]
. (A.2)

Microscopically, the flux due to advection can be written as

Jx|advection = v1(x, y)N, Jy|advection = v2(x, y)N. (A.3)

The flux due to dispersion can be written as

Jx|dispersion = −D(x, y)
∂N
∂x

, Jy|dispersion = −D(x, y)
∂N
∂y
, (A.4)
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where D > 0 is the diffusion coefficient. Moreover, Jx = Jx|advection + Jx|dispersion and Jy = Jy|advection +

Jy|dispersion.
By combining the flux divergence formula (A.2) with the microscopic formula for advection (A.3)

and dispersive flux (A.4) and also considering a reproduction or decay process of the population, we
obtain the following general 2-dimensional model for a population that only lives in the drifting water.

∂N
∂t

=g(x, y,N)N −
1

h(x, y)

[
∂

∂x
(v1(x, y)h(x, y)N(x, y, t)) +

∂

∂y
(v2(x, y)h(x, y)N(x, y, t))

]
+

1
h(x, y)

[
∂

∂x

(
D(x, y)h(x, y)

∂N(x, y, t)
∂x

)
+
∂

∂y

(
D(x, y)h(x, y)

∂N(x, y, t)
∂y

)]
,

(A.5)

where g(x, y,N) is the population growth rate.
Hydrologically, the presence of free-flowing water zones on the top and transient storage zones

along the bottom in rivers is an important hydraulic characteristics in the ecology of streams. In the
storage zones, water movement can be approximated as zero flow [5, 10]. Ecologically, many aquatic
organisms reside mainly in the storage zone but occasionally jump into the free-flowing zone and
drifting downstream until they settle down on the benthos again [1]. Motivated by these facts, we
extend the single-compartment model (A.5) to the following benthic-drift model by partitioning the
river into two zones, drift zone and benthic zone, and dividing the population into two interacting
compartments, individuals residing on the benthos and individuals dispersing in the drift zone:

∂Nd
∂t =

µ(x, y)
h(x, y)

Nb︸     ︷︷     ︸
transfer from Nb

−σ(x, y)Nd︸     ︷︷     ︸
transfer to Nb

−md(x, y)Nd︸      ︷︷      ︸
death

−
1

h(x, y)
O · (v(x, y)h(x, y)Nd)︸                             ︷︷                             ︸

advection

+
1

h(x, y)
O · (D(x, y)h(x, y)ONd)︸                                ︷︷                                ︸

diffusion

,

∂Nb
∂t = f (x, y,Nb)Nb︸         ︷︷         ︸

reproduction

−mb(x, y)Nb︸      ︷︷      ︸
death

− µ(x, y)Nb︸    ︷︷    ︸
transfer to Nd

+σ(x, y)h(x, y)Nd︸              ︷︷              ︸
transfer from Nd

,

(A.6)

where Nd and Nb represent the population density in the drifting water and the population density on
the benthos, respectively, f is the reproduction rate of the population md and mb are the mortality rates
of individuals in the drift and individuals on the benthos, respectively, and O = (∂/∂x, ∂/∂y).

B. Proof of Theorem 3.

Theorem 3 can be proved by following the same process as in Section 3.3 in [20]. Substituting
Nd(x, y, t) = eλtφ1(x, y) and Nb(x, y, t) = eλtφ2(x, y) into (3.1), we obtain the associated eigenvalue
problem 

Lφ1 − (σ(x, y) + md(x, y))φ1 +
µ(x,y)
h(x,y)φ2 = λφ1, (x, y) ∈ Ω,

( f (x, y, 0) − mb(x, y) − µ(x, y))φ2 + σ(x, y)h(x, y)φ1 = λφ2, (x, y) ∈ Ω,

a(x, y)φ1 + b(x, y)∂φ1
∂~n = 0, (x, y) ∈ ∂Ω.

(B.1)

By applying similar arguments as in Theorem 3 and Lemma 4 in [20], we can prove the following
results.

AIMS Mathematics Volume 4, Issue 6, 1768–1795.



1793

Lemma 6. (a) The eigenvalue problem (B.1) has a simple principal eigenvalue λ∗ with a positive
eigenfunction if f (x, y, 0) − mb(x, y) − µ(x, y) < 0.

(b) R0 − 1 and λ∗ have the same sign, where λ∗ is the principal eigenvalue of (B.1).

Then by using similar arguments as in the proof of Theorem 5 in [20], we can obtain the following
results.

(i) If λ∗ < 0, then the extinction equilibrium (0, 0) is asymptotically stable for (2.1) for all
nonnegative initial value conditions.

(ii) If λ∗ > 0, then there exists ε0 > 0 such that any positive solution of (2.1) satisfies

lim sup
t→∞

‖(Nd(·, ·, t),Nb(·, ·, t) − (0, 0)‖∞ = lim sup
t→∞

max
(x,y)∈Ω̄

{Nd(x, y, t),Nb(x, y, t)} ≥ ε0.

These results together with Lemma 6 complete the proof of Theorem 3.

C. Approximating R0 by (4.7)

Let (Nd(x, y, t),Nb(x, y, t),Nv(x, y, t)) be the solution of system (4.1) with initially introduced
population distribution (0,N0

b , 0). Denote the final distribution of offsprings by N1
v , i.e.,

N1
v (x, y) = Nv(x, y,∞) = lim

t→∞
Nv(x, y, t).

Let Γ̄ : X → X be defined as

Γ̄(N0
b )(x, y) := N1

v (x, y) = Nv(x, y,∞). (C.1)

By using similar derivation as in Appendix A.5 in [20], we can obtain the formula of the operator Γ̄:

Γ̄(ϕ)(x, y) =
f (x, y, 0)ϕ(x, y)

mb(x, y) + µ(x, y)

+
σ(x, y)Ad(x, y) f (x, y, 0)

(mb(x, y) + µ(x, y))Ab(x, y)

∫ L

0

∫ L

0
k(x, y, ξ, η)

µ(ξ, η)Ab(ξ, η)ϕ(ξ, η)
(mb(ξ, η) + µ(ξ, η))Ad(ξ, η)

dξdη

(C.2)
for any ϕ ∈ X, where k(x, y, ξ, η) is the solution of the ordinary boundary value problem

(
L − σ(x, y) − md(x, y) +

σ(x,y)µ(x,y)
mb(x,y)+µ(x,y)

)
k(x, y, ξ, η) = −δ(x − ξ)δ(y − η), (x, y) ∈ Ω

a(x, y)Nd + b(x, y)∂Nd
∂~n = 0, (x, y) ∈ ∂Ω, t > 0,

(C.3)

for a fixed point (ξ, η) ∈ Ω. Note that the solution to (C.3) is a Green’s function (see (2–11) in Chapter
7 in [17], (2.9) in Chapter 3 in [42], or Appendix B in [31]). Furthermore, we obtain the following
result.

Proposition 7. The spectral radius of Γ is equal to the spectral radius of Γ̄, i.e.,

R0 = r(Γ) = r(Γ̄). (C.4)
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Proof. Define an operator Γ̂ : X → X as

Γ̂(ϕ)(x, y) =
f (x, y, 0)ϕ(x, y)

mb(x, y) + µ(x, y)

+
σ(x, y)Ad(x, y)

(mb(x, y) + µ(x, y))Ab(x, y)

∫ L

0

∫ L

0
k(x, y, ξ, η)

f (ξ, η, 0)µ(ξ, η)Ab(ξ, η)ϕ(ξ, η)
(mb(ξ, η) + µ(ξ, η))Ad(ξ, η)

dξdη,
(C.5)

for all ϕ ∈ X, where k(x, y, ξ, η) is the solution of the ordinary boundary value problem (C.3). By
similar proof as for Theorem 6 in [20], we obtain that the spectral radius of Γ is equal to the spectral
radius of Γ̂, i.e.,

r(Γ) = r(Γ̂).

Define two operators T1,T2 : X → X:

T1(ϕ)(x, y) = f (x, y, 0)ϕ(x, y),

T2(ϕ)(x, y) =
ϕ(x, y)

mb(x, y) + µ(x, y)

+
σ(x, y)Ad(x, y)

(mb(x, y) + µ(x, y))Ab(x, y)

∫ L

0

∫ L

0
k(x, y, ξ, η)

µ(ξ, η)Ab(ξ, η)ϕ(ξ, η)
(mb(ξ, η) + µ(ξ, η))Ad(ξ, η)

dξdη,

(C.6)

for all ϕ ∈ X, where k is defined in (C.3). Then both T1 and T2 are bounded and linear, and we further
have Γ̂ = T2 ◦ T1, Γ̄ = T1 ◦ T2. This yields the result that the spectral radii of these two operators are
the same, i.e.,

r(Γ̂) = lim
n→∞
||(T2 ◦ T1)n||1/n = lim

n→∞
||(T1 ◦ T2)n||1/n = r(Γ̄).

Hence, we obtain
R0 = r(Γ) = r(Γ̂) = r(Γ̄).

�
To numerically approximate Γ̄, we can discretize (C.2) in the river region Ω̄. Divide Ω̄ into a grid

(uniform except in the area near the boundary). Let {(xi, y j)i∈I, j∈J} represent all the nodes of the grid.
Let n be the total number of the nodes and rearrange all nodes such that they are represented by a
sequence of points {Ph, 1 ≤ h ≤ n}. By applying a numerical quadrature (e.g., Newton-Cotes, Gauss,
Simpson, etc.) to (C.2), we can approximate (C.2) by

Γ̄(ϕ)(Ph) ≈
n∑

s=1

ηh,sϕ(Ps), 1 ≤ h ≤ n,

where ηh,s > 0 depends on parameter functions in (4.1) and the numerical quadrature (see e.g., [37,45]).
Let

Γ̄n = (ηh,s).

Then we can approximate the operator Γ̄ by the positive matrix operator Γ̄n and hence approximate r(Γ̄)
by r(Γ̄n), i.e.,

r(Γ̄) ≈ r(Γ̄n), (C.7)

for large positive integer n.
The Perron-Frobenius Theorem implies that Γ̄n admits a positive principal eigenvalue λ∗n which is

equal to r(Γ̄n) and is associated with a positive eigenvector φ∗n. Since Γ̄n is a positive matrix, we can use
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the power method to numerically calculate λ∗n. For any nonnegative function N0
b with

∑n
h=1 N0

b (Ph) = 1,
let

N l
b(Ph) =

Γ̄nN l−1
b (Ph)∑n

h=1 Γ̄nN l−1
b (Ph)

, 1 ≤ h ≤ n, l = 1, 2, 3, · · · . (C.8)

We then have
(N l

b)T (Γ̄nN l
b)

(N l
b)T N l

b

→ λ∗n and N l
b → φ∗n, as l→ ∞. (C.9)

Note that we use Γ̄n to approximate Γ̄. The definition of Γ̄ in (C.1) implies that Γ̄nN l−1
b approximates

the offspring distribution of system (4.1) with the initial population N l−1
b . Denote

N l
v(Ph) = Γ̄nN l−1

b (Ph), 1 ≤ h ≤ n, l = 1, 2, · · · .

(C.9) implies that
n∑

h=1

N l
v(Ph) =

n∑
h=1

Γ̄nN l−1
b (Ph)→ λ∗n, as l→ ∞ (C.10)

and
N l

v = Γ̄nN l−1
b → λ∗nφ

∗
n, as l→ ∞. (C.11)

Following this idea, we do not directly find Γ̄n to estimate λ∗n (and hence R0) in our River2D simulations.
Instead, we solve (4.1) numerically for any nonnegative function N0

b satisfying
∑

(xi,y j)∈Ω̄
N0

b (xi, y j) = 1,

and define the following sequence by following the idea as in (C.1) and (C.8):

N l+1
v (xi, y j) = N(l)

v (xi, y j,∞), l = 0, 1, 2, · · · ,
N l

b(xi, y j) =
Nl

v(xi,y j)∑
(xi ,y j)∈Ω̄

Nl
v(xi,y j)

, l = 1, 2, 3, · · · , (C.12)

where N(l)
v (xi, y j,∞) is the offspring compartment of the numerical solution to system (4.1) with the

normalized initial condition (0,N l
b, 0) as t → ∞. Then by (C.4), (C.7), (C) and (C.11), we approximate

R0 by
R0 = r(Γ) = r(Γ̄) ≈ r(Γ̄n) = λ∗n ≈

∑
(xi,y j)∈Ω̄

N l
v(xi, y j), (C.13)

and the next generation function by

φ∗(xi, y j) ≈ φ∗n(xi, y j) ≈ N l
v(xi, y j), (C.14)

for sufficiently large positive integer l.
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