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Abstract

Given a patient’s description, a survival prediction model estimates that patient’s survival time.

We consider the challenge of learning an individual survival distribution (ISD) model from a dataset

that includes “censored” training instances – i.e., data that provides only the lower bound of the

survival time for some patients. In general, an ISD model maps each patient x to his/her survival

distribution, which is the probability that patient x will survive until time t, for each t ≥ 0. We focus

on “discrete-time” ISD models, which partition the future time into multiple time intervals and then

apply machine learned regressors to estimate the survival probability in each time interval. These

discrete-time ISD models can usually use fewer parameters than continuous models to describe

different shapes of survival distributions by discretizing the survival time.

We compare four survival models that represent the four parameterization methods for discrete-

time survival models: simple multinomial, multi-task (MTLR), discrete hazard, and hazard multi-

task models. We empirically evaluate these survival prediction models on nine real-world survival

datasets. In addition, we explore the discrete hazard feature selection method, which can iden-

tify features that are important at different times in the future. The result shows no statistical

difference between the four prediction models with respect to the integrated Brier score (IBS).

Our feature selection methods produce models with similar IBS performance (i.e., no statistically

significant differences) of the survival model but succeeded in reducing the number of features for

high-dimensional datasets.

ii



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Russ Greiner, for his support

and patience throughout my master’s program. His expertise and encouragement helped me to

complete this research and write this thesis.

I would also like to thank our lab members for the invaluable discussion on both research and

life. Their insight was of great help to me in shaping my research.

Finally, I must express my gratitude to my family for their love and support during this process.

Without their encouragement and support, I would not have been able to complete this journey.

iii



Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures ix

1 Introduction 1

2 Related Works 6

2.1 Machine Learning with Missing Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Continuous Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Discrete-Time Survival Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Discrete-Time Individual Survival Distribution Models 12

3.1 Survival Prediction Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Censoring Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Discrete-Time Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 PMF-ISD Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



3.4.1 Simple Multinomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Multi-Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Hazard-ISD Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Discrete Hazard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Hazard Multi-Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Issues 23

4.1 Time-Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Time Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 L21 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Identifying Time-Dependent Effect of Features 27

6 Empirical Evaluation 30

6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1.1 Integrated Brier Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1.2 D-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4.1 Prediction Models Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4.2 Discrete Hazard Feature Selection Results . . . . . . . . . . . . . . . . . . . . 39

6.4.3 Semi-Synthetic Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Discussion 45

v



8 Conclusion 47

8.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 49

A Additional Proof for Censoring Assumptions 56

A.1 Random Censoring and Independent Censoring Assumptions . . . . . . . . . . . . . 56

A.2 Hazard-ISD and Independent Censoring . . . . . . . . . . . . . . . . . . . . . . . . . 57

B Other Feature Selection Methods for Survival Data 59

B.1 Minimal Redundancy Maximal Relevance Feature Selection . . . . . . . . . . . . . . 59

B.2 Multivariate Cox Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.3 Univariate Cox Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

C Detailed Empirical Results 61

C.1 Prediction Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.2 Feature Selection Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.3 Additional Semi-Synthetic Data Results . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



List of Tables

6.1 Nine Real-World Survival Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Predictive Model D-calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Predictive Model IBS ANOVA Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Predictive Model IBS T-Tests: GBMLGG . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Predictive Model IBS T-Tests: MIMIC . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6 Feature Selections Methods IBS ANOVA Tests . . . . . . . . . . . . . . . . . . . . . 40

6.7 Feature Selection Model IBS T-Tests: DBCD . . . . . . . . . . . . . . . . . . . . . . 40

6.8 Semi-Synthetic Data IBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.1 Discrete-Time Survival Model IBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.2 Countinuous Survival Model IBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.3 Feature Selection Methods and Simple Multinomial Model . . . . . . . . . . . . . . . 63

C.4 Feature Selection Methods and Multi-Task Model . . . . . . . . . . . . . . . . . . . . 63

C.5 Feature Selection Methods and Discrete Hazard Model . . . . . . . . . . . . . . . . . 64

C.6 Feature Selection Methods and Hazard Multi-Task Model . . . . . . . . . . . . . . . 64

C.7 Predictive Model IBS ANOVA Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.8 Number of Features: Simple Multinomial Model . . . . . . . . . . . . . . . . . . . . 65

vii



C.9 Number of Features: Multi-Task Model . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.10 Number of Features: Discrete Hazard Model . . . . . . . . . . . . . . . . . . . . . . . 66

C.11 Number of Features: Hazard Multi-Task Model . . . . . . . . . . . . . . . . . . . . . 67

C.12 Average Number of Features After Feature Selection . . . . . . . . . . . . . . . . . . 67

C.13 Semi-Synthetic Data IBS - Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Figures

1.1 Censoring Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example Kaplan–Meier Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Example Individual Survival Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 AFT Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Survival Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Discrete Hazard Model Data Inclusion Criteria . . . . . . . . . . . . . . . . . . . . . 21

4.1 Time-Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Integrated Brier Score (IBS) Illustration . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Distributional Calibration (D-calibration) Illustration . . . . . . . . . . . . . . . . . 33

6.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Predictive Model IBS Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Feature Selection Methods IBS Comparison . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Number of Features After Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 42

6.7 Semi-Synthetic Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.8 Feature Importance of the New Covariate . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



C.1 Feature Importance of the New Covariate for Other Datasets . . . . . . . . . . . . . 68

C.2 Feature Importance of the New Covariate for Other Datasets – Cont’d . . . . . . . . 69

x



Chapter 1

Introduction

Survival prediction models attempt to predict the time until an event will happen. This event can

be anything that only occurs once – such as death1. A critical challenge of learning a survival

prediction model is the survival dataset can include (right) censored instances, which specify only

a lower bound of that individual’s survival time (Figure 1.1). This censoring may be because that

patient dropped out of the study - e.g., as that patient moved in the middle of the study, and

so is “lost to follow-up”, meaning we will not know when that patient died. Only the ‘moving

time’ is recorded, which is a lower bound of the time until death, as we know that the patient

was still alive before s/he moved. Simply removing those censored data instances can cause bias

in the prediction [41]. For example, imagine a survival dataset where (1) 90% of the instances are

censored after the fifth year, and (2) all uncensored patients die in less than five years. If we only

consider the uncensored data instances, our predicted survival time will be less than five years for

all patients. However, as 90% of the patients are censored (and so are alive) after the fifth year,

most patients lived longer than five years, meaning the mean would be over 5 years.

Researchers can define several different types of survival prediction problems. For example,

the task can be a single time point estimation (e.g., the patient is expected to have 2.1 years to

1One could apply survival prediction to events that appear to be recurring, such as hospital readmission. But
notice that survival prediction only predicts the next event – e.g., the time to the next hospital readmission. There
is only (at most) ONE next hospital readmission.

1



Figure 1.1: In a survival dataset, the death time of the uncensored subject is known (subjects A
died at 3 years and D died at 1 year). But the true death time for a censored subject is unknown,
as we only know a lower bound of the death time – so here, we see that subjects B died at any
time after 2 years, C died after 4 years, and E died after 2.5 years.

live), a binary classification on a predefined time point (e.g., expected to die in less than 2 years,

or not), a risk score to rank the subjects (e.g., the risk is 3.7, which means the model suggests

that this patient is more likely to die before all patients with risk under 3.69), or a group statistic

over the whole population (e.g., a single survival curve for all the patients with stage 4 cancer; see

Figure 1.2). To present survival probabilities at arbitrary future time points, an individual survival

distribution (ISD) [13] may be used to represent a subject’s survival as a survival distribution (also

called a survival function or survival curve), which is the survival probability as a function of time

(i.e., the probability that the patient survives until time t, for each t ≥ 0; see Figure 1.3). The

individual survival distribution predicts not only a single time point but a distribution across all

times. Furthermore, the ISD provides individual survival predictions for each subject, instead of a

group statistic such as the Kaplan-Meier estimator [21].

We focus on models that discretize the time into multiple disjoint time bins, called discrete-

time survival models. For example, the survival time could be binned into [0, 30) days, [30, 60)

2



Figure 1.2: An example Kaplan–Meier curve for a group of subjects (e.g., stage 4 cancer). The
curve predicts that 50% of the subjects will die in 3 months, and 90% will die in 9 months.

days, etc. The events that are close to each other are treated equally if they are in the same time

bin. Although discretization might sacrifice the model’s resolution compared to continuous-time

models, the discrete-time framework can use fewer parameters to describe more variety of shapes

of survival distribution [52, 43, 36]. Some continuous survival models have a limited shape of sur-

vival distributions because they parameterize a known survival distribution or assume proportional

hazards, such as accelerated failure time model (AFT) [53] and Cox proportional hazard model

(CoxPH) [9] (see Section 2.2). The non-parametric continuous models, such as random survival

forest (RSF) [16], might allow an arbitrary shape of the survival distribution2. But non-parametric

models usually require more data than parametric models. We consider the discrete-time survival

models discussed in this thesis to be parametric models because they use a limited number of time

bins and parametric regressors.

A discrete survival function can be formulated by either probability mass function (PMF) or

discrete hazard (DH). The probability mass function is the event density in discrete form, and the

2Of course, the shape must be monotonically decreasing – i.e., for t1 < t2, S(t1|x) ≥ S(t2|x).

3



Figure 1.3: An individual survival distribution model predicts a survival curve for each subject.
The figure shows the predicted survival curves for three subjects; the x value of each black dot
is the true death time. Note that the black dots are the ground truth, not the predictions. For
example, the red survival curve falls quickly at an early time, suggesting that the subject has a
great chance of dying in under 10 months. In fact, the subject died in the third month.

discrete hazard is the conditional failure rate (more details in Chapter 3). Based on these two

formulations, we implement four survival models: simple multinomial model and multi-task model

(MTLR) [59] based on PMF (PMF-ISD), and discrete hazard model and hazard multi-task model

based on discrete hazard (hazard-ISD). (Both the simple multinomial model and multi-task model

are formed by multinomial regression in general. However, we use the name “simple multinomial

model” to refer to the specific survival model that uses the most basic parameterization form.) We

use a variant of the multilayer perceptrons (MLP) as the underlying regressor for each survival

model. Each learner is wrapped as a superLearner that uses internal cross-validation to tune multi-

ple hyperparameters, such as the time-split method for discretizing the survival time, neighbouring

time parameters smoothing, activation function for MLP, regularization, etc. (see Chapter 4 and

Section 6.3). We compare the performance of these four survival prediction algorithms using in-

tegrated Brier scores (Section 6.1.1) on real-world datasets. In addition to comparing prediction

models, we explore how the discrete hazard model can be used as a feature selection method be-

4



cause it can be interpreted as the danger to survival at a specific time, which could be independent

to other times. A learned linear discrete hazard model can be used to identify important features

at different times by extracting the model’s parameters. We apply this feature selection method

before learning a survival model and consider different feature selection and learner combinations.

Chapter 2 summarizes related works on learning models from data with missing outcomes,

continuous survival models, and discrete-time survival models. Chapter 3 describes the survival

prediction models that are compared in this thesis. We introduce the survival prediction task,

the two discrete-time survival model categories based on how the model formulates the survival

function, and four discrete-time survival prediction models. Chapter 4 discusses some issues re-

lated to the discrete-time survival model, such as time-split methods, neighbouring time interval

smoothing, and L21 regularization. Chapter 5 introduces discrete hazard feature selection that we

develop to identify the feature’s effect at different future times. In Chapter 6, we provide empirical

results on nine real-world data using the integrated Brier score. We compare the four discrete-time

survival models and evaluate five feature selection methods for survival datasets. We also generate

semi-synthetic datasets to demonstrate using the discrete hazard model to identify the feature’s

importance at different future times. Chapter 7 discusses those results. In Chapter 8, we conclude

our study and provide potential future directions.

5



Chapter 2

Related Works

2.1 Machine Learning with Missing Outcomes

Machine learning research has developed several methods to deal with missing outcome labels. The

semi-supervised approach is designed to utilize unlabeled data [61] in addition to some labelled

data. There, the missing labels are completely unknown without any partial information. The

censored instances in the survival dataset can be considered as missing outcomes. However, the

outcome is only partially missing because the censoring time still provides a lower bound. There

are other machine learning methods designed to deal with missing data, and the method itself

disregards whether it is the covariate or the outcome [49]. The multiple imputation [31, 3] and

expectation maximization methods [10] can consider the partial information given by the censoring

times in their algorithms during training [57]. Some studies have applied the multiple imputation

method to survival prediction [46, 37]. However, using a non-parametric model to impute the sur-

vival time does not consider its relation to the covariates. If the imputation model is a parametric

model that is the same as the prediction model, and the covariates are complete, imputing the out-

comes contributes no information to the regression [51]. Some studies have applied the expectation

maximization methods to censored observation [56, 11, 1]. However, the expectation maximization

method involves multiple iterations, so it can be less computationally efficient than the normal

6



maximum likelihood method [2]. Another method is to use the full information maximum like-

lihood (Fiml) [26], which is the likelihood that encodes all observations, including observations

that are partly missing. Unlike the previous two methods, which compute the likelihood of the

complete data, the full information maximum likelihood method directly calculates the likelihood

that encodes a situation called “observation missing” (e.g., censored instances) according to its

distribution assumption. The overall likelihood is the product of the likelihood for both missing

and non-missing observations. This overall likelihood can be directly optimized like the standard

maximum likelihood method without imputation. The full information maximum likelihood is less

general because one needs to rewrite the likelihood to handle the missing observations. In this

thesis, we adopted the Fiml method by using a survival likelihood function that is designed to

encode censored data instances.

Partial label learning also deals with missing outcomes and partial information, but specific to

discrete labels. In partial label learning [8, 47], a set of finite candidate labels that is the subset of all

possible labels are provided for a training instance – one of the candidate labels is the ground truth,

but which one is unknown. Partial label learning can be applied to the survival prediction task by

letting the label be which time interval the subject died (e.g., [0, 30) days, [30, 60) days, . . . ). For

censored data, the candidate labels are all the time intervals after the censoring time because the

true death time can only be in those time intervals (e.g., assume that the patient is censored in time

interval 3, the true death time must be one of the time intervals which from interval 3 to the last

time interval). The earlier techniques [18] that design a likelihood function for multiple candidate

labels are similar to how PMF-ISD (simple multinomial and multitask model) handles censored data

(Section 3.4). Most partial label learning methods, however, focus on the classification accuracy of

the categorical label and the discrimination of ambiguity in partial information. The calibration of

the predicted probability (how predicted probability compares to the true probability of the data)

is often ignored [8]. In individual survival distribution (ISD) prediction, a calibrated prediction

model is important to usefully estimate the survival function because the survival function is a

probability distribution.

7



2.2 Continuous Survival Analysis

The continuous survival model treats the survival times as a continuous variable. In general,

these continuous survival models can be divided into three categories: (1) parametric, (2) semi-

parametric, and (3) non-parametric [43, 52, 44]. The parametric continuous survival models param-

eterized a known continuous distribution to fit the data, such as exponential or Weibull distribu-

tion [35]. For example, the accelerated failure time model (AFT) [53] requires the user to choose a

known distribution S0(t), and the model will parameterize the acceleration factor (a parameterized

factor that decides how the covariates accelerate or decelerate the event time, which is the value of

exp(xk · β) in Equation 2.1). The assumption of AFT model can be expressed as:

S(t |xk) = S0( exp(xk · β) t ) (2.1)

where S(t |xk) is the survival function for subject k, based on the covariate vector xk, β is the

parameter in the AFT model, and S0(t) is the baseline survival function, shared by all subjects

(S0(t) itself does not depend on xk). Figure 2.1 illustrates the acceleration concept of the AFT

model.

The continuous semi-parametric survival model is not as restricted in the probability distri-

bution as the parametric model. The semi-parametric model contains the parametric (finite-

dimensional) and non-parametric (infinite-dimensional) components. The semi-parametric model

allows some of its parameters in the infinite-dimensional space, which means no restriction in the

complexity of that portion. But an assumption is still required to put some of its parameters in the

finite-dimensional space. Those parameters in the finite-dimensional space are the main focus of

the semi-parametric survival model. A well-known semi-parametric survival model is the Cox pro-

portional hazard model (CoxPH) [9], which requires the proportional hazard assumption [9]. The

CoxPH has a non-parametric component, the baseline hazard h0(t), and the parametric component,

the hazard ratio. The assumption of CoxPH can be written as:

h(t |xk)
h0(t)

= exp(xk · β) (2.2)

8



Figure 2.1: The figure shows the probability density function predicted by the AFT model based on
Weibull distribution for three different patients. Assuming that patient B is the baseline survival
function, patient A’s death time is faster than patient B’s (death time multiplied by 0.5), and
patient C’s death time is slower than patient B’s (death time multiplied by 2). Note that the shape
of the probability density distributions is the same for all patients, but the time axis is scaled.

where h(t |xk) is the hazard function for subject k, based on its covariate vector xk, β is the

parameters in the Cox model, and the baseline hazard h0(t) is shared by all subjects (note it does

NOT depend on xk). The right-hand side does not depend on time t, so the predicted hazard ratio of

any two subjects will be constant throughout time, which means the hazards are proportional. This

assumption will not hold if the feature’s effect varies at different times: for example, the patient’s

blood pressure might be important in the first three days after surgery but become irrelevant

afterward. In this case, the hazard ratio is not a constant independent of time, which violates

the Cox model’s assumption. The hazard ratio might be large for patients with different blood

pressures in the first two days but become one afterward.

CoxPH only provides a risk score for each patient if the baseline hazard is not specified. To pro-

duce a survival distribution, a common choice is to estimate the baseline hazard by the Kalbfleisch-

Prentice estimator [20], which reduces to the Kaplan-Meier estimator because covariates are not

considered [58]. We abbreviate the CoxPH model with the Kalbfleisch-Prentice extension as Cox-

KP.

The continuous non-parametric survival models relaxed many assumptions on the shape of

9



survival distribution. However, they usually require more training data than parametric models [54,

32]. The commonly known non-parametric survival model Kaplan-Meier estimator [21] is not

designed to incorporate covariates. The Kaplan-Meier estimator predicts a group statistic for the

whole population (e.g., all patients with stage four cancer) instead of an individual prediction for

each subject. Another example of the continuous non-parametric survival model is the random

survival forest (RSF) [16], an ensemble of tree-based learners for survival prediction. The RSF

grows multiple survival trees based on bootstrapping. The survival trees are trees whose internal

nodes split using a single feature based on the Logrank test [33], which is a test to see if two survival

distributions are the same. The RSF produces survival distribution predictions1 by aggregating

(point-wise average) multiple Kaplan-Meier curves from the forest; each curve is generated from

data instances of the terminal node that the predicting instance belongs to from a survival tree

(recall that the tree node splits the training instances, and each training instance will finally fall into

a terminal node). The RSF model can be powerful because it can capture the complex relationships

between the covariates and survival outcomes. However, with no distribution assumption, the RSF

model tends to be more susceptible to noise and easier to overfit than parametric models [38].

2.3 Discrete-Time Survival Prediction Models

Unlike the continuous parametric and semi-parametric survival models that limit the shape of the

survival distributions, the discrete-time survival models discretize the time into multiple bins (e.g.,

[0, 30) days, [30, 60) days). This framework allows the models to formulate the survival distribution

without assuming a known survival distribution or proportional hazard. Figure 2.2 shows that the

curves in AFT and Cox-KP models have similar shapes for all individuals. The discrete-time

multi-task logistic regression model [59] (MTLR) has curves that bend in different directions so

they are allowed to cross one another, demonstrating that MTLR is more flexible. Compared to

non-parametric survival models, the discrete-time models are parametric (assuming the time bin

is fixed), so they can usually make inferences about new samples with fewer training instances

1We consider the RSF implementation same as the paper by Haider et al. [13].
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Figure 2.2: Survival curves for 10 patients by parametric survival model AFT, semi-parametric
model Cox-KP, and discrete-time model MTLR. The survival curves of AFT and Cox-KP models
all have similar shapes. The survival curves of the MTLR model are more flexible, and they are
allowed to cross one another.

if the distribution assumption is reasonable. Furthermore, many machine learning methods (i.e.,

classifiers) are designed for discrete label values (discrete time intervals). Those methods can be

easily applied to survival prediction tasks under the discrete-time framework.

In general, the discrete-time survival models can be categorized by how they formulate the

survival function, either by the probability mass function or the discrete hazard function. The

survival curves calculated by probability mass function or discrete hazard function are ensured

to be monotonic decreasing. (A survival curve should be monotonically decreasing by definition

because the event can only happen once. The chance of surviving one year should be at least

as surviving two years.) Many discrete-time survival models parameterize the probability mass

function, including DeepHit [28] and MTLR [59] models. The DeepHit model predicting a single

event is similar to the simple multinomial model paired with a deep neural network, with the

addition of a ranking loss function that fine-tunes the model to better discriminate patients based

on the predicted risk score. Using a discrete hazard function to formulate a survival model is

less discussed in the literature; one example of this approach is by Singer et al. [42], who built a

survival model that uses discrete hazard functions to conduct survival analysis on the career length

of educators.
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Chapter 3

Discrete-Time Individual Survival

Distribution Models

3.1 Survival Prediction Definition

The survival function S(t |x) is defined as the probability of the subject (with description x) being

alive (i.e., event not yet happened) at the time t – i.e., the event time random variable T is larger

than the specified time t:

S(t |x) = P (T > t |x )

In survival prediction, the event can only happen once for a single subject. Given the definition,

the survival function is always monotonically decreasing because a dead person cannot come back

to life. As time goes on, the survival probability will decrease or remain the same.

Censoring is a common issue in survival prediction. In general, when the status of a subject is

missing for some period of time, we call the subject “censored” (e.g., the survival status is unknown

from day 4 to day 6). The types of censoring can be divided into right-censoring, left-censoring,

and interval-censoring. In this paper, we will be focusing on right-censoring.

Right-censoring occurs when the subject is lost to follow-up or another terminating event hap-
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pens that is not in our interest. The subject is alive prior to the censoring time, but the information

is missing after that, so only this lower bound of the event time is known (see Figure 1.1). For

example, a study enrolls cancer patients to observe their survival times until death from cancer.

Some participants, however, might decide to withdraw in the middle of the study or die by getting

hit by a bus. For these people, we know the time of censoring, but not the times of death – i.e., that

time is not in the dataset. The lower bound of the survival times, which could be the withdrawal

times, are recorded.

3.2 Censoring Mechanism

Sometimes the censoring might not be entirely random. For example, cancer patients who are

too sick might have a higher chance of going through MAID (medical assistance in dying). Going

through MAID will be the censoring event when our targeting event is death by cancer. If the

decision of MAID depends on the severity of cancer (i.e., on the patient’s time until death), censored

patients are expected to have a shorter survival time of death from cancer than uncensored patients,

meaning that survival time and censoring time are dependent. (For example, imagine there are

two patients with the same description in the data; both survive to the third month. One of them

decided to go through MAID in the third month. Suppose our assumption of the relation between

MAID and cancer severity is true. In that case, we can infer that the censored patient will die

sooner than the other patient, even though the two patients are identical in the dataset. This

relationship could be hard to identify from the data, but might be verified based on evidence from

other places.) This situation is an example of “competing risks” [4]. The dependent censoring can

be problematic because the relation between survival and censoring can be hard to identify as one

of them causes the missingness of the other [12, 25]. In this thesis, we make assumptions about the

censoring mechanism to address this dependent censoring problem.

Here, we introduce two censoring assumptions that are commonly used in survival analysis:

random censoring and independent censoring [23] (note that the terms are not used in a consistent

way in previous literature). Many survival prediction tools are built based on these censoring
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assumptions. If the survival data does not meet those assumptions, using a survival analysis tool

that requires those censoring assumptions, such as the Kaplan-Meier estimator, might lead to

overestimation or underestimation of survival times [6, 29].

Random censoring means the death time distribution T and the censoring time distribution C

are statistically independent [20, 27, 29] given the patients’ description X. Given that X, knowing

the time until death provides no information about the censoring time (T ⊥⊥ C | X). Random

censoring assumes that how long the patients lives is unrelated to when they will become censored.

Independent censoring (or non-prognostic censoring [25, 55]) is defined as: for any subgroup

of interest, the survival experience (after time u) of the subjects who are censored at time u

is representative of all the surviving subjects at time u (subjects with T ≥ u regardless of the

censoring status) of that subgroup [48, 22]. The censored subject carries no prognostic information

about the future survival experience. Independent censoring, in other words, means the censoring

happened randomly to subjects at time u.

Random censoring is more restrictive than independent censoring. If random censoring holds,

then independent censoring will also hold (we show this in Appendix A.1). Lagakos [25, 55] showed

that in both random and independent censoring cases, the use of the likelihood of Equation 3.1 below

is theoretically appropriate. Both assumptions can be used to examine the censoring mechanism.

While independent censoring is less restrictive, it can be an alternative when random censoring is

hard to verify. (Note the MAID example above violates both censoring assumptions.)

3.3 Discrete-Time Survival Models

To ensure that the predicted survival curves are monotonically decreasing, instead of estimating

survival probabilities directly, one can use related quantities: the probability density function

or the hazard function, to compute the survival curves. The probability density function is the

event density, and the hazard function is the conditional event rate – see Sections 3.4 and 3.5.

By modelling these related quantities, we ensure that the survival curves are non-increasing and
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non-negative.

In most traditional survival analyses, the survival curve is a continuous function, as are the

probability density and hazard functions. When using discrete-time survival models, we discretize

the time into several disjoint time intervals to make the function easier to learn with existing

machine-learning regressors. In this thesis, we will use the probability mass function and discrete

hazard function, which are the discrete version of the probability density function and the hazard

function. The notation ti will refer to a time interval indexed by i. We define survival function

S(ti |x) in the discrete setting to mean the probability of the subject being alive throughout the

entire time interval ti.

For a discrete-time survival dataset D, a data instance of subject k will specify the survival or

censoring times interval tvk , where vk is the index of the survival or censoring times interval (e.g.,

subject k died in time interval t3, then vk = 3), the censoring bit δk (δk = 1 for uncensored subjects

and δk = 0 for censored subjects), and the description of the subject xk. The likelihood function

for survival models can be used to evaluate how well a survival model’s parameters θ fit a survival

dataset D, and it can be used as the negative loss function to train a survival model. The likelihood

function begins by partitioning the data into uncensored and censored. Let PMF (ti | xk , θ) be

the probability mass function (i.e., the probability that the event time falls in a time interval ti

given xk and θ), S be the survival function (defined earlier). Recall that vk is the index of survival

or censoring times interval, so tvk−1 is the time interval before tvk . Given the assumptions in

Section 3.2, the likelihood function can be formulated as:

L(θ | D) =
∏︂

k : δk=1

PMF (tvk | xk , θ)
∏︂

k : δk=0

S(tvk−1 | xk , θ) (3.1)

For an uncensored instance, the likelihood is the PMF of the time interval when the event

happened. For censored data, the likelihood is the survival probability of the last time interval that

the subject is known to be alive (i.e., the time right before censoring time). The likelihood of the

entire survival data is the product of the uncensored and censored portions. All the discrete-time

survival models discussed in this thesis are trained by maximizing the likelihood function.
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3.4 PMF-ISD Models

The probability mass function (PMF), denoted by PMF (ti |x , θ) = P (T ∈ ti | x , θ ), is the

probability distribution of the event time density, but in discrete setting. Given a time interval ti

and the subject’s description x, the PMF returns the probability of the event happening in time

interval ti for subject x; e.g., if t1 is the predefined time interval [0,30) days, then PMF (t1 |x , θ)

is the probability of the patient dying in that time interval. Let m be the total number of time

intervals. The summation of the PMF for all the time intervals is one because we defined the last

time interval tm is from the last time point to infinity. To calculate the survival function from

PMF, we can add up the chance of dying within each time interval ti reversely:

S(ti |x, θ) = P (T > ti | x , θ ) =

m∑︂
j=i+1

PMF (tj |x , θ) (3.2)

Here, we consider two versions of PMF-ISD models: the simple multinomial model and the

multi-task model.

3.4.1 Simple Multinomial Model

We consider the survival model that uses the most basic forms of multinomial regression and name

it the “simple multinomial model” in this thesis. The simple multinomial model parameterizes the

PMF as a multi-class softmax classifier by viewing each time interval as a classification category.

Let ψ(x , θi) be the regressor that returns the log-odds of time interval ti for the subject with

covariate vector x. The PMF for time interval ti can be written as:

PMF (ti |x , θ) =
exp(ψ(x , θi))∑︁m
j=1 exp(ψ(x , θj))

(3.3)

The PMF is the odds value of the event happening in the time interval ti divided by a normalizing

term, which is the sum of the odds values for all the time intervals. This formulation is also called

the softmax output. In the basic version of the simple multinomial model, the log-odds function
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ψ(x , θi) can be a linear combination of covariates. Instead, we use a multilayer perceptron to

represent the ψ(x , θi) function.

The censoring part of the log-likelihood is the survival function (see Equation 3.1). The simple

multinomial model marginalizes the time intervals after and including the censoring time – which

sums up the values of PMF for all the possible event time intervals (e.g., suppose a patient is

censored in time interval 3, the possible death time is from time interval 3 to m). This is equivalent

to calculating the survival function with Equation 3.2.

We can use the PMF from Equation 3.3 and the survival function from Equation 3.2 to calculate

the log-likelihood. Recall that vk is the index number of the time interval containing the subject

k’s survival or censoring time. The simple multinomial model optimizes the following function

involving the log-likelihood, an L2 regularizer, and a smoothing term:

LL(θ | D) =
∑︂

k : δk=1

⎡⎣ψ(xk , θvk)− log(
m∑︂
j=1

exp(ψ(xk , θj)))

⎤⎦ (3.4)

+
∑︂

k : δk=0

⎡⎣log( m∑︂
j=vk

exp(ψ(xk , θj)))− log(
m∑︂
j=1

exp(ψ(xk , θj)))

⎤⎦ (3.5)

+
C1

2

m∑︂
j=1

θ2j + C2

m−1∑︂
j=1

|θj − θj+1| (3.6)

line 3.4 is the uncensored portion, which is the log of PMF (tvk |xk , θ), where tvk is the time interval

that the subject k died. Line 3.5 is the censored portion, which is the log of survival function evalu-

ated at the time interval before the censoring time S(tvk−1 |xk , θ) =
∑︁m

j=vk
exp(ψ(xk , θj))/

∑︁m
j=1 exp(ψ(xk , θj))

(see Equation 3.2). Line 3.6 is the L2 regularizer and a time smoothing term (described in Sec-

tion 4.2). The simple multinomial model is trained by optimizing this log-likelihood function.
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3.4.2 Multi-Task Model

The multi-task model (originally named as multi-task logistic regression (MTLR) by Yu et al. [59])

can be viewed as an extension of the simple multinomial model [24]. The PMF formula of a

multi-task model is similar to the softmax function, but the expression is more complicated. Let

y = (y1, y2, . . . , ym) be the sequence of survival status, where yi = 0 means the subject is alive at

time ti and yi = 1 means the subject is dead at time ti. For example, a subject k who dies within

time interval tvk will have the sequence y = (0, 0, . . . , 1, 1, . . . , 1), with yi = 1 for all vk ≤ i ≤ m.

There are m possible y sequences (recall that m is the total number of time intervals), from the

event happening in the first time interval to the event happening in the last time interval. (Note

that y with all zeros does not exist because the last time interval tm is from the last time point

to infinity. Who did not die earlier is assumed to die in this final interval.) Let ψ(x , θi) be the

regression function associated with i-th interval that takes covariates vector x as input and outputs

a continuous value. The PMF of a sequence y is expressed as:

PMF (y |x , θ) =
exp(

∑︁m
i=1 yi · ψ(x , θi))∑︁m

j=1 exp(
∑︁m

i=j ψ(x , θi))
(3.7)

Similar to a softmax expression, the numerator is the exponential of the log-odds of the event

happening in time interval ti. In the multi-task model, the log-odds of a y sequence (i.e., death in

a particular time interval) is calculated by
∑︁m

i=1 yi · ψ(x , θi). The denominator is the normalizing

term, which is the summation of all possible y sequences.

From another perspective, the multi-task model formula is similar to the linear-chain conditional

random field (CRF) for sequence labeling [59, 45]. For example, we want to estimate the probability

of a series of labels given the input x. The formula of a linear-chain CRF can be written as:

P ( y |x , θ ) =
exp[

∑︁m
i=1 U(yi , x , θ) +

∑︁m
i=1 U(yi , yi−1 , θ)]

Z(x , θ)

where U(yi , x , θ) is the emission score for position i given x, and U(yi , yi−1 , θ) is the transition

score between position i and i− 1 (we only include the transition from the previous component of
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the vector). Z(x , θ) is the partition function for normalizing the probability.

The difference between linear-chain CRF and the multi-task model is that the multi-task model

does not have transition probabilities. The relation between labels is encoded by explicitly limiting

the possible label sequences. The emission score in the linear-chain CRF can be related to the

yi · ψ(x , θi) function in the multi-task model (Equation 3.7).

The multi-task model uses the same way as the simple multinomial model to handle censored

data. To calculate the survival function in the likelihood (Equation 3.1) for censored instances, the

multi-task model adds up the PMFs of all the time intervals after and including the censoring time.

3.5 Hazard-ISD Models

The discrete hazard function h(ti |x , θ) is the discrete version of the hazard function, which is

defined as the conditional probability that the event happens in the time interval ti given that the

subject is alive at the beginning of that time interval. For example, if the patient is known to be

alive at the beginning of the time interval t = 30 days, we want to know the chance that s/he will

die between [30, 60) days. Let T be the random variable of survival time of a subject; the discrete

hazard can be written as:

h(ti |x , θ) =

⎧⎪⎪⎨⎪⎪⎩
P (T ∈ ti |x , θ ), i = 1

P (T ∈ ti |T > ti−1 , x , θ ), i > 1

The discrete hazard of the first time interval is just the probability of the event happening within

that first time interval. The discrete hazard function is a probability, so it can only be in [0, 1].

To calculate the survival function for i ≥ 2, we use the survival probability of the previous

time interval S(ti−1 |x , θ) times the chance of surviving the current time interval ti, which is

S(ti−1 |x , θ) times 1−h(ti |x , θ). The survival function of the previous time interval S(ti−1 |x , θ)

can be calculated in the same way, so the calculation can go recursively to the first time interval,

meaning:
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S(ti |x , θ) =
i∏︂

j=1

(1− h(ti |x , θ)) (3.8)

The PMF can be calculated from discrete hazards. The PMF of the time interval ti is the

survival probability of the previous time interval S(ti−1 |x , θ) times the discrete hazard of the

current time interval h(ti |x , θ). We can derive the PMF from the discrete hazard function by the

following equation:

PMF (ti |x , θ) = S(ti−1 |x , θ)h(ti |x , θ) =

⎡⎣i−1∏︂
j=1

(1− h(tj |x , θ))

⎤⎦h(ti |x , θ) (3.9)

The discrete hazard for time interval ti is based on the subjects that are alive at the start

of the time interval, and the survival statuses are known at the end of the time interval ti (see

Figure 3.1). The subjects who died before the start of the time interval or were censored in or

before the time interval are excluded from the discrete hazard estimation. Given the independent

censoring assumption in Section 3.2, all the at-risk (not censored in or before ti and alive at the

start of ti) subjects’ discrete hazard is equivalent to all (at-risk and censored) surviving subjects’

discrete hazard conditioned on the subject’s description x (more detail in Appendix A.2).

The discrete hazard function can relate more directly to the event’s cause than PMF. A discrete

hazard function, for a given time interval, is only associated with the event rate at that time interval.

For example, if we find that older patients have a high discrete hazard in the time interval [30, 60)

days, we can infer that a person’s age is related to a high chance of death in that time interval, and

we don’t have to note that this ”age” is not relevant for other intervals. In contrast, the PMF has

to be normalized over all time intervals. So the PMF for a single time interval is indirectly related

to all the time intervals (more description in Chapter 5).

We developed two hazard-ISD models called the discrete hazard model and the hazard multi-

task model by parameterizing the discrete hazard function.
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Figure 3.1: The figure illustrates the data inclusion criteria when estimating a discrete hazard for
a specific time interval. Suppose we are estimating the discrete hazard from time interval t3 = [2.2,
3.2) (the red box). Only subject A and subject C will be included for estimation (orange circle).

3.5.1 Discrete Hazard Model

The discrete hazard model represents the discrete hazard by a sigmoid function. Let ψ(x , θi) be

the regression function representing the log of the odds ratio. The discrete hazard can be written

as:

h(ti |x , θ) =
1

1 + exp(ψ(x , θi))
(3.10)

For censored observations, the learning process of the discrete hazard for time interval ti disre-

gards the subjects who died before ti, or were censored in or before ti, as described in the previous

section.

Using the PMF (Equation 3.9) and the survival function (Equation 3.8), we can calculate the

log-likelihood. The model optimizes the following loss function that includes the log-likelihood, an
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L2 regularizer, and a smoothing term:

LL(θ | D) =
∑︂

k : δk=1

⎡⎣vk−1∑︂
j=1

(ψ(xk , θj))−
vk∑︂
j=1

log(1 + exp(ψ(xk , θj)))

⎤⎦ (3.11)

+
∑︂

k : δk=0

⎡⎣vk−1∑︂
j=1

(ψ(xk , θj))−
vk−1∑︂
j=1

log(1 + exp(ψ(xk , θj)))

⎤⎦ (3.12)

+
C1

2

m∑︂
j=1

θ2j + C2

m−1∑︂
j=1

|θj − θj+1| (3.13)

Line 3.11 is the uncensored portion, which is the log of PMF (tvk |xk , θ). Line 3.12 is the censored

portion, which is the survival function evaluated at the time interval before the censoring time

(tvk−1). In the discrete hazard model’s likelihood function, the PMF S(tvk−1 |xk , θ)h(tvk |xk , θ)

and the survival function S(tvk−1 |xk , θ) only differ by whether the last multiplication of the time

interval tvk is applied. If the subject is uncensored, the conditional probability of death h(tvk |xk , θ)

is applied. Otherwise, multiply nothing because the subject status is unknown. Line 3.13 is the L2

regularizer and a time smoothing term (Section 4.2).

3.5.2 Hazard Multi-Task Model

Inspired by the multi-task model, we developed a hazard-ISD that is similar to the multi-task

model, called the “hazard multi-task model”. The PMF in the multi-task model is the sum of

multiple time intervals. Similarly, we defined the hazard in the hazard multi-task model in a form

that guarantees that the output will be in [0, 1]:

h(ti |x , θ) =
1

1 + exp(
∑︁m

j=1 yj · ψ(x , θj))
=

1

1 + exp(
∑︁m

j=i ψ(x , θj))
(3.14)

where y = (0, 0, . . . , 1, 1, . . . , 1), with yj = 1 for all i ≤ j ≤ m. Note that each h(ti |x , θ) correspond

to a y sequence, and the y sequence no longer represents the PMF. The notations are the same as

Section 3.4.2. The same equations for hazard-ISD can be used to calculate the PMF and survival

function, which are the components of the log-likelihood.
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Chapter 4

Issues

4.1 Time-Split Methods

The discrete-time survival model requires the time to be partitioned into disjoint time intervals.

Having a fixed length for each time interval, such as [0, 1), [1, 2) months, might be suitable for some

applications where the data collection and time of interest are naturally specified (e.g., subscription

services). However, it might not be ideal for other situations where the event might happen at any

time, and there is no prior domain-specific knowledge to define the time bins. A straightforward

way to split the time is by the event density, having small time intervals when event density is

high and large time intervals when event density is low. We implement this idea by letting all time

intervals have a similar number of events (the events could be either deaths or deaths plus censors).

Note the number of time bins is another hyperparameter that we need to choose. This number is

related to the complexity of the model because it affects the total number of trainable parameters.

We describe below how we choose the number of time bins according to the number of death or

censoring events in the dataset.

Our learner considers three different time-split methods and selects one based on internal cross-

validation (the first and second methods are illustrated in Figure 4.1). The first method is to split

by both deaths and censoring events, disregarding the event type. The separating time points are
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Figure 4.1: The figure illustrates two of the time-split methods that we use. The filled blue dots
are the death events, and the empty dots are the censoring events. The red vertical lines split the
time into discrete time intervals. As there are 16 instances, Method 1 has

√
16 = 4 splits, and has

4 instances in each partition. As there are 9 deaths, Method 2 uses
√
9 = 3 splits, with 3 death

instances in each. (In our implementation, we put the bar on the far left near the previous death
event.) We show methods 1 and 2 in this figure. Method 3 is similar to method 1 but with a small
and fixed number of time bins.

chosen by the quantile of death and censoring times, and the number of time bins is the square root

of the total number of data instances. The second method is by just the number of deaths – i.e.,

similar to the first method but only considers the death events. The number of time bins is the

square root of the number of deaths. The third method is similar to the first (based on both the

number of deaths and the number of censoring), but here we just consider 10 bins. The separating

time points are sparsely spread (10 is relatively small compared to other methods because all of our

datasets have more than 100 instances). We choose to split by both deaths and censoring events to

ensure the separation time points cover all event times in the data, disregarding their event type.

4.2 Time Smoothing

The survival prediction is a time prediction. Even though we discretize the time, the time interval

is still an ordinal variable. The order of the time interval matters as opposed to other independent

prediction labels (e.g., cat, dog, cow). The neighbouring time interval might be related. For

example, what kills a patient in [0,30) days might also be important in the next time interval

of [30,60) days. To smooth the important feature between the neighbouring time intervals, a
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straightforward way is to include a smoothing term in the loss function:

C2

m−1∑︂
j=1

|θj − θj+1|

where each θj is the parameters related to a time interval (the specific meaning behind θj varies

for different models, see Chapter 3), and the smoothing factor C2 is a hyperparameter to be tuned.

The smoothing term forces the adjacent time interval to have similar features’ effects by minimizing

the absolute differences between their parameters. All our models include the smoothing term, and

each tunes the smoothing factor C2 during internal cross-validation (note that C2 = 0 is also an

option). Ping et al. [17] showed that the multi-task model (MTLR) does not need a temporal

smoothing term because the model’s formulation already includes a time smoothing mechanism.

However, we still keep this option in our multi-task model learner.

4.3 L21 Regularization

We can view the parameters of our discrete-time survival models as a two-dimensional matrix,

where the dimensions are time intervals and features. Then, we can apply L21 regularization [34]

as embedded feature selection to push for the same set of selected features across all time and

sparsity between each feature– e.g., if feature A is selected for some time intervals, feature A is

allowed to be selected for all time intervals, and feature B is less likely to be selected if feature A is

selected. Let us consider a parameter matrix θ = (θi,j) ∈ Rn×m where the rows are the n features

and columns are m time intervals (e.g., Equation 4.1). The L21 regularizer can be written as:

C3 ∥θ∥2,1 = C3

n∑︂
i=1

⎛⎝ m∑︂
j=1

θ2i,j

⎞⎠1/2

The L2 regularizer is first applied to each element of the row vector. Then, the L1 regularizer

is applied to the L2 norm of each row. C3 is a constant that controls the ratio of the loss and

regularization, and it is selected based on internal cross-validation. The L21 regularizer enforces
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joint sparsity between rows (i.e., features), but small numbers are allowed if the feature row is

non-zero – e.g., in Equation 4.1, feature 3 and 5 are selected for all time intervals. Our learners

consider this L21 regularization. Note that if L21 regularization is applied, the L2 regularization

and time smoothing term will not be used (see Figure 6.3 in Chapter 6). Also, note that the L21

regularizer is an embedded feature selection method that is applied during the training process. It

is different from other feature selection methods that we are going to introduce in this thesis, which

are applied before training a prediction model.

θ = Feature

Time Interval

t1 t2 t3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f1 0.000 0.000 0.000

f2 0.000 0.000 0.000

f3 0.001 −0.021 0.011

f4 0.000 0.000 0.000

f5 −0.017 0.008 0.032

(4.1)
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Chapter 5

Identifying Time-Dependent Effect of

Features

The effect of the features might change at different times. For example, the patient’s blood pressure

might be important in the first three days after surgery, but it might not be relevant if the patient

lives through the first three days. In our task setting, the value of the covariate is the single

measurement taken when the prediction is made, which means it does not change; however, the

effect of that covariate can vary over (future) times. The time-varying influence of a feature is

contrary to the proportional hazard used by the Cox model. Survival models that correctly identify

and incorporate the time-dependent effect of features could be more accurate when the survival

data violate the proportional hazard assumption. Also, identifying which features are relevant at

each future time can help researchers to further understand a factor’s prognostic impact at different

stages of a disease.

Discrete hazard is perfect for identifying feature effect at a particular time interval because the

discrete hazard is the event rate at time interval ti conditional on surviving at the start of the time

interval, which is unrelated to the previous or future times. This property implies that the discrete

hazard of a time interval is independent to other times – e.g., the discrete hazard in the first 30

days can be irrelevant in [30,60) days. The basic discrete hazard model independently estimates
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the discrete hazard in each time interval, so it can serve as a tool to identify feature importance at

different times. When using logistic regression in a discrete hazard model, the model’s parameters

can be interpreted as the feature importance to the hazard in that time interval. In other words,

how relevant is the feature to the patient’s risk at each time?

Unlike the discrete hazard, the other related quantity, probability mass function (PMF), is

indirectly related to other times. The PMF is the event density, so the denominator of the PMF

is the summation of all the PMF values from every time interval. When the event density of the

first month becomes higher, the chances that the event happened at other times will be lower. We

cannot distinguish if a factor kills the subject in the first month or makes the subject survive after

the third month because both cases will have high PMF in the first month and low PMF after the

third month.

We explore using a discrete hazard model as a feature selection method. First, we learn a linear

discrete hazard model with logistic regression as the regressor to select a subset of features from all

input features. Then we use those features to train a discrete-time survival model. We develop two

feature selection methods. The first method selects features for individual time intervals (“time

interval” version). For example, feature A and B are selected for the time interval [0,30), and

feature C is selected for the time interval [30,60). The selection criteria are based on the value of

the parameters of a learned linear discrete hazard model (with L1 regularizer), where each single

parameter value except the bias value can be associated with a feature for a time interval. If the

value of the parameter is non-zero, the feature is included for that time interval. In practice, we

define a parameter as non-zero if its absolute value is larger than a threshold. The second method

selects a single set of features for all times (“all-times” version). If the feature is selected for at least

a time interval by the discrete hazard model, all the time intervals will include that feature. In the

case of the earlier example, features A, B, and C are selected for every time interval. After selecting

the relevant features, we use those features as the input to train four discrete-time models in this

thesis for prediction (using MLP as regressors). For the time interval version, each regressor will

only train on features that are selected for that time interval. We apply this to various databases.

We also generate semi-synthetic data, which we make up a new covariate that is only relevant for
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a specific time interval to see if the method can identify the covariate’s effect (see Section 6.4.3).
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Chapter 6

Empirical Evaluation

Our empirical study explores discrete-time survival models in three aspects. First, we use them as

prediction models. Several approaches for some issues of discrete-time survival models, such as the

time-split methods and time smoothing mechanism, are included as hyperparameters and tuned by

our superLearner. Second, we pair our discrete hazard feature selection methods with prediction

models to compare the performance. Third, we generate semi-synthetic data and visualize the

feature’s importance identified by the linear discrete hazard model.

6.1 Evaluation Metrics

6.1.1 Integrated Brier Score

The integrated Brier score (IBS) is the integral of single-time Brier scores [5] over time. The Brier

score measures the accuracy of probabilistic predictions. In the survival prediction task, it measures

the survival probability at time t. Let S(t |xk) be the predicted survival probability at time t for

subject k. The Brier score at time t is (1−S(t |xk))2 if the subject is alive, and is (0−S(t |xk))2 if

the subject is dead. The Brier score does not include patients censored before time t. A propensity

score that compensates for the censored subjects called the inverse probability of censoring weights

1
G(t) , where G(t) is the not censored probability that is estimated by the Kaplan-Meier estimator
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(but with the censor bit flipped). The Brier score that includes the censored instances can be

written as:

BS(t,D) =
1

N

N∑︂
k=1

[︃
(0− S(t |xk))2 · 1tk≤t,δk=1

G(tk)
+

(1− S(t |xk))2 · 1tk>t

G(t)

]︃

where tk is the event time for subject k (both death and censor, a continuous variable in this

section) and t is the time of interest. The first indicator function includes only uncensored subjects

who died before or at time t, and the second one includes subjects alive at time t (regardless of

being dead or censored after time t). Recall that δk indicates whether the survival time for subject

k is censored (δk = 1 is uncensored, δk = 0 is censored). The notation N is the total number of

data instances.

Let τ be the maximum event time in the survival dataset. The IBS is the integral of the Brier

score over time t:

IBS(D) =
1

τ

∫︂ τ

0
BS(t , D) dt

Figure 6.1 illustrates the concept of IBS for a single instance. The IBS is the weighted square

distance of the green area. We want small IBS because the predicted curve will be closer to the

observation, which becomes the step function dropping at event time tk (the red line). The IBS is

known to be a proper scoring rule under the assumption that censoring is independent of the co-

variates and the censoring distribution is perfectly estimated [39], which means that a probabilistic

prediction will uniquely minimize the score (IBS) for a set of observations if the prediction equals

the observations’ underlying distribution. The IBS measures the overall performance across the

entire curve instead of a single time point. The disadvantage of the integrated Brier score is that

the censored patients are not included after their censoring time. The evaluation heavily relies on

the few uncensored subjects if most data are censored.
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Figure 6.1: The figure illustrates the integrated Brier score (IBS) for a single patient. The blue
curve is the predicted survival curve. The red curve is the observation (a step function). The IBS
measures the square distance of the green area.

6.1.2 D-Calibration

Distributional calibration (D-calibration), proposed by Haider et al. [13], measures probability

calibration of the entire set of survival curves. The D-calibration first collects the predicted survival

probabilities corresponding to the actual event times – S(dk |xk), where dk is the death time for

patient xk – and puts them into multiple evenly divided probability interval bins (we use the

number of 10, so the bins will be [0, 0.1], (0.1, 0.2], ..., (0.9, 1]). Figure 6.2 (right) shows an example

histogram of the collected survival probabilities. If the model is calibrated, the number of instances

should spread uniformly across all the bins. The censored patients are spread to the remaining bins

after the censoring probability. For example, if the survival probability at the censoring time ck is

0.2, the (0.1, 0.2] bin gets one-half, and the [0, 0.1] gets one-half (see subject C in Figure 6.2). We

use Pearson’s chi-squared test to decide whether the bins appear uniform, declaring a model to be

D-calibrated if the p-value is larger than 0.05. D-calibration is used to examine the calibration of a

survival model. However, it does not evaluate the model’s prediction on individual patients – i.e.,

32



Figure 6.2: Illustration of Distributional calibration (D-calibration). The right figure shows the
histogram of the predicted probabilities of event times. The survival probabilities at true death
time are collected (left figure) and put into 10 probability bins (right figure). Subject C is censored
in the data, so the count is spread into the rest of the survival probability bins after the predicted
survival probability of censoring time cc (i.e., bins with lower probabilities than S(cc |xc), which
are (0.1,0.2] and [0,0.1]). Then, we run a statistical test on those 10 bins to see if the collected
survival probabilities are uniformly distributed.

it does not care if the prediction is for patient A, B, or C, but only looks at the entire population.

For example, the Kaplan-Meier estimation is asymptotically D-calibrated [13] but provides a single

prediction for the entire group without discriminating among individual patients.

6.2 Datasets

We experiment on nine real-world survival datasets – see Table 6.1. The BRCA, GBM, GBMLGG,

READ, and THCA datasets are from The Cancer Genome Atlas (TCGA) Research Network, and

the Northern Alberta Cancer Dataset (NACD) is a cancer survival dataset that combines many

different types of cancer. The number of subjects of these datasets ranged from 171 to 2402, the

censoring rates ranged from 17.5% to 96.8%, and the number of features ranged from 9 to 57. In

addition, we have two high-dimensional datasets with thousands of features: Dutch Breast Cancer

Dataset (DBCD) [50] and Diffuse Large B-Cell Lymphoma (DLBCL) [30]. The eight datasets

mentioned above are included by Haider et al. [13] to evaluate survival models. We consider the
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Dataset #Instances #Features %Censored Comment

BRCA 1097 57 86.1%

GBM 595 9 17.5%

GBMLGG 1110 14 44.4%

READ 171 35 83.6%

THCA 503 39 96.8%

NACD 2402 51 36.6%

DBCD 295 4919 73.2% high-dimensional

DLBCL 240 7399 42.5% high-dimensional

MIMIC 293,907 10 97.9% large dataset

Table 6.1: Nine real-world survival datasets.

above eight datasets to be small datasets (low number of instances). Finally, we include the MIMIC

dataset for hospital mortality [19] as it has hundreds of thousands of instances (large dataset) and

10 features. We consider the seven datasets other than DBCD and DLBCL as low-dimensional

(BRCA, GBM, GBMLGG, READ, THCA, NACD, and MIMIC).

6.3 Hyperparameters

All our models are based on multilayer perceptrons (MLP), where we use an MLP with a single

hidden layer as the regressor for each time interval. The hidden layer size is 2
3(#input features+

#output time bins) with a maximum of 50 nodes. We wrap each discrete-time survival model

by a superLearner to select the hyperparameters. Six hyperparameters are tuned in our survival

prediction models (see Figure 6.3): (1) activation function for the MLP, (2) time-split method, (3)

regularization method (smoothing plus L2 regularization or L21 norm). If the superLearner chooses

smoothing plus L2 regularization, we tune (4) regularization constant C1 and (5) smoothing factor

C2. If the superLearner chooses L21 regularization, we tune (6) regularization constant C3. We use

grid search to find the best combination. The superLearner selects hyperparameters using 3-fold

internal cross-validation based on the log-likelihood. We use the discrete version log-likelihood

described in Chapter 3. However, when selecting the time-split method, the log-likelihood is not

well defined because the time intervals are defined differently when comparing different models. In

that case, the log-likelihood for internal cross-validation is replaced by an approximation, which
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Figure 6.3: The hyperparameters are tuned by the superLearner. Note the different regularization
methods (smoothing plus L2 regularization or L21 norm) have different hyperparameters.

calculates with many small time intervals, and the small time interval partition is the same for all

evaluations.

Each superLearner trains 3× 3× (6× 3+ 6)× 3 internal folds = 648 models. In Section 6.4.1,

we tested 4 models on 9 datasets using 5-fold cross-validation; 116,640 models were trained. In

Section 6.4.2, we only tuned the regularization hyperparameters (C1, C2, C3) and also the threshold

(with three options) for each feature selection method. Each superLearner trains (6 × 3 + 6) ×

3 internal folds× 3 thresholds = 216 models. We tested 5 feature selection methods paired with

4 models on 9 datasets using 5-fold cross-validation; 194,400 models were trained.
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D-calibration

Dataset Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task AFT Cox-KP RSF

BRCA 0.929 0.987 0.982 0.971 0.845 0.999 0.645

GBM 0.907 0.652 0.644 0.234 0.000 0.185 0.002

GBMLGG 0.425 0.987 0.912 0.996 0.034 0.171 0.003

READ 0.999 0.998 0.999 0.888 0.000 0.999 0.999

THCA 0.999 0.999 0.999 0.999 0.602 0.999 0.999

NACD 0.875 0.743 0.221 0.092 0.000 0.000 0.000

DBCD 0.959 0.774 0.461 0.999 0.000 0.948 0.951

DLBCL 0.971 0.810 0.133 0.993 0.000 0.925 0.460

MIMIC 0.026 0.997 0.000 0.996 0.906 0.643 0.000

Total 8/9 9/9 8/9 9/9 3/9 8/9 5/9

Table 6.2: The D-calibration for the discrete-time survival models and some continuous survival
prediction models. The table shows the p-value for D-calibration. The bold texts are the D-
calibrated models (those with p-values larger than 0.05). We use Weibull distribution for the AFT
model.

6.4 Experiment Results

The results are done by stratified 5-fold cross-validation to ensure there are uncensored subjects in

each fold. The IBS is the average of 5 folds of evaluations. The D-calibration is a single evaluation

on the aggregate of the predictions from all folds.

6.4.1 Prediction Models Results

We consider prediction tasks by using discrete-time survival models. First, we show that the

discrete-time survival models predict survival distribution more accurately by evaluating the D-

calibration. Table 6.2 compares the discrete-time survival models and several continuous time

models: AFT, Cox-KP, and RSF (described in Section 2.2) using D-calibration. The multi-task

and hazard multi-task models are D-calibrated on all datasets, better than the continuous models.

The simple multinomial and discrete hazard models are D-calibrated on eight datasets, higher or

tied with the continuous model. This result coincides with Haider et al. [13].

Next, we compare the discrete-time survival models with respect to IBS. Figure 6.4 shows

the IBS of the four discrete-time survival models, and Table 6.3 presents the p-value of the re-
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Figure 6.4: The IBS for four discrete-time survival prediction models on nine datasets. The error
bars are 95% confidence intervals. Detailed results in Appendix C.1.

peated measure ANOVA tests (all models use the same cross-validation folds). We use the Holm

method [15] to obtain the corrected p-values for multiple tests. The result shows statistically sig-

nificant differences in GBMLGG and MIMIC datasets. A pairwise comparison using paired t-test

(corrected using the Holm method for multiple tests, detailed results in Table 6.4 and 6.5) shows

that for the GBMLGG dataset, only the multi-task model performs statistically better than the

discrete hazard model. There are no performance differences between other comparisons. For the

MIMIC dataset, simple multinomial models perform statistically better than the other models.
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Prediction Models Statistical Tests

Dataset Repeat Measure ANOVA Corrected P-Value Winner

BRCA 0.710 1.000 NA

GBM 0.462 1.000 NA

GBMLGG 9× 10−4 0.007 Simple Multinomial, Multi-Task,
Hazard Multi-Task

READ 0.473 1.000 NA

THCA 0.852 1.000 NA

NACD 0.084 0.588 NA

DBCD 0.863 1.000 NA

DLBCL 0.101 0.606 NA

MIMIC 3× 10−5 4.5× 10−4 Simple Multinomial

Table 6.3: The repeated measure ANOVA tests for IBS for four discrete-time survival models. The
ANOVA test is used to see if there are differences between the means of multiple groups. The table
shows the p-value for each dataset. The corrected p-values are done by using the Holm method.
For datasets with corrected p-value less than 0.05 (bold texts), we perform pairwise comparisons
using the paired t-test to decide the winner (multiple tests corrected, details in Table 6.4 and 6.5).

Prediction Models T-Tests for GBMLGG

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

Simple Multinomial NA 0.072 1.000 0.072

Multi-Task NA 0.024 1.000

Discrete Hazard NA 0.065

Hazard Multi-Task NA

Table 6.4: The pairwise comparison of paired t-test of IBS for four discrete-time survival models
on the GBMLGG dataset. The p-values are corrected by the Holm method for multiple tests. The
bold texts are p-values less than 0.05.

Prediction Models T-Tests for MIMIC

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

Simple Multinomial NA 0.036 0.045 0.045

Multi-Task NA 0.045 0.045

Discrete Hazard NA 0.091

Hazard Multi-Task NA

Table 6.5: The pairwise comparison of paired t-test of IBS for four discrete-time survival models
on the MIMIC dataset. The p-values are corrected by the Holm method for multiple tests. The
bold texts are p-values less than 0.05.
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6.4.2 Discrete Hazard Feature Selection Results

We consider five feature selection methods, including the two discrete hazard feature selection

methods introduced in this thesis: (1) feature selection for each time interval (time interval FS)

and (2) feature selection for all time intervals (all-times FS), and other feature selection methods for

survival data: (3) minimum redundancy - maximum relevance (mRMR) [60], (4) multivariate Cox

(multi-cox), (5) univariate Cox (uni-cox) (see Appendix B for the description of these algorithms).

We pair each feature selection method with survival prediction models to see how they affect the

prediction performance. These feature selection algorithms will select a subset of features to train

four discrete-time survival models introduced in this thesis (the feature selection is done in-fold for

evaluation). For time interval FS, the selected features are only used for specified time intervals.

To compare the IBS performance, first, we use the repeated measure ANOVA test to compare

different feature selection methods along with no feature selection. The p-values are corrected

using the Holm method across low or high dimensional data for each prediction model (e.g., results

using low-dimensional data and a simple multinomial model are grouped as one family). We then

performed post-hoc paired t-tests to compare with and without feature selection (the p-values are

also multiple tests corrected). Figure 6.5 shows the IBS results, and Tables 6.6 and 6.7 show the

statistical test results. No statistically significant differences are found between with and without

feature selection for low and high dimensional datasets. (Note that the paired t-tests only compare

with and without feature selection, not all possible pairs. The results could be different from the

ANOVA test.)

Figure 6.6 shows the average percentage of the number of features after the feature selections

for low-dimensional data (BRCA, GBM, GBMLGG, READ, THCA, NACD, MIMIC) and high-

dimensional data (DBCD and DLBCL). The number of features for time interval FS is replaced

by the summation of the number of features of each time interval (each regressor only needs to

consider the features that are selected for its time interval). The result shows feature selection is

more effective in high-dimensional data than low-dimensional data by selecting a smaller percentage

of the number of features. For low-dimensional data, the multivariate Cox has the lowest percentage
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Feature Selection Methods Statistical Tests

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

BRCA 1.000 1.000 1.000 1.000

GBM 0.128 0.084 1.000 0.145

GBMLGG 0.365 1.000 1.000 1.000

READ 1.000 1.000 1.000 1.000

THCA 0.336 1.000 0.945 1.000

NACD 1.000 1.000 1.000 1.000

MIMIC 1.000 1.000 1.000 1.000

DBCD 0.028 0.048 0.562 0.196

DLBCL 0.145 0.170 0.562 0.389

Table 6.6: The repeated measure ANOVA tests for IBS for 5 feature selection methods along
with no feature selection. All feature selection methods are paired with four survival models for
prediction. The table shows the p-value of the tests for each dataset. The p-values are corrected
for multiple tests. The bold texts are corrected p-values that are less than 0.05. The result shows
a significant difference in DBCD data when using simple multinomial and multi-task models. We
then perform paired t-tests in Table 6.7.

Feature Selection Methods T-Test for DBCD Dataset

Model Time Interval FS All-Times FS MRMR FS Multi-Cox FS Uni-Cox FS

Simple Multinomial 0.062 1.000 1.000 0.080 1.000

Multi-Task 0.190 0.560 1.000 1.000 1.000

Table 6.7: The paired t-test of IBS for five feature selections compared with no feature selection
on the DBCD dataset. No significant difference between with and without feature selection. Note
that we only compare between feature selection and no feature selection results, not all possible
pairs of the six groups.

of the number of features (47%). For high-dimensional data, the MRMR and multivariate Cox are

both very effective by selecting 1% and 0.5% of the features. The hazard multi-task model benefits

the least from our discrete hazard feature selection, with more selected features than other models

for high-dimensional data. Both versions of discrete hazard feature selection works effectively on

high-dimensional data by selecting 15% of features for time interval FS, and 34% of features for

all-times FS (we consider the lowest number between different prediction models).
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Figure 6.5: The IBS for five feature selections with four discrete-time survival prediction models.
The error bars are 95% confidence intervals. Detailed results in Appendix C.2
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Figure 6.6: The plot shows the average percentages of the number of features after feature selection
for low-dimensional data (BRCA, GBM, GBMLGG, READ, THCA, NACD, MIMIC) and high-
dimensional data (DBCD and DLBCL). The number of features for time interval feature selection is
calculated by the summation of the number of features of each time interval instead. Because there
are three different thresholds for feature selection (tuned by internal cross-validation), the number
of selected features might be different when paired with different survival prediction models.
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IBS for Semi-Synthetic Data

Data Linear Discrete Hazard Model Kaplan-Meier Estimator

NACD 1 0.129 (0.002) 0.145 (0.001)

NACD 2 0.118 (0.002) 0.142 (0.001)

NACD 3 0.120 (0.001) 0.145 (0.001)

Table 6.8: The IBS scores (and standard deviations) for the linear discrete hazard model and the
baseline model Kaplan-Meier estimator on the semi-synthetic dataset. The number at the end of
the data name indicates the time interval that is used to generate the semi-synthetic data.

6.4.3 Semi-Synthetic Data Results

We produce semi-synthetic data using the NACD dataset to test our discrete hazard feature selec-

tion method for identifying important features at different times. We make up a new covariate xf

that affects the chance of dying in a time interval of ta to tb by modifying part of the outcomes.

The patient with a high xf value is more likely to die in [ta, tb], and a lower xf value is more likely

to die after this time interval. Events before this time interval are not affected. The new covariate

xf is drawn from a uniform distribution from 0 to 1, related to the patient’s chance of dying within

the given time interval. The data-generating process is described in Figure 6.7. Other covariates

remain unchanged and are included in the training data.

We consider three time intervals of [ta, tb]: (1) zero to the first quartile of the death event

times, (2) first quartile to median, and (3) median to the third quartile. We learned a linear

discrete hazard model based on logistic regression for each semi-synthetic dataset (L1 regularizer

and time smoothing term are included). The absolute values of the parameters that correspond

to the new covariate xf , which represent the feature importance for each time interval, are shown

in Figure 6.8. The red bar in the figure is the ground truth, which is [ta, tb]. We see an increase

in feature importance roughly between red bar periods. Table 6.8 shows the performance of the

linear discrete hazard model on the semi-synthetic dataset. Semi-synthetic data generated from

other real-world datasets are in Appendix C.3.
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Figure 6.7: The diagram illustrates our process for generating semi-synthetic data. A new covariate
xf is generated by uniform distribution U(0, 1). The higher xf means the subject is more likely to
die between ta and tb. The subjects that survive longer than ta in the original data are divided into
two groups based on their original event time told: (1) subjects originally died in [ta, tb], and (2)
subjects originally died after tb. The first group will have 1−xf probability to be moved from [ta, tb]
to after tb with a new event time tnew (i.e., xf probability no change, which means the patient’s
chance of dying in [ta, tb]). and the second group will have xf probability to be moved from after
tb to [ta, tb]. The new event times are randomly selected from the specified time interval. Survival
times that are not changed remain as before. Survival times before ta are not changed.

Figure 6.8: Each plot shows the feature importance of a new covariate xf from a linear discrete
hazard feature selection model trained on semi-synthetic data. The y-axis is the absolute value of
the parameter, and the x-axis is the time. Each dot on the line is a time-split point, which is the
end of the time interval. The red bar is the ground truth, which is [ta, tb]. We consider three pairs
of ta and tb.
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Chapter 7

Discussion

We compare the four discrete-time survival models with different parameterization methods. The

results show a statistically significant difference in GBMLGG and MIMIC datasets (2 out of 9),

with respect to the integrated Brier score. No performance differences are found for the learners

for the other datasets. Based on this result, we conclude that there is no statistically significant

difference between the four parameterization methods in general; the differences only happen in

specific datasets and not enough evidence to support that any model is superior to others.

The feature selection methods that we considered did not improve the IBS performance of

our survival models. However, the result also does not show statistically significant differences

compared to not using feature selection for either low-dimensional nor high dimensional datasets.

This result suggests that the prediction performance is not affected by filtering the feature with

feature selection methods before training a prediction model.

The required number of features is significantly reduced after feature selection for high-dimensional

data (more than 50%). This suggests that one can use the feature selection to reduce the number

of input features without compromising the IBS performance. The high-dimensional data with

thousands of features might not be compatible with some survival prediction model implementa-

tions because of the hardware limitation. Or, one might want to reduce the amount of time to

train a prediction model. Using the feature selection method can reduce the number of features
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while maintaining a similar model performance. All the feature selection methods mentioned in

this thesis are much less time-consuming than training MLPs. Note that our time interval feature

selection also reduces the model’s parameters even though the overall input features might not

change, because the regressor of each time interval only needs to consider the features that are

selected.

The multi-Cox feature selection performs the best in reducing the number of features (47%)

for the low-dimensional datasets. MRMR and multi-Cox are the two most effective algorithms on

high-dimensional datasets by selecting 1% and 0.5% of the features. Both these feature selection

methods consider the relation between covariates. Our discrete hazard feature selections are not

very effective on low-dimensional data in reducing the number of features. However, they are

effective for high-dimensional data by selecting 15% and 34% of the features. The time interval

version reduces more than the all-times version.

We produce semi-synthetic data using the NACD dataset to see if our discrete hazard feature

selection method can identify feature importance at different times. The result shows that our

method successfully identified the new covariate for the given time interval by having the absolute

value higher than zero of the corresponding parameters. This technique can inform clinicians that

patients with certain descriptions might be at high risk at certain stages. For example, imagine

the variable is the patient’s weight. Our feature selection method would identify that patients with

abnormal body weight will have an increased risk between 10 to 20 months (as an example) after

being diagnosed with cancer. They might need to arrange more resources for that patient during

that period.

We note that failure to reject the null hypothesis (the null hypothesis is that the means of group

A and group B are the same) does not mean the null hypothesis is proven to be correct. However,

this indicates that researchers are unlikely to find significant differences when conducting studies

using a framework similar to ours.
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Chapter 8

Conclusion

8.1 Future Works

The discrete-time survival prediction framework can easily adopt machine learning models that

classify discrete labels. For example, the multi-task model is similar to a conditional random field

widely used in natural language processing for sequence labelling. It might be worth exploring other

sequence labelling techniques, such as RNN or LSTM. After the sequence of a patient’s survival

status is labelled, it can be transferred to a PMF in the same way as the multi-task model, so we

can build a survival curve using PMF.

This analysis explores only four algorithms (one pair for each of PMF-ISD and hazard-ISD) and

only considers nine different datasets. It would be useful to continue this exploration – involving

other learning algorithms, such as some other continuous models that are proposed in more recent

(e.g., S-MDN [14], SCA [7]), and other datasets for different scenarios, such as cardiovascular

deceases or hospital readmission time.
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8.2 Contributions

We explored the discrete-time individual survival distribution models and illustrated two categories

of the models: PMF-ISD and hazard-ISD, according to how they build survival curves. We develop

four discrete-time survival prediction models: simple multinomial, multi-task (MTLR), discrete

hazard, and hazard multi-task models. We empirically compare these four survival prediction

models with respect to IBS on nine real-world datasets using our superLearner, which uses internal

cross-validation to search for the best hyperparameter setting thoroughly. Next, we explore the

feature selection methods for survival data, including our discrete hazard feature selection, and

empirically evaluate them by pairing the feature selection with discrete-time survival prediction

models. Finally, we generate semi-synthetic data to demonstrate the plot of feature importance

for different future times using the linear discrete hazard model. The result shows no statistical

difference between the four models with respect to the integrated Brier scores. All the feature

selection methods we consider produce models with similar IBS performance to no feature selection

(i.e., no statistically significant differences) but succeeded in reducing the number of features. The

multivariate Cox and MRMR feature selections work most effectively by selecting the least number

of features while minimizing information loss. Our two discrete hazard feature selections also

effectively reduce the number of features for high-dimensional datasets.
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Appendix A

Additional Proof for Censoring

Assumptions

A.1 Random Censoring and Independent Censoring Assumptions

Here, we show that if random censoring holds, then independent censoring will also hold. Recall

that T is the random variable for survival time, and C is the random variable for censoring time.

The independent censoring assumption essentially means that the future survival time of the cen-

sored population is equal to that of all the surviving population regardless of its censoring status

conditional on covariate X – that is:

P (T = t | T ≥ u, C = u, X ) = P (T = t | T ≥ u, X ) (A.1)
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holds for all 0 < u ≤ t. Given that T and C are conditional independent given X (i.e., T ⊥⊥ C | X),

we can prove independent censoring by showing Equation A.1 will be true:

P (T = t | T ≥ u, C = u, X ) =
P (T = t, T ≥ u, C = u |X )

P (T ≥ u, C = u |X )
(A.2)

=
P (T = t, T ≥ u |X )P (C = u |X )

P (T ≥ u |X )P (C = u |X )
(A.3)

=
P (T = t, T ≥ u |X )

P (T ≥ u |X )

= P (T = t | T ≥ u, X ) (A.4)

Line A.2 and A.4 follows based on P (A |B,C ) = P (A ,B | C )
P (B | C ) . The numerator and denominator of

Line A.3 follows because T ⊥⊥ C | X.

A.2 Hazard-ISD and Independent Censoring

Here, we show that the data inclusion criteria for hazard-ISD models comply with the independent

censoring assumption. Recall that T is the random variable for survival time, and C is the random

variable for censoring time. We show this in the discrete-time setting, so notations tu and ti

represent time intervals. For every 0 < u ≤ i:

P (T ∈ ti | T ≥ ti, C ∈ tu, X ) =
P (T ∈ ti, T ≥ ti, C ∈ tu, X )

P (T ≥ ti, C ∈ tu, X )

=
P (T ∈ ti, T ≥ tu, C ∈ tu, X )

P (T ≥ ti, T ≥ tu, C ∈ tu, X )

=
P (T ∈ ti | T ≥ tu, C ∈ tu, X )P (T ≥ tu, C ∈ tu, X )

P (T ≥ ti | T ≥ tu, C ∈ tu, X )P (T ≥ tu, C ∈ tu, X )

=
P (T ∈ ti | T ≥ tu, C ∈ tu, X )

P (T ≥ ti | T ≥ tu, C ∈ tu, X )
(A.5)

For the numerator, the independent assumption implies that:

P (T ∈ ti | T ≥ tu, C ∈ tu, X ) = P (T ∈ ti | T ≥ tu, X ) (A.6)
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For the denominator, given that all the time intervals are mutually exclusive:

P (T ≥ ti |T ≥ tu, C ∈ u, X ) =
m∑︂
j=i

P (T ∈ tj |T ≥ tu, C ∈ u, X )

=

m∑︂
j=i

P (T ∈ tj |T ≥ tu, X ) (A.7)

= P (T ≥ ti |T ≥ tu, X )

Recall that m is the total number of time intervals. Line A.7 follows because Equation A.6.

Equation A.5 becomes:

P (T ∈ ti | T ≥ tu, C ∈ tu, X )

P (T ≥ ti | T ≥ tu, C ∈ tu, X )
=

P (T ∈ ti | T ≥ tu, X )

P (T ≥ ti | T ≥ tu, X )

= P (T ∈ ti | T ≥ ti, X )

Thus, we prove that:

P (T ∈ ti | T ≥ ti, C ∈ tu, X ) = P (T ∈ ti | T ≥ ti, X )

for every 0 < u ≤ i. Again, the time intervals are mutually exclusive, which implies that:

P (T ∈ ti | T ≥ ti, C ≤ ti, X ) = P (T ∈ ti | T ≥ ti, X )

which also implies that:

P (T ∈ ti | T ≥ ti, C > ti, X ) = P (T ∈ ti | T ≥ ti, X )
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Appendix B

Other Feature Selection Methods for

Survival Data

B.1 Minimal Redundancy Maximal Relevance Feature Selection

The minimum redundancy - maximum relevance (mRMR) [60] algorithm ranks the importance of

features by maximizing relevance to the target and minimizing the correlation to other features.

We employ a mRMR C-index version1 [40] that uses the C-index as the relevant measure. The

mRMR algorithm works in multiple iterations, selecting one feature at a time according to a score

assigned to each feature at each iteration. The score for feature fi for iteration j is calculated by:

scorej(fi,D) = relevant−redundancy =

[︃(︂
2 · C-index(fiD, tD, δD)− 1

)︂2
]︃
−

⎡⎣ 1

j-1

∑︂
s∈Sj−1

corr(fi, s)
2

⎤⎦
where fiD is a vector that contains the value of feature fi for all subjects in dataset D, tD is a

vector of the survival or censoring times for all the subjects in dataset D, and δD is the vector of

censoring bits. Sj−1 is the set of features already selected until iteration j − 1, and corr is the

Pearson correlation. The C-index is computed using the feature value of a single fi as the risk

1This method is introduced in the survcomp R package. They didn’t document the details of the method, so the
following explanation is obtained by reverse engineering the codebase.
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score. Note that the C-index is shifted and squared, so both positive and negative correlation is

captured and scaled the same as the square of correlations. In our implementation, the number of

selected features is decided by internal cross-validation.

B.2 Multivariate Cox Feature Selection

The multivariate Cox feature selection (i.e., multivariate Cox regression analysis) selects multiple

features simultaneously by fitting a Cox model with all the features. The feature is selected if its

corresponding parameter in the model is different from zero. The multivariate Cox model can be

written as:

h(t |xk)
h0(t)

= exp(xk1 · β1 + xk2 · β2, ...)

where h(t |xk) and xk is the hazard and covariate vector for subject k, respectively, and h0(t) is

the baseline hazard. We select the non-zero value of the fitted parameter vector β and choose

the corresponding features. In our implementation, a parameter is non-zero if its absolute value is

larger than a threshold, which is selected by internal cross-validation based on log-likelihood.

B.3 Univariate Cox Feature Selection

The univariate Cox feature selection (i.e., univariate Cox regression analysis) selects each feature

separately by fitting a single feature to a Cox model. The feature is selected if the corresponding

parameter is statistically significant not zero. Specifically, a fitted Cox model for a single feature i

can be written as:

h(t |xki)
h0(t)

= exp(xki · βi)

where h(t |xki) is the hazard, h0(t) is the baseline hazard, and xki is the i-th feature for subject

xk. We fitted the parameter βi and computed its standard error, then used Wald statistical test to

decide whether βi is different from zero. In our implementation, the p-value is decided by internal

cross-validation based on log-likelihood.
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Appendix C

Detailed Empirical Results

C.1 Prediction Model Results

Dataset Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

BRCA 0.223 (0.045) 0.229 (0.045) 0.221 (0.045) 0.228 (0.050)

GBM 0.069 (0.008) 0.068 (0.008) 0.069 (0.008) 0.068 (0.008)

GBMLGG 0.108 (0.011) 0.100 (0.009) 0.107 (0.012) 0.100 (0.009)

READ 0.118 (0.015) 0.125 (0.032) 0.123 (0.015) 0.129 (0.029)

THCA 0.044 (0.013) 0.043 (0.015) 0.039 (0.001) 0.040 (0.018)

NACD 0.140 (0.004) 0.141 (0.004) 0.142 (0.003) 0.142 (0.003)

DBCD 0.140 (0.015) 0.141 (0.024) 0.141 (0.016) 0.146 (0.017)

DLBCL 0.223 (0.020) 0.223 (0.022) 0.252 (0.050) 0.220 (0.012)

MIMIC 0.228 (0.118) 0.343 (0.106) 0.313 (0.105) 0.327 (0.101)

Table C.1: The IBS scores (and standard deviations) for four discrete-time survival models. Plotted
on Figure 6.4.
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Dataset AFT Cox-KP RSF KM

BRCA 0.215 (0.060) 0.196 (0.029) 0.219 (0.033) 0.190 (0.015)

GBM 0.070 (0.007) 0.070 (0.008) 0.109 (0.109) 0.078 (0.006)

GBMLGG 0.100 (0.005) 0.101 (0.007) 0.160 (0.019) 0.148 (0.012)

READ 0.202 (0.043) 0.144 (0.041) 0.125 (0.024) 0.124 (0.003)

THCA 0.196 (0.252) 0.035 (0.012) 0.038 (0.006) 0.041 (0.001)

NACD 0.142 (0.005) 0.142 (0.004) 0.148 (0.003) 0.188 (0.002)

DBCD 0.480 (0.171) 0.138 (0.009) 0.136 (0.014) 0.015 (0.002)

DLBCL 0.490 (0.066) 0.218 (0.018) 0.228 (0.025) 0.232 (0.016)

MIMIC 0.226 (0.115) 0.211 (0.058) 0.342 (0.051) 0.221 (0.042)

Table C.2: The IBS scores (and standard deviations) for continuous survival models.
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C.2 Feature Selection Detailed Results

IBS: Feature Selection + Simple Multinomial Model

Dataset no FS Time Interval All-Times MRMR Multi-Cox Uni-Cox

BRCA 0.223 (0.045) 0.222 (0.046) 0.223 (0.045) 0.210 (0.050) 0.212 (0.033) 0.220 (0.037)

GBM 0.069 (0.008) 0.069 (0.008) 0.069 (0.007) 0.069 (0.007) 0.072 (0.008) 0.070 (0.009)

GBMLGG 0.108 (0.011) 0.106 (0.011) 0.106 (0.011) 0.106 (0.011) 0.107 (0.011) 0.114 (0.016)

READ 0.118 (0.015) 0.122 (0.013) 0.118 (0.017) 0.131 (0.027) 0.141 (0.052) 0.132 (0.045)

THCA 0.044 (0.013) 0.043 (0.012) 0.043 (0.011) 0.039 (0.010) 0.032 (0.006) 0.038 (0.010)

NACD 0.140 (0.004) 0.140 (0.004) 0.140 (0.004) 0.140 (0.004) 0.140 (0.003) 0.141 (0.004)

DBCD 0.140 (0.015) 0.159 (0.035) 0.142 (0.021) 0.135 (0.013) 0.152 (0.020) 0.136 (0.024)

DLBCL 0.223 (0.020) 0.260 (0.042) 0.238 (0.026) 0.243 (0.027) 0.251 (0.038) 0.227 (0.017)

MIMIC 0.228 (0.118) 0.226 (0.113) 0.221 (0.103) 0.223 (0.113) 0.222 (0.092) 0.225 (0.110)

Table C.3: The IBS scores (and standard deviations) for feature selections integrated with the
simple multinomial model. Five feature selection methods are compared. These methods are
applied to 9 real-world datasets. plotted on Figure 6.5.

IBS: Feature Selection + Multi-Task Model

Dataset no FS Time Interval All-Times MRMR Multi-Cox Uni-Cox

BRCA 0.229 (0.045) 0.228 (0.045) 0.228 (0.046) 0.229 (0.048) 0.226 (0.049) 0.225 (0.045)

GBM 0.068 (0.008) 0.068 (0.009) 0.068 (0.009) 0.069 (0.008) 0.070 (0.009) 0.069 (0.009)

GBMLGG 0.100 (0.009) 0.099 (0.009) 0.099 (0.008) 0.100 (0.011) 0.100 (0.010) 0.101 (0.010)

READ 0.125 (0.032) 0.125 (0.031) 0.126 (0.036) 0.124 (0.025) 0.124 (0.028) 0.127 (0.034)

THCA 0.043 (0.015) 0.044 (0.014) 0.041 (0.016) 0.041 (0.015) 0.040 (0.009) 0.038 (0.006)

NACD 0.141 (0.004) 0.141 (0.004) 0.141 (0.004) 0.141 (0.004) 0.140 (0.003) 0.142 (0.004)

DBCD 0.141 (0.024) 0.174 (0.033) 0.157 (0.044) 0.138 (0.017) 0.148 (0.012) 0.138 (0.018)

DLBCL 0.223 (0.022) 0.272 (0.046) 0.259 (0.047) 0.232 (0.033) 0.256 (0.031) 0.230 (0.012)

MIMIC 0.343 (0.106) 0.342 (0.102) 0.339 (0.106) 0.343 (0.103) 0.344 (0.103) 0.338 (0.102)

Table C.4: The IBS score (and standard deviations) for feature selections integrated with multi-task
model. Five feature selection methods are compared. These methods are applied to 9 real-world
datasets. plotted on Figure 6.5.
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IBS: Feature Selection + Discrete Hazard Model

Dataset no FS Time Interval All-Times MRMR Multi-Cox Uni-Cox

BRCA 0.221 (0.045) 0.210 (0.039) 0.220 (0.047) 0.216 (0.048) 0.210 (0.042) 0.215 (0.047)

GBM 0.069 (0.008) 0.070 (0.009) 0.069 (0.007) 0.069 (0.009) 0.070 (0.008) 0.070 (0.009)

GBMLGG 0.107 (0.012) 0.110 (0.012) 0.112 (0.012) 0.111 (0.011) 0.112 (0.012) 0.111 (0.013)

READ 0.123 (0.015) 0.120 (0.020) 0.119 (0.016) 0.123 (0.021) 0.131 (0.026) 0.122 (0.025)

THCA 0.039 (0.001) 0.039 (0.002) 0.040 (0.001) 0.039 (0.001) 0.040 (0.001) 0.040 (0.002)

NACD 0.142 (0.003) 0.142 (0.003) 0.142 (0.003) 0.143 (0.004) 0.142 (0.003) 0.143 (0.004)

DBCD 0.141 (0.016) 0.166 (0.031) 0.150 (0.036) 0.142 (0.021) 0.147 (0.019) 0.151 (0.028)

DLBCL 0.252 (0.050) 0.262 (0.041) 0.255 (0.043) 0.233 (0.025) 0.274 (0.054) 0.235 (0.032)

MIMIC 0.313 (0.105) 0.304 (0.105) 0.309 (0.100) 0.321 (0.104) 0.314 (0.100) 0.306 (0.109)

Table C.5: The IBS scores (and standard deviations) for feature selections integrated with discrete-
hazard model. Five feature selection methods are compared. These methods are applied to 9 real-
world datasets. Plotted on Figure 6.5.

IBS: Feature Selection + Hazard Multi-Task Model

Dataset no FS Time Interval All-Times MRMR Multi-Cox Uni-Cox

BRCA 0.228 (0.050) 0.225 (0.044) 0.226 (0.048) 0.226 (0.050) 0.219 (0.041) 0.221 (0.045)

GBM 0.068 (0.008) 0.068 (0.009) 0.068 (0.009) 0.068 (0.008) 0.070 (0.009) 0.069 (0.009)

GBMLGG 0.100 (0.009) 0.101 (0.009) 0.101 (0.010) 0.100 (0.009) 0.102 (0.013) 0.100 (0.009)

READ 0.129 (0.029) 0.123 (0.032) 0.131 (0.032) 0.127 (0.036) 0.130 (0.035) 0.129 (0.033)

THCA 0.040 (0.018) 0.044 (0.018) 0.044 (0.020) 0.042 (0.021) 0.037 (0.012) 0.044 (0.018)

NACD 0.142 (0.003) 0.143 (0.004) 0.144 (0.004) 0.145 (0.004) 0.143 (0.002) 0.145 (0.006)

DBCD 0.146 (0.017) 0.160 (0.031) 0.144 (0.030) 0.141 (0.020) 0.160 (0.024) 0.135 (0.016)

DLBCL 0.220 (0.012) 0.240 (0.016) 0.237 (0.030) 0.230 (0.024) 0.249 (0.026) 0.234 (0.015)

MIMIC 0.327 (0.101) 0.325 (0.106) 0.328 (0.101) 0.328 (0.101) 0.332 (0.099) 0.327 (0.108)

Table C.6: The comparison of IBS scores (and standard deviations) for feature selections integrated
with hazard multi-task model. Five feature selection methods are compared. These methods are
applied to 9 real-world datasets. Plotted on Figure 6.5.
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Feature Selection

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

BRCA 0.310 0.642 0.443 0.596

GBM 0.026 0.012 0.397 0.022

GBMLGG 0.073 0.766 0.537 0.768

READ 0.410 0.961 0.369 0.909

THCA 0.056 0.704 0.135 0.177

NACD 0.370 0.251 0.896 0.453

MIMIC 0.866 0.230 0.541 0.559

DBCD 0.014 0.024 0.281 0.098

DLBCL 0.145 0.170 0.375 0.389

Table C.7: The repeated measure ANOVA tests for IBS for 5 feature selection methods along
with no feature selection. All feature selection methods are paired with four survival models for
prediction. The table shows the original p-value of the tests for each dataset.

Number of Selected Features: Simple Multinomial Model

#Features × #Time Bins #Features

Dataset no FS Time Interval no FS All-Times MRMR Multi-Cox Uni-Cox

BRCA 798 409 (51%) 57 57 (100%) 57 (100%) 6 (10%) 20 (35%)

GBM 99 99 (100%) 9 9 (100%) 5 (55%) 8 (88%) 8 (88%)

GBMLGG 364 364 (100%) 14 14 (100%) 14 (100%) 12 (85%) 10 (71%)

READ 490 291 (59%) 35 29 (82%) 27 (77%) 4 (11%) 21 (60%)

THCA 936 890 (95%) 39 39 (100%) 30 (76%) 4 (10%) 14 (35%)

NACD 2,550 2,350 (92%) 51 51 (100%) 51 (100%) 32 (62%) 49 (96%)

DBCD 93,461 10,434 (11%) 4,919 1,467 (29%) 50 (1%) 21 (0.4%) 1,927 (39%)

DLBCL 125,783 35,867 (28%) 7,399 2,866 (38%) 74 (1%) 40 (0.5%) 1,197 (16%)

MIMIC 320 320 (100%) 10 10 (100%) 8 (80%) 6 (60%) 10 (100%)

Table C.8: The number of features (and percentage) after feature selections paired with the simple
multinomial model. The number of features for the time interval version is shown by the number of
variables × total number of time intervals because different features are selected for different time
intervals.
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Number of Selected Features: Multi-Task Model

#Features × #Time Bins #Features

Dataset no FS Time Interval no FS All-Times MRMR Multi-Cox Uni-Cox

BRCA 798 409 (51%) 57 57 (100%) 52 (91%) 6 (10%) 20 (35%)

GBM 99 90 (90%) 9 9 (100%) 9 (100%) 9 (100%) 6 (66%)

GBMLGG 364 364 (100%) 14 14 (100%) 13 (92%) 12 (85%) 9 (64%)

READ 385 285 (74%) 35 29 (82%) 9 (25%) 4 (11%) 9 (25%)

THCA 936 369 (39%) 39 39 (100%) 20 (51%) 4 (10%) 14 (35%)

NACD 2,550 2,350 (92%) 51 51 (100%) 46 (90%) 32 (62%) 49 (96%)

DBCD 93,461 10,434 (11%) 4,919 1,467 (29%) 50 (1%) 21 (0.4%) 3,811 (77%)

DLBCL 125,783 35,867 (28%) 7,399 2,866 (38%) 74 (1%) 40 (0.5%) 1,771 (23%)

MIMIC 320 318 (99%) 10 10 (100%) 10 (100%) 5 (50%) 10 (100%)

Table C.9: The number of features (and percentage) after feature selections paired with multi-task
model.

Number of Selected Features: Discrete Hazard Model

#Features × #Time Bins #Features

Dataset no FS Time Interval no FS All-Times MRMR Multi-Cox Uni-Cox

BRCA 741 543 (73%) 57 53 (92%) 43 (75%) 6 (10%) 20 (35%)

GBM 90 89 (98%) 9 9 (100%) 5 (55%) 9 (100%) 6 (66%)

GBMLGG 350 344 (98%) 14 14 (100%) 14 (100%) 12 (85%) 13 (92%)

READ 210 85 (40%) 35 35 (100%) 27 (77%) 4 (11%) 9 (25%)

THCA 390 213 (54%) 39 39 (100%) 20 (51%) 4 (10%) 14 (35%)

NACD 2,499 2,499 (100%) 51 51 (100%) 46 (90%) 32 (62%) 49 (96%)

DBCD 88,542 5,515 (6%) 4,919 1,467 (29%) 50 (1%) 21 (0.4%) 1,927 (39%)

DLBCL 118,384 28,468 (24%) 7,399 2,866 (38%) 74 (1%) 40 (0.5%) 1,197 (16%)

MIMIC 80 80 (100%) 10 10 (100%) 10 (100%) 6 (60%) 10 (100%)

Table C.10: The number of features (and percentage) after feature selections paired with discrete
hazard model.
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Number of Selected Features: Hazard Multi-Task Model

#Features × #Time Bins #Features

Dataset no FS Time Interval no FS All-Times MRMR Multi-Cox Uni-Cox

BRCA 1,881 1,827 (97%) 57 57 (100%) 43 (75%) 6 (10%) 28 (59%)

GBM 90 89 (98%) 9 9 (100%) 9 (100%) 9 (100%) 6 (66%)

GBMLGG 350 350 (100%) 14 14 (100%) 14 (100%) 12 (85%) 10 (71%)

READ 350 250 (71%) 35 35 (100%) 9 (25%) 4 (11%) 9 (25%)

THCA 897 330 (36%) 39 39 (100%) 20 (51%) 4 (10%) 14 (35%)

NACD 2,499 2,492 (99%) 51 51 (100%) 46 (90%) 32 (62%) 44 (86%)

DBCD 88,542 5,515 (6%) 4,919 1,467 (29%) 50 (1%) 21 (0.4%) 2,330 (47%)

DLBCL 118,384 70,713 (59%) 7,399 5,980 (80%) 74 (1%) 40 (0.5%) 4,574 (61%)

MIMIC 310 308 (99%) 10 10 (100%) 10 (100%) 6 (60%) 10 (100%)

Table C.11: The number of features (and percentage) after feature selections paired with hazard
multi-task model.

Low-Dimensional Datasets

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

Time Interval 85% 78% 80% 86%

All-Times 97% 97% 99% 100%

MRMR 84% 78% 78% 77%

Multi-Cox 47% 47% 48% 48%

Uni-Cox 69% 60% 64% 63%

High-Dimensional Datasets

Simple Multinomial Multi-Task Discrete Hazard Hazard Multi-Task

Time Interval 20% 20% 15% 33%

All-Times 34% 34% 34% 55%

MRMR 1% 1% 1% 1%

Multi-Cox 0.5% 0.5% 0.5% 0.5%

Uni-Cox 28% 50% 28% 54%

Table C.12: The average percentages of the number of features after feature selection for low-
dimensional and high-dimensional data. Same as Figure 6.6.
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C.3 Additional Semi-Synthetic Data Results

Figure C.1: The feature importance plots of semi-synthetic data generated from other real-world
datasets.
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Figure C.2: The feature importance plots of semi-synthetic data generated from other real-world
datasets. Continue from the previous figure.
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Data Linear Discrete Hazard Model Kaplan-Meier Estimator

BRCA 1 0.136 (0.033) 0.150 (0.029)

BRCA 2 0.149 (0.027) 0.147 (0.013)

BRCA 3 0.114 (0.015) 0.127 (0.021)

GBM 1 0.084 (0.004) 0.093 (0.003)

GBM 2 0.089 (0.004) 0.099 (0.002)

GBM 3 0.093 (0.003) 0.104 (0.002)

GBMLGG 1 0.110 (0.005) 0.122 (0.005)

GBMLGG 2 0.101 (0.002) 0.114 (0.001)

GBMLGG 3 0.100 (0.004) 0.115 (0.002)

READ 1 0.157 (0.038) 0.151 (0.050)

READ 2 0.215 (0.185) 0.211 (0.142)

READ 3 0.150 (0.083) 0.148 (0.082)

THCA 1 0.154 (0.017) 0.223 (0.007)

THCA 2 0.191 (0.067) 0.213 (0.025)

THCA 3 0.140 (0.048) 0.170 (0.010)

DBCD 1 0.186 (0.031) 0.190 (0.020)

DBCD 2 0.159 (0.015) 0.189 (0.005)

DBCD 3 0.167 (0.030) 0.183 (0.022)

DLBCL 1 0.162 (0.036) 0.151 (0.019)

DLBCL 2 0.214 (0.043) 0.184 (0.030)

DLBCL 3 0.166 (0.038) 0.152 (0.040)

MIMIC 1 0.170 (0.003) 0.149 (0.001)

MIMIC 2 0.112 (0.002) 0.129 (0.005)

MIMIC 3 0.115 (0.002) 0.123 (0.000)

Table C.13: The IBS scores (and standard deviations) for the linear discrete hazard model and
the baseline model Kaplan-Meier estimator on the semi-synthetic dataset generated from other
datasets. The number at the end of the data name indicates the time interval that is used to
generate the semi-synthetic data.
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