
Dynamic Splitting of Decision Trees

S. Farrage
and

T.A. Marsland

Computing Science Department
University of Alberta

Edmonton
Canada T6G 2H1

E-Mail: tony@CS.UAlberta.CA
Fax: (403)-492-1071

Technical Report
TR93.03

March 1993
(with minor changes, 22 April 1993)



-2-

Dynamic Splitting of Decision Trees

S. Farrage
and

T.A. Marsland

ABSTRACT

There are several ways to search decision trees (one and two-person game trees) in
parallel, from simple splitting at the root and Principal Variation Splitting, to Baudet’s
use of aspiration windows. These static schemes are simple and effective, but dynamic
methods like Feldmann’s "young brothers wait", Hyatt’s Dynamic Tree Splitting, and
Schaeffer’s Distributed Search, though more complex, are even better. In two-person
game trees some splitting methods assume that the minimal game tree is being traversed,
and so split at the expected ALL nodes (well defined nodes where all successors must be
examined). In the search of typical game trees, these ALL nodes are not so easily found.

Here we consider a simple dynamic splitting scheme, which balances the work
across the processors without being redundant and without excessive duplication. This
report describes a method to curtail excessive searching by simply dividing in half the
remaining work along the current solution path, and giving it to another processor. We
study a method developed for Parallel IDA* and test a variation of it in a single agent
game, hence providing data from a working dynamic work distribution method. We also
provide insights into issues that must be considered for an equivalent implementation in
two-person games.

1. Introduction

Here we describe a Parallel Depth-First Search method for traversing single agent
game trees. It is implemented under the Network Multi-Processor Package (NMP) [2] —
a set of subroutines that simplify the use of UNIX sockets and the creation of processes
on other machines.

A common parallelization of depth-first search divides the search space into pieces
(subtrees) that can be evaluated by different processors. This splitting may be static, the
division is specified prior to startup, or dynamic, so that parts of a processor’s work load
may be re-allocated at various times throughout the search.

The size and location of each processor’s work load is an important factor in deter-
mining the efficiency of the parallelization. The major overheads are:

• work distribution: communication cost of distributing work or receiving results.

• synchronization: waiting for other processors to complete work, before being able to
continue.

• information deficiency: a lack of data causing extra, unnecessary searching.

• maintenance: cost of extra data structures to support parallelism.

These overheads are not usually independent, since reducing one may increase others.



-3-

1.1. Parallel Methods for Decision Trees

In static partitioning, the strategy for dividing the tree is fixed, e.g. the tree may be
split at the origin root and the pieces allocated to all processors. This approach usually
results in poor speedups because it is difficult to predict in advance how many nodes
each processor will search. The branching factor and cutoff rate may vary greatly in dif-
ferent parts of the tree. Processors that receive smaller subtrees soon finish searching,
then remain idle, often for a long time, until the others finish. The simplest search
method splits the tree at the root (or at some common search depth) so that the subtrees
formed can be matched to the available processors. These matches are rarely perfect,
leading to unbalanced work. Other classic methods include Baudet’s use of aspiration
windows [1], and the popular Principal Variation Splitting Method [11]. This latter static
scheme led to the development of better but more complex, dynamic work distribution
methods.

Dynamic distribution ensures that busy processors decide which work to assign to
idle ones. With the dynamic case, it is often possible to make better selections of the
nodes to transfer, because more is known about the structure of the tree as the search
progresses. This information can lead to the distribution of work loads that are of more
equal size, and hence yield better load balancing. It can also reduce the extra search
caused by information deficiency, by delaying the transfer of nodes that are unlikely to
be searched by the sequential algorithm. At least three independent dynamic schemes
have been developed for searching game trees, including Hyatt et al.’s DTS (Dynamic
Tree Splitting) system [7], Schaeffer’s Distributed Search [14], and the use of Feldmann
et al.’s "young brothers wait" idea [5]. Because these methods were developed for com-
pletely different computing systems they are not easily compared, even though they were
applied to the same complex computer chess application. Here our intention is to study
another simple dynamic parallel method for a single-agent search, with an eye to evolv-
ing it into an equally simple two-person game tree search method.

One strategy for dynamic distribution requires that a designated processor (called
the master) operate as in a sequential program, except that it maintains a list of subtrees
that can be searched in parallel by other processors. In a synchronous algorithm, the
master splits into several slave tasks after enough subtrees have been generated. Each
slave—one of which could run on the same processor as the master—would search one
subtree. As the slaves finish, the master combines their results and prepares for another
division of work. In an asynchronous algorithm, subtrees can be sent to (and results
received from) slave processors at any time. In both synchronous and asynchronous (and
even static) methods, there may be multiple levels of master-slave relationships. For
example, in the asynchronous case subtasks may split into smaller subtasks while the
master continues searching; but in synchronous methods the master waits for the slaves
to complete their work.

In coarse-grained systems, asynchronous methods are usually the more efficient
because idle processors can receive work at any time; they do not need to wait for sibling
tasks to finish. In these schemes, the decision of when to send work may be made by
busy processors or by idle ones that are looking for work. In the former case, a busy pro-
cessor decides that certain nodes should be searched concurrently and simply gives them
to other processors. In the latter case, a processor sends work only after receiving a
request from an idle processor. This use of idle processors is clearly more efficient when



-4-

there is significant work to be given away.

Master-slave relationships can be made even more flexible: an idle processor can
request work from any other processor, thus becoming its slave. The master-slave rela-
tionship ends when the slave finishes the work and returns the results to its master. In
some domains slaves do not need to return results to their masters, so the master-slave
relationship ceases after work is transferred. This freedom increases the likelihood that
an idle processor will be able to find work. In centralized schemes, idle slaves cannot
obtain work directly from a master that is itself idle, whereas in a decentralized scheme
any idle processor can request work. The lack of centralization makes these algorithms
appropriate for extremely large systems, because work distribution is not left to an over-
loaded single processor.

1.2. Previous Results for Single-Agent Games

Here we focus on asynchronous algorithms with decentralized work distribution,
where idle processors actively try to find work from all other processors. Several people
have developed such algorithms for a variety of search domains. Rao, Kumar and
Ramesh [13] implemented a parallel IDA* program and tested it on the 15-puzzle†, using
a Sequent Balance 21000, a MIMD machine with memory that is shared among all pro-
cessors. In their algorithm, one processor initially receives the entire search tree; all oth-
ers are idle. Kumar and Rao [9] implemented the same parallel IDA* algorithm on a
BBN Butterfly, an Intel iPSC hypercube, and 1-ring and 2-ring configurations of proces-
sors. In the BBN Butterfly, each processor has its own memory, but can access other
processors’ memories through a fast switch, thus giving the appearance of shared
memory. In the Intel iPSC hypercube, each processor has its own memory, which is
inaccessible to other processors.

Kumar and Rao’s results [9] show that performance decreases as communication
costs increase and connectivity decreases. Their speedups for the Balance and Butterfly
computers were almost linear (106 for 115 processors) even in large configurations.
Their speedups for the iPSC are still good (115 for 128 processors), but lower than for
the Sequent and Butterfly because the iPSC, being distributed, has higher communication
costs. The iPSC’s reduced connectivity affects performance. Kumar and Rao’s speedups
for the ring configurations were poor, because the restricted communication paths did not
allow work to be distributed efficiently.

Finkel and Manber [6] implemented DIB, a library package that can be used for dis-
tributed (general) depth-first search, without having to worry about the extra program-
ming effort required for parallelism. DIB handles process creation, communication,
work distribution, and fault tolerance. The user supplies the initial state, a successor-
generating function, and a procedure/subroutine to print the results. In DIB, work is ini-
tially distributed among the processors. When a processor becomes idle, it requests work
from another processor. When a processor receives a request, it sends out work, if any is
available. In addition, if a processor cannot find work, it tackles incomplete work that it
had previously transferred, providing fault tolerance when a processor malfunctions or
during network delays. The redundant work has low priority; It is aborted should the
__________________
† See Appendix A for a brief description of the 15-puzzle.



-5-

results arrive, and is suspended when new non-redundant work is received from another
processor. Unlike in Kumar and Rao’s program [9], each processor in DIB keeps track of
where it sends work and from where it receives work, so that any results can be returned
to the appropriate processor.

Finkel and Manber tested DIB on a variety of problems, using distributed systems
containing up to 20 VAX 11/750 computers. For the exhaustive search of the 11-
queens†† problem the efficiency is almost 100% (even for 16 processors) [6, page 245].
For the traveling salesman problem [10] there was a wider variation, and speedup
anomalies were seen. The figures for individual processors [6, page 247] showed that
work was balanced, in that each processor spent almost exactly the same amount of time
doing useful work. These results are consistent with our own, as presented later. For
applications using alpha-beta pruning, information deficiency is a problem, and the
speedups are therefore lower (less than 3 for 8 processors) [6, page 248]. Finkel and
Manber also discuss alterations [6, page 250], which might improve DIB’s performance
for more complicated search problems.

It is important to note, however, that information deficiency does not occur in
exhaustive searches such as IDA* for the 15-puzzle, and in the N-queens problem. In
more complex domains, there are tradeoffs between information deficiency and commun-
ication and synchronization overheads, and thus the speedups should be lower. In the
alpha-beta algorithm, for example, if processors simply send away parts of their trees and
then forget about them, information deficiency overhead increases substantially. Feld-
mann et al. [5], on the other hand, use an improved work distribution scheme to imple-
ment a parallel version of alpha-beta. To increase the effectiveness of the bounds it is
necessary for processors to wait until their slaves have returned results, though these
waiting processors can obtain more nodes and search them. Information deficiency is
further reduced, but not eliminated, by transferring a node only if at least one of its
siblings has already been evaluated [5]. Because parallelism is initiated by idle proces-
sors the overheads are reduced. The essence of these methods is to reduce overheads by
distributing work only when requested by an idle process, and not when processors
decide that they have too much work to do.

Kumar and Rao [9, page 21] analyzed the dependence of performance on problem
size, communication cost and network connectivity. Their isoefficiency function esti-
mates how big a problem has to become to maintain efficiency in multiprocessor sys-
tems. Our implementation follows their analysis for the shared-memory model, while
using loosely connected computers with only local memory.

2. Depth-First Search in Parallel

Our parallel depth-first search algorithm is presented in a general framework,
though the current implementation lacks some of the operations needed in more complex
search domains. The algorithm, named PDFS, uses an asynchronous, decentralized work
distribution scheme, and employs N processors, numbered 0 to N − 1, each executing the
same program. The root or master processor (processor 0), receives the initial input data,
__________________
†† In the N-queens problem, the goal is to place N queens on an N times N chessboard in a position in which no two queens
attack each other.



-6-

which it sends to the others, and also arranges for orderly termination when the search
ends. Although not essential, in our case any pair of processors can communicate with
each other directly over a network.

All processors run the same program for the duration of the search, and are desig-
nated busy when searching nodes, and idle when not. Initially, the master processor is
assigned the entire tree, and is therefore busy, while the others (slave processors) are idle.
Busy processors search as a sequential program would, except that they can be inter-
rupted by messages from idle ones. Whenever a processor is idle, whether it starts out
idle or becomes idle after finishing its work, it instantly tries to obtain more work. This
technique is in contrast to many static algorithms, where idle processors simply wait for
the master to assign more work.

A unit of work consists of one or more subtrees whose roots are successors of nodes
in the current search path. ‘‘Transferring a node’’ means transferring the whole subtree
rooted at that node. This strategy does not require large, complicated data structures —
only a stack, whose additional memory requirements are linear in the search depth — and
so leads to a simple implementation. In addition, PDFS includes a simple mechanism to
control the sizes and locations of transferred subtrees, since these factors can affect vari-
ous overheads substantially. Only subtrees whose height (remaining length to be
searched) is greater than a specified limit are selected for transfer. Despite the apparent
simplicity, our experiments show that more elaborate work distribution methods are
unnecessary, at least for simple problem domains.

To obtain work, an idle processor sends a request to another processor. If the reci-
pient of this message is busy, its searching is interrupted so that it can seek nodes to
transfer to the requester. Available nodes are sent and marked as no longer needing
search, and the busy processor continues its search where it had left off. Idle processors
receiving requests for work, on the other hand, immediately reject them. When the
requester receives work, it becomes busy and begins searching. If it receives a rejection
message instead of work, it seeks work elsewhere. Idle processors continue to request
work from all others, one at a time in a round-robin fashion, until either work arrives or
all processors are idle because the search has finished.

The search ends when all processors become idle, that is, the problem is solved.
Except for handling extra operations to do with the initial allocation of the entire tree,
and some synchronization at the end, the master processor is identical to the slaves.
When it becomes idle, the master looks for work, just like any other processor. Alterna-
tively, the master could do only these extra operations, while a separate slave process,
running on the same processor, could do the searching. This uniformity among proces-
sors eliminates the possibility of any one becoming a bottleneck. Except initially, the
master is no more likely to receive requests than is any other processor.

Because the overheads at startup and termination occur only once, regardless of the
size of the problem, these extra duties have little effect on the speedup, unless the prob-
lem size is too small relative to how many processors are used. The startup overhead
could be reduced further by initially partitioning the tree, assigning a few nodes to each
processor, but in some pruned search applications this splitting leads to significant non-
productive work, because the processors lack knowledge about bounds on the search.



-7-

0

1 A

2 B

3 C

4 leaf node level

origin node

Figure 1: Search tree of sending processor (before transferring nodes)

0

1 A

2 B

C

origin node

Figure 2: Search tree of receiving processor (after receiving nodes)

2.1. Subtree Selection

Figure 1 shows an example 4-ply tree in which one processor is about to send three
subtrees, rooted at the nodes marked A, B and C, to another processor. Figure 2 shows
the other processor’s tree after receiving these nodes. In both diagrams, the squares
represent nodes in the current search path, the crossed-out circles represent roots of sub-
trees that have been searched or have been allocated to another processor, and the other
circles represent nodes (roots of subtrees) that still need to be searched. In this example,
each node has at most four successors; the lines that do not lead to circles represent
invalid operations (such as retracting the move just made in the 15-puzzle, or exposing a
king to check in chess). After transferring nodes A, B and C, the sending processor
marks them as unavailable (crossed-out circles).

In a recursive routine, a processor normally accesses only the local variables
corresponding to its current invocation. However, when looking for work to distribute, a
processor must examine data that corresponds to local variables in other invocations of
the recursive subroutine. To allow access to data from those other invocations, it is



-8-

necessary to maintain extra data structures. PDFS uses an explicit stack, which contains
all sharable information. Maintaining this stack increases the node expansion cost
because extra operations must be performed whenever entering and exiting the subroutine
(i.e. for every node expansion). For example, every time a node is expanded, the parallel
program must check and update a bit-mask in the stack that identifies the successors that
are available to be transferred. However, these overheads can be reduced substantially by
controlling the size of the subtree transferred, as discussed later in Section 2.3 and more
completely in Farrage’s thesis [4].

To access information about all nodes in its current search path, each processor
maintains an explicit stack, whose entries correspond to nodes at depths from 0 to some
maximum depth (MAXDEPTH) along the current search path. Entries are not needed for
greater depths, because work (subtrees) associated with them will not be transferred.
Thus for the shortest subtrees the normal data structure for supporting the sequential
algorithms can be used, thus eliminating the extra stack overhead for all the nodes
beyond MAXDEPTH (i.e., nearer the frontier of the search). Some lower limit on the size
of the subtree transferred is necessary because the resulting work load must be large com-
pared to the cost of transferring work. Hence the need for the MAXDEPTH parameter.

0

1

2

3

4

- 0 1 0 1

1 0 0 1 1

2 0 0 1 0

2 0 0 0 1

3

sending processor

before sending work

(a)

- 0 0 0 1

1 0 0 0 1

2 0 0 0 0

2 0 0 0 1

3

sending processor

after sending work

(b)

- 0 1 0 0

1 0 0 1 0

2 0 0 1 0

receiving processor

after work arrives

(c)

Figure 3: Stacks before and after work-transfer

Figure 3 shows three stacks, which correspond to the work transfer shown in Fig-
ures 1 and 2. Every row represents a stack entry. The entry in row k, as labelled by the
numbers on the left, corresponds to the node at depth k in the search path. Each stack
entry contains two fields: the index of the last move made and a bit-mask corresponding
to valid successor nodes. The last-move field (leftmost column) specifies which branch
was taken in reaching this node; it enables processors to reconstruct the current state from
the initial state by making the appropriate sequence of transitions. Clearly this field is
not relevant for the root node at depth 0. The bit-mask specifies whether the correspond-
ing successor is available for search or transferral. A zero bit specifies that there is no
need to search this successor because:



-9-

(a). The corresponding move cannot legally be made, or

(b). The corresponding successor is being (or has been) searched, or

(c). The corresponding successor has been sent to another processor.

A processor only searches or transfers nodes whose corresponding bit-mask is set to 1.
At that time the bit-mask entry is cleared to show that the node is no longer available.
Also, only nodes whose distance from the root is less than MAXDEPTH are transferred.

When work is transferred, the sending processor duplicates its stack and updates the
bit-masks in each copy to show exactly which nodes will be available in each case. In
the original stack, the bits corresponding to the root of each transferred subtree are
cleared (compare the stacks in Figure 3 (a) and (b)). In the duplicate stack, the bits
corresponding to those subtrees that must now be searched are set, and all other bits are
cleared, as in the stack in Figure 3 (c) shows. This scheme guarantees that each valid
successor is searched exactly once. The duplicate stack is then sent to the idle processor,
where it becomes the working stack. In Figure 3, the bits corresponding to transferred
nodes are circled. Before beginning its search, the idle processor uses the last-move
information to obtain its new current state from the initial state, which it received when
PDFS was started.

Although our stack structure allows several disjoint subtrees to be sent to another
processor in one message, in the experiments described here only one sibling of a node
on the current search path is transferred at a time.

2.2. Implementation

One important issue that affects performance is the normal inability to divide the
search tree into about equal pieces. In some applications, it is also hard to predict when a
split will yield equal work, because pruning in the subtrees can differ substantially.
Static distributions commonly lead to wide variation in work load and hence to a state in
which all processors are idle while waiting for the last one to finish [11]. Thus dynamic
work distribution schemes like the one described here are essential.

2.2.1. Some Work Distribution Strategies

Kumar and Rao [9, page 8] split the tree into approximately equal-sized pieces, by
reassigning half of the unsearched successors of each node in the search path (a ‘‘split-
ting the tree down the middle’’ strategy). In our experiments, PDFS was allowed to give
away only a single subtree at any node, although several subtrees can be transferred at
once without additional communications, since the entire stack is always sent. However,
the structure used in PDFS is sufficiently general that it can also model Kumar and Rao’s
approach, as well as many variations of it, since any subset of these unsearched succes-
sors may be sent in one operation.

2.2.2. Work Distribution Method

Deciding which nodes to transfer when distributing work is an important issue
because poor choices can increase overheads. The size of the re-allocated subtree affects
the efficiency of the parallelization. It follows that the time required to search the
received nodes should be large compared to the time required for communication. If the



-10-

subtree is too small, the requesting processor will quickly finish searching it, then request
more work, resulting in extra communication overhead. If the subtree is too big, the
sending processor would give away most of its nodes, thus soon becoming idle and hav-
ing to request work itself, as well being unable to fulfill requests that it may receive
before more work arrives.

2.3. Subtree Size Control

To provide some control over the size of the subtrees transmitted the parameters
MINDEPTH and MAXDEPTH are used. A subtree is transferred only if its root node
depth is not less than MINDEPTH and not greater than MAXDEPTH (i.e. the subtree’s
root node must be located between the horizontal lines in Figure 4). There are usually
several subtrees, rooted at various depths, that meet this condition. In the domain used
here, a subtree rooted closest to the origin should be chosen because it is probably the
biggest. PDFS arbitrarily chooses the leftmost of these shallowest-rooted subtrees for
transferral, if there is more than one. One aim of our experiments is to determine optimal
ranges for the two working parameters MINDEPTH and MAXDEPTH.

origin root

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MINDEPTH

MAXDEPTH

Figure 4: Location of nodes to transfer

As MAXDEPTH increases, there will be more frequent transfers of smaller trees,
because this limit is now closer to the search frontier. Idle time will also be reduced,
because a processor receiving a request for work is more likely to find subtrees to send
out. However, a large value of MAXDEPTH also increases total communication over-
head because smaller subtrees are searched more quickly than larger ones: processors
become idle again quickly, resulting in more frequent requests and work transfers. In
addition, the transferral of more deeply-rooted subtrees, leads to extra stack operations
for those nodes, which in turn increases the cost of node expansion.

Conversely, if MAXDEPTH is small, work that could otherwise be distributed is
done sequentially while available processors remain idle for long periods. When all
nodes less than or equal to MAXDEPTH are being worked on, busy processors, which
may still have many subtrees to search, are restricted from sending to idle processors sub-
trees rooted at depth greater then MAXDEPTH. Idle processors do nothing except issue
requests, which are always rejected because no work is ever available. Similarly, setting
MINDEPTH too high slows busy processors because they reject requests for work, result-
ing in an unbalanced work load as evidenced by high idle times for some processors. Not



-11-

only do these unsatisfied requests slow down the busy processors, but they also show that
the work load is highly unbalanced, since at least one processor is searching a large sub-
tree for a long time, while others remain idle.

If MINDEPTH is small, a processor might give away a big subtree, and leave little
for itself. If MINDEPTH is large, all subtrees sent out are forced to be rooted deeper in
the tree, thus tending to be smaller, resulting in more communication overhead (messages
and interruptions), as is the case with large MAXDEPTH values. Our experiments show
that the effect of transferring too many nodes at one time is less damaging than the cost
of the extra communication overhead, hence small MINDEPTH values are preferable.

As often happens in parallel algorithms, there is a tradeoff between overheads: a
change that reduces one overhead often increases another. To obtain good speedups, it is
necessary to balance these overheads. As our experiments will show, reasonable values
of MINDEPTH and MAXDEPTH yield almost linear speedups in some problem domains,
even though the work distribution method is simple.

2.4. Software

The main program (Figure 5) is first run by processor 0, which arranges for the crea-
tion of slaves on other processors (also running the same main program, but as a slave).
Each processor’s work stack is initially emptied. Processor 0 obtains work (the input
data) from the user, and then initializes its work stack to show that search of the root
node is required. The main while loop, which runs for the duration of the search, con-
sists of seeking work (if the processor is idle), searching the subtree it receives, and pass-
ing on the termination detection token (see Section 2.5.1) if necessary. The loop ends
when the search is finished, in which case the processors synchronize (to allow for an
orderly completion), print statistics and exit. In some search domains, it is necessary to
combine the results of each processor’s search, after which processor 0 outputs this infor-
mation; in others each processor simply outputs its own results.

Within the while loop of Figure 5, the parallel procedure is called to search
the subtree recursively. This procedure also maintains a bit-mask to identify and avoid
successors that have been transferred to other processors. As Figure 6 shows, when the
recursion continues beyond MAXDEPTH, control switches to sequential, which has
fewer overheads because it no longer maintains the work stack.

On reaching a frontier node, a busy processor checks to see if any messages are
waiting. A message flag is set by an interrupt handler whenever a message arrives. If
messages are waiting, the processor temporarily stops searching and calls poll to find
out where they came from, so it can respond. If a request for work is received, another
function is called to examine the stack and find unsearched successors. If an unsearched
successor is not found, a rejection message is sent. Otherwise the stack is updated, to
show that this successor is no longer available, and it is transferred to the requester. The
work allocation function can be modified to implement a wide variety of work distribu-
tion methods, some of which may be appropriate for more complex searches.

In some applications (e.g. the 15-puzzle, which is used as an example here), the
time spent accessing the stack is a significant fraction of the node expansion time. In
such applications, it is important to eliminate the stack management for as many nodes as
possible because it increases the amount of time required to search each node. To



-12-

main()
initialize stack
done = FALSE

if (master)
create processes on other machines
input initial state
send initial state and other data to other processors
indicate that master has white token
idle = FALSE

else
receive initial state and other data from master
idle = TRUE

while (not done)
if (idle)

if processor has token, pass it on
seek work
if (termination detected) done = TRUE

else
set current state to initial state
make moves in stack to create new current state
parallel(current_state)

/* all processors are now idle */

if (master)
send termination message to other processors
receive any messages still in transit

else
send termination message to other processors
receive any messages still in transit

print results
end

Figure 5: Main program (all processors)

contain this overhead, nodes shallower than MAXDEPTH are expanded by the paral-
lel routine (Figure 6) that includes extra operations, such as checking and altering the
bit-mask for every node to ensure that subtrees are never searched more than once. For
deep nodes sequential (Figure 6) executes pure IDA* (the normal sequential algo-
rithm), except that it checks for messages from other processors. These messages could
indicate that processors are looking for work or that the problem has been solved.

2.5. Major Overheads

The four main overheads of PDFS are communication, synchronization (work star-
vation or other idle time), stack maintenance and, in some domains, information defi-
ciency. Processors must communicate to transfer work and to detect termination. Idle
processors send messages over a network and wait for replies. Busy processors, when



-13-

parallel(state) /* for depth ≤ MAXDEPTH */

generate bit-mask of valid successors
store bit-mask at top of stack
clear bit corresponding to reversal of last move
for each legal move m

if (bit m of bit-mask is 1) and (problem not solved)
clear bit m of bit-mask
make move m
increment node count
if (not at frontier)
if (depth ≤ MAXDEPTH)

push m and 0 /* space for bit-mask */
if (goal_node or parallel(new_state) ≡ SUCCESSFUL)

pop()
return (SUCCESSFUL)

else
if (goal_node or sequential(new_state) ≡ SUCCESSFUL)
pop()
return (SUCCESSFUL)

else
if there are any messages waiting
clear message_flag
poll()

undo last move (m)
pop()
return (UNSUCCESSFUL)

end

sequential(state) /* for depth > MAXDEPTH */

for each legal move m (not including reversing last move)
make move m
increment node count
if (not at frontier)

if (goal_node or sequential(new_state) ≡ SUCCESSFUL)
store last move
return (SUCCESSFUL)

else
if there are any messages waiting

clear message_flag
poll()

undo last move (m)
return (UNSUCCESSFUL)

end

Figure 6: Searching functions (all processors)



-14-

they receive a message, achieve reasonable response times by interrupting their searching
at the next frontier node (limiting depth of search where the distance to the goal state is
estimated). If a request for work (the most frequent type of message) is received, the
interrupted processor identifies some work that remains to be done and allocates it to the
idle processor. Both processors then update their work stacks and proceed.

Communication overhead can be reduced by decreasing the total number of mes-
sages, especially requests for work. Increasing the size of transferred work loads also
results in fewer total requests, but can cause processors to remain idle because work
becomes harder to find. Another way to reduce the number of requests is to restrict the
connectivity, thus reducing the number of processors from which a processor can request
work or receive a request for work. However, such a limitation would increase idle time
when indirectly accessible processors have work to assign, but adjacent processors do
not.

When a processor finishes searching its subtree, it seeks work from others, and con-
tinues to do so until it either finds work or receives a termination message. This syn-
chronization delay can be reduced by allowing transfer of smaller (deeper-rooted) sub-
trees, since the busy processor would have more choices of subtrees to re-assign. Unfor-
tunately, sending out smaller subtrees may also result in increased communication,
because there will be more requests as processors finish their searching work sooner. For
good speedups, a suitable tradeoff between synchronization and communication over-
heads must be found.

Most processors are idle at the beginning because only one of them has nodes to
search. This disadvantage is small, however, because slave processors receive work
quickly (if suitable MAXDEPTH values are used). Because only the master processor
initially has work available, each slave processor sends its first request to the master.
Similarly, near the end many processors may be idle, although the finding of a goal node
forces the immediate termination of all processors. The work available from the few
busy processors is too small to send out profitably because the overheads incurred in han-
dling requests and sending work exceed the savings provided by parallelization. Our
experiments show that the idle times at the beginning and the end are short.

In many parallel algorithms, processors lack information that would be available to
a single processor executing a sequential algorithm. This lack of information may cause
processors to do extra work that the sequential algorithm would have avoided. A com-
mon example is the alpha-beta pruning algorithm. When sibling nodes are searched
sequentially, the alpha/beta bounds from older siblings increase the number of cutoffs in
younger siblings. On the other hand, when several sibling nodes are searched con-
currently, the older ones may not be able to supply better bounds for the younger ones
early enough to be beneficial. The lack of information (tighter alpha and beta bounds)
usually causes the parallel algorithm to miss cutoffs and thus search more nodes, result-
ing in lower speedups.

2.5.1. Termination Detection

To avoid wasting potential computing power, all processors should stop at the same
time. However, in many applications there is no single event that signals completion (see
for example, branch-and-bound algorithms and non-final iterations of IDA*); termination



-15-

occurs only when no more nodes need to be searched. It is therefore necessary to deter-
mine when all processors are idle (i.e. no more work is available). Unfortunately, termi-
nation detection is not as trivial as it might seem. Simply polling all processors, asking
them if they are busy, does not work.

The termination detection method used here is the one by Dijkstra et al. [3], in
which a ‘‘token’’ is sent around a ring of processors, numbered 0 to N − 1, in descending
order, starting with processor 0. The ‘‘ring’’ is simply a predetermined path that allows
the token to visit all the processors. The token and each processor is considered to have
two states, called ‘‘white’’ and ‘‘black’’. When the token is first sent, it is considered to
be white, as are all processors. However, the token is not passed on until the processor
that holds it is idle, and the processor becomes white immediately after. Meanwhile, a
processor that sends work to a higher-numbered processor becomes black. A black pro-
cessor always turns the token black before passing it on; a white processor leaves the
token color unchanged. When a white token returns to processor 0, all other processors
have finished searching. If a black token arrives at processor 0, the outgoing token is
made white. The token may traverse the ring several times before termination is
achieved.

Passing the token constitutes an additional overhead: N extra messages, one for each
processor, for each traversal of the ring of N processors, plus an interruption and some
extra instructions that decide what to do with the token. However, this overhead is small
because, although the token may be received at any time, it is not passed on until the pro-
cessor that holds it becomes idle, which is usually a long time. In practice, our experi-
ments show that the token makes only a few traversals before termination is detected.

2.5.2. Deadlock Prevention

In a parallel program where work requests can be sent to any processor at any time,
there is a danger of deadlock. Deadlock occurs if there is a subset of processors in which
every processor waits for a reply from another processor in the subset. The simplest
example is when two idle processors request work from each other simultaneously and
wait for replies from each other. To prevent deadlock, all processors (including idle
ones) must respond to requests for work, thus allowing idle processors to seek work else-
where.

2.5.3. Analysis

For this analysis, we assume that the tree is uniform with constant depth D and fixed
width w. We also assume that both the sequential and parallel algorithms search every
node in the tree. The analysis concentrates on the overheads of stack management. The
analysis for the interrupt flag is similar, but the latter overhead is smaller and depends on
the number of leaf nodes.

Let M = MAXDEPTH.

Let n =
d = 0
Σ
D

w d =
w − 1

w D + 1 − 1_ ________ be the total number of nodes searched.

Let k =
d = 0
Σ
M

w d =
w − 1

w M + 1 − 1_ ________ be the number of nodes for which stack management

is necessary (nodes whose distance from the root is not greater than MAXDEPTH).



-16-

Let N be the number of processors.

Let α be the cost of searching a node.

Let ε be the extra cost (for each node expansion) of managing the stack.

The sequential time is αn. The parallel time is at least
N

αn + εk_ ______, resulting in a maximum

speedup of N
αn + εk
αn_ ______ =

1 + (εk) /(αn)
N____________. If k = 0, corresponding to the case of splitting

only at the root node, the possible speedup is N. At the other extreme, if k = n, the

speedup is limited to
1 + ε /α

N_ ______. Usually ε << α, but for problems in which the node

expansion cost (α) is low, ε might not be significantly less than α. Note , when ε = α (in

addition to k = n), then the maximum possible speedup is only
2
N_ _.

Unless MAXDEPTH is close to D, k is much smaller than n and therefore stack
management overhead is not important. If w is large and ε is much smaller than α, stack
management may be insignificant even if MAXDEPTH = D − 1. Thus the method
should be effective in domains like computer chess where the cost of node expansion is
much higher than for stack management.

There are additional considerations to take into account for some problem domains.
For instance, in the example discussed in Section 3, there are cutoffs in the deeper parts
of the tree, which cause the number of nodes per level to stop increasing exponentially
and eventually start decreasing. In this case, increasing MAXDEPTH beyond a certain
point has little effect.

3. Experiments

To measure the efficiency of the decentralized parallel depth-first search algorithm
described in the previous section, PDFS was implemented in a distributed environment.
PDFS is written in C and was tested using Sun-4 workstations, all of which use the UNIX
operating system and are connected via an Ethernet. PDFS has one process running on
each machine, and any pair of machines can communicate with each other.

Processes communicate using the Network Multi-processor Package (NMP) [12][2].
Developed at the University of Alberta, NMP consists of a set of subroutines that provide
a simple interface to the UNIX socket handling routines, as well as a server that creates
processes on remote machines. NMP can simulate systems with arbitrary connection
topologies, although complete connectivity was used in these experiments.

In a sequential algorithm, successor ordering is deterministic; the node count
changes only if the successor ordering algorithm is changed. Parallel searches can affect
the successor ordering, hence an unpredictable speedup anomaly is possible which influ-
ences the results. This possible anomaly was eliminated from this study, because its
benefits might overwhelm the losses from communication and synchronization over-
heads. The resulting confusion over explanations for the timing differences would com-
plicate the analysis of PDFS’s efficiency. The search domain chosen is a simple heuristic
search that attempts to find a solution to a problem, given its depth and an admissible
heuristic. PDFS searches all nodes whose cost plus some heuristic evaluation is less than
or equal to a fixed bound. To avoid the possibility of speedup anomaly, a bound that is



-17-

less than the known solution depth was used, thus forcing the parallel program to search
exactly the same set of nodes as the sequential one. Thus we carried out our tests on the
next to last iteration of Korf’s IDA* [8]. The biggest such bound was used to obtain
results for the largest trees.

3.1. Problem Domain

The results reported here were obtained by solving the four most difficult 15-
puzzles (see Appendix A) from the 100 random puzzles presented by Korf [8]. The 15-
puzzle is not necessarily ideal for testing search algorithms: the search tree has a low
branching factor (width = 3) and the cost of expanding nodes is small. Also, the heuristic
value of a node is always one more or one less than that of its parent (thus IDA*’s next
threshold is always two more than the current one). The low branching factor should not
be a problem for PDFS because subtrees that are sent out can be rooted at various depths.
In a shallow, bushy tree, there are many nodes in a small range of depths. In a deep, nar-
row tree, where there are proportionately fewer nodes at individual depths, large differ-
ences between MAXDEPTH and MINDEPTH allows nodes in a greater range of depths to
be given away. In both cases, there is plenty of work to send out. Small differences in
the depths of reassigned subtrees are overshadowed by variations in the number of cut-
offs (threshold being exceeded) among subtrees.

The small node expansion cost is also not a problem because MAXDEPTH is used to
eliminate the overheads for most of the nodes. However, PDFS would be even more effi-
cient for problems with higher node expansion costs, because any extra overheads would
constitute a smaller proportion of the node expansion cost (i.e. the ratio of communica-
tion to node expansion cost would decrease).

3.2. Expectations

Kumar and Rao’s results [9] suggest that PDFS’s biggest overhead should be com-
munication (the times required to send requests for work and receive replies, and the time
required for interrupted processors to look for work to send out). In both Kumar and
Rao’s program and PDFS, there is plenty of work available to transfer except near the
end of the search. Unless unnecessary restrictions are placed on the choice of subtrees to
transfer, or processors are slow to respond to requests for work, no processor should be
idle for long periods. The startup overhead, as well as the idle time at the end, depends
only on the number of processors, not on the size of the problem, and therefore becomes
insignificant as the problem size increases.

In PDFS, stack management occurs only in the shallow levels of the tree, where
only a small fraction of the total nodes reside. Passing the token for termination detec-
tion (see Section 2.5.1) is not expensive. In the experiments described here the token
never made more than four circuits around the ordered set of processors, provided suit-
able values of MAXDEPTH and MINDEPTH were chosen. Also processors only spend
time looking for work when they would otherwise be idle, and so the extra synchroniza-
tion overhead is also small since it occurs only when processors wait for replies to mes-
sages. In more complicated problem domains, however, reducing synchronization over-
head by reducing the restrictions on which nodes to give away may increase the unneces-
sary searches caused by information deficiency.



-18-

3.3. Timing Difficulties

There are several difficulties that complicate timing and reduce its accuracy. The
main problem is the presence of processes not belonging to PDFS, since other users may
run applications on any machine at any time. System processes, which may consume
more CPU time on some machines than on others, are also present. Because of the way
that NMP calculates times, high idle time figures often indicate the presence of such
unrelated processes, rather than the amount of time that a machine is truly idle. Experi-
ments whose measurements were corrupted significantly by such processes were redone.
Corruption is assumed if the figures for individual processors differ substantially and
repeat solutions eliminate the differences. Competing processes also affect the user time
figures. Clearly two CPU-intensive processes on the same machine can only receive
about half the available user time each, and system time would also increase because of
context switching. True idle time is low when reasonable values for MINDEPTH and
MAXDEPTH are chosen.

In addition, the UNIX timing routines are not completely accurate. Differences in
the real and user time measurements can be as much as 4% apart, on identical machines
running the same (sequential) program with the same input data, and without interference
from other users’ applications. The differences between consecutive runs on the same
machine were much smaller: usually less that 0.1%, but sometimes close to 0.5%.

These difficulties do not reduce PDFS’s efficiency. Machines without other
processes search more nodes while busier machines, executing unrelated processes, are
effectively slower. Thus faster machines search more nodes than slower ones and the
transfer of work achieves load balancing. However, because these differences complicate
timing only identical machines were used in our experiments, and measurements obvi-
ously corrupted by the existence of unrelated processes were redone.

Because of inherent timing differences, it is difficult to obtain precise speedup fig-
ures. The choice of machine to use for the sequential algorithm can affect the speedup
significantly. For this reason, the sequential program was run several times on different
machines. Separate speedup calculations were made, using the fastest and slowest
sequential timings from among those not corrupted by the presence of unrelated
processes, to obtain upper and lower bounds for the speedup.

3.4. Results

As described earlier, there is a tradeoff between overheads: idle time vs. communi-
cation and stack management. To find optimal values for MINDEPTH and MAXDEPTH,
PDFS was run many times, using different values for these parameters. The results of
these experiments are presented in the following graphs and in Appendices B and C.
PDFS was run on a system of sixteen Sun-4 workstations of identical speed. Machines
running other users’ programs were avoided, although there may have been some
interference from short programs that started during the execution of PDFS. In the first
experiment, two of the problems in Korf’s IDA* test set [8] were used as input: the big-
gest (#88) and the fourth-biggest (#66). Here a ‘‘bigger’’ problem is one that requires
more nodes to be searched before a solution is found. These problems were chosen
because the purpose of parallelism is to solve large problems: in small problems, startup
and termination overheads constitute a large fraction of the running time. Also, since



-19-

there is a large difference in the number of nodes (924,074,079 nodes for problem 66 and
5,156,184,395 nodes for problem 88 — a ratio of more than 5.5 to 1), the effects of prob-
lem size on efficiency could be investigated. Note, the node count given here is for the
penultimate iteration of IDA*.

500

1000

1500

2000

2500

MAXDEPTH

real time
(seconds)

4 8 12 16 20 24 28 32 36 40 44 48 52 56

MINDEPTH=12

MINDEPTH=8

MINDEPTH=4
.............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MINDEPTH=0

Figure 7: Time as a function of MINDEPTH and MAXDEPTH (problem 66)

Each row in Tables B1 and B2 (Appendix B) displays the statistics for one run with
the specified values of MINDEPTH and MAXDEPTH. The timing figures are averages
over all processors. The figures for the node count and the numbers of successful and
failed requests for work transfer are totals over all processors. Real time means the
elapsed clock time, from start to finish, including wasted time. The user time of a pro-
cess is the actual CPU time it received. System time is the time spent during system
calls, for example to the UNIX send and recv functions. Idle time, which techni-
cally means the time spent doing nothing, also includes the time spent by the CPU on
unrelated processes on the same machine; it is calculated by subtracting the total of user
and system times from the real time. Wait time measures at least the total time spent
looking for work, both sending requests and waiting for replies (the only case of true idle
time). Wait time has some user- and system-time components because system calls and



-20-

other instructions must be executed while looking for work. The figures for real, user,
system and idle times include the corresponding components of wait time. The total
overhead is at least as large as the total wait time. The number of successful requests is
the total times that work was transferred. The last two columns of Table B1 and B2 of
Appendix B count how many requests for work were made. Of these some were
accepted (success) by the receiving processor, resulting in new work for the sending pro-
cessor, and the others were rejected (failed) because the receiving processor was either
idle itself or because it had no acceptable work to give away. High reject values are spe-
cially undesirable. They represent unproductive messages, and occur in great number
only for small values of MAXDEPTH.

One observation from Tables B1 and B2 is that the system and wait times increase
almost linearly with the total work transfer requests. Clearly, each request and each reply
requires a certain amount of system time. Wait time also accumulates as more requests
are issued. Figures 7 and 8 plot the real (elapsed) times from Tables B1 and B2 and
show that there is a range of values for MAXDEPTH for which elapsed time is minimal.
However, they also show that setting MINDEPTH = 0 is optimal for IDA*.

2000

3000

4000

5000

6000

7000

MAXDEPTH

real time
(seconds)

4 8 12 16 20 24 28 32 36 40 44 48 52 56

MINDEPTH=12

MINDEPTH=8

MINDEPTH=4

......... . . . . . . . . . . . . . . . . . . ..
..

..
..

..
..

..
. ..

..
..

..
..

..
.. . . . . . . . . . . . . . . . . . . . . .

MINDEPTH=0

Figure 8: Time as a function of MINDEPTH and MAXDEPTH (problem 88)



-21-

3.4.1. Effect of MAXDEPTH

When MAXDEPTH falls below its best operating range, processors have trouble
finding work, as Tables B1 and B2 show by the frequent work transfer rejections. The
reason for this difficulty is that, since there are few nodes at shallow depths, there are few
choices of subtrees to distribute. After several requests have been filled by various pro-
cessors, all subtrees rooted at depths less than MAXDEPTH have been or are being
searched, thus leaving no further work to transfer. At this point, any processor that com-
pletes its subtree remains idle, doing nothing but looking for work for the remainder of
the program’s execution. The idle time can be substantial, especially when work loads
are highly unbalanced. The high system time figures support the conclusion that much of
the time is spent sending and replying to requests for work. This overhead increases sub-
stantially as MAXDEPTH tends to MINDEPTH (see Tables B1 and B2 in Appendix B).

However, even small increases in MAXDEPTH away from MINDEPTH leads to a
significant drop in work transfer request rejections. Even as MAXDEPTH increases from
12 to 16 to 20, the number of unsuccessful requests drops significantly, indicating that
work was still becoming easier to find. Wait time decreased along with the total number
of work transfer requests. However, the increase in the number of successful requests
suggests that processors had to look for work more often because they received smaller
work loads.

Elapsed time also increases as MAXDEPTH increases above the operating range.
This is perhaps a measure of the stack management cost. The number of nodes for which
stack management is necessary increases exponentially as MAXDEPTH increases, until
cutoffs start occurring. The corresponding increase in user time supports this conclusion,
since more work is required to search individual nodes, whereas lack of work would be
indicated by an increase in wait time.

As Figures 7 and 8 show, this increase (in real time) levels off as MAXDEPTH
increases past 40 because the cutoffs at deeper levels reduce the number of additional
nodes for which stack management is required. It follows that in these cases relatively
few nodes at depths near the threshold value are being searched.

Tables B1 and B2 show that, for MINDEPTH = 0, there is little change in the
numbers of successful and failed work transfer requests as MAXDEPTH increases beyond
20. The timing differences were caused by the extra stack management required for
deeper nodes, because the continued increase in user time and the lack of significant
change in wait time shows that work was being done.

Figure 9 presents normalized data relating efficiency (minimum user time as a per-
centage of real time) to depth ratio (MAXDEPTH as a percentage of the solution depth).
The solution depth for problem #66 is 61 ply and for #88 is 65 ply. We can see that for
the larger problem MAXDEPTH can fall within a broader range of values and still operate
near maximum efficiency. This is a general result applying to a wide spectrum of 15-
puzzles, and it also follows that small differences in MAXDEPTH are less important for
problems with deeper solutions. We can also see that problem #88 is always solved more
efficiently than problem #66 over the full range of MAXDEPTH values. The main rea-
sons are that idle time at startup and termination is a smaller faction of the total time, and
that trees rooted in the distribution range are larger, leading to proportionately fewer
requests. In this latter case, since the cost of distributing work is fixed, communication



-22-

depth ratio or MAXDEPTH as a fraction of solution depth (%)

efficiency (%)
minimum user time

as percentage real time

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Problem 88

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.. .
..
..
..
. . . . . . . . . . . . . . . . ................... ............. . . . . . . . . . . . . . . . .

Problem 66

Figure 9: Efficiency as a function of MAXDEPTH and problem size

overheads will occupy a greater proportion of the total time for problem #66. Figure 9
also shows that the optimal value of MAXDEPTH for problem 66 is about 25% of the
solution depth. For problem 88, the operating range is from 18% to 31%. The range is
wider for problem 88 because the optimal solution is deeper: small differences in MAX-
DEPTH are less significant for problems with deeper solutions.

3.4.2. Effect of MINDEPTH

Figure 9 is for the optimal case of MINDEPTH = 0, but the graphs for MINDEPTH
values of 4 and 8 are similar in shape, although the total elapsed times are greater as
MINDEPTH increases. Figures 7 and 8 also support the view that the elapsed time
increases because more messages are sent: since all transferred subtrees are forced to be
smaller, processors must seek work more often. The wait time (see Tables B1 and B2)
accumulates as more requests are issued, even though processors can find work easily.
The degradation in performance is slight when MINDEPTH increases from 0 to 4, indi-
cating that the exact choice of value for MINDEPTH is unimportant if it is chosen to be
between 0 and 4 (and perhaps slightly higher). As MINDEPTH increases to 8, the curve



-23-

shifts upward by a larger amount: close to double for problem 66, although only 15% for
problem 88. The difference is smaller for the largest problem, #88, because all subtrees
for #88 are proportionally bigger than a similarly rooted subtree for #66, hence lower
overheads. The performance degrades rapidly as MINDEPTH increases to 12 and
beyond.

From these observations, one can conclude that the many failed transfer requests,
resulting from the receipt of smaller units of work, are much more of a burden than the
risk of processors becoming idle by sending away too much work. These results show
that, at least for this simple problem domain, there is no reason to set a minimum depth
below which work cannot be sent out.

3.4.3. Significance of the MAXDEPTH−MINDEPTH Difference

Since the range MAXDEPTH −MINDEPTH controls the area of the tree where
nodes can be transferred, Farrage’s thesis [4] considers this factor and presents some
insights, including the hypothesis that the number of available nodes is linear with the
difference MAXDEPTH −MINDEPTH. To summarize, when the difference is small the
wait times are large showing that the processors are having difficulty finding work. Also
the system time figures are high, since send and recv UNIX system calls are issued
with each message. Keeping the difference constant and increasing MINDEPTH helps
keep more processors busy, but doing smaller pieces of work. There can be do doubt that
the difference between MAXDEPTH and MINDEPTH should be as large as possible, but
consistent with the best operating range for MAXDEPTH.

3.4.4. Summary

In general, requests for work are more likely to be successful as MAXDEPTH
increases, since the work that can be sent out for a smaller MAXDEPTH is a subset of the
work that can be sent out for a larger MAXDEPTH. The decrease in wait time (with
increasing MAXDEPTH) also supports this conclusion. Unsuccessful requests result in
rejections and repeated requests, which interrupt busy processors and waste their time
when they do not have work to send. In addition, each unsuccessful attempt to obtain
work increases the amount of time that a processor remains idle. However, larger values
of MAXDEPTH also increase the stack management overhead. These two conflicting
overheads need to be balanced. In the 15-puzzle, this balance occurs when MINDEPTH
is zero and MAXDEPTH is within its optimum range of 15 to 40% of the maximum
search depth.

3.4.5. Other Results

Kumar and Rao [9, page 13] found that, using their tree-splitting strategy in a
shared-memory system (Sequent Balance 21000), there was little difference in perfor-
mance for cutoff depths between 25% and 75% of the search depth. They also
hypothesized that tree-splitting at the root node is superior to transferring single subtrees
[9, page 8].

The experiments described here support the work of Kumar and Rao, who argued
that MINDEPTH = 0 is the best value, but we show that MAXDEPTH is an equally
important parameter with best values ranging between 12 and 20 ply, with 8 to 24 also



-24-

giving reasonably good results. The optimal solution depths for problems 66 and 88 are
61 ply and 65 ply, respectively; and so 8 to 24 translates to about 12% to 36% of the
solution depth. The main differences between Kumar and Rao’s program and PDFS are
that:

• communication costs were lower for their program.

• they used slower processors.

• they split the tree at the root; PDFS can split at any node along the current path.

• their results were obtained on smaller test problems.

• they implemented IDA*, which has extra overheads.

These differences must be considered when comparing their program to PDFS. The first
two, and likely also the next two, differences make their results look better; the last two
favor PDFS.

Finkel and Manber [6, page 245] also had good speedup results for the 11-queens
problem, another simple search domain that PDFS can also be easily tested on.

3.5. Different-Sized Configurations and Problems

Tables C1 to C4 (Appendix C) show the statistics for individual processors in 4, 8,
12, and 16-processor configurations, using Korf’s four largest problems (#66, #60, #82
and #88, see Appendix A) as input. As before, the largest bound short of the solution
depth was used, so that anomalous speedup gains did not swamp the overhead losses.
Any set of MINDEPTH and MAXDEPTH values in the optimal range would give similar
results; 0 and 16 were used here. Problems 60 and 82 are bigger than #66 and smaller
than #88. Thus values that work well for both #66 and #88 should work well for these
problems also.

Each row in Tables C1 to C4 represents the data for one processor; the first row in
each table represents the master processor. Since machines were selected only because
they are available (no other applications running on them), corresponding rows of dif-
ferent tables do not necessarily represent the same physical machine (i.e. the machine
represented in row k for an n 1-processor configuration is usually not the same as that
corresponding to row k in an n 2-processor configuration). Also, the set of machines used
in a larger configuration does not necessarily contain all the machines used in a smaller
configuration.

Real, user, system, idle and wait times are accounted for the same way as in Tables
B1 and B2, except that they now refer to individual processors, instead of averages over
all processors. The ‘‘requests sent’’ heading in Tables C1 to C4 of Appendix C is
equivalent to the ‘‘work transfers’’ heading in Tables B1 and B2. The accepted requests
count is the number of times that a processor sent work in response to a request; the
number of rejected requests is the number of times it did not. The total count of the
accepted requests is equal to the total successful ones, because each work transfer
requires a sender and a receiver. The total numbers of rejected and failed requests differ
slightly because processors did not reply to messages that were received after, but sent
before, termination was detected.

To summarize, Table 1 contains the elapsed (real) times for the sequential and



-25-

Table 1: Summary of times
_ _____________________________________________________________________________________

Times (in seconds) for sequential and parallel programs_ _____________________________________________________________________________________
sequential parallel_ ________________________________________________________________________Problem

fastest slowest 4 processors 8 processors 12 processors 16 processors_ _____________________________________________________________________________________
66 5074 5325 1323 674 463 362_ _____________________________________________________________________________________
60 9873 10299 2573 1306 884 680_ _____________________________________________________________________________________
82 14913 15655 3875 1952 1331 1012_ _____________________________________________________________________________________
88 28386 29491 7380 3703 2493 1889_ _____________________________________________________________________________________ 




















































































Table 2: Speedups
_______________________________________________________________________________________

Speedups_______________________________________________________________________________________
4 processors 8 processors 12 processors 16 processors_ _____________________________________________________________________________Problem

best worst best worst best worst best worst_______________________________________________________________________________________
66 4.02 3.83 7.90 7.53 11.49 10.95 14.69 14.00_______________________________________________________________________________________
60 4.00 3.84 7.88 7.56 11.64 11.16 15.14 14.51_______________________________________________________________________________________
82 4.04 3.85 8.02 7.64 11.76 11.20 15.47 14.73_______________________________________________________________________________________
88 4.00 3.85 7.96 7.67 11.83 11.39 15.61 15.03_______________________________________________________________________________________ 










































































































parallel programs for all four problems, and Table 2 shows the corresponding speedups.
Because of the differences in the timing measurements among machines, upper and lower
bounds for the sequential algorithm’s time are included. The lower speedup bound uses
the user time of the machine with the shortest sequential measurement; the upper
speedup bound uses the real time of the machine with the longest sequential measure-
ment. Corrupted experiments were not used for any of these timings. The upper bound
can be as much as five percent more than the lower bound. In Table 2, the slower
sequential measurements seem to suggest that super-linear speedup is possible; however,
these high speedup figures are caused only by the differences in machine speeds. Super-
linear speedup cannot occur here because the sequential and parallel algorithms search
exactly the same nodes. The true speedup is somewhere between the best and worst
shown in Table 2. Perhaps a more accurate estimate of the true speedup can be obtained
by running the sequential algorithm on all the machines, then using the average of these
times as the sequential measurement.

As before, all machines were of the same type and speed, and were initially idle;
any sequential or parallel measurements that were obviously corrupted by other processes
that started later were redone. Since this set of experiments is intended to demonstrate
the efficiency of PDFS using near-optimal values of MINDEPTH and MAXDEPTH,
rather than to determine these values, stricter criteria were used to determine whether the
results of experiments affected by non-PDFS processes should be discarded. The main
basis for these criteria is to ensure that the effects of unrelated processes are small com-
pared to the experimental errors in timing.



-26-

3.6. Observations

Tables C1 to C4 in Appendix C show that each processor spent negligible (less that
2%) time looking for work. This shows that further improvements caused by changing
MINDEPTH or MAXDEPTH to reduce message frequency will be slight. Processors are
busy most of the time because the search tree is large: after receiving a subtree, a proces-
sor can continue searching for a long time without having to look for more work. For
most of the search, there is ample work for idle processors to find. If the search space is
so small that the idle times at startup and termination are significant, there is little benefit
in adding more processors, because the application is already over-parallelized. Another
observation (see Tables C1 to C4) is that, in each run, each processor searched about the
same number of nodes. For the larger configurations, processor 0 usually searches a few
more nodes than the others because it starts earlier than the slaves it creates.

On the other hand, Farrage’s thesis [4] considers cases when MINDEPTH and MAX-
DEPTH are chosen poorly, especially when they are close together. One processor, usu-
ally processor 0 because it initially has the entire tree, issues fewer requests and searches
many more nodes than the others (the supporting figures are in the thesis [4]). When
MAXDEPTH is too small one processor will have a large workload that cannot be subdi-
vided. Conversely, for large MINDEPTH values, the difference in node counts shows
that processor 0 retains most of the tree and only sends small parts of it to other proces-
sors, which soon become idle again. There are two solutions to this problem. In one case
processors seek work from processor 0 first whenever becoming idle. This solution
should work well for centralized algorithms, but the master would become a bottleneck in
large configurations. In the other, and more appropriate for decentralized algorithms,
larger subtrees are sent out (e.g. by reducing MINDEPTH). This distributes work more
evenly and almost eliminates any differences between the master and the slaves.

Finally, gaining access to enough idle processors was a problem for us. The main
advantage of decentralized algorithms (over centralized ones) is that they are more effec-
tive in systems with many processors. Ideally, PDFS should have been tested in a system
with hundreds of processors; unfortunately, no more than sixteen identical processors
were available. In practice, the processors need not be identical, but in these experiments
accurate timings were sought. Even so unexpected difficulties arose. For example, in the
16-processor configurations only, the system time for the machine corresponding to the
fifth row is consistently higher than for other machines. Since this machine always
displays higher system time figures, even for the sequential program, it follows that
either the operating system there was slightly different, or perhaps that some of the
memory was disabled, leading to some paging. We retained this machine in our results
because the effect of the increased system time is minor.

4. Conclusions

Tables 1 and 2 show that good speedups can be obtained despite the simple work
distribution strategy, the low node expansion cost, and the high communication costs.
However, near-linear speedups (as Table 2 shows) should not be considered unusual for a
simple problem domain like the 15-puzzle. The same set of nodes is expanded regardless
of the order in which successors are searched.

In problems with higher node expansion costs, stack management and flag checking



-27-

become insignificant compared to the other operations involved in node expansion (i.e.
the rise in real time shown in Figures 7 and 8 as MAXDEPTH increases should be
smaller). If the overheads remain constant, speedups should increase because more use-
ful work is done. Thus, MAXDEPTH can be increased if the node expansion cost is
higher, since the problem is affected less by stack management, and can benefit from the
extra freedom in assigning work.

The choice of values to use for MINDEPTH and MAXDEPTH depends on the type
of problem. However, based on the two examples of the 15-puzzle, which differ in size
by a factor of more than 5.5, setting MINDEPTH to 0 and MAXDEPTH to 25% of the
maximum search depth (the maximum search depth is usually more easily predetermined
than the solution depth) gives good results, at least for exhaustive problems with low
node expansion cost. Setting MINDEPTH = 0 and MAXDEPTH = 16 (reasonably close to
25% of the search depth) gives good performance for both problems, as well as the two
intermediate sized ones, as Figure 9 and Tables C1 to C4 show. Different values might
be more appropriate for different tree structures (e.g. different width or branching factor,
different depth, or no narrowing at deep levels). The range of optimal MINDEPTH and
MAXDEPTH values should be similar for other simple search domains.

More complex work distribution strategies are necessary in domains in which infor-
mation deficiency can be a problem (e.g. branch-and-bound, including alpha-beta). The
extra search effort resulting from information deficiency must be balanced against the
other overheads, and thus the speedups should be lower. For shallow, bushy trees (high
branching factors), it would be better to transfer multiple subtrees from one node at a
time, to ensure that the work transferred is significant compared to that retained by the
sending processor. For more complex search domains, such as alpha-beta, information
deficiency must also be overcome, by communicating improved solution bounds as they
are found.



-28-

References
1. G. M. Baudet, On the Branching Factor of the Alpha-beta Pruning Algorithm, Artificial

Intelligence 10(2), (1978), 173-199.
2. T. Breitkreutz, S. Sutphen and T. A. Marsland, Developing NMP Applications, Tech. Rep.

89-11, University of Alberta, Department of Computing Science, March 1989.
3. E. W. Dijkstra, W. H. J. Feijen and A. J. M. Gasteren, Derivation of a Termination Detec-

tion Algorithm for Distributed Computations, Information Processing Letters 16, (1983),
217-219.

4. S. Farrage, Parallel Depth-First Search, M.Sc. Thesis, Computing Science, University of
Alberta, Fall, 1991.

5. R. Feldmann, B. Monien, P. Mysliwietz and O. Vornberger, Distributed Game Tree Search,
in Parallel Algorithms for Machine Intelligence and Vision, V. Kumar, P. S. Gopalakrish-
nan and L. Kanal (ed.), Springer-Verlag, 1990, 66-101.

6. R. Finkel and U. Manber, DIB—A Distributed Implementation of Backtracking, ACM
Transactions on Programming Languages and Systems 9, (1987), 235-256.

7. R. M. Hyatt, B. W. Suter and H. L. Nelson, A Parallel Alpha/Beta Tree Searching Algo-
rithm, Parallel Computing 10(3), (1989), 299-308.

8. R. E. Korf, Depth-First Iterative-Deepening: An Optimal Admissible Tree Search, Artificial
Intelligence 27, (1985), 97-109.

9. V. Kumar and V. N. Rao, Scalable Parallel Formulations of Depth-First Search, in Parallel
Algorithms for Machine Intelligence and Vision, V. Kumar, P. S. Gopalakrishnan and L.
Kanal (ed.), Springer-Verlag, 1990, 1-41.

10. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, eds., The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons,
1985.

11. T. A. Marsland and F. Popowich, Parallel Game-Tree Search, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 7, (1985), 442-452.

12. T. A. Marsland, T. Breitkreutz and S. Sutphen, A Network Multi-Processor for Experi-
ments in Parallelism, Concurrency: Practice and Experience 3(3), (1991), 203-219.

13. V. N. Rao, V. Kumar and K. Ramesh, A Parallel Implementation of Iterative-Deepening
A*, Proc. Sixth National Conference on Artificial Intelligence, 1987, 178-182.

14. J. Schaeffer, Distributed Game-Tree Searching, Journal of Parallel and Distributed Com-
puting 6(2), (1989), 90-114.



-29-

Appendix A: The 15-Puzzle

The problem domain in these experiments is the 15-puzzle, a special case of the m×n puzzle. It
consists of a 4×4 board with tiles numbered from 1 through 15 occupying fifteen of the sixteen
squares. A move consists of sliding an adjacent tile vertically or horizontally onto the blank
square. The aim is to reach the goal state in as few moves as possible. There are initial positions
from which the problem cannot be solved (i.e. the graph that represents the 15-puzzle is discon-
nected); these positions are not used. Figure A1 shows the goal state and the initial states of the
four problems used for the experiments in this research, listed here in increasing order of diffi-
culty. A problem’s number is the order in which it appears in Korf’s paper [8]. Problems 66, 60,
82 and 88 are the four most difficult (most nodes searched by IDA*) of Korf’s examples.

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Goal State

11 6 14 12

3 5 1 15

8 10 13

9 7 4 2

Problem 66

11 14 13 1

2 3 12 4

15 7 9 5

10 6 8

Problem 60

14 10 2 1

13 9 8 11

7 3 6 12

15 5 4

Problem 82

15 2 12 11

14 13 9 5

1 3 8 7

10 6 4

Problem 88

Figure A1: The 15-puzzle

IDA* is an effective algorithm for solving the 15-puzzle (A* requires too much memory).
The most commonly used heuristic, which is also used in this report, is the Manhattan distance.
Mathematically, the Manhattan distance between two coordinates (x 1 ,y 1 ) and (x 2 ,y 2 ) is
x 2 − x 1+y 2 − y 1. In the 15-puzzle, this distance is equal to the number of moves that would
be required to move a tile from one square to the other, assuming there are no intervening tiles.
The heuristic value h is the sum of the Manhattan distances of the current position of each tile to
its goal square. Clearly, this heuristic is admissible because the presence of intervening tiles can
only increase the number of moves required to transfer a tile into the correct position. The base
cost, g, is the number of moves already made, and the expected cost is f = g + h.



-30-

Appendix B

Table B1: Measured statistics for problem 66
_ ______________________________________________________________________________________

Problem 66, 16 processors, 924074079 nodes searched_ ______________________________________________________________________________________
depth limits average times (seconds) work transfers_ ______________________________________________________________________________________

MIN MAX real user system idle wait success failed_ ______________________________________________________________________________________
0 4 1023 410 576.8 35.3 649.6 32 352010_ ______________________________________________________________________________________
0 8 397 336 34.8 25.4 39.4 118 23167_ ______________________________________________________________________________________
0 12 369 333 10.9 24.2 13.1 176 7256_ ______________________________________________________________________________________
0 16 360 334 2.0 24.1 4.4 394 1100_ ______________________________________________________________________________________
0 20 382 344 1.2 34.8 4.2 444 523_ ______________________________________________________________________________________
0 24 405 381 1.6 21.2 5.0 501 480_ ______________________________________________________________________________________
0 32 545 512 1.8 29.8 5.3 509 539_ ______________________________________________________________________________________
0 40 587 561 2.2 22.5 6.2 549 737_ ______________________________________________________________________________________
0 48 597 565 2.0 28.9 6.6 649 501_ ______________________________________________________________________________________
0 56 628 566 5.6 55.8 6.1 501 509_ ______________________________________________________________________________________
4 8 744 378 333.8 31.5 375.4 559 223082_ ______________________________________________________________________________________
4 12 398 336 21.8 39.1 36.8 1837 13654_ ______________________________________________________________________________________
4 16 387 336 8.3 42.2 29.3 2824 2712_ ______________________________________________________________________________________
4 20 407 346 6.7 53.2 30.1 3167 784_ ______________________________________________________________________________________
4 24 443 384 7.1 50.8 32.7 3389 830_ ______________________________________________________________________________________
4 32 568 516 5.2 46.1 27.6 3087 478_ ______________________________________________________________________________________
4 40 625 564 7.1 51.9 32.9 3476 674_ ______________________________________________________________________________________
4 48 630 568 6.2 54.3 30.5 3360 513_ ______________________________________________________________________________________
4 56 630 568 7.8 52.6 30.6 3240 685_ ______________________________________________________________________________________
8 12 754 377 296.0 80.2 387.1 8215 169679_ ______________________________________________________________________________________
8 16 649 352 113.7 182.8 280.4 20074 23014_ ______________________________________________________________________________________
8 20 715 364 118.1 232.5 334.8 26345 15635_ ______________________________________________________________________________________
8 24 764 401 118.2 243.7 352.0 28441 12211_ ______________________________________________________________________________________
8 32 934 534 120.2 278.5 380.9 31871 11573_ ______________________________________________________________________________________
8 40 992 582 121.6 287.1 384.9 32483 10678_ ______________________________________________________________________________________
8 48 991 587 122.0 280.4 381.3 31988 11949_ ______________________________________________________________________________________
8 56 989 587 120.2 280.6 386.1 32696 12093_ ______________________________________________________________________________________

12 16 1605 444 801.2 359.0 1227.8 48272 318682_ ______________________________________________________________________________________
12 20 1883 444 695.4 742.6 1488.7 92515 149932_ ______________________________________________________________________________________
12 24 2142 490 741.4 909.7 1705.9 111803 129379_ ______________________________________________________________________________________
12 32 2539 625 816.9 1095.9 1971.6 138220 127022_ ______________________________________________________________________________________
12 40 2655 684 830.2 1139.8 2041.8 142336 125114_ ______________________________________________________________________________________
12 48 2670 689 821.9 1157.6 2042.3 143485 127527_ ______________________________________________________________________________________
12 56 2649 687 831.8 1129.4 2025.3 140395 128846_ ______________________________________________________________________________________ 






























































































































































































































































































































































































































































































































-31-

Appendix B

Table B2: Measured statistics for problem 88
_ ______________________________________________________________________________________

Problem 88, 16 processors, 5156184395 nodes searched_ ______________________________________________________________________________________
depth limits average times (seconds) work transfers_ ______________________________________________________________________________________

MIN MAX real user system idle wait success failed_ ______________________________________________________________________________________
0 4 4738 2181 2481.0 74.9 2761.9 22 2062536_ ______________________________________________________________________________________
0 8 2085 1870 181.2 33.1 199.2 121 169456_ ______________________________________________________________________________________
0 12 1932 1856 41.0 34.2 46.3 229 32669_ ______________________________________________________________________________________
0 16 1921 1847 6.0 66.7 5.2 351 2229_ ______________________________________________________________________________________
0 20 1913 1861 2.3 48.6 2.8 329 559_ ______________________________________________________________________________________
0 24 1977 1939 2.3 34.9 3.4 410 446_ ______________________________________________________________________________________
0 32 2577 2536 2.6 36.8 4.5 515 626_ ______________________________________________________________________________________
0 40 3113 3070 2.7 38.9 5.7 634 500_ ______________________________________________________________________________________
0 48 3186 3128 3.8 53.4 5.6 613 617_ ______________________________________________________________________________________
0 56 3204 3144 2.5 56.8 4.4 485 405_ ______________________________________________________________________________________
4 8 2352 1901 400.4 49.6 435.5 338 394239_ ______________________________________________________________________________________
4 12 1940 1850 30.3 58.7 39.2 1292 22716_ ______________________________________________________________________________________
4 16 1920 1847 6.2 65.5 16.4 1938 1941_ ______________________________________________________________________________________
4 20 1929 1863 4.8 60.9 16.3 2046 1131_ ______________________________________________________________________________________
4 24 1997 1941 3.9 51.2 18.2 2417 633_ ______________________________________________________________________________________
4 32 2603 2544 3.6 54.2 15.1 2012 215_ ______________________________________________________________________________________
4 40 3170 3081 6.8 81.2 16.4 2101 309_ ______________________________________________________________________________________
4 48 3234 3136 7.1 89.5 17.1 2194 473_ ______________________________________________________________________________________
4 56 3201 3150 3.6 45.8 18.1 2198 296_ ______________________________________________________________________________________
8 12 2618 1931 597.1 89.2 685.9 6335 579796_ ______________________________________________________________________________________
8 16 2105 1859 58.6 186.0 202.4 20569 21157_ ______________________________________________________________________________________
8 20 2200 1881 72.2 245.6 280.9 27443 6195_ ______________________________________________________________________________________
8 24 2363 1977 79.2 305.8 312.9 30384 3945_ ______________________________________________________________________________________
8 32 2923 2569 66.4 286.6 304.5 31415 2980_ ______________________________________________________________________________________
8 40 3516 3120 75.1 319.8 321.8 33052 2872_ ______________________________________________________________________________________
8 48 3556 3176 70.5 308.4 314.6 32484 3015_ ______________________________________________________________________________________
8 56 3518 3175 65.8 276.5 308.0 32106 3036_ ______________________________________________________________________________________

12 16 4155 2068 1443.5 642.6 2155.3 81008 916403_ ______________________________________________________________________________________
12 20 4415 2015 951.6 1446.7 2446.1 185591 218963_ ______________________________________________________________________________________
12 24 4943 2104 964.1 1874.0 2879.9 236223 146042_ ______________________________________________________________________________________
12 32 6000 2715 1055.2 2228.5 3303.9 273739 131438_ ______________________________________________________________________________________
12 40 6588 3266 1013.2 2308.1 3344.7 284967 123129_ ______________________________________________________________________________________
12 48 6685 3320 1038.6 2325.1 3376.9 284578 122250_ ______________________________________________________________________________________
12 56 6681 3332 1013.6 2334.7 3369.8 286817 123533_ ______________________________________________________________________________________ 






























































































































































































































































































































































































































































































































-32-

Appendix C

Table C1: Problem 66, work done per processor
_ ___________________________________________________________________________________________________________

Problem 66, 924074079 nodes searched with MINDEPTH = 0 and MAXDEPTH = 16_ ___________________________________________________________________________________________________________
4 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

229988978 1323 1321 0.5 1.5 0.3 2 5 10 15_ ___________________________________________________________________________________________________________
230011834 1322 1318 0.6 3.6 1.5 9 9 8 12_ ___________________________________________________________________________________________________________
232373440 1322 1317 0.9 4.1 2.0 10 18 8 8_ ___________________________________________________________________________________________________________
231699827 








1323 






1317 






0.7 






5.5 






1.3 







11 






12 







6 






11_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
8 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

117578361 674 668 0.8 5.2 2.5 16 13 17 35_ ___________________________________________________________________________________________________________
114032033 671 655 1.1 15.1 2.2 12 16 18 31_ ___________________________________________________________________________________________________________
115664283 672 663 1.0 8.4 2.7 15 34 18 27_ ___________________________________________________________________________________________________________
114069190 672 660 1.0 10.5 2.8 18 22 15 31_ ___________________________________________________________________________________________________________
115368674 672 661 0.9 9.4 2.0 13 48 15 28_ ___________________________________________________________________________________________________________
114976903 672 660 1.0 10.7 2.7 15 75 11 28_ ___________________________________________________________________________________________________________
115656337 672 658 1.1 12.7 2.7 16 27 12 34_ ___________________________________________________________________________________________________________
116728298 













672 











658 











0.8 











13.0 











2.2 












12 











10 












11 











36_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
12 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

79262897 463 459 1.3 3.4 1.6 11 26 24 96_ ___________________________________________________________________________________________________________
77265462 462 444 2.4 15.7 5.3 25 81 22 91_ ___________________________________________________________________________________________________________
73232852 462 431 2.6 28.7 4.8 21 119 19 81_ ___________________________________________________________________________________________________________
76580538 461 436 1.9 23.9 3.1 13 61 16 90_ ___________________________________________________________________________________________________________
77974676 462 448 1.6 12.7 3.8 22 38 21 96_ ___________________________________________________________________________________________________________
77440762 463 446 2.1 15.1 4.6 20 317 22 69_ ___________________________________________________________________________________________________________
76942967 462 443 2.4 16.6 5.0 23 127 19 89_ ___________________________________________________________________________________________________________
77441043 463 442 1.9 18.6 4.9 23 83 19 92_ ___________________________________________________________________________________________________________
76802343 462 440 2.2 20.8 4.7 20 70 19 93_ ___________________________________________________________________________________________________________
77410724 463 440 2.1 20.4 4.1 20 42 19 94_ ___________________________________________________________________________________________________________
76825026 461 440 2.3 18.9 3.9 13 82 18 93_ ___________________________________________________________________________________________________________
76894789 


















462 
















437 
















0.8 
















24.2 
















2.7 

















24 
















20 

















17 
















91_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
16 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

61352185 362 350 3.5 8.6 6.1 25 105 28 94_ ___________________________________________________________________________________________________________
59553372 361 343 2.5 15.2 4.7 20 68 26 92_ ___________________________________________________________________________________________________________
54831234 361 325 2.4 33.2 3.8 14 83 19 97_ ___________________________________________________________________________________________________________
56580250 357 326 2.7 28.9 5.1 18 109 18 95_ ___________________________________________________________________________________________________________
55047180 361 310 13.8 36.4 4.5 22 83 15 98_ ___________________________________________________________________________________________________________
55650858 360 318 2.8 39.6 5.5 23 80 15 98_ ___________________________________________________________________________________________________________
55748694 360 318 3.0 39.7 5.4 20 130 17 92_ ___________________________________________________________________________________________________________
55659127 360 318 3.1 39.2 5.0 18 114 15 93_ ___________________________________________________________________________________________________________
60345892 361 347 2.7 11.0 4.7 20 160 26 86_ ___________________________________________________________________________________________________________
59234603 361 343 2.1 16.0 5.5 28 76 24 93_ ___________________________________________________________________________________________________________
59856536 361 342 1.6 16.7 3.7 24 35 24 96_ ___________________________________________________________________________________________________________
58468162 361 337 2.5 20.9 4.4 18 71 24 94_ ___________________________________________________________________________________________________________
58009657 361 332 2.4 26.0 4.3 22 68 20 98_ ___________________________________________________________________________________________________________
57863677 361 332 2.8 26.3 5.3 25 95 19 95_ ___________________________________________________________________________________________________________
57900530 360 332 2.2 26.3 4.1 16 44 22 96_ ___________________________________________________________________________________________________________
57972122 359 332 2.5 25.0 4.7 19 176 20 89_ ___________________________________________________________________________________________________________ 



















































































































































































































































































































































-33-

Appendix C

Table C2: Problem 60, work done per processor
_ ___________________________________________________________________________________________________________

Problem 60, 1784841519 nodes searched with MINDEPTH = 0 and MAXDEPTH = 16_ ___________________________________________________________________________________________________________
4 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

442883040 2573 2563 3.9 6.4 4.7 9 454 8 453_ ___________________________________________________________________________________________________________
449306582 2572 2563 4.3 4.4 5.1 6 484 7 444_ ___________________________________________________________________________________________________________
445188201 2572 2563 1.4 7.4 1.2 10 2 6 603_ ___________________________________________________________________________________________________________
447463696 








2572 






2557 






5.2 






9.6 






5.8 







4 






871 







8 






313_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
8 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

226230804 1306 1293 5.2 7.9 6.3 10 762 13 258_ ___________________________________________________________________________________________________________
221699184 1305 1273 4.5 27.4 5.2 9 376 15 310_ ___________________________________________________________________________________________________________
221305742 1306 1267 5.5 33.2 1.1 7 13 13 363_ ___________________________________________________________________________________________________________
224045931 1305 1286 4.7 13.9 6.3 12 445 11 302_ ___________________________________________________________________________________________________________
223479428 1305 1286 4.8 14.7 7.5 21 271 9 327_ ___________________________________________________________________________________________________________
222299041 1305 1286 4.0 15.5 4.5 8 201 11 337_ ___________________________________________________________________________________________________________
223380879 1305 1285 3.8 15.8 5.5 15 369 9 313_ ___________________________________________________________________________________________________________
222400510 













1306 











1285 











5.2 











15.5 











5.8 












8 











118 












9 











347_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
12 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

151875234 884 875 1.7 7.3 2.0 7 43 17 146_ ___________________________________________________________________________________________________________
148601032 883 858 1.4 24.4 1.8 9 29 17 144_ ___________________________________________________________________________________________________________
144980597 877 839 2.9 35.5 4.8 20 57 7 142_ ___________________________________________________________________________________________________________
147704534 882 847 2.8 31.6 3.9 10 121 7 138_ ___________________________________________________________________________________________________________
152206076 884 865 2.1 17.0 3.3 9 79 17 139_ ___________________________________________________________________________________________________________
149806809 884 862 3.1 19.4 4.9 16 140 15 135_ ___________________________________________________________________________________________________________
149500642 884 860 2.1 21.7 4.3 16 77 15 140_ ___________________________________________________________________________________________________________
150184519 883 859 3.0 20.4 4.8 13 328 13 120_ ___________________________________________________________________________________________________________
147845406 884 858 3.3 22.3 4.9 13 235 16 121_ ___________________________________________________________________________________________________________
149381487 884 856 1.9 25.8 3.5 15 82 14 135_ ___________________________________________________________________________________________________________
146867793 884 852 2.3 29.7 4.3 22 94 14 134_ ___________________________________________________________________________________________________________
145887390 


















883 
















847 
















2.9 
















33.6 
















4.8 

















14 
















322 

















12 
















116_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
16 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

115740209 680 673 2.5 4.5 3.3 8 101 26 71_ ___________________________________________________________________________________________________________
112811463 677 655 2.6 19.6 4.6 18 74 26 71_ ___________________________________________________________________________________________________________
107179733 679 629 3.5 46.6 3.7 13 86 16 67_ ___________________________________________________________________________________________________________
110781483 678 635 2.6 40.7 4.4 21 84 17 65_ ___________________________________________________________________________________________________________
106777941 679 610 25.7 42.8 5.5 25 74 15 68_ ___________________________________________________________________________________________________________
111238788 678 633 1.9 42.5 3.2 13 42 12 74_ ___________________________________________________________________________________________________________
109049356 678 629 2.4 46.6 4.2 13 87 14 69_ ___________________________________________________________________________________________________________
108286271 678 628 2.4 47.3 4.8 21 79 13 70_ ___________________________________________________________________________________________________________
115469283 679 658 2.1 18.3 4.4 17 75 24 73_ ___________________________________________________________________________________________________________
113303119 679 652 2.8 24.4 5.5 23 136 23 67_ ___________________________________________________________________________________________________________
113371517 679 650 1.6 27.0 4.3 30 24 24 73_ ___________________________________________________________________________________________________________
113618497 679 651 1.6 25.9 2.9 20 34 21 75_ ___________________________________________________________________________________________________________
111762369 679 648 2.4 28.2 4.7 21 63 20 74_ ___________________________________________________________________________________________________________
112516638 679 646 2.6 30.3 5.0 23 76 18 75_ ___________________________________________________________________________________________________________
112315998 678 642 1.5 33.8 3.6 19 34 17 79_ ___________________________________________________________________________________________________________
110618854 678 639 2.3 36.4 3.9 19 74 18 74_ ___________________________________________________________________________________________________________ 



















































































































































































































































































































































-34-

Appendix C

Table C3: Problem 82, work done per processor
_ ___________________________________________________________________________________________________________

Problem 82, 2790393007 nodes searched with MINDEPTH = 0 and MAXDEPTH = 16_ ___________________________________________________________________________________________________________
4 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

697243011 3875 3864 4.2 7.3 5.0 10 477 12 393_ ___________________________________________________________________________________________________________
697186103 3875 3863 4.7 7.2 5.7 10 453 10 401_ ___________________________________________________________________________________________________________
698396047 3875 3864 1.4 8.9 1.1 9 3 10 550_ ___________________________________________________________________________________________________________
697567846 








3874 






3858 






4.6 






12.4 






5.5 







10 






722 







7 






313_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
8 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

349846012 1952 1944 3.5 4.2 4.7 11 326 17 223_ ___________________________________________________________________________________________________________
344356770 1951 1915 3.6 32.6 4.9 8 427 17 203_ ___________________________________________________________________________________________________________
350080394 1950 1940 3.1 6.4 4.4 15 238 15 231_ ___________________________________________________________________________________________________________
349866477 1950 1935 3.9 10.5 5.3 13 309 12 223_ ___________________________________________________________________________________________________________
349692527 1951 1936 2.4 11.7 3.1 9 159 12 245_ ___________________________________________________________________________________________________________
350247713 1951 1936 2.3 12.3 3.7 14 217 8 240_ ___________________________________________________________________________________________________________
347883455 1950 1933 3.0 14.6 4.7 14 183 10 243_ ___________________________________________________________________________________________________________
348419659 













1951 











1934 











1.1 











15.6 











2.5 












15 











13 












8 











269_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
12 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

234622347 1331 1310 17.4 4.2 21.0 12 1998 23 709_ ___________________________________________________________________________________________________________
232578320 1330 1292 11.0 26.8 12.7 13 504 21 843_ ___________________________________________________________________________________________________________
227016937 1330 1277 11.3 42.1 12.3 15 401 7 861_ ___________________________________________________________________________________________________________
233722664 1330 1296 2.4 31.5 2.4 17 27 10 889_ ___________________________________________________________________________________________________________
233293116 1330 1300 17.5 12.5 21.2 17 1127 16 791_ ___________________________________________________________________________________________________________
232820234 1330 1297 17.9 15.1 21.9 16 1403 18 764_ ___________________________________________________________________________________________________________
233635224 1330 1304 7.7 17.9 9.2 17 334 18 861_ ___________________________________________________________________________________________________________
232258525 1330 1295 14.7 20.0 18.0 17 770 16 823_ ___________________________________________________________________________________________________________
233291201 1330 1288 16.1 24.9 20.3 16 905 15 811_ ___________________________________________________________________________________________________________
234830439 1329 1298 6.9 24.5 7.9 15 430 13 856_ ___________________________________________________________________________________________________________
230039526 1329 1282 17.4 30.0 21.4 16 993 13 804_ ___________________________________________________________________________________________________________
232284474 


















1330 
















1285 
















13.1 
















31.9 
















15.9 

















12 
















922 

















13 
















808_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
16 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ _______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

181179827 1012 998 5.9 7.8 7.7 12 351 38 232_ ___________________________________________________________________________________________________________
175687686 1009 980 5.1 23.0 8.7 32 206 28 248_ ___________________________________________________________________________________________________________
169673908 1010 959 4.6 46.5 6.5 32 103 25 247_ ___________________________________________________________________________________________________________
174089878 1006 969 1.7 35.3 4.8 31 17 22 256_ ___________________________________________________________________________________________________________
166253612 1009 918 41.5 48.7 9.6 25 402 22 231_ ___________________________________________________________________________________________________________
172785932 1011 958 5.1 47.2 8.7 28 234 21 243_ ___________________________________________________________________________________________________________
171943012 1010 959 5.8 46.1 8.3 19 243 20 243_ ___________________________________________________________________________________________________________
173267844 1010 962 2.0 45.9 4.4 25 58 15 260_ ___________________________________________________________________________________________________________
177854459 1011 983 6.2 22.2 9.0 32 346 30 236_ ___________________________________________________________________________________________________________
177245471 1009 986 6.1 17.4 10.1 32 418 28 233_ ___________________________________________________________________________________________________________
176150086 1010 985 3.7 21.2 6.4 24 174 28 247_ ___________________________________________________________________________________________________________
175336264 1010 978 5.7 26.1 8.8 26 252 29 240_ ___________________________________________________________________________________________________________
175859933 1010 978 6.2 26.4 8.8 17 351 31 232_ ___________________________________________________________________________________________________________
174834688 1011 974 6.2 30.9 10.2 31 344 26 234_ ___________________________________________________________________________________________________________
172871789 1010 972 5.2 33.4 8.5 31 178 27 244_ ___________________________________________________________________________________________________________
175358618 1010 974 4.9 31.0 6.8 17 187 24 244_ ___________________________________________________________________________________________________________ 



















































































































































































































































































































































-35-

Appendix C

Table C4: Problem 88, work done per processor
_ ___________________________________________________________________________________________________________

Problem 88, 5156184395 nodes searched with MINDEPTH = 0 and MAXDEPTH = 16_ ___________________________________________________________________________________________________________
4 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ ______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

1289096513 7380 7365 0.9 14.1 0.5 5 9 12 44_ ___________________________________________________________________________________________________________
1282460225 7379 7370 1.0 8.3 1.6 14 16 10 38_ ___________________________________________________________________________________________________________
1290031930 7379 7365 1.0 13.1 1.7 10 41 12 29_ ___________________________________________________________________________________________________________
1294595727 








7379 






7357 






1.3 






20.1 






2.2 







13 






65 







8 






23_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
8 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ ______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

646609767 3703 3697 1.5 5.0 2.5 12 28 21 57_ ___________________________________________________________________________________________________________
632161532 3702 3644 1.7 56.3 3.3 21 175 18 33_ ___________________________________________________________________________________________________________
648533361 3702 3694 1.6 6.3 3.1 18 52 19 50_ ___________________________________________________________________________________________________________
645781060 3702 3687 1.5 13.1 3.7 21 35 19 52_ ___________________________________________________________________________________________________________
652229477 3702 3691 1.3 9.6 3.4 20 13 17 56_ ___________________________________________________________________________________________________________
646067820 3702 3689 1.2 11.3 3.1 18 45 18 51_ ___________________________________________________________________________________________________________
643880079 3702 3689 1.4 11.5 3.3 21 35 15 53_ ___________________________________________________________________________________________________________
640921299 













3702 











3690 











1.0 











11.0 











2.1 












13 











19 












17 











55_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
12 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ ______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

435528005 2493 2482 3.4 7.9 4.8 14 74 18 159_ ___________________________________________________________________________________________________________
426908277 2489 2446 1.7 41.0 2.6 15 50 20 153_ ___________________________________________________________________________________________________________
421396853 2491 2442 4.5 44.6 3.2 6 236 15 138_ ___________________________________________________________________________________________________________
431442757 2488 2460 3.3 25.3 5.3 17 128 14 148_ ___________________________________________________________________________________________________________
436670810 2491 2474 3.3 14.0 4.9 15 172 20 141_ ___________________________________________________________________________________________________________
432480342 2492 2468 3.2 20.6 4.4 13 163 14 148_ ___________________________________________________________________________________________________________
431507382 2492 2466 2.7 22.8 5.4 25 96 14 153_ ___________________________________________________________________________________________________________
431667275 2490 2468 2.3 20.3 4.2 20 53 16 155_ ___________________________________________________________________________________________________________
422671042 2492 2442 3.3 45.8 4.4 13 103 12 155_ ___________________________________________________________________________________________________________
430383472 2492 2465 3.6 23.4 4.9 10 107 13 153_ ___________________________________________________________________________________________________________
426182680 2491 2461 2.9 27.0 4.4 18 191 16 140_ ___________________________________________________________________________________________________________
429345500 


















2491 
















2458 
















3.4 
















30.1 
















5.6 

















19 
















388 

















13 
















125_ ____________________________________________________________________________________________________________ ___________________________________________________________________________________________________________ _ ___________________________________________________________________________________________________________
16 processors_ ___________________________________________________________________________________________________________

times (seconds) requests sent requests received_ ______________________________________________________________________________________________nodes
real user system idle wait success failed accepted rejected_ ___________________________________________________________________________________________________________

332498619 1889 1884 1.9 3.2 1.6 8 18 28 282_ ___________________________________________________________________________________________________________
317182150 1888 1844 6.5 37.2 10.7 33 251 28 262_ ___________________________________________________________________________________________________________
314610991 1888 1829 7.5 51.7 8.9 26 510 19 248_ ___________________________________________________________________________________________________________
321118612 1887 1841 6.0 40.2 7.9 10 315 20 262_ ___________________________________________________________________________________________________________
314519229 1888 1770 73.5 43.6 8.0 17 415 20 252_ ___________________________________________________________________________________________________________
321720711 1888 1834 6.2 47.6 10.0 29 270 19 260_ ___________________________________________________________________________________________________________
320860966 1887 1834 5.7 48.0 8.3 18 220 14 270_ ___________________________________________________________________________________________________________
320190711 1888 1835 5.6 47.3 7.5 12 213 14 269_ ___________________________________________________________________________________________________________
326843640 1888 1868 6.1 13.8 9.3 31 239 24 267_ ___________________________________________________________________________________________________________
325599396 1887 1864 5.1 18.5 8.2 31 194 26 268_ ___________________________________________________________________________________________________________
324350428 1888 1862 6.3 19.4 9.9 28 316 27 259_ ___________________________________________________________________________________________________________
327569104 1887 1859 6.2 22.0 9.5 29 278 27 261_ ___________________________________________________________________________________________________________
323383616 1888 1852 6.3 29.2 10.0 27 218 23 268_ ___________________________________________________________________________________________________________
324626818 1887 1854 6.0 27.2 8.7 18 332 27 257_ ___________________________________________________________________________________________________________
321821185 1888 1847 4.9 36.2 8.1 29 160 26 266_ ___________________________________________________________________________________________________________
319288219 1888 1843 6.0 38.4 8.5 16 262 20 267_ ___________________________________________________________________________________________________________ 


















































































































































































































































































































































