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Abstract

There are two principal representations for modelling, understanding and
computing the evolution of the term structure of interest rates: the spot rate
paradigm and the Heath-Jarrow-Morton (HJM) Models. The spot rate models
are most often specified under the equivalent martingale measure. The HJIM
models on the other hand provide better ways to match observed variances and

covariances of changes in bond prices.

The relationship between short-term rates and forward rates has long been
established in the famous Expectations theory of the yield curve. The economic
argument of this theory, asserting that implied forward rate profile represents
market’s expectations of future short rates, is proved formally here via math-

ematical expectation under the forward measure.

Starting with different short rate models we determine their related HJM
forms. In turn, these HJIM dynamics are expressed in terms of a related short
rate model. We present a class of models where, using stochastic flows the
dynamics of the term structure under the two paradigms are investigated and
reconciled in each interest rate model. In particular, a model in which the
short rate is a function of a continuous time Markov chain is considered. We
then move on to consider models that capture mean reversion phenomenon.
The Vasicek, (Ornstein-Uhlenbeck process) and the Cox-Ingersoll-Ross (CIR),

(Bessel process) models are examples of these.

A characterisation of generalised exponential affine models for bond prices
is also presented and the form of the forward and short rates calculated, given
that we have such bond price models. From a Discrete Markov Model to con-
tinuous Vasicek and CIR models, we investigate three mixture models. These
are the Hull-White Model, whose mean reversion level is time varying; the two-
factor Gaussian model, a Vasicek model whose mean reverting level is Vasicek

by itself; and a Vasicek model with a Markovian mean reverting level. The
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results show that the closed form solution for the bond price for these models

are obtainable and all of them are exponential affine.

The bond price for the two-factor Gaussian Model is derived using Stochas-
tic Flows and their Jacobians. The bond price for the Markovian mean revert-
ing level has an Ordinary Differential Equation (ODE) component involving
a fundamental matrix solution. A simulation study using auxiliary filters,
which enables the parameters to be estimated via the Expectation Maximi-
sation (EM) algorithm, demonstrates the feasibility of this Markovian Mean
Reverting Interest Rate Model.

The results provide a wide class of discrete, continuous and mixture models

for the interest rate market and for pricing other derivatives securities.
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“Most people see things as they are and ask why. But, I dream of things

that never were and ask why not.” -Adopted from the book “The Road Less
Traveled.”
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Introduction
and
Summary of Results

The relationship among yields and maturities of otherwise identical se-
curities is generally referred to as the term structure of interest rates. The
term structure of interest rates has been the focus of many studies over a cen-
tury now. In an effort to understand better the movements of interest rates,
researchers have attempted to identify processes and rational investors’ be-

haviours that will help explain fluctuations in yield curves over time.

An understanding of the yield curve has become increasingly important
for a multitude of reasons. Together with theoretical explorations, research on
interest rate models is undertaken to generate more insight in the following

practical pursuits:

1. Management of interest rate risk exposures particularly, in hedging deriva-

tives securities which are interest rate sensitive;

89}

. Forecasting of economic growth implied by short- and long-term interest
rate behaviours. Statistical investigations in the Journal of Financial
Economics, Journal of Finance and other academic publications have
documented modest, but reliable positive correlations between the slope
of the term structure, (differences between long term and short term
interest rates), and future rates of economic growth, see [42] and [65].

This is also substantiated in [7];

3. Determining market expectations of future interest rates and inflation.
Information derived from market expectation serves as primary indicator
for central banks and federal reserve banks in their attempt to control and

influence the levels of interest rates, or when adopting a certain monetary

policy;
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4. Investigating movements of key interest rates used as benchmark by in-
vestment banks; for instance, non-callable US Treasury securities are the
benchmark for examining interest rates because they are very liquid and

considered risk-free; and

5. Term structure of interest rates is important to corporate treasurers, who
must decide whether to borrow by issuing long- or short-term debt, and

to investors who must decide whether to buy long- or short-term bonds.

We are guided by the fact that, in addition to mathematical artifacts,
there is a need to understand the economic forces underlying the successful

and better functioning of capital markets.

To begin with, we present the related financial economics theory of interest.
Most of the analytical tools and a brief formalisation of finance theory for
contingent claim valuation are included in the Appendices. Based on these
interrelated disciplines, we wish to build models describing the dynamics and

structure of the interest rate market.

We have indicated that in the following chapters of this thesis we view the
market mathematically and statistically. Of course, this does not contradict
the view of the fundamental analysts that interest rates can be assessed by
studying business, government and other macroeconomic analysis. However,
any individual is bound by information constraints and personal biases and
foibles. Paradoxically, it is the result of differences of opinions and purposes

which make a market exists.

Mathematical modelling is expected to find trends or fit data even when

there is noise.

Certainly, the thesis does not guarantee excellent predictive performance
of these market models. We based our construction on the premise that the
processes in the investigation are all random and trust available market prices,
which is the essence of the efficient market hypothesis. Having, therefore,
formulated a mathematical model based on some assumptions, we proceed to

model and investigate the interest rate dynamics.

8V
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To attain this major objective, we give a brief outline of how we intend to

proceed and what each chapter contains.

Chapter 1 reviews selected background material on the study of term struc-
ture of interest rates. We give an overview of interest rate models from their
existence and uses, to recent economic theories concerning beliefs of how short
rates and forward rates are related, to several practical considerations and

modern studies of term structure theories.

Chapter 2 gives a formal treatment of the two paradigms of bond pricing.
A mathematical demonstration showing the equivalence of the three descrip-
tions of term structure is presented. Economic arguments regarding future

expectations of short rates and bond prices are presented in four versions.

In Chapter 3, the Unbiased Expectation Hypothesis is given a mathemat-
ical proof via the powerful tool of changing measures. There, we introduce
the construction of a forward measure by specifying its corresponding Radon-
Nikodym derivative. The forward measure approach also provides an ingenious
way of decomposing the expectation problem embedded in the valuation for-
mula into products of two simpler expectations; thus, facilitating the valuation

process of contingent claims in a more efficient way.

In Chapter 4, we model the short rate as a function of continuous time
Markov chain. The bond price is calculated under this model. The dynamics
of the instantaneous forward rate f(¢,7") are obtained and the short rate r;

and f(t,t) are reconciled.

The Vasicek model is explored in Chapter 5. The dynamics of f(¢,T) and
the short rate are derived. The short rate is related to the f(¢,7T) dynamics.

In Chapter 6, similar methodology and objectives to those of Chapter 5
are pursued but with the emphasis on the Cox-Ingersoll-Ross (CIR) model.

Chapter 7 considers a Generalised Exponential Affine Model of the form
exp[A(t,T)—B(t,T)r:]. General relationships describing the dynamics of f(¢,T)
and properties of the functions A(¢,T) and B(¢,T) are established and several

characterisations of the model are also given.
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Mean reverting models for interest rates are the topics discussed in Chapter
8. We study examples of these models and derive the corresponding bond
prices. Again, the ultimate aim is to reconcile the short rate and the HJM
forms. The purpose of this exercise 1s to validate the dynamics of f(¢,T) so they
are consistent with the Stochastic Differential Equation (SDE) describing the
evolution of ;. In particular, we investigate the Hull-White Model, Two-Factor
Gaussian Model and the interest rate model with Markovian mean reverting

level.

Chapter 9 aims to test empirically the model for a mean reverting level
following the Markov process. We carry out the simulation and assessment
of the predictive performance of this model through Hidden Markov Model
(HMM) and Filtering techniques. A review of HMM methodology, in conjunc-
tion with a unit-delay model, is presented and optimal filters are computed for
this implementation. Current research in econometrics indicates that the state
space model with filtering is the most robust method to use for modelling term
structure. This is the reason we favour the filtering method in our empirical
investigation, in addition to its consistency with the Efficient Market Hypoth-
esis. A novel feature of the Hidden Markov filtering is that the parameters are

updated as new information arrives, thus the model is self-calibrating.

Finally, we summarise in Chapter 10 results of this study. Several con-
cluding remarks pertaining to future directions and other avenues of possible

research are included.
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Chapter 1
Preliminaries

This chapter gives a brief overview of the theory of interests starting from his-
torical perspectives to a survey of several commonly known related economics
and financial theories concerning the significance of term structure, the exis-
tence and significance of interest in particular; to the hypothesis describing
relationship between short-term rates and forward rates and recent research in

the field of modern term structure theory.

Most of the material prerequisite to the study of the results contained
in the succeeding chapters are covered in Appendices A and B. Appendix A
outlines a review of selected and related topics in measure-theoretic probability
and stochastic calculus. A section on quantitative finance theory is covered in
Appendix B that discusses recent developments of the field and presents the
foundation of modern pricing theory and contingent claims. This is an attempt
to systematise the evolution of these background material suitably needed in
the study of term structure in the light of new scientific approaches of modern

finance. In this regard, formalisation such as this, aims at advancing the field.

In the spirit of the methodology of this presentation, we wish to emphasize
on the rigorous development of the basic results in modern finance theory which
lie at the heart of the remarkable range of current applications of martingale

theory and stochastic processes to financial markets.
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1.1 Overview of Interest Rates

We recognise that mathematical tools alone cannot make things happen. It
is the integration of sound economic theories and financial theories with the
appropriate mathematical tools that forms the cornerstone of today’s finan-
cial modelling. The spirit of integration such as this is essential to interface

quantitative artifacts and the commonly used economic and financial theories.

This section is descriptive rather than analytical. We set aside the math-
ematics first and consider economic fundamentals. As we are probing a very
practical matter which is of utmost concern to everyone, rates of interest,
sometimes referred to as cost of capital, it would be naive to just focus on
mathematics. We review the historical development of the study of interest
rates and present selected basic economic theories in conjunction with the aim
of this thesis.

The formal study of this subject can be traced back to the pioneering
work of Irving Fisher in his two books entitled, “The Rate of Interest,” [53],
and “The Theory of Interest,” [54].

1.2 An Economic Rationale of Interest Rates

A number of different theories have been advanced to explain the existence
of interest. All of them, however, fall into two general categories, one for the

supply side of the transaction and one for the demand side.

On the supply side, the primary issue is time preference. Most individuals
and business firms exhibit a strong preference to have access to dollars today
rather than an equal number of dollars tomorrow. Dollars tomorrow can only
be used to meet deferred needs in an uncertain future. Interest is then the
price that is sufficient to cause individuals and firms to overcome their time
preference to defer consumption. Even individuals and firms with a strong
recognition of the need for future dollars can easily move current dollars into

the future by saving. Specifically, this argument is supported by monetary
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theories, popularised by Maynard Keynes, which hold that the level of the

money supply determines the supply side of the interest market.

On the demand side, the primary issue is the productivity of capital. Vir-
tually all business firms need capital with which to operate successfully. Some
of this capital generally comes from borrowing. In the long run, the firm will
be successful only if the return on capital employed is greater than the cost of
borrowing. Of course, not all borrowing is done by firms; much is also done by
individuals and government to finance current consumptions and for purpose

of investments.

Although these two major theories are quite different, they are in no way
incompatible. In fact, quite to the contrary, they serve to complement each

other.

Though the above discussion barely scratches the surface of some economic,
or even psychological and philosophical theories attempting to explain the ex-
istence of interest, it gives us insights regarding Fisher’s theoretical framework
on the determination of the rates by supply of debt (i.e, the demand for loan)
and the demand for debt (i.e. supply of capital). Indeed, this is self-evident in
the subtitle of his book “The Rate of Interest” as determined by the tmpatience

to spend income and the opportunity to invest it.

1.3 Determinants of the Level of Interest

So far, we have seen that basic economic theory suggests that rates of interest,
like other prices, are established by supply and demand. This sounds simple,
but in practice there is a large number of factors that come together in complex
ways to determine rates of interest. There are four most relevant factors that

influence the shape of the yield curve and the general level of interest.

1. Federal Reserve Policy. Economic theory asserts that the money supply
has a major effect on both the level of economic activity and the rate of
inflation. The Federal Reserve Board as in the case of the United States,
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or the Bank of Canada, in the case of Canada, controls the money supply.

If a monetary board like the Federal Reserve slows growth in the economy,
it slows growth in the money supply. At the outset, this action would
cause interest rates to increase and stabilise inflation. On the other hand,
the reverse occurs whenever the Federal Reserve Board loosens the money

supply by reducing interest rates.

As a case study, the Federal Reserve Board tightened up the money sup-
ply six times in 1994, to keep inflation in check, thereby controlling the
growth of the existing economic recovery. The Fed’s tools are primarily
in the short-term rates. In effect, this tightening had the direct effect of
pushing short-term interest rates up sharply. Long-term rates followed.
The Fed’s action to control the inflation had affected the investors’ ex-
pectations about inflation. Thus, long-term rates leveled off and even

dropped slightly in some financial markets.

Therefore, we see that when the Fed intervenes actively in the financial
markets, there is a distortion of the yield curve. There is a temporary
situation of interest rates being too low if the Fed is easing credit. On
the other hand, interest rates would be temporarily too high if the Fed
is tightening credit. Long-term rates however are not really that much
affected when Fed takes intervention actions, except to the extent that

market follows rational expectations.

!O

Foreign Trade Balance. Individual and businesses in Canada buy and
sell to people and firms in other countries. So, if Canada imports more
than it exports, there would be a foreign trade deficit. If trade deficits
occur, there is a need to finance it. The main source of funds for doing

this is through debt.
Logically, the larger the deficit, the more that must be borrowed. In

effect, the interest rates go up as more borrowing is incurred. When the
Bank of Canada attempts to make the interest rates lower, this causes
Canadian interest rates to fall below rates abroad. Foreigners will sell
Canadian bonds, thereby Canadian bond prices will be depressed. The

result would then be higher Canadian rates.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In essence, if there is a trade deficit, this will hinder the Bank of Canada

to intervene in its effort of lowering interest rates during recession.

3. Federal Deficits. There are occasions when the federal government spends
more than it gets from tax revenues. If this happens, a fiscal deficit
occurs. This should be covered through the means of either printing
money or borrowing. If the government prints money, expectations for
future inflation increase which in return can raise interest rates. If the
government opts to borrow, this demand for funds can drive interest rates
up. Ceteris paribus, the larger the federal deficit the higher the interest

rates.

Nevertheless, it is hard to determine whether long- or short-term rates
are more affected by federal deficits. It depends on how the deficit is

financed.

4. Business Activity. Business conditions also influence interest rates, es-
pecially in times of recession. During recessions, both the demand for
money and rate of inflation tend to fall. At the same time, monetary
boards like the Fed or Bank of Canada tends to increase money supply

in an effort to stimulate the economy.

Therefore, with more supply and less demand, the result is a tendency for
interest rates to decline during recessions. In times of recession, short-
term rates decline more sharply than long-term rates due to the following:
(i) The Fed operates mainly in the short-term sector, and such interven-
tion has the strongest effect in this area, and (ii) long-term rates are
reflections of average expected inflation rate over the next 20 to 30 years.
This expectation usually does not change much, even when the current

rate of inflation is low because of a recession.

1.4 Interest Rate Levels and Stock Prices

We argue that interest rates have two effects on corporate profits: First, other

things remaining the same, interest being a cost, the higher the rate of interest,

9
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the lower the firm’s profit. Second, interest rates affect the level of economic
activity, and economic activity affects corporate profits. Apparently, interest
rates affect stock prices because of their effects on profits. However, its sig-
nificance is more from the competition it creates in financial markets between

stocks and bonds.

If real interest rates rise sharply, investors can obtain higher returns in the
bond market, which induces them to sell stocks and transfer funds from the
stock market to the bond market. If there is a massive sale of stocks in response
to rising interest rates, this could cause stock prices to plummet. Similarly, if

interest rates decline, the reverse situation holds.

As an illustration, the Dow Jones Industrial Index in December 1991 rose
to 10% in less than a month. The bullish market during this time was due,

almost entirely, to the sharp drop in long-term interest rates.

The bearish market of 1994, on the other hand, charactererised by declining
common stock prices by more than 3% on average, was a result from a sharp

increase in interest rates.

1.5 Interest Rates and Business Decisions

To describe the interaction between interest rates and business decisions, con~
sider the yield curves for May 1981 and January 1998 on Canadian marketable
bonds. From Figure 1.1, the January 1998 yield curve shows that short-term
rates were lower than the long-term rates. Suppose at that time, a certain firm
decided to (1) undertake a project (with positive net present value) having a
20-year life and will cost $10 million, and (2) raise the funds for the project by

an issue of debt rather than by issuing stocks.

If the firm borrows on a short-term basis-say for one year-the rate on the
loan might be 5%, so the interest cost for the year would be $500,000; if the
firms uses long-term (20-year) financing, the rate might be 6%, and the cost of
borrowing for the year would be $600,000. Therefore, at first glance, it would

10
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Figure 1.1: Government of Canada Bond Interest Rates On Different Dates
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seem that the firm should use short-term debt to finance the new project.

Nevertheless, this could prove to be a mistake. If short-term debt is used,
the firm has to renew the loan every year, and the rate charged on each new loan
will reflect the then-current short-term rate. Interest rates could return to their
May 1981 levels, so by 1999 the firm could be paying 16.5%, or $1.65 million
in interest per year. These high interest payments would cut and possibly
eliminate the entire profits. The reduced profitability could easily increase the

firm’s risk to the point where its bond rating would be lowered, causing lenders

11
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to increase the risk premium built into the interest rates they charge, which in
turn would force the firm to pay even higher rates. These very high interest
rates would further reduce profitability, make lenders worry more, and causing
them to be reluctant to renew the loan. If lenders refuse to renew the loan and
demand payment, as they have the right to do so, the firm would have difficulty
raising the cash. If the firm decided to make price cuts by converting physical
assets to cash, heavy operating losses can ensue, and ultimately bankruptcy

OCcurs.

If the firm used long-term financing, the cost of interest would remain con-
stant at $600,000 per year. Thus, an increase in interest rates in the economy
would not hurt the company. This would enable the firm to buy up some of its
bankrupt competitors at bargain prices, as bankruptcies increase dramatically

when interest rates rise, primarily because many firms do use short-term debt.

However, the above argument does not suggest that the firm should always
avoid short-term debt. If inflation falls in the next few years, so will interest
rates. If the company borrowed on a long-term basis for 6% in January 1998,
it will be at a major disadvantage if competitors who used short-term debt in
1995 could borrow at a cost of only 4 or 5% in subsequent years. On the other
hand, large federal deficits might drive inflation and interest rates up to a new
record levels. In that case, the firm would wish to have had borrowed on a

long-term basis in 1998.

Financing decisions would be easy, if accurate forecasts of future interest
rates could be developed. However, predicting future interest rates with consis-
tent accuracy is impossible. This work contributes to the modelling of interest

rates and term structure.

1.6 More than Just One Interest Rate

Fisher stated “Instead of a single rate of interest, representing the rate of
exchange between this year and next year, we now find a great variety of so-

called interest rates.” He continued, “These rates vary; because of (1) risk,(2)
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the nature of security, (3) services in addition to the loan itself,({) lack of free
competition among lenders or borrowers, (5) length of time the loan has to run,

and other causes which most economists term (6) economic frictions.”

He added further that the long-term rates set a rough norm for the short
rates which are much more variable. The stability of the economic system,

call-terms (i.e., degree of liquidity), all influence the variability of rates.

This dissertation will focus only on the study of short rates and forward

rates and explore their relationships.

We single out that at any particular point in time there is a vast array
of interest rates being used in the myriad of financial transactions involving
interest. However, a few key short term rates are widely watched as benchmarks

of movements of interest rates. Three such key rates are:

1. Prime rate-the base rate used on high-grade corporate loans by major

banks. Many loan rates are indexed to the prime rate.

2. Federal funds rate-the rate on reserves traded among commercial banks
for overnight use. This rate changes daily and provides day-to-day infor-

mation about interest rate movements.

3. Discount rate-the rate charged to member banks on loans by the Federal
Reserve. Changes in this rate signal significant monetary policy adjust-
ments by Federal Reserve Board which are likely to have widespread
effect.

There is no single key indicator of long-term rates that is comparable to
the above rates. The yields on Treasury bonds with a term of several years is

a reasonable indicator of movements in long-term rates.

1.7 Term Structure Theories

We present here a brief summary of three different, but independent, theories

concerning term structure.
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The ezpectations theoryis the simplest one and it is the one which has been
the subject of empirical investigation for several decades. It had widespread
appeal for the theoretical economists. It argues that a forward interest rate
corresponding to a certain period is equal to the expected future spot interest

rate for that preiod.

A second theory is known as market segmentation theory. By its name
suggests, this theory hypothesizes that a relationship between short, medium
and long-term interest rates does not necessarily exist. The reasoning behind
this is as follows: The short-term interest rate is determined by supply and
demand in the short-term bond market, the medium term interest rate is de-
termined by supply and demand in the medium term bond market and so on.
In other words, individuals and institutions investing in bonds of different ma-
turity do not switch maturites. This means that the cross elasticity of demand
is low, possibly zero; securities of different maturities are poor substitutes for

one another.

The theory that conjectures that forward rates should always be higher
than the expected future spot interest rates is known as liquidity preference
theory. An inherent assumption is that investors prefer to have more liquidity
and invest funds for short periods of time. This is a widely accepted theory,

not necessarily inconsistent with the expectations hypothesis.

This theory is apparently the most appealing to the traders and investors.
Borrowers usually prefer to borrow at fixed rates for long periods of time. If
the forward rate equals expected future spot rate, interest rates would equal
the average of expected future short-term interest rates. In the absence of
any incentive to do otherwise, investors would tend to deposit their funds for
short time periods and borrowers would tend to choose to borrow for long time
periods. Thus, lending banks and financial intermediaries then find themselves
financing susbstantial amounts of long-term fixed rate loans with short-term
deposits. This entails excessive interest rate risk. It is therefore very necessary
to match depositors with borrowers and avoid interest rate risk. Financial
intermediaries in practice raise long-term interest rates relative to expected

future short-term interest rates. This reduces the demand for long-term fixed
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rate borrowing and encourages investors to deposit their funds for long terms.
This theory is consistent with the empirical evidence that yield curves tend to

be upward sloping more often then they are downward sloping.

In foto, this theory of term structure, which often is treated as a modifica-
tion of the expectations hypothesis, rests on the postulates that (1) the risks
associated with holding long maturities are greater than those of holding short
maturities, (2) the community prefers to avoid risk and (3) there are positive

costs to society of obtaining the services of speculators.

The expectations hypothesis has been enunciated by Fisher, Keynes, Hicks,
Lutz and others. It has a widespread appeal to the theoretical economists, pri-
marily as a result of its consistency with the way similar phenomena in other
markets, particularly future markets, are explained. In contrast, this hypoth-
esis has been widely rejected by empirically minded economists and practi-
cal men of affairs. It was rejected by economists because investigators have
been unable to produce evidence of a relationship between the term structure
of interest rates and expectations of future short term rates. Nevertheless,
Meiselman contends that previous investigators have not devised operational
implications for the expectations hypothesis. Moreover, he contends that they
have examined propositions which were mistakenly attributed to the expec-
tations hypothesis, and when these propositions were found to be false, they

rejected the expectations hypothesis.

Kessel’s investigation, [81], showed that the term structure of interest rates
can be explained better by a combination of the expectations and liquidity
preference hypothesis than by either hypothesis alone. The two hypotheses can
be viewed as complementary explanations of the same phenomenon. Support
of this proposition was carried by the previous works of Macaulay, Culbertson,

Meiselman, Walker and Hickman.

Available evidence shows that forward rates are higher estimates of future
spot rates. This result is consistent with the Keynesian theory of “normal
backwardation.” The implications of this theory for the money and capital

markets have been developed by Hicks in “Value and Capital.” Hence, these
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findings support the Hicksian view that forward rates are equal to spot rate

plus a liquidity premium.

In [81], Kessel concluded that correlations between forward and spot rates
suggest that the market does have some power to foresee, up to a year in the
future, spot rates from a month to a year to a maturity. This same conclusion
is reached if forward rates, adjusted for liquidity premiums are used to predict
subsequently observed spot rates and if the mean squared error is computed.
Using either criterion, expectations theory seems to predict better than an

inertia model.

So this classical theory predicts that in the absence of risk premia, forward
rates will be equal to expected short rates. The modern theory however shows
clearly that this will not generally be the case, even when risk premia are zero,

unless the path of future interest rates is certain.

This can be shown by noting that the exponential function is convex.

Therefore, by Jensen’s inequality

0.7 = Bp [eap— [ rut] > oo 55 (= [ )]

for some risk-adjusted probability measure P.

In other words, the bond price is higher under the modern theory than if
the forward rate curve were equal to the “risk-adjusted” path of the expected

short rates.

This “price premium” or “yield discount,” is a direct consequence of un-
3

certainty in future interest rates and is largely unnoticed in traditional theory.

However, we shall show in this work that forward rates can still be equal
to expected short rates. The evaluation of the expectation is with respect to a

different measure, which we shall call a forward measure.
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1.8 Studies on Modern Term Structure Mod-
elling

The early work of “modern” term structure theories can be traced back to
1977 when Vasicek and Cox, Ingersoll and Ross (CIR) developed simultane-
ously similar models. Vasicek adopted a normality assumption while Cox,
Ingersoll and Ross used a non-central chi-squared distribution. Recognising
that single-factor models are over simplistic, multi-factor models were later de-
veloped to solve the curve fitting problem of the models by Vasicek and CIR.
The early work on this area are the Brennan and Schwartz’s model in 1978,
Richard’s model also in 1978 and Langetieg’s model in 1980. While Longstaff
and Schwartz’s model and Chen and Scott’s model in 1992 are representative

of recent developments.

Longstaff and Schwartz (1992) developed two-factor term structure models
where either an arbitrage-free or utility- based methodology is used. In the

Richard and Brennan-Schwartz’s model, factors are chosen arbitrarily.

In finance literature, models developed under a utility function are called
equiltbrium models while those which are formulated using the risk-neutral

methodology are called arbitrage-free models.

Along with the developments of multi-factor models have been the estima-
tion techniques for the parameters in these models. The regression method,
generalised method of moments, maximum likelihood estimation, and most
importantly the state space model have been used in estimating multi-factor

Vasicek or CIR models.

Taking a slightly different view from the multi-factor models, researchers
developed another series of models that take observed yield curve as given, so
that fitting becomes never a problem. This goal is accomplished by makingthe
parameters in the Vasicek or CIR model time dependent. The early work isthe
Ho and Lee model of 1986. They model the uncertainty by putting perturbation
functions on the forward prices. The Black, Derman and Toy (1990), or BDT

model is similar to the Ho-Lee model except that the distribution of the short
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rate is lognormal. The BDT model is richer than the Ho-Lee model because it

also fits the volatility curve.

Dybvig, although he never published his work, gave an extension to the
Ho-Lee model which is in spirit similar to a published work by Hull and White
in 1990. Heath, Jarrow and Morton in 1992 provided a framework which relates
forward and spot rates. Both the continuous time models of HIM and Hull
and White let the parameters in the stochastic processes of the instantaneous
rate be deterministic functions of time. All of these models are considered
“time-dependent” models. These models can fit the yield curve but they do

not have an easy form for the bond price.

An important influence of 1960’s research on investment practice was the
Samuelson-Fama efficient market hypothesis, which holds in a well-functioning
and informed capital market. Asset-price dynamics are described by a sub-
martingale in which the best estimate of an asset future price is the current
price, adjusted for a “fair” expected rate of return. Under this hypothesis,
attempts to use past price data or publicly available forecasts about future
economic fundamentals to predict future security prices are doomed to failure.
In essence, this theory supports why most models that we shall consider in the

following chapters use processes which have the Markov property.

1.9 Term Structure and Monetary Regimes

Since we aim to shed light on issues relating term structure and the practice of
monetary authorities in influencing the level of interest rates, we briefly review

recent works on this area.

Along the lines of the analysis of the work mentioned in the succeeding
paragraph, the mean reverting models that we propose in Chapter 8 could serve
as alternative models. Such analysis will not be carried out here. Rather, we
shall leave the emprical testing of these models with respect to the analysis of

the work that we are about to describe to interested readers.
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There is one empirical investigation concerning mean reverting models per-
formed in Chapter 9. This, however, only intends to demonstrate the feasibility
of applying the models to data, and to obtaining optimal estimates of param-

eters via filtering techniques.

Of particular interest to us are two papers on term structure models where
the interest rate processes do not have continuous sample paths. These papers
were presented at I[saac Newton Institute for Mathematical Sciences of the

University of Cambridge in 1995.

In their paper entitled “Term Structure Modelling under Alternative Offi-
cial Regimes,” S.H. Babbs and N.J. Webber developed a class of term structure
models when there are n state variables modelled as diffusion processes and an

additional m state variables modelled as pure jump processes.

Under this study, the processes are not independent of each other. Fur-
thermore, the spot rate is a specified function of the n +m state variables. The
authors presented an example where a jump process is a floor and another is
a ceiling for the spot rate. This realistically reflects the actions of government
monetary authorities especially when they exercise control in setting discount

rates, Lombard rates and so forth over short-term rates.

The paper entitled “Interest Rate Distributions, Yield Curve Modelling
and Monetary Policy” by L. El-Jahel, H. Lindberg and W. Perraudin treats a
similar problem to that of the Babbs-Webber model. However, since the prob-
lem is a specific case, a closed form solution is obtained. El-Jahel, Lindberg and
Perraudin explained two phenomena which influence the distribution of short-
term interest rates: the practice of many monetary authorities of pegging an
interest rate at the short end of the yield curve and periodically adjusting
it in discrete jumps, and the attitude of monetary authorities in their reac-
tion to inflationary shocks, either relaxed or stringent. The leptokurtosis of
the short rate process is affected by the first of these phenomena. They also
employed a variety of econometric techniques including among other things,
non-parametric kernel estimates, unit root tests and simple autoregressions in

examining the distributional properties of short-term interest rates in the U.K.,
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the U.S. and Germany.

The techniques in their study were applied to the two commonly used
single state variable yield curve models-those of Vasicek and Cox-Ingersoll-
Ross. The parameters in these models were estimated with the aim of finding
significant evidence in the above-mentioned data for misspecification of both
models. They found that the mean reversion rate of adjustment of the short-
term process tend to be overestimated. This empirical evidence prompted
them to propose a Babbs-Webber model where the short-term interest rates
are specified by a pure jump process whose jump rate is a function of a diffusion
process. The assumptions they used are: an Ornstein-Uhlenbeck process for
the diffusion variable and a quadratic function for the jump rate. They then
obtained the power series representations of the conditional distribution of the
diffusion state variable, given its past and bond yields by implementing the
Karhunen-Loeve eigenfunction expansion techniques of physics. The expansion
techniques may be applied to give similar representations of interest rate-based

derivative values.
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Chapter 2

The Term Structure of Interest
Rates

2.1 The Bond Market Structure

Consider a filtered probability space (2,3, { F;},P) and a Brownian motion
W, 0<t<T.

Suppose at time ¢, we have a riskless asset, a bond S? and a single risky

asset S}. Further, these assets have dynamics:

t
S? =ez:p/ rudu and
0
t t
St =S5 +/ a(u)Sidu+/ o(u)Stdw,.
0 0

The functions 7, @, and o are all adapted stochastic processes. Let (H°, H')
denote a self-financing strategy. The wealth process for this trading strategy

is given by
denote a self-financing strategy. The wealth process for this trading strategy

is given by
an

X.(H)= H?S? + H'S}
dX.(H) = rH°S%dt+ H!dS}

= r(X, — H!S!)dt + H'dS}.
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Suppose § = %%ﬂ and under the measure P%, the process W is a

Brownian motion, with

dWP = 0(t)dt + dW,.

Under P?, the discounted wealth process V; = %‘ has dynamics,

X, s}
4[5;] Hlo (t)S;de. (2.1.1)

Since the drift of the SDE in (2.1.1) is zero, the discounted wealth process

V; is a P%—martingale.

Let ¢ € L?(Q,F 1) be a contingent claim. Thus,

¢

M, :== E° [ <

3'}} is a martingale
and ;
M, = My + / o dW?
0

for some adapted process ¢, according to the Martingale Representation The-

orem.

Suppose we take

H! = % X(0) = My = E° [Sﬁ]
and let «
M, = o= X(0) +/ Hla(u) “dW"
Then, with
He = S-S,

(H°, H') is a replicating strategy. That is,

We see that the natural price for the claim at time 0 is EY [s%—] .

T

8]
[S)
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Consequently, at time ¢ € [0, T], the price of a claim ¢ is

Xg((é) = .Xt = StOEa [i g-t]

St

Srtjlr

We can extend this pricing formulation to a market with a bond price S?

Xr
- |

since §§- is a martingale under P?.
t

as the numéraire, with dynamics
dS? = T'tS?dt, Sg =1

and d risky securities, S}, -+, S¢ with dynamics

dSi = St (a;(t)a’t + Z a;j(t)dW'tj) )

=1
Again, W, = (W},--- ,W/*) is an m—dimensional Brownian motion on
(,3,P).

Provided there exists a unique risk-neutral measure P, this pricing valu-

ation holds true.

The price for a claim ¢ € L2(Fr) at time ¢t < T is therefore given by

X, = SE°[¢(5%) 71T .

Remarks: In the preceeding discussion, we have given the motivation
for a “rational” pricing of contingent claims. Further, we have shown that

martingales are tradables and non-martingales are non-tradables.

Now, in a market with d risky assets, we have

w0 — o (&) e,
W =W, 4 ( o) :

which is a P¢— Brownian motion for i =1,--- ,d.
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This can only happen if the two changes of the drift are the same. In other

words,
ait) —re _ ai(t) =T

OO

for any pair (¢,7). The term ®=*t is called the market price of risk, where

« represents the growth rate of the tradable, r as the growth rate of the bond

and o measures the risk of the asset.

Intuitively, the market price of risk can be thought of as the extra return
above the risk-free rate per unit of risk. The market price of risk is defined
using the drift and volatility functions of the stock price. We shall see in
Chapter 7 (Section 7.4, Equation 7.4.12) that this terminology will be defined
in terms of the drift and volatility structures of the spot rate and the two forms

are apparently similar.

We therefore reach a conclusion - all tradables in a market should have the

same market price of risk.

Definition 2.1.1 A zero coupon bond maturing at time T is a claim that pays
1 at time T. The bond price P(t,T) at time t € [0,T] is

P(t,T) = SYE[(S3)7Fd-

With the valuation formula, and S? = ezp( [ r.du),

Pt,T)=E [e:z:p <— /t i rodu 53)}

where F denotes the expectation under a martingale measure.

With this result, if P(¢,T) is a bond price at time ¢, a self-financing strategy
(H?, H}) can be constructed such that the associated wealth process X; at time
t, H)S? + H} S}, will have a value of 1 at time 7.

Oftentimes, the rate r; is deterministic. Thus, in this case, P(¢,T) =
exp (— I rudu) and dP(t,T) = r.P(¢,T)dt and therefore H! is identically 0.
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In the interest-rate market, given a bond with a price P(¢,T), the forward
rate f(t,T) and the yield Y (¢,T) can be written in terms of the bond prices

P(t,T) as:
f@.7T)= ——a—log P(t,T) (2.1.2)
‘ BT ]
and
o logP(t,T) .
Y(¢,T)= —r—7 (2.1.3)

Conversely, using the above formulation in (2.1.2) and (2.1.3), the bond

price can be given in terms of the forward rates or yields as:

P(t,T) = exp (- /tT f(t,-u)du)

P(t,T) = exp (—(T — 1Y (, T)).

In other words, the three descriptions of the yield curve f(¢,7), Y (¢,T)
and P(t,T) are equivalent. The derivations of (2.1.2) and (2.1.3) are given in

the next section.

For emphasis, Y (¢,T) is the average yield of the bond over its lifetime 7" —¢

while f(¢,T) is the price at time ¢ of instantaneous borrowing at time 7.

If we consider Y (¢,¢t) = f(t,t) = r¢, then all of these represent the instan-

taneous spot borrowing.

2.2 The Heath-Jarrow-Morton (HJM) Frame-

work

The HJM model is built upon with an underlying motivation through the
concept of forward rate agreement. Consider a time horizon, 0 < ¢t < T <
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T + € < T*. We wish to enter into a contract to borrow 1 at the future time
T and repay it with interest at the time T 4 e. Whatever the rate of interest
to be paid between T and T + ¢, it will be agreed today, and thus it must be

F;—measurable.

Definition 2.2.1 The instantaneous rate for the amount of dollars borrowed

at time T, agreed upon time t < T, is the forward rate f(¢,T).

We can replicate the above transaction by beginning to suppose tha.t we

have a portfolio consisting of:

Portfolio A: A zero-coupon bond P(¢,T) with a face value of 1 at time
T and;

P(t,T)

m at rnaturity, T+€.

Portfolio B: A zero-coupon bond amounting to

The value of these two portfolios are equal. This is because at tirme ¢,

portfolio A is worth P(¢,T) while portfolio B has value p}(ft(t—T'z;—)J -P(t, T + ¢).

Thus,

P(t,T)

PET) - P(t, T +¢)

-P(t,T +¢) =0. (2.2.4)

Equation (2.2.4) is equivalent to having a long position in portfolio A and
simultaneously taking a short position in portfolio B at time t.

At time T > ¢, $1 is received for portfolio A. An amount of 1—,%% rnust
be paid for portfolio B at time T + €. Therefore, we have a transaction where,

$1 is borrowed at time T and $ P}:t(,;’,f_)c) is paid at time T + €.

The interest paid on the dollar received at time T is Y (¢,7,T + €) and

satisfies

P(t,T)

_P@.T) _ YT T + 6.
PaT 1o~ cople YT, T+ o)

From which we obtain

Y(t, T, T +¢) = —~[log P(¢, T + ¢) — log P(¢, T)). (2.2.5)
€
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Apparently, it follows that

fLT) = lim Y(LT,T+¢
log P(¢, T + €) — log P(t, T)]

e—0

9
= —= 2.2
3T log P(t,T) (2.2.6)

€

= —lim [

Equation (2.2.6) implies further that

T
log P(t,T) = /; a—ulogP(t,u)du

T
= —/ f(t,u)du.
t
Consequently,

P(t,T) = exp (— /tT f(t,u)du) .

In Section 2.1, we gave an argument on how to obtain the "rational” price
of a contingent claim. Following that motivation, an alternative pricing model

for the bond price in terms of the short rate is given as

P(t,T)=E [exp (— /t i rudu) 53] .

The HIJM model is specified by an SDE describing the dynamics of f(¢,7T).

In particular, for every T € (0,7~], we consider

df(t,T) = a(t, T)dt + o(t, T)dW..

Both a(u,T) and o(u,T), for 0 < u < T, are measurable in (u,w) and
adapted. Since, P(¢,T) = ezp (— ftT f(¢, u)du) , let us obtain the dynamics of

— [T f(t,v)du.

d, [—/tTf(t,u)du] = f(t,t)dt—/tT(df(t,u))du
= r(t)dt — /t ety w)dt + o(t, u)dWildu.
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Write -
a':/ a(t,u)du and
t

T
a"‘=/ o(t,u)du.
t

Define T
X, = —/ f(t, u)du.
t

Since f(¢,u) is an F;—adapted process, then X, as well. We note that dX; =
[r(t) — a™(¢t,T)]dt — o=dW, and therefore X; is an It6 process.

Furthermore, P(¢,T) = e** so that

e [r(t) —a (t,T) + %o"(t, T)z] dt
—eXeg™(t, T)dW,.

= P(t,T) [(r(t) —a (¢, T) + éa'(t, T)?)dt

dP(¢,T)

—o7(t, T)dm] .

The discounted bond price P(¢,T') is a martingale under a risk neutral measure
P iffor0<t<T<LT~

o (t,T) = =(o7(¢,T))%.

[V

5

Thus,

2

/tT o(t, u)du = % (/tT a(t,u)du) .

This implies that
T
a(t, T)=0c(t,T) / o(t,u)du.
t

If P itself is not a risk-neutral measure there may be a probability P? under

which %ﬂ is a martingale.
t

This is the result contained in the following theorem.

Theorem 2.2.1 (Heath, Jarrow and Morton) For each T € (0,T™] sup-
pose a(u,T) and o(u,T) > 0 for all u,T,and f(0,T) is a deterministic function
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of T. The instantaneous forward rate f(t,T) is defined by

0

f(t,T) = f(0,T) + /0 ta(u,T)du-l— / to*(u,T)dI/Vu.

Then the term structure model determined by the processes f(t,T) does not

allow arbitrage if and only if there is an adapted process 6(t) such that

T
a(t,T) = o(t, T)/ o(t,u)du + o(t, T)8(t)

for all 0 <t < T~, and the process

A°(t) := exp {—/Ott‘)(u)qu — %/Ot 9(u)2du} .

s an (F¢, P) martingale.

Proof: Consider an adapted process § where A%(t) is an (F;, P) martingale.

Let P? be a new probability measure such that

d P

5| = A% (T™).

?T'

Now

-

W = / C0(u)du + W,
by Girsanov theorem and 0
dP(t,T) = P(¢,T) [(r(t) —a*(t,T)
+-i—a"(t, T +0~(t,T)6(¢))dt

—o™(t, T)de] .

For P(¢,T) to have rate of return r(¢) under P?, § must satisfy

& (t,T) = 20°(t, T)? + o~(¢, T)O(E).

4
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This must hold for all maturities T. Differentiating withe respect to 7', we

obtain
a(t,T)=0(t,T)o"(t,T) + o(t, T)0(2)
for0<t<T < T~

We make the following observations in connection with thae above theorem.

Remarks:

1. The process (%), if it exists, is independent of time 77, the maturity of
the bond P(¢,T) and

- [ED

Under P, a “market” probability, the rate of return of the bond is r(¢) —
a(t,T) + 207(t,T)?. Hence, the rate of return above the interest rate

r(t) is —a~(¢,T) + 307(t,T)* and the market price of risk is

o

—a(t,T) + 507(t, T)*
o~(t,T) = —0@).

It is very important to keep in mind that the market price of risk described
above is defined in terms of the volatility and drift structur<es of the forward

rate.

With regard to these Remarks, Theorem (2.2.1) requires that the market

price of risk is independent of the maturity times 7.
Under P?, we have
dP(t,T) = P(t,T)[r(t)dt — o~ (¢, T)dW/]
and df(t,T) = o(t,T)o™(t,T)dt + o(t, T)dWW}. (2.2.7)
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2.3 Single-Factor HIM Models

The Heath-Jarrow-Morton approach to term structure modelling is a powerful,
technically rigorous interest rate model based on an exogenous specification of

the dynamics of instantaneous continuously compounded forward rates f(¢,7').

For every fixed T < T + ¢ < T~, and given an initial forward rate curve
f(0,T), the dynamics of the instantaneous rate f(¢,7) are given by the inte-

grated version

F(t,T) =f(O,T)+/0ta(u,T)du+/0tcr(u,T)dW;, (2.3.8)

for0<t<T.

The volatilities o(¢,T) and the drifts a(¢,7T) can depend on the filtration
generated by the Brownian motion W, and the rates themselves up to time .
This means that for any fixed maturity T, the forward rate evolves according

to its volatility o(¢,T) and its own drift a(¢,T).

We wish to formalise the descriptions of the properties of these volatility
and drift functions. Following [5], we give technical conditions and constraints
for a and o for a general single-factor HJM Model. Further, we specify market
completeness conditions which are the requirements validating the use of the

HJM pricing paradigm.

On any Single-Factor HIM Model, we assume the following:

Conditions on the Volatility and Drift

1. The processes o(t,T) and «a(t,T) depend only on the history of the Brow-
nian motion up to time ¢. They are good integrands in the sense that
[T o?(t,T)dt < oo and [ |a(t, T)|dt < oo.

o]

2. The initial forward curve f(0,7T), is deterministic and satisfies the con-

dition that ‘[;,T | £(0,u)|du < oo.
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3. The drift « has finite integral given by _[;)T (f5 la(t, uv)|dt)du.

4. The volatility o satisfies the condition that

g

The first two technical conditions see to it that the forward rates are well

/ o(t,u)dW, du] < oo.
0

defined by their SDEs. While, the last two conditions are requirements for a
Fubini-type result that the stochastic differential of the integral of f(¢,T) with
respect to T is the integral of the stochastic differentials of f.

Market Completeness Conditions

1. Itis required that there exists an F;,—adapted process 8, such that a(¢,T) =
o(t,T)(6: +0~(t,T)), for all t < T where o=(¢,T) is just the notation for
ftT o(t,u)du and the process A%(t) = ezp{— [, O(u)dW, — L [T 0(u)?du}

is a martingale.

X

The process ¢~(¢,T) is non-zero for almost all ({,w), t < T for every

maturity 7.

3. The expectation E [e:z:p (% foT(Gt + o= (¢, T))zdt)] is finite.
4. The expectation E [e:z:p (% j;)T Btzdt)] is finite.

The first condition ensures the absence of arbitrage. That is, it makes sure the
existence of an equivalent martingale measure so that every single discounted

bond price is a martingale.

On the other hand, the second condition states that the change of measure
is unique. Or, plainly every risk can be hedged through martingale represen-

tation theorem.

And the last two conditions are assumptions needed before the Girsanov’s
theorem can be applied and technical requirements for a discounted price pro-

cess to be a martingale under the new measure.
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2.4 Multi-Factor HIM Model

We have been accumulating technical conditions as we have swept through.
These summary of technical conditions in this section are intended for a dis-
cussion when the process is driven by n independent Brownian motions. We

shall consider particular cases of this in chapter 8.

Single-factor model has the disadvantage that all the increments in the
bond prices are perfectly correlated. The assumption of a single factor is also
too simplified which may not be that realistic, especially when we are pricing
a contingent claim which depends on the difference of two points on the yield

curve.

Thus, it is worth considering multi-factor models. In an n—factor model,
we shall be working with n independent Brownian motions. For each 7'—bond
forward rate process, the volatility o;(¢, T) has a corresponding Brownian factor
W/. This formulation allows different bonds to depend on external "shocks”
in different ways, and to have strong correlations with some bonds and weaker
correlations with others. In its general form, the multi-factor HIM Model is

given by

= (s, T)dW? t .T)d 2.4.9
£(6,T) f(O,T)+§/OU(s ) +/0a(s )ds (2.4.9)

for0<t<T.

The generalised form for f(¢,7) in (2.4.9) merely tells us that the forward

process starts with initial value f(0,7T) and is driven by various Brownian

motion terms and a drift.

We see that the total instantaneous variance of f(¢,T) is 5 &, 0:%(¢,T). On
the other hand, the covariance structure of the increments of the two forward
rates f(t,T) and f(t,S) is given by

Z oi(t, T)oi(t, S).

In particular, when n = 1, that is, if we have a single-factor model, the
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correlation of the changes in the forward rates of T—bond and S—bond is just

one.

We can then give the expression for the instantaneous rate r, = f(¢,1)

analogous to (3.3.7). For this multi-factor model, we have
n t t
re = f(0,%) + Z/ oi(s,t)dW? +/ as,t)ds.
i=1 YO 0

Similar to what we outline in the summary of technical conditions for
single-factor models in Section 2.3, we formalise volatility and drift conditions

and also specify the required market completeness conditions.

On any Multi-Factor HJM Model, we assume the following:

Conditions on the Volatilities and Drifts

1. For each T, the process oi(t,T) and «a(t,T) are Fradapted and their
integrals foT o:%(t, T)dt and fOT |a(t, T)|dt are finite.

2. The initial forward curve, f(0,7T), is deterministic and satisfies the con-

dition that fOT |£(0,u)|du < oo.
3. The drift « satisfies fOT(fOu la(t, u)|dt)du < oco.

4. Each volatility o; has finite expectation E| foT | [5 oi(t, u)dWidu].

Again here, the first two conditions ensure that the SDE for f(¢,T) is

well-defined and the last two conditions are requirements of Fubini theorem

for stochastic integrals.

Market Completeness Conditions

1. It is required that there exist F:—adapted processes §;(¢), for 1 < < n,
such that

a(t,T) = Za,(t T)(8:(t) + o7 (¢, T)),

i=1
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forallt <T.

2. e:cp( 21_1 2(t)clt)] < oo.

3. The matrix ¥} = (U;(t,Tj))zj=l is non-singular for almost all (¢,w),

t < T, for every set of maturities T; < T, < ... < T}, and
4. E [e:z:p( S fo (6:(¢) + o7 (¢, T))dt) ] < oo.

The first two conditions are requirements we need to apply Girsanov’s theorem
for higher dimensions thus ensuring that the discounted bond prices are mar-
tingales. Unlike, the single-factor case, the drift is now allowed n “dimensions
of freedom” away from its risk-neutral value. In other words, as a function
of T, a(t,.) is allowed to deviate by any linear combination of the functions
oi(t,.). The second condition validates 6;(¢) to be a drift under an equivalent

change of measure via the Girsanov theorem.

The nonzero volatility process o™(t) in the single-factor model is replaced

by a volatility matrix process £ which has to be non-singular.

The last condition makes sure that the resulting driftless discounted bond

price is a martingale (i.e., a multi-dimensional exponential martingale).

We can say therefore that validating the price obtained via the HJM frame-
work amounts to checking the technical conditions described herein for the

forward rate process.

2.5 Equivalence of Short Rate and HIM Mod-

els

Short rate models are based on the rate of instantaneous borrowing r; and
they are the ones commonly used in the market, in pricing derivative products
which depend only on one underlying bond. As cited in [5], the short rates

evolved from various historical starting points. Some emerged from discrete
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framework while others from equilibrium models and often are represented in

a simple hierarchy with no apparent connection to any overarching model.

All of these are however HJM models and this is the reason why the HJM
framework is considered in great details in this chapter. These two descriptions

in valuing a contingent claim are equivalent via a mathematical transformation.

From equation (2.1.2), we have

T
/ f(t,u)du = —log P(¢t,T) = h(r:,t,T),

where h(r¢,t,T) is the deterministic function

T
h(z,t,T) = —logE [ea:p (—/ rudu>
t

As we are able to express the forward rate in terms of a function A which

re = x] . (2.5.10)

is also a function of r;, equation (2.5.10) therefore specifies the HIM model in

terms of the short rate.

On the other hand, the short rate can also be expressed in terms of the
HJM model and this is the content of Theorem 6.2.1.

2.6 Versions of Expectations Hypothesis of the
Yield Curve

For some time, the determination of the relationship between the yields and
market expectations of future interest rates is one of the most popular and im-
portant research pursuit in the theory of interest. Such a relationship between
yield rates and prices of the bonds (which contain information concerning term

structure) is embodied in a unified framework called the ezpectation hypothesis.

We present four versions of the theory to reinforce us with more insights
in our attempt to give a formal proof of the Expectations theory of the yield

curve in Chapter 3. Each of these hypotheses is stated in its “pure” form, that
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is, with respect to the “true” stochastic process governing future short rates, or

with respect to the physical measure, as opposed to the risk-adjusted process.

1. The Unbiased Expectations Hypothesis (UEH) This assumes that
the forward rates f(¢,T), and the expected future short rates E[rr], are
equal. That is,

£6.7) = =2 = Bpelrel5]

for some probability measure PT. The proof of this hypothesis via con-

struction of the probability measure PT is the goal of the next Chapter.

o

The Local Expectation Hypothesis (LEH) Under this hypothesis,

the expected instantaneous return on any (T —¢)—maturity bond is equal

Fe

3. Returns to Maturity Expectations Hypothesis (RTM) This the-

ory supports the equality of expected returns, inclusive of capital in-

to the current short rate, r; :

dP(t, T)/dt
Fa [ P, T)

for some probability measure Q.

vested from two alternative strategies (1) holding a discounting bond
until maturity, or (2) rolling over a series of single-period bonds. The

RTM Hypothesis mathematically states that
53]

T
P(t,T)'=Ep [(e:cp/ r(u)du)
t
4. Yields to Maturity Hypothesis (YTM) This theory states that the

for some probability measure P'.
yield from holding a bond equals the yield from rolling over a series of

7.

single period bonds. This means that,

2l wmPeT)=E —-—1——/Trds
T—¢ D\ E R R T
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Cox, Ingersoll and Ross, [23], commented that since only one set of bond
prices is observed, only one of the bond-pricing relationships described above
can hold for a particular market. In other words, they concluded that the
other three versions of the expectation hypothesis cannot be simultaneously

responsible for generating bond price data from the set of expected future

short rates.
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Chapter 3

Forward Measures in the
Interest Rate Market

3.1 The Valuation Problem

Let (2,5, P) be a complete probability space and {J;} be a standard filtra-
tion. Unless, otherwise stated, we assume that P is the risk-neutral probability
measure in all the succeeding chapters. Suppose the short-term interest rate r,
can be given by r(X,), where {X,,0 < u < T} is an R™process defined on our
complete probability space. Then at time ¢ < T, the price of any contingent
claim ¢ € L?(Q, 5T, P) is given by

£ [eon (- [ Trudu) 4% (3.1.1)

The short rate r itself for example, can also be given by certain stochastic

dynamics as in the Vasicek or Cox-Ingersoll-Ross (CIR) models.

The valuation of any contingent claim ¢ is central to Mathematical Fi-
nance and thus the evaluation of (3.1.1) is a fundamental problem. Direct
calculation of the expectation in (3.1.1) seems to be difficult, especially when
¢ has a complex form. However, we first observe that, under certain technical

conditions, we can use the forward measure so that the expectation in (3.1.1)
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is expressed as the product of two expectations. Having re-interpreted the
above expectation, we discuss what happens when r follows certain stochastic

dynamics.

3.2 The Forward Measure

In this section, we shall demonstrate how to express the valuation formula in
(3.1.1) into product of two expectations. To go about this, the forward measure
will be used as a tool. Furthermore, the forward measure approach enables us
to establish with mathematical rigour the relationship between the forward

rate and the spot rate of the interest rate process.

Following the discussion in [41], we introduce the concept of the forward

measure PT defined on F7 by setting

dPT

dPT ezp(— fOT r(Xo,u(z0))du)
dP )

= Aor = (0,7

Fr

Here X, .(z) denotes a stochastic process X;, starting from z € R" at

time ¢t and r is the short rate. P(¢,T'), the price of a zero coupon bond at time

3’}] :

Returning to the problem in (3.1.1), if ¢ is F7— measurable and E7T denotes

t, with maturity T is given by:

P(t,T)=E [exp <— /tT r(xt,u(x))du)

the expectation with respect to PT, then from Bayes’ Rule,

E[Ao19|F

T _ Ty _
Et [¢] =k [‘Pls:t] - E[I\O,Tlgt] .

El(ezp — f; r(Xow(z))du)(ezp — [7 r(Xiw(z))du)d|F]
E[(ezp — f; r(Xou(z))du)(ezp — [} r(Xew(z))du)|F

E[(ezp — [ r(Xeu(z))du)o|F]
P(t,T) :

Ell¢] =
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Consequently,

E [(emp - /t ’ r(Xt'u(x))du) ¢| sz] = P(t,T)ET[¢|F]. (3.2.2)

It is the object of this thesis to relate the bond price, P(¢,T), in the short

rate models given by

P(t,T)=E [e:z:p (- /tT r(u)du)

and the bond price in the Heath-Jarrow-Morton (HJM) Model given by

fﬂ] (3.2.3)

P(t,T) = exp (- /t i f(t,u)du) , (3.2.4)

where f(¢,T) is the forward rate at date ¢ < T for instantaneous risk-free

borrowing or lending at date T

In relating P(¢,T) in the short rate models to the HIM model, we shall
look at different models for the short rate r. These will include the cases when

r is a Markov process as in [37] and also when r; follows the dynamics of the
Vasicek and CIR models.

Then, we shall investigate the structure of the forward rate and short rate
process when the price P(¢,T), of a zero-coupon bond is given by a generalised
exponential affine model. This model is of particular interest because its form

resembles to that of the HJM pricing framework as in (3.2.4).

3.3 A Proof of the Expectation Hypothesis

In terms of the short rate the bond price is given by (3.2.3).

On the other hand, the HIJM model for term structure considers stochastic
differential equations for the evolution of forward rates f(¢,T). For each T' €

(0,T"], assuming that 0 <t < T < T +¢ < T, suppose the dynamics of f are
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given by
df(t,T) = a(t,T)dt + o(t, T)dW,. (3.3.5)

The coefficients a(u,T’) and o(u,T) for 0 < u < T are measurable in (u,w)

and adapted. The integral form of (3.3.5) is
t t
f(,T)= f(0,T)+ / a(u, T)du +/ o(u, T)dW,. (3.3.6)
0 0

Following the descriptions in [5], we can write down an integral equation

for the instantaneous rate r; = f(¢,t), namely:

t

re = f(t,t) = f(0,¢) +/0 a(u, t)du +/ o(u,t)dW,. (3.3.7)

0

Equation (3.3.7) is a classical result for r, expressed as a stochastic integral
of forward rates under the risk-neutral probability measure. We would like to
establish the relationship between the forward rate and the short-term rate

under the forward measure PT. This relationship is stated as follows:

Lemma 3.3.1 In terms of the short rate model, the forward rate is given by
f@,T) = ET[r.r|F] (3.3.8)

where ET denotes the expectation under PT.

Proof: From (3.2.3), we have the bond price in terms of the short rate:

T
P, T)=FE [e:vp (—/ r(u)du) 9"1] .
t
Differentiating P(t,T) with respect to 7', we get
oP(t, T T
%‘—)- = E |:—7't,T eETp (""/t T't’ud'll) Sft]

T
= ET[—Tt,Tlg'.t]E [e:z:p (—/ rt,udu> 3‘}}
t

= —ET[r,7|F)P(,T). (3.3.9)
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Also, from (3.2.4) the bond price in terms of the forward rate is given by

P(t,T) = exp (- /tT f(t,u)du) .

Differentiating P(¢,T) with respect to 7', we obtain

9P(t,T) _
T2 = —PL D, T). (3.3.10)

Comparing (3.3.9) and (3.3.10), we see that

f(t,T) = E¥[r.1|F].

The result of the above lemma tells us that
T
P(t,T) = exp (—/ E“[rtvulﬁ'}]du> ) (3.3.11)
t

We shall investigate (3.3.11) with the aim of obtaining explicit solutions when

r follows certain stochastic processes.

It is also worth noting that the result of the above lemma has laid down a
mathematical foundation supporting the Expectation Hypothesis Theory. In
its purest form, the Expectations theory of the yield curve states that the
implied forward interest rate profile represents the market’s expectations of
the future short-term rates. Economics theory such as this is a reasonable

argument however, it is loosely stated.

The key point to remember here is that the observed market forward rate
curve provides the best forecast of future spot interest rates only if we are
working on an expectation that is evaluated with respect to the forward mea-

sure.
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Chapter 4

The Short Rate as a Function of

a Continuous Time Markov
Chain

4.1 Notation and Convention

Following [37], we shall assume that the short-term rate r is a function of a
continuous time Markov chain. As noted in [37], this assumption is reasonable

as any diffusion can be approximated by a Markov chain.

In this model, let X;,t > 0, be a finite state Markov chain with state space
S = {s1, 82, .--,8.}. The points s; can be points in R™ or any space whatsoever
and can model factors of the economy. Without loss of generality, we may
identify points in S with unit vectors {e;, ez, ..., .} to simplify the algebra. In
this representation of the state space of X, e; = (0,...,0,1,0, ...0) e R™.

At any time t, we note that the state X; of the Markov chain is one of
the unit vectors, ey, eq, ..., e,. Hence, for any real valued function of X,, say
F(X.), is just given by F' = (F1, F3,..., F,). And so F(X:) = (F, X,) where the
brackets denote the scalar product in R™. We hypothesize that the short rate

process r; is a function of X;. In other words, r, = r(X;) = (r, X;) for some
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vector r € R™. We could take r to be time varying but we would like to begin

with the simplest case of the model.
It follows from the result of Lemma 3.3.1 that

f@t,T) = ET[r(X7)|F:] = (r, ET[X7|F)]). (4.1.1)
Thus, the price at time ¢ < T for a zero-coupon bond is given by
T
P(.T) = ezp <- / (r, E“[Xuli}",])du)
t T
= exp (——/ (r, E¥[X.| X = :v])du) . (4.1.2)
t

To evaluate (4.1.2), we need to find the dynamics of X under PT.

4.2 Evaluating ET[X7|F]

Our concern at present is the evaluation of ET[X7|F,] in (4.1.2).

Now, from (3.2.2) we have

E[ez‘p(— ftT(T, .Xv)dv))('[l?t] .

ET[‘XTI?t] = P(t,T)

(4.2.3)

To evaluate (4.2.3), we need to know the structure and form of the Markov

process X;. This is the content of the following theorem and its corollary.

But, first we note that the unconditional distribution of X; is the vector

E[X,] =p: = (pe!, pi2, ..., pi*), where
p = P(X, = &) = E[{ei, X.)] = P(re =13).

Suppose this distribution evolves according to the Kolmogorov equation

Here A is a “Q-matrix,” that is, if A = (a;5), 1 < 4,7<n, > ;a5 =0
and aj; > 0 if 7 # j. The components a;; could be taken to be time varying,

though this would complicate their estimation.
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Theorem 4.2.1 Let M be an R™—valued process given by
t
A’/[t = Xt — Xo — / A)(udu.
0

Then, M 1is an (F;, P) martingale.

Proof: Consider the matrix exponential e*(!~%). Then, by the Markov

property,
E[X|X,] = e*t¥ X,

for t > u. This is to say, that one solves the Kolmogorov equation with initial

condition X,. For ¢ > u, we have
t
E[M; — M,|F.] = EXi— X,|FJ-—F [/ AX,,dvIS’u]
t
= Al-vx, — X, —/ Aetv) X dy
; u
= [eA(t_") -I- / AeA("—")dv] X,

where [ is the n x n identity matrix. Henceforth,

E[M; — M,|F.] = [ — [ — [e*7]] X, = 0.

Corollary 4.2.1 X is a semimartingale with representation

t
Xt = Xo +/ A.Xudu -+ lV[t. (424)
¢]

Proof: X, is Fo-measurable. fot AX,du is a process of finite variation.

While M, is a martingale from Theorem 4.2.1. Thus, X, is a semimartingale.
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Hence under the risk-neutral probability measure P, the semimartingale

form of the Markov chain is:

N
[V}
~—

t
X, = Xo + / AX,du + M, (4.2.
]

where {M,} is a (P, F;) martingale, and F, = o{X,, : u < t}.
Write Xo, := Xo + [, AXudv + M.

Aoy: = exp (- fo tr(Xo,u(:co))d'z,v).
Aeu: = exp (— /t ur(Xt,,,(zt))dv>.

Thus, dAos = —r(Xo.e(zo0)) Ao,edt.

Define

Further, we get

d(Ae X)) = AeodXip + XewdAsy
= f\t,v [.A.Xt’vdt =+ dl‘/[t] =+ ‘Xt,u [—T(.Xt'u(xt))./\t'udt] .

Or, in integral form,
T T
Z\t,T—Xt,T = ¢Xt+/ Z\g‘uAXt,ud'U'{"/ A.t'udl‘/lu
E t t
—/ r(v)As v Xt pdv.
t
This implies that
T
Et [At,T—Xt,T] = Xt +/ AEt[Atv,,)(t,u]dv
t

T
- / E(r, Xo) Au X ]do. (4.2.6)
t
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Equation (4.2.6) is the explicit expression for the numerator of (4.2.3). We
note further that

<T‘, Xu>At,voXt,v = Z(AXt,va ei>riei
=1
= Rz\t',,)(t',, (4.2.7)

where R is the matrix with r = (ry, 1o, ..., )" on the diagonal. In (4.2.6), we

observe that we need to evaluate Fi[A; X .]-

Writing 21 := E[A:,X:u] we see from (4.2.6) that

ét,T: = Ez[At,u-'Yt,u]

T T
= .Yt +/ Aé,vudv - / R:‘?g'vdv.
t t

That is,
T
‘ét,T = Xt +/ (A - R):?t'vdv.
t
Therefore, the expression for the numerator in (4.2.3) simplifies to
gy = eART-0x, = B (T-0x,, (4.2.8)
where B* = (A — R).

Of course, 2,1 is a vector process. Next, we concern ourselves with an
b v ?

explicit expression for P(t,T).

Write

P(t,T):=Pt,T.X,)) = E [exp (— /tT(r,Xu)du>

= E [e:z:p (- /t T(r,Xu)du)

Now, (X7,1) =1 where 1 = (1,1, ..,1)".

8
,(J

from the Markov property.
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Therefore,

P(t,T. X)) = <E [ea:p <- /t T(r,Xv)dv) Xz sa} ,1>
- E [e:l:p <— 1 T(r,X,,)dv) <XT,1>|:ﬂ]
_ [exp (_ /, o X,,)dv) sz]

= (eA-RT-0X, 1)
= (X,,eBT91) (4.2.9)

where B = (A — R)", R =diag r, 7 = (11,72, ...,Tn)’.

With reference to (4.2.3), equations (4.2.8) and (4.2.9) are explicit expres-

sions for the numerator and denominator, respectively. That is,

e(A—R)(T-t)Xt

T B
ETIXIT = rr—mm=agy (4.2.10)

Hence, invoking Lemma 3.3.1 together with (4.2.10) and (4.1.1) we have

f&,T) = (r, E¥[Xr|F))
e(A-RN(T-t) X,

= <T‘, (_Xt,eB(T-t)1)> (4.2.11)

We can study the dynamics of f(¢,7") using expression (4.2.11). However,

as we are having a quotient expression representing a vector in our scalar
product, onerous efforts are entailed to do this direct computation. So, we
shall not proceed in this way. Rather, we make use of the result we have in
(2.1.2).

4.3 The Dynamics of f(¢t,7)

Restating (...].]...)), we have
b] aT g ? *
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From (4.2.9) we obtain the zero-coupon bond price P(t,T) given by P(t,T) =
P(t,T, X;) = (X, e2T-91) and X; € {e1,e2,...,€n}-

Therefore, we get
log P(t, T, X:) = (Xe, Ae) (4.3.12)

where A; = (\;!, A2, /\tN) and A,' = log(e;, eB(T-1).

Consequently, using (4.3.12)

F0T) = (XA
= (X0 (4.3.13)

where v: = (11, 7:%, ..., 7¢") and

8 . ; (e, BePTI1)

I = (e BTy

v = 5z (4.3.14)

Alternatively,

) 8
f(th) = —E_T—<Xt’)‘t>=—-8_fz/\t (Xt,ei)
=1

n a )
= — Z a—T)\tz<.Xt, 6{)

=1

“< (e;, BeB(T~91) o
= ‘Z (e:, eBT-D1) (Xt ). (4.3.15)

=1 L)

Thus,

n 0 [—<€i1 BeB(T—£)1> (_Xt,ei>:l . (4316)

df(t,T) = Z a (e:, eB(T-01)

=1

We shall consider first & l:j(:f'—f;(——-——mz(Xn e,-)] .
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(Xq, e,-)] = % [(e,-, —BeBT=91)(X,, e:)(e;, eB(T't)l)_l]
(‘Xtv ei)

(ei, eB(T-01)

(e;, —BeB(T-1)1)

(e;, —BeB(T-1)1)

+(e;, —BePT=1)(X,, e;)(~1)

(€:, B T91)"%(e;, —BeBT~14t)

9 [ (e, BeB(T-91)
ot | (e;, eB(T-11)

= (e, B2eBT-914t)

+ (dXt:ei>

9 [—{e:, BePT91) (X, ei) 2 _B(T-t)
a [ <€i’ eB(T—t)1> <-Xt7 6i> = W_—t—)-l—) (6,‘, B € 1)

(e;, —BeB(T~11)?

- (e, cBT—DT) dt
(6’,‘, BeB(T-t)l)

" es, BTO1]

(Xh ei)

(el.’ eB(T—t)]_)
(e;, —BeB(T‘t)l)2

- (e cBT=0T) dt

—“ﬂ{(A‘ ,g, e;)dt - ‘/gi(dl‘/[t, e;).

(AX,dt + dM,, e;)

<ei7 BZGB(T—1)1>

o1
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Thus, from (4.3.16), we obtain the dynamics of f(¢,7") which is

= Xt.e,- "
df(t,T) = Z [ ﬁ%(@themn)l)

=1

—:'(e:, BeBT=91) — 4, /(A X,, e;))]

+ ) %N (dMy, e). (4.3.17)

And the initial forward curve is given by

f(OvT) = r)aT Xo,’Yo) = —(Xo,/\o)
Z {ei, Be Tl)(xo,e,-) (4.3.18)

(e;,€BT1)

Or in integral form, the forward rate f(¢,7) associated with a Markov

short rate is

e e BT
fET) = Z“’B L (Xo, e

(e eBT1)

Xu, e; —

—7u‘(e,-, BeB(T_“)l) — 'yu{(A_Xu, e;))]dt

t n
+ / Yo' (d M, , ;). (4.3.19)
i g ( )

Equation (4.3.15) is an analytic expression for f(¢,7T") while (4.3.19) gives
the dynamics of f(¢,7T) with drift and volatility terms. Further analysis of
these drift and volatility functions will enable us to come up with a statement

describing the implication of these models towards the financial market.
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Finally, from (4.2.8), it is easy to see that f(¢,¢) = r,. This is because

eng
0 = (i)
= (r,Xy)

= Tt.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

The Short Rate Under the
Vasicek’s Model

5.1 Description of the Model

In this model, the short rate r under the risk-neutral measure P follows the

stochastic dynamics given by
dry = a(b—ry)dt + odW,. (5.1.1)

where a, b, and o are strictly positive constants. The model proposed by Va-
sicek in (5.1.1) is a mean reverting version of the Ornstein-Uhlenbeck process.
The SDE (5.1.1) has a Brownian part and a restoring drift which pushes it
upwards when the process is below b and downwards when it is above. The

magnitude of the drift is also proportional to the distance away from this mean.

The Vasicek model can alternatively be expressed as
dry = (a — bry)dt + adW;.

The mean reverting level in this model is § and the rate of adjustment to this
level is b. Occasionally, we shall use this alternative form to derive important

results in Chapter 8.
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Applying [t6’s Lemma, we can check that the solution to the SDE in (5.1.1)

starting r at ro, is

t
— <r0 +be*—1)+o / e‘“‘qu> : (5.1.2)
0]

Given the dynamics of r; described in (5.1.2), we shall find the equivalent

stochastic dynamics of f(¢,7T).

5.2 The Dynamics of f(¢,T)

Vasicek solved equation (3.2.3) and obtain analytic expression for P(¢,T) when
r; follows a mean reverting Ornstein-Uhlenbeck process. The analytic formula
for P(t,T) is given by

P(t,T) = A*(¢t,T)exp[—B(t,T)ry, (5.2.3)
provided, when a # 0,
B(t,T) = 1——¢ (5.2.4)
and
A T) = esp [(B(t,T) - T;; t)(a®b—2) UZBS; T)z} . (5.2.5)
Alternatively, the price P(¢,7') in (5.2.3) can be expressed as
P(t,T) = exp[A(t,T) — B(t,T)ri] (5.2.6)
where

A(t,T) = logA~(t,T)
(B, T) =T +t)(a%—%) oB(t,T)?

a? 4a

and the function B(¢,T) is the same as given in (5.2.4).
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Now from (2.1.2),

f(t,T) = aaT log P(t,T).
Thus,
f&,T) = 8aT log exp[A(t, T) — B(t,T)r]
= ;T[A(t T) — B(t,T)ry
= aaT[B(t T — aiTA(t,T)
- r,%B(t,T) a?_r A(t,T)
- aé’i/" (t, T)*’aaTZ B(t, T)

0 a?b — %
aT[B(t T)—T +t] <_—a2 > )
We therefore have

2
f&.T) = re™T=9 4 Z=2B(¢t, T)e™~

—( 21;:—) (e=2(T-8 _1). (5.2.8)

a

The initial curve f(0,T) can now be written by evaluating (5.2.8) at ¢t = 0.

Hence,

f(0,T) = ree™®T + T _e=aT _
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Finally, we get in a more compact form:

0.2
fO0,T) =b+eT(ro —b) — sl — e—T)? (5.2.9)

<

We differentiate f(¢,7) in (5.2.8) with respect to ¢, to obtain its dynamics.
We get
df(t,T) = rae™Tdt + e 2 T-r,

2
+Z—a [B(t, T)ae=T=* 4 ¢=2(T=)(_e==(T=1)] gt

2p _ 2
- ————ab 2 ) e~ (T=t) gy,
a

= rae”®T0dt + abe =Tt
—riae”T-0dt + ge~T-)qW,

2 2 2
(LT s )
2a 2a 2a

0,2
—abe~HT-gs 4 ;—e—h(T-‘)dt
zZa

2
= e~ T-0qW, — Z[e=a(T-t) _ ¢=2a(T-t)qy. (5.2.10)
a

Using (5.2.10), the forward rate f(¢,7) in integral form with its drift and

volatility terms is given by

f&.T) = f(o,T)+/ta(u,T)du+/to—(u,T)dVv;
0 0

o2
2a?

t
+o / e~ {T=v) g,

= (ro—b)e T +b— ——(e 2T —2¢™T +1)

0
o2 [t

——/ [ema(T—¥) _ g2a(T=w)]dy, (5.2.11)
a Jo

Equations (5.2.8) and (5.2.11) describe the same dynamics, only that
(5.2.11) can tell us the effects or significance of the model by investigating
the drift and volatility functions.
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Now, if we integrate the original equation for the forward rates in (5.2.11)

we then have the bond price P(t,T) equal to

ezp [—{/ot (/tTo(s,u)du> dI/Vs-f-/tTf(O,u)du+/0t /tTa(s,u)duds}J

2

T
= ezp [— {/ [(ro —ble ™™ + b — :7(6_2‘”‘ —2e7 4 l)] du
: 2

¢ T
-i-a/ (/ e_“(’_")du> dW,
0 t
2 gt T
—U—/ (/ o e“za(s_“)du> d.s}} .
a Jo t

Using (5.2.11), the short rate is also given by

~~
wt
N
p—t
[SV]
N’

re = f(o,t)+/0ta(s,t)dWs+/ota(svt)ds

= (ro—0b)e* +b— %(e‘zat —2e7% 4 1)

t t 2
+O’/ e—a(t—s)dW + / G_[e—a(t—s) _ e—2a(t—s)]ds
g 2
o] o]

<

— —b —at b_a_z(l_ —-at\2
(ro e % + 557 e™ %)

<

t 0.2 t
+o / e AW, + —- / [emalt=s) _ g=22(=9)]ds  (5.2.13)
o] = 0

And simplying by evaluating the integrals, equation (5.2.13) becomes equa-
tion (5.1.2). In conclusion, we have therefore shown that under this model,

e = f(tvt)'
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Chapter 6

The Short Rate Under the
Cox-Ingersoll-Ross Model

6.1 Description of the Model

In the Vasicek’s model, there is a positive probability that interest rates can
become negative. Cox, Ingersoll and Ross proposed an alternative model that
overcome this disadvantage. In rectifying this situation, let us consider how

the model originates.

Let W, = (W}, W2, ..., W) be an n-dimensional Brownian motion. Sup-
pose further that, @ > 0 and o > 0 are constants. For j = 1,..,n, let Xg € R"

be given so that
(X5)* + (X3)* + -+ (X3)* 20,

and let X7 be the solution to the SDE

dX? = :;—ladet + %adW’tj. (6.1.1)

Now, X/ is called the Ornstein-Uhlenbeck process. It always has a drift

toward the origin.
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The solution to the SDE in (6.1.1) is

X! = e 2% [Xg + -;-a /0 t e%‘"‘dI/Vj} ,
using [t6’s Lemma.
We note that the solution is a Gaussian process with mean function
ml = e—%"'Xg

and covariance function

1 L SNt
p(s,t) = Zaze—fa(s"")/ e “du.
0

Write: r, := (X})? + (X2)? + ... + (X})2

We make the following observations:

l. If n = 1, we have r, = (X})? and for each t, P[r; > 0] = L. But P[There
are infinitely many values of ¢ > 0 for which 7, = 0]= 1. See Figure 6.1.

(O]

. If n > 2, P[There is at least one value of ¢t > 0 for which r, = 0]= 0. See
Figure 6.2.

Let f(z1,Z2,..-,Zn) = 1% + 22 + ... + z,%. Then,

af
I _ 9.
dzx; i

and

9f 2, ifi=j

Ozidz; |0, ifi#j
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Figure 6.1: A One-Dimensional Brownian Motion
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Figure 6.2: A Two-Dimensional Brownian Motion
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From the Generalised It6’s Formula, we obtain

p) 2
dre = a.del 0 f(dX‘)
L 1 R
i=1 = =
n 1 )
+> Za"’(dW;)2
i=1

- : - Tl0‘2
= —ardt+oy X[dW]+ Tdt

=1

(32—2 —art> dt -{-cr\/_z

I

Write W, := > 1, f;)

Then, W; is a martingale,

n Xi
dW, = :
cn

and

‘Xl 2
dW,dW, = Z( )dt dt.

i=1

Hence, W, is a Brownian motion. We have

TLO'2
d?"g = <T — CYT‘t) dt + U\/Edpm.

The risk-neutral Cox-Ingersoll-Ross (CIR) process is given by

dry = a(b — r;)dt + o\/rdW;. (6.1.2)

Define n := 2% > 0.
a

If n € Z*, then we have the representation

re=» (X)) (6.1.3)

=1
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N

However, we do not require n to be an integer.

Remarks:

If n <2 (ie., a < 30?), then P[There are infinitely many values of ¢t > 0

for which r(t) = 0] = 1. Therefore this is not a good parameter choice.

Ifn>2 (ie,a> %0‘2), then P[ There is at least one value of ¢ > 0 for
which r(¢) = 0] = 0.

We conclude that with the CIR processes, one can derive formulas under

the assumption that n = 2% is a positive integer, and they are still correct even

when n is not an integer.

The SDE in (6.1.2) has the same mean reverting drift as Vasicek, but

the noise term has a volatility proportional to ,/r;. This tells us that as the
short-term interest rate increases, its standard deviation also increases.

Under this model, Cox, Ross and Ingersoll show that the bond prices have

the same general form with the Vasicek’s model:

P(t,T) = A~(t,T)e " B:Dre, (6.1.4)

However, the functions B(t,T) and A*(¢,T) are different. Here,

27— — 1)

= 6.1.5
and
9yelatn (%) = .
B = 1.

A™(t,T) (v + a)(e@=0-1) + 2) (6.1.6)

where v = Va? + 202.

Alternatively, we can re-express P(¢,T) in (6.1.4) as

P(t,T) = exp[A(t,T) — B(t, T)re (6.1.7)
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where

A@E,T) = WA tT)
2 —
_ iz;[lnf,7+(a+7)(T t)
P 9

4

<

—In((y + a)(e?"™ = 1) + 29)] (6.1.8)

and the function B(¢,T) is the same given in (6.1.3).

6.2 The Dynamics of f(¢,7T)

Again, invoking (2.1.2), we have the result

ft,T)= ——a%; log P(t,T).

Therefore,

f@, ) —ilog exp[A(¢,T) — B(t,T)r

oT 5
a 5
= ETB(t, T)'f't - a—TA(t’ T)
7, 7]
= Tiam — 574 : 6.2.9
We shall evaluate QBBL;:Q and 2’%.
0B(t,T) _ [(v+a)(e"T™9 = 1) +29]2ye7T"9
or (7 + a)(e"T-9 — 1) + 272

[2(eT~8) — D)][y(y + a)e"T9)]
[(v + a)(ev(T=8) — 1) 4 2v]?
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9B(t,T) [(v +a)e" T~ — (v + @) 4+ 27](2ve" ")
or (7 + )@ — 1)+ 29]°
(2778 — 2][y(v + a)e? T
(v + a)(eT=9 — 1 + 27]2
(7 + a)e" T8 4 (v — az)2y + 7(T-9)
(v + a)e"T-8) + ~ — a]?
—279(y + a)e?T=1) 4— 2~y(~ + a)e? T
- [(v + a)e"T—t® 4y — a]?
2v(v + a)e?" T~ 4 2y~ — a)e?T—)
(v +a)e"T-t) + ~ — a]?
2v(v + a)e? Tt — 2ty(~ + a)e? T
[+ )T +y—af
4y2e(T=1)

= . .2.10
[+ 2P + 7 — P (6210
For %A(t, T') we have from (6.1.8),
9 d -
A +(T-1)
= oap|(4F2) - (O ta)ye . (6:2.11)
2 ('7 +a )(6'7(T_t) — ]-) + 2’7

Thus, combining results (6.2.9), (6.2.10) aned (6.2.11) we can write down

the initial curve:

9 \og P(0,T)

fO.T) = —57
44%e’T
"+ a)eT +v—af
_2ablat+y (v +a)ye’® (6.2.12)
ol 2 (+a(@T-1+2] -

Finally, the forward rate is given by
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7] 0
Tt'a—TB(t, T) - ﬁA(t, T)

4726'7(T-t)
"+ a)e T £y —q?
2ab(y + a)"/e"(T—t)
Graed -1y

f&,T) =

—ab(a+7) +

(6.2.13)

To calculate the drift and volatility of f(¢,T), let us begin by assuming
that r, is a Markov diffusion though not necessarily time homogeneous with
drift 6(¢,T) and volatility B(¢,T). That is,

dry = 0(re, t)dt + B(re, t)dW, (6.2.14)

where 0(r;,t) and B(r:, t) are deterministic functions of space and time.

We have seen previously from (2.1.2) that,

T
/ flt,u)du = —log P(t,T) = h(r:, ¢, T)
t
where h(z,t,T) is the deterministic function

T
h(z,t,T)=—log E [e:z:p <—/ rua'u) Ty = :1::| .
t

Theorem 6.2.1 The required volatility and drift structures for f(t,T) are re-
spectively, given by

— azh(rt’ t’ T)
G’(t, T) - IB(rt’t) axaT
and

a2h(rt7 ta T)

a2h(?°t, t, T)
0zdT ’

ot,T) = otaT

O(re, 1) +

Proof: Recall that

/T f(t,w)du = —log P(t,T) = h(re,t,T).
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We therefore see that

_ ah(rt,t,T)
f(t7 T) - aT .
Thus, by [té’s Lemma,
df(t,T) = a aT ———(B(rs, )dW; + 0(r¢, t)dt)
O%h 1 *h ,
—= hut 215
+3t8Tdt+ 232:28Tﬁ (re, t)dt (6.2.15)

Equation (6.2.15) has a volatility term which matches o (¢, T"). The forward
rate f(¢,7) is linear in z. Thus, the term ;aang,Bz(rt, )dt is essentially 0.

The two nonzero coefficients of dt give us the drift structure of f(¢,T).

Furthermore, the initial curve f(0,T) is given by

f(0,T) = g—%(’f‘o, 0,T).

An HJM model with the same short rate under P is then identified by

these volatility and drift structures and initial curve.

Applying Theorem 6.2.1, we obtain the volatility structure of f(¢,7T) under
the CIR model:

2

8%h
Blre: )a 22T

= G\/T‘—t—a-;:%(:t,t,T)
d
= oVrgEBLT

N G i) 6.2.16)
(v + )T + y — a]?’ -

o(t,T) (re,t, T)

Il

On the other hand, the drift structure is given by
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02h(re,t,T) 82h(re,t,T)
9zoT et t —ga7

Y 8 8B(t,T)
= ZFBLTalt,r) + 5T

—— 217
257 AW T) (6.2.17)

47267(T—t) b
T Graem iy —apt T

d 42Tt
T [[(7 Fa) (e~ — a)PJ
. (T—1)
—'2ab-g— (y + a)ye .
3 |7 T )@@= 1) 1 27

a(t,T)

Hence, we can write the stochastic dynamics of f(¢,7") in SDE form using
results in (6.2.16) and (6.2.17). And we get the following:

0 0B
af(t,T) = [-8708#"—)” +—a%3(t,T)0(t,rt)

_99
5t 9T

0 518
+ [B_TB(t,T)ﬁ(t,r,)] dW,. (6.2.18)

Alt, T)} dt

6.3 Reconciling the HIM and the Short Rate

Forms

We concluded the last section with equation (6.2.18) giving the dynamics
df(t,T). We have characterised the structures of the drift and volatility.

We shall demonstrate here the validity of such characterisation via the
equivalence of the dynamics d[f(¢, T)|r=¢ := df(¢,t) and that of dr..

Using equation (6.2.18), we have the following:
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dif(t,T)lr=] = df(¢.¢)
_ [g dB(t, T)
at  oT
o 0

- 5 374G T)

a
re + —=B(t,T)
T=t t aTr

] dt
T=t

9
57 B(1.T) T=t5(t,rt)th

a d
= [(5;1) ’T't-*',—]. -H(t,rt)-a—tO] dt
+18(¢, re)dWe
= (0-r+0(t, ) — 0)dt + B(¢, 7 )dW,
= a(b—r)dt + .o /rdW,

= dT‘t.

- 0(¢,7e)
T=t¢

Therefore, under the CIR Model, adf(¢,t) = dr,.

629
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. Chapter 7

Characterisation of a
Generalised Exponential Affine
Bond Price

7.1 The Exponential Affine Model

Let W, = (W}, W2, ..., W}*) be a standard Brownian motion in R™ for some
n > 1 restricted to some interval [0,7], over a filtered probability space

(Q7 9:7 {s:'t}’P)'

We suppose that we are given an adapted short rate process r such that
T
Sy Ireldt < oo.

We consider one-factor term structure models for the short rate r given by
the SDE of the form

dry = a(ry, t)dt + o(re, t)dW, (7.1.1)

where o : Rx[0,7] =+ Rand 0 : Rx[0,7] — R™, and « and o satisfy technical
conditions for the existence of a solution to (7.1.1) for all T > ¢t as discussed

in Section 2.3 of Chapter 2.

As stated in [33], the one-factor models are so named because the Markov
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property of the solution of r to (7.1.1) implies from the price of the zero-coupon
bond that the short rate is the only state variable, or "factor,” on which the

current yield curve depends.

That is, for all t and T" > ¢, we can write
P(ta T) = F(tv T? rt):
for some fixed F : {0,7] x [0,T] x R — R.

In [33], parametric examples of one-factor models were given and each of

these models is a special case of the SDE

dri = [a! + o®r; + arylog r]dt + [of + o2r,]9dW, 7.1.2)
t t t g ¢ t

for continuous functions «f, o?, o}, o}, and 02 on [0,7] into R and for some

exponent g € [0.5,1.5].

A subset of the models considered in (7.1.2), those with az = o, = 0 are
Gaussian in the short rates {r;,, ..., 7.} at any finite set {¢i, ..., tx} of times and
have a joint normal distribution under P. This follows from the properties of

linear stochastic differential equations (see for example Appendix E of [33]).

In the Gaussian case, we can view a negative coefficient function a? as a
mean reversion parameter, in that a higher short rate generates a lower drift,
and vice versa. Empirically, mean reversion is widely believed to be a useful

attribute to include in single-factor short rate models.

For the Gaussian model, the bond price processes are lognormal, see [33].

This is shown by defining a new process y that satisfies the relation dy; = —r.dt.

Since (r, z) is the solution of a 2-dimensional linear SDE, (see [78]) for any

t,and T > t, the random variable

T
zT——zt=—/ r.du
t

Under P, the mean p and variance dJ of — ftT r.du, conditional on JF;, are

is normally distributed.

computed in terms of 7, of, a?, and o}.
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Consequently, we have

P(t,T) = E[exp(—[Trudu)

s&]
= exp[p+ g]
= ezp[A(t,T) — B(t,T)ry]

for some coefficients A(¢,T) and B(¢,T) that depend only on ¢ and 7.

Gaussian models are special cases of single-fact : models with the property

that the bond price (which is a description of the term structure model) is given

by

P(t,T,r.) = exp[A(t,T) — B(t,T)r, (7.1.3)

for some A and B which are continuously differentiable.

Since for all ¢, the yield

_log P(t,T,r)
T—¢

obtained from (7.1.3) is affine in r,, we call (7.1.3) an affine term structure
model or an exponential affine bond price. We say that a function f : R —
R is affine if there are constants o and [ such that for all z, f(z) = a + Bz.

A demonstration on how to calculate these coefficients is given in [41].
Further, Elliott and Van der Hoek use stochastic flows and their Jacobians to
show why, when the short rate process is described by Gaussian dynamics (as
in the Vasicek or Hull-White Model), or square root, affine Bessel processes,
(as in the CIR or Duffie-Kan Models), the bond price is an exponential affine

function.
Theorem 7.1.1 Suppose the short rate process is given by Gaussian or affine-
square root dynamics. Then its Jacobian has a conditional expectation under

the risk-neutral (resp. forward) measure which is deterministic.

Proof: See [41].
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The above theorem immplies that the bond price has the exponential affine
form. The bond price is determined in the two-factor Hull-White and CIR
models by integrating the ordinary differential equation. Hull-White model
will be discussed in Chaptzer 8.

Conversely, if the bon_d price is exponential affine then we should be able
to recover drifts and volatility which are affine in r; under some technical

conditions.

7.2 The Dynarnics of the Forward Rate

Suppose the short rate dymamics is given by (7.1.1). And suppose further, the
bond price is given by an affine term structure model as in (7.1.3). We wish

to evaluate the dynamics of f(¢,T).
In other words, if we are given the dynamics
dwy = a(t,r)dt + o(t,r ) dW,

and
P(t, T, 1) = exp(A(t,T) — B(¢t,T)re),
our objective is to find df (¢, T).

In terms of the short mates,

P(t,®,r) = ezp (- [ ’ f(t,u)du) .

So,
3 a
f(, 7)) = B(t T)re — ==A(t, T). (7.2.4)
aT
This implies that
Ty = f (tv t)
0 7]
aTB(t T)r, o aTA(t T) L
0 7]
= 7.2.
o7 T oA T) o (7.2.5)
73
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Equation (7.2.5) therefore tells us that

15)
aTB(t T) . =1
and
0
ﬁA(t T) - = 0.

Also, from (7.2.4) we obtain

a 0
df(¢,T) = <8t 57 B¢ T)) redt
8B(t,T) 8 d
T dn - (Bt a7t T))
- (Z _Z_B(t,T)) rdt aBtT) (t,7¢)dt
= \ataT rdt + F7B( T
. d*A(¢,T)
+0'(t, rt)th] - (W) dt.
Thus,

9Bt T P
dF(t,T) = [—%rt+ﬁ3(t,T)a(t,rt)

S2A(t,T) a
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7.3 Examples and Counterexamples

Example 7.3.1 Under the CIR model, the forward rate has dynamics given
in (6.2.18) as

9 0B(t,T) 8 5 d
4 (¢, T) [a—a—T— + 2B o) - 2 A, T)] dt
0
—+ [—aTB(t.T)IB(t, T'g):l dI’Vt.
Y37 + a)e"T~Yab y2e?(T—t) — qyer(T—1)
e e e e e BT

+ ([(7 +a)? — 2923y + a)(v + @)]e T~ + 2(4? — a?)e" T + (7 + a)?
[+ (T 1) + 29
4Byt a)eT RE
[+ e 1) + 27 )
(37 + a)e T
[+ )(T=0 1) + 23]

dW:.

Clearly, we see that the drift is affine in r;. We say that under the CIR
model which is an exponential affine term structure model, the short rate and

the forward rate processes have similar drift structures.

We might be tempted to believe that this is always the case. However,
the second example illustrates that this is not true in general. That is, if we
start with an affine drift function and a certain volatility structure for the short
rate, we may not end up with a forward rate dynamics that have similar drift

structures.

Example 7.3.2. Equation (5.2.10) gives the dynamics of the forward rate
for the Vasicek’s model. We have

2
df (¢, T) = oe~*T-dW, — f_[e—a(T—t) — e~ 2(T-0]gy,
a

Notice that the drift for the forward rate does not have the same form as the

form of the stochastic dynamics of the drift for r..
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7.4 Further Results

In the previous section, we have seen that although we started with an exponen-
tial affine term structure bond price, the corresponding forward rate dynamics
may not necessarily have affine drift and volatility structures in r,. We pursue
in this section some interesting properties of a generalised exponential affine

interest model and prove the converse of Theorem 7.1.1.

7.4.1 The Fundamental PDE of the Bond Price

First, we develop the basics that are used to model interest rates. Portfolios
of two (or more) securities are formed that are instantaneously riskless. A no-
arbitrage argument requires that these portfolios earn only the risk-free rate.
This allows a “market price of risk” to be specified. We shall use this market
price of risk in the fundamental PDE, the solution to which gives the price of

the claim.

Under this framework, we make the following assumptions: (i) markets
are frictionless; (ii) all securities are infinitely divisible; and (iii) markets are
efficient.

Suppose that the instantaneous return on the bond is given by dlf((tt‘g)).

Further, let this return be given by

dP(t,T)

————= = u(t,T)dt t, T)dW,, 7.4.9

P(t7 T) /‘L( ? ) + U( ? ) t ( )
where W, is again a standard Wiener process. In Equation (7.4.9), the first
term on the right hand side gives the expected return and the second term the
random part of the return. By assuming the above form for the return, we are

assuming that the randomness is generated by a diffusion process.

We begin with a portfolio, II, of two bonds of different maturities, 77 and
T such that the return on the portfolio is instantaneously riskless. This is
done in the following way. Let the portfolio be such that a proportion w; of

the total value is invested in bonds of maturity 77 and proportion 1 — w; is
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invested in bonds of maturity 7>. Then the return of the portfolio is given as

% = [wip(t, T1) + (1 — wi)p(t, T2)]dt + [wio(t, Ti) + (1 — wi)o (2, T2)]|dW;.

We choose the proportion w; in such a way that it eliminates the second term
on the right hand side. That is,

_ O'(t, T?)
T o(t,Te) —o(t, Ty)"

951

By no-arbitrage argument, the instantaneous return on the portfolio is then

riskless. We then obtain

pt,T) —r _ p(t,Tz)—r

Ty~ (6T (7.4.10)

Equation (7.4.10) relates the return on bonds of different maturities. Since,
any two maturities could have been used to derive (7.4.10), the ratio in equation
(7.4.10) is independent of the maturity of the bond.

Write A(r,t) ;= &&Dor

a(rt)
This term A(r,t) is called the market price of risk. As in Section 2.1,
equation (7.4.10) says that the expected excess return earned (return in excess
of the risk-free rate) by holding a bond divided by the standard deviation of
the return, that is, the excess per unit risk is independent of the maturity of
the bond.

Using Equation (7.4.10), the return on the bond maturing at time 7' can

be given as

dP(t,T) _

Py et DM, T)dt + o(t, T)dW.. (7.4.11)

The bond price can be obtained as the solution to the above stochastic

differential equation subject to the boundary condition P(7,7T) = 1.

In addition to the assumptions stated at the outset of this section, we have

the following assumptions for the models we are about to consider: (iv) the

7
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short-term interest rate follows a diffusion process; and (v) the price of the

discount bond depends only on the short-term rate over its term.

We assume that the general form of the evolution of the short-term interest

rate has dynamics

dre = 0(re, )dt + B(re, t)dW. (7.4.12)

We note that the choice of the functional forms for (r,t) and B(r,t) are
driven by the trade-off between the need to make the model realistic and to
maintain analytical tractability. Using the fact that the short-term rates are
the only source of uncertainty in the model, [t6’s Lemma applied to the bond

price P(t,T) gives

2
dP(t,T) = %P(t,T)dt + 2 pit. Tydre + 12

ar QWP(t,T)(th)z- (7.4.13)

Theorem 7.4.1 The bond price P(t,T) satisfies the partial differential equa-
tion given by

d d
52 P(T) + [8(re,t) = B(re, )Mo, O] 5P (£, T)

1 , 0% d B
+§IB(rt7t) Wp(t, T) - T‘tg;P(t, T) = 0.

Proof: Substitute dr; from (7.4.12) into (7.4.13) to obtain

dP(t,T) = %P(t, T)dt + a—a;P(t, T)[0(r:, t)dt + B(rs, t)dWr]
1 9? -
+§a~rzP(t,T)ﬁ(7‘:,t)2dt- (7.4.14)
From Equation (7.4.11),
dP(t,T) = P(t,T)[(re + o(t, T)A(¢, T))dt + o (¢, T)dWy]. (7.4.15)

Now, comparing the drift and volatility parts of Equations (7.4.14) and
(7.4.15), we get

9 9 1 &
P(t, T)rto(t, T)Mre t)] = 5, P(, T)+5 P, T)0(re t)+ 555

5 P(t,T)B%(r,t)
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and

g—rP(t, T)B(re, t) .

7T =" ha )
Consequently, we have
e, 0 d
rP(t,T)+ —P(t,T)B(rs, t)A(re, t) = =P(t,T)+ =P, T)0(re, t)
ar ot ar
1 9° ~
+§8_7‘2—P(t’ T)ﬂz(rt, t) ((.416)

Rearranging (7.4.16), the result follows.

Write a := 8(r;,t) — B(r:, t)A(r¢, t). The fundamental PDE now becomes

d o 1, 8 3
a7 P& T) + alre, ) 5= P(L,T) + 58%(r, )5 P(¢, T) — T P(¢,T) = 0.

Notice that a(r;,t) is equal to 6(r;,¢) minus a term which incorporates the
market price of risk. Here, we call a(r:,t) the “risk adjusted” drift of the short

rate process.

7.5 Further Characterisation of the Affine Yield
Model

7.5.1 One-Factor Exponential Affine Model

As a recap, we are considering a zero-coupon bond with a particular form for

the bond price given by
P(t,T,r:) = exp[A(t,T) — B(t,T)r¢.

In the succeeding discussion, all models considered are assumed to be under
a time homogeneous framework. We now consider the converse of Theorem
7.1.1.
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Theorem 7.5.1 Suppose a model belongs to an exponential affine class, i.e.,
P(t,T) = exp[A(t,T) — B(t,T)ry]- Then, both a(r,t) and B*(r:,t) are affine

n Ty,

Proof: We begin with the bond price in exponential affine form:
P, T) = exp[A(t,T) — B(t, T)ry-

We therefore have

g;P(t,T) =—P(t, T)B(,T) (7.5.17)
and

—Q?—PtT—PtT)Bz(tT) (7.5.18)

~P(,T) = P(, T)BY(4,T).

The fundamental PDE is

a 17,
aP(t, TY + a(re, t)E;P(t, T)
1 92
+§52(rt, t)g-ﬁP(t,T) —rP(t,T) =0.

Substitute (7.5.17) and (7.5.18) to the fundamental PDE to obtain

0 g
a(rtvt)[—B(taT)P(th)] + P(t7T) [E'A(taT) - aB(tv T)Tt]
+L8%(r, ) P(t, T)B(t, T) — rP(£,T) = 0.

Consequently, we get
—a(ry, t)B(t,T) = 2AtT)—l-gB(tT)
a\Te, (’)__at(’ ot ’ Tt

1
_;ﬁz(rt’ t)Bz(t, T) + Te.

Or,
1 52 _ 0 d - =
SAB —aB=—Br— = A+r (7.5.19)
80
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Differentiating (7.5.19) with respect to T, we get

9B 9B 9B %A
2 _ — _
B BaT — 23T = aTai ~ 9T o (7.

=~I
ut
(g
[en)
p——

Differentiating (7.5.20) once more with respect to T, we further obtain

=1
ot
SV
—
~—

p*B

9*B 5 (9B * @B _ #B_ A (
otz TP \ar) T %aT = aTt  aiore 2

We evaluate (7.5.21) at 7' =t.

2B dB\? 2B
2 21 7= _—
:8 B(t7t) aTz Tt —{-,B 3T) . < 8T2 T=t
_®B | &4 )
T 9toT? |,  0tdT?|,,

We note that B(t,t) =0, A(¢,t) =0 and %|T=t =1, and so we have

9*A

0°B B
z2_ = — 7.5.22
0+0 —agm| = awr |, T Tt |, (7.5.22)
Therefore,
C!U(t) = bl(t)’l" -+ bg(t),
where 2B
u(t) = — 777 |,_, #0
»*PB
s M
9?A
ba(t) = - B2
2(1) = 375 T
Or,
a = c;(H)r + eat),
h
where ) bi(4)
“O=1m
81
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and

ba(t)
u(t)

c2(t) =

Clearly, « is an affine function of r.

Restating (7.5.22) on the other hand, we have or

ﬂz — 833 r+ iA_ + o -a—zg
- 3t3T2 T=t¢t aTat T=t 3T2 t=T
= dl(t)'f' + dg(t),
where #B
di(t) = == #0
: otoT? |,
and azB
Clg(t) =« 0T2 I

Clearly, 3? is affine in r.

7.5.2 Multi-Factor Exponential Affine Model

We extend the result of the last section to n factors or sources of uncertainty

for the interest rate r.

Suppose the dynamics of r is given by dr: = a(r, t)dt + B(r:, t)dW, where
a(r, t) is the risk-adjusted drift and W, is a Brownian motion. Further, suppose
r € R*, a € R*and B € R"™.

Consider a function p : [0,00) — R™ and assume that the short rate is

modelled by R(t) = (p(t), 7).
Ty = T:I

Pt,T,r)=E [e:cp (— /t i R(ru)du)

P(t,T,r) = exp[A(t, T) — Bi(t, T)r1 — B2(t,T)ra — - - - — Ba(t, T)ra).

Thus,

and suppose
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Observe that

£ oo (- [ riraa) 3]
- E [ez‘p (- /0 t R(ry)du — /t i R(ru)du) 9',]
= exp <— /0 t R(ru)du) E [ea:p (- /t i R(ru)du)

= ezp (- /0 t R(ru)du) P(t,T,r).

S

With,

exp (- /0 t R(ru)du) P(t,T,r)=E [e:z:p (— /0 i R(ru)du)

we see that the random variable

ezp <— /0 i R(r, )clu)

gt]’

is a martingale.

Define :
V(t,r) = exp (—/ R(ru)du> P, T,ry)
0

and V(¢,r;) is a martingale.

By Ité’s Lemma,

ov )%
V(t,re) = V(0,re) + 5 —a—u—du—l-/o —87~d7‘

t
1 ' 0V,
+3/; Zar?ﬁidu

=1 t
where aa—‘: - dr represents the dot product of %1:- and dr, r = (ry,72,- - ,Tn)-
Equivalently,
tfov  av 1« 0%V ,
. _ _ 1 2 4
V(t,re) V(O,ro)+/0 (6u+37‘ a+2;ar?ﬁl> u
LoV
+ | = BdW.
o Or
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Since V'(¢,7) is 2 martingale, the drift term must be zero; that is,

‘fov oV 1 9V ,
/ ('52#5 +3Z'a'—ﬁ') du = 0.
In differential form,

°L 9%V
ar?

82 = 0.

With .
V= (e:cp —-/ R(ru)du) P, T,r¢)
0
we get the following:

%_‘t/ = —R(r.)V + exp (— /Ot R(ru)dU> %P(t,T)

oV t 7]
o = exp (-—/0 R(ru)du> B

82‘/ t 8‘2
aor = e (= [ Aee) g

t

)

Therefore the SDE satisfied by the bond price is:

oP 0P dzP 2
- g o2 _ .

R(r)P + En + R + 3 2 ﬁ 0, (7.5.23)
where R(r) = (p,7).
We started to suppose that
P(t’ T’ T‘) = ezp[A(tv T) - Bl(t7 T)T‘1 - B2(t7 T)r2 - Tt Bn(t,T)T’n]-

Hence, we also obtain the following:
oP .
- = [ A(t,T) - Z: A(¢ T)r,] (7.5.24)
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oP

— = —Bi(t,T)P (7.5.25)
37‘,‘

2
TP _ B, T)P (7.5.26)
or?

We substitute (7.5.24), (7.5.25) and (7.5.26) into (7.5.23) and obtain
7] ~ 9
_<pt7 7') + [’a_tA(t' T) - ; .a_t.Bl(t’ T)T’,:|

= en(r OB T) + 5 3 BHLTIB ) = 0. (75.27)
=1 =1

For 1 < 5 < 2n : denote by

& (9A@R,T)\ _ .
T3 ( ot > = (1),
o7
ﬁBi(t’ T) = Uj{(t, T)
o7

1
577 [;B?(t,T)] = v;i(¢,T)

g [BB,-(t,T)

aTi |~ ot ] = il T)-

We differentiate (7.5.27) with respect to T' 2n times and evaluate each

equation at ¢ = T. We shall obtain the system of equations given by
D aa(r, thuii(t) + Y BE(r, t)vjt)
tJ ]
= ¢;(t) + ¥ (O)ri+ Yip(t)r2 + -+ - + . (E)7n, (7.5.28)
forl1 <i:<nandl1<j5<2n.
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Now, let

= (5)-C o

I

be a 2n x 1—vector where a = (al, ay, -, an> B2 = (,Bf, B2,

Write

u(t) == uji(t) (2n x n) — matrix

v(t) :=v;i(t) (2n x n) — matrix

o(t) := @;(t) (2n x 1) — vector

Y(t) == ;i(t) (2n X n) — matrix

r(t) := [ru(t), r2(t), -+ ,ra(2)] (n x 1) — vector

Y (¢) := [u(2),v(t)] (2n x 2n) — matrix

[(t) := ¢(t) + ¥(t)r(t) (2n x 1) — matrix
Thus, the system of equations in (7.5.28) is reduced to
Y()X =T'(¢)

or

X =Y(@)"IT(e).
That is,
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(;2> = [u(t), v()]7HB(t) + $(t)r(t)]
= [u(®),v(t)] 7 (1) + [u(t), v()] T () (t).-

Clearly, each component of X, i.e., the o; and 3? are affine in r with

coefficients which are functions of ¢.

7.6 The Meaning of Neutral Risk and Market
Price of Risk

Consider the PDE satisfied by the bond price

dP 1 ,0°P oP s
——a—t-+§ﬁ 972 +(9—/\ﬁ)5T——rP—O ((.6....9)

The bond pricing PDE contains references to the functions § — A3 and £,
which are coefficients of the first derivative with respect to the spot rate and

of the diffusive, second-order derivative, respectively.

The four terms in (7.6.29) could denote the following in order: time decay,

diffusion, drift and discounting,

One interpretation of the solution of the above PDE is that it represents
the expected present value of all cashflows. Analogous to equity options, this
expectation is taken with respect to the risk-neutral variable and not with the

real variable.

This is apparent because the drift term in the equation is not the drift
of the real spot rate but the drift of another rate, called the risk-neutral spot
rate. This rate has a drift of § — A3. When pricing interest rate derivatives
(including bonds of finite maturity), it is important to model the price using

risk-neutral rate. This rate satisfies
dry = [0(re, t) — A(re, ) B(re, t)]dt + B(re, t)dWe.
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The new market price of risk term is needed because the modelled variable
r, is not traded. Thus, if A is set to zero, then any results are applicable to the
real world. In particular, if the distribution of the spot rate at some time is |
required then we would solve a Fokker-Planck equation with the real drift and

not the risk-neutral drift.

The function A is not however observed (except possibly via the whole
yield curve), thus this could be a mechanism under which pricing becomes a

straightforward calculation in the setting of no-arbitrage argument.
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Chapter 8

Models for Mean Reversion

Levels

We have mentioned the inadequacy of single-factor models in Chapter 2. This
chapter considers formulation of multi-factor models. In particular, we shall be
considering two-factor models. The factors would be interest rates themselves
and the level of mean reversion process. In the study of interest rates, mean
reversion appears to be the most relevant to include in the model and hence two
factors apparently appear sufficient. This may sound simple, however we note
that the most influential new studies on connections between real and financial
variables use fewer, but carefully selected, explanatory variables, by contrast
to Vector Autoregressions with numerous, sometimes over 100, explanatory

variables that had come to dominate an earlier style of econometrics.

8.1 Mean Reversion

Interest rates appear to be pulled back to some long-run average level as time
passes by. This phenomenon is known as mean reversion. When r is low, mean
reversion tends to cause it to have a positive drift and when r is high, mean

reversion tends to cause it to have a negative drift.
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The supply and demand analysis backs up the very support of mean rever-
sion. We observe that when interest rates are low, there is a high demand for
funds on the part of the borrowers. This causes interest rates to rise. During
the time when interest rates are high, the economy tends to slow down because
there is less requirement on the part of the borrowers. Consequently, the rates

decline.

One effect of mean reversion is that the volatility of interest rates becomes
a decreasing function of maturity. For instance, the 5-year spot interest rate
tends to have a lower volatility than the 2-year interest rate, the 2-year spot
interest rate tends to have a lower volatility than the 1-year spot interest rate,

and so on.

Furthermore, with mean reversion, the volatility of the 3-month forward
interest rate starting in 3 months is greater than the volatility of the 3-month
forward interest rate starting in 2 years; this in turn is greater than the volatility
of the 3-month forward rate starting in 5 years; and so on. In other words,
mean reversion also causes the forward rate volatility to decline as the maturity

of the forward contract increases.

In addition, mean reversion has some impact on bond price volatilities. It is
responsible for the fact that the curvature describing the relationship between
the bond price volatility versus maturity is increasing and concave downward.
Such interest rate behaviour is consistent with time preference theory that

serves a significant portion espoused by Irving Fisher in his two volumes.

Both Vasicek’s and CIR models capture this mean reversion property.
However, the mean reverting levels in those models are constant. We shall
investigate cases where the mean reverting level is (1) time varying, or (2)
follows a certain stochastic dynamics or (3) satisfies a Markov process in con-

tinuous time with a finite discrete state space.
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8.2 The Hull-White Model

This model is a generalisation of the Vasicek model using deterministic, time
varying coefficients. In particular, the short rate process is supposed given by

the SDE

dre = (a(t) — B(t)r)dt + o(t)dW, (8.2.1)
for ro > 0. Here «, B, and o are deterministic functions of ¢.

Write .
b(t) :=/0 B(u)du.

Thus, b is also non-random.

The solution of (8.2.1) can be obtained by the method of variation of

constants and given by

t t
r, = e b (ro +/ eb(“)a(u)du -{—/ eb(“)a(u)dIfVu> .

0 0

Consequently, r is a Gaussian, Markov process with mean
t
Elr] = m(t) = e7® [ro + / eb(“)a(u)du]
0

and its covariance is
SAL
Cov(rs,Ts) = e“b(s)_b(’)/ e o2 (u)du.
0
It can be shown under this term structure model that the price of a zero-
coupon bond is given by
P(t,T) = exp(—r.C(t,T)— A(¢,T)) (8.2.2)

(see [38] for example) where,

T T
C(t,T) = ¥ / e gy = HOy(t), (t) = / ) gy
t

t
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T
A(t,T) = /t [eb(”)a(u)"/(u)—%ezb(")az(u)*ﬂ(u)] de.

<

We aim to get the dynamics of f(¢, 7).

Now,

FE.T) = —mlog P(LT) = o [nC (4, T) + A(, T,

where C(¢,T) and A(t,T) are defined as above and again,

T
4(t) = / et dy
t

and

b(t) == /Otﬂ(u)a’u.

Further,

F.T) = rta%c(t,T)+aiTA(t,T)
= rteb(t)e—b(T) + eb(T)a(T)"/(T)
_éez"(T)dz(T)‘ﬁ(T)
= 7O L HD(T) - 0
_%ezm)gz(z")(o)?

<

= rebO-HT),

With equation (8.2.3), we obtain

df (t, T) = rod[e?=5D] 4 bO=5Tgr,,

Note that dr, = (a(t) — B(t)r:)dt + o(t)dW..

Thus, equation (8.2.4) becomes
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df(t,T) = r[e’O"DB(2)]de
+eP =D (o(t) — B(t)r:)dt + o(t)dW]
= OB (1) dt + o(t)e?D D4y
—r 0D 3(1)dt + O D (t)dW,
= a(t)eOTgt 4 O g (1)dW,.

In other words, f(¢,T) has a drift u(t,T) equal to a(t)e®?—5T) and volatil-
ity v(¢,T) equal to eb)—bT)g(¢).

Therefore,
f(t,t) = f(0,¢) -}-/Otu(s,t)ds—{-/otv(s,t)dWs
= f(0,t) + /ta(s)eb(s)_b(t)ds
0

+/)t o(s)ebE) - I,

= roe’0-b®) ¢ /t a(s)ebt) 4 s
0
+/0t o(s)eb)-b O gy, .

However, e*(?) = €% =1 since (0) = foo B(u)du = 0.

Consequently,

t
flt,t) = roe"b(‘)—{-e_b(‘)/ a(s)e’®)ds
0

4
+e~t0) / o(s)e’®ds.
0
Finally,

t t
f(t,t)y = b [ro +/ a(s)e?®ds + / a(s)eb(s)dWs]
0 0
which is the solution to the SDE described in (8.2.1).

Hence, we have shown that f(¢,t) = r, under the Hull-White Model.
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8.3 The Two-Factor Gaussian Model

We explore extension of the Vasicek model. Suppose the interest rate process

is given by
dry = (a; — ary)dt + o, dW} (8.3.5)
where

da, = (c — bay)dt + oodW2. (8.3.6)

The model in equation (8.3.3) specifies a mean reversion level at a rate
a. It is a Vasicek model where the mean reversion level a; is Vasicek by itself
with mean reversion level ¢ at the rate of b described in (8.3.6). Alternatively,
(8.3.5) can be characterised as the Vasicek model with a mean-reversion level

which is time dependent and with stochastic component.

Here, W! and W? are independent Brownian motions on (2,F, P) and
{&:} is the filtration generated by W = (W}, W?). This particular model under

current investigation is a special case of a generalised Gaussian model.

We shall consider first the formulation of the generalised Gaussian model

then we can just treat the two-factor model as a particular case.

8.3.1 The Generalised Gaussian Model

Definition 8.3.1 The Jacobian of the transformation T given by z = g(u,v)
and y = h(u,v) is

I(z,y) =z
I(u,v) % v

Let P be the risk-neutral probability measure. Consider the process =z €

R™. Suppose the process z follows the SDE given by
d.’Bt = ’Ytdt + (Axt -+ b) + O’th. (8.3.7)
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In this case, W is an n—dimensional Brownian motion on (2,3, P), A €
R™™ is a matrix, v € R*, b € R® and o € R**",

Write &, for the solution of (8.3.7) such that & ¢ = z. That is,

Esqi(z) = a:-{—/ ﬂ/(u)du-f-/ (A{s,u(:c)+b)a'u
+o(W, — Ws).

We suppose further that the map z — £;(z) is differentiabie a.s. Then,

writing

st — 3

_ 9&.(z)
D dz
the Jacobian satisfies the equation

t
Dye=1I+A / D, .du.

That is, D, is the deterministic matrix e?(~*),

8.3.2 The Bond Price Under the Two-Factor Model

Applied to the current investigation, we have a special case of (8.3.7) based on

the SDE’s (8.3.5) and (8.3.6); that is,

_ rs,t ~ O
gs‘t - <as't> ’ / (0)
L
b= 0 ’ W = I’Vt ’ o = a1 0
c w2 0 o
In matrix form, equation(8.3.5) and (8.3.6) can be expressed as

dr, _[—a 1 e di + 0 dt + o O dw} .
da; 0 b/ \a, c 0 oy dW}?
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The components of the Jacobian can be calculated from the dynamics
rutra) = v+ [ (@na(e) = arustria)) do
-!-0'1(1/;41 — Wh.
and

t
asia) =a+c(t —s) — b/ asydv + oa( W2 — W2).

Then, differentiating these equations with respect to their initial conditions

gives the following expressions for the components of the Jacobians.

OJas () 1 b/‘t aas,v(a)dv

aa Ba
So,
aas,t(a) _ _=b(t—s)
da < )
Also,
ors t(r,a) /t ors u(a)
IS 1 —— L dv.
ar L—a s ar v
So,
ars,t(rva) — _—a(t=—s)
or =€ .
Furthermore,
Orsi(ria)  [* Oa,,(r, a) L Org (T, @)
—5n = i Tdv ~a j a_adv-
So,
Orss(r,a) 1 —b(t—s) —a(t—s)
o =@ 0 [e e ]
Hence,
T ary .(r, a)

L
dv = —(1 — eI,
¢ dr a

Write B(t,T) := (1 — e~=(T1),

In addition,

T Or(r, @) o= L —a(T-0) I 1 —ew-o_ 1
4 O a(a —b) b(a — b) ab
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Write

~1 1 1
— —a(T—t) ~6(T—t) _ 1
ct.T) = m=p° TN ab

Therefore, the price of a zero coupon bond in this model is

P(t,T,(r,a)) = E [exp (- /t ' r,,u(r,a)dv>

rt——-r,at:a] N

Consequently,
aP T 9r, o(r, @) T
o = E [<—/: Tdv> erp (— /t re (T, a)dv 5‘})}
= —B@,T)P(t,T). (8.3.8)
Similarly,
apP T or: o(r, @) T )]
3% = E [(-—/t Tdv) exp (—/t rew(r, a)dv| F,
= —C(,T)P(t,T). (8.3.9)

Integrating (8.3.8) in 7 :
P(t,T, (r,)) = exp(=B(t, T)r) é(e ©) (8.3.10)

where ¢ is independent of r. Therefore,

QP (t,T,(r,)) d¢(a,t)
5 = ezp (—B(t, T)T‘T>

dd(a,t) 1
do P(a,t)’
= —CT)P(,T,(r,a)) from (8.3.9).

= P(T,(ra)) from (8.3.10)

Hence,

96 ,
a_a - C(t7T)¢)(a7t)

and

é(e, t) = exp(A(t,T) - C(¢,T)a)
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where A is independent of o and r.

Thus,

P(t,T,(r,a)) =ezp(A(t,T) — B(t,T)r — C(t,T)a). (8.3.11)

This is the exponential-affine form for the price of a zero coupon bond in

the two factor Gaussian model, with factors r and a.

8.3.3 Finding A(¢,T)

In the last subsection, (8.3.11) gives the bond price where the exponential-
affine form involves A(¢,T). We have specified that A is independent of o and

r.
However, we did not explicitly state the form of A(¢, 7).

The objective of this subsection is tc obtain A(¢,T). We model the short
rate process by r(&¢(z)). This is so if r(z) = R'z + k for R € R™ and k£ > 0.

)
o _ { (_R [T b, du) ezp (_ /tTr(ftvu(Z‘))du)] .

Write R’ [ Dy du := B(t,T) € R™

The price of a zero coupon bond is then

P(t,T,z)=F K— /tTr(gt,u(x))du>

Hence,

We then have

Qﬁ =—B@,T)P
Oz

where B(t,T) is deterministic.
Therefore, P(t,T,z) = exp(A(t,T) — B(t,T)z) for some deterministic
function A(¢, T').
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Noting that

P(t,T,z)=E [e:z:p <— /Ot r(g,,,,(x))dv)

we can express the valuation formula as

:

V(t, T, z) = exp (- /Otr(gt,,,(x))dv> P(t, T, z)

or

V(t,T,z)=E l:ea:p <— /oTr(gt,,,(z))dv>

35] . (8.3.12)

Equation (8.3.12) implies that V(¢,T, z) is a martingale.

Since the V' process is a martingale the drift term must be zero. Using

[td’s rule, we therefore have

ov. oV 1 <~ 9V &
2t Tz HALHO + 5 ) 1axia$j§0'iko'jk—0

t,j=

using (8.3.12).

By equation (8.3.12), we obtain
‘ P oP
erp (—-/0 r(fm,(:n))dv> [W —rP + —a—x—(’) + A€+ b)

1~ 9P O
+ = - E aikdﬂ{l =0 (8313)
- 1 k=1

Therefore, the second term of the product in (8.3.13) above must be zero.

In other words, the bond price satisfies a partial differential equation given by

oP gpP 1< P
57 ~TPt (vt AL+ b + 5 Z 52107, ;Uuﬂjk—O,

i,7=1
with terminal condition P(T,T,z) = 1.

We have seen that P(¢,T,z) has the form exp(A(¢,T) — B(t, T)z). With
z = 0, we see that A(t) = ezp(A(t, T)) satisfies the ordinary differential equa-

tion
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A
S~k Br+0)+3 :21 B;B; LZ-: ook =0, (8.3.14)

and A(T,T) = 0.

Applying (8.3.14) to our two-factor Gaussian model, we obtain

dA
ot

with A(T,T) = 0.

Bt‘)t + = (0'1232 + o 202 + 7010230) = 0 (8.3.15)

Solving the ODE given by (8.3.15) gives an expression for A(t,T).

8.3.4 Reconciling the Short-Term Rate and HJM Forms

We aim to get the dynamics of the forward rate f(¢,7") and show that f(¢,¢)

and r; are equal under this model.

Now,

f(&,T) EglnP(t T,z)

9,
oT

Il

B(t,T)r + C(t,T)e — A(t,T)]. (8.3.16)

The stochastic dynamics of f(¢,T) is therefore

d (9 0
d: f(t,T) = 5 (ﬁB(t,T)) T + a—TB(f, T)dr,
)
ot
a
taT

a d
(-é?C(t, T)) ar + B_TC(t’ T)Ydoy,

82

[aB(tT)82

1
2
2

—=C(t, T) 9 ] using [t6’s Formula.
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Separating the drift and volatility terms, we have

def(t,T) = [% (aaTB(t T)) .+ gt ( 9 cq, :r)>

_9 (iA(t,T)) + (. —art)ng(t,T)

at \oT

a
—i—é—TC(t, T)(c— bat)] dt

9 —B(t,T)o1dW} + aC’tT dW}? (8.3.17)
OT ( o1 T ( ’ )02 t| - o).

where the deterministic functions A(¢,T), B(¢,T) and C(¢,T) are given in the

previous subsections.

At this point, we consider the derivatives of the functions A, B and C with

respect to T and evaluate these partial derivatives at T' = t.

B(t,T) = l(1 — =T

C(t,T) = —(—i—b)e-“(’"" + b(al_ b)e-“T-f) —~ %
%B(t, T)= e T~
= aaTB(t T) = L. (8.3.18)
Also,
oen = 57
= aiTC(t,T) T ib -~ i ;=0 (8.3.19)

Equation (8.3.15) gives us the ODE

JA 1
92+ 2(otB + 3CY) =
with A(T,T) = 0. Or,
%?’ ~ _;(gf +o2C?), (8.3.20)
101
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Let v =T — ¢t. Then
JA dA

VT (8.3.21)
Also, g—# = %%. But from (8.3.21), % = ——aa—’t‘. Therefore, g—;‘. = —%—’:. Going
back to (8.3.20) and noting that g—% = —24_ we have
814 1
57 = 3(a1B* (6. T) + o3C*(t, T)).
Thus,
8‘4 1 2 2 2 2 QT 99
37 T) = 5 [o1(B(t, T)lr=)” + 03 (C(t, T)lr=)"]  (8.3.22)
T=t =
2 1 2 T3
(BG. D=0’ = 30 -] = |20 =0
a a
2 ~1 1 1)?
(CtDlr=)" = \Gezn Y oa=p ~ E)

_ —b+a 1 2 —0
 \abla—b) ab)
Equation (8.3.22) therefore becomes

0

T=t
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Using Equation (8.3.17), we have

df(t, T)|r=e = df(t,t)= [% (a%B(t,T) _ ) re

a ( d ag [ 9
v (az00|_) o= 5 (o

at
T=t)

(c — ba,)] dt

T dW} + —a—C(t T)
T=t

A(t, T))

T=t

+(a — ary) (aiTB(t,T)

a
+ (a—fC(t, T)

T=t

9
+ [a—TB(t,T)

O'Q(I”/Vtz]
T=t

d 9
= [E(l) T+ 52(0) - oy
--%(0) + (e —ary)- (1) +0-(c— bat)} dt
+[1 - 1 dW}! + 00 - dWP],

using Equations (8.3.18), (8.3.19) and (8.3.22).
= (a¢ —ar)dt + o dW} = dr..

Hence, we have shown that df(¢,t) = dr;.

8.4 A Model with a Markovian Mean Revert-

ing Level

We follow the motivation in [39], in which a Hidden Markov Model with mean
reverting characteristics is considered as a model for financial time series, par-
ticularly interest rates. Hidden Markov filtering offers a powerful methodology

to estimate efficiently the parameters for such a model.

Our first objective here however, is to derive the zero-coupon bond price
under the Vasicek’s model with the additional assumption that the mean re-
version level a changes according to a continuous time finite state Markov

chain.
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This could be a model for the logarithm of an assset price, or in our case,
an interest rate where a central bank provides a refeerence rate that changes
from time to time. A closed form solution for P(¢,7® under this model would
enable us to specify the dynamics of the forward rate wvhich is the ultimate aim
of this thesis.

8.4.1 The Markov Model for the Reference Level

Suppose that the reference level for the interest rate @ = {a; : 0 < ¢t < T}
is a finite state continuous time Markov chain, wherre T > 0 is a finite time

horizon.

Modifying the Vasicek Model, let the interest r = {r, : 0 < ¢t < T} be
described by the stochastic differential equation,

dry = (a(t) — B(t)ry)dt + ocdW,. (8.4.23)

Here, W = {W, : 0 < t < T} is a Wiener process independent of o,
and beta(t) and o are positive constants. We considem the situation where the
process r is observed and inferences are to be made :about the process a and

other parameters.

We assume that there is an underlying probabilitty space (2, F, P). As an
adaptation to Chapter 4, we consider an n—state conti-nuous time Markov chain
X = {X;:0 <t <T} that is identical to « after a trmnsformation of the state

space.

Choose the state space for X the set {ey,...,e,} of7 unit vectors in R™ That
is, e; = {0,...,1,...,0}, or the t—th component is 1, ammd zero otherwise. Then

we can write
Qp = Q(Xt) = (a, Xt> (8.4.24)

for an appropriate vector @ = (ay,...,a,) € R"*, where (o, X:) denotes the

inner product of the vector a and X;.
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As in Chapter 4, we have the vector of probabilitie p, = E[X,]. Let A =
{A:: 0 <t < T} be the family of transition intensity matrices associated with
the continuous time Markov chain X, so that p; satisfies the forward equation

%”t—‘ = A;p:;, with given initial probability vector pg.

The transition intensity matrix A; determines the dynamics of the reference
level a as described in (8.4.24). Then, this is introduced into the interest rate

model of (8.4.23) as a mean reversion level.

Hence, the interest rate is conditionally Gaussian, conditioned on the in-

dependent path of the Markov chain that describes the reference level.

8.4.2 Deriving the Bond Price P(¢,T)

Consider the Hull-White Model for which the interest rate process is given by
dry = (a(t) — B(t)re)dt + o(t)dW, (8.4.25)
for rq > 0.

We take the case where 3(t) = a, i.e., () is constant and o(¢) = o.

However, a(t) follows a Markov chain. That is,

o = a( X)) = (a, Xt)

for an appropriate vector a = (e, ...,an) € R™ and X, follows the stochas-
tic dynamics dX, = AX;dt + dM; and X; € {ej,...,e,} as described in the

preceding subsection.

Now, under this given model

P(t,T)=E [ezp <— /t i rsds>

So, if we know the trajectory of a,, u < T, then (by the Hull-White
Model)

Fi, ., ugT] .

P(t,T) = exp(—r,C(¢,T) — A(t,T)) (8.4.26)
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where 7, is the solution to the SDE described in (8.4.25) and
T
Ct,T) = €W / e bW dy = MM (1)
t

o) = [ Bulde

T
v(t) = / e~ dy
t

A(t,T)

T 1
/ [eb(")a(u)'y(u) - ;ezb(")cr2(u)"/2(u)] du

t t
re = e t® (ro +/ e™a(u)du +/ b(u)a’(u)dW}) . (8.4.27)
0 0
With 8(¢) = a and o(t) = o V¢, equation (8.4.27) simplifies to

[4 t
re =e (ro +/ e (a, Xy)du + / auaqu> .
0 0

Write €, := e**«. Then,

t t
ry = e % (ro +/ (Eu, Xu)du +/ aaudI/Vu> )
0 0

In the succeeding discussion, we shall discuss the random variable fot (€u, Xy )du.

We first note that the deterministic function C(¢,7T") can be obtained as

follows:

t
b(t) =/ adu = at
¢]

T 1
y(t) = / e du = =(e™ — e~°T).
. a
Thus,

T
c@t,T) = eb(!)/ et du
t

T
— eat / e——au du
t

—at __ e—aT)’
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For the function A(¢,T), we have

AR, T) = /T [eb(")a(u)'y(u) - %—ezb(")az(u)ﬂﬂ(u)] du
tT . ~
= / e‘”‘o:(u);(e‘"u — e T)du
t g

1
2au —au —aT\2
- e —(e™™ —e™ ) du

T a 1 —-a —aT
= e“a(u)—(e™™ — e *" )du
: a

— —Le-ZG(T-t)] : (8.4.28)

2a

Let us evaluate the integral term of (8.4.28).

T 1
/ eauau_(e-au _ e—aT)du
¢ a

T —aT T
—1— [/ audu} _¢ [/ aue““du]
a [Jt a ¢
1 T
ht (/ (1l — e‘“Te‘“‘)du>
a t
T _ p—a(T—-u)
= / ( Xy, ay) (—l—e—> du
: a

T
= / (X, bu)du, (8.4.29)
t

where
1 — e—a.(T—-u)

Gy = ————— Q.
a

We set aside (8.4.29) first and remember that what we aim to get is a

closed form solution for (8.4.26).
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So far, we have
Pt,T) = exp(—nC(t,T)— A(L,T))
T
= exp(—rC(¢,T)) - ezp <—/ (Xu,éu)du>
-ezp(G(t, T)) (8.4.30)

using equations (8.4.29) and (8.4.28) and where

1 /0\2 3 2
- (X . = = _—a(T-t)
G(t,T) : (a) [(T t)— 5o+ e
_:]‘;_e—2a.(T—t)] and
eat T
CT) = (e —e™T).

Thus all that remains to be done is the evaluation of

(= [T (Xudu)du)

where ¢, is deterministic for u < T.
Define A;, := exp (— [['(X,, ¢u)dv) .

Thus,
dAt,u = "(—Xus éu)At,udu-

Further, if we consider the vector process AX : we obtain,

d(f\t,u-)(t,u) = At,vd-Xt,u + -Xt,udAt,u
z'\t,u[AXt,ud'U + dZW«U]
+Xt,v[_(Xua ¢u>A!,vd'U]-

I

Or in integral form,

T T
At,TXt,T = Xt+/ l\t‘vAXg’vd'U'*-/ A—t,udl‘/[v
T ¢
—/ (Xva¢u>At,uXt,vd’v.
t
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Taking expectations:
T T
Et [At,TXg'T] = .Xt + / AAEQ[At'UXt’v]d'D + / At,udA/[u
t t

T
- / B[(Xo, 60) Ary Xoo]dv. (8.4.31)
t

We note further that

n

(év:—)(u)A-t,v—Xt,u = Z(Xt‘u,e;)si(v)e,-

=1
= S(U)At.u)(t,vv
where S(u) is a time varying matrix with s(u) = (sl(u),SQ(u),...,sn(u))' on

the diagonal.
Write ét,T = Et [At,v)(t,,,].
So,
T T
ét,T = .Xt + / A:f:t‘uclv — / S('U)ét’ud'v.
t t

That is,
T
ét,T = .Xt + / (.4 — S(v))ft,vdv.
t
We wish to find ;7 such that

T
tor =X+ / H(v)3,,dv (8.4.32)
t

where H(v) = A — S(v).
Equivalently, we would like to solve

d . .
%‘%,u = H(U)Zt'u (8.4.33)

and ét,t = _Xg.
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Furthermore, in connection with (8.4.30), we see that

E [exp (- /t T(X,,,¢,,)dv) :ﬂ]
5 [enn (- [ Xtie) 1) )]

since (Xr,1)=1
7 1)

T
= <E [e:cp (—/ (X,,,qbv)dv> Xt
t
Therefore, we wish to obtain the solution of (8.4.33).

= (.;:t'T, 1>.

8.4.3 The Fundamental Matrix Solution

If S(¢) is a matrix satisfying certain conditions the matrix differential equation
®(t) = S(t)®(t), ®0)=1

has a unique solution (see [57], for example) defined for 0 < ¢t < occ.
Here [ is the n x n matrix. For each ¢ > 0, the matrix ®(¢) is nonsingular.

Suppose further we have the n—dimensional vector £, n x n matrix S(t)

and a deterministic equation

£(t) = S(t)E, €(0) =¢. (8.4.34)

In terms of ®, the solution of the deterministic equation (8.4.34) is just
£(t) = ®(t)£(0).

Applied to our current investigation, £(¢,v) = ®(¢,v)E(¢), S(¢) = H(t) and £(t) =
%, = X,. And ®(t,v) is the solution to ®(¢,v) = H(v)®(¢,v).

Thus, 2.7 = ®(¢, T) X,
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Finally,

E [exp (— i (X, m)dv)

The zero-coupon bond price is therefore

sa] = (37,1) = (®(¢, T)X.,1).  (8.4.35)

P(t,T) = exp[—r:C(t,T) + G(t, T)(®(¢, T) X, 1),

where
eat
C(t_T) = 7(e—clt_e—a.fl')
1 ro\2 3 2 _ e
G, T) = §<Z) [(T_t)—ﬁ+26 (T-t)
1 —2a(T—t)
-%8 .

8.4.4 Reconciling the Short-Term Rate and f(¢,¢)

Under the current bond price, the forward rate is given by

d
f(tv T) - —a—T ].IlP(t, T)
d
= 37 ([rtC(t, T) - G, T)] — In(®(t, T) X, 1)).
Thus,
f@&,T) = r iC'(t T)
) - taT ’ a
d
_ETG(t’ T) - 3T In(®(t,T)X:, 1).
We must therefore show that
0
ﬁC(t,T) o =1,
0
ﬁG(t’ T) . 0 and
0

o7 In(@(t, T)Xe, 1)

T=t
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Now,

_ o—a(T-t)
Ct,T)="""" and
a
7,
—C(t,T) = e oT79,
g (T =e
Clearly,
d
—Ct,T =e T, =0 =1,
[BTC( , )]T=t e 7=t = €
Also,
1 [o2\?
G(t,T) = 5(;) [(T—t)—:z—
2 1
= —a(T-t) = —2a(T-t)
+ ae 26 ] .
Hence,

0 1 sro\2
_ — (= _ 9.—a(T-t) —2a(T-t)
aTG(t,T) 5 (a) (1—2e +e ).

Again, we see that

d 1 fo\2
9 L _9 =0. A4
[aTG(t,T)]T=t > (a) (1-2+1)=0 (8.4.36)
Finally, we consider
—a—ln(@(t )X, 1)
aT b ty _

i111(<I>(t T)X:, 1) = —8—111 ex —~/T(X &) dv
aT ’ Sty - aT p . Atuy Pt

b, T
= ‘8_1—_, ("[ (Xt,uv ¢t,v>> d’U

= —(X.uT,0t.T)
where

1 — g=a(T—t) .
¢o7r = ————— - a from Equation (8.4.29)
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Therefore,

0
=7 In(@(¢, T) Xe, 1) = (Xt,1,90.7) 7=t = —(X1t,0) = 0.
aT T=t

Consequently, we have proven that f(¢,¢) = r, under this mean reverting

model.
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Chapter 9

Empirical Test with Hidden
Markov Models and Filtering

9.1 The Method of Filtering and the Efficient
Market Hypothesis (EMH)

In the filtering method that we shall perform, historical and publicly current
available information are used to calculate optimal filters in the estimation

procedure of parameters.

We start with a unit-delay model to introduce the filtering problem of
Hidden Markov Models (HMM). Under this setting, the filters at time k, are
calculated based on the information available up to time k£ — 1, hence the
name unit-delay model. This is reasonable because asset prices do not react
immediately but instead take a unit time step to adjust to whatever available

information such as corporate announcements and governmental policies.

On the other hand, as the financial world adapts itself into electronic
information networks, it is also worth considering zero-delay models. That is,
the filters at time t are obtained using all available data up to time ¢. Again,
we can argue that this is a sensible model because, we live in a technologically

advanced world of computers where information can be transmitted in just a
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split of a second. Thus, prices adjust almost instantaneously.

Here, we observe that the filtering techniques employed to estimate optimal
parameters of a model is consistent with the body of theory called Efficient
Market Hypotheses (EMH). Financial theorists generally define three forms
or levels! of capital market efficiency. These are described as (i) weak-form

efficiency, (ii) semi-strong form efficiency and (iii) strong form.

The weak form of the EMH states that all information contained in past
price movements is fully reflected in current market prices. Semi-strong effi-
ciency argues that existing prices reflect all public information, good or bad.
All the information currently known to the market is already impounded in
current market prices. Except for the predictable upward drift which consti-
tutes part of the normal return on a security, prices change only when new
information arrives. The strong form of the EMH states that current market
prices reflect all pertinent information, whether publicly available or privately
held. If this form holds, even insiders would find it impossible to earn abnormal

returns in the market.

Empirical studies conducted suggest that the market is indeed highly effi-
cient in the weak form and reasonably efficient in the semistrong.? However,

the strong-form EMH does not hold,® so abnormal profits can be made by those

LE.F. Fama, "The Behaviour of Stock Prices,” Journal of Business 38 (January 1965),
pp.34-105, ”Efficient Capital Markets: A Review of Theory and Empirical Work,” Journal of
Finance 25 (May 1970), pp.383-417; and Foundations of Finance (New York: Basic Books,
1976)

2E.F. Fama, L. Fischer, M. Jensen and R.Roll, " The Adjustment of Stock Prices to New
Information,” International Economic Review 10 (February 1969), pp. 1-21; M. Jensen, " The
Performance of Mutual Funds in the Period 1954-64,” Journal of Finance 23 (May 1968), pp.
389-416; R.S. Kaplan and R. Roll, "Investor Evaluation of Accounting Information: Some
Empirical Evidence,” Journal of Business 45 (April 1972), pp. 225-257; and M.S. Scholes,
”Market for Securities: Substitution versus Price Pressure and the Effects of Information on

Share Prices,” Journal of Business 45 (April 1972), pp. 179-211.
3J.E. Finnerty, ” Insiders and Market Efficiency,” Journal of Finance 31 (September 1976),

pp- 1141-1148; R.G. Ibbotson, ” Price Performance of Common Stock New Issues,” Journal
of Financial Economics 2 (September 1975), pp. 235-272; and J.F. Jaffe, ” The Effect of Reg-
ulation Changes on Insider Trading,” Bell Journal )f Economics and Management Science
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who possess inside information.

The unit-delay model is explored here because of its consistency to the
weak-form of EMH while the zero-delay model which will be implemented to
the Markovian mean-reverting interest rate model is consistent with the semi-
strong form of EMH.

9.2 The Markov Model and the Filtering Prob-

lem

In the process of testing empirically the model we proposed for the mean re-
version level, we shall discuss the underlying assumptions, features and de-
scriptions of a Markov Model. We begin with discrete time Markov chain and
illustrate the basic idea of Hidden Markov Model (HMM) filtering. Calculation
of recursive filters is demonstrated by considering continuous observations in a

discrete time.

Having presented a theoretical framework of HMM filtering, we adopt its
relevant theory and implement the techniques to the Markovian mean reverting

model.

9.2.1 Discrete Time Markov Chains

We start with a process X with time parameter set {0,1,2,...} defined on
(Q,F, P). As usual, X has a general finite state space S = {sy, S2,...,5n}-

As in Chapter 4, we can assume that S = {ej,e,...,e,}. That is, the

elements of S are identified with the standard unit vectors where

e: = {0,...,0,1,0,...,0} € R™

Write i = o{Xo, ..., Xi} for the o— field generated by X, ..., Xi. Thus,

FoCF1C...C Ty

5 (Spring 1974), pp. 93-121
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and {Fi} is a filtration which models all possible histories of X.

Since we assume that X; is Markov, we have
P(Xks1 = €| Fi) = P(Xiy1 = il Xi)-

We recall that
aj; = P(.Xk_,_l = 6]'|Xk = e;) and
A= (aj,-) € R™*",

aj; is the one-step transition probability and A is called the transition matrix
of the Markov chain X.

Theorem 9.2.1 The expected value of Xy, given Xy is completely defined by

the transition matriz of the Markov chain and Xk.

Proof:

EXer1lXe] = D E[Xep1| X = (X, )

=1

= Z Z E[(Xk+1, €j>|Xk = 6{]<.Xk, 6{)6]'

=1 j=1

= Z Z a]-,-(X;;,ei)ej = A‘Xk-

=1 j=lI1

Suppose further, we define a random variable Vj such that for each & :
Virr = X1 — AX € R™

Or,
X1 = AXp + Vgt -

Note that

EVit1|Fe] = E[Xgp — AXe| Xk
= E[Xpn|Xe] — AXi
= 0eR"™
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We therefore have proven the following theorem which is a discrete ana-

logue of Corollary 4.2.1.

Theorem 9.2.2 The semimartingale representation of the Markov chain is

Xep1 = AXp + Vigr-

Then, we shall consider X to be a very simple process where X is inde-

pendently and uniformly distributed over its state space S at each time k.

On a measurable space (2, F), assume the existence of a probability mea-

sure P such that for every k :

- _ 1
P(Xit1 = €j|Tk) = P( Xy = €;) = e

So far, we have a simple process with its probability P. With this, we
wish to construct a new probability P where under this new measure P, X is
a Markov chain with transition matrix A. To accomplish this goal, we state
the following theorem which gives the form of the Radon-Nikodym derivative

which allows the desired change of measure from P to P.

Theorem 9.2.3 Let the new probability measure P be defined by putting

dP _i
dP|; ~ *
and
k -
Ay = H N
=1
such that

%= 1S (AXimr,€5)(Xi ).

j=1

Then under P, X is a Markov chain with transition matriz A.
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Proof: First we claim that E[X\|F,-,] = 1. This is because,

3"1—1]

EN|Fi—] = nE [i(AXl—laej)(Xl’ej)

Jj=1
1 n
= n.;Zum_l,ej)

=1

= Z Z(.Xl_l, e,-)aj,- =1.

=1 j=1
Now, General Bayes’ theorem implies

P(Xitr = €|Fk) = E[(Xkt1.€)|Fi]
E[Z—\k+1(Xk+1, €;) [ F]
E[/_\k+1|3-k] .

Since Agpr = Axdes1 and Ap is Fr—measurable, we obtain

E[/_\k+_1<:Xk+h €i)|F]
E_[/\k+llg.k]
=n- E[(AXk, e;\{(Xk+1,€5) | Tkl

= (AXk, €j) = P(Xi41 = €j| Xk)

as this depends only on Xj.

If X, = e; we have P(Xi41 = €| Xk = €;) = aj; and so, under P, X is a

Markov chain with transition matrix A.

9.2.2 Hidden Markov Models

In this subsection, we discuss what are Hidden Markov models. Suppose, we
do not observe X directly. Nevertheless, there is a function ¢ with values in a

finite set and we observe the values
Kc-i—l = c(-ch’ wk+1)7 k= 0,1, 2,...

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here, {w} is a sequence of independent, identically distributed (IID) random
variables which are independent of X. In other words, we have a situation
where the Markov chain X is not observed directly but is hidden in the "noisy”

observations Y.

Let the range of ¢ consist of m points in an arbitrary set. These can be

identified as before with unit vectors {fi, f2,..., fm} where
fi =(0,...,0,1,0,...,0) € R™.
Previously, we have ¥, = o{Xo, --., X} Write
Ye = o{Y1, ... Yi}
and

Sk = a-{)(07 '-'7Xk’ }/17 seey }/k}-

We note that Fo C F; C ... and therefore {F;}, {Yx}, {Gk} are increasing

families of o—fields.

These represent possible histories of the state process X, the observation

process Y and the combined process (X,Y).

We also have

cii=P(Yi = filXe =€) 1<j<m, 1<i<n.

As before,
EYi1|Xe] = CXi, C = (cji),

and if we define Wiy, = Yi41 — C Xk, the semimartingale representation of Y

is Yi41 = C Xk + Wiy, since W is a martingale increment.

Observe that there is a unit delay between X and its observation Yjy;.
This one-step delay is reasonable as Y may not react immediately to X. How-
ever, the alternative zero time-delay model can also be constructed. Such

discussion is given in [75].

Similar to the motivation of constructing the Markov chain X, we can

construct Y by changing probability measure.
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Suppose under some probability measure P, Y is a process such that

P(Yir1 = filSk) = P(Vep1 = f5) = 1

—.
Further, under P, X is a Markov chain which is independent of Y, with
state space S = {ey, €3, ..., €.} and transition matrix A = (a;;).
That is, Xry1 = AXgk + Viyy where
E[Vit1lSe] = E[Vig1lFi
E[Vig1|Xi] =0 € R™

Il

For,1<3<m,1 <1< n C = (c¢i)is a matrix with ¢;; > 0 and

™ . ¢ji = 1; a similar calculation will yield the following result.

=1

Theorem 9.2.4 Define

m

M =m Z((CXI—I’ fiX(Ye, £5))

=1

and
k
Ak = H/\[.
=1
A new probability measure P can be defined by putting %ng = Ag. Then,

under P, X remains a Markov chain with transition matriz A and P(Yiy, =
filXx = e;) = ¢ji. That is, under P

Xip1 = AXi + Vit

and
Yit1r = CXi + Wiy

9.2.3 Filtering Problem

Let us suppose that we observe Y}, - -- , Yi.. We wish to estimate Xg, X, --- , Xk.

The best (mean square) estimate of X given Y = o{¥1, -+, Y} is
E[X|Y:] € R™
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By the Bayes’ Theorem,

E[_‘_\’gkak]
E[Akwk] .

where E denotes the expectation under P.

E[ XY =

Write g := E[J-\kal‘ék] € R™. We see that g is an unnormalised condi-

tional expectation of X given the observations Y.
Since X; =e; foronly one 7,1 <:<n, 37 ( Xk, &) =1.
Counsider (gi,1) with 1 =(1,1,--- ,1) € R™
(@e1) = E(ReXi, 1IY
= E[A Xk, 1)]¥4]
= E[Ac) (Xi, €Yl
i=1

E[Ar]Y4]

and so

ELXWld) = 72 5y

We give a result concerning the dynamics of ¢ and an algorithm of how ¢

is updated as new observation Yj4, arrives.

Theorem 9.2.5 Write B(Yiy1) for the diagonal matriz with entries

m (Z ¢ji{Yet1, fy)) .

Jj=1
Then,
Gr+1 = AB(Yit1) gk

Proof: We write

i1 = E[Ae1 Xk |Yes)

= E {Ak (m Z((CXk,fj)(YkH,fj))) (AXk + Viy1)

i=1

Hk+l} .

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The observations Y/s are IID and independent of X under P, and X is a
Markov chain with transition matrix A. Thus, V41 is a martingale increment,

independent of Y, ,, and therefore

ter = E[Ra(m 3 (CXe f)(Yiwr, £)) AXil9

= m i E [(Xk, ei>1_\k|yk] (Z Cj{<n+1, fJ)) Ae,—

=1

= mZ(E[Kkawk],e,-) <Z cji<Y;~'+lvfj)) Ae;

i=1 =1

= mZ<Q’k,ei> <Z cji(Y;r+17fj>> Ae;.

=1 1=1

If we write B(Yx4,) for the diagonal matrix with entries m <Z;-"=1 cii{ Yiet1, fj)) ,
then we see that gry; = AB(Yit1)gk-

9.3 Continuous Observations of a Markov Chain

9.3.1 The Model and its Characteristics

We shall assume continuously valued observations y of a finite Markov chain
X with a discrete time parameter. The formulation of this model will serve
as basis in the implementation of filtering techniques to the Markovian mean

reverting level.

The Markov process X could represent the state of the economy: good,
average, bad. In our case the observations are the interest rates, which we shall
take as the returns from T—bills or T'—bonds.

Under the real world probability P, the Markov chain X, has the dynamics
Xi1 = AXk + Viqr.
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Again, we note that X is not observed directly. We suppose that there is a
real valued process y such that
Yrt1 = c(Xi) + (X ) Wit -

The sequence w;, wa,--- , is an [ID N(0,1) random variable. Thus,

@ a2
Plur < a) = = ez dz.
2T —00

Here we assume that there are vectors, ¢ = (¢1, - ,¢,) and o = (o1, -+ ,00)
such that

o(Xk) = (¢, X)) and

o(Xi) = (0, Xk), with 0;>0 for 1<i<n.

9.3.2 Construction of a Reference Probability

We shall be working under a reference probability P. Under P, we choose X

to be a Markov chain with transition matrix A. That is,
X1 = AXp + Ve

where E[Viy1|Gk] = 0 € R™ Also, under P, the observed values y;,y2," - ,
form a sequence of IID random variables each of which is N(0,1). This is to

say that,

— _ 1 (o1 22
P(ys < alSs1) = Plyx S o) = —= / L de.

The following discussion outlines how to construct the real world proba-
bility P from P.

Write ¢(z) := \/-17;6—%. That is, X ~ N(0,1). For [ =1,2,--- , write

¢({o, Xi—1) "y — (¢, Xi-1)))
(o, Xi—)d(yi) ’

A=

— k —_—

Aog=1 and /_\k=H/\1, k>1.
=1
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Definition 9.3.1 A probability P is defined by setting %lgk = A

Lemma 9.3.1 Under P the random variables wy,ws,--- , form a sequence of
IID N(0,1) random variables where

Wi = (0, X)) 7 (Yrer — (e X))

Proof: Let [ be the indicator function. Then,
P(wisr < @|Sk) = E[I(wrr < @)|Gk]-

The General Bayes’ theorem can be employed to get

E[Arei[(wisr < a)|Gi]
E[A-k-l-llgk]
E[/—\k+1[(wk+1 < a)lgk]

E[:\k+1|9k] -

P(wis1 < a|Gk)

Consider the denominator:

- _F é((a’ -Xk)—l(yk+1 - (Ct ‘Xk»)

- S (7, Xa) ™ wirs — (6 X))
-0 (o, Xi) (Y1)

O (Yrt1)dYrt1-

Write w := (o, X&) " (yk+1 — (¢, Xx)) which is equivalent to [ é(w)dw =

)

For the numerator,

o _ [gb((a, Xi) ™ (yrer — (¢, X)) [(wig1 < @)

Mesrl(wepr < @)|Gk] = E (oy Xi)(Yr+1)

/oo ¢(<0-7 -Xk>—1(yk+l - <Cv Xk)))
—o0 (o, Xic)B(Yr+1)
X (Y1) N (wrs1 < @)dyrtr

/ m B(w)dw.
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Henceforth,
P(wisr < @|Se) = / B(w)dw = P(wier < a)

and the result follows.

Now, we aim to estimate X, given the observations under the "real world”

probability P. However, P, is an easier measure to work with. Suppose

B = P[Xi=eil¥i]
= E[(Xk, €)Y«
= E[I(Xx = &)|Y]

and pr = (Pp, - ,Pr). Then pr = E[Xk|Y«] is the conditional distribution of

X} given Yx (under P). Thus,

ArXe|Ye]

E[Xk|Ye] = m

using Bayes’ theorem.

We write g := E[ArXk|Yx] for the unnormalised conditional contribution
of X given Y. Note again that Y . (Xk,e:) = 1. And therefore,

iE_'li(l_\ka,e,-) lék:l = E |:./_\;; zn:()(k, ez’)

t=1
and

n

Hk:l = E[Ae|Y%] = Z(q:c,ei)

=1

AR
k — <—n_ /__ _\-
> i (k. €d)

9.3.3 Recursive Filters

We wish to derive the filter for g.
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Lemma 9.3.2 Write B(yi+1) for the diagonal matriz with entries
(o7 (Y1 — i)
oi®(Yk+1)
Qk+1 = AB(ka)qk.

Then,

Proof: Write

&

[fik+1Xk+1 [Yks1]
[I\k/—\k-{-l (AX% + Vi1 )| Yr+1]

./Kk(ﬁ((oy .Xk)—l(yk+1 - (C, Xk)))
(o, X)) (Yrt1)

(o7 (Y1 — @)

Qk+1 =

|
ea

il
ty

(AXk + Vitr)

9k+1J

= [Ae( Xk, €)Y Ae;
g (X €:)]d] oid(Yrt1)
- ¢(‘7 (y;.+1 - -))Ae,-
= Z QK.7 ez
0id(Yk+1)
= AB(yk+1) « as desired.
The parameters of this model are:
A = (aj)= transition matrix,
¢ = (¢)= the function (vectors) and
o = (o0;) = the volatility vector.

To estimate these we need estimates of the following processes:

k
Jrs = Z(<Xu—~1 9 8,-)(.Xu, es)
u=l1
= number of jumps from state r to state s in time &;
k
Op = ) (Xuser)
u=l
= the amount of time X has spent in state r up to time k; and
k
Ti(f) = D (Xumrrer)f(un)
u=l1
2

wheref(y) =y or y°.
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Consider the estimate J[* = E[J[®|Y:]. General Bayes’ theorem implies

that
Ji* = E[PY4
[Aedi*| k]
E[Ak[‘dk]
It turns out however that there is no recursive expression for
E[AcJI Y]
Consider the vector process

E“[z_\kJ,?Xdek] .

E[f\kJ,?Xk[‘ka] = Z E[AkJ;s<-Xk7 ei)lyk]
=1

e B(AJE 19
E[JTIY, ] = Jrs = 2Lk<k 10k
[ k ltdk] k <q1c: 1)
For any G—adapted process Z, write
Zi: = E[Z|Y4]
O'(Zk) L= E[‘/_\kalHk]

We would like to derive a recursive formula for o(J™X).

(ot -
Lemma 9.8.3 With B(yg+1) the diagonal matriz with entries o ;iéf::l) )

and o defined as above we have

d(o7 (Yrsr — Cr))
or&(Yrs1)

sres-

(T X1 = AB(yer)o(T" X )k + (qir e)

Proof: Write O'(JrsX)]H.l = E[./_\k.*.lJEil‘Xk_i_llyk.*.]_].

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E[AketJii Xes119es1]
= E[Ad et 1 (J2° + (X, e ) Xiew1, €5)) Xewr [Dt1]
A (o, Xi) (k41 — (c, X))
(0, Xi)d(Yr41)
é((o‘, Xe) N yk+1 — (e, Xk>))
(o, Xi)A(Yrs1)
‘ék+1]
N EIA e )T ¢(o7 (Y1 — <)) e;
- ; B X, e 13 i P(Yr+1) Ae
(o7 (Yrs1 — cr))
o &(Yr+1)

= i<0(~]"x)k, ei)q&(afl(ka —c)) Ae;

Il
&

J(AXe + Vigr)

9k+1j|

+E [[\k

X (‘X'KH er)<A-Xk + {/k-{-l ) es)es

+E[Ru(Xe, e)[Yel2

Asr€Cs

0’i¢(yk+1)
#(o7 (Yre1 — )
0r¢(yk+1)

= AB(Yr+1)o(J7° X )k + (g, €r)

+(Qk’ er)

srvs

(o7 (Yr+1 — <))
0’r¢(yk+1)

Sr es

6 (o7 (w1 =)
gi®d(Yr+1)

where B(yk4+1) is the matrix with terms on its diagonal as de-

sired.

|
Similar calculations give the following results:
(0" X)rr1 = AB(Yr+1)0 (0" X)) + AB(Yr+1)(gr, e-) Ae:.
" r @ o'r—l(y —Cr
(T (F)X),0, = ABued)o(T (N X + (g er) LTt =) g ge

0'r¢(yk+1)
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9.3.4 Parameter Estimation

We suppose that {FP,0 € ©} is a family of probability measures on a measur-
able space (£2,5), each of which is absolutely continuous with respect to some

fixed probability measure P,. Suppose further that Y C F.

The likelihood function for computing an estimate of § based on the infor-

il

The maximum likelihood estimate (MLE) of @ is then

mation given in Y is
dPy

L(§) = Eo [?IPZ

f € arg max L(4).
8co

The reasoning behind this choice is that the most likely value of 8 is the
one which maximises this conditional expectation of the density. However, the

MLE is hard to compute.

The Expectation Maximisation (EM) algorithm is an alternative approxi-
mate method. The steps to perform in doing the EM algorithm are the follow-

ing:

1. Step 1: Set p = 0 and choose 6o.

o

. Step 2: (E-Step): Set 6~ = ép and compute

- _ dPy
Q(6,6%) = Es. [log IP

i
3. Step 3: (M-Step): Find §,,, € arg max Q(4,67).

e

4. Step 4: Replace p by p + 1 and repeat from Step 2 until some stopping

criteron is satisfied.

The sequence {ép} gives non-decreasing values of the likelihood function

to a local maximum of the likelihood function.
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From Jensen’s inequality:
log L(0p+1) — log L(65) = Q(6p+1.6,).

with equality only when §,,, = 6,.

The model under current investigation is determined by the parameters
0 := {aji7 ¢, 04, 1 S Z'}j g TI.}.

Further aj; > 0, >_°_; aj: = 1 and o; > 0. We wish to determine estimates of

the afore-mentioned parameters given by a new set

which maximises the analogues of the @) functions.

Consider first the parameter a;;. We recall the form of the change of mea-
sure described in the preceeding section. Under Py, X is a Markov chain with
transition matrix A = (a;;). We wish to introduce a new probability measure
P;, under which X is a Markov chain with transition matrix A = (&;;). That
is,

Ps(Xer1 = €| Xk = &) = @i,

so a;; > 0 and 3 7, d;; = 1. Define

AQ = 1
k n .
Ak = H (Z asr (‘Xl’ eS)(‘XI—lv er)) .
=1 r.s=1 sr
In case aj; = 0, take ¢;; = 0 and %JL: = 1. Define F; by setting
dF;
- | =Mk
T

~

Lemma 9.3.4 Under P; X is a Markov chain with transition matriz A =

(@ji).
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Proof:

Eg[Aky1{Xrs1,€s5)|F4]
Eg[Aks1]TF %]

Eo [(S0 e 25(Xer, e0)(Xir e0)) (Xirrs,)154]
Eq [Z:s=1 %:f(Xk-r-la es)( Xk, er) ?k] '

sr,..] 1
.

Xr =er

E[( Xiv1,€5)|Ti] =

Claim:

Sr

Eq [ Z Zsr (Xiks1,€5)( Xk, er)

r,s=1

Sr

Eq I: Z Zsr (—Xk-{—laes)(Xk’ er)

r,s=1

n -

= Z Eq l:z Zsr (X1, €s)
r=1

(-ka 8,-)

r
s=1 %

= z (Z jsr as") (X, er)

r=1 s=1

n

= Z(Xk,e,-) =1.

r=1

On the other hand,

:

Eq (Z bor (‘Xk+17 6s)<Xk= 67‘)) (Xk+l: 68)

Qsr
5

r,s=1

n

= Eo | 2 Xirrre){Xeser)

asr

L. r=1

= C‘isr()(k, 6,-).

Consequently,

Pé(.)(k+1 = elek = e,) = E'é[(_Xk.H, es)[X;_. = e,.] = fls,-.

We therefore see that X is a Markov chain with transition matrix A, under

P;.
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Theorem 9.3.1 Given the observations up to time k, {y1,--- ,yx} and given
the parameter set § = {aji,ci,0:, 1 <1, j < n}, the EM estimates aj; are

given by .
- J;cj O’(Jij)[c
Aj; = = - = - .
0. (O

Proof: We make an observation that

k no .
= H (Z Zsr (Xz,es>(Xl—1’ef)> :

Tk =1 r.s=1 sr

4F;
dPy

Equivalently,

log dP Zlog (Z /‘" (X1, es){(Xi- l,er))

r S—
and further

dP;

log 7p, = ZZ<)\I’65)(YI 1 er)(log &y — log asr)

(=1 r,s=1

Z JI% log asr + R(a)

r.s=1

where R(a) is independent of the a,.. Hence,

} Z *log &sr + R(a). (9.3.1)

Y’S—

L(6) = [[og T

We know that

Also,
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and therefore

> Je =05 (9.3.3)

The optimal estimate @;; is the value which maximises the right hand side
of (9.3.1) subject to (9.3.2).

Suppose A is the Lagrange multiplier. Set

L(a,)) =Y J*logas + R(a) + A (Z Gar — 1) :

r,.s=1 s=1

We differentiate L in d;; and A and equate the derivatives to 0. This gives

us:

L 4+ A=0 (9.3.4)

aj:
n

Y aa=1 (9.3.5)

s=1

From (9.3.3), (9.3.4) and (9.3.5), A = —Of, and therefore

R Jl oI
Ol G'(Oi)k

and the theorem is proved.

9.3.5 Updates of Parameters

Consider the parameter ¢ = (¢1,--- ,¢n,) € R™ To change this parameter to

¢ = (é1,--- ,En), consider the factors
N1 = ezp[27 o, Xi) 7H{(e, Xi)? — (&, X1)? — 2y141 (e, Xi) + 2yr1 (&, XD}
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Write A = Hle A7 and consider a new measure F; defined by setting

% . = Ap.
Thus, i
L() = E |log (—‘% yk] .
Further, ]

L(é) = FE i(Q(O’,XI-L))—z{(C,Xz—L)z—<5’X-1>2

| (=1
'dk]

- 2T A — OT 82 .
L(g) — Z "’Tk(y).cr Okcr + R(C)

r=1

—2yi{c, Xi—1) + 2y1(é, Xi-1) } |15k]

[ 2T ()é — O3
= E Z 53 + R(c)

““r

L r=1

where R(c) is independent of ¢. That is,

Differentiating L(#) with respect to & and equating to zero, the optimal choice

for ¢&;, given the observations y;,--- ,yx is

Tity) _ o(T' W),
oi o0

& =

Now, consider the parameters o;, 1 <7 < n. We shall change the param-

eters 0 = (01, -+ ,04) to & = (61, ,0n)-

We consider the factors
(0, Xi)eap (—mege (et — (& X1))*)
(6, Xi)exp (—Ta,}?(ym — (e, Xl))z) .

A =

Write Ay = Hle A and define P; so that

dF;
dPy

= Ap.
Sk
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Then,

k
log 258 — > (-~ log(6, Xi1)
gdpg - g\O; A1

=1

1 2
—m(yl — (¢, Xi-1))" + R(C,U)),

where R(c, o) is independent of 6. Therefore,

k n
dP; )
E [logﬁ— 3’1} =FE [g ;(—(Xz-l,erﬂog &r
Xi—1,er -
- ened 7 —sayi+ ) )| + Al
252
n . 1 ) ) . R
=-> [bg 6+ 0k + 523 (Ti(y*) — 2T (y) + Cfoi)] + R(c,0).
r=1 =

Differentiating in 6; and putting the derivative to 0, we see that the optimal

choice for ;, given the observations yg, is

o (T —2afi) + 0L\
1 Onlk..
<0'(Ti(y2))k — QCiU(Ti(y))k> i |

I

(O + c?

T

Note that these results provide not only estimates of the Markov chain but

also of the parameters of the model.
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9.4 Applications of Filtering Techniques to a
Mean Reverting Interest Rate Model

9.4.1 The Model Revisited

In Chapter 8, section 8.4, we discussed a Markov model for the mean reverting
level of interest rates. In this section, we aim to generate optimal filters for
the state of the hidden Markov chain. Auxiliary filters will also be obtained
to enable parameters of the model to be estimated using the EM algorithm.

Then a simulation study will be conducted.

From the previous formulation of this model, we consider an n—state con-
tinuous time Markov chain X = {X;;0 < ¢ < T} that is identical to a after
the transformation of the state space. As before, we choose the state space for

X the set (e;, - ,en) of unit vectors.
We also write o = (o, X;) and the vector of probabilities p, = E[X}].

If A= {A;0 <t < T} is a family of transition intensity matrices as-
sociated with the continuous time Markov chain X, p, satisfies the forward

equation % = A.;p; with given initial probability vector pg.

The interest rate r = {r;;0 < ¢ < T} is described by the SDE
dr; = y(as — re)dt + pdW,. (9.4.6)
Here, W = {W,;0 < t < T} is a Wiener process independent of a. The
adjustment coefficient v and volatility p are positive constants.

The transition intensity matrix A; governs the dynamics of the reference

level a that feeds into the interest rate model in (9.4.6).

We define the following filtrations for the processes involved in this model.
Let R? be the o —field generated by r, for 0 < u < t, thatis, R? = o{r,;0 <u <
t}. Also, let 89 = 0{X,;0 < u < t}, F? = 0{Xu, ;0 < u < ¢t} and we write
R = {Ri}ocict and 8§ = {Si}o<icr and F = {F;}o<i<r for the corresponding

right-continuous, augmented filtrations.
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As usual, the process M = {M,;0 <t < T} defined by
t
My=X,— Xo —/ A, X du
0

is an S—martingale under P.

9.4.2 A Change of Measure

It is the intent of this section to obtain filters and estimators required to esti-
mate the parameters of the model. To do this, we shall introduce a change of

measure.

Let P be a probability measure on (2, Fr) under which « is a finite state
Markov chain with the transition intensity matrix family A as before. Further,
let W = {W, = L0t < T} be a Wiener process, independent of a.

Suppose ' = {I';;0 <t < T} is a process defined by

¢ t
[y = e€Tp [/ 77(<Xu7 a) - ru)qu - é’/ 772(<-Xu, C() — Tu)zdu
0 0

where n = 7.

Consider a new measure, P, in F7 such that P ~ P and its Radon-Nikodym

derivative with respect P is

dP

—| =TI

dP|s. T
If we let W to be a process given by Wp = 0 and

dW,; = p~tdr, — v((X., @) — re)dt],

Girsanov’s theorem tells us that the process W is a P—Wiener process, inde-

pendent of a.

Under P, X and r follow respectively the following dynamics
t
X = Xo -{—/ A, Xy du + M;
0

and
dry = v(a — r¢)dt + pdW:.
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The change of measure facilitates easier calculations in the sense that under P

the observable process r is a Wiener process.

P which is the "real world” measure is a different measure. However, we
can use a version of Bayes’ theorem to convert calculations made under one

measure into a corresponding quantity calculated under the other measure.

9.4.3 Calculation of Filters

Suppose we have an F—adapted process given by ¢ = {¢;0 <t < T}.
Let 1,@ = {g&t; 0 < t < T} for the R—optional projection of the process .
Under P, we have 9; = E[¢|R;] P—a.s.

Definition 9.4.1 The R—optional projection process ¥ in the preceding dis-
cussion is called the filter of .

Denote by o(¥) = {o(¥:);0 < ¢ < T} the R—optional projection of the

process ¢ [" under the measure P.

From Theorem 2.3.2 of Elliott, Aggoun and Moore [36] we have

by = o(¥) -a.s
bt (1) (P-as.).

Now let the process J = {J;;0 <t < T} be described by

t t t
Jo=Jo+ / Eudu + / (B, dM,) + / 5. dW,,
0 0 4]

where £ and § are F—predictable, square integrable process; and B3 is an

F—predictable, square integrable, n—dimensional vector process.

With the Markov process X; = Xo + [ AXudu + M; and [t&’s Rule for

semimartingales the process J;X; has dynamics

t t t
JX, = JoXo+ / EuXudu + / Xoue(Bu, dM,) + / 5uXue dW,
4] 0 0

t t
+ / Jur AuXydu + / JuedMy + D (B, AXL)AX,.
(o] 0

0<u<lt
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Let (aji)u be the j,ith element of the matrix A,.

We shall derive the filter of J,X;.

Theorem 9.4.1 The recursive equation for the evolution of o(JX) is given by
t t
o(J: X:) = o(JoXo) +/ o (€. Xy-)du +/ Ayo(Jy-X,)du
0 0

+ 3 [ (o(0iXun — BiXn).edlaz)udule; — &)

i,j=l

+/ pt(nBuo(Ju-Xu) + o(pX,-))dr,

for 0 <t <T, where B, is the n X n diagonal matriz with {B;;), = & — Ty.

Proof: See Theorem 8.3.2 of Elliott, Aggoun and Moore [36].

Example 9.4.1 Suppose &, B and § are all zero and we take J; = Jo = 1.
Then,

t t
a(X:) = E[Xq] +/ Ayo(X,)du +/ p 'nB,o(X,)dr,.
0 0
With 1 = (1,---,1) and (X;,1) = 1, we see that the recursive equation of the
filter for X; has the form

o(Xt)

BIXIR) = ooy 1y

Define 3? :=number of jumps that the process X makes from state e; to

e; in the interval [0, ¢] and hence,
. t t
g = / (Xu—, €i)ajidu +/ (Xu—,e:)(e;, dM,). (9.4.7)
0 0

The unnormalised filter for J¥ is given by

o(37) = (o(J7 X.), 1)

=
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and the normalised filter for J% is given by

a(d)

Bl = ooy ot

Corollary 9.4.1 The recursive algorithm for the process U(Hijt) is
.. t t ..
o(@7x) = [ ato(Xo)edesdu+ [ Ar(@iX.)du
0 0

t
+ [ o nBuo(@ X)dr. (9.4.3)
0

Proof: First note that (X,—,e;)X,— = (X,_,e;)e; and therefore

n

D ((BiXum, BiXus)s ex)au(er — ex) = ((Xums ex)es, e1)azi(ej — e:)
k=1
= (Xu—,e)aji(e; — €;).
Then take J, = g7, Jo =0,
Ew = (Xu-,€i)aji, & =0, and
Pu = (Xu-s ei)e;

and the result follows.

]
Now, define the process O} by
X t
O = / (X, e:)du
= amountoof time the process X stays at state ¢ up to time ¢
= /t(Xu, e:)du. (9.4.9)
0

The unnormalised filter for O is given by
a(0}) = (¢(0iX:), 1)
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and the filter for O is given by

a(9)

E[0}|R,] = X1

Corollary 9.4.2 The recursive algorithm for the process o(O!X,) is given by

o(0iX,) = /0 t(a(Xu),ei)e;du-i— / tAa((‘)iXu)du

0

t
+/ p inB,o(OL X, )dr,.
0

Proof: Observe that (X,,e;)X, = (X.,e:)e; then apply Theorem 9.4.1 by
taking
Jo=0, Jo=0, & = (Xu,&) and B, =6, =0.

The result follows.

Define the process X: := j;(Xu, e;)dry.

Using the dynamics of r, as a mean reverting process and the fact that
(Xu, ) Xy = (Xu,e:)ei, we have

t t
ﬂC; = / y(ow — Tu)(‘Xu’ ei)du + / p(){uv e,-)qu. (9'4'10)
0 0

As usual, the unnormalised filter for X' is given by

a(X}) = (o(XiXe), 1)

and the normalised filter for X* is given by

, B[R] = (7?%_‘)1) .
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Corollary 9.4.3 The recursive algorithm for the process o(XiX,) is given by
(KX, = /:7(&,' —ru ) {0(Xy), e:)edu + /Ot Ao (XK. X, )du
+ / (p 1 Bu (56 X,) + (o(X,), ees) dr
Proof: Apply Theorem 9.4.1 with

Jt = j(:, Jo = 0, f-u_ = '}’(ai - ru)<Xua 6,‘)

Pu = n(-)(u’ 6{) and G, =0

and the above result is obtained.

Now, consider the process J¢ defined by

t
J; = / ru( Xy, €:)du.
0

Again, the unnormalised filter for J¢ is given by

a(T;) = (o(3:Xe), 1)

and the normalised filter for J° is given by

o) |
(J(Xt)v 1)

E[T|R] =

Corollary 9.4.4 The recursive algorithm for the process o(J:X,) is given by
o(iX;) = /Ot ru(o(Xy), e:)eidu + /Ot Ao (T, X, )du
+/0f p"nByo (T X, )dr,.
Proof: The result also follows from Theorem (9.4.1) by taking

Ji =j;’ Yo = Oa éu = ru(Xu.y ei)v and IB'U. = (Su. = 0.
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9.4.4 Parameter Estimation of the Model

We wish to estimate the transition intensity matrix A = A; which is con-
stant and unknown and the vector «, the reference level values which are also

unknown.

Since, the process r can be observed up to time ¢, we can use Expectation

Maximisation (EM) algorithm to estimate the said unknown parameters.

Write
6 : = set of parameters

= {aij,ai;1 <1,5 < n}.

As a preliminary, an initial guess f, for the parameter set is chosen. Then
the EM algorithm is applied to obtain the first estimate 8, of the parameters.
We repeat this procedure iteratively and hence generate a sequence of estimates

(0k)rez+. We note that in each iteration, there are two steps involved.
First Step: Expectation

Start with 8y, the k—th iteration of the estimated parameters. Write

@ = set of possible parameter values
P; = probability measure induced by the values 6 on (Q,F,).
E, = expectation under the measure Py, .

Under this Expectation Step, our objective is to calculate the quantity

Q(0;0i) := Ex [log <;113:é ) | th] .

Second Step: Maximisation

This requires the maximisation of the quantity Q(é, 0x) with respect to 6

to obtain a new estimate ;.

Through this procedure, the EM algorithm ostensibly maximises itera-
tively the likelihood that the estimated parameters are indeed the true under-

lying parameters.
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Lemma 9.4.1 The k + 1—parameter set estimate
Orsr = {@ksrijr s 1 <1,7 < n}

generated by the EM algorithm is given by

1~ lo(X) + (3
a(03) '

and Qg1 =

Proof: We invoke Girsanov’s theorem and Theorem T3 from Chapter 4 of
dP,

Brémaud [9] to find the expression for zz%, where
k
9_ = {C—l,‘j, & 1 S Z,j S TI.} and
0n = {ari, oxi 1<4,j<n}

are two possible sets.
Now,

dPj ‘ -1 = L [f 2 = 2
dng = ezxp [/0 np <‘Xuva —ak)dru. - 3\/0 n {((Xu’a> _ru)

—(( Xy, 0r) — ru)z}du]

n t G N
1 _Jt dJ
x H rp [/o °8 (ak.ﬁ> &

LI=17#]

-_ /t(&]—; - ak,ﬁ)(Xu, e;)du] (9.4.11)

where & = (@1, &2, -+ ,@n) and ar = (g1, Ak2, " » Ckin)

First, we observe that

(Xu, @) =Y & Xy, e).
i=1
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Therefore,

—~ dPs
0,8, = E; g
s = s (22)]3
n t
= an—l&iEk [/ (Xu,e,-)dru Rt]
=1 0

1 t _ _
—Eank [/; ((Xu, @) — 2r (X, &) du

:

+ Z ( log(&j{)Ek[gijl:Rt]

LI=13#7

thD + R(6y), (9.4.12)

t
- C_Zj{Ek [/ (Xu,e,-)du
0

where R(6:) is independent of §. Equation (9.4.12) can be further simplified
using the fact that

(Xu,8)? =) a2 Xy, ).
i=1

Thus,

A
|
|

n t
Q(076k) = an—ldiEk [/ (‘Xuv 6{)([7‘,_,,
=1 0
n 1 ¢
-y yran. | [ (Xuedd
i=1 = 0
n ¢
+ 2&,‘Ek [/ T { Xy, €;)du
;n [ Tl e)

+ Z (log(&j{)Ek[Hij[:Rt]

1,7=1,i#j

—a;:Ex [ /0 t(Xu,e,-)du ZRtD + R(6x) (9.4.13)

Then, we maximise Q(4, ;) with respect to 8. To do this, we equate the
partial derivatives with respect to a;; and &; of Equation (9.4.13) to zero.
The calculation shows that the next set of parameters

0k+1 = {ak+1,ij, Qt1,4s 1<e,5< n}
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generated by the EM algorithm is given by

.. t —1
art1,5i = Er[d7 [Re] (Ek [/ (Xu,e,-)du{th]> (9.4.14)
0
and
TV Bk [ fy Xy eddralRe] + Bi [ Jy ru(Xo, e)du| R.]
ak+1,i — ¢ . (9.4-15)
Ex [ NS e;)dquRt]
But, -
iJ
E- ij R — 0(31 )
O = o)
. f (0))
. — 3 — g ¢
E; |:/0 (X, ei)du fR,] = Er[O}[R] = T(X). 1)
Thus, (9.4.14) reduces to N
Ak1,J0 = ﬁ-
’ a(0y)
Furthermore,
i i _ o (%)
E'k |:/0 <.Xu,€,)d7‘u Rt} = Ek[JC,ISRt] = m
‘ ; a(3)
B [ e - maini = 20y
Hence, Equation (9.4.15) becomes
Qkt1,i = 1 lo(X) + U(ji).
' o(0;)
|

The Case of Extended Parameters

Suppose we extend the parameter estimation that includes the speed of
adjustment . The estimate a;;, 1 <1¢,7 < n is the same. However, if we wish
to include v as a parameter to be as well estimated, the estimation procedure
will yield a different %’ek- We shall see this later.
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Lemma 9.4.2 The new estimate for v is given by

Tert = where

¢ t ikt
C = / rudr, — Lt
0 Z O

=1

and N
’1‘ Tt 2 t
D= Z (—f)— —/ r2du.
=1 ; 0
The new estimate for a; is
_ P;-ql-qu +J;

A1, = =
1
Ot

Proof: Including v as a parameter that we wish to estimate would lead

(9.4.11) take a different form. In this case, our parameter sets are now
6 = {:/, aij,a;; 1<12,7< n} and

O = {7, arijrons; 1<3,7<n} and

jg" S [/ (7672 (Xur &) — 1)
o2 (K ) — 1))

_%/0 (32072((Xy, @) —r4)”

202 (X, k) — ru)z)du] x R, (9.4.16)

where & = {a;, @2, ...,ar}, ok = {1,232, ..,ka} and Ry is a term that is

independent of ¥ and a.
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We get

Q(G—v gk)Pz = ;‘i(Ek [/ (A){un&)dru
o]

s
_E, [ [ rudr. :RD

t
—é?z (E'k [/ (X, @)du thJ
2 0
t
—2F; [/ ru{ Xy, &@)du RtJ
0

t
+Ey [/ 2 du JztD + Rs, (9.4.17)
0

where again R is independent of both 4 and &.

Equation (9.4.17) could be written further as
n ¢
Q8.6r)p* = 7 [Z 55@-/ T‘udT‘u}
t=1 Y
1 n ) n N t
_5,—),2 [Z &20; — 2 Z o;J, + / ridu] + Rz (9.4.18)

=1 =1 0
In (9.4.18), we utilise the notation % as shorthand for the R—optional
projection of the process ¥ under the measure Py, . We also employ the notation

for the processes O, X‘ and J°.

We maximise @ using (9.4.18) by equating the partial derivatives of Q with

respect to &; and ¥ to 0. After simplification, the new estimate for v is given

by
_¢
Yet+1 = D’
where t .
EL i
C'=/ rydr, — Lot
T2
and

n )2 t
D = Z_(Jt). _fo radu.

1 u
=1 ot
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On the other hand, the new estimate for «; is

~—1 Ari Ti
Ve K + T
Qpgpr1i = —————.

0:

9.5 Application of the Self Calibrating Model

9.5.1 The Data and Estimation Procedure

In this section, we implement the theory and filtering techniques in the previous
discussion for the Markovian mean reverting interest rate model. We analyse
a data set consisting of 198 monthly observations on the yields of 3-month
Canadian Treasury bills, 2-year and 10-year Canadian bonds. The sample
period ran from June 1982 to December 1998. The data were compiled by the
Bank of Canada, Department of Monetary and Financial Analysis. For further
details on how the data were gathered and other related information, refer to

Appendix D.

Parameter estimates were updated using the formulas of the previous sec-

tion as soon as a new interest rate arrives.

We let n, the size of the state space of the Markov chain X, equal three;

dt, the time step between observations be 2% and the maturities of the various

securities be %, 2 and 10.

9.5.2 The Choice of n

In the estimation procedure proposed above, parameter n, which represents
the size of the state space of the Markov chain, is the only parameter which
is not estimated. Rather, a value is assigned to n. In this application, we let

n = 3.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The determination of the optimal value of n, for a particular data set, is
an important problem which has been considered in the literature. Although
this problem cannot be resolved using the likelihood ratio test, a number of

proposals have been advanced to address it, see [61] p. 698-699.

We do not explore this issue further, other than to say that a comparison of
results obtained can be made when n is assigned different values. However, it is
interesting to note that in the regime-switching model, discussed in Hamilton,
[60] and [61], in which the state or regime of a time series process is modelled

as a Markov chain, a state space of size two is typically assumed.

The assignment of 3 states, is justified by our choice of designating the

states of an economy either in a bad, medium or good situation.

9.5.3 Yield Estimation

At the end of each iteration through the data and with filters computed for
each security, we shall calculate the yields based on the updated parameters.

Figures 9.1, 9.2 and 9.3 show these results for the three securities considered.

9.5.4 The Unit Root Test

Macroeconomists have become aware of a new set of econometric difficulties
that arise when one or more variables of interest may have unit roots in their
time series representations. Standard asymptotic distribution theory often does
not apply to regressions involving such variables, and the inference can go
seriously astray if this is ignored. We are guided by this fact and any regression
analysis, therefore, to be performed on the actual yields versus the estimated

yields can only proceed after an evidence of stationarity of both series.

We shall use the standard Dickey-Fuller tests to detect nonstationarity.
This approach uses formal statistical tests for unit roots. In carrying out these

tests, we consider three autoregressive (AR) models. The first model is an
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Figure 9.4: Residual Plot for 3-month T-bill returns
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AR(1) process with no intercept (no constant). That is,
Y = Qyp—; + €, (9.5.19)
where ¢€; is white noise. We would like to test the hypothesis

Ho:a = 1 (model has a unit root, therefore nonstationary)
versus

Hy:a < 1 (modelis stationary).

Model (9.5.19) is equivalent to
Ayr = VYi-1 + € (9.5.20)
where vy = a — 1.

The equivalent hypothesis test is now

Ho:v = 0 (model has a unit root, therefore nonstationary)
versus

Hy:v < 0 (model is stationary).

The result suggests running an OLS regression on Equation (9.5.20) and
rejecting the null hypothesis if a significant negative values is found for 4.
Under the null hypothesis this reduces to Ay, = €. So y; is a random walk

without drift and nonstationary.

The second model that we shall consider is an AR(1) model with a constant

involved. That is,
Ay = b+ vy + €. (9.5.21)

This has the same null and alternative hypothesis of the first model described
in (9.5.19). When the null is true, Equation (9.5.21) reduces to Ay; = b+ ¢ so
that y; is a random walk with drift and thus nonstationary. The third model

incorporates a constant and a time trend. Thus.

Ay = b+ yye—1 + € + €. (9.5.22)
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Table 9.1: Asymptotic critical values for unit root tests

Test statistic 1% 25% 5% 10%
Toc 256 223 -1.94 1.62
T 343 3.12 -2.86 2.57
Ta 3.96 -3.66 341 3.13

Adapted from Econometric Methods, by J. Johnston and J. DiNardo. The McGraw-Hil! Companies,
Inc., 4* edition, 1997.

Hence, there are three possible test regressions. Each has Ay as the regres-
sand. In Equation (9.5.20) the only regressor is lagged y, in equation (9.5.21)
a constant is included in the regressors and in Equation (9.5.22) there is a
constant and a time trend in addition to lagged y.

We denote the three possible test statistics, ST"’(ﬁ, by Tne, Te, OF Ter aC-
cording to whether they come from Equation (9.5.20), Equation (9.5.21) or
Equation (9.5.22). The relevant rows of Table 9.1 are indicated by these sym-

bols.

For each of the above AR models we obtain estimates for 4 and s.e.(¥)

derived from OLS.

The above results and analysis appear that we fail to reject the null hy-
pothesis at 5% confidence level. In other words, given the Dickey-Fuller test
applied to our series each consisting of 186 data points, there exist unit roots
in each series. However, failure to reject a null hypothesis justifies at best only
a cautious and provisional acceptance. We have to realise that low power in
statistical tests is an often unavoidable fact of life with which one must live

and not expect to be able to make definitive pronouncement.

Schwert (1987), Lo and MacKinlay (1989), Blough (1988) and others have
documented that tests for unit roots or trend stationarity can have low power
against some specific alternatives. Essentially, they show that tests for a unit

root have low power in finite samples against the local alternative of a root
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T-bonds data series

Table 9.2: Estimates of ¥ and s.e.(¥) for each actual and estimated T-bills and

Yield Data Model1 | Model2 | Model 3

Actual 3-month T-bill returns -0.00481 | -0.01744 | -0.04300
(0.00494) | (0.01463) | (0.25300)

Estimated 3-month T-bill returns -0.00507 | -0.01926 | -0.04800
(0.00521) | (0.01548) | (0.22000)

Actual 2-year T-bond returns -0.00447 | -0.02014 | -0.03100
(0.00431) | (0.01620) | (0.23800)

Estimated 2-year T-bond returns -0.00451 | -0.02480 | -0.0300
(0.00474) | (0.01791) | (0.21700)

Actual 10-year T-bond returns -0.00408 | -0.01300 | -0.0250
(0.00292) { (0.01462) | (0.20500)

Estimated 10-year T-bond returns -0.00339 | -0.01424 | -0.0230
(0.00314) | (0.01586) { (0.20100)

Note: The numbers inside the parenthesis denote the standard error of the estimates.

Table 9.3: Estimated Values of Test Statistics for A Given Actual and Esti-
mated Returns on T-Bills and T-Bonds

T, z, T, Decision
Actual 3-month T-bill returns -0.97229 | -1.19073 | -0.16996 | Accept Hg at 5%
confidence level
Estimated 3-month T-bill returns | -0.97224 | -1.24419 | -0.21818 | Accept Ho at 5%
confidence level
Actual 2-year T-bond returns -1.03760 | -1.24313 | -0.13025 | Accept Hp at 5%
confidence level
Estimated 2-year T-bond returns | -0.95148 | -1.38509 [ -0.13825 | Accept Ho at 5%
confidence level
Actual 10-year T-bond returns -1.39249 | -0.88938 [ -0.12195 | Accept Hop at 5%
confidence level
Estimated 10-year T-bond returns | -1.07927 | -0.89814 | -0.11443 | Accept Ho at 5%
confidence level
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close to but below unity.

Campbell and Perron [12] also pointed out the problem with the pro-
cedure that in finite samples, unit roots and stationary processes cannot be
distinguished. For any unit root process, there are “arbitrarily close” station-
ary processes and vice versa. Conversely, take a stationary process and add
to it a random walk with tiny innovation variance. That’s a “close” unit root
process. J.H. Cochrane [18] argued in the same spirit. Any test where a con-
tinuous parameter 6 is equal to some value g has arbitrarily low power against
alternatives fg — € in finite samples. However, in most cases, the difference be-
tween @y and 0y — € is not particularly important, from either a statistical or an
economic perspective. What makes the unit root special is the impression that
important statistical and economic issues hang on the difference between a root
of precisely 1 and a root of 1 — € or between a random walk with component
variance precisely 0 and a random walk component with innovation variance e,
in a way that say, an elasticity of demand of -1.0 is not importantly different

from an elasticity of -0.99.

Empirical evidence shows that many or most aggregate economic time
series contain a unit root, [28]. However, it is important to note that in this
empirical work the unit root is the null hypothesis to be tested, and the way
in which classical testing is carried out ensures that the null hypothesis is
accepted unless there is strong evidence against it. An explanation therefore
for the common failure to reject a unit root is simply that most economic
time series are not informative about whether or not there is a unit root, or
equivalently, the standard unit root tests are not very powerful against relevant

alternatives.

A study of Rudebusch [106] shows that U.S. data on real GNP, which fails
to reject the unit root hypothesis, also fails to reject a stationary hypothesis
when the latter is set up as the null hypothesis. Several studies, [28], [98] and
[30] suggest that, in trying to decide by classical methods whether economic
data are stationary or integrated it would be useful to perform tests of the
null hypothesis of stationarity as well as tests of the null hypothesis of a unit
root. In light of the argument that the Dickey-Fuller statistics have low power
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in finite samples, we also look at the hypothesis wherein the null hypothesis is

stationarity.

9.5.5 The Null Hypothesis of Stationarity

We shall use the results derived in the paper entitled “Testing the hypothesis of
stationarity against the alternative of a unit root,” by D. Kwiatkowski, P.C.B.
Phillips, P. Schmidt and Y. Shin [82], to test the null hypothesis of stationarity.
The authors basically propose a test of the null hypothesis that an observable
series is stationary around a deterministic trend. Their assumption is that
the series is expressed as the sum of deterministic trend, random walk and
stationary error. The test is the Lagrange Multiplier (LM) or the Rao score
test of the hypothesis that the random walk has zero variance. The asymptotic
distribution of the statistic is derived under the null and under the alternative

that the series is difference-stationary.

The one-sided LM statistic for the stationarity hypothesis was derived as
a special case of the statistic developed by Nabeya and Tanaka, [91]. Let
e, t = 1,2,---,T, be the residuals from the regression of y on an intercept
and the time trend. Let &2 be the estimate of the error variance from this
regression (the sum of the squared residuals, divided by T' — 2). Define the

partial sum process of the residuals:

t

S.=Y e, t=1,2--,T

=1
Then the LM statistic is T
LM = S%/&2.
t=1

Furthermore, in the event that we wish to test the null hypothesis of level
stationarity instead of trend stationarity, we simply define e; as the residual
from the regression of y on an intercept only, that is, e = y; — 7, instead of as
above, and the rest of the construction of the test statistc is unaltered. The test

is an upper tail test. For the test of both level-stationary and trend-stationary
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hypotheses, the denominator of the LM statistic is &2, which converges in
probability to 2. However, when errors are no longer IID, the appropriate
denominator of the test statistic is an estimate of o instead of o2. To establish
this, consider the numerator of the test statistic normalised by (7" —2)~2. That

is,

n=(T-2)7) S (9.5.23)

This has an asymptotic distribution equal to o2 times the functional of a
Brownian bridge. Let 7, be defined as in (9.5.23), with subscript g indicating
that we have extracted a mean but not a trend from y. This implies that

1
N, —> 02/ V(r)*dr.
0

Here, V(r) is a standard Brownian bridge: V(r) = W(r) —rW(1), where W(r)
is a Wiener process. The above convergence signifies weak convergence of the

associated probability measures.

We divide 1, by a consistent estimator of o to get the test statistic that

we shall actually use. The test statistic, therefore, is

fu = SZE}) = (T-2)72Y §2/s%(0).

The estimator s*(!) is of the form

T ! T
sS(=T"" Z e + 27! Z w(s, () Z €r€t—s-
t=1

s=1 t=s+1
Here, w(s,!) is an optional weighting function that corresponds to the choice

S

of a spectral window. We shall use the Bartlett windows w(s,[) =1 - 5.

The trend-stationary case is similar to that of the level-stationary. We
let 1, be defined as in (9.5.23), where the subscript 7 indicates that we have
extracted a mean and a trend from y, and serves to distinguish the trend-
stationary case from the level-stationary case. The authors showed that its

asymptotic distribution is given by
1
Nr —> 0'2/ Vg(r)zdr.
0
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Table 9.4: Upper critical values for 7, and 7,

Upper tail percentiles of the distribution of J: V(r)dr

Critical level 0.10 0.05 0.025 001
Critical value 0.347 0.463 0.574 0.739

Upper tail percentiles of the distribution of EVZ (r)idr

Critical level 0.10 0.05 0.025 001
Critical value 0.119 0.146 0.176 0.216

Here V5(r) is the second level Brownian bridge. Further,
L
Nr —> / Vao(r)dr.
0

Table 9.4 exhibits the upper critical values for the test statistics 7, and 7,.

We apply the above results and generate Table 9.5. All decisions are based

on a 5% confidence level.

The above analysis shows that we cannot reject either the unit root hy-
pothesis or the trend stationary hypothesis, and it is not clear what to con-
lude. The data are not sufficiently informative to distingush between these
hypotheses. Presumably other alternatives, such as fractional integration or
stationarity around a nonlinear trend (which is a reminiscent behaviour for
interest rates with mean reverting properties) could be considered. In fact,
Sims (1989), Campbell and Perron emphasized the fact that the unit roots are

indistinguishable from nonlinear trends.
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Table 9.5: Estimated test statistics for 7, and 73, with truncation parameters

[=4and [ =8
7, 1. Decision
Actual 3-month T-bill retums 2.95356E-05 | 2.95400E-05 | Accept Hy at 5%
2.95343E-05 | 2.95432E-05 level
Estimated 3-month T-bill returns | 2.95356E-05 | 2.95400E-05 | Accept Hp at 5%
2.95344E-05 | 2.95435E-05 level
Actual 2-year T-bond returns 2.95347E-05 | 2.95418E-05 | Accept Hg at 5%
2.95325E-05 | 2.95467E-05 level
Estimated 2-year T-bond returns | 2.95352E-05 | 2.95432E-05 | Accept Hy at 5%
2.95336E-05 | 2.95495E-05 level
Actual 10-year T-bond returns 2.95391E-05 | 2.95472E-05 | Accept Hp at 5%
2.95413E-05 | 2.95576E-05 level
Estimated 10-year T-bond returns | 2.95343E-05 | 2.95341E-05 | Accept Hyp at 5%
2.95317E-05 | 2.95314E-05 level

Note: Numbers above are for lag I=4 and numbers below are for lag 1=8.

9.5.6 Regression Analysis

In [12], J.H. Cochrane commented that so long as one does not get too creative
with breaking trends and structural shifts, any test will show that interest
rates have unit roots, and lag selection procedures indicates near random walk
structure. The model does quite well for one-step ahead forecasting. Yet,
interest rates are almost certainly stationary in levels. To quote Cochrane,
“Interest rates were about 6% in ancient Babylon; they are about 6% now.” The
chances of a process with a random walk component displaying this behaviour
are infinitesimal. One way to make this argument more formal, as pointed out

by Stan Fischer [12] is to calculate
P(|r2000] < 100%|ra0008c = 6%).

This probability is infinitesimal if interest rates are or contain a random walk;

it is near one if interest rates are an AR(1) with coefficient 0.99

We then propose to perform regression on the assumption that our data on
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the T-bills and T-bond returns are stationary in levels following the method-
ology of Pearson and Sun, [96]. We regress actual yields on estimated yields,

using the model:

Actual Yields = a + (8 * Estimated Yield + ¢

The regression results obtained were assessed on the basis of the following

criteria proposed by Fama and Gibbons, [51]:

1. conditional unbiasedness, that is, an intercept, «, close to zero, and a

regression coefficient, 3, close to one;

o

serially uncorrelated residuals; and

3. a low residual standard error.

Table 9.6 reports these regression results.

9.5.7 Results and Analysis

For each of the securities, we can conclude that the intercept is zero and the
slope is one. Based on Table 9.6 and on the basis of the Durbin-Watson test
and the plot of residuals, we can also conclude that the residuals do not display
first-order serial correlations. In the filtering procedure, the algorithm starts to
stabilize after 5 time periods. This means that the algorithm learns to adapt

quickly to a given dynamics of the process we are trying to model.

In principle the techniques used in this chapter can be applied to finan-
cial time series such as yield rates. We based this conclusion on the criteria
mentioned above. The interest model is characterised by a finite state Markov
chain in combination with a conditionally Gaussian observation process. With
this, it is straightforward to compute bond prices and other interest rate deriva-
tives as solutions of the corresponding integro-differential equations which is

another area of further research.
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Table 9.6: Regression of actual yields on estimated yields for 3-month T-bills,
2-year and 10-year bonds

Parameter Term to Maturity of Security
3-month 2-year 10-year
0.133759605 0.L81577777 0.088858565
o (0.127169909) (0.14747549) (0.01492704)
0.97849351 0.973449048 0.987562393
B (0.014935499) (0.016878195) (0.014926704)
R-Squared 0.958893383 0.94758432 0.959660174
Durbin-Watson 2.003373533 1.906014747 1.805502099
D statistic
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Chapter 10
Concluding Remarks

With the attempt of central banks to develop a set of indicators derived from
government bond prices that could be used to guide monetary policy and along
with the rapid growth in interest rate derivatives, the demand for a “good” term
structure model has become the major task of both academics and practition-
ers. A “good” term structure model needs to be able to accomplish two major

missions.

First, it needs to be able to fit the current market data. [t is in this lxght
that we carried out the implementation of a model via filtering. Empirical
evidence in forecasting and modelling yield curve favours the use of filtering
techniques over the time series analysis methodology because the parameters
obtained by the former method are optimal and in turn, could capture mew

information efficiently as they arrive. See, for example [15] and [7].

Second, it needs to be able to reflect fundamental economic conditions.
Afterall, interest rates are not exogenous financial variables and should be
determined within the economy. This is the primary reason why a survey of
related theory in economics and finance were presented. The comprehensive re-
view aims to give an outline of the economic forces affecting the term structure

of interest rates and the interaction of these forces.

In the course of this study, we derive the forward rate dynamics starting
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with a model described by its short rate. This enables us to determine the

information structure inherent in the bond prices.

Several single-factor models were presented and studied. Two-factor mod-

els were also investigated.

The drawback about single-factor models is that they are oversimplified
to perfectly fit the market data, no matter how one changes the combination
of parameters. Then, why should we believe that prices calculated by these
models should reflect the “right” price? The answer is no, we don’t. All of
these are just approximations. In fact, theoretical models are seldom used in

pricing contingent claims. If this is so, then why do we study them here?

The answer is hedging. We know that in finance, we do not question
market prices because they are determined by smartest people, the traders and
portfolio managers. Again trusting the market prices is all that we can do and
we rely on this as this is all the essence of Efficient Market Hypothesis. Models
should be able to match these market prices. Parameters in the models are set
so that they produce market prices. Once the market prices are matched, we

look at the models and ask what hedge ratios these models tell us.

If a model, even though simple enough, can capture the most important
characteristics of the underlying risks, hedges suggested by the model will be
robust and reliable. If a model does not have a closed-form solution, then the
hedge ratio needs to be computed numerically. Sometimes this is slow and
may not be good enough for traders. That is why closed-form solutions are

important, not because they are elegant, but because they are fast.

In term structure modelling, empirical evidence showed that single-factor
models do not really fit the yield curve. The empirical studies that show
one-factor models cannot fit the yield curve are Chen and Scott (1993) and
Pearson and Sun (1990) for maximum likelihood; Heston (1989) and Gibbons
and Ramaswamy (1993) for generalised method of moments; Litterman and

Scheinkman (1991) for factor analysis.

Research since then has been on developing a term structure model that

can well describe the curvature of the observed term structure. There are two
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approaches, one is to add some flexibility in the model so that fitting curves
becomes no problem. Ho and Lee (1986), Hull and White (1990) and Heath,
Jarrow and Morton (1992) follow this approach. Another approach is to allow
more than one state variable for the term structure. This approach is used by
Langtieg (1980), Chen and Scott (1992) and Longstaff and Schwartz (1992).
This should create more flexibility and should improve the fitting.

We were guided by this approach in considering two-factor models where

the fundamental characteristics of mean reversion is incorporated.

Having therefore justified the validity of this research pursuit in reference
to the theoretical point of view and applicability considerations of the industry

sector, we identify the valuable contributions embodied in this study.

10.1 Main Contributions

1. Development of a model with a Markovian mean reversion level.
This model blends continuous and discrete processes. The model is a Va-
sicek model and the mean reverting level is described by the semimart-
ingle form of a Markov chain. A closed-form solution for the bond price
is obtained involving a fundamental matrix. This model could serve as a
model for the logarithm of an asset price, or in our case, an interest rate
where a central bank or regulatory board provides a reference rate that

changes from time to time.

N

Implementation of the model described in the preceding para-
graph using HMM and filtering techniques. We derived a finite
dimensional filter for the unobservable state of the Markov chain based
on observations of the mean reverting diffusion process. Various auxil-
iary filters are developed that allow us to estimate the parameters of the

Markov chain.

The filtering methods we used to perform the empirical test of the model
provide a continual, recursive update of optimal estimates in contrast

to the static model-fitting of maximum likelihood. The application of
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Hidden Markov filtering and estimation techniques appears new and
makes use of the results generated by Elliott, Aggoun and Moore, see
[36]. Further, we do not need to specify a priori the dynamics of the

mean-reversion level, other than to say it is Markov chain.

3. Formulation of the mathematical framework for the n-factor
Gaussian interest rate models. In particular, we presented two ex-
amples when n=2 and employed methodology of stochastic flows and

forward measures to derive the bond price.

4. Dual Approach in studying term structure. This joint approach of
specifying the dynamics of the short rate and forward rate and reconciling
the two forms in all the models studied is the distinct feature of this
research. This unique way of dealing with term structure theory is guided
by two principles in bond pricing; specifically, the bond valuation formula
is either expressed in terms of the short rate employing a risk-neutral

measure or in terms of the HJM pricing methodology.

The joint short rate/HJM approach is performed starting from a model
where the short rate is a function of a Markov chain with discrete state
space in continuous time. Then single continuous models are explored
such as the Vasicek’s model which is a version of Ornstein-Uhlenbeck

process and the CIR model which is a representative of the Bessel process.

5. Investigation of a General class of Exponential Affine models.
The joint short rate/HJM approach is extended to generalised exponen-
tial affine models. We derived necessary and sufficient conditions in order

for a model to be classified in the affine yield category.

In addition, general conditions were obtained for the deterministic func-
tions of the drift and volatility component in the light of reconciling the
short rate and HJM forms. This result is exemplified by the Vasicek and
CIR models.

6. Presentation of Hull-White model with a dual objective. On one

hand, this model is considered to illustrate how the joint approach can be
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performed when the model’s parameters are no longer constants but time
varying. In other words, this becomes an extension of the exercise done
for Vasicek and CIR models. Though the application of the apporach
does not culminate in this model, such application have given us insights
on how to further extend the approach to other general models whose

short rate dynamics are given and the parameters are no longer constant.

On the other hand, the Hull-White model provides an impetus to the
development of more general mean reverting models. We consider a Va-
sicek model whose mean reversion level has dynamics of its own. One
specific case is that the dynamics of the mean reversion level is Vasicek

by itself and the other case, the mean reverting level is a Markov process.

. A mathematical proof of the Expectations theory via a forward

=~

measure approach. This formalises the principal finding of Meiselman
and other proponents of this theory that a relationship exists between
expectations of future short-term rates and forward rates. Indeed, the
fact that forward rates incorporate predictions of future short-term rates
with an appreciable accuracy in a statistical sense, demonstrates, by a

fortiori argument, that forward rates are functions of expected spot rates.

8. Re-interpretation of the expectation involved in contingent claim
valuation. This is a remarkable result which was derived through the
interplay of forward measure and application of Bayes’ theorem. Thus,
the expectation in the valuation formula can be expressed as a product of
two simpler expectations. Forward measure approach is a valuable tool
that can facilitate the computation of an expectation problem especially

when the contingent claim has a complex form.

9. A survey of economics theory regarding the relationship be-
tween short rates and forward rates. We are taking into account
that it is the integration of sound economic and financial theories with ap-
propriate mathematical tools that forms the cornerstone of today’s finan-
cial modelling. Afterall, our term structure models should be grounded

on economic fundamentals and principles.
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10. Presentation of related literature on the theory of interest rates
starting from classical theory to recent works on "modern” term
structure theory. This provides an assessment of how the field advances
and what are the main problems researchers considered and remedied so

far and have been looking at recently.

11. Review of selected mathematical concepts and theories appro-
priate for the study of term structure models. This review has
laid down the groundwork in setting a mathematical framework for the
analysis of bond structure and interest rate market dynamics. We under-
take this effort to establish a solid foundation of mathematical modelling
in direct response to the profound scientific challenges posed by this area
of finance. For emphasis, we point out that the area has both stimulated
and benefitted from advances in a range of mathematical sciences, most
notably, probability, differential equations, statistics, optimisation and

numerical analysis.

10.2 Future Directions

One of the main contributions of this thesis is the extensive study of mean
reverting interest rate models. We have worked though on the framework of the

Vasicek model and all results and analysis were deduced from this framework.

We wonder about the corresponding analysis and results that will be gen-
erated if we extend this work on mean reversion to the CIR framework where

the interest rate process has dynamics which is a version of the Bessel process.

Having results from this research at our disposal and extending this re-
search to CIR model, we could offer alternative models of term structure with
focus on monetary aspects. Analysis described in the paper of S. Babbs and N.
Webber could be based on the results of the mean reverting models of Chapter
8 and a determination of their impacts on monetary regimes could be carried

out.
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Throughout the entire study, we have concentrated on term structure ex-
plorations based on bond prices and made an empirical investigation of im-
plementing interest rate models based on bond prices especially government

indexed instruments.

As the market of derivatives securities is becoming huge, currently esti-
mated to be fifteen trillion dollars, it is apparent that this market can implic-
itly tell us term structure information based on prices of interest rate sensitive

contingent claims.

In other words, instead of considering only the bond markets we are inter-
ested to know what happens when the market we are going to study includes
interest rate derivative products. An example would be a characterisation of
exchange-traded interest rate options on Treasury bond futures, Treasury note

futures and Eurodollar futures.

Further, one of the fundamental determinants in the Black-Scholes pricing
equation is the volatility of the contingent claim’s underlying variable. For
valuation of interest rate derivatives, we wonder how a dynamic volatility can

be constructed especially based on the mean reverting models that we develop.

Finally, a new direction in interest rate modelling is to employ techniques
commonly used in non-linear analysis. A simple example is a two-factor model
where a certain parameter has a dynamical behaviour. This two-factor model
extends to a three-factor non-linear model equivalent to the Lorenz system of
differential equations, [L15]. Perhaps, by using non-linear analysis in capturing
the non-linear properties and features of the interest rate process, more insights
and developments can be found in understanding and modelling interest rate

dynamics.
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Appendix A

Related Probability Concepts
and Pertinent Results in

Stochastic Calculus

A.1 Conditional Expectations and Martingales
Definition A.1.1 On (Q, ), a probability measure P is absolutely contin-
uous with respect to the probability measure P if for each set A in F, P(A) =0
implies P(A) = 0. If P is absolutely continuous with respect to P, we use the

notation P ~ P or P << P.

Theorem A.1.1 On (Q,F), P is absolutely continuous with respect to P if
and only if there ezrists a non-negative random variable A such that, VA€ F,

B(A) = /A AdP.

Proof: See Lamberton and Lapeyre, [83].
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Remarks:

1. Implication from left to right of Theorem A.l1.1 is called the Radon-
Nikodym theorem.

)

A is called both the Radon-Nikodym derivative and density of P with

respect to P. It is sometimes denoted by %.

Let X € L' and A be a sub o—field of B. If X is non-negative and in-
tegrable we can use the Radon-Nikodym theorem to deduce the existence of
an A—measurable random variable denoted by E[X|A] and called the expec-
tation of X given A. This is uniquely determined except on an event of

probability zero, such that

/ XdP = / E[X|A]dP forall A€ A.
A A

Classical Results Involving Conditional Expectations

Suppose A; and A, are two sub o—fields of F such that A; C A,. Then,

1. (Tower Property) E[E[X|A.]|A:] = E[X]|A.].

2. (Taking out what is known) If X, Y, XY € L! and Y is A—measurable
then
E[XY|A] = YE[X|A].

3. If X and Y are independent, then F[X|o(Y)] = E[X].

Definition A.1.2 Suppose (,F,P) is a probability space with a filtration
{F:}, t € [0,00). A real-valued adapted stochastic process {M;} is said to be a
supermartingale (resp. submartingale) with respect to the filtration {F:}
if

1. E[|M]] < oo for all t,
2. E[M|F] < M, if s <t, (resp. E[M|F] > M, if s<t).
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If E[M|F,] = M, for s < ¢ then {M,} is said to be a martingale.

Theorem A.1.2 Suppose {W;} is a standard Brownian motion with respect
to the filtration {F.}, t > 0. Then,

1. {W,} is an F,—martingale.
2. {W? —t} is an F,—martingale.
3. {exp(cW; — ”—;—t)} is an F;—martingale.

Proof: See Elliott, [38].

The converse of this theorem is also true and such converse due to Lévy
gives a characterisation of Brownian motion using properties (1), (2) and (3).
Furthermore, the above properties can be shown to imply other well-known
properties of Brownian motion, including for example, that W is a Gaussian
process with independent increments. The above results can be extended to
local martingales and such discussion can be found in Proposition 3.3.8 of
Jacod and Shiryayev [74].

A.2 Other Pertinent Results of Continuous Time

Stochastic Calculus

Definition A.2.1 A set K of random variables contained in L'(Q,F,P) is

said to be uniformly integrable if

/ | X|dP
(1X12¢}

converges to zero uniformly in X € K as ¢ — oo.

A martingale {M;}, t € [0,00) (or ¢t € [0,T]) is said to be uniformly
integrable if the set of random varibales {M,} is uniformly integrable.
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Remark: A consequence of {M,} being a uniformly integrable martingale
on [0,00) is that M, = lim M, in the L'(Q,F, P) norm, that is,

lim ||, — Mool|1 = .

In this case, {M,;} is a martingale on [0, o] and M; = E[M,|F:] a.s. ¥ ¢.
Write M := set of uniformly integrable martingales.

An important concept is that of "localisation.” If € is a class of processes

then Cj.. is the set of processes defined as follows:

X € G, if there is an increasing sequence {7,} of stopping times 77 <
T, < T3 < --- such that

IimT, =oco a.s. and Xr, € C.

For example, € might be the collection of bounded processes, or the pro-
cesses of bounded variation. The variation of a real-valued function f over

an interval [a, b] is

b n—1
[ 1= sup Y 1) = F80)
¢ ) k=0
where 7 is the set of all partitions of the interval [a, b]. If there exists a D € R

such that f: [df| < D then f is said to be of bounded variation.

The right continuous with left limits adapted stochastic process X is of
integrable variation if £ [[;” |dX,|] < oco. Given an adapted stochastic pro-
cess X, if there exists a right continuous with left limits, predictable and with
finite variation process A such that X; — A, is a martingale, then A is called

the compensator of X.

Definition A.2.2 If M € C;,. and M is a martingale then M is called a local

martingale.

Now, we can define the most general form of stochastic processes.
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Definition A.2.3 An adapted process X = {X,}, ¢ >0, is a semimartin-

gale if it has a decomposition of the form
Xe=Xo+ M + A,

where M, is a local martingale and A, is a process which is continuous on the
right with limits on the left (CORLOL), Aq = 0 and if almost every sample

path is of finite variation on each compact subset of [0, 00).

CORLOL processes are also known as CADLAG processes in terms of its

French equivalent terminology: continué a droite avec des limités a gauche.

It6 calculus will be described for a class of processes known as It processes.

Definition A.2.4 Suppose (,F,P) is a probability space with a filtration
{F:}, t >0, and {W:} is a standard F;—Brownian motion. A real valued
Ité process {X,} t >0 is a process of the form

t t
X =Xo +/ Kds —{—/ H,dW
0 0

where

1. Xo ts Fo—measurable;
2. K and H are adapted to F;; and

3. j;)T |Ks|ds < 0o a.s. and fOT |H?|ds < oo a.s.

If X is an It6 process the differentiation rule has the following form:

Theorem A.2.1 (Ité’s Lemma) Suppose {X;,t > 0} is an Ité process of the

form
t t
X: = Xo +/ Kds +/ H,dWs.
0 0

Suppose f is twice differentiable. Then,

£ = f60) + [ e +5 [ xden,
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Proof: See Elliott, [35].

Here, by definition, (X), = j; H?2ds; that is, the (predictable) quadratic

variation of X is the quadratic variation of its martingale component fot H dW;.

Extension: If F : [0,00) x R — R is differentiable in the first component

and twice differentiable in the second then

LOF . tOF
F(t,Xt) = F(O,.Xo)‘*‘ ) E(S,.Xs)ds-f- A a—X(S,Xs)d)(s

1 [t O*F
+*2‘/0 W(Sva)d(X)s-

We can extend our definition of an It6 process to the situation where the

(scalar) stochastic integral involves an m—dimensional Brownian motion.

Definition A.2.5 {X,},0<¢ < T, is an [t process if
t m t i i
X, = Xo + / K.ds+ / HidW!
0 i=1 Y0

where K and H' are adapted to {F,}, fOT |Kslds < 00 a.s. and for alli, 1<
i <m, fOT |Hi|%?ds < o a.s.

An n—dimensional 1td process is then a process X; = (X},--- ,X}*), each

component of which is an [t6 process, in the sense of Definition A.2.4.

The differentiation rule takes the form:

Theorem A.2.2 (Ité6’s Rule for Multi-Dimensional Processes) Suppose

X = (X}, -+, X?) is an n—dimensional Ité process with
- - t - m t .. .
X;=X5+/ K;ds—{—Z/ H3dWi,

0 ‘=1 Jo

and suppose [ : [0,T] x R* — R s in C12, (the space of functions continuously
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differentiable in t and twice continuvously differentiable in z € R™). Then,

t
f(t,th,'”,.th) = f(O’Xé"""¥3)+/ %(S7X:7"'7‘X:)ds
0

+Z af

2 .
)Z/ 2T (s, X2 XX, XY,

XL, XP)dX!

T 8:1:1
Here,
dX! = Kids + Y  HYdW}
Jj=1
and -
d(X', X7), =  HiHids.
r=1

Proof: See Qksendal, [94].

Suppose (Q,3,P) is a probability space with filtration {F,},0 <t < T. Let
Wy = (W}, --- ,W/™) be an m—dimensional F;—Brownian motion and f(z,1),
o(z,t) be measurable functions of z € R™ and ¢ € [0,7] with values respec-
tively, in R™ and L(R™,R"), the space of m x n matrices. £ is an R"—valued,

Fo—measurable random variable.

Definition A.2.6 A process X;, 0 <t < T is a solution of the stochatic
differential equation (SDE)

dX, = f(X.,t)dt + o(X., t)dW,

with initial condition Xo = £ if for all t the integrals fot f(Xs,s)ds ana’fot o(Xs, s)dW;
are well defined and

t t
X, =€ +/ f(Xs,s)ds +/ o(Xs,s8)dW, a.s.
0 0

We present here a theorem that discusses how martingales in particular

Brownian motion transform under a different probability measure.
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Theorem A.2.3 (Girsanov) Suppose (6;), 0 < t < T, is an adapted, mea-

surable process such that fOT 6%2ds < oo a.s. and also so that the process

t t
A = exp (—/ 0,dW, — é/ 0§ds>
0 2 Jo

is an (F;, P) martingale. Define a new measure P° on Fr by putting

dP?

2P| AT

Fr

Then the process
t
Wi=w,+ / 6.ds
0

is a standard Brownian motion on (F,, P?).

Remark: A sufficient condition, known as Novikov’s condition, for A

to be a martingale is that

1 T
E [exp (;/ 0§ds)] < oo.
= Jo

For details of this condition, see Elliott, [38].

Let {W;}, ¢ > 0, denote a Brownian motion on the probability space
(Q,F,P), F9 = o{W, : s < t} and F is the completion of F?, so that {F,}
t > 0, is the filtration generated by W which satisfies the usual conditions of
right continuity and completeness. If (H;), 0 < ¢t < T, is a measurable adapted
process on [0,7] such that E[fOT H?ds] < oo then fot H,dW, is a square in-
tegrable martingale. The representation result tells us that all square inte-
grable martingales on {F;}, 0 <t < T, are of this form.

Theorem A.2.4 (Martingale Representation Theorem) Suppose {M,},
0 <t < T, is a square integrable martingale on {F:}, where {F}, is the
completion of o{W, : s < t}. Then, there is a measurable, adapted process
(H.), 0 <t < T, such that E[f,’ Hds] < oo and for all t € [0, T],

t
M, =Z\/[0+/ H,dW, a.s.
0
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Proof: See [38].

Most fundamental results of modern finance theory that concerns hedg-
ing were generated through the use of this very powerful theorem. The next

theorem relates conditional expectations under two different measures.

Theorem A.2.5 (Bayes’ Rule) Suppose (2, F,P) is a probability space and
G C F is a sub o—field. Suppose P is another probability measure absolutely
continuous with respect to P and with Radon-Nikodym derivative

dP
ap ="

Then if ¢ is any integrable F—measurable random variable

> E[A¢S]
—_— T .

o= Zn

Proof: Suppose B is any set in G. We must show

E[A¢lS]

/ Efeisip = [ Sbed

Now the right hand side is

58] - <[5
[ [ E[Ag[G]

= F _[B< [MS])A]

_ o[, EAdS]

= 5 E@mrg)

— BllaAd] = Ellad] = [ 4P
= [ Bisislap.
B

E [13

[Alsﬂ — E[IsE[A|S]

and the result is proven.
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We conclude this section with [t&’s Differentiation Rule for a general semi-
martingale. The proofs of these theorems can be found in Elliott, [35] or Jacod

and Shiryayev, [74].

Theorem A.2.6 Suppose X is a semimartingale and F' a twice continuously

differentiable function. Then F(X) is a semimartingale, and,

F(X) = F(Xo)+ / F(X, )X + 5 / P, X,

+ 3 [F(X) — F(Xeo) — FI(X2)AX].

0<s<t

We give the differentiation rule for a vector R®—valued semimartingale.

One must be cautious here as the notation becomes very involved.

Theorem A.2.7 (Ité’s Rule for an n-Dimensional Semimartingale)
Suppose X is a process with values in R™, each of whose components X' is
a semimartingale. Suppose F is a real valued twice continuously differentiable

function on R*. Then F(X;) is a semimartingale and,

n a )
F(X) = F(Xo)+)_ | Z—F(X,-)dX;
=1 ]O,t] Zi
1l <~ [t 07 .
_ tc Jjc
2 im0 5$£3$J‘F(Xs_)d(x X,
n a .
F(X,)— F(X,-) =Y —F(X,-)AX!].
+0<st9(() ( );az,-( ) )
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Appendix B

Related Quantitative Finance

Theory

This appendix describes topics on quantitative finance theory most related to
the area of term structure studies. The motivation for much of the theory

discussed herein is to provide foundation for the pricing of contingent claims.

B.1 The Financial Market Model

In all the models that we consider, all processes are defined on a filtered prob-
ability space (Q,F, {F:}, P) where t € [0,T] and 0 < T < o0.

The following conditions are also assumed:

1. Fo={ACQ|P(A)=0}UQ.
2. {F} is right continuous, i.e., F; = N;5:Fs, 0 <t < T'; and
3. Fr=3.

Definition B.1.1 A contingent claim is a positive Fr—measurable random
variable X1 defined on the probability space (2,F,P).

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Further, the tuple (2,3, P,T,F, S) is the securities market model.
Here, T will be a time set which is usually taken as the trading horizon in
practice and F = {F,er} is the usual filtration of our probability space. S
denotes a (d + 1)—dimensional stochastic process S = {S};t € T, 0<:i<d}

representing the time evolution of the securities price process.

The security labelled 0 is taken as riskless (i.e. non-random) bond (or
bank account) with price process S° while the d risky (i.e., random) stocks
labelled 1,- - - , d have price processes S!, 2%, ---, 5% The process S is assumed
to be adapted to the filtration I, so that for each i < d, S} is F;—measurable,
i.e., the prices of the securities at all times up to time ¢ are known. Most
frequently, we shall take the filtration F as that generated by the price process
S = {5°81,--- ,5%}. Then F; = o{S,;u < t} is the smallest o—field such
that all the R*'—valued random variable S, = (S2,8},---,59), u < t, are
Fi—measurable. In other words, at time ¢ the investors know the values of the

price vectors (S,; u < t), but they have no information about later values of S.

We also require at least one of the price processes to be strictly positive,
that is, to act as the numéraire, in the model. As is customary we assign this
role to the bond price S°, although in principle any strictly positive S* could

be used for this purpose.

B.2 Self-Financing and Replicating Trading Strate-
gies
Definition B.2.1 A trading strategy is a measurable process H, = (H?, H})

with values in R? which is adapted to the filtration {F,}, t > 0, where F, =
oc{Wy;u <t} =o{S,;u <t}

Occasionally, as hedging (a term more commonly known to traders and
portfolio managers) means taking positions against the risk of market move-

ments, we shall use the term trading strategy and hedging interchangeably.

H? and H} denote respectively, the amount of the bond S? and the holdings
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of the risky asset S}, at time t. Consequently, the value or wealth, of the

portfolio at time ¢ is

Vi(H) = H?S? + H!S!.

The description (H?, H}) is a dynamic strategy detailing the amount of
each component to be held at each instant. And one particularly interesting
set of strategies or portfolios are those that are financially self-contained or

self-financing.

Definition B.2.2 A4 self-financing strategy H = (H;), 0 <t < T is given
by two measurable adapted processes (HY), (H}), such that

1. j;)T |H?|dt < c0. a.s.
2. [T(H})dt < oo a.s.
3. The processes (H?) and (H}) satisfy the SDE

dVi(H) = HdS® + H!dS!. (B.2.1)

The corresponding value of the process therefore for a self-financing strat-

egy 1is
Vi(H) = HS}+HS;
= m3sg+ s+ [ " HOd4S, + /0 “HidS! as.
for all t € [0, T].
Indeed, if H® and H! are of bounded variation then
dVi,(H) = H%dS? + H!dS! + S°dH? + S'dH}.
and (B.2.1) is equivalent to saying that

S2dH? + S}dH! =0 (B.2.2)
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Intuitively, (B.2.2) means that the changes in the holdings of the bond,
SPdHY, can only take place due to corresponding changes in the holding of the

stock S}dH}, that is, there is no net inflow or outflow of capital.
Write S! := e"tS}, for the discounted price of the risky asset.

Write Vi(H) := e~"V,(H), for the discounted wealth process.

Theorem B.2.1 Suppose H = (H,) = (H°,H}), 0 < ¢t < T, is a pair of
measurable adapted processes which satisfy (1) and (2) of Definition (B.2.2).
Then H is a self-financing strategy if and only if

t
1Z(H)=%(H)+/ H'dS, a.s.
0

Proof: (=) Suppose H = (H?, H}) is self-financing so that
dVi(H) = HdS? + H}dS}.
Then,

d(Vi) = d(eVi(H))
—rVi(H)dt + e "' dV,(H)
= —re "Y(HYe™ + H}SHdt
+e " HPd(e™) + e H}!dS}
= H}l(—re™"S}dt + e dS})
= H!dS!.

(<=) Consider Vi(H) = e"*V;(H). We shall evaluate dV;.

dV, = d(e"Vi(H))
= e"dVi(H) + Vi(H)(re"dt)
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But dV;(H) = H!dS! by hypothesis. Thus,
dVi(H) = e"H}!dS} + V.(H)(re™dt)
= e"H!dS! + e " Vi(H)(re"tdt)
e H!dS! + rV,(H)dt
= "'H}(—re 'S} dt + e7'dS})
+r(H2S?dt + H} S}dt)
= —rH!S.dt+ H}!dS}
+rH?S%dt + rH} S} dt
= H%r 5%t + H!dS!
= H)S? + H}dS}
since rS°dt = dS? andS? =€
dVi(H) = H°dS? + H!dS!.
Hence, H = (H?, H}) is self-financing.

Suppose, H = (H;), 0 < t < T is a self-financing strategy so that H°
and H! satisfy (B.2.1). If there are no contributions or withdrawals the corre-

sponding wealth process is given by
Vi(H) = H?S? + H}S}.

Now, assume that there are contributions to the wealth process (say, from div-
idends) or withdrawals (consumptions). Let these be modelled by the adapted
right-continuous, increasing process D; (for contributions) and C, (for con-

sumptions). Here, C; is the accumulated consumption. Thus,
t t
= W(H) +/ HydS; +/ H,dS% + D, — C,.
[¢] 0

The self-financing condition of (B.2.1) becomes

SdH? + StdH! = dD, — dC..
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Definition B.2.3 Suppose o, is the volatility of the risky security S}. A repli-
cating strategy on a claim X is a self-financing portfolio (H?, H!) such that
JT 62(H})?dt < 00 and Vi = H3SS + HLSE: = X.

Why should we care about replicating strategies? The claim X gives the
value of some derivative which we need to pay off at time 7. We want a price

if there is one, as of now, given a model for S} and S?.

If there is a replicating strategy (H}, H?), then the price of X at time ¢
must be V; = HPS? + H}!S!. And specifically, the price at time zero is V5 =
HQSY + H}SE. If it were lower, a market player could buy one unit of the
derivative at time ¢ and sell H} units of S} and H; units of S? against it,
continuing to be short (H?, H!) until time T. Because (H?, H}) is self-financing
and the portfolio is worth X at time T guaranteed, the purchased derivative
and sold portfolio would safely cancel at vime T, and no extra money is required
between times ¢t and 7. The mismatch created at time ¢ generates a riskless
profit. And as usual with arbitrage, one unit could have been many; no risk

means no fair price.

Similarly, if the derivative price had been higher than V;, then we could
have sold the derivative and bought the self-financing (HY, H}) to the same
effect. Replicating strategies, if they exist, tie down the price of the claim X

not just at pay-off time but everywhere, ensuring no-arbitrage opportunity.

B.3 Equivalent Martingale Measure

Let r be a non-negative constant which represents the instantaneous interest
rate on the bond. We then suppose that the evolution in the price of the bond
S? is described by the ordinary differential equation (ODE)

dS9 = 8%t (B.3.3)

If the initial value at time 0 of the bond is S§ = 1, then (B.3.3) can be solved
to give
SP=¢€" t>0.
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Furthermore, let the risky asset have a price process (S}) satisfying
dS} = S} (udt + odWy).
The discounted price of the risky asset is

S, = e‘”S’t1 with dynamics

dS; = —re"'Sldt + e mtdS})
= S5,((gp —r)dt + cdW,).
If we apply Girsanov’s theorem, with §; = == we see that there is a

probability measure P, defined on Fr by putting

dP ‘ 1t
a-};:Arp:&tp(—[) 05dWS_§./o Gsds>,

such that under P, W,, 0 <t < T, is a standard Brownian motion where

I/T/t= (#—r>t+Wt.

g

Then, under P we have

dS, = S,0dW, and

- - ot
St = So@:ﬂp O'Wt - T .
Definition B.3.1 A strategy H = (H?,H}), 0 <t < T, is admissible if it is
self-financing and the discounted value process Vt(H) = H? + H}S't is square

integrable under P.

Definition B.3.2 A self-financing strategy H is said to provide an arbitrage
opportunity if with Vo(H) = = < 0, we have Vz(H) > 0 a.s. and P{w :
Vr(H) > 0} > 0.

In the setting of a probability space (Q,F, P) an equivalent measure P
is called a martingale measure if, under P, all discounted asset prices are

martingales. P is sometimes called the risk-neutral measure.
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We have seen that, in the case of one risky asset P is a martingale measure.

Suppose W; = (W},--- ,W™), 0 <t < T, is an m—dimensional Brownian
motion on (£2,F, P) and let {F,} be the filtration generated by W.

Suppose now there is a bond S? or bank account whose instantaneous
interest rate is 7, and n risky assets S},---,SP. With SJ = 1, we have 57 =

ezxp{ fot rydu}. The dynamics of the risky assets are described by the equations

o5t =51+ 51| Y-t

i=1

. Sl Sn .
Here, pi,0:; and r are adapted processes. The prices 35, -- , 35 are the dis-
t t

counted prices and the differentiation rule gives

d[gz—g))} ( (1) r(t)—dt

go Z oii(8)WH. (B.3.4)

toj=1

In equation (B.3.4), the terms y;, o;; are called the risk premium.

Definition B.3.3 If we can find processes 01(t),--- ,0,(t) so that for 1 <1 <

pi(t) = r(t) = Y oi;(1)0;(t) (B.3.5)

then the adapted process 0(t) := (6.(t),--- ,0.(t)) is called the market price
of risk.

Equation (B.3.4) then becomes
d [%] St (Z oi;(0)[0;(8)dt + dWJ]>

Consider the linear system (B.3.5). Three cases are possible.
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L. it has a unique solution 8(t) = (61(¢),--- ,0.(t)):

I\

. it has no solution; and

3. it has more than one solution.

In cases (1) and (3) we have a solution process 6(t).

Consider the process

A =exp (—/0 O(u)dW, — %/0 lﬁ(u)lzdu>

and define a new measure PY by setting %‘ = Ar.
Fr

The vector form of the Girsanov’s theorem states that, under P¢, W¢ =
(WO We ... W) is an m—dimensional martingale where dW¢ = 6(t)dt +
dW;.

A hedging strategy is now a measurable adapted process H; = (H?, H},--- , H})
where H! represents the number of assets held at time ¢. Its corresponding

wealth process is
V(H)=HSY?+ H}S! +--- + HIS?.

As an anologue to Definition (B.2.2), we say that H is said to be self- financ-
ing if dV,(H) = >, HidS:. And therefore,

t n
Vi(H) = VO(H)-{-/O > HdS:
=0
t
= Vo(H) + / rH9S%du

0
n ¢ m
+> [ His; <ui(u) +3 afj(u)dWi>
=1

=1
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Vi(H) = Vo(H) +/ V. (H)du

+ZZ/ HiSigh H(u)du-i-dW’)

i=1 j=I1

= Vo(H) + / PV, (H)du

+Z Z / H:Sioi(u)dW:.

i=1 j=1
Therefore, the discounted wealth
Vi(H) = (SO)"W(H)

B+ [ Hisioaws

=1 j=1

I

is a local martingale.

B.4 Viable and Complete Markets

Definition B.4.1 Let X7(w) represent the pay-off from a contract or agree-
ment based on a certain contingent claim, if state w prevails. Then such a

contingent claim is said to be attainable if there erists a trading strategy H
such that Vr(H) = X1 (w).

Definition B.4.2 A market is said to be complete if every contingent claim

15 attainable.

Theorem B.4.1 A market is viable if and only if there exists a unique prob-
ability measure P equivalent to P under which the discounted prices are mar-

tingales.

Proof: See Harrison and Pliska, Corollary 3.36, page 224, [63].
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B.5 The Fundamental Theorem of Asset Pric-
ing

If the filtration F is finitely generated, an equivalent martingale measure (EMM)
P for the price process S could be constructed. For details on EMM construc-
tion, see Elliott and Kopp, [38]. The much-sought-after equivalence of the
ezistence of an equivalent (local) martingale and conditions of no-arbitrage is
known as the Fundamental Theorem of Asset Pricing. This provides a vital link
between the economically significant "no-arbitrage” condition and the math-
ematically important reason for equating the class of admissible stock price
processes with the class of P—semimartingales, thus allowing the fullest use of

the well-developed theory of semimartingales and general stochastic calculus.

Theorem B.5.1 Let (2, F,P) be a probability space, and define the finite dis-
crete time set T = {0,1,2,--- ,T}. Assume given a filtration F = {F,, t € T}
and an R*'—valued process S = (S¢)ier, adapted to F. We assume further that
the first component S3 = 1 and for i < d and t € T we have S} > 0 P—a.s..

Then the following are equivalent:

1. There is a probability P ~ P such that S; is an ({F;,t € T} P,) martin-
gale.

o

There are no arbitrage opportunities, that is: for every self-financing trad-
ing strateqy H = (H?, H},--- , H?).e1; with gains process G(H) defined
by Gi(H) = Y., AS, (t € T), we have: Gr(H) > 0 P—a.s. implies
Gr(H) =0 P—a.s.. If either (1) or (2) holds, then P can be found with

bounded Radon-Nikodym derivative %.

Proofs of this theorem can be found in [26], [104] and [108].

There is an extensive literature on the relationship between no-arbitrage
and the existence of EMM. The fundamental theorems on asset pricing were
given in two papers by Harrison and Pliska. In [63], it is shown that if a market

has a martingale measure, there is no arbitrage opportunity. In [64], it is shown
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that the martingale measure is unique if and only if every claim is hedgeable,

that is, if and only if the market is complete.
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Appendix C

A Computer Program

This appendix contains a copy of the program written in Matlab to implement
the filtering and estimation procedure of the Markovian mean reverting interest

rate model of Chapter 9.

o
o
(&1
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tThis program computes the one-step ahead prediction for an
tinterest rate model with a Markovian mean reverting level.

clear all

load data 3-months
tload data t 2-years
tload data t 10-years
1={1:

ell=0;

tInitialise the transition intensity matrix.
Al=f{-1 0.5 0; L -1 1; ¢ 0.5 -1}];

%Initialise the rate of adjustment., gamma.
gamma=8;

tlnitialise the process sigma(X)_k. denoted by sx(:.k}.
sx(:.1})={0:1;0};

tCreate 3Ix3 matrix.
ezeye(3,3);

Ak_L=Al
sx{(:,2)=sx(:z.1);

tDefine the process sigma(JX)_k by sJx.
sJdx=zeros (3, length(y).3,3};

efine the process sigma(0X)}_k by sOx.

sOx=0.8*(3, length(y).3):

tNote that sOx amust be defined similar to sJx, however

tthe A_k matrix estimates involve sOx in che denominator.

3If sOx is a zero vector, the estimates explode. To rectify
tthis situation, we arbitrarily choose the components of sOx
tto be multiplied by 0.8 for the initial estimate.

tValues very close to 0 also do not give reasonable estimates.

tDefine the process sigma(IX)_k by sIx.
sIx=zeros(3.length(y).3.3).

Iefine the process sigma(KX)_k by sKx.
sKx=zeros (3, length(y}.3.3);

Wefine the interest rate process, L.
1=(Ll:y(1}1:
L={1:y(2)1:

tThe values y(k) are the original data, i.e.. the actual yields of
tcthe T-bills or T-bonds.

gamma (1) =8;
gamma (2) =8;

tInitialise the mean reverting level, lLambda, denoted by lambda(:.k} .
lambda(:,1)={-0.3;0.9:2.4];
lambda(:.2)=lambda(:.1)};

for k=3:length{y)

P=zeros(3,L) ;

tDefine the matrix B_k denoted by Bk.
Bk=diag((lambda(L.k-1)-1-y(k};lambda(2,k-I}-y(k};lambda(3.k-1}¢l-y(k) 1)
den=inv(eye(3)-1L/12*Ak_l-gamma(k-1)/zeta(k-1}"~2*Bk*(y(ke¢l})-y(k}}:

tzeta(k) refers to the volatilities of the bond returns and were computed from
tthe data using the last 4 preceding yields.
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for s=2:k-1
Bs=diag((lambda(l.s5-1) -1-y{s):lambda(2,.s-1}-y(s);lambda(3,s-1) +l-y(s}};
P=P+L/L2*Ak_1*sx{:,s) +gamma (k-1) /zeta(k-1}"2*Bs*sx(:.5)*(y(kel)-y(k));

tCalculate recursive values for sJx, sOx. sKx and sIx.
for i=1:3
for j=1:3
sIx(:.k.i,j)=sIx(:.k. 2.7} +Ak_1(i.j)*sx(i.5)*e(:z,3)*1/12«
Ak_1(i.3J)*sIx(:,5.i.3)*1/12¢gamma(k-1}/zeta(k-1) "2*Bs*sIx(:=rs.1,.3) "
{ytk+1) -y(k));
end

50x{:.k.1}=s0x(:-,k,1}+1/12*sx(1L,s)*e(:,1}+1/22*Ak_1°*sOx(:.5,1)+
gamma (k-1} fzeta(k-1)~2*Bs*sOx(:,s.1i} *(y(k+¢l)-y(k)):
sOx(:.k, i) =den*sOx{:.k.i):

sRx(:,.k,i)=sKx(: .k, i) +gamma(k-1) *lambda(i, k-1}-y(s)) *sx(i.s)*e(:.i}*1/12;
sRx(:.k,1)=sKx{(:.k,i)+Ak_1*skx(:.s.1i)*1/12¢+gamma{k-1)/zeta(k-1)"~2
*Bs*sKx(:,s.1) *(y(s)-y(s-1)):

sKx(:k.,i)=sKx(:.k, 1} ¢+sx(i.s)*e(:. L) *(y(s)-y(s-1)};

sKxl{:,.k,i)=sKx(:.k. 1} rsx(i.s)*e(:. 1) * (¥(s)-y(s-1});

sIx(:.k.i}=sIx(: .k, 1} +y(s)*sx{(i.s)*e(:,1)"1/7/12+
Ak_l1*sIx(:.s.i}*1/12+gamma(k-1}/zeta(k-1)~2*'Bs*sIx(:.5,1)*(y(s)-y(s-1}):
end
end
sx{:.k)=den*pP

for i=1:3
sEx(:.k,i)=sKx(:,.k,i) +gamma(k-1)* (lambda (i . k-1)-y(k)}) *sx{i,.k}*e(:.L}*1/12+
sx{i.k)*e(:.L)*(y(k}-y(k-1}}:

sIx(:.k.i})=den* (sIx(:.k.1)+y(k}*sx(i, k)*e(:.,1)*1/12);
end

tbenote the estimate for gamma by C/D.
for s=2:k
Ck=y(s) *(y(3) -y(s-1)} -
sum({sIx(:.k.1}) *sum(sKx(: . k. L})/{sum(sOx(:.k, 1)} *sum(sx(:.k))}:
Ck=Ck-sum(sIx(:.k.2)) *sum{s&x{:.k,2)}/(sum(sOx{:-.k.2}} *sum{sx(:-.k}});
Ck=Ck-sum(sIx(:.k,3)) *sum(sfx{:,k,3}}/sum(sOx(:.k.3}) *sum({sx(: . k});
end

Dk=sum{sIx(:.k.1)})"2/sum{sx{:.k}]/sum(sOx{:.k,L})+
sum{sIx(:,k.2))~2/sum({sx(:.k}}/sum(sOx(:.k,2}})¢
sum(sIx{:,.k.3})~2/sum(sx{:.k)}/sum(sOx(:.k,.3}}):

gamma (k) =Ck/Dk ;
*The k-th estimate for lambda after estimating gamma is
for i=L:3
lambda (i.k)=(1l/gamma(k) *sum{sKx(:,.k,i}) +sum{sIx(:.k, 1))} /sum(sOx(:.k.i}):
end

tAfter the parameters are computed at time k., they are fed to the
tinterest rate model. This is a one-step ahead prediction model as

tthe initial estimate is always the actual data at lag 1. In other words.
tthe initial estimate is the yield at time k when the model computes
tfor the forecast at time kel.

1=(1l.y(k-1) +gamma(k-1)*sx(:,.k-1}"*{lambda(l,k-1}-1;lambda(2,k-1};
lambda(3.k~1)+1l] ¢+zeca(k-1})*z(k-1)*sqre(1/12}];
¥The variable z(k-1) refers to the N(0,1) generated random numbers._
for i=1:3
for j=1:3
Ak{i,Jj)=sum(sIx(:.k,L.j))/sum(sOx{:,k.i));
end
end

Ak_1=Ak:

A(k,:z,:)=Ak;

k

if ell==
sum(Ak_1(1.:}}
sum(ak_1(2.:))
surn(Ak_1(3.:})
keyboard;

end

(V]
(o)
-1
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Appendix D

The Data

This appendix contains the descriptions of the yield rates data used in the ap-
plication of parameter estimation and filtering techniques decribed in Appendix

C.
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