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ABSTRACT

The practice of process control has demonstrated that gain scheduled PID has many good
features such as simple concept. easy design, good control quality, strong robustness and
fast adaptive ability. Gray predictive control is attracting attention from the control
engineering and theory community because of its special prediction mechanism. A boiler-
turbine-generator (BTG) system is the major system in power generation. It is subject to
nonlinear, time-varying and disturbance effects. It requires not only good qualities for
setpoint tracking and disturbance rejection. but al.o good stability. This thesis, first,
focuses on the study on three types of gain scheduled PID, and gives design suggestions.
Next is presented a gray predictive PI controller, and the relevant issues such as
consistency, suppression of sensitivity to noise etc are discussed. Finally gray predictive
Pl combined with gain scheduled PI is applied to a simulated BTG system, to
demonstrate improved control qualities and stability as well as almost the same

sensitivity of gray predictive PI to noise as PJ.
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FGS1

FGS1

MFGS

AGO
I-AGO

e'(t)
sqri(x)
X,
LDISPI
BTG

<<

Abbreviation and Notation

The first type continuous-linearly-interpolated gain scheduled PID
described by (2.6)

The second type continuous—linearly-interpolated gain scheduled PID
described by (2.7)

The model-based continuous-linearly-interpolated gain scheduled PID
described by (2.9)

Accumulated generating operation, or discrete integral

Inverse accumulated generating operation, or discrete derivative. or
difference

de(t).dt

Square root of x

Absolute value of x

Large data interval and small prediction interval

Boiler-Turbine-Generator

Much lower than



Chapter 1

Introduction

In the real world, almost all actual processes have nonlinear features and indirectly
time-varying parameters which vary with the changes of operating region. The linear model
description of a system as well as linear design of control system with fixed parameters is
often valid only in the neighborhood of the design operating point (equilibrium point). When
nonlinear features of a system are strong, or a system involves motions with wide range and

high speed, the results obtained from linear methods are often unsatisfactory.

At present, there is no general method for designing nonlinear controllers. What we have is



a rich collection of alternative and complementary techniques [1], each best applicable to

particular classes of nonlinear control problems.

This brief introductory chapter includes some general comments on these techniques, and

concludes by outlining the rest of the thesis.

Trial-and-Error: The idea here is to use the analysis tools to guide the search for a
controller which can then be justified by analysis and simulations. The phase plane method,
the describing function method and Lyapunov analysis can all be used for the design.
Experience and intuition are critical in this method. However, for complex systems,

trial-and-error methods often fail.

Feedback Linearization [1][2]: The basic idea is to first transform a nonlinear system
into a (fully or partially) linear system, and then apply the well-known and powerful linear
design techniques to practical nonlinear control problems. It is applied to an important class
of nonlinear systems (called input-state linearizable or asymptotically minimurn-phase
systems), and typically requires full state measurement. However, for most process control
systems, it is difficult or impossible to obtain nonlinear state models, accurately measure and
estimate all states, and derive the needed linearizing transformations. Also, major questions
remain concerning the robustness of the approach. While it may, in principle, be successful,

perfect accuracy of model and state estimating may be needed. This is impractical.

Robust Control [3]: In pure model-based nonlinear control, the control law is
designed based on a nominal model of the physical system. In H™-based methods for the
design of robust nonlinear control, the controller is designed based on the consideration of
both the nominal model and some characterization of the model uncertainties. This latter
approach has been proven to be effective in a variety of practical control problems. It usually
requires state measurement and its design techniques are relatively complicated. Also, the

enhancement of robustness is always at the cost of control quality, and robust control design

2



is difficult for processes with large pure time-delay uncertainty.

Adaptive Control or Self-tuning Controller [4]: Adaptive and self-tuning control
techniques can be used to treat an important class of nonlinear systems with measurable
states or linearly parametrizable dynamics. For self-tuning controllers, because system
models are described with differential equations, if systems have large pure time-delays or
time constants, identification of a suitable model may become difficult or time-consuming.

Usually they are suitable for slow time-varying systems.

Gain Scheduled Controller [51][6][71[8]: Another important nonlinear control
technique is the gain scheduled controller proposed by Stein [5] in 1980. Its main
advantages are that linear design techniques can be applied to linearized system at each
operating point. It can be applied to a class of implicitly time-varying nonlinear systems, i.e.
the systems whose models are relative to their operating conditions. The major question in
gain scheduling design is the selection of the gain scheduling procedures, i.e. the functions,
which force control parameters to change with the scheduling variables. Another
shortcoming of gain scheduled controllers is that the overall performance of control system
must be checked by extensive trials, since no proof of robust stability is available as of this

writing.

PI/PID controllers are still widely used in process control, since PI/PID controller is strongly
robust, simple in concept, and easily tuned. The PID controller, if it is used properly, usually
can achieve good control quality due to the predictive effect of the D mode. The significant
shortcoming of D mode is that it may be too sensitive to noise. This feature often limits its

application in process control.

Gray prediction [17][18] attempts to predict the future behavior of system by using current
behavior data but ignoring what causes the current behavior. That is, it doesn't attempt to

build a relationship (model) between system inputs (causes) and outputs (effects). Instead,



it directly uses the outputs (effects) to build a model, then uses it to predict the future
outputs. If the information about outputs is sufficient, it can effectively reduce the standard
deviation of system so that it can be insensitive to noise. If it is used to form a gray
predictive controller, this type of predictive controller can have stronger robustness than
predictive controllers such as Smith Predictor [9], Dynamic Matrix Control (DMO)[10] and

Generalized Predictive Control (GPC)[11], since it does not use any internal model.

A unit system of boiler-turbine-generator (BTG) is the major system in power generation.
Two of most important controlled variables are fuel flow and turbine governor valve, while
important outputs are steam pressure and electric power. If all other boiler control systems
work properly, usually we can treat it as a 2-input, 2-output nonlinear time-varying, noisy,
highly coupled system. Two major goals of BTG control systems are to achieve fast load
following, and maintain throttle pressure (steam pressure) and load (electric power) stable.
Both goals require that BTG control systems not only have good abilities for set-point
tracking and disturbance rejection, but also have strong stability. As we know, BTG systems
are noisy, i.e. the measured variables exhibit random fluctuations. Whether a controller is
good for BTG systems is not only determined by the features that we Jjust mentioned above,
but more often is determined by whether it is sensitive to noise. If a controller is too
sensitive to noise, it may cause the actuators to be worn out quickly. An industrial actuator

usually is quite expensive, thus a good controller must be insensitive to noise.
Following on these brief comments, the outline of the rest of the thesis is as follows.

Chapter 2: Briefly introduce the general theory of gain scheduled controllers, then focus on

the detailed studies on gain scheduled PID.

Chapter 3: Briefly introduce the theory of gray prediction, then develop a gray predictive PI
controller, and discuss the relevant issues such as consistency, noise suppression, and

approximate to high order processes etc.



Chapter 4: Apply gain scheduled PI and gray predictive PI to BTG control, using some
simulation examples to show that control quality and stability of BTG system can be
improved considerably, and also a properly designed gray predictive PI has almost the same

sensitivity to noise as PI.

Chapter 5: Draw some conclusions for this thesis, and suggestions for further investigations.



Chapter 2

Gain Scheduled Control

In many situations, the relation between plant dynamic properties and operating conditions
are known, i.e. changes of plant dynamic properties are caused by certain known
time-varying linear or nonlinear properties. Hence, we can modify control parameters on-line
in terms of operating conditions. This method is called gain scheduled control {41, for
initially it was used to adapt system gains [S]. The gain scheduled controller is a special type
of nonlinear control, and it consists of a feedback linear controller and a feed-forward
compensator. The controller parameters change automatically as a function of operating

conditions. That is, its feedback gain is modified by its feed-forward compensator. The



different ways of designing feed-forward compensators can lead to the following two types

of gain scheduled controllers.

Local Linearization: The first step is to linearize the model about one or more
operating points (equilibrium points or operating conditions), then linear design methods are
applied to the linearized model to obtain a satisfactory perforrnance at each operating point.
The second step is to interpolate the linear control law at intermediate operating conditions.
That is, a feed-forward compensator is devised to change (schedule) the control law

according to the scheduling variables.

Nonlinear Transformation -- Global Linearization: The first step is to transform the
nonlinear system into a linear system independent of operating conditions by nonlinear
transformation, then apply linear design methods to this linear system to get a satisfactory
performance (global). The final step is to transform this linear controller back into nonlinear
controller. Its feed-forward compensator consists of two nonlinear transformations [4]. An
early application can be found in the literature [6]. A major problem for this method is that
the nonlinear transformation usually can not be realized. In this thesis, only local

linearization method will be discussed.



2.1 Introduction To Gain Scheduled

Control Based On Local Linearization

Gain scheduled controllers based on local linearization can fall into two categories:

Explicit Model-based Gain Scheduled Controller: One of the typical methods has
been analyzed in the literature [7]. In this method, the design for the feed-forward
compensator of gain scheduling explicitly depends on the system model. Hence, the

linearized model at each operating point must be obtained first.

Implicit Model-based Gain Scheduled Controller: One of the interesting methods can
be found in the literature [8]. This method gets "optimal" functional relations between
optimal controller parameters and nonlinear time-varying process parameters from some
optimal control theory. When designing the feed-forward compensator of gain scheduling
for a practical process, only these "optimal” functions are used, and there is no need to know
the accurate relationship between scheduling parameters and process parameters at
intermediate points. In this thesis, besides the implicit model-based gain scheduled PID
proposed in the literature [8], two other types of popular implicit model-based gain
scheduled PID also will be discussed.

Here, we briefly introduce an explicit model-based gain scheduled controller [7], and give
some conclusions about stability issues. The detailed comparison studies between three

implicit mode-based gains scheduled PIDs will be given later.



Consider a process described by

X(=F(X(1),U(t), W(1))
Y(O=HX(O,U®, W), t20, (2.1)

where X(t) is the nx1 state, U(t) is the mx1 process input(or control output), Y(t) is the px|1

process output, and W(t) is the qx1 vector of exogenous scheduling variables.

The feedback control law for the gain scheduling is selected as

UK (X(1), W(),Z(t)) (2.2a)
Z(t=Y () - Y(W() (2.2b)

where Y(W(t)) is the desired process output at each constant value of W(t) = W, and Z(t) is
the px1 state of an integral-error compensator. Thus, at an operating point where Y(t) =
Y(W) = constant, Z(W) is a constant vector that fixes the feedback (static) relationship
between X(W) and U(W). During transients, Z(t) varies so as to force the error Y(t) - Y(W)
to zero, provided that the system is stable.

At each operating point W(t)=W, the corresponding linearized closed-loop system can be

written in the form

Xd(t) = A(W)X (1) + B(W)Uq(t) + E(W)Wy(t) (2.3a)
Z4(t) = C(W)X (1) + D(W)U«(t) + F(W)W(t) (2.3b)
Ug(t) = Ky (W)Xy(1) + Ko(W)Wy(t) + Ka(W)Z4(t) (2.3¢c)

in which X 4(t) etc. are deviation variables and

K1(W) = OK/OX(X(W),W,Z(W)),



K2(W) = OK/OW(X(W),W,Z(W)),
Ky(W) = aK/aZ(X(W),W,Z(W))- (2.4)

where K;(W) and K3(W) are linear feedback control gains at each W, and KA W) is a feed-

forward gain on the exogenous scheduling variable deviation.

From (2.3) and (2.4), the eigenvalue matrix of the closed-loop linearized system is

A(W) +B(W)K1(W) BW)K{W) |
 CW)+DWKi(W)  DIWKw)

—
!
!

(2.5)
where A, B, C and D are known from the process model (2.1) and selected feedback control
law(2.2). We can use many linear design techniques to choose K;(W) and K;(W) at each
operating point W so that the eigenvalues of (2.5) are stable. The feed-forward compensator
of gain scheduling, from (2.2a) and (2.4), should satisfv

Ky(W) = QU(W)YOW - K (W)OX(W)OW - Ky(W)OZ(W)OW.

At each operating point W, we can choose an arbitrary smooth function Z(W), then Ky(W)
can be determined from the above expression, and the linearized control law (2.3¢c) implies
the gain scheduled control law

U(t) = Ki(W)X(t) + K3(W)Z(t) + [ UW) - K(W)X(W) - K3(W)Z(W) ],

the term in brackets being a slowly varying bias item, and with Z'(t) = Y(t) - Y(W).

10



2.2 Stability Issues

From the literature [6][7][13]{14][15], a few conclusions about stability of gain scheduling

on slow variables can be drawn as:

1. If the eigenvalues of closed-loop system (2.5) at each operating point W have real parts
less than some €< 0, then given positive constants p and T, there exist positive constant §,(p)

and 3(p, T) for which the following holds. If

I X(0) - X(W(0)) || < 8.

t+T
(T |W(qQ)lidq<8s, t20,
t

then
| X(t) - X(W(t)) | <p, and
1Y(t) - Y(W() || <p. fort 2 0.
The proof of this theorem is given in reference [6], and cited in [7].
2. Stability requires that the scheduling variables do not excite any unmodeled dynamics. In

fact, since the scheduling variables are fed forward to the plant, it is unlikely that any

scheduling strategy can escape this restriction.

11



3. If the scheduling variables vary too fast, the system may become unstable. One example
can be found in literature [15]. The question of how fast is "too fast" has no simple answers
in general. Conclusion 1 above only asserts that some 8, exists, not how large it may be, so

the global stability of gain scheduled controller must be checked by extensive trials.

12



2.3 Study On Three Types of Gain
Scheduled PID

2.3.1 Three Types of Implicit Model-Based Gain
Scheduled PID

Suppose a PID controller has two sets of gain scheduled parameters, (K, T,;, Ta;) and (Ke,
Ti2, Tao), at Wy and W, (W;<W,). We can have the control law

U(W, ) =K(W)[ e(t) + [(e(tyT(W) )dt + T{(W)( de(t)/dt)].

Given a fixed threshold value W* for the scheduling variable with W, < W* < W,,

if W>W* then

K.=Kq. Ti=Ty, Ta=Ta;
else

K=K, Ti=Tiy, Ta=Ta;

Usually we can not get good performance at intermediate operation points with this method.

If a continuous-linear interpolation is used, we can obtain the first implicit model-based gain
scheduled PID (called FGSI1 in this thesis)

13



U(W, t) =K{(W)[ e(t) + [( e(t)/T(W) )dt + T(W)( de(t)/dt) ], (2.6a)

where K, T; and T are scheduled as

K(W) =qiK; + q2Ke2, (2.6b)
T(W)" = KW [qi(Kei/Tir) + oK/ Ti2)], (2.6¢)
To(W) = K(W) ' [qi(Kei Tar) + @2(Kea T, (2.6d)
@ =(W-WYW,-W;), q=1-q, (2.6e)

where W is any intermediate value of scheduling variable between W; and W,. We can see
that the continuous-linearly-interpolated gain scheduled PID results in smooth transitions of

controller parameters at any intermediate operating point.

The second continuous-linearly-interpolated gain scheduled PID is designed as(called FGS2

in this thesis)

U(W,t) = Kd(W)[ e(t) + [(e(tVT(W) )dt + To(W) ( de(tidt ) ], (2.7a)

where K, T; and T, are scheduled as

Kd(W) = qiK; + q2Kez. (2.7b)
T(W)=q\T;; + q:Tiz, (2.7¢c)
TeW)=qT4; + 2T, (2.7d)
Qe =(W-W)(W,-W)), q=1-q, (2.7¢)

where W is any intermediate value of scheduling variable between W, and W-. This differs
from the first continuous-linearly-interpolated gain scheduled PID in the way that T; and T4

are interpolated relative to K_.

14



The analysis of the third type implicit model-based gain scheduled PID [8] is given in the

following.

Consider an ITAE criterion-based PID for the 1st order system [16]

UW, t) =K(W)[ e(t) + [(e(@)/Ty(W) )dt + To(W) ( de(t)y/dt )] (2.8a)
K(t) = [A/KWIT/TT® (2.8b)
Ti(t) = Ct°T™® (2.8¢)
T«ty=EtT'F (2.8d)

in which Ky (t), T(t) and T(t) are the gain, time-delay and time constant of the process,

respectively. A, B, C, D, E and F have the following values
A=1357,B=0947,C=1.176, D=0.738, E =0.381, F=0.995.

A common practice in selecting the controller gain is to maintain the closed-loop gain

K(t)K(t) at a constant value [16], if all other elements in a loop have constant values. The

controller gain should be a strictly decreasing function of the process gain with an reciprocal

relationship. It is nonlinear relationship! We have
OK(t)/OK(t) = -(A/Kp )Tty T(1)) ® <0,

therefore the smaller K, the faster K. changes.

From (2.8c), we can see that Tj(t) varies, to a degree, directly with T(t).

OT(t)/OT(t) = C(1 - DY T(t)/T(t) )° >0,
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therefore T(t) increases as T(t) increases. The smaller T(t), the faster T;(t) changes.

From (2.8d), we have

T«t) = 0.3817%%9°17%95

OT«(t)/OT(t) = 0.381*0.005(¢/T)**,

therefore ITAE rule suggests that the derivative time is a very weak function of the process
time constant. However, a rule of thumb states that the ratio between T(t) and Ty(t) should

be kept at a constant value [16].

From the above analysis, the authors suggested that for the controller gain, its reciprocal
should be used in controller parameter interpolation [8]. Now we can get an implicit
model-based continuous-linearly-interpolated gain scheduled PID controliler (called MFGS

in this thesis):

UW, t) = K(W)[ e(t) + [(e(t) T(W) )dt + Ty(W) (de(tydt )] (2.9a)
KW)'=qKe " + Ko, (2.9b)
T(W)=q, Ty + q-Tj,, (2.9¢)
T{(W)=aqiTq + q2Ta, (2.94d)
Q@ =(W-WDI(W,-W,), q=l-q,, (2.9¢)

where W is any intermediate value of scheduling variable between W, and W,.

Comments: The authors suggested that the reciprocal of process gain should be used in the
interpolation of controller gain K.. However, the authors did not consider a relation between

scheduling variable W and controller gain K, as in (2.9b). In fact, it is better to use the
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reciprocal of the controller gain K. in gain scheduled PID like (2.9b) only when the process
gain can be approximated better by the first order polynomial of the scheduling variable W
than by the first order polynomial of W', If the process gain can be approximated better by
the first order polynomial of W™ than by the first order polynomial of W, the interpolation
method for controller gain K, in (2.6b) and (2.7b) is a reasonable selection. For example,
suppose the process gain K (W(t)) = W(t), the process time constant and time delay are both

equal to 1. From (2.8b), we have

K (W) = AK(W)! = AW(D)".

Obviously, the controller gain K(W) is proportional to the reciprocal of W(t), and the
interpolation method (2.9b) is better than (2.6b) and (2.7b). Instead if the process gain
Ko(W(1)) = W(t)", we have

K(W) = AK, (W) = AW(1).

The controller gain K(W) is proportional to W(t) rather than the reciprocal of W(t). The
interpolation method (2.6b) or (2.7b) is better than (2.9b). This basic principle is also
suitable for the selection of the interpolation method for the controller integral time T; and

derivative time T.

2.3.2 Design Suggestion for Gain Scheduled PID
Algorithm

For continuous-linearly-interpolated gain scheduled PID, the controller parameters are not
constant. The designing of PID algorithm will greatly influence the performance of gain
scheduled PID.
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In discrete time-domain and continuous time-domain, the integral mode of PID can be

designed with the following three methods.

Method 1:

Method 2:

Method 3:

I(k) = I(k-1) + [Ko(k)/Ti(k)Je(k), or

I(t) = [ [K(t)/Ti(t)Je(t)dt. (2.10)
Li(k) = Li(k-1) + e(k), I(k) = [K (k) Ty(k)]L;(k),

Li(k-1) = [K(k-1)/Ty(k-D]" Kk-1) or

I(t) = [K(ty Ti(t)] fe(tydt. (2.11)
I1(k) = Ii(k-1) + e(k)/Ti(k), I(k) = K(k)i(k),

Li(k-1) =K(k-1)'I(k-1),  or

I(t) = Ko(t) [ [e(t/ T(0)]de. (2.12)

If K1), Ti(t) and Ty(t) are all constant, there is no difference among these three PIDs.
However, for time-varying K (t), Ti(t) and T4(t). the outputs of three PIDs are obviously

different. The following example will show this conclusion.

Denote the outputs for Method 1, Method 2 and Method 3 as U, U, and U, respectively.

For simplicity, only I-mode is used for control. Suppose at time k, these three I-mode

controllers have the same outputs and controller parameters, e.g.

Ui(k) = Ux(k) = Us(k) =60.0, and
Kd(k)=4.5, Ty(k)=15.0.

At time k+1, given e(k+1) = 1.0, K.(k+1) = 5.0 and Ti(k+1) = 10.0, we have

Uyk+1)= 60.0 + (5.0/10.0)* 1.0 = 60.5,
Ua(k+1)= (5.0/10.0 )*( 180.0 + 1.0 )=90.5, and
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U;s(k+1) = 5.0%( (60.0/4.5) + 1.0/10.0 ) = 67.15.
Hence, the following conclusions can be made.

1. If scheduling variables are setpoints which may have step change, it is suggested to use
the integral mode (2.10), since we have no reasons to abruptly change the historic output
(integral output) in a gain scheduled PID. However, it also should be noted that it is usually
not good to choose a setpoint as scheduling variable for continuous-linearly-interpolated gain
scheduled controller although we sometimes do. It is obvious that for a large disturbance,
the system may become unstable, since, if the setpoint remains unchanged, the gain

scheduled controller is merely a controller with fixed parameters.

2. If the scheduling variables are continuous states and outputs of a process, or continuous
exogenous variables, it is suggested to use the integral mode (2.11) and (2.12) for the process
gain changes. A gain scheduled PID with the integral mode (2.10) can result in a large
over-shot or over-damped step response for time-varying or nonlinear process gain K, since
it can not quickly offset the change of output caused by the gain change. In contrast, the
PIDs with the integral mode (2.11) and (2.12) may quickly offset the change of output,

caused by the time-varying gain, via changing the historic outputs of PIDs.

3. If only process time constant or time delay changes, it is suggested to use the integral
mode (2.10). A gain scheduled PID with the integral mode (2.11) and (2.12) may result in
much over-shot or over damped step responses, since the change of time constant or time
delay influences neither the historic value of process output nor the future steady-state value
of output. It is unreasonable to change the historic output of PID. For example, after the
process output reaches its steady state, let the time constant or time delay change. For this
case, the process output remains unchanged. If the integral mode (2.11) or (2.12) is used, the
output of controller will change due to the changes of K, and T;. It is an unexpected

disturbance of controller output.
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Simulation 2.1: Process Gain Varies
The process is described by

20dx(t)/dt + x(t) = Ky(y)u(t),
y(t) = x(t-4),

and

K (y)=0.2, fory < 0.76,
Ko(y) = sqrt(y - 0.72), for0.76 <y <7,
Ki(y)=25, fory 2 7.

where K(y) is a continuous process gain. The parameters of PID are set to be
K(y) = 1.6069/K,(y), T;i=7.1713 and T4= 1.5363.

Figure 2.1 shows the set-point step responses. From Figure 2.1 (a) we can see the overshoot
of PID with the integral mode (2.10) is unacceptable compared with its response at y < 0.76
(overshoot is less than 20%), since PID with the integral mode (2.10) can not quickly offset
the influence of K (y) to the output y as K (y) changes. In contrast, PIDs with the integral
mode (2.11) and (2.12) can achieve this goal by changing the historic output of PID (integral
output). This simulation shows the case where K (y) increases as y increases. If we have
Ky(y) increase as y decreases, PID with the integral mode (2.10) will have a greatly over

damped step response.

Simulation 2.2: Process Time Delay Varies
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The process is described by

20dx(t)/dt + x(t) = 0.2u(t),
y(t) = x( t-x(y(t-D)) ),

where D is a small time delay, and

(y(t-D)) =4 sec, if y(t-D) < 0.76,
(y(t-D)) = 7.8446*sqrt(y - 0.5) sec, if0.76 <y(t-D) <7,
(y(t-D)) = 20 sec, if y(t-D) > 7.

The small time delay D is used only to make the system realizable by Simulink 4.2c. The

parameters of PID are set to be

K. =5.9723¢(y(t-D))*%,
T; = 2.5781(y(t-D))*"**,  and
Ta = 0.38671(y(t-D))**%.

From Figure 2.2 (a) and (b) we can see that PID with the integral mode (2.11) and (2.12)
have much over-damped step responses at both directions of y. As the process time delay
varies, we only need to change the controller parameters, and should not change the historic
output of PID i.e. integral output, for the variation of process time delay only influences the
rising time and settling time of the process but changes neither the historic value of process
output nor the future steady-state output of the process. This simulation shows the case in
which 1(y) increases as y increases. If we have 1(y) decrease as y increases, PID with the
integral mode (2.11) and (2.12) will have a step response with large over-shoot. The similar

responses can be observed for the variation of process time constant T(y).
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For a practical process, usually there exist the combined variations of K, T and . Which
integral mode should be used can be determined by trials perhaps, though it may be difficult
with arbitrary combined variations. Generally, the integral mode (2.12) is the best trade-off
solution for general purpose, because

1. For a time-varying process gain, the change of controller gain K. in (2.12), which
results in the variation of historic output of controller, can quickly offset the change of
process output caused by the variation of process gain. As a resuit, better control quality can
be expected. The PID with the integral mode (2.12) can achieve the same control quality as
the PID with the integral mode (2.11), whose control quality for time-varying gain is better
than the PID with the integral mode (2.10).

2. A time-varying process time constant or time delay does not influence the steady-
state values of the process. Instead, it only influences the time for the system to reach the
steady-state. To achieve a good control quality, what we need is only to change the current
controller parameters, therefore the PID with the integral mode (2.10) is the most
reasonable. The PID with the integral mode (2.11) may result in the worst control quality,
since both controller parameters K, and T; can change the historic output (integral output)
of controller. The historic output (integral output) of controller may be partly changed by the
process gain K in the integral mode (2.12), which will result in a trade-off control quality

between PID with the integral mode (2.10) and (2.11).
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2.3.3 Comparison among Three Types of Continuous-

Linearly-Interpolated Gain Scheduled PID

Three types of continuous-linearly-interpolated PID are given in (2.6), (2.7) and (2.9), and
called FGS1, FGS2 and MFGS, respectively. The ITAE criterion based PID will be a

reference.

A class of important implicit time-varying processes will be used for simulation. That is, the
single-input single-output process whose process parameters, gain, time constant and time
delay, are linear or non-linear functions of the scheduling variable W, and can be
approximated better by the first order polynomial of scheduling variable W than the first
order polynomial of W™'. The process is given by

T(y)dx(ty/dt + x(t) = K(y)u(t) + K(y)d(v), (2.13a)
y(t) =x(t- (y(t+-D)) ), (2.13b)

where D is a small time delay. It is used only to make the process realizable by the Simulink

4.2¢. Simply we suppose that the scheduling variable W is equal to y.

No matter how the process parameters vary from v; to v,, we can obtain 3 basic types of

parameter variations by properly dividing [v,, v,] into [vi, V51, [v2, V3], ..., [Vai, Va]:

Situation 1: Linear variation.

Situation 2: Non-linear variation with each intermediate value, v € (v,, vi+),
greater than the corresponding linear value.

Situation 3: Non-linear variation with each intermediate value, v € (v;, v;y;),

lower than the corresponding linear value.



Similar to the above, as y varies from y; to y,,, the relation between the process output y and

process parameter, gain K,,, time constant T, or time delay t, also consists of 3 basic forms

by properly d‘iViding [Yh Ym] into [YI’ YZ], [YZ’ y3]’ e [)'m-l’ Ym]'

Situation 4: y varies and the process parameter remains unchanged.

Situation S: y increases and the process parameter increases, or y decreases and the
process parameter decreases.

Situation 6: y increases and the process parameter decreases, or y decreases and the

process parameter increases.

Situation 4 can be treated as a constant process, and will not be studied in this thesis. The

following simulation and analysis are based on the remaining 5 basic situations above.
Simulation 2.3: Process Gain K (y) Varies
The time constant and time delay of the process (2.13) are
T(y) = 20 sec, t(y(t-D)) =4 sec,
where D is the small time delay. The parameters of PIDs are set to be

ITAE: K (y) = 0.2961/K (y),
MFGS, FGS1 and FGS2: K(0.76) = 1.4805, K(7)=0.1185,

where K(y) for all controllers are de-tuned for the sake of comparison. The integral mode

(2.12) 1s used in this simulation.
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CASE I: Situation 2 combined with Situation §

In this case, the process gain K(y) is non-linear, and K,(y) increases as y increases.

Ko(y)=0.2, fory(t) < 0.76,
Ko(y) = sqrt(y(t) - 0.72), for 0.76 <y(t)<7,
Ko(y)=2.5, fory(t) > 7.

Controller gain K(y) obtained from ITAE, MFGS, FGS1 and FGS2 are shown in Figure
2.3(a). K(y) in MFGS is very close to, but somewhat higher than, K (y) in ITAE. The
controller gain K (y) for FGS1 and FGS2 are the same but too large, since K(y) in ITAE is
proportional to 1/sqrt(y(t)-0.72), reciprocal of nonlinear Ky(y)., K(y) in MFGS is
proportional to 1/(0.3686y-0.0801), reciprocal of linear Ky(y), and K(y) in FGS1 and FGS2
are proportional to linear K(v). 0.386y-0.0801. Figure 2.4 shows the responses. Figure 2.4(a)
indicates that FGS1 and FGS2 have unacceptable over-shoots although K.(y) in this
simulation is greatly de-tuned. Figure 2.4(b) and (c) indicate that the abilities of FGS1 and
FGS2 to reject the step disturbance d(t), positive and negative, shown in (2.13a), are also

worse than those of MFGS.
CASE 2: Situation 1 combined with Situation 5

In this case, the process gain K(y) is linear, and K,(v) increases as y increases.

K(y) = 0.2, fory(t) < 0.76,
K, (y) = 0.3686y(t) - 0.0801, for 0.76 <y(1) <7,
Ko(y) =2.5, fory(t) > 7.

K.(y) obtained from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.3(b). K(y) in
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MFGS is exactly the same as K(y) in ITAE. K (y) in FGS1 and FGS?2 are still unacceptable,
although they are slightly closer to K(y) in ITAE, since both K(y) from ITAE and MFGS
are proportional to the reciprocal of linear K (y), 1/(0.3686y-0.0801), and K (y) in FGSI and
FGS2 are proportional to linear K (y), 0.386y-0.0801 instead.

CASE 3: Situation 3 combined with Situation 5

In this case, the process gain K (y) is non-linear, and K,(y) increases as y increases.

Ky(y)=0.2, if y(t) < 0.76,
Kq(y) = 0.033(y(t) + 1.701)%, if0.76 <y(t) <7,
Ky (y)=2.5, ify(t) > 7.

K(y) obtained from ITAE, MFGS, FGST and FGS2 are shown in Figure 2.3(c). K(y) in
MFGS is slightly lower than K(y) in ITAE. K(y) in FGS1 and FGS?2 are still unacceptable,
although they are further closer to K (y) in ITAE. The reason is similar to CASE 1 and
CASE 2.

Now, let's briefly discuss the case in which the process gain decreases as y decreases. If we
agree that the controller gain K. from ITAE is the best, then, from Figure 2.3 (a), (b) and (c),
we can see that K. from MFGS is the closest to K, in ITAE, while the controller gains from
FGS1 and FGS2 are too large. Hence the control quality of MFGS for the setpoint tracking,
again, can be expected to be the best. Certainly, as the process gain decreases, the control
system tends to be more robust. Hence, the control qualities of setpoint tracking for MFGS,
FGS1 and FGS2 have much less difference compared with the cases in which the process

gain increases as the process output y increases.

For the case in which the process gain increases as the process output y decreases, the

controller gains for FGS1 and FGS2 are too high compared with the controlier gains for
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ITAE and MFGS, which are shown in Figure 2.3 (a), (b) and (c). Hence the integral outputs
for FGS1 and FGS?2 in (2.12) may decrease too slowly. This may make the control outputs
of FGS1 and FGS2 decrease slower, or much slower than the control outputs of ITAE and
MFGS. As a result, the control outputs of FGS1 and FGS2 may not be able to quickly offset
the effect of the process gain increasing, finally the set-point step responses for FGS1 and
FGS2 will be more, or much more, damped than MFGS. The similar results also can be
expected for the cases when y increases the process gain decreases. The only difference is
that as the process gain decreases, the control system tends to be less sensitive to the
variations of controller parameters. Hence, the control qualities of MFGS, FGS1 and FGS2
for set-point tracking are less, or much less different compared with the cases in which the

process gain increases as the process output y decreases.

From the simulation and discussion above, we can conclude that it is difficult to use FGSI1
and FGS2 to achieve good control qualities for both setpoint tracking and disturbance
rejection for the time varying K,, which can be approximated better by the first order

polynomial of the scheduling variable W than the first order polynomial of W,
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Simulation 2.4: Process Time Constant T(y) Varies
The gain and time delay of the process (2.13) are
K(y)=0.2, t(y(t-D)) =4 sec,
where D is the small time delay. The parameters of PIDs are set to be

ITAE:
K(y) = 0.4709T(y)>**,
Ti(y) =3.2717T(y)"*%,
Taly) = L.5135T(y)*%%.

MFGS, FGS1 and FGS2:
K.(0.76) = 8.0346, K. (7)=1.75,
Ty(0.76)=7.1713, T(7)=4.704,
T4(0.76) =1.5363, T4(7)=1.524.

The integral mode (2.10) is used in this simulation.
CASE I: Situation 2 combined with Situation 6

In this case, the process time constant T(y) is non-linear, described by Situation 2, and T(y)

decreases as y increases.

T(y) =20 sec, fory(t) < 0.76,
T(y) =7.8446 * sqrt( 7.26 - y(t) ) sec, for0.76 <y < 7,
T(y) =4 sec, fory(t) 2 7.

Kc(y), Ti(y) and Ty(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.5(a), (b)
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and (c), respectively. Because K.(y) in ITAE is proportional to T(y)**"", (7.8446*sqrt(7.26-
y)***7, while K(y) in MFGS is proportional to (-2.5641y+21.9487)", and Kc(y) in FGS1 and
FGS2 is proportional to (-2.5641y+21.9487), therefore, from Figure 2.5(a), we can see that
MFGS has too low K (y) compared with ITAE. Instead, FGS1 and FGS2 have reasonable
K«(y) which are slightly lower than K(y) in ITAE. From 2.5(b) and (c), MFGS and FGS2
have the same Ti(y) and T4(y) which are reasonable but somewhat lower than ITAE, and
FGS1 has almost the same Ti(y) and T4(y) as ITAE for this case. Figure 2.6 shows the step
responses and disturbance rejection. FGS1 and FGS2 are better selection, but MFGS is
worse, with greatly over-damped step response and comparatively worse disturbance

rejection.
CASE 2: Situation 3 combined with Situation 6

In this case, the process time constant T(y) is non-linear, described by Situation 2, and T(y)

decreases as y increases.

T(y) =20 sec, fory < 0.76,
T(y)=0.157 * (y - 12.0483 ) sec, for0.76 < y<17,
T(y)=4sec, fory > 7.

K(y). Ti(y) and Ty4(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.7(a), (b)
and (c), respectively. From the similar reasons in CASE 1, in Figure 2.7(a), MFGS still has
considerable lower K (y) than ITAE. FGS1 and FGS2 have reasonable K (y) which is slightly
higher than K(y) in ITAE. From 2.7(b) and (c), MFGS and FGS2 have the same Ti(y) and
Ta(y) which are very close to those from ITAE, and FGS1 has somewhat higher T,(y) and
Tq«(y) than ITAE. Figure 2.8 shows the step responses and disturbance rejection. again FGS1
and FGS2 are better selection, but MFGS is worse, with over-damped step response,
although it is better than in CASE 1. Certainly the disturbance rejection of MFGS in this case
is not bad compared with ITAE, FGS1 and FGS2.

33



CASE 3: Situation 1 combined with Situation 6

In this case, the process time constant T(y) is linear, and T(y) decreases as y increases.

T(y) =20 sec, fory < 0.76,
T(y)=-2.5641y + 21.9487 sec, for0.76 <y <7,
T(y)=4sec, fory > 7.

K(y), Ti(y) and Ty(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.9(a), (b)
and (c), respectively. For this case, K (y) for MFGS is lower than CASE 1 but higher than
CASE 2. FGS1 and FGS2 have the best K (y) (almost the same as K (y) as [TAE) in this case
compared with the corresponding values in CASE 1, which are too low, and the
corresponding values in CASE 2, which are too high. From 2.9(b) and (c), MFGS and FGS2
have the same T (y) and T4(y) which are somewhat lower than those from ITAE, and FGS1
has somewhat higher Ti(y) and T4(y) than ITAE. We can again expect that FGS1 and FGS2
can have better control quality than MFGS for setpoint trackiag, and slightly better

disturbance rejection than MFGS.

Now, let's briefly discuss the case in which the process time constant increases as the process
output y decreases. From Figure 2.5(a), 2.7(a) and 2.9(a), if we agree that the controller gain
K. from ITAE is the best, we can see that K, from FGS1 and FGS?2 is the closest to K. from
ITAE, while the controller gains K. from MFGS is too small, comparatively. From 2.5(b),(c),
2.7(b),(c) and 2.9(b),(c), we can see that T; and T4 from FGS1 is the closest to those from
ITAE, so that the control quality of FGS1 for the setpoint tracking, again, can be expected
to be the best. Certainly, as the process time constant increases, the control system tends to
be less sensitive to the variations of the controller parameters. Hence, the control qualities
of setpoint tracking for MFGS, FGS1 and FGS2 have much less difference compared with
the cases in which the process time constant decreases as the process output y increases.

For the case in which the process time constant decreases as the process output y decreases,
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the controller gains for MFGS is too small compared to the controller gains from ITAE,
FGS1 and FGS2, which are shown in Figure 2.5 (a), 2.7(a) and 2.9(a). Hence the integral
output for MFGS in (2.10) may decrease too slowly, and it may make the control output of
MEFGS to decrease slower, or much slower than that of ITAE. Consequently the setpoint step
response for MFGS will be more, or much more, damped than [TAE. Comparatively FGS1
and FGS2 are better. The similar results also can be expected for the cases in which the
process time constant increases as the process output y increases. The only difference is that
as the process time constant increases, the control system tends to be less sensitive to the
variations of controller parameters. As a result, the control qualities of MFGS, FGS1 and
FGS2 for set-point tracking are less, or much less different compared with the cases in which

the process time constant increases as the process output y decreases.

From CASE 1 to CASE 3, Simulation 2.4, we can see that FGS1 and FGS2 can achieve
better control qualities for setpoint tracking, and slightly better disturbance rejection than
MFGS for the time varying process time constant T, which can be approximated better by
the first order polynomial of the scheduling variable W than the first order polynamial of W™
!, since K(y) in MFGS is too small. MFGS may have more, or much more, damped set-point
step responses than FGS1 and FGS2 while the process is running at intermediate values of
the scheduling variable. Certainly, the variations of process time constants usually do
influence control quality much less than the variation of process gains and time delays. This
also can be observed typically in predictive controllers such as MAC and GPC, etc. It should
be pointed out that the optimal formula of ITAE is derived for the optimal set-point tracking,

it may not be guaranteed that the disturbance rejection is also optimal.
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Simulation 2.5: Process Time Delay t(y) Varies

The gain and time constant of the process (2.13) are
Ki(y) =0.2, T(y) =20 sec,

The parameters of PIDs are set to be

ITAE:
K(y) =29.86161(y) >,
Ti(y) = 2.5781(y)* ",
Tay) = 0.38671(y)>*.

MFGS, FGS1 and FGS2:
K.(0.76) = 8.0346, K (7) = 1.75,
Ti(0.76) =7.1713, T;(7) = 23.52,
T4(0.76) = 1.5363, Tg(7)=7.62.

The integral mode (2.12) is used in this simulation.
CASE 1I: Situation 2 combined with Situation 5

In this case, the process time delay t(y) is non-linear, described by Situation 2, and «(y)

Increases as y increases.

1(y(t-D)) = 4 sec, for y(t-D) < 0.76,
W(y(t-D)) = 7.8446 * sqrt( y(t-D) - 0.5 ) sec, for 0.76 <y(t-D) < 7,
w(y(t-D)) = 20 sec, for y(t-D) > 7.
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where D is the small time delay.

K.(y). Ti(y) and Ty(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.10(a), (b)
and (c), respectively. K.(y) in ITAE is proportional to t(y)®°", and Kc(y) in MFGS is
proportional to (2.5641y + 2.0513)", while K(y) in FGS1 or FGS2 is proportional to 2.5641y
+2.0513. Similar to Simulation 2.3 "Process Gain Varies", K(y) in MFGS is very close to,
but somewhat higher than, K (y) in ITAE. K(y) from FGS1 and FGS?2 are too large. MFGS
and FGS2 have the same T,(y) and T4(y) which are reasonable close to ITAE. FGSI has too
small T(y). In ITAE, K/T; is proportional to t"%°, but in FGS1, the linear interpolation is
used to calculate the intermediate values of K/T;, in which it is assumed that KJ/T; is
proportional to the time delay t. It is very unreasonable. Finally, from Figure 2.11(a), we can
see that for the set-point step response, FGS1 has the largest over-shoot and settling time,
FGS2 has larger ones, and MFGS has the least. In Figure 2.11(b), for the positive step
disturbance d(t) shown in (2.13a), although it is difficult to judge, to some extent, which
control quality is the best, at least, in the author’s opinion, the control quality of ITAE is the
most reasonanle. Based on this point, the disturbance rejection of MFGS is the best
compared with FGS1 and FGS2. Therefore MFGS is the best, FGS2 is worse and FGS1 is

the worst for this simulation case.
CASE 2: Situation 3 combined with Situation S

In this case, the process time delay t(y) is non-linear, described by Situation 3, and t(y)

increases as y increases.

(y(t-D)) =4 sec, if y(t-D) < 0.76,
(y(t-D)) = 0.157 * sqrt( y(t-D) + 4.2883 )2 sec, if0.76 < y(t-D) < 7,
t(y(t-D)) = 20 sec, if y(t-D) > 7.

K(¥), Ti(y) and Ty(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.12(a), (b)
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and (c), respectively. The step responses and disturbance rejection are shown in Figure 2.13.
From similar reasons as in CASE 1, we can observe the similar responses to CASE 1. Again

MFGS is the best, FGS2 is worse and FGS1 is the worst due to too large K (y) and too small
Ti(y).

CASE 3: Situation 1 combined with Situation 5

In this case, the process time delay t(y) is linear, and t(y) increases as y increases.

©(y(t-D)) = 4 sec, if y(t-D) < 0.76,
t(y(t-D)) = 2.5641y + 2.0513 sec, if0.76 <y(t-D) < 7,
©(y(t-D)) = 20 sec, if y(t-D) > 7.

K«(y), Ti(y) and T(y) from ITAE, MFGS, FGS1 and FGS2 are shown in Figure 2.14(a), (b)
and (c), respectively. Comparing Figure 2.14 with Figure 2.10 in Case 1 and Figure 2.12 in
Case 2, we can expect that the control qualities for MFGS, FGS1 and FGS2 should be
between the corresponding control qualities in CASE 1 and CASE 2. Still MFGS is expected
to be the best, FGS2 is worse and FGS1 is the worst due to too large K (y) and too small
Ti(y).

Now, let's briefly discuss the case in which the process time delay decreases as the process
output y decreases. From Figure 2.10(a), 2.12(a) and 2.14(a), if we agree that the controller
gain K, from ITAE is the best, we can see that K. from MFGS is the closest to K, from
ITAE, while the controller gains from FGS1 and FGS2 is too large comparatively. From
2.10(b), (c), 2.12(b), (c) and 2.14(b), (c), we can see that MFGS and FGS2 have the same T;
and T4, which are much closer to those from ITAE compared with the T; and T; from FGS1.
Therefore the control quality of MFGS for the set-point tracking can be expected to be the
best again. Certainly, as the process time delay decreases, the control system tends to be less

sensitive to the variations of the controller parameters. Hence, the control qualities of set-
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point tracking for MFGS, FGS1 and FGS2 have much less difference compared with the

cases in which the process time delay increases as the process output y increases.

For the case in which the process time delay increases as the process output y decreases, the
controller gains from FGS1 and FGS2 are too high compared with the controller gains from
ITAE and MFGS, which are shown in Figure 2.10(a), 2.12(a) and 2.14(a). As a result, the
integral outputs for FGS1 and FGS2, from (2.12), may decrease too quickly, and they may
make the control outputs of FGS1 and FGS2 decrease faster. or much faster than the control
outputs of ITAE and MFGS. Finally the setpoint step responses for FGS1 and FGS2 will be
more, or much more, over-shot than MFGS. The similar results also can be expected for the
cases in which the process time delay decreases as the process output y increases. The only
difference is that as the process time delay decreases, the control system tends to be less
sensitive to the variations of controller parameters. Hence, the control qualities of MFGS,
FGS1 and FGS2 for set-point tracking are less, or much less different compared with the

cases in which the process time delay increases as the process output y decreases.
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2.3.4 Conclusions for Continuous-Linearly-Interpolated

Gain Scheduled PID

From Simulation 2.3 to 2.5, we can make some conclusions for the single-input single-output
process, whose process parameters, gain, time constant and time delay, are the linear or non-
linear functions of the scheduling variable W, and can be better approximated by the first
order polynomial of the scheduling variable W than the first order polynomial of W™'.

1. For the variation of process gain K, MFGS is the definite selection. FGS1 and FGS2 are
much worse, they are more likely to cause the closed-loop system to become unstable or
much more damped than MFGS when the process is at the intermediate values of the
scheduling variables. To achieve the desired control quality, more operating points are

needed for FGS1 and FGS2.

2. For the variation of process time constant T, we can conclude that FGS1 and FGS2 can
achieve better control qualities for set-point tracking, and slightly better disturbance
rejection than MFGS, since K.(y) in MFGS is too small! MFGS has more damped set-point
step responses than FGS1 and FGS2 when the process is running at intermediate values of
the scheduling variable. Certainly, the variations of process time constants usually do

influence control quality much less than the variations of process gains and time delay.

3. For the variation of process time delay T, MFGS is the best. FGS2 is worse. FGSI1 is the
worst - too large over shoot for step responses and disturbance rejection when the process

is running at intermediate values of the scheduling variables.



The other issue which should be noted is that the optimal formula of ITAE is derived for

optimal set-point tracking, it may not be guaranteed that the disturbance rejection is also

optimal.
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Chapter 3

Gray Predictive PI

Controller

3.1 Gray Prediction

In order to give the readers basic concept on gray prediction, some relevant results from the

references [17][18] are summarized in 3.1.1 to 3.1.5. Details and proofs may be omitted, and
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terminologies are directly taken from the references [17][18].

3.1.1 Basic Concept [17]

Gray System
A system is called a gray system if its information is incomplete. "Incomplete” usually means

1. The elements of system are not completely known.
2. The relationship among elements is not completely known.
3. The structure of system is not completely known.

4. The action principles of system are not completely known.
A process including "disturbances" and "noises" is a gray system, since

1. The elements (sources) of disturbances and noises usually can not be clearly known.
2. The amplitude and time of disturbances and noises are unknown.
3. The relationship between disturbances/noises and major variables can not be known

completely.

From the above, we can say that a gray system is a stochastic system, and both terms are
interchangeable. The gray theory deals with stochastic systems using different approaches
from the stochastic theory. This can be seen in the references [17][18][23]{24]. For example,
the gray prediction tries to predict the future output values only using current and past output
data instead of using both input and output data. We will see this in the following sections.
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Gray Prediction and Black-Box Prediction

The principle of black-box prediction is to find out the "best" quantitative relation
(mathematical model) between system inputs (causes) and outputs (effects) but ignore the
physical structure and action principle (see system as a black box), then use this relation to

predict the future outputs of the system. Therefore two data sequences are needed: inputs and

outputs.

The principle of gray prediction is only to use the current and past output (effect) data to

build prediction models, then use these models to predict the future output values.
Data Generating Methods of Gray System

In gray prediction, two of the most important data generating methods are Accumulated

Generating Operation (AGO) and Inverse Accumulated Generating Operation (I-AGO).

AGO: Assume e is an original positive discrete data sequence
ginal po q

e =(e%1),e”(2),...,e%n)), €V(k)>0, fork=1,2,..n. (3.1a)

If another discrete data sequence ‘"

e®=(e(1),eM), .., ")) (3.15)
satisfies
k
eV(k) =) &), fork=12,.n, (3.2a)

i=1
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then e'" is called the First-time Accumulated Generating Operation of ¢, denoted as
e"=1AGOE?”) or &'"=AGOE).

From the definition, AGO is a form of discrete integral.

I-AGO: Assume e'" is an original discrete data sequence
eV =(eM(1),eN2). ..., V) ).

If another discrete data sequence e’
e® = (1), &), ..., e"(n))

satisfies

e9k) =eM(k) - eV (k-1), k22, (3.2b)

then e’ is called the First-time Inverse Accumulated Generating Operation of e'", denoted

as
e?=11-AGO(") or 9 =1-AGOE").

From the definition, I-AGO is a form of discrete derivative or difference.

Proposition 3.1{17][18]: Assume that e is a discrete data sequence

e=(e(1),eQ2), ..., e(n)), (3.3)

92}
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then the data sequence e can be described with exponential form

e(k) = cr*exp[cs(k-1)] + ¢, (3.4a)

if and only if the ratio r(k),

r(k) = (e(k) - ca)/(e(k+1)-c2), k> I, "(3.4b)

is a constant.

From Equation (3.4a) and (3.4b), it follows that

r(k) = exp{-c3).

Gray Exponential Form

Given a discrete data sequence e shown in (3.3). If r(k) defined in (3.4) satisfies

rk)c [a,B]<(0,1], foranyk=1,2, .. n-1,

then we say that e has a positive gray exponential form. If B-a = q, where q is a positive real

number, then we say that e has g-positive gray exponential form. If

k)< [a,B] =R, o>1, Ris the real number set,

then we say that e has negative gray exponential form.
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Smooth Discrete Data Sequence

A discrete data sequence obtained by sampling (discretizing) a smooth function in

continuous domain is called a smooth discrete data sequence.
Necessary Conditions for A Smooth Discrete Data Sequence

A necessary condition for a smooth discrete date sequence is that there exist a K > 0, such

as for any k > K, we have

k-1
e(o)(k) < Z e(0) (l) — e(‘)(k°l).

i=1

From this necessary condition for 2 smooth discrete data sequence, we can have the

following theorem.
Note: In remaining of the thesis, it is always assumed that all given ¢ are non-negative
smooth discrete sequence. That is, all given sequences are supposed to be discretized from
smooth function in continuous time domain, and satisfy the necessary conditions for a
smooth discrete data sequence presented above.
Theorem 3.1[17]: Given a non-negative smooth discrete data sequence ¢
0 _ (o0 0 0
e = (1), %), ..., %)),

Its 1AGO sequence ‘" has 0.5-positive gray exponential form, i.e.

r(k) = eV (k)e V(k+1) = eV (k)[e (k)P k+1)] € [0.5 1].



Theorem 3.1 is the foundation of gray prediction. It indicates that discrete smooth sequences
can be approximated by the first order exponential equations, and standard deviations of the

corresponding AGO sequences e'” may be reduced.

Example 3.1

e@ is given as
e® =(590.227, 615.369, 591.63, 651.777, 677.115,
699.870, 704.298, 695,565, 749.658, 816.966, 788.533, 799.5).

We have

e’ =(590.277, 1205.6, 1797.3,2449.1, 3126.2,
3826.1, 45304, 5225.9, 5975.6, 6972.6, 7761.1, 8560.6).

¢? is shown in Figure 3.1(a), and e'" is shown in F igure 3.1(b). Obviously, compared with

e, the standard deviation of e'” is reduced.

3.1.2 Gray Model --- GM(1,1) Model

GM(1,1) Model Description

Given two stochastic discrete data sequences €® and e'” shown in (3.1a) and (3.1b), and e
= AGO(e?), if eV satisfies the conditions for gray exponential form in Theorem 3. 1, then
it can be approximated by the 1st-order constant coefficient gray difference equation, i.e.

GM(1,1) model.
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Figure 3.1 Comparison between the Original Sequence and Its AGO Sequence
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e (k) + a*Z (k) = b, k=23,..,n (3.5a)
where

e)(1) =e(1),

e'V'(k) =eV'(k) - ¢'"(k-1). k=23....n,

Z(k) =0.5( eV(k) + e(k-1)), k=2,3...n. (3.5b)
a and b are the model parameters to be identified.
In the literature [17][18], although the author had not given any explicit mathematical
derivation of GM(1.1) model. from Theorem 3.1, we can think that if we use the least-square
method to obtain a constant C which is an optimal approximate of r(k) = e'"'(k)e'"'(k+1),
k=2....n-1. then from Proposition 3.1. ¢'"(k) can be approximated by

e''(k) = ¢ *explcs(k-1)] + ca.

which is of the form of the discrete general solution of the first order constant coefficient

differential equation

de'"(tydt + a;*e"!(t) = b,. (3.5¢)
where

e(t) = [eV()dt

If discretizing it with the forward rectangular transform, from the definition of AGO and
IAGO. we have
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eV (k) + a,*e'"(k)=b,, k=2,3, ... (3.5d)

Instead, if Equation (3.5c¢) is discretized with the bilinear transform, we obtain (3.5a), i.e.
e%(k) + a*Z'"(k) = b, k=23,..,n
In this thesis, we will use the form (3.5a) as GM(1,1) model.

Dynamic GM(1,1) Model Description

Let {1;. 2, ... . n,} denote the sample times of ith time window. e, the ith ori ginal sample

data sequence

C,“” —_ ( eu)")( li)v e(())(zi)’ o e(o)(ni) )

Foranv 1 > 1. if we have

f

e 26 i 0 {Liggy 20, -en 5 Djt )

- 2 1 =9 . . ]
lzh —)h LEEEEY nl] lll""l’ 2l+ls .ee g (n-l)l‘?‘ljv

l.e.
2= 141, 3i = 24y, oo, Oy = (D=1)i4q,

then e;""' is called a n-dimension sequence or moving window sequence. If e, *=AGO(e,"")
satisfies the conditions for gray exponential form in Theorem 3.1, then it can be

approximated by the dvnamic GM(1,1) model

ek + a(i)*ZV(k) =b(i), k=2.3,...n, (3.5¢)

o1



where

(1) =e(1y),
e (k) = (k) + e V(k-1), k=2,3,..n,
ZMk;) = 0.5(e (k) + e((k-1);), k=2,3,..n. (3.5F)

a(i) and b(1) are the identified model parameters, and k, and (k-1), denote the time k and k-1

at the ith time window, respectively.

Theorem 3.2: The least-square solution of the dynamic GM(1,1) model (3.5¢) exists for the

ith time window. The solution is
fa(i) b()]" = (B(i)'B(i))'B(i) X(i)

where

| -Zi2) 1
| -Z(3,) 1]
P
Bi)y=| . |
| i

XG) =[2) 93y ... Pm)I".

Extending the above solution and rearranging the items, we have the following equivalent

solution

a(i) = A(i)/C(i), b(i) = B>{)/C(i), (3.6a)

in which



n n n
AG)= Y Z9) * Y ek - (n-1)Y ZV(k)e k),
=2 k=2 k=2

n n n n
B)= ) @ (k)7 Y €k - Y, Z%k) Y, 200k )e(k,)
k=2 k=2 (=2 k=2

n n
Cl) = (@-1) Y, 29 - ( ) ZPk)) )% (3.6b)
k=2 k=2

Remark: From this theorem, we know that the gray prediction uses a time-varying model
or time-varying parameters a(i) and b(i) to approximate a process, no matter whether the

process is time-varying or not.

3.1.3 Gray Prediction

From the dynamic GM(1,1) model, described by (3.5¢) and (3.5f), we have

(k) - eV (k1)) + a(i) * 0.5 * (k) + e ((k-1)) ) = b(i),

k=23, ...,n
It can be further written as

(1+0.5a%) ) * e'(k;) - (1 - 0.5a(i) ) * eV((k-1);) = b(i),
k=23,..,n,.., (3.6¢)

with solution of general form
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(ki) = ey (D)™ + ei). (3.6d)
Solving Equation (3.6¢) and (3.6d), we get

c> = b(i)/a(1), and
(1) =(1-0.5a(i) )/( 1+ 0.5a(i) ),

then applying the initial condition e"’(1;) = €)(1;), we have
cr = (1) - b(iya(i) ).
Thus, we can write the solution of GM(1,1) model (3.5¢) and (3.5f) at the ith window as

e(k) = (1)) - bi)a(i) ) * r(i) M + b(iya(i), k=23, ....m, ...
r(1) = ( 1-0.5a(1) ¥( 1 + 0.5a(1) ), la(t) <2, (3.7a)

where | a(i) | is the absolute value of a(i). Using the inverse accumulated generating

operation I-AGO, the predictive algorithm of © has the form

eVki) =e"(k;) - e"((k-1),), :
=[(b(i)-a@i) * 1) (1 -0.5a(i) ) ] * (i) &V, kon+ 1. (3.7b)

in which r(i) is shown in (3.7a). Certainly, if the sample interval is small enough, i.e. [a(i)kj
<< 1, the predictive algorithm also can be well approximated by the discretized solution of

the first order constant differential equation. That is

e®ki) = (b(i) - a(i) * €¥(1;) ) * (1 - exp( a(i) ) * exp(-a(i) * (ki-1) ),
kn+1. (3.7¢)



Remark 1: The gray predictive algorithm (3.7b) can be used only for | a(i) | < 2.

Remark 2: When k = 2.3,....n, what we get from (3.7a) and (3.7b) are estimates of the

original sequence €' in the ith time window. If we want to predict e, use k > n+1.

Remark 3: In dynamic GM(1,1) model, first we calculate the predictive values of AGO
sequence ;" using a(i) and b(i), then use the predictive values e’ and I-AGO to obtain the

predictive values of the original sequence ;. This is the special feature of gray prediction.

Remark 4: To build the dynamic GM(1,1) model, only 4 original data are needed. Using
a few data to build predictive model is one of important feature of gray prediction. For a gray

predictive control system, it is suggest to use 4 to 6 data [18].

Simulation 3.2: Use the dynamic GM(1,1) model (3.5¢) and (3.5f) to predict the future

values of the given original discrete data sequence e,

€= (e (1), (2), e (3), e (4), € (5), ¢ (6), ¢V (7),
e¥(8), €9(9), e?(10), e©(11), e¥(12) )
=(1590.227, 615.369, 591.63, 651.777, 677.115, 699.87, 704.298,
695.565, 749.685, 816.966, 788.533, 799.5 ).

CASE 1I: Use the 1-st time window with n = 7 and e¥(1,) = 590.227. i.e.
e =(e?(1)),e?(2)),e9 31). € (4)), &9 (5)), €9 (6,), ¥ (71) )

=(e?(1).€2(2),e9 (3),e” 4), e (5), eV (6), ™ (M)
=(590.227, 615.369, 591.63, 651.777, 677.115, 699.87, 704.298),



to predict €%8), e©(9), e(10), e'V(11) and e¥(12).
We can easily get ¢, and Z,'" from the definition of AGO and (3.5f).

eV =(eM (1), e 21). €M (31), eV (41), &P (51), € (61), € (1))
=(590.277, 1205.596, 1797.226, 2449.003, 3126.118, 3825.988, 4530.286),

Z/P= (201, 2% @), 27 3. 2% @), 27 (5, 2" (60, 2" (1) )
=(590.277, 897.912, 1501 411, 2123.115, 2787.561, 3476.053, 4178.137).

By (3.6) we have
a(l)=-0.0345, b(1) =570.5639,

so that we can get the estimated values of € (k)), k < 7, and predictive values of e (k;),

k =8,9...,12, in the 1-st time window using (3.7a) and (3.7b),.

e =(590.227, 615.369, 622.3441, 644.1897, 666.8020, 690.2081,
714.4358, 739.5140, 765.471, 792.3421, 820.1549, 848.944).

12 actual values of the given original discrete data sequence ¢, and its estimated or
predictive values in the 1st time window are shown in Figure 3.2. We can see that the gray

prediction gives much more smooth estimated and predictive values of e'”'.

CASE 2: Use the 2nd time window with n =7 and e,(1,) = 615.369, i.e.

(e (1), €@ (2), €@ (35), €9 (42), €@ (52), € (6y), e (7))
=(e9(2),e? (3),e? (4), €@ (5), e (6), e© (7), &V (8))
=(615.369, 591.63, 651.777,677.115, 699.87, 704.298, 695.565),
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to predict )(9), e°(10), e(11) and e (12).
We can easily get e, and Z,'" from the definition of AGO and (3.5d).

eV = (e (12), eV (22), e (3), € (42), €V (5), & (62), € (72) )

=(615.369, 1206.999, 1858.776, 2535.891, 3235.761, 3940.059, 4635.624),

2= (27 (12, 27 (22, 2" 32, Z" (420, 2" (52, 27 (62, Z (7))
=(615.369,911.184, 1532.888, 2197.334, 2885.826, 3587.91, 4287.842).

Replacing them in the solution (3.6), we have
a(2)=-0.0291, b(2) = 595.2835.

Figure 3.3 shows the result. Again, the gray prediction gives much more smooth estimated

and predictive values.

It also can be seen, from both cases, that the gray prediction uses time-varving GM(1,1)

model to approximate stochastic systems at the neighborhood of equilibrium points.
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3.1.4 Discussion on Linear System [18]

In this section, we will discuss some issues about gray prediction and linear systems.
As indicated above, the GM(1,1) model is the first order difference equation which is used

to approximate AGO, or discrete integral, sequence e of the original sequence e Is it

reasonable for linear systems? We will discuss this from the point view of differential

equations.
Given a first order constant coefficient equation

de(t)/dt + pe(t) =q, (3.8a)
its general solution for t; = 0 can be written as

e(t) = Ciexp(-pt) + C,, and

Ci=-¢(0)p,

C. =¢(0) + e'(0Yp. (3.80)
Extending 1t into Taylor series, we have

e(t)=Ci[1-pt+ (2)'(-pt)* + .1+ Cp.
Fort € [0, 8], if § is small enough, the series above can be approximated by

e(t) = C[(I - pt) + Cz = C3[1 - (Clp/C_;)t], (3_9)
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where
C,=C, +Cy.

Similarly, we can write the approximate solution of GM(1,1) model, (3.7c), in continuous

time domain as
ety = ((0) - b(iya(i) ) * ( 1 - exp(a;At) ) * exp(-a(i) * t ). (3.10)
Denote solution (3.10) as

eV(t) = Csexp(-a(i)*t).
C; = (e“(0) - b(iVa(i) )*[1 - exp(a(i)At)],
a(i) = C,p/C;, (3.11)

It is obvious that Equation (3.11) can be approximated by Equation (3.9) for any t € [0, 8],
where 8 is small enough. That is, any given first order differential equation (3.8a), which has
solution (3.8b), can be approximated in the neighborhood of equilibrium points by the
GM(1,1) model with solution (3.7b) or (3.10).

Remark: the GM(1,1) model approximates the first order differential equations. It does not

reproduce the first order differential equations even in continuous time domain.
Now let's consider a high order constant coefficient equation
a,d e(tydt” + a,  d"'e(tydt™! + ... + ase(t) = 0. (3.12a)

with the characteristic equation
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(s+s.)z(sz+2§ms+ml)(s+s4)...(s+s,,) =0. (3.12b)
Its general solution is

e(t) =(A+Bt)exp(-s,t) + exp(-Lot)[Csin(Qot) + Dcos(Qwt)]
+E exp(-sst) —...—E exp(-syt), (3.13a)

where
Q =sqn(1-£%), (3.13b)
A. B, C, D, E.... E, are constants determined by given initial conditions.

[f e(t) in (3.13) can be approximated by (3.9) for t £ [0, § ], where & is small enough, then
processes with the form (_3. 14) can be approximated by the first order process shown in
(3.15) in the neighborhood of equilibrium points. Further more, the high order processes
with characteristic equation (3.12b) can be approximated by the GM(1,1) model in the

neighborhood of equilibrium points.

and’e(t)/dt” + a,,d™'e(t)dt™" ~ ... + age(t) = bou(t). (3.14)
de(t)/dt - pe(t) = byu(t). (3.15)

Theorem 3.3[18]: Given any t < [0, 8], where 3 satisfies |s,8] << 1, {f@8| << 1, [Qud| << 1,

540, << 1, ..., and [s;3] << 1, the solution (3.13) can be approximated by
&(t) = [A+D+(E +..+Ep)] - [As +(Eyss+.. +Epsy)-B-CQo + ZoD]t.

i.e. the process described by (3.14) can be approximated by the first order process described
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by (3.15).
Proof [18]: Equation (3.13a) can be extended into

e(t) = Al ~ (-5;0) + (2') ' (-5;t)" ~ ... ]

= B[l + (-s;t) + (21 (-s,8)* + ... ]

+ Csin(Qot)[1 ~ (-Cot) + (21 (Lot + ... ]
+ Deos(Qot)[1 + (-Cot) + 2N (Lot + ... ]
—Es[1 = (-sst) = (20 (ssty — ] —

+ Bl + (-sa) = 21)(-sat)* + ... ],

in which Q is shown (3.13b) and t < [0, 8]. For a small enough §. which satisfies 5,8 << 1.
IZwdl << 1, |Qwd| << 1, 5,8l << 1, ..., and is,8! << 1, the above equation can be approximated
bv
e(t) = A(l-s;t) = Bt + CQot — D(1-Lot) + Ey(1-s5t) —...— E( i-s,t)
=A-D-E;-.~-E,-[As;- (Ess;-...~E;s,) - B - CQw - ZowDIt.

Now from Theorem 3.3. if we denote

C:=A-D-E;-.-E,.
p=As; * (Eysy*.. #Es) - B - CQo + LoD,

then for t € [0, 3]. the solution (3.13a) for a high order process can also be approximated by

Equation (3.9), therefore any high order process (3.12a) with characteristic equation (3.12b)

can be approximated by the GM(1,1) model in the neighborhood of equilibrium points.
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3.1.5 Simulation and Analysis

In the following simulations, we will use the dynamic GM(1,1) model shown in (3.5e) and
(3.5f) to approximate first order systems and second order systems with stable eigenvalues,

then some important features and analysis are given.

Set sample interval T, = 1 sec, and window dimension n = 4, i.e. in each time window, i.e.
that 4 sample data are used to identify GM(1,1) model. Prediction horizon 20 sec, 30 sec
and 40 sec are used to predict process outputs, i.e. we will predict the process output 20 sec,

30 sec and 40 sec ahead using the predictive algorithm (3.7b) of GM(1,1) model.
First the general procedure for all simulations is given in the following.
Suppose in the ith time window, we have 4 most recent process output data, denoted as

¥ = Cy 1), y 020, v(3), y i) ).

@

where y(4;) is the current process output. From y,”, we can calculate v, = AGO( v,©)

with
i =y ), yU20, vOG0, vy 4) ),
where

y (1) =y 1),
Y@ = (y92) + y(1) ),
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yPG) = (vOG) + yY2) ),
¥4 = (yY@) + yP3) ).

then the GM(1,1) model can be built by substituting e with y, and n with 4 in (3.5¢) and
(3.59).

yOk) + 3*Z(k) =b, k=234,
in which

ZM2) = 0.5%( y"(2) + y(15) ),
ZN3) =054 y3) + yP(@2) ),
Z0(4) = 0.5%(yV(4) + yI(3) ).

Using (3.6a) and (3.6b), and substituting e with y, and n with 4, we can get parameters of the
GM(1,1) model, a(i) and bi), for the ith time window, then obtain predictive algorithms for
20 sec, 30 sec and 50 sec prediction horizon by (3.7b). For example, if prediction horizon

is 20 sec, predictive algorithm for the ith time window, denoted as y(o)(24,-), is

y9(24)) = yV(24;) - v(23,)
=[(b(i)-ai) * eP(1;) M(1 - 0.5a(i) ) 1 *r()) >, k2 n+ 1,

where 1(i) is given in (3.7a). Note the time index 4; represents the current time and the
sample time is 1 sec, so that y(23;) and y"’(24;) are the 19th and 20th predictive data of
v, and y(o)(24i) is the 20th predictive value of y,?). At each time window, only one
predictive value is used, therefore, the predictive curves in all simulations are drawn by

using y'(24,), y¥(24,), ..., yO(24,), ....

Simulation 3.3: Gray Prediction For The 1st Order Processes
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Process transfer function is

Y(s)U(s) = Gy(s) = 1/(40s + 1).

U(s) is the transform of an unit step input signal u(t).

u(t) =2*1(t) + 1(t-250) -1(t470), t=>0.

CASE 1: Prediction horizon 20 sec.
CASE 2: Prediction horizon 30 sec.
CASE 3: Prediction horizon 40 sec.

Figure 3.4(a), 3.5(a) and 3.6(a) show the predictive outputs compared with the actual process
outputs for CASE 1, CASE 2 and CASE 3, respectively. Figure 3.4(b) and 3.4(c), 3.5(b) and
3.5(c), and 3.6(b) and 3.6(c) show the dynamic a(i) and b(i) from the gray predictors,

respectively. a(i) for each case is not equal to the reciprocal of process time constant.

All three cases demonstrate other two common features.

1. The time that predictive outputs are ahead of process outputs is not equal to the prediction
horizon.
2. Prediction is more aggressive when the process outputs increase than when they decrease.

Predictive effects at two directions are different.

For example, in Figure 3.4, at about t = 253 sec, as the process output increases, the gray
predictive output is about 34 sec ahead of the process output, and at about t = 473 sec, as the
process output decreases, the gray predictive output is about 26 sec ahead of the process

output, while both prediction horizons are 20 sec. In Figure 3.6, there exists large over-shoot
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as the process output increases, while no over-shoot as the process decreases. We will

discuss both features later.
Simulation 3.4: Gray Prediction For The 2nd Order Processes
CASE 1: System with 2 different negative real eigenvalues and prediction horizon 40 sec.
Process transfer function is
Y(s)/U(s) = G(s) = 1/(1+40s)(1+20s).
U(s) is the transform of an unit step input signal u(t).
u(t) = 2*1(t) + 1(t-320) -1(t-540), t=>0.

Figure 3.7(a) shows the predictive result comparing to the process output. Figure 3.7(b) and
3.7(c) show the dynamic a(i) and b(i) from the gray predictor, respectively.

CASE 2: System with 2 stable complex eigenvalues and prediction horizon 30 sec
Y(s)U(s) = G(s) = 1/(1400s +30s+1).

U(s) is the transfer function of an unit step input signal u(t).
u(t) =2*1(t) + 1(t-600) -1(t-1000), t=> 0.

Figure 3.8 shows the predictive result compared with the process output. Figure 3.8(b) and
3.8(c) show the dynamic a(i) and b(i) from the gray predictor, respectively.
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Similar to Simulation 3.3, both cases in this simulation also show some common features.

1. The time that predictive outputs are ahead of process outputs is not equal to the prediction

horizon.
2. Prediction is more aggressive as process outputs increase than decrease. Predictive effects

at two directions are different.

As we know, the gray prediction does not directly build the model using original data
sequence. Instead, it uses two-step procedure. First, the GM(1,1) model (3.5¢) and (3.5f), the
first order difference equation, is used to approximate the AGO sequence or discrete integral
sequence of the original data, then the predictive values for AGO sequence is calculated.
Second, I-AGO or difference, as well as the predictive values of AGO sequence, are used
to calculate the predictive values of the original process output sequence. Even if the
GM(1,1) model is used to predict the first order processes, the GM(1,1) model does not
exactly reproduce the original processes. This has been discussed in Section 3.1.4. Hence,

the time that predictive outputs are ahead of process outputs is not equal to the prediction

horizon.

Before going to address the second feature above, we introduce two theorems as well as

some propositions from the reference [18], then deduce two corollaries.

Proposition 3.2[18]: Given discrete sequences e, &' and Z‘" which satisfy

¥ = (1), €2y, ..., eVny) ), (3.162)
e’ = AGO(e? )= (e"(1;), e(2y), ..., e (m)), (3.16b)
(1) =e(1y), (3.16¢)
k) = ek, + eV(k;-1), k=2,3,...n, (3.16d)
z8) =" 1y, (3.16e)
ZO(k;) = 0.5(e'P(k;) + eP((k-1);), k=2,3,....n, (3.16f)
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then

n n n
Y Z00)e%k) =2+ Y ZV0k)eVky) - Y. ZO(k)? 1. (3.17)
k=2 k=2 k=2

Proof: From (3.16d) and (3.16f), we have

22290 =) +eP((-1)),  k=23,..n, and
ek = V() - eV ((k-1)0), k=23,..n

These two equations directly lead to
eO(k) = 2*[eM(k) - ZM(k) 1. k=23,...n,

so that we can further have

n n
Y Z%)ek) =), ZO(k)*2*[e (k) - Z7(k) ]
k=2 k=2

n n
=2+ [} Z90)eVk) - Y ZV(k) 1.
k=2 k=2

Proposition 3.3[18]: Given discrete sequences ¢, eV and Z"’ which satisfy (3.16a) to

(3.16f), then

n
Y ZO0k)e (k) = 0.5%] eVm;)? - V(1) 1. (3.18)
k=2
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Proof: From (3.16f), it is easy to have
0.5e((k-1);) = ZV(k;) - 0.5¢"(ky),
therefore

n n

Y [0.5eP((k-13) I = Y, [ Z7(ky) - 0.5e(k)
=2 =2

n n

n
=2 Z0)? - ) ZM(k)e V() + 30.25¢ (k)
k=2 k=2 k=2

Rearranging items in the equation above, we have

n n n

n
Y Z90)eMk) = Y, 0k - Y 0256 ((k-10,)" = Y 0.25¢ (k) (3.19)

k=2 k=2 k=2 k=2

Substitute (3.19) in (3.17), then it follows that

n n n
Z Z(l)(ki)e(O)(ki) =2 Z 0-253(“(}“)2 - 20,258(1)((1(-1 )g)ll
k=2 k=2 k=2

n n
=05%* { [ Ze(”(ki)z _ e(l)(li)l ] _ [ Ze(])(ki)z _ e(”(n,-)z] }
k=1 k=1

= 0.5* [eP(m)?- (1)’ 1.



Theorem 3.4[18]: The parameter a(i), shown in (3.6a) and (3.6b), for GM(1,1) model (3.5¢)

can be written as
a(i) = A(1)/C(1),
in which

AG) =[ V() - V(1) 1* Q(),
n
Q)= Y, Z(k,) - 0.5 * (n-1) * [eny) + (1)) ],
k=2
n

CH)=(n-1) Y, (Z°(k) - Zara(i) )*
k=2

n

ZawlD) = (-1 Y ZV(K)

k=2

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

Proof: First we prove that C(i) can be written as (3.20d) and (3.20e). From (3.6b), we have

n n
Ci) =(n-1) Y ZV(k)* - Y 2k) I,
k=2 k=2

n n
=(n-1) ) Z(k)? - (-1 [ (n-1)2 ) Z0) T

k=2 k=2
n
=(@-1) ), ZV(k)? - (n-1) * Zyue(i)’,
k=2

where Z,.(i) is given in (3.20e). Furthermore C(i) can be written as
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n
Cli) = (n-1) Y ZDO(K;) - 2%(n-1)* Zoueli)’ + (0-1)2* Zaeli)?,

k=2
n n
=(n-1) ) ZV) - 24010 [ (1) Y ZO(K,) 1* Zoweli) + (1) * Z (i)
=2 k=2
(3.21)
Notice that
n
(1-1)* Zyo i) = (0-1)*Y, Zouuli)2,
=2
sO we can write (3.21) as
n n n
Cl)=(m-1){Y ZVKY ~2*[ Y Z"(k) ] * Zaveli) + 3 Zaweli)’ ],
k=2 k=2 k=2
n
= (1) Y [ZV()2 =2 * Z(K,) * Zaweli) + Zoweli) 1,
k=2

n
=(n-1) ) [ Z(ki) - Zawoli) T
k=2

Thus (3.20d) and (3.20e) are proven. In order to prove (3.20b) and (3.20c), let's rewrite A()
in (3.6a) and (3.6b), and transform it to

n n n
Al =) ZV) * Y €Ok - (n-1) Y ZV(k)e (k).
k=2 k=2 k=2



n n

=Y, 29k * [eV(m) - €01 1 - (0-1)} ZV(k)eV k).
k=2 k=2

Substituting (3.18) in the equation above, we can obtain

n
AG) =Y. 29k * [ eV(ny) - V(1) ] - (n-1) * 0.5 * [ eO(ny)? - V(1) ].
k=2
n
= [eD(m)- M) T* { ), 29K - 0.5 * (n-1) * [Vn) + (1) ] }.
k=2
Denote
n
Qi)=Y ZV(k) - 0.5 * (n-1) * [eV(n) + (1) ],
k—_—.

then (3.20b) and (3.20c) are proven.

Finally an equation for B(i) in (3.6b) from the reference[18] is given below without proof

n
B(i) = ( €(n;) - €(1) ) Y.L ZVK)- Zaveli) T + Zane(AG), (3.22)
k=2

in which Z,..(1) is given in (3.20e).

Corollary 3.1: For any non-negative smooth discrete sequence and the corresponding
GM(1,1) model shown in (3.5¢) with the window dimension n =4, then the signs of a(i) and
A(i) are determined and only determined by e@(2,) - €“(4;) in the ith time window.

This corollary can be verified simply by noticing that Q(i) in (3.20c) is equivalent to
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Q(i) = 0.5¢(1) + eV(2;) + e(3)) + 0.5¢(4;) - 1.5[ eV(4) + (1)) ]
=e(2) + eV(3)) - V(4 - (1)
=e92)) - e94y), (3.23)

as well as that [ e'"(n;) - '(1;) ] in (3.20b), and C(i) in (3.20d) are always positive.
Corollary 3.2: Given a discrete non-negative smooth monotonic-increase sequence
& = (1), €D2), ...e%ny) ).

then the gray predictive algorithm (3.7b) for GM(1,1) model (3.5¢) with n = 4 has the

following form provided e(1,) is large enough.

ek)=ci()*p () ®V, kan+ 1. (3.24a)
ci(i) = ( b(i) - a(i) * €'(1;) )/(1 - 0.5a(i) ), (3.24b)
pi(1)=(1-0.5a) )(1+0.5a3i)), |a(i)|<2, (3.24c¢)

where ¢i(i) >0 and p, (i) > 1. For a discrete smooth monotonic-decrease sequence e ", the

gray predictive algorithm (3.7b) for GM(1,1) model (3.5¢) with n = 4 has form

ePk)=co() *p, () ™V, kan+1, (3.24d)
cx(i) = (b(i) - ai) * €(1,) Y(1 - 0.5a(i) ), (3.24¢)
p2(i)=(1-0.5a(i) )/( 1 +0.5a(i) ), |a(i)]<2. (3.24f)

where c; (i) >0and 0 <p,(i)< 1.

Proof: First let's rewrite the gray predictive algorithm (3.7b) below
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ePk) =c@)*r(i)®P k>n+1.
c(i) = (b(i) - a(i) * V(1)) )A1 - 0.5a(i) ),
r(i)=(1-0.5a(i) Y( 1 +0.5a(%) ), |a(i)| < 2.

From (3.20b), (3.23) and n = 4 we have
A() = (e"'(4) - eD(1) ) * (e92) - €94y ).
Combining with (3.6a), (3.22) and (3.26a), we can write (3.25b) as

c(i) = C()" (B@) - A(i) * €9(1;) )/ (1 - 0.5a(i) ),
= C(I)"' [ E(i) + AGIX Zawe(i) - €(13) ) 1/ (1 - 0.5a(i) ),

in which

4

E(i) = ("4 - (1)) * Y [ 20(k)- Zowli) T
k=

4

Zone(i) = (1/3) ), ZV(k).
k=2

C(1)>0and Z,(i) > 0.

(3.25a)
(3.25b)
(3.25¢)

(3.26a)

(3.26b)

(3.26c¢)

(3.26d)

For smooth monotonic-decrease sequence e, €®(2;) - €%(4,) < 0. From Corollary 3.1, a(i)
>0 and A(i) > 0 so that (i) in (3.25¢) is smaller than 1. Also c(i) shown in (3.26b) is
positive, since E(i) > 0, C(i) > 0, Z,(i) - €”(1;) > 0 and 1- 0.5a(i) > 0. Denote c(i) as cy(i)

and r(1) as py(i), then (3.24d) to (3.24f) are proven.

If sequence e,

is smooth monotonic-increase sequence, then e®(2,) - €¥(4;) < 0. From

Corollary 3.1, a(i) <0 and A(i) < 0 so that r(i) in (3.25c) is larger than 1. Extending (3.26d)
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and Z"(k;), we have

Zpe(i) = (173)( 1.5¢(1) + 2.5 €9(2) + 1.5 €9(3;) + 0.5 €94, ), (3.26¢)
ZM(2) = 0.5¢9(1;) + 0.5¢9(2)), (3.26f)
Z9(3;) = 0.5¢(1;) + e9(2;) + 0.5 3y, (3.26g)
ZM(4) =0.5e9(1) + 92)) + £9(3;) + 0.5¢(4,). (3.26h)

Furthermore we have

(Z0(2)) - Zowoli) Y = [ (13X -€D(2;) - 1.5 €93;) - 0.5 9(4) ) T > (15)%,
(ZD(30) - Zaweli) P = [ (1/3)( 0.5¢(2,) - 0.5 e(4;) ) ] *> 0,
(ZP(2) - Zawli) ¥ = [ (173)( 0.5¢V(2) + 1.5 e9(3,) + V(4,) ) P> e V(1)

so that E(1) in (3.26c¢) satisfies
E(i) = (eM(4) -eM (1) ) *
[(Z™(23) - Zoei)  + ( ZV(3)) - Zawei) ) + (Z2)) - Zaweli) ¥
> (V4 -e(1) ) * 2¢(1,) (3:261)

Combining (3.20b) and (3.26e) with Corollary 3.1, we have

AN Z,wi) - €“'(15) )
= (13)( V4 - V(1) ) * (V2 - V(4 ) *

[ (1.5e(1;) + 2.5¢(2) + 1.5¢9(3;) + 0.5¢9(4;) - 3 €9(1)) ]
>-(e(4) - V(1)) * [ (eD2) - eV(4) ) | * 2e94y),

where | ( €9(2) - €“(4)) ) | is the absolute value of e¥(2;) - ¢¥(4,). Since ¢ is smooth

discrete sequence, ( €%(1;) - e(4;) ) is bounded. Assume | (€9X(1,) -e¥(4,) ) | <5, then
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A Zae(i) - €9(1) ) > (Vi) - €0(15) ) * 289 4)
> -(eV(4) - V(1)) ) * (28e°(1;) + 287). (3.26j)

By (3.261) and (3.26j), finally we have

E(i) + AG) Zaw(i) - (1) )
> (M) - (1)) * [ 26™(1)" - (28e(1) + 28%) ).

From (3.26b), we know that c(i) is positive if E(i) + A(I Z(i) - €(1;) ) > 0, since C(i) >
0 and 1 - 0.5a(i) > 0. This condition can be met by choosing

91, > 28.

So far we have proven c(i) in (3.25b) or (3.26b) is positive and r(i) in (3.25¢) is larger than

1, simply denote c(i) as ¢,(i), and r(i} as p,(i), then (3.24a) to (3.24c) are proven.

We now consider the second feature shared by Simulation 3.3 and 3.4. That is, prediction
is more aggressive as process outputs increase than decrease, and predictive effects at two

directions are different.

For all cases in Simulation 3.3 and 3.4, as the process outputs increase, from Corollary 3.2,
we use gray predictive algorithm (3.24a) to (3.24c) with p,(i) > 1 to predict the future output
values, while as the process outputs decrease, we use (3.24d) to (3.24f) with 0 < pAi)<1to
predict the future output values. Hence, predictive effects at two directions are different.
Also, when prediction horizon tends to infinite, i.e. k; tends to infinite, predictive value
e”(k;) in (3.24a) will tend to positive infinite since p;(i) ® tends to positive infinite, but
e(k;) in (3.24d) is bounded by zero. Therefore, prediction is more aggressive as process

outputs increase than decrease.
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3.1.6 Noise Suppression

As mentioned in 3.1.1, the gray prediction uses AGO or discrete integral to pre-process the
original data, which can reduce standard deviation of the original data. On the other hand,
the gray prediction suggests to build GM(1,1) model with 4-6 data[18], so GM(1,1) model
may be still sensitive to noise if the gray predictor can not get enough information about

noise due to small n and sample interval. The following simulation illustrates this.
Simulation 3.5: Sensitivity to noise
Process is described by

Y(s)U(s) = G(s) = 1/(1+30s)(1+5s) (3.27a)
The process input u(t) is a step signal with

u(t) = 1(t - 320). (3.27b)

A white noise ("Band Limited White Noise" in Simulink 4.2¢) through a filter 1/(1+5s) is

added to the process output from t = 300 sec.

White Noise:
Power = 0.002, Sample Time = 0.1 sec, and
Seed: 23341. (3.27¢c)

In Figure 3.9, we set the sample interval of gray predictor to be 1 sec. The prediction horizon

is 20 sec. Compared with the process output, we can see that gray predictor improperly
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Figure 3.9 Sensitivity to Noises of Gray Predictor
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amplifies the influence of noise too much, since the gray predictor can not get enough
information about the noise due to small n and sample interval. If the GM(1,1) model is
sensitive to noise, when used in noise environment, it may cause excessive actuators wear.

In view of this, a "large sample interval and small predictive interval” method is presented

in the following.
Methods To Reduce Sensitivity To Noises

Method 1: We can increase n = 4 to n = 15, then we can have satisfactory prediction.
However, one of most important advantages for gray prediction is to model with fewer data.

Otherwise, the computing burden will increase quickly. This advantage will be lost.
Method 2: Increase the sample interval of gray prediction.

Simulation 3.6: Large data interval --- noise suppression

Process is the same as Simulation 3.4. The transfer function, input and noise are described

in (3.27a), (3.27b) and (3.27¢).
In Fig 3.10, the sample interval of gray predictor is set to be Ssec and n is still 4. The
predictive horizon is 20 sec. Comparing with the process output and Figure 3.9, we see that

the sensitivity to the noise is reduced. However, it may worsen control quality to increase

the sample interval too much.

Method 3: Instead of Method 1 and Method 2, we present a trade-off method called "large

data interval and small predictive interval” method.

At each time window i, keep (n-1)*m+1 data
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&' = (91,69, ... .e%m,),
e (m+1) ), e (m+2)), ..., e”((2*m);),

. e ((n-1)*m=1);),
where e( ((n-1)*m+1); ) is the current datum. We only use
(1), e“'((m=1),), ., e ((n-1)*m=1); )
to build the dynamic GM(1,1) model, and predict the future values. By this method, we do

not increase computing burden and worsen control quality too much, but effectivelv reduce

the sensitivity of gray predictor to noise. The following simulation will illustrate this

method.
Simulation 3.7: Reduction of sensitivity to noises

Process is the same as Simulation 3 4. [ts transfer function. input and noise are described in

(3.27a), (3.27b) and (3.27c).

We set the sample interval of gray predictor to be 1 sec and n=4, m=5. In figure 3.11,
Method 3 is labeled as "LDISPI". Compared with the normal gray predictor. the LDSP gray

predictor greatly reduces the sensitivity to noise at the cost of somewhat lower predictive

speed.
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Figure 3.10 Large Data Interval - Noise Suppression
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Figure 3.11 Predictive Effect of LDISPI Gray Predictor --- Noise Suppression
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3.2 Error-Prediction-Based
Gray Predictive P1

Figure 3.12 shows a basic structure of gray predictive controller presented in the literature
[18], in which G(s) is the process, G.(s) is the process controller. The GM(1,1) model is used
to predict the process output y to improve control quality for processes with large time

constant.
Some advantages of this scheme are

1. For setpoint tracking, usually no overshoot exists.
2. For most processes, y has a fixed sign and usually y is not equal to zero, the sufficient
conditions for gray exponential form in Theorem 3.1 are automatically satisfied or can be

satisfied simply changing the signs of process outputs if the process outputs are negative.

The shortcoming for this scheme is that tracking speed for setpoint may be too slow if

overshoot is allowed.

For boiler-turbine-generator control, which will be discussed later, setpoint tracking is a very
important criterion. Considering this, we suggest to use error-prediction-based controller
structure shown in Figure 3.13. In this structure, we predict e instead of y. A problem
encountered is that error e has no fixed signs, so the sufficient conditions for gray
exponential form in Theorem 3.1 can not be held. To solve this problem, a pair of bias

signals, B and -B, B > 0, will be added into Figure 3.13. First, a large enough positive B is
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added to error e so that B+e is always positive and large enough. After using GM(1,1) model
to get predictive values of B+e, we subtract B from it to get predictive error e. The final
structure for this error-prediction-based gray predictive controller is shown in Figure 3.14.
If the controller in Figure 3.14 is PI, then it is an error-prediction-based gray predictive PL

For simplicity, we will still call it gray predictive PI in the following sections.

3.2.1. Consistency of Gray Predictive PI

Proposition 3.4: Given a non-negative smooth discrete data sequence ¢,

e = ((1;), €“2). . V().
If e“(k;) -> Ewo # 0, constant, for any k=1,2,...,n, as i -—> «, then we have

a(i) ---> 0,

b(i) -—> E, constant, asi--->,

where a(1) and b(i) are the least square solution of GM(1,!) model parameters shown in

(3.6).

Proof:
Since e“(k;) —> Eeo, ast -—-> oo,
thus Z(U(k;) =0.5( C(l)(ki) + e“)((k-l %) ) —> [(2k-l)"'Ew]/2,

n

Y ZU(k)) > (n+1)(n-1)*Eal2, (3.282)
k=2
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n

Y k) —> (1-1)*Eue,
k=2

n

Y 29(k)e(k) > (n+1)(n-1)*E212, as t —> oo,
k=2

From (3.6b), it follows that

(3.28b)

(3.28c)

A(i) ---> [(n+1)}(n-1)*Eco/2][(n-1)*Eao]- (n-1)(n+1)(n-1)*E’/2 = 0, as | -—>e_

From (3.20d) in Theorem 3.4, C(i) does not tend to zero as i ---> o, thus
a(1) = AQYC@G)-->0, asi--—>e,
Also from (3.6b) we know B(i) tends to constant as i tends to infinite.

n

n n n
Bi)= Y, 2 )7 Y ek - Y 20k Y 20 (k)
k=2 k=2 =2 k=2

n n
—> [(0-1) ), 2Ky - ( Y, 29(k)) ) ] * Ee,
k=2 k=2

Compared with C(i), which tends to constant as i tends to infinite,

n n
Cl) = (D) Y 2%y - (Y Z%k) )
k=2 k=2
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it follows that

b(i) = B(i)/C(i) —> E, constant as i —>o,

Now that we have proven Proposition 3.4, let's recall Figure 3.14. In the ith time window,

denote

e(k)=S,-y(k),  k=12,..n, (3.292)
ewk)=e(k)+B, k=12,.n. (3.29b)

Replacing e with ey, and €'’ with e, = AGO(ey) in (3.7a) and (3.7b), keep in mind that
when k; > n+1, what we have are predictive values, so we can write the following predictive
algorithm of ey(k;)

ep"(ky) = [ (b(i) - a(i) * ex(1;) M(1 - 0.52(1) ) 1 * r () ¥, ki 2 n+1,

r(i)=(1-0.5%(i))(1+05a(i)), |a(i)]<2,

e"(k) = ep"(k) - B,

or

es™(ni+pn) = [ (b(i) - a(i) * ep'(15) W(1 - 0.5a(i) ) ] * r (i) ™™, p,2 1, (3.29c)
e™(n;+pn) = e (n;+py) - B. (3.29d)

in which e is the actual error, e, is the conditioned error, e,” is the gray predictive value of
eb, and e” is the gray predictive value of e. B > 0, and py, is the prediction horizon of gray
predictive PL.

Proposition 3.5: Given a non-negative smooth discrete data sequence ¢; = (e(1;), e(2)), ....
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e(m;)), if e(k;) -—> E, constant, as i -—> «, then for any py, > 1, e*(nj+py) —> Ec asi-—>oo.

Proof:

Since e(k;) -—> E, as ] —-> oo, for any k=1,2,....n,

thus ey(k)-—>B+Ew, asi-—>o«, for any k=1,2,....,n,

then it follows, from Proposition 3.4, that the parameters a(i) and b(i) for the GM(1,1) model
in Figure 3.14 satisfy

a(i) --—>0, and

b(i) —> B+E., as i -—> oo,

To prove this proposition, what we need is to show that

ey (M;+pn) ---> B + E, as i ---> o, for any py > 1.

From (3.29¢), we know that

€, (N +Py) =-->b(i) -—-> B + Eco, asi---> oo,

Hence from (3.29d), it follows that

eNnytpy) -—-> Ec, asi-—>

Theorem 3.5: Given a discrete process

G(z)=(a;+az' + .. +a,z") /(b +byz' + . + bnz™),
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m
Y bi#o,
=1
and a discrete controller

G(z) =K 1 + Tz/(Ti(z-1)) ]

where T is the sample interval. Suppose B in Figure 3.14 is so large that the discrete
sequence ey(k;) is non-negative smooth discrete sequence. If the closed loop system shown

in Figure 3.14 is asymptotically stable under the control of gray predictive PI, i.e. the gray

predictive error " -—> Ew, constant, as i —-> oo(t —> =), then y will asymptotically converge

t0'S,, a5 i -—->w (t —> o), i.€. Eoo ~=> 0, 25 | —> oot - o).

It is easy to understand this theorem, since, from Proposition 3.5, we know that the GM(1,1)

model in Figure 3.14 is a linear component whose discrete transfer function GM(z) satisfies
GM(z) -> 1, asz-->1,

so the gray predictive PI control systems structured by Figure 3.14 have similar consistency

as conventional PI control systems.
In the following chapter we will apply the error-prediction-based gray predictive PI

controller and continuous-linearly-interpolated gain scheduled PI controller to a boiler-

turbine-generator unit, and show the control quality can be improved.
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Chapter 4

Application of Gain
Scheduled PI and Gray
Predictive PI

A unit system of boiler-turbine-generator (BTG) is a non-linear-time-varying, highly-

coupled, muitivariable system. If all other boiler control systems are put into automation, we
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can view it as a 2-input and 2-output multivariable system. The inputs are fuel flow and
opening of governor valve; the outputs are throttle pressure (steam pressure) and electric

power (load).
Two major goals of BTG control are:

1.To achieve stable and fast ioad following.
2.To ensure the safety of a BTG system. For example, a 300MW BTG system can have 16.67

MPa pressure and 555°C steam temperature. Under so high temperature, any further increase

of pressure may damage the system.

These two goals require that the BTG control system not only have good capability for set-
point tracking and disturbance rejection, but also have strong robustness. Further more, as
we know, if a controller is too sensitive to noise, it may cause the actuator to be worn out
quickly. An industrial actuator usually is quite expensive, therefore, besides the above

features, BTG controllers must be insensitive to noise.
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4.1 Basic Control Schemes For BTG

System 1

There are three basic control schemes for BTG systems.

4.1.1 Turbine Following

The principle for this mode is to use the error signal of electric power(and frequency) as the
input signal(s) of fuel controller to control fuel flow, and use the error signal of throttle
pressure as the input signal of turbine controller to control governor valve. Once the load
demand changes, the fuel controller changes fuel flow first which causes the throttle pressure
to change. Then the turbine controller opens/closes the governor valve to change »electn'c
power and meet the load demand. This scheme can make boiler systems stable, steam
pressure not to vary excessively, but the load following is not very good, since it doesn't use

the stored heat of boiler.

4.1.2 Boiler Following

The principle for this mode is to use the error signal of throttle pressure as the input signal
of fuel controller to control fuel, and use the error signal of electric power (and frequency)

as the input signal(s) of turbine controller to control governor valve. Once the load demand
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changes, first the turbine controller changes the opening of governor, which causes the
electric power and the throttle pressure to change, then the fuel flow controller changes fuel
to maintain throttle pressure and achieve energy balance. This scheme can have good load

following, but throttle pressure may vary excessively. It is unsuitable for once-through

boilers.

4.1.3 Coordinated Control

Based on boiler following mode, a feed-forward power error signal, which can quickly
reflect the change of load demand, is sent to the fuel controller. This signal can be the
function of P,/P,, where P, is the first stage pressure of turbine, and P, is the throttle pressure.
On the other hand, the opening of governor valve is limited if the error of throttle pressure
exceeds the prescribed limits. Therefore when the load demand changes, this scheme not
only can use the stored heat of boiler effectively, and achieve good load following, but also

can maintain the throttle pressure reasonably stable.
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4.2 Application of MFGS PI and Gray
Predictive PI

So far we have discussed MFGS PI and gray predictive PL. Now we will apply them to the
BTG control system, and. through some simulation cases, we will show that thev can achieve

the control goals described in the beginning of this chapter.

We will use the model developed by Bell and Astrom [22] for a 160 MW fossil-fueled power

generation unit. [t is described by

dx;.dt =-0.0018x,”" = 0.9, - 0.15v;

dx,/dt = (0.073v, - 0.016)x,”* - 0.1x,.
dxs/dt= (141v¢- (1.1v, - 0.19)x,):85,

Py=x,.

N =x;

Ly = 0.05(0.13073x; ~ 100a, + q./9 -67.975,

(1-0.001583x;3)(0.8x, - 25.6)
aC = 2
X3(1.0394 - 0.0012304x,)

ge = (0.854v, - 0.147)x; + 45.59f, - 2.514v;- 2.096, (4.2a)

where the state variables x), x> and x; denote the drum steam pressure (kgficm~). the electric
power(MW) and the mean system fluid density (kg/m’); P4, N and L, are the drum steam
pressure (kgf/cm:), the electric power(MW) and the drum level(mm): f,., v, and vy denote the

fuel flow, governor opening and feed-water actuator position. f,, v, and v; are all scaled to
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the range of 0% - 100%, and their rates are limited to

0% < f, < 100%, ifu! < 0.7%sec,
0% < v, < 100%, lv,] < 2%/sec,

0% < vy <€ 100%, ivii £ 5%rsec. (4.2b)

The BTG system will operate under boiler following, variant-pressure operation mode. This
1s a special case of boiler-following control strategy discussed in the previous section.
Variant-pressure operation means that when the load demand changes, we change the steam
pressure and keep the opening of the governor valve unchanged at steady states. This
operation mode can effectively reduce pressure loss, and speed up load tracking. To ensure
a good load tracking, we use the boiler following mode, i.e. use the error signal of throttle
pressure as the input signal of fuel controller to control fuel, and use the error signal of
electric power as the input signal of turbine controller to control governor valve. Once the
load demand changes, the turbine controller temporarily changes the opening of governor
valve so that the electric power can track the load demand quickly. then the fuel controller
changes fuel to achieve energy balance. If the feed-forward load/throttle-pressure-set-point
function is properly tuned. the governor opening should be almost unchanged at final steady
state. Figure 4.1 shows the basic control scheme for boiler-following mode with
variant-pressure operation. The function of "ramp"” limits the rate of load demand, and the
function of "Fcn Gen" generates the corresponding pressure setpoint in terms of load

demand.

Because of the limitation of Model (4.2), the drum steam pressure Py will be used as the
throttle pressure P, in the following simulations. If the governor opening is kept unchanged.
the drum steam pressure P, and throttle pressure P, approximately satisfy [20]

P(s)/P4 (s) = f(Fy),
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where f{F;) is a non-linear function of steam flow F,, thus for the real P, control, if changing

the fuel controller gain K, to K/f{F,), we can get almost the same results.

Suppose that the following relation between the electric power N and throttle pressure P, will

be maintained, which will keeps the governor opening at about 75%.

N  58MW 76 MW 101 MW
Pt 86 kgf//cm® 109 kgf//cm® 140 kgf//cm®

For the intermediate values of N, we use "Fcn Gen" -- linear interpolation to get P,.

"Single-element” scheme for the drum level control is used. That is, only the drum level with
no pressure correction is used to control the feed-water valves or/and the feed-water pumps,
for we only investigate here whether the gray predictive PI can improve the control quality,
and enhance the stability of the BTG system. The control criterion for the drum level is to
maintain the error within - 50 mm in the static state of load demand, and allow short time

over =50 mm but within =100 mm during transient state.

The drum level controller used here is the PI controller with fixed parameters shown below

vi(t) = Kee(t) + (1/ T; ) fe(t)dt,
K. =80, T; = 10,

in which v(t) is the feed-water actuator position and e(t) drum level error. The drum level
is maintained near its setpoint, -100 mm, which is below the middle level of the drum 100

mm. Usually the 0 level is defined as the middle level of a drum in power plants.

The MFGS PI controller shown in (2.9) is used for the turbine control, while the PI controller

with fixed parameters shown below is used for the fuel control.
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vi(t) = K. e(t) + (1/ T; ) [ e(t)dt,

where vi,(t) is the scaled fuel flow and e(t) is the error of throttle pressure. The control
crteria arz 10% overshoots for the unit-step responses of electric power and throttle

pressure, respectively.
At N =76 MW the parameters of the turbine controller and throttle pressure controller are

Fuel Controller: K.=8246, T,=102.394, and
Turbine Controller: K.=4.585, T,=16.383. 4.3)

Figure 4.2 (a), (b), (¢) and (d) show the BTG responses for the step change of electric power
at both directions, and Figure 4.3 (a), (b), (c) and (d) show the BTG responses for the step

change of throttle pressure also at both directions.

Similarly we have the following parameters for the turbine controller and throttle pressure

controllerat N=58 MW and N = 101 MW.

N =58 MW:

Fuel Controller: K.=8246, T,=102.394,

Turbine Controller: K.=5.707, T,=16.383, (4.4)
N =101 MW:

Fuel Controller: K.=8.246, T,=102.394,

Turbine Controller: K.=3.581, T,=16.383, 4.5)

then we get the almost same step responses as Figure 4.2 and 4.3 at N = SSMW and N =
101MW.
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It can be seen that, from (4.3) to (4.5), the controller gain of turbine controller is not constant
at different operating points of electric power. From the BTG model (4.2a) we know that if
we use governor valve to control electric power, the process gain is 0.073X,*® or 0.073P,”®.
It is a non-linear function of P,. If using MFGS shown in (2.9) and K_ at N = 58MW and N
= 101MW to schedule K, at N = 76 MW, we have

K(P=109kgflem®)! = K" + (Kor™' - Koo )(P, - 86)/54 (4.6)
in which K;; = 3.581, K.» = 5.707, and P, is the scheduling variable, so we have
K(P=109kgf/cm?) = 4.555,

which is slightly lower than K. = 4.585 at 76MW. If using FGS1 and FGS2 in (2.6) and (2.7),

we have
K(P=109kgficm™) = K, + (K, - K2 )(P, - 86V/54 = 4.802.

It is slightly larger than K. = 4.585 at 76MW. Although, for this BTG model, the scheduled
K. in MFGS is not significantly different from the scheduled K, in FGS! or FGS2 as shown
in Figure 4.4, we still suggest to use MFGS PI as the turbine controller in the coordinated
control scheme shown in Figure 4.1, for FGS1 Pl and FGS2 PI, after all, may lead to higher

over-shoot, and tend to cause the system unstable for time-varying process gains.
Since the BTG is operated under variant-pressure mode, we can treat the opening of

governor valve V, in the model (4.2a) as a constant, so the PI with fixed parameters will be

used as fuel controlier.
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So far we have discussed the control scheme and controller parameters for the BTG control,
now we will add gray predictive algorithm in the fuel controller, which has fixed controller
parameters, to see whether the gray predictive PI can improve the control quality of BTG
system and enhance the stability compared with PI with fixed controller parameters. Also
we want to see whether the gray predictive Pl has aimost the same sensitivity to noise as PL
The gain scheduled Pl with scheduling algorithm (4.6) will be used as the turbine

controllers.

In Simulation 4.1 and 4.3, we will show that although the gray predictive PI and PI have
almost the same step responses at three operating points, the gray predictive PI does have
better stability for load demand following, and ability for disturbance rejection than PI. In
simulation 4.4, also we will demonstrate that the properly designed gray predictive PI has

almost the same sensitivity to noise as PI.

In all simulation cases below the predictive horizon of gray predictive PI is set to be 25 sec
as the parameter a(i) of GM(1,1) is larger than 0.035. If the parameters a(i) is not larger than
0.035, instead of prediction, we will estimate the current output value. The bias B in the gray

predictive PI, shown in Figure 3.14, is set to be 50 kgf/cmz.

Remark: Similar to “D” mode in PID, the gray prediction should be used to compensate
process lag instead of pure time delay, since a controller can not foresee when the process
output will change before it changes. This feature is different from some predictive
controllers such as Dynamic Matrix Controller and Generalized Predictive Controller etc.
in which input signals and internal models are used. This view is supported by a rule of
thumb, which states that for first order processes the ratio between the process time constant

T(t) and controller derivative time Tq(t) should be kept at a constant value [16].

Simulation 4.1: Similar unit step responses
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Figures 4.5 to 4.7 show the step responses of the gray predictive PI and PI, which are used
as fuel controllers, at electric power N =58 MW, 76 MW and 101 MW, respectively. Both
controllers have almost the same overshoots, rise time and settling time. The differences in

step responses for two controllers at N = 101 MW is somewhat larger than N = 58 MW and
N =76 MW, but is still not significant.

Simulation 4.2: Load Demand Following

Similar to Simulation 4.1, the predictive horizon of gray predictive Pl is set to be 25 sec. A
colored noise ("Band Limited White Noise" in Simulink 4.2¢ through a filter) is added into

the throttle pressure:

White Noise:
Power = 0.2, Sample Interval =2 sec, and Seed = 23341,

Filter: 1/(5s+1).

CASE 1: The load demand increases from 76 MW to 101MW at the rate of IMW/min

Figure 4.8 shows the responses for the electric power and throttle pressure. Figure 4.9 shows

the control outputs of the fuel controllers.

CASE 2: The load demand decreases from 101 MW to 76MW at the rate of 9MW/min

Figure 4.10 shows the responses for the electric power and throttle pressure. Figure 4.11

shows the control outputs of the fuel controllers.
CASE 3: The load demand decreases from 76 MW to 58 MW at the rate of 9MW/min

Figure 4.12 shows the responses for the electric power and throttle pressure. Figure 4.13
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shows the control outputs of the fuel controllers.
CASE 4: The load demand increases from 58 MW to 76MW at the rate of 9MW min

Figure 4.14 shows the responses for the electric power and throttle pressure. Figure 4.15

shows the control outputs of the fuel controllers.

Case 1 to Case 4, no matter whether the load demand increases or decreases, demonstrate
two common features. One is that the overshoots for both systems under the gray predictive
PI control and PI control are almost the same, and the other is that the gray predictive PI only
has slightly higher output than PI for a brief period of time. Its sensitivity to noise is almost

the same as PI’s.
CASE 5: The load demand decreases from 101 MW to 76 MW at the rate of 17 MW/min

Figure 4.16 shows the responses for the electric power and throttle pressure. Figure 4.17

shows the outputs of the fuel controllers and turbine controllers.
CASE 6: The load demand decreases from 76 MW to 58 MW at the rate of 25MW.min

Figure 4.18 shows the responses for the electric power and throttle pressure. Figure 4.19

shows the outputs of the fuel controllers and turbine controllers.

CASE 7: The load demand increases from 58 MW to 76 MW at the rate of 22MW/min

Figure 4.20 shows the responses for the electric power and throttle pressure. Figure 4.21

shows the outputs of the fuel controllers and turbine controllers.

CASE 8: The load demand increases from 76 MW to 101 MW at the rate of 17MW/min
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Figure 4.22 shows the responses for the electric power and throttle pressure. Figure 4.23

shows the outputs of the fuel controllers and turbine controllers.

Case 5 to Case 8 shows that if load demand increases or decreases at higher rates, the BTG
system under P1 control becomes unstable, it is still stable under the control of gray
predictive Pl although the error of the throttle pressure is large, about 8-10kgf//cm®. We can
say that the gray predictive PI is more stable than PI for the different rates of load demand

because of its predictive effect.
CASE 9: The load demand decreases from 101 MW to 76MW at the rate of 34MW/min

Similar to Case 5, but the rate of load demand is further increased from 17MW/min to
34MW/min. Figure 4.24 shows the responses for the electric power and throttle pressure.

Figure 4.25 shows the outputs of the fuel controllers and turbine controllers.
CASE 10: The load demand decreases from 76 MW to 58 MW at the rate of SOMW/min

Similar to Case 3, but the rate of load demand is changed from 25MW/min to SOMW/min.
Figure 4.26 shows the responses for the electric power and throttie pressure. Figure 4.27

shows the outputs of the fuel controllers and turbine controllers.

From Case 9 and Case 10, we can see that the gray predictive PI not only is more stable than
PI for different rates of the load demand, but also can keep stable for wide ranges of load

demand rates.

This simulation indicates that the gray predictive PI can improve the control quality for load
following. and enhance the stability of BTG system. Also we can see that a properly

designed gray predictive PI has almost the same sensitivity to noise as PL.
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Simulation 4.3: Disturbance Rejection

A pulse disturbance, generated by “Pulse Generator™ in Simulink 4.2c. is added to the output
of fuel controller, and a colored noise, generated by "Band Limited White Noise" in

Simulink 4.2c¢ through a filter, is added to the throttle pressure.

White Noise:
Power =0.2. Sample Interval = 0.1 sec, and Seed = 23341,
Filter: 1/(5s+1).

CASE 1: Pulse period: 600 sec; pulse width: 300 sec, and pulse height: 26% of maximum
fuel flow

Figure 4.28 shows the responses of BTG svstem. Errors for both throttle pressure and electric
power under the control of the gray predictive Pl are about 1.3 less than under the control
of PI. Figure 4.29 shows the control outputs of fuel controllers. The gray predictive P! needs
much less output than PI. It means that the gray predictive PI may still keep good
disturbance rejection at high load or low load but PI may not because of reset windup of

actuators.

CASE 2: Decrease the period and width of pulse disturbance in CASE 1 to pulse period 400

sec. and pulse width 200 sec

Figure 4.30 shows the responses of BTG system, and Figure 4.31 shows the control outputs
of fuel controllers. The disturbance rejection of gray predictive Pl is still much better than

that of PL.
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CASE 3: Decrease the height of pulse disturbance in CASE 1 to 13% of maximum fuel flow
Figure 4.32 shows the responses of BTG system. and Figure 4.33 shows the control outputs
of fuel controllers. The responses of BTG systems and the control outputs tend to be almost
the same. This is an expected result. since we do not desire to improve the disturbance
rejection for a small disturbance at the cost of quickly worn out actuator.

Simulation 4.4: Sensitivitv to Noise

In Simulation 4.3, we have seen that a properly designed gray predictive PI has almost the
same sensitivity to noise as PI. Here. more simulations will be taken to further support this

conclusion.

A pulse disturbance is added to the output of fuel controlier with Pulse Period 600 sec, Pulse

Width 300 sec, and Pulse Height: 26% of maximum fuel flow.

CASE I: White noise with intermediate frequency

A white noise signal with

Power =0.2,

Sample Time =2 sec. and Seed = 23341,

is added to the pressure signal.

Figure 4.34 shows the responses of BTG system, and Figure 4.35 shows the control outputs

of fuel controllers.
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CASE 2: White noise with low frequency

A white noise signal with

Power = 0.2,

Sample Time = 6 sec, and Seed = 23341,

1s added to the pressure signal.

Figure 4.36 shows the responses of BTG system, and Figure 4.37 shows the control outputs

of fuel controllers.
CASE 3: Colored noise with low frequency
A colored noise signal

White Noise: Power = 0.2,

Sample Time = 0.1 sec.

Filter = 1/(1+5s).

1s added to the pressure signal.

Figure 4.38 shows the responses of BTG system, and Figure 4.39 shows the control outputs

of fuel controllers.

CASE 4: Colored noise with low frequency

A colored noise signal
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White Noise: Power = 0.4,
Sample Time =2 sec.

Filter = 1/(1+5s).
1s added to the pressure signal.

Figure 4.40 shows the responses of BTG system, and Figure 4.41 shows the control outputs

of fuel controllers.
CASE 5: Colored noise with low frequency
A colored noise signal

White Noise: Power = 0.4,
Sample Time = 6 sec.
Filter = 1/(1+5s).

is added to the pressure signal.

Figure 4.42 shows the responses of BTG system, and Figure 4.43 shows the control outputs

of fuel controllers.

From CASE 1 to CASE 6, under the influences of different noises, white or colored, high
frequency to low frequency, the gray predictive PI not only demonstrates almost the same
sensitivity to noises as PI, but also has much better disturbance rejection and more

reasonable control outputs than PI.

We can therefore conclude that gray predictive PI can significantly improve the control

quality (load following and disturbance rejection) and stability of BTG system. A properly
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designed gray predictive PI not only can achieve much better control quality than Pl, but also

has almost the same sensitivity to noise as PL.

163



Electric Power

101.2

101.1} -

101.0

1009

100.8

2

|—— Gray Predictive PI.
— - Pl

2400

Throttle Pressure

2500 2600

2700 2800 2900 3000
(@) Time (sec)

144.0¢

142.0

140.0

138.0

136.0

—— QGray Predictive PI

2400

2500 2600

2700 2800 2900 3000
®) Time (sec)

Figure 4.34 Sensitivity to White Noises -— Responses to Disturbance

164



Fuel(%)

65.0 ‘
\l
[y
Iy
I
b —— Gray Predictive PI
bt — - PI
\
55.0 ' i
» rl
i ll
] Pl
! \ o W )
'i l 'ﬂ l [J» { | I
} gy Y O \
L ! '
45.0 ‘1 [
I |
Ay !
¢ [
L]
o r
1Y
35.0 '
2400 2500 2600 2700 2800 2900 3000
Time (sec)

Figure 4.35 Sensitivity to White Noises --- Control QOutputs of Fuel Controllers

165



Electric Power

101.2 .
’ J
[ 4 1 - .
L —_— Predictive PI
0L1F e ¢
101.0
100.9
100.8
2400 2500 2600 2700 2800 2900 3000
(@ Time (sec)
Throttle Pressure
o —— Gray Predictive PI
g — - PI
1420 £
140.0F
1380
136.0
2400 2500 2600 2700 2800 2900 3000

Figure 4.36 Sensitivity to White Noises --- Responses to Disturbance

166



Fuel(%)

65.01 ‘l : :
,l‘ —— Gray Predictive PI
R — - PI
t
4
}
l
550( 1 |
4 |
\ 1 L'h
| | } |
s IRED) ] | | [/ J 7 ! s
YN / | &
L]
Y/
45.0f ¥ /
U i
k
J
{
|
}
lr
35.0f )
2400 2500 2600 2700 2800 2900 3000
Time (sec)

Figure 4.37 Sensitivity to White Noises --- Control Outputs of Fuel Controllers

167



Electric Power

1012
101.1
101.0
1009} - v/
— Gray Predictive PI y;
—-PI b
100.8
2400 2500 2600 2700 2800 2900 3000
(a) Time (sec)
Throttle Pressure
144.0
142.0
140.0
138.01 -
— Gray Predictive PI NS
136.0L_1— _PI
2400 2500 2600 2700 2800 2900 3000
(b) Time (sec)

Figure 4.38 Sensitivity to Colored Noises --~- Responses to Disturbance

168



Fuel(%)

65.0
K
|
Y
§
f — Gray Predictive Pl
— "PI
2 i ' |
350 § Iy
) R4l
i ! ll"
v SEH f 4\
(A ! |
h ‘J w 1
(i Y
45.0f If
)
!
¢
i
|
¥
i
35.0+ \
2400 2500 2600 2700 2800 2900 3000
Time (sec)

Figure 4.39 Sensitivity to Colored Noises --- Control Output of Fuel Controller

169



Throttle Pressure
101.2

1011}~

101.0

100.9F-

100.8
2400 2500 2600 2700 2800 2900 3000

(@) Time (sec)
Electric Power
1440

rean

1420

140.0
| —— Gray Predictive PI y Vi
138.0 . o
136.0
2400 2500 2600 2700 2800 2900 3000

®) Time (sec)

Figure 4.40 Sensitivity to Colored Noises --- Responses to Disturbance

170



Fuel(%)

65.0
1
Iy
h
fy
! —— Gray Predictive PI
{ — =PI
55011 1
‘1
/ ‘ 1 " / '
| N . | \ \] H r
L J 3
1
ﬂ
45.0 h '
]
!
(
|
)
N,
350 !
2400 2500 2600 2700 3000
Time (sec)

Figure 4.41 Sensitivity to Colored Noises --- Control Qutputs of Fuel Controllers

171



Electric Power
1012

A ﬂ:\ —— Gray Predictive Pl
—-PI

101.1

101.0

1009 v/

1008
2400 2500 2600 2700 2800 2900 3000
(@) Time (sec)

Throttle Pressure
142.0

140.0

138.0

144.0 —Gray Predictive PI A
: — ~PI A
136.0
2400 2500 2600 2700 2800 2900 3000
®) Time (sec)

Figure 4.42 Sensitivity to Colored Noises --- Responses to Disturbance

172



Fuel(%)

65.0

1

55.0

———— T
=

— E}my Predictive PI
— ~PI

0 i v Htf/A. 1 f ) 4 i
, r !
45.0 ‘
J
!
f
|
)
"
350 f
2400 2500 2600 2700 2800 2900 3000
Time (sec)

Figure 4.43 Sensitivity to Colored Noises --- Control Qutputs of Fuel Controllers

173



Chapter 5

Conclusion

Through the above various simulations and theoretical analysis on continuous-linearly-
interpolated gain scheduled PID, gray predictive PI and their application in a BTG control

system of power generation, we have the following conclusions:
1. The design of the integral mode of gain scheduled PID can significantly influence the

performance of gain scheduled PID. If the scheduling variables are setpoints and may have

step change, it is reasonable to use the integral mode (2.10), i.e.
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Method 1:  I(k) = I(k-1) + [K(k)/T(k)le(k), or
()= [ [Kt)Tyt)]e(t)dt.

If there exist large disturbances in the process, the control system designed with this method
is more likely to become unstable than PID with the integral mode (2.11) or (2.12), since it

reduces to PID with fixed controller parameters for disturbances.

If the scheduling variables are the states or outputs of a process, for the variation of process
gain K, it is better to use the integral mode (2.11) or (2.12) instead of (2.10). That is, we

should use

Method 2:  Ij(k)=I(k-1)+ e(k), I(k) = [K(k)T{(k)]I(Kk), or
I(t) = [Kt) T(V)] [ e(tdt: or

Method 3:  [y(k) = I (k-1) + e(k)/Ti(k), I(k) =K (k) (k), or
(1) = K1) [ [e() T()]dt.

However, for the variation of process time constant T and time delay t, the integral mode

(2.10) is the best selection.

Usually a practical process involves combined variation of K. T and t. Which integral mode
is the best can be determined by trials, but the integral mode (2. 12) is a reasonable trade-off

for general purposes.

2. We should choose gain scheduling approaches based on the relationship between gain
scheduling variables and process parameters. For the single-input single-output processs
whose process parameters, gain, time constant and time delay, are linear or non-linear

functions of the scheduling variable W, and can be better approximated by the first order
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polynomial of the scheduling variable W than W', we have the conclusions below.

For the variation of process gain K;, MFGS PID with the integral mode (2.12) is the definite
selecuon. FGS1 and FGS2 are much worse, and they are more likely to cause the closed-loop
system to be unstable or much more damped than MFGS when the process is operated at the
intermediate values of the scheduling variables. To achieve the desired control quality, more

operating points are needed for FGS1 and FGS2.

For the vanation of process time constant T, FGS1 and FGS2 PID with the integral mode
(2.10) can achieve better control qualities for setpoint tracking, and slightly better
disturbance rejection than MFGS, since K(y) in MFGS is too small. MFGS has more
damped set-point step responses than FGS1 and FGS2 when the process is running at
intermediate values of the scheduling variable. Certainly, the variation of process time
constants usually does influence control quality much less than the variation of process gains

and time delay.

For the variation of process time delay T, MFGS PID with the integral mode (2.10) is the
best, FGS2 is worse, and FGS1 is the worst -- too large over shoot for step responses and
disturbance rejection when the process is running at intermediate values of the scheduling

variables.

A practical process, even if it can be approximated by the first order process, usually is
complicated, i.e. it may involves combined variation of K;. T and 1. To choose a good gain
scheduled PID depends on not only how much we know about gain scheduled PID but also

how much we know about the process.

3. From Simulation 4.3 and 4.4, we see that error-prediction based gray predictive PI
suggested in Figure 3.14, combined with LDISPI method of noise suppression presented by

the thesis in Section 3.1.6, not only can achieve much better control quality and stability than
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PI, but also has almost the same noise sensitivity as PI. It uses quite less control output than
PI to achieve much better disturbance rejection. This means that if the speeds of actuators
are low, or if the actuators are near saturation limits, gray predictive PI can still achieve good

control quality, while PI may not.

The theory of gray system and gray prediction originated from the prediction of social
systems. Gray predictive controllers can be used in any process with gray exponential form.
Certainly for a process with complex eigenvalues, the effect of prediction may not be good.
A promising improvement may be found from the literature [29]. In the literature [18], the
author points out that gray predictive control can be used in multivariable systems, but gave
no further information. Some interesting information may be found in the literature [30]. The
gray predictive controllers based on the scheme shown in Figure 3.12 have been successfully
used in the control of liquid level, temperature, DC electric machine, and refinerv tower etc
[18]. Also the gray phase-plane controller has been used in hvdraulic servo system [18].
Unfortunately. the author of the literature [18] had not given enough references for these

applications.

Finally I would like to point out that gray prediction should be used to compensate the
process time lag instead of pure time-delay, thus the prediction horizon shall be determined
by the compensation of time lag. As to LDISPI method of noise suppression presented in
Section 3.1.6, the sample interval and predictive interval should be determined not only by
statistic features of noises but also by the requirement for control quality, actuator feature,
and CPU load. Another issue deserving of mention is that, for the error-prediction-based gray
predictive PI shown in Figure 3.14, the bias B should be large enough to reduce the different
predicuive effects for the process output increase and decrease unless we intend to use this

unsymmetry.

In conclusion, gain scheduled controllers have been successfully used in industrial control.

Gray prediction is becoming more and more attractive to control engineers. In power
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generation, the further study in multivariable gray predictive BTG control system promises

to be interesting and valuable.
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