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Abstract

As modern systems are becoming more complex and automated, an important
uensare of their effectiveness is their reliability. For a system to perform below a
mnaximum allowed failure rate, a reliability based design (RBD) of the system is
imperative.

In this thesis, RBD formulations of series-parallel systems which consist of
components whose reliability is a function of time are developed. It is required
that these systems perform below a maximum allowed failure rate. Whenever the
system reaches the maximum allowed failure rate, preventive maintenance (PM)
is performed on the system. If the system fails between these PM intervals then
minimal repairs are performed.

Based on two different PM models proposed by Nakagawa (1988), two RBD
formulations are developed for systems with monotonically increasing failure rates.
In formulation 1, tiie system’s effective age becomes smaller after each PM action
but its failure rate function does not change. In formulation 2, the system failure
rate is reduced to zero after each PM action but the system deteriorates faster

after each PM action. The total cost modeled in both formulations consist of

average annual cost is minimized over system’s useful life to give optimal system
design, optimal PM intervals, and optimal system replacement time. Formulation
2 is further modified to incorporate non-zcro failure rate at time equal to zero. A

salvage value function of a deteriorating system is also proposed which incorporates



follow a bathtub shaped failure rate curve. The total cost consists of costs related
to burn-in, warranty, installation, preventive maintenance and minimal repair. The
average annual cost is minimized over the system’s useful life to give optimal system
design, optimal burn-in period, optimal PM intervals, and optimal replacement
time for a system.

For all the formulations, the cost minimization is a mixed non-linear integer
programming problem. Genetic algorithms are used as an optimization tool due to
their flexibility and ease to solve complex non-linear mixed integer programming
problems like the onc in this thesis. The results have important applications in
the area of economic evaluation of automated manufacturing systems where high
investment costs are involved to acquire a system which must perform below a
given failure rate. The research p&rfafﬁied in this thesis is useful for reliability

engineers, engineering economists and strategic planners.
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Chapter 1

Introduction

Design of a system is a progression from an abstract notion to something which
has form and function. In a concurrent engineering approach, the design process
starts with a requirement, and from this point onwards, it evolves through a simul-
taneous execution of various tasks performed by various design specialists. Each
major task of the design process involves evaluation of a design criterion during
different phases of a product life cycle (Blaﬁchard, 1992). The important tasks of

the design process can be identified as follows:

Task 1  Establishment of market baseline and identification of customer needs.
Task 2 A detailed functional definition of the system, and development

of conceptual design to meet the system’s functional requirements.
Task 3  Reconfiguration tovmeet the system’s projected performances over

its life cycle.
Task 4 Development of the prototype and testing for the prototype’s viability.

Task 5  Approval of system design for production.



Task 1 involves the establishment of market baseline and identification of cus-
tomer needs. Market baseline is established by conducting a market survey of
similar products in the market, customer interviews, expert opinions and competi-
tive benchmarking studies. It provides valuable information such as cost, physical
parameters, etc., which is necessary during the later part of the design process.
Once the market baseline is established, customer needs are identified to be incor-
porated into design.

In task 2, a detailed functional specification of the system is performed. Utiliza-
tion of a functional approach as a basis for the identification of design requirements
for each hierarchical level of the system is an essential element of the preliminary
design. This is accomplished through the development of functional! flow block
diagrams. These diagrams are developed for the primary purpose of structur-
ing system requirements into functional terms. IDEFp is a structured analysis
methodology capable of representing complex functional relationships of a system.
A concise introduction to  DE Fy with an example is presented by Monga, Zuo and
Jaisingh (1993) and a state-of-the-art review of IDEFj is done by Colquohohn,
Baines and Crossley (1993). Once the functional specifications of the system are
completed, resources are allocated to perform these functions.

In task 3, a system designer is faced with the problem of how the designed
system matches its projected performances over the intended period of use. This
leads to setting of objectives and requirements based on certain system parame-
ters and checking whether or not these objectives will be met when the system
is put in operation. As modern systems become more complex and automated,
an important measure of their effectiveness is their reliability. For a system to

perform below a maximum allowable failure rate, a reliability based design (RBD)



of the system is imperative. A traditional RBD problem involves evaluating var-
ious design configurations for minimal system cost or maximum reliability while
satisfying other constraints, namely, weight, volume, cost, and/or reliability.

Once the system is reconfigured for reliability and other measures, a prototype
is developed and tested for various environmental, technical and safety require-
ments. If the prototype meets all the user’s requirements and standards then the
design is finalized for production.

The research performed in this thesis fits in task 3 of the design process, and
contributes to the area of RBD of systems with deteriorating components. The
research is presented in eight chapters.

In Chapter 2, we review the literature related to optimal redundancy allocation
the optimization of system design for minimal cost and maximum rcliability arc
presented. Various optimization techniques to solve such problems are discussed.
The shortcomings and limitations of RBD fgrmulatiaqs with constant component
reliability are also discussed.

Chapter 3 provides a brief overview of cost and failure characteristics of the
system during its life cycle. Two important maintenance actions, namely, pre-
ventive maintenance and minimal repair commonly used in modeling maintenance
on deteriorating systems are presented. The characteristics of these maintenance
actions are discussed.

In Chapter 4, we discuss in detail the optimization tool used in this thesis,
Genetic Algorithms (GAs). This chapter describes step by step, how a simple
genetic algorithm works using a simple example. The chapter discusses various

GA specific implementation issues and also reviews the application of GAs to



various reliability problems.

In Chapter 5, we develop two formulations for the reliability based design of
series-parallel systems considering maintenance. All the ccmponents have an in-
creasing failure rate. Two types of maintenance actions are modeled, namely,
preventive maintenance (PM) and minimal repair. PM is performed when the sys-
tems reaches the maximum allowed failure rate. If the system fails between those
PM intervals, minimal repair is performed. Based on Nakagawa's age reduction
and hazard rate PM models, two models are developed for minimizing the average
annual cost of the system. Genetic algorithms are used to find optimal system de-
signs (i.e. number of redundant components at each stage), optimal PM intervals,
and optimal system replacement time.

In Chapter 6, the salvage value of the system is taken into consideration for

Both preventive maintenance and minimal repair zre considered. Nakagawa’s haz-
ard rate concept for modeling PM is modified to include non-zero failure rates
at time zero. The system life cycle cost includes the salvage value of the system

apart from acquisition, installation and maintenance cost. A salvage value func-

the economic effects of failure rate deterioration and preventive maintenance. The
research analyzes the effect of salvage value on system design, economic life of
the system and its average annual cost. It has been found that sometimes the
economic incentive of capturing the decreasing salvage value of the system results
in early replacement of the system, hence making the economic life of the system
shorter than the case when the salvage value is ignored. The research also dis-

cusses the implications of product life cycles and characteristics of the systems to



justify whether such a salvage value function should be included during a design
evaluation.
Chapter 7 proposes a RBD model for a series-parallel system considering burn-

in

\u‘

, warranty, and maintenance. This model includes all three stages of a system’s
life cycle, namely, infant mortality, useful period, and the wear-out period. The
system life cycle cost includes burn-in, warranty, installation, preventive main-
tenance and minimal repair. The research provides a brief overview of various
warranty policies and their relevance to reliability based design of systems with
deteriorating components. In this research we use a warranty policy under which
if a failure occurs during a given warranty period then all the related costs are
borne by the manufacturer (Murthy and Blischke, 1992). The formulation gives
an optimal system design, optimal burn-in period, optimal preventive maintenance
intervals and optimal replacement time. The average annual cost of the system is
minimized over the system’s useful life using Genetic Algorithms. Three distinct
design and burn-in period for different lengths of warranty.

Finally Chapter 8 provides a summary of this research and discusses future

directions in the area of reliability based design of s ms with deteriorating

components.

[l



Chapter 2

Review: Reliability Based Design
with Constant Component
Reliability

2.1 Introduction

The reliable performance of a system is of utmost importance in many industrial,
military and everyday life situations. Although the qualitative concept of reliability
is not new, its quantitative aspects have only been developed over the past two

decades. Such development has resulted from increasing need for systems and

for designing such systems. These methods include using large safety factors,
reducing the complexity of the system, increasing the reliability of constituent
components through a product improvement program, using structural redundancy
and practicing a planned maintenance and repair schedule. A good deal of effort
has been focused in the field of optimal redundancy allocation (Tillman, Hwang
and Kuo, 1985). In this chapter we briefly review the literature related to optimal

discusses commonly analyzed system configurations in RBD problems. Section 2.3



relates to the formul:tion of RBD optimization problems with constant component
reliability. Various optimization techniques for solving such problems are also
discussed. Section 2.4 briefly discusses the shortcomings and limitations of RBD
problems with constant component reliability and discusses the reasons to consider

RBD problems with components whose reliability is a function of time.

2.2 Reliability Block Diagrams

Assessment of the reliability of a system from its basic elements is one of the main
aspects of reliability analysis. Throughout this thesis, a system is referred to as a
collection of subsystems, while each subsystem is a collection of components. In
reliability analysis of a system it is important io model the relationships between
various subsystems and components to reflect the functional configuration of the
system. There are various modeling schemes for reliability analysis (Modarres,

1993):

1. Reliability block diagrams

2. Fault tree and success tree methods
3. Event tree method

4. Failure mode and effect analysis

5. Master logic diagram

In this thesis we use reliability block diagrams to model the effect of item fail-
ures (or functioning) on system performance. Using reliability block diagrams, we
model various configurations which correspond to the functional arrangement of
subsystem and components in the system. Next we briefly describe some common

system configurations using reliability block diagrams.
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Series configuration

In a series configuration, the functional operation of the system depends upon
successful operation of all the n subsystems or components (Figure 2.1). If any of
the subsystem fails, the system fails. The reliability of the system in Figure 2.1
is the probability that all n subsystems succeed during the intended mission time
t. Thus the system reliability R, for statistically independent subsystems is given
by:

R,

RiR...Rn =[] Ry (2.1)

i=1

where R; represents the reliability of the jth subsystem.

Parallel Configuration

A parallel configuration represents a case when the failure of all the subsystems
results in system failure (Figure 2.2). The success of only one subsystem would be
sufficient to guarantee the success of the system. Reliability of a parallel configu-

ration is given as:

R=1-l0-R) 22)

Parallel-Series and Series-Parallel Configurations

Figure 2.3 shows a parallel-series configuration, in which n subsystems are con-
nected in parallel with subsystem j consisting of m; components in series. A
systems are connected in series with the jth subsystem consisting of m; components

connected in parallel. Expressions for system reliability for both series-parallel and

series and parallel systems (Kececioglu, 1991b; Misra, 1992).
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Standby Configurations

A component standby configuration is shown in Figure 2.5. The configuration
has a form similar to a series-parallel system. However, in this configuration only
one component is active at any given time in a subsystem. When the component
fails, one of the parallel components resumes the function of the subsystem until
it fails. The process is repeated until all units fail, at which time the system fails.
A sub-system standby configuration (Figure 2.6), has a form similar to a parallel-
series system. However, the next subsystem becomes active only when the period
subsystem fails. Expressions for system reliability and failure rate of the standby
system can be obtained through the definitions of individual component reliability
(Kececioglu, 1991b; Misra, 1992).

The configurations discussed can be easily generalized into the form where a
given number of components or subsystems will be required for a system to be
operational. k-out-of-m:G configuration represents the system where the system is
operational if at least k out of m components are functional. 1-out-n:G represents
the parallel configuration, while n-out-n:G represents a series configuration. There
also exist other configurations like bridge network and non-series-non-parallel con-
figuration. For discussions of these configurations, the reader is referred to Kece-
cioglu (1991), Misra (1992) and Modarres (1993).

In this thesis, we limit our discussion to a series-parallel configuration with n
subsystems in series with each subsystem having (1 4+ m;) components in parallel.
All the components are statistically independent and all the subsystems act as
l-out-of-m:G configuration. In the next section we review the formulations of

an optimal reliability based design problem for series-parallel systems and the

optimization techniques used to solve such problems.

10
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2.3 Reliability Based Design: Formulations and
Optimization Techniques
For a series-parallel system, a typical optimization problem involves finding the

optimal number of parallel compcnents in each subsystem that:
1. Minimize the system cost C,
2. Maximize the system reliability Rs(m;)

The constraints for such problems are either resource or reliability constraints.
Resource constraints usually represent constraints of cost, weight, volume or some
combinations of these factors. Reliability constraint imposes a minimum require-
stated as:

Cost Minimization

Minimize
Cs = i] Ci(m;) (2.3)
Subject to:
i 5(1+my) €6, ,2=1,2,3,.. (2.4)
J=1
R, >R (2.5)
Reliability Maximization
Mazimize
Rq(m;) (2.6)
Subject to:
Zg;;(l +m) <G, ,2=1,2,3,.. (2.7)



where,

Cj(my)

<]
G.
z

R
R,(m;)

is the total system cost.

is the cost of subsystem j and is a function of number of parallel
components m; at the subsystem j

is the resource requirement of type z associated with subsystem j
is the maximum resource of type z available

is the number of resource constraints

is the minimum required reliability for a system

is the system reliability which is a function of m; for j = 1,2,...,n

Both of the above problems are nonlinear integer programming problems. They

are difficult to solve than general nonlinear programming problems because their

solutions must be integers. Many algorithms have been proposed but none has

proven to be superior over the others so that it could be classified as a general

algorithm for solving nonlinear programming problems (Himmelblau, 1972).

Tillman, Hwang and Kuo (1985) surveyed and classified optimization tech-

niques employed in 77 papers related to nonlinear programming problems. Their

conclusions are:

1, Integer programming yields integer solutions. The transformation of non-

linear objective functions and constraints into linear form so that integer

programming can be applied is a dificult task.

2. Dynamic programming has the dimensionality difficulties which increase with

the number of constraints and is difficult to solve problems with more than

13



tliree constraints.

The sequential unconstrained minimization technique (SUMT), the general-

[

ized reduced gradieni method (GRG), the modified sequential simplez pal-
tern search, and the generalized Lagrangian function method are probably
few effective techniques when applied to large-scale nonlinear programming
problems. However, the solutions are non integers and hence the optimal

solution, which must be an integer, is not guaranteed.

Other examples of integer programming solutions to the redundancy allocation
problem are prescnted by Misra and Sharma (1991) and Gen, Ida, Tsujimura and
Kim (1990) and Gen, Ida and Lee (1993). In recent years, genetic algorithms

have been used by various researchers to solve reliability based design problems

(1994, 1996)). The application of GAs to redundancy allocation in reliability based

design problems is discussed in detail in Chapter 4.
2.4 Concluding Remarks

This chapter discusses reliability based design formulations for systems with fixed
value of rcliabilitics. The constant component reliability is the probability that
the given component will survive for a given mission period ¢, hence making the
analysis valid only for a given mission period. This limits the application of such
formulations to non-repairable systems since the effects of repairs or maintenance
cannot be incorporated.

In recent years, the use of preventive maintenance and minimal repair to en-

hance the system reliability has become prevalent. These actions are economically

14



beneficial because they can extend the system'’s useful life without actually replac-
ing major components or subsystems. However, to formulate a RBD problem for
a repairable system, it is imperative to model component reliability as a function
of time. In such a model, the reliability of the system will change with time and
will be an important indicator of the system’s condition at any given point of time.
For such systems it is important that the system’s failure rate be below an allowed
failure rate or its reliability be above a minimum reliability level.

In Chapter 3, we review failure characteristics, costs and maintenance actions
performed on deteriorating system. A brief discussion of various maintenance

policies is also presented.

15



Chapter 3

Review: Reliability Based Design
with Deteriorating Components

3.1 System Life Cycle: Cost and Failure Char-
acteristics

A system life cycle consists of four major phases: a) system design, b) system
production, c) system operation and maintenance, and d) system retirement and
phaseout (Blanchard, 1992). The system design phase encompasses all the activi-
tics that develop and define a system which will meet customer’s requirement. The
system production phase covers the activities related to manufacturing, assembly
and testing. The system operation and maintenance phase is normally the longest
and includes activities related to installation, operation, maintenance, support and
modification of a system throughout its operational life. The system retirement
phase consolidates the activities required to remove the system and its supporting
facilities.

Typically a system exhibits a failure rate function which has a bathtub shape
from the time it becomes a finished product. Initially it has a decreasing failure
rate from 0 to some time t;, a nearly constant failure rate over a range from ?; to

t; and an increasing failure rate beyond ¢, (Figure 3.1).

16
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The failures during the initjal period are mainly due to defective material, poor
manufacturing techniques and assembly processes. In case of repairable systems,
such failures are called teething problems and may often ve fixed through some
form of a testing program. This period is called the infant mortality period. Fail-
ures between ; and t, are due to chance and are not influenced by system’s age.
Some of the causes of failure during this period are human errors, misapplication
and occurrence of higher than expected random loads. This period is known as
useful life of the system. Finally, failures over the wear out phase reflect an aging
process which results in increasing the failure rate with the system’s age. Wear out
failure causes include corrosion, aging, wear and system deterioration in general.
Depending on the type of system, ¢; can be zero or equal to t, (O’Connor, 1991).

Life cycle cost is a very important parameter which is evaluated in the life
cycle analysis to find an effective design and operating strategy for the system.
The life cycle cost is the sum of direct, indirect, recurring, non-recurring and other
related cost incurred in design, research, development, operation, maintenance,
support and disposal of a system over its life cycle. Since the system operation
and maintenance phase is the longest, the system life cycle cost depends heavil,
on the types and frequency of maintenance actions performed during the operation
and maintenance phase. The common strategy employed by the user during this
phase is to define various types of maintenance actions for the economical operation
of the designed system. In the next section we briefly describe minimal repair and
preventive maintenance as two of the most commonly used maintenance actions to
maintain aging systems. The characteristics of these maintenance actions will be
later used to develop a maintenance policy for deteriorating systems which must

perform under a maximum allowed failure rate.

18



3.2 Maintenance Actions

3.2.1 Minimal repair

The performance of a system depends on individual components. When a compo-
nent fails, failure may be reflected on the entire system. If a repair or replacement.
of the failed component restores the function of the entire system but the fail-
ure rate of the system remains as it was just before failure, then the repair is
called minimal repair (Valdez-Flores and Feldman, 1989). In such a repair, the
majority of components are not replaced, thus the remaining life distribution and
failure rate of the system are essentially undisturbed. The concept of minimal
repair was introduced by Barlow and Hunter (1960). Barlow and Hunter (1960)
also obtained the mean number of failures over an interval when the system is
subjected tc minimal repair after each failure. They define the occurrence of such
failures to follow a non-homogeneous Poisson process with a mean value H(t),
where, H(t) = [; h(t)dt, is called the cumulative failure rate function and h(t) is
the failure rate function. |

The number of failures {N(t),0 < t < oo} is a non-homogeneous Poisson
process with mean H(t) when it has independent increments that assume only

non-negative integer values, and if for all 0 < ¢; < to,

P[N(tg) _ N(tl) — k] — IH(t2) '};'H(tl)]ke—(ll(tz)—ll(q)). (31)

Then, the expected number of failures during [t;,t2] can be written as:

E[N(tz) - N(t2)] = H(tz) - H(t1) (3.2)

This result has been extensively used in the analysis of a variety of maintenance

policies involving minimal repair, e.g. Tilquin and Cleroux (1975), Nakagawa
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(1980,1981,1986), Boland and Proschan (1982), Phelps (1981, 1983) and Nakagawa
and Kowada (1983).

The costs associated with minimal repairs depend on the frequency of failures
in a system. The frequency of these failures is related to the individual subsystem’s
failure rate function. Consider subsystem j in time interval [0,T]. According to
Theorem 1 by Boland (1982), the expected minimal repair cost of subsystem j in
interval [0,T] is Cpy;:

Crs = Cm /0 Yo (3.3)
where h;(t) is the failure rate function and c¢mj is the cost of minimal repair of
subsystem j. In the proof of Theorem 1, Boland also defines the number of minimal
repairs to the system on [0,7T] as a non-homogeneous Poisson process with the
mean H(t). This leads to interpret cnjh;(t) in a naive sort of way as the rate of
spending dollar on minimal repair at age t. With this interpretation cm; T hy(t)dt
represents the mean number of dollars spent on minimal repair in [0,7]. A proof
of this result is in Boland (1982).

Under periodic replacement policy with minimal repair at failure the system
is replaced at multiple of some period T while performing minimal repair at any
intervening system failures. The basic minimal repair model developed by Barlow
and Hunter (1960) has been generalized and modified by many authors to fit more
realistic situations. Assuming that the cost of minimal repair Cy, is less than the
cost of replacing the entire system C,, the long-run expected cost per unit time

C(t) using a replacement age t for the basic model is given by:

CuN(t) + C;

o) = -

(3.4)

where N(t) represents the expected number of failures (and hence the minimal

repairs) during interval (0,2). The basic minimal repair model, equation (3.4),
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was further modified by Barlow and Proschan (1965), Tilquin and Cleroux (1975),
Nakagawa (1981), Boland and Proschan (1982). An extensive survey of minimal

repair models is available in Valdez-Flores and Feldman (1989).

3.2.2 Preventive Maintenance or Imperfect Repair

Preventive maintenance (PM) categorizes the actions which improve the condition
of the system before the system fails. A PM action for a mechanical system
may include cleaning, lubrication, adjustment, replacement of small components,
etc. Malik (1985) defines PM as an action which improves the condition of the
system without replacement. Conventional PM policies assume that the system
after each PM intervention is restored like new. This assumption does not hold
true in many real situations since any PM performed on system will improve the
system condition, however the state/condition of the system is somewhere between
as good as new and as bad as old. If a PM does not return the condition of the
system to its original state, then it is known as imperfect repair. Throughout this
thesis we will use the term PM interchangeably with imperfect. repair.

Before proceeding with the explanation of various PM models it. is important to
note that PM is applied to the system before it reaches a failed state and requires

two necessary conditions (Jardine, 1973):

1. The total cost of system replacement must be greater after failure than before.

2. The failure rate of the system must be monotonically increasing.
Authors have used different assumptions to develop PM models:

1. The state of the system after PM is bad as old with probability p and good as
new with probability 1—p (Murthy and Nguyen, 1981; Brown and Proschan,
1983).
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2. PM reduces failure rate, but does not restore the system’s effective age to

zero (Nakagawa, 1986; Nakagawa, 1988; Jayabalan and Chaudhuri, 1991a).

3. The age of the system is reduced at each PM intervention introducing the
concept of an improvement factor (Malik, 1979; Nakagawa, 1980, 1988; Lie
and Chun, 1986; Jayabalan and Chaudhuri, 1991; 1992).

4. PM action lowers the rate of system degradation but does not effect the age

of the system {Canfield, 1986).

In many areas of engineering, it is extremely desirable to have highly reliable sys-
tems (Wood, 1988). Many researchers suggest to perform a PM whenever the
system reaches the maximum acceptable level of failure rate or the minimum
acceptable level of reliability (Malikj, 1979; Lie and Chun, 1986; Jayabalan and
Chaudhuri, 1991; 1992). In reality, as the system ages, the post maintenance state
of system lies between bad as old and good as new. Also operation of such systems
causes stress which results in system degradation and hence an increase in the
level of failure rate with time. Though PM improves the condition of the system,
there is a gradual deterioration over time requiring replacement of the system after
sometime (Yeh, 1990).

Malik (1986) provides an explanation for system replacement based on the
rising cost of maintenance per unit time. He proposes an expression for average
annual cost of the system at the end of ith interval (AAC;) given by equation (3.5):

IC+ (i - 1)MC

T (3.5)

AAC; =

where IC is the installation and acquisition cost, MC is the maintenance cost, 1
is the number of PM intervals and T; is the age of system at the end of the ith

interval. The system considered by Malik is one with increasing failure rate and
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minimum allowed reliability and each PM action makes the system younger but
the shape of the reliability function remains the same after each PM action. The
system’s average annual cost is calculated after each interval and the system is
replaced when the system’s average annual cost is higher than the one at the end
of the preceding interval. An extensive survey of mathematical models for optimal
replacement, inspections and repair decisions has also been provided by Jardine
(1973).

Jayabalan and Chaudhuri (1992c) present a case study of a sequential imper-
fect preventive maintenance policy performed on bus engines. They present two
formulations based on assumptions similar to Nakagawa (1988). According to this
maintenance policy, a PM action is performed on the system as soon as if. reaches
a maximum allowed failure rate. If a failure occurs between these PM actions then
minimal repairs are performed. The expected mean cost rate is defined as the total
interval. The system is replaced when the expected mean cost rate is larger than
the last interval. This maintenance policy described by Jayabalan and Chaudhuri
(1992) will be used in our reliability based design formulations for deteriorating

systems in the later chapters.
3.3 Concluding Remarks

In this chapter we presented the concepts of the life cycle cost and failure char-
acteristics of deteriorating systems. Two commonly modeled maintenance actions
for deteriorating systems, namely, minimal repair and preventive maintenance are

also described. The literature review in the area of maintenance management for



deteriorating systems shows that much research has been done in the area of op-
timal maintenance policies involving minimal repair and/or PM. However, for all
these policies it assumed that the system design is fixed and hence the effect of
system design on system operation and maintenance phase is ignored.

To incorporate the effects of minimal repair and PM in system design, it is
imperative to express the system component reliability as a function of time. Thus
for an RBD formulation with components whose reliability is a function of time, the
objective will be to obtain an optimal system design, which for a given maintenance
policy will minimize its costs over its expected useful life. For such problems one
can express the objective function as system cost per unit time, which should be
minimized subject to resource and failure rate constraints. Such a problem can
be modeled as a nonlinear mixed integer programming problem with nonlinear
objective function and constraints. In this research, we develop RBD formulations
with components whose reliability is a function of time. These formulations are
presented in Chapters 5, 6, and 7. Genetic algorithms_are used to solve nonlinear
mixed integer programming formulation. In the next chapter we discuss, in detail,

genetic algorithms and their advantages and limitations.
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Chapter 4

Review: Genetic Algorithms

4.1 An Overview of Genetic Algorithms

Genetic Algorithms (GAs) are general purpose search and optimization techniques
based on the mechanics of natural selection and genetics (Holland, 1975). The
terminology used by GAs is quite similar to that used in natural genctics and close
analogy is maintained between the elements of two. In this chapter we will describe
step by step, with an example, how a GA works and discuss its applications to
reliability based design problems.

GAs work on the principle of survival of the fittest strategy among competing
sets of coded parameters, where each set represents a point in the scarch space.
This set of coded parameters is referred to as string (chromosome). A string is a
concatenation of a number of codes (often binary codes) of a given length. The
string bits (0 or 1 in binary string) are the equivalent of natural genes. A segment, of
the string represents a variable and each specific instance of the segment represents,
directly or indirectly, a specific value of that variable. There are as many segments
in a string as the number of variables, hence a string basically represents a possible
solution.

To explain how a simple GA works, we consider the following example with

[
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three variables (z;, 2, Z3):
Minimize

Y=I1T3T3 (41)

Subject to:
432 (4.2)

i
\'h

IT1To + TaT3 + T1T3 <

where z,, T, and 73 are integers such that 0 < z; £ 31 fori =1,2,3.
Using binary code to codify different values of each variable, we use a segment
of five binary bits. Thus 00000 represents 0, 00001 represents 1, while 11111

represents 31. Thus a string of three segments or fifteen bits will represent a

and o = 25.

GAs start by generating an initial population of strings through random selec-
tion of string-bit values. The number of strings (chromosomes) in the population
is called population size. The population size is initially specified by the user, and
is kept constant throughout the search.

In our example, in order to randomly generate one string we need to run a
binary generator 15 times (equal to number of bits in a string). If the population
size is 5, then we need to do that 75 times (15 x 5). Table 4.1 represents a
population of generation zero (the starting generation). The second column in the
table represents five randomly generated strings which satisfy equation (4.2). The
decoded values of these strings are presented in the next three columns. The last
column represents the string’s fitness value.

The fitness of a string of the population is evaluated using an objective function.
Since GAs seek to maximize the fitness of the solutions, in a maximization problem

this fitness is simply expressed as the value of the objective function for that specific
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Table 4.1: Population of Generation 0 (y = x,7273)

String No. |  String T2 | T3 | Fitness
— 1 | 010101110000100
000111001010010

28| 4 1120
18 118 | 972
8 {23 1472
12124 1152
7 |30 1260
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string. In a minimization problem, the fitness is defined as:
Fitness function = K — objective function value (4.3)

where, K is a constant, large enough to exclude negative fitnesses. A value com-
monly used for K is the sum of the minimum and maximum values of the objective
function in each generation.

initial population to form a new population. These processes are coilectively known
as reproduction.

The most commonly used selection scheme is stochastic sampling with replace-
ment (Goldberg, 1989). The scheme is based on a biased roulette wheel where each
string in a population in a generation has a roulette wheel slot sized in proportion
to its relative fitness. If 3_ f’ represents the sum of raw fitnesses of all strings in
the same population, then the relative fitness (or the probability of sclection) of
the ith string would be Zf% Table 4.2 shows the relative fitness of the population
of generation zero in percentage form.

To reproduce we simply spin the roulette wheel as many times as the population
size, in our example five times. Each spin specifies the string whose copy will make

it to the next stage, i.e. the mating pool. It is evident that the larger the wheel slot
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Table 4.2: Raw and relative fitness of population zero

String No. | Raw Fitness | Relative Fitness
1 1120 18.7%
2 972 16.3%
3 1472 24.6%
4 1152 19.3%
5 1260 21.1%

(relative fitness) of a string the higher its probability of having copies in the mating
pool thus participating in the creation of the next generation. Let us assume that
in a typical sequence of spins of the weighted roulette wheel, strings 1, 4 and 5 are
selected once, while string 3 is selected twice and string 2 is not selected at all. The

resulting mating pool is shown in Table 4.3. The parent (string) in the mating

Table 4.3: Mating pool for generation 0

String No. String No. Fitness of
Mating Pool | Generation Zero | Selected String
1 1 1120
2 3 1472
3 3 1472
4 4 1152
5 5 1260

pool randomly pick their own partner. Two offsprings (children) are produced
from each pair of mating partners using genetic operators. A sequence of actions

on a typical population is shown in Figure 4.1.
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String (i, 1)
String (i, 2)

Generation (i)

String (i, n)

Selection 1

String (tentative, 1)
String (tentative, 2)
creennens Mating Pool
String (tentative, n-1)
String (tentative, n)

Genetic Operators l

String (i+1, 1)
String (i+1, 2)

Generation (i+1)

String (i+1, n)

\

Figure 4.1: Evolution of populations in successive generations



The two commonly applied genetic operators are crossover and mutation. Crossover

is the most important operator of a genetic-based technique. A simple GA uses
a one-point crossover scheme. In a one-point crossover scheme a pair of strings is
selected at random from the mating pool, followed by a random selection of an
integer position k (called the crossover site) along the string where, 1 < k <1 and
l is the length of the string in bits. Two new strings are then created by swapping
all bits from positions k + 1 to [ inclusive between two parents. Crossover of string
1 and 4 from mating pool is shown in Figure 4.2

The mating process is repeated with other string pairs until all string pairs have
produced two offsprings. This number is the same as the population size. Since
child strings are generated in pairs, the process would not be able to generate an
odd number of children. In case of an odd population size one may generate one
more (less) string and then eliminate (add) a single string to the population. One
way to do so is to remove the least fit string from the population (add a duplicate
of the most fit string of the population).

Crossover results ii: a randomized, yet structﬁred information exchange. Each
child string combines the characteristics of its parent strings. Considering the fact
that in every search procedure there is a trade-off between creating new knowledge
and exploiting the existing knowledge, one can regard crossover as the means of
exploiting the existing knowledge in the GAs. By combining chromosomes to
form string patterns that may not have been previously existed in the population,
crossover provides a mechanism for exploring new regions of search space (Shariat-
Panahi, 1995). In a nutshell, some of the resulting offspring will have a higher
fitness than either parent. Offspring with reduced fitness will have a lower chance

to reproduce in the subsequent generations. This is what ultimately drives the GA

30



dies out.

Another genetic operator used is mutation. Mutation involves the alteration of
a randomly selected bit (0 to 1 or 1 to 0) in a randomly chosen string. It is normally
applied to post-crossover strings in the mating pool. Mating site is randomly
selected along the string (between bits 1 and [ inclusive) and the respective bit
is altered. Mutation introduces a type of random walk in the search space and
prevents the solution from being trapped in local optima (genetic drift). Mutation
also allows for the formation of string patterns that may not have been present in

that the random generation gives 4 as a site of mutation (shown in Figure 4.2).

Random mutation site

String 4 00100 01100 1 1000 00100 01100 10100
. —
String 1 01010 11100 O] 0100 ) 01010 11100 01000
Parents Children

Figure 4.2: Crossover of strings 1 and 4 from the mating pool
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The results of genetic operators, crossover and mutation, on the parent strings
are shown in Table 4.4. It can be seen that Child String 2 is invalid as it does not

satisfy area constraint (equation (4.2)), however, Child String 1 exhibits a higher

Table 4.4: Fitness of parent and child strings
“Parent String 1 | 001000110011000 | Fitness | 1152

“Parent String 2 | 010101110000100 | Fitness | 1120

"Child String 1 | 001100110010100 | Fitness | 1440
"Child String 2 | 010101110001000 | Fitness | Invalid

through application of stochastic sampling with replacement selection, crossover

average fitness of generation zero and one shows that the average fitness of the
generations has increased from 1192.2 in generation zero to 1382.4 in generation

one.

Table 4.5: Population of Generation 1 (y = z,Z273)

String No. |  String 71 | z3 | z3 | Fitness

1 001100110010100 | 6 | 12| 20 1440
2 111100011100110 130 7 | 6 1260
3 001001110001010 | 4 |28 |10 1120
4 010001011101111 | 8 [ 23 | 8 1472
5 010010101010010{ 9 | 10 | 18 | 1620

The processes of reproduction and mutation are carried out repeatedly until
either some convergence criterion is met or a maximum number of generations is
reached. Convergence in the context of GAs is measured by the uniformity of the
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95% of these strings share the same fitness or the average fitness of the population

falls within 95% of the maximum fitness in the same population (Dejong, 1975).

vergence properties very difficult. Theoretically, there are no sufficient condition
for the convergence of GAs, neither is there a way to exactly predict when a GA
with a given set of control parameters will converge. Holland (1975) provides a
fundamental theorem of genetic algorithms also known as schema theorem which
explains how GAs work and where their powers come from.

Despite the lack of a solid theoretical proof for the convergence of GAs, re-
sults of empirical studies including an abundance of successful applications have
established GAs as robust general purpose search technique (sce Beasley, Bull and
Martin 1993 for a list of related literature).

The following characteristics of GAs make them a preferred alternative opti-
mization tool to solve problems which otherwise are not easily solved by traditional

methods:

solution. This explicit parallelism helps the GA in determining close to
global optimum solutions without the danger of being trapped in a local
optimum. Typically, a GA will be able to find a close-to-optimal solution by

evaluating fewer than 1% of the points in the search space.
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e A GA uses objective function information directly, with no need for deriva-
tives or other information. The objective function can involve any type of
numeric or non-numeric variables, or other data structures, as long as a cod-

ing scheme can be devised to represent the parameter set.
o It is particularly suited to problems with a very large search space.

o It can treat with ease different types of variabies (integer, real, non-numeric).

4.2 Problem Specific GA Implementation Issues

GA’s ability to find the global optimum and the rate of convergence depend on
population size, crossover rate and mutation probability. A too small population
size will converge too quickly and often to suboptimal solutions. The larger the
population, the more points in the solution space being examined at each genera-
tion ard hence higher the chance of finding the global optimum in fewer itcrations.
However a too large population results in long CPU time for any significant im-
provement and smaller chance of good strings to mate due to crowded populations.

Crossover and mutation play crucial roles in the GA search, especially when
they are applied at the same time. When only mutation is applied, the search
resembles a random search. On the other hand, when only crossover is applied, the
system may quickly find a suboptimal solution (local optima) that exists within
the initial population, thus resulting in premature convergence. The trade-off
between the two operators allows G As to successfully converge in most cases to the
global optimum. Operation of the two operators is controlled by their prescribed
rates or probabilities (expressed as a percentage). These probabilities arc cither
specified by the user or determined by the system according to a given criteria. In

a programming sense, they tell the system at each point how many strings must be
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crossed over and how many must be mutated. A crossover probability of 80% for
a population size of 50 means that 40(= 0.8 x 50) of the strings need to be crossed

over and ten will directly go to the next generation. A mutation probability of 1%

the population.

Various researchers have recommended a value of 0.6 to 1.0 for the crossover
probability and a value less than 0.05 for the mutation probability (Grefenstette,
1986). In this thesis, we conducted empirical investigation to obtain appropriate
population size, crossover rate and mutation rate for each specific formulation.
The results of these investigations are discussed in Chapter 5, 6 and 7 under the

section entitled numerical illustration.

4.3 Applications of GAs to Reliability Related
Problems

In recent years, G As have been used by various researchers to solve reliability based
design problems. Works by Painton and Campbell (1994); Ida, Gen and Yokota
(1994) and Coit and Smith (1994, 1996) are recent examples of GA application to
reliability problems.

Painton and Campbell (1994) analyze a fixed design configuration for which
incremental decreases in component failure rates and their associated costs are
known. They use a GA to find maximum reliability solutions to satisfy specific cost
constraints. There are several unique features to their research. Their algorithm
is flexible and can be formulated to optimize reliability, mean time between failure
(MTBF), the 5th percentile of MTBF distribution or availability. Additionally,

they assume that components fail in accordance with the exponential distribution
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but that the underlying failure rate is a random varisble subject to a specified
distribution.

Ida, Gen and Yokota (1994) use a GA to find soluticns to a redundancy alloca-
been solved by both nonlinear programming and integer programming. They show
that the GA quickly converges to the optimal solution after searching only a small
percentage of the search space.

Coit and Smith (1994) analyze a series-parallel system design problem with

constant component reliability. The system consists of eight sulisystems and ten

system cost for a given reliability requirement. It is shown that GA rcadily con-
verges to the optimum solution in under 1000 generations with a population size
of 40. In another work by Coit and Smith (1996) it has been shown that GA works
exceptionally well for complex redundancy allocatio:: problems. They show that
the GA approach is very robust with very few restrictions on the formulation and
consistently yields optimal solutions for problems where no feasible solutions could

be located using previously published methods.
4.4 Concluding Remarks

It has been recognized that G As show their power and dominance over other scarch
techniques in problems with large solution spaces and/or complex objective func-
tions. GAs prove to be a robust technique and is definitely useful to be marketed
as a universal solver which can handle complex functions. GAs work on a popu-
lation of solutions at the same time. This, plus the application of mutation, helps

the technique to find multiple feasible solutions across the solution space. In the
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next three chapters we formulate three reliability based design problems and use

GAs as an optimization tool to find the optimal design, optimal PM intervals and
optimal replacement time of deteriorating system.
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Chapter 5

Reliability Based Design
Considering Maintenance

5.1 Introduction

A reliability based design problem involves evaluating various design configurations

namely, weight, volume, cost, etc. As discussed in Chapter 2, much research has
been done in the area of reliability based design (RBD) with constant component,
reliability. In this chapter we present RBD formulations for systems with com-
ponents that deteriorate with time. Preventive maintenance (PM) and minimal
repairs are considered on the system. Based on PM models proposed by Nagakawa
(1988), two formulations are developed. Using the principles of engincering cco-
nomics, a five step methodology is also proposed to calculate the optimal system
design, optimal PM intervals and optimal system replacement time. In each formu-
lation we explain the calculation of PM intervals and minimal repair costs. Each
formulation is completed by obtaining an expression for average annual cost of the
system. The average annual cost is minimized for maximum allowed failure rate
using Genetic Algorithms.

In section 5.2 we discuss system characteristics and costs. Section 5.3 and 5.4
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present two formulations based on Nagakawa's sequential PM models. Section 5.5

presents the five step methodology used to calculate the optimal system design,

PM intervals and system replacement time. Section 5.6 presents the numerical
illustration for both formulations followed by concluding remarks in section 5.7.

5.2 System Characteristics and Costs

The system being considered comprises of n subsystems in series. Subsystem j
(j = 1,...,n) consists of (1 + m;) identical components in active redundancy. All
the components are statistically independent. Each subsystem acts as a 1-out-of-
m:G configuration. All the components have continuous and strictly increasing
failure rates. It is required that the system should operate below a maximum
allowed failure rate (In this thesis we use the term failure rate and hazard rate
interchangeably).

There are four main components of system costs. They are: (a) acquisition
cost of the system, (b) installation cost of the system, (t:)é cost of minimal repairs,
system includes the costs for design, development and production of the system.
In both formulations, the acquisition cost of the system is a sum of the products
of acquisition costs of the individual components and their respective assembly
coefficients (¢;). The assembly coefficients account for subsystem assembly costs.
The installation cost of the system is one time cost during system life cycle and is

independent of system design.

proposed by Nakagawa (1988). These models were developed by Nakagawa by

introducing improvement factors (Chun and Lie, 1986) in failure rate and age for
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a sequential PM policy (Nguyen and Murthy, 1981; Nakagawa, 1986).

5.3 Formulation 1: PM modeled using age re-
duction concept

In this formulation we model the PM action on the system using an age reduction
concept, each PM action on the system makes the system younger by a given
improvement factor. However, the failure function of the system does not change
after PM (Nakagawa, 1988).

All the subsystems are either maintained preventively or replaced when the
system failure rate reaches £. The system failure rate reaches £ for the first time
at calendar age 7. At this moment the system’s effective age is also T3. If the
PM action is performed at this moment, the age reduction concept assumes that
system’s effective age T} is reduced to T} /a, where a is an improvement factor due
to PM, such that, 1 £ a < co. During the second interval 7} < T < T3 the system

failure rate reaches &€ at T, (Figure 5.1). Now when the maintenance is done, the

R

portion of the effective age consumed during the second interval is =21, The
improvement by the second maintenance does not affect %1 which is the portion
of the effective age permanently consumed as a result of wear and environmental
effects during the first interval. Thus after maintenance at calendar age 75, the
effective age of the system is & 4 Z2=T1 = 12, Gince the failure rate function form of

the system does not change after PM and assuming that the improvement. factor is

the same for all the components in all the subsystems, we can derive the following
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Ty =Ty = (T = Thg) — Dt Tic2 (5.1)

where i = 2 and Ty = 0. Equation (5.1) can be simplified to give a closed form of

T; (for 7 2 2) as a function of T;:

T‘,Tl%l(ﬂ‘l)k (5.2)

k=0~ &

rate behavior after each PM action. The system should always operate below
the maximum allowable failure rate. Since the system has an increasing failurc
rate function, we only need to have the following constraint on system failure rate
function h,(t):

ho(Ti) < € (5.3)
Minimal repairs are performed if the system fails within the scheduled PM intervals.
Assuming R;(0) = 1, equation (3.3) can be rewritten in terms of the reliability of

the jth subsystem R;(t) as follows:

Il

|

é’m

|
=

Chui —
M Jo R;(t)

(5.4)

H

|
g
3

Cmit = — &mj In[R;(Th)] (5.5)

At T} PM is performed and the effective age of the system becomes T/« instead
of Ty. ¥ z; =T; — T;_; and Tp = 0, then at the second maintenance point we can

find the total expected minimal repair costs during the period (z; + z2), Cpmja:

Cumiz = = &mj (In[R;(Th)] + In[R;(A; + z2)] — In[R;(A))]) (5.6)
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where A, is the effective age of subsystem j after the first PM action and is equal

to T} /a. Simplifying equation (5.6) further we get:

_ R;(A1)
Chusa = Emln [Rj(m R; (A + zz)} (5-7)

Hence, the expected minimal repair costs till T; for subsystem j is given by equation

(5.8)

L Ry(A)
Cuji = EmsIn | 5= (5.8)
1I=Io R;i(A; + z141)
where A; = T}/a and Ay = 0.

When the system reaches a given maximum allowable failure rate, one of the
following actions is selected, {a) keep the system and perform PM, or (b) replace the
system with an identical system. This decision is made by comparing the average
annual cost (AAC) of the system and checking whether the system has reached
its economic life or not. Ignoring the time value of money, AAC of the system
is defined as total cost incurred on the system divided by its useful life in years.
The economic life of a system is defined as the time interval that minimizes the
system’s total annual costs. The economic life is also referred to as the minimum
cost, life or optimal replacement interval.

If PM is performed on the system then all the components undergo PM. Thus
the cost of a PM action for subsystem j with (m;+1) components will be MC;(m;+

1), where M Cj is the cost of performing PM on a component in subsystem j. The

cost of PM on subsystem j at the end of the ith interval is given by:
PM;; = (i = 1)MCj(m; +1) (5.9)

Ignoring the time values of cost, the AAC of the system at the end of the ith
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interval is given by equation (5.10).

IC + il [(1 + m;)AC;¢; + PMji + Chgji)

AAC; = = T — (5.10)
where,
AC; Acquisition cost of a component in jth subsystem
Chuiji Minimal repair cost of jth subsystem at the end of the
ith interval (Equation (5.8))
Ic Installation cost of the system

PAf;; PM cost on subsystem j at the end of ith
interval (Equation (5.9))
T; System calendar age at the end of ith interval

b; Assembly coeflicient of a component in jth subsystem

If the values of m; are known, then using equations (5.2) and (5.3), one can
calculate the values of 77, T,..., T;, Ti;, and subsequently calculate the values of
AAC,, AAGC,,..., AAC;, AAC;,,. We stop when AAC;;, > AAC; and AAC; <
AAC;_, and T; is the economic life of the system. The system is replaced at T;.

To calculate the optimal system design, optimal PM intervals and economic

life of the system we follow a five step methodology outlined in section 5.5.

5.4 Formulation 2: PM modeled using hazard
rate concept

This formulation is developed using the hazard rate concept for modeling preven-

tive maintenance (Nakagawa, 1988). We assume that the initial failure rate and
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the reliability of a new system is zero and one, respectively. With the hazard rate
concept, & PM restores the system to a failure rate of zero. However, after each
additional PM the slope of the failure rate function increases. During the first
interval, the component has undergone no PM and the component failure rate is
hj(t). This failure rate corresponds to the original failure rate of the component,
that is, hj;(t) = h;(t). At the end of the first interval the component undergoes
PM and its failure rate is reduced instantly to zero but the slope of the new failure

rate function is increased (Figure 5.2). In general, the hazard rate of a component

in the jth subsystem during the ith interval is hj(t):

hji(t) = 0;:h;(t) (5.11)

a PM action on the component, one can mathematically define 8;; to satisfy the

following two conditions:

2. Gj(i+j) i 9_1*{3 where i:L 2, 3,

Nakagawa (1988) provides a mathematical expression for hazard rate deterio-

ration factor (6;;) as:

;i = H (1 + m) (5.12)
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According to his proposed formula, the system deteriorates very drastically
as the number of PM actions increase. This expression is suitable for systems
for which PM actions do not improve the condition of the system considerably.
However, for many mechanical systems, PM actions like cleaning, lubrication, ad-
justment and alignment can improve the condition of the system quite significantly.
To model such an action the deterioration factor should increase gradually as the
number of PM actions increases. Equation (5.13) gives a general equation for

calculating (6;:). .
=1/ Ok ) .
0 =1+5" (_ Qsk (5.13)
j \ Sk + P,

k=0 \ y

where Q;, S; and P; are user defined constants and all are greater than zero. These
constants can be defined by the user based on component deterioration character-
istics before and after the PM action. A large value of Q; and relatively smaller
values of S; and P; will be appropriate for very fast deteriorating system where
PM action would make the system operational but would not be able to prevent it
from deteriorating drastically after each PM action. On the other hand to model

the effect of PM actions on many mechanical systems, the user is suggested to use

Similar to equation (5.11), one can write the following equation for the cumu-
lative hazard function:
Hji(t) = 05 H;(t) (5.14)
Next we rewrite the system hazard rate in terms of component hazard rate. This
will allow us to incorporate different PM factors for different subsystems at the
component level. The reliability of a component in subsystem j during the ith
interval is:

(i) = €” Jo' hiswdt — o= Hyixi) (5.15)
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where z; is the length of the interval 7. The system reliability can be written as
n “
i=1

while the corresponding system hazard rate is

= Ry(z:)
Ryi(z:)

Figure 5.2 shows the PM scheduling and the system failure ratc behavior after

hsi(z:) = (5.17)
each PM action. The system should always operate below a maximum allowable
failure rate, which implies Equation (5.18) should always be satisfied:

hei(z:) < & (5.18)
Minimal repairs are performed if the system fails within the scheduled PM intervals.
Using equation (3.3) one can obtain the expected minimal repair cost of subsystem
j during the first interval. Since in this formulation the PM actions affect the failure
rate functiaﬁ of the component, it is more convenient. for us to define minimal repair
costs in terms of failure rate and cumulative failure rate function.

Equations (5.19) and (5.20) represent the minimal repair costs related to the
system expressed in cumulative failure function rates at the end of first and second
intervals, respectively.

CMjl = Ceijjl(S‘EI) (5519)
Cmjz = emjHp (21) + emjHj2(x2) (5.20)

Using equation (6.3) one can rewrite equation (5.20) as:

2
Cmjz = Cmj D_ Ok Hj(zx) (5.21)

k=1

In general, the minimal repair cost of subsystem j at the end of 7 intervals can be

given by equation (5.22)

Cwumji = Cmj 9 _ O Hj(zk) (5.22)
k=1

49



Similar to formulation 1, when the system reaches maximum allowed failure rate,
one of the following action is taken. Either keep the system and perform PM or
replace the system with an identical system. This decision is made by comparing
the average annual cost (AAC) of the system and checking whether the system has
reached its economic life or not. The cost due to PM is given by equation (5.9) and

the AAC of the system at the end of the ith interval is given by equation (5.23).

IC + i [(1 + m,-)AC_.,-qSJ- + PMJ',' + C}Hji]

AAC; = =1 5.23
T (5.23)
where
Ti=> T (5.24)
k=1
AC; Acquisition cost of a component in jth subsystem
Chji Minimal repair cost of jth subsystem at the end of the ith interval
(Given by equation (5.22))
Ic Installation cost of the system

PM;; PM cost on subsystem j at the end of ith interval
(Given by equation(5.9))
T; System calendar age at the end of ith interval

o; Assembly coeflicient of a component in jth subsystem

If the values of 724 are known, then using equations (5.18), (5.23) and (5.24), one
can calculate the values of T, Ts,..., Ti, Ti+1 and subsequently calculate the values
of AAC,, AAC,,..., AAC;, AAC;,,. Westop when AAC;,; > AAC; and AAC;_; >
AAC; and T; is the economic life of the system and the system is replaced at T;.
However, since m; is unknown, we cannot calculate the PM intervals, AAC; or

replacement time of the system directly. A five step methodology proposed in the
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next section is used to calculate the optimal system design, PM intervals and

economic life of the system.
5.5 Five Step Methodology

To calculate optimal values of m; we minimize the expected average annual costs
AAC subject to failure rate constraint for each value of i to obtain AAC;. Once
the optimal system configuration is obtained for the first 7 intervals, we calculate
AAC;,, using the optimal configuration obtained for i. If this AAC,,, is less than
AAC? then it implies that for the given optimal configuration for intervals 1 to
i, the corresponding value of T; is not system's economic life. The system design
is then optimized for i+1 intervals. This process is repcated and we stop when
AAC;,, is greater than AAC;. The basis behind this methodology is that, if the
system is replaced after the ith interval, the system cost should be minimum for

T;. The five step methodology is listed below:

Seti=1

w
Ll
m

)

wm
[l
m
\m;
[ ]

Minimize the expected average annual costs AAC subject to
failure rate. The optimization problem is formulated as,
Minimize: AAC;, subject to:

hoe(zr) < €, where k= 1to i

We then obtain AAC! and mgxi), where m.g‘) is the optimal

values of m; for the first i intervals.
Step 3  Calculate AAC‘iH(mgi)), expected average annual cost

at the end of (i + 1) intervals for the system configuration m?')i
Step 4 Is AACi41(m’) greater than AAC;?

If yes, then stop. m§-i) is the optimal system configuration with 7;
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as the economic life of the system. If no, then go to Step 5.

Step 5 Seti=1+ 1 and go to Step 2.

The optimization problem at Step 2 has non-linear objective function with a non-
linear failure rate constraint. In the next section we present the numerical illustra-
tions of these two formulations and discuss the application of genetic algorithms

to obtain optimal designs of the system for minimal average annual costs.
5.6 Numerical Illustration

Consider a system with four subsystems connected in series. We need to determine
the number of parallel components in each subsystem. Assume all the components
follow a Weibull distribution with shape parameter greater than one. The reliabil-
ity functions of the components for subsystems 1, 2, 3 and 4 are given by Equations

(5.25), (5.26), (5.27) and (5.28), respectively.

ry(t) = e 0% (5.25)
ro(t) = "1 (5.26)
ra(t) = ¢~ 00554 (5.27)
re(t) = €705 (5.28)

Various costs associated with the system components are presented in Table 5.1.
It can be seen that the component that deteriorates faster costs less than the
one which deteriorates slower. The installation cost of the system is 400 dollars
and is independent of system design. The maximum allowable failure rate of the

system is 0.2 failures per year. The maximum number of components allowed in
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Table 5.1: Costs related to system components for Formulation 1 and 2

9 [1.11] 10 | 1
125 | 1.2 i5 1.5
150 {1.33| 20 2
225 | 1.11 25 2.5

Wl G ek

each subsystem is equal to 15. For our research we use Goldberg’s simple genetic
algorithm (SGA) (Goldberg, 1989). GAs are programmed in Fortran 77 and run
on Unix based IBM RS-6000 machine. In the implementation of GA’s, we use
a population (Goldberg, 1989). Goldberg's scaling routines: procedure prescale,
function scale, and procedure scalepop are used. Stochastic reinainder selection
without replacement is used as the selection method due to its supcriority over
other selection schemes (Booker, 1982). A linearly decreasing mutation rate is
used over the first 40 generations with initial mutation probability of 0.05 and
decreasing to 0 at the end of the 40th generation. Mutation in early generations
helps the algorithm to fully explore the search space. However, later on, during the
run, the creation of a solution via mutation generally will be the one with a lower
fitness of that population. Hence, it is not recommended to have mutation after
40 generations as it might be counter productive for obtaining a global optimum
solution.

A convergence criteria was set to stop a run when the average fitness of the
population is within 0.5% of the maximum fitness. Preliminary runs were carriced
out to examine the effect of the population size on the performance of the GA. This

is very important as too small a population will result in premature convergence of
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the GA to a suboptimal solution while too large a population results in excessive

CPU time. Primarily, we are concerned with a fact that a GA does not absolutely

guarantee convergence to a global optimum solution. Because of this, we monitor
the best solution that has been encountered for all the populations generated during
a single run. One hundred runs are performed for each population size in order to
assess the probability of success in determining the globally optimal solution. The

results of the preliminary runs indicate that, for this problem:

o The probability that a population size of 50 will converge in under 75 gen-
erations is 0.85. However, the probability that the population size of 50
will result in the best solution being the global optimum are between 0.60
and 0.70. About 80% of the time population size of 60 converged under 75
generations while generating the global optimum about 85% of the time.

e The optimal solution usually first appears in the population about half way

through a run, typically between the 30th and 40th generation.

o It was seen that a population size larger than 60 leads to excessive computa-
tion time, without a proportionate increase in the probability of converging

to the global optimum. A population size of 60 is used for both formulations.

Formulation 1

In formulation 1, the improvement factor a for all the components in all the sub-
systems is 2.5. To solve the optimization problem we implement a classical GA.
For each subsystem j, the number of parallel components m; is coded as a 4-bit

string. Each possible system design can then be described by a 16-bit string. For

54



fitness evaluation for each coded string it is assumed that the failure rate constraint
is active. Given the values of the m;, this constraint equation is solved to give the
time T; and value of AAC;. Since GAs are set up to maximize fitness hence the
optimization model needs to be converted from maximization to a minimization
one. This is done by subtracting each string’s AAC from the largest AAC in the
current population to give a positive fitness value.

Using the five step methodology proposed in section 5.5, we obtain the optimal
system design, optimal PM intervals and system replacement time. Implementa-

tion of the five step methodology is shown in Table 5.2. It is found that optimal

Table 5.2: Implementation of the Five Step Methodology for Formulation 1

i| AAC; [mP 41 AACZ',+1( M) [ AAC, (M) > AAC] | Action.
'1[1985.015| 7,3,2,2 | 1345.065 No Next i
2 | 1345.065 | 7,3,2,2 1182.893 No Next. 4
3]1182.803 | 7,3,2,2 1141.629 No Next ¢
411141629 | 7,3,2,2 1149.490 Yes Stop
5|1149.490 | 7,3,2,2 1181.661 . .

6| 1181661 | 7,3,2,2 1227.581 - -

system design for minimum AAC under formulation 11is 7, 3, 2 and 2 components
in parallel for subsystems 1, 2, 3 and 4 respectively. For the obtained design, all
the subsystems should be preventively maintained at 7) = 1.234, 7; = 1.974 and
T3 = 2.418 years. At T, = 2.685 years the system should be replaced. The AAC
for the system life cycle is 1141.629 dollars.

Formulation 2

In formulation 2, the deterioration factors for each subsystem are given by equation

55



subsystems 1 and 4 deteriorate slower than the components in subsystems 2 and

3 after PM action.
.29)

[y ]

(

i ',:3‘ 3k .

O =0 =1+ (2k+ 1) (5.30)
GA is implemented, with m; coded as a 4-bit string and each possible system
design represented by a 16-bit string. Fitness evaluation for each coded string
assumes that the hazard rate constraint is active. Using our proposed five step
methodology for formulation 2, we obtain optimal system design, optimal PM
intervals and economic life of the given system. Implementation of the five step

methodology is summarized in Table 5.3.

Table 5.3: Implementation of the Five Step Methodology for Formulation 2
i | AAC: [mP +1] AACi(mY) | AACi1(m{’) > AAC) | Action
1985.015 | 7,3,2,2 | 1234.047 - No ‘Next 7
1234.047 | 7,3,2,2 997.915 . No Next ¢
997.915 | 7,3,2,2 890.661 No Next @
890.661 | 7,3,2,2 831.872 No Next 7
830.743 | 6,3,2,2 795.558 No Next 7
795.558 | 6,3,2,2 774.390 No Next 7
774.390 | 6,3,2,2 761.980 No Next 7
761.980 | 6,3,2,2 755.078 No Next 7
755.078 | 6,3,2,2 752.699 No Next 7
752.699 | 6,3,2,2 753.000 Yes Stop
753.000 | 6,3,2,2 755.820 - -
755.820 | 6,3,2,2 760.511 - -
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e

L= v s St o T & 1 BN

[ et
[ I I

[y

It can be seen that after seven intervals the AAC of the system starts increasing

3, 2 and 2 components in parallel at subsystem 1, 2, 3 and 4 respectively. For the
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obtained system design, all the subsystems should be preventively maintained four

times, i.e. at the end of 1.172, 2.049, 2.734, 3.204, 3.768, 4.180, 4.545, 4.875 and

This is also the economic life of the system with the proposed design and has an

average annual cost of 752.699 dollars.

The trends for average annual cost for system’s economic life (AACEgconomicLife)
for different ratios of AC/c,, and MC/c,, are shown in Figure 5.3. It can be seen
that for a higher ratio of MC/cy, the AACEconomicLife is higher. As AC/c,, in-
creases the AACE onomicLise and economic life of the system increases. The optimal

system design for different ratios of AC/c,, and MC/¢,, are shown in Table 5.4.

Table 5.4: System design (m; + 1) for different cost ratios (Formulation 2)
MCJcp | AC/cm = 20 | AC/cp, = 50 | AC/ey, = 100

5 | 8422 | 7422 6,322
10 8,4,2,2 7,3,2,2 6,3,2,2
20 8,3,2,2 7.3,2,2 6,3,2,2

The five step methodology can be also used for formulation 1 to incorporate the
case when the PM factors are different for each subsystem. The effects of the age
reduction PM model are controlled by the improvement factor {a) due to PM. The
effects of the hazard rate PM model are influenced by the failure rate deterioration
factor (6;;). From the numerical example in this section, we have found that these
two formulations can result in different optimal system designs, (7, 3, 2, 2) for

formulation 1 and (6, 3, 2, 2) for formulation 2.
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It is important to distinguish between the level and shape of failure/hazard rate
function as they relate system degradation with time (Canfield, 1986). The failure
rate level reflects the extent of system degradation. Age reduction PM maodel is
suited for systems where PM actions are routine inspections with replacement. or
repair of minor components which are worn or faulty. The hazard rate PM model
is appropriate to model PM actions like lubrication, adjustment of tolerances and
minor overhaul of components subject to wear. The reason is that: although such
PM action brings the system back to operational stage, the rate of degradation

increases due to cumulative effect of system degradation.

5.7 Concluding Remarks

This chapter presents a methodology to determine an optimal design of a system
with deteriorative components. The algorithm provides users with optimal PM
intervals and system replacement time. The proposed five step methodology allows
the user to incorporate different PM factors for differe_nt subsystems and enhances
the applicability of the presented formulations. Genetic algorithms are used as a
tool to solve the traditional non-linear integer programming optimization problem.

In the next chapter we focus on RBD of systems using the condition when
h;i(0) # 0. This condition will allow us to model systems which have a non-zero
failure rate at time equal to zero due to both externally and internally induced
conditions. The model will also consider the effects of system salvage value on

system design.
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Chapter 6

Reliability Based Design
Considering Maintenance and
Salvage Value

6.1 Introduction

In chapter 5 it was shown that the concepts of minimal repair and PM can be
incorporated into reliability based design (RBD) problems when the component
reliability is expressed as a function of time. The formulations utilize two PM
models proposed by Nakagawa (1988). A ccsmprehénsive five step methodology
which produces optimal system design, optimal PM intervals, and optimal system
replacement time, is also presented.

In this chapter we present a RBD model for a series-parallel system assuming
that the failure rate is not zero at time zero. The system lifecycle cost func-
tion is further modified to include the salvage value of the system in addition to
the acquisition, installation and maintenance costs. The effects of salvage value,
preventive maintenance and minimal repair are incorporated to present a compre-
hensive methodology to evaluate and obtain the best system design over its life

cycle. Genetic algorithms are used to perform constrained optimization of the sys-
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tem cost function using both active and non-active constraints. The results have
important applications in the area of economie evaluation of automated manufac-
turing systems where high investment costs are involved to acquire a system which
~ust perform below a given failure rate.

Section 6.2 discusses the system characteristics and presents the modified haz-

ard rate PM model. Section 6.3 discusses the system costs and presents the salvage

preciation. This section also presents the formulation of optimization problem
followed by numerical illustration in section 6.4 and concluding remarks in section

6.5.
6.2 System Characteristics

In this chapter, we consider a system with similar characteristics as in Chapter
5, i.e., the system comprises of n subsystems in series. Subsystem j (j = 1,...,n)
consists of (1+m;) identical components in active redundancy. All the components
are statistically independent. Each subsystem acts as a 1-out-of-m:G configuration.
All the system components have continuous and strictly increasing failure rates. It
is required that the system should operate below a maximum allowed failure rate.

For the systems with increasing failure rates it is a common practice to perform
PM whenever the system reaches the maximum allowed failure rate or minimum
acceptable level of reliability (Lie and Chun, 1986; Malik, 1986; Jayabalan and
Chaudhuri, 1992b). A PM policy for systems with increasing failure rates is one
in which the PM is performed on the system at times when the system reaches
the maximum allowed failure rate. If the system fails between these intervals,

then minimal repairs are performed. Such a policy was proposed by Nagakawa
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(1988) and further validated by Jayabalan and Chaudhuri (1992¢c) with a case
study. Nakagawa (1988) presented two sequential PM models using age reduction
and hazard rate concepls.

According to Nakagawa’s hazerd rate model, a PM restores the system to a
working condition with a failure rate of zero. However, after each additional PM
action, the slope of the hazard function increases. During the first interval, the
component has undergone no PM and the component failure rate is (t). This
failure rate corresponds to the original failure rate of the component, that is,
hji(t) = h;(t). At the end of the first interval the component undergoes PM and
its failure rate is reduced instantly to zero but the slope of the new failure rate
function is increased (See Figure 5.1). In general, the hazard rate of a component

in the jth subsystem during the ith interval is hj;(t):
hji(t) = 65ih;(2) (6.1)

where 0; is defined as failure rate deterioration factor. It was shown in Chap-
ter 5 thait depending on the effect of a PM action on the component, one can

mathematically define 8;; to satisfy the following two conditions:
1. 011 = 1
2. 0j¢ir1) > 0ji, where i=1,2.3,...

However, in many practical situations the failure rate of the system is non-zero
after each PM action due to both externally and internally induced conditions. To
model this more practical condition we modify the failure rate function (Equation
(6.1)) by adding a constant ), to the variable (time), such that A; > 0. During the
first interval (i = 1) when the component has undergone no PM, the component

failure rate is hj;(t). This failure rate corresponds to the original failure rate of
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the component, i.e. hj (t) = hj(A; +1). At t =0, h;;(0) = £ > 0, At the end of
the first interval, the component undergoes PM and its failure rate is now changed

to hj2(t) = O52h;(A; + 1) with hjo(t = 0) = O55h,(),) -

£", where £" 2 ¢ (Sec

Figure 6.1). In general, the modified hazard rate function of a component in the

hii(t) = 05:h;(A; + 1) (6.2)

For hazard rate deterioration factor, (6;), we use equation (5.13) developed in
Chapter 5. Similarly we can obtain the following equation for the cumulative
hazard function:

Hji(t) = 0;Hi(A\; + 1) (6.3)
The reliability of a component in subsystem j during the ith interval is:
rii(z) = e” Jo i hsildt _ o= Hji(=:) (6.4)

where z; is the length of interval i. The system reliability can be written as

n

Rai(wa) = TI11 = [1 = ()] ) (6.5)
j=1
while the corresponding system hazard rate is

The system should always operate below a maximum allowable failure rate, which

implies that equation (6.7) should always be satisfied:

hsi(zi) < € (6.7)

63



(15POINl INd PAYIPOIN Suis())
S|BAISIU] SOUBUJUIBJA] SANUSAAIJ pUR 9)ey alnjie] WoIsAS :1°9 3an3Biy

(saeaA ur) swn ],
<

A AN
> v_. P
_ £x | Ix Ix

1 : v
M . .m - duniey
...... wd)sAS

64



6.3 System Cost and Problem Formulation

There are four main components of system cost in our formulation. These are:
(a) net acquisition cost of the system, (b) installation cost of the system, (c)
cost of minimal repairs, and, (d) cost of preventive maintenance. The acquisition
cost includes design, development and production costs of the system. In this
formulation the net acquisition cost of a component at a given time ¢ incorporates
both acquisition cost and salvage value. We propose to use equation (6.8) to
represent the net acquisition cost of (1 + m;) components in subsystem j at the

end of the ith interval.

where assembly coefficient ¢; accounts for the assembly costs of components in the
Jjth subsystem and SV}, is the salvage value of the component in the jth subsystem
at the end of ith interval.

The salvage value is defined as market value of a component/system at the
end of its life. It is the amount eventually recovered through sale, trade-in or
salvage (Chan, Porteous, Sadler and Zuo, 1995). The salvage value of the system
is estimated from a depreciation schedule established for a system. Depreciation
can be classified into two categories, namely, physical and functional depreciation.
Physical depreciation is defined as a reduction in a system’s capacity to perform
its intended service due to physical impairment. Physical depreciation can occur
to any fixed asset in the form of deterioration from interaction with the environ-
ment, including such agents as corrosion, rotting, etc. It can also occur due to
system wear and use. Physical depreciation leads to decline in performance and

high maintenance costs. Functional depreciation occurs as a result of changes in
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the organization or in technology that decrease or eliminate the need for a system.
Examples of functional depreciation include obsolescence due to advances in tech-
nology, a declining need for the services performed by a system, or the inability to
meet increased quantity and/or quality demands.

Many researchers have used the concept of economic depreciation in various

order after a lead time. In their formulation they consider a non-linear increasing
cost s(t), which is suffered by the system for salvage at time ¢. Jones, Zydiak, Hopp
and Wallace (1990) present an equipment replacement model for profit maximizing
firm facing a demand curve. The firm’s product is produced by machines whose
capacity is a non-increasing function of age. The economic depreciation schedule
is developed using the concepts from microeconomics. The objective of the firm is
(1990) used the concept of salvage value for perishabie product retailing systems
like grocery and fashion clothing. The authors calculated the maximum profit or-

dering for a given salvage value. Cheng (1992) analyzed an optimal replacement
problem of an aging equipment, where he defines overhaul and inspection costs as
an increasing function of the inspection interval to model the equipment deprecia-
tion. The replacement cost is a decreasing function of the inspection interval. Total
cost per unit time is minimized which minimizes the total cost of replacements and
operating the equipment between the overhaul and inspection intervals.

In our formulation, we developed a salvage value function which incorporates

the economic effects of system deterioration and PM. The salvage value function
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satisfies the following three conditions.

1. The salvage value function of a system with an increasing failure rate is a

2. At the end of any interval, if a PM action is performed on the system then

the salvage value of the system increases to a value such that

Vi (t = 0) < SVi(t = 0) (6.9)

3. Functional depreciation of the system and the tax effects of system disposal

are ignored.

To satisfy the above three conditions, we propose the following salvage value func-

tion of a component in subsystem j during the ith interval:

A
" Tilphsi(t) + BIt

where I';, p and f are the user defined constants which are market driven such that

SVii(t) (6.10)

I'iya > T >0, p > 0 while 8 > 0. It will be shown through numerical illustration
that NAC;;(t) plays an important role in system replacement decision making as
it is an increasing cost function with respect to time.

The installation cost (/C) of the system is a one time cost during system

system fails within the scheduled PM intervals.
As presented in Chapter 5, the costs associated with minimal repairs depend on

the frequency of failures in a system. According to equation (3.3), for our system,
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the expected minimal repair cost of subsystem j at the end of the first interval is

given by:
z
Cumin = Cmj / hj (t)dt
0
I
= ¢mjbn / hj(A; +t)dt (6.11)
0
Since 6; = 1 hence we can rewrite equation(6.11) as:
CMjl = Cmj [HJ(AJ + 1'1) - H](/\J)} (612)
The number of minimal repairs at the end of the second interval is given by:

E
Cumjz = Cmji +Cmj / hjo(t)dt
0

= Cumj + Cmjbj2 f hi(A; +t)dt

= Cumj + Cmj0j2 ?Hj()\j + z2) — Hj(A;)]

= Cmj [Hi(As + 1) — Hj(X)] + 02 [Hi(A; + z2) = Hj(X5)]

— ons 30 0+ 2) = H) (6.13)

equation (6.14):
CMji = Cmj Z ojk [HJ(AJ + Zk) - HJ()\J)] (614)
k=1

When the system reaches the maximum allowed failure rate, one of the following
decisions is made: (1) keep the system and perform PM, or (2) replace the system
with an identical system. This decision is made by comparing the expected average
annual costs (AAC) of the system and checking whether the system has reached

its economic life or not.
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cost due to PM is given by equation (5.9) Figure 6.1 shows the PM scheduling and
the system failure rate behavior after each PM action. The AAC of the system at

the end of the ith interval is given by equation (6.15).

ic + ‘il [NACJ,(t) + PMJ',' + GL{ji]
J=

AAC; = (6.15)

where

T: = Z Tk (6.16)
k=1

where,

NAC;  Net Acquisition cost of the jth subsystem at the end of ith interval
(Given by equation (6.8)

Chtji Minimal repair cost of jth subsystem at the end of the
ith interval (Equation (6.14))

IcC Installation cost of the system

PM;; PM cost on subsystem j at the end of ith .
interval (Equation (5.9))

T; System calendar age at the end of ith interval

In addition, traditional RBD problems have constraints of weight, cost, and vol-
ume. These constraints unlike the failure rate constraint (equation (6.7)) are not,
necessarily active. Equations (6.17), (6.18) and (6.19) represent the weight, invest-
ment/capital and volume constraints respectively which are usually encountered
in RBD problem.

iW,-(l-fmj) W (6.17)

=1
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n

> ¢;AC;(1+m;) < C (6.18)
=1
X":VS'(I +my) SV (6.19)
=1

To calculate the optimal system life cycle, its PM intervals, and system replacement
time, we use the five step methodology proposed in Section 5.5. This five step
methodology provides the user with optimal system design over its life cycle with
increasing failure rates and allows the user to incorporate different deterioration

constraints in step 2. The five step = ‘* dology for this formulation is as follows:

Stepl Seti=1
Step 2  Minimize the expected average annual costs AAC with respect to
failure rate and resource constraints. The optimization problem
is formulated as,
Minimize: AAC;, subject to:
hax(zi) < €, where k =1 to i, and
gq(m;) <0, where g = 1 to z. z is the number of resource constraints.
We then obtain AAC} and mgai)i where mgz-i) is the optimal
values of m; for the first ¢ intervals.
Step 3 Calculate AAC; (mg-i)), where AA(Z';-H(m?) ) is the expected average
annual cost of the (¢ 4+ 1) intervals for the system configuration mgi)i
Step4 Is AACiH (m_g-i)) greater than AAC!?
If yes, then stop. mg-i) is the optimal system configuration with T;
as the economic life of the system. If no, then go to Step 5.

Step 5 Seti=1i+ 1 and go to Step 2.
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The optimization problera at Step 2 has a non-linear objective function with both
linear and non-linear constraints and discrete variables. We use Genetic algorithms

(GAs) to solve the optimization problem. In the next section we present the

constrained non-linear objective function.

6.4 Numerical Illustration

Consider a system with four subsystems connected in series. We need to deter-
mine the number of components in parallel at each subsystem. Assume all the
components follow a Weibull distribution with shape parameter greater than one.
The reliability functions of components in subsystems 1, 2, 3 and 4 are given by

equations. (6.20), (6.21), (6.22) and (6.23) respectively.

m(t) = E—D.S(HD.DBEF (6.20)
ra(t) = =0:15(t+0.005)2 (6.21)
ra(t) = ¢ ~0-055(t+0.006)" | (6.22)
T4(t) = e~ 0-095(t-+0.003) (6.23)

Various costs associated with system components are presented in Table 6.1, It can
be seen that the component which deteriorates faster costs less than the onc which
independent of system design. The maximum allowed failure rate is 0.2 failures per
year. The maximum number of components allowed in each sub system is equal
to 15. To solve the optimization problem a classical GA is implemented.

In Chapter 5 we demonstrated the applications of GAs to solve a RBD prob-
lem with deteriorative components with an active failure rate constraint. In this
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Table 6.1: Costs related tc system components
FAC; | ¢; | MC; | e
90 [1.11] 10
125 | 1.2 15 | 1.5
150 | 1.33 20
295 1 1.11 25 2.5

-~ f

[ e

W G B e S,

formulation, we intend to generalize the RBD optimization problem by handling
both active/non-active, linear and non-linear constraints using GAs. To handle the
non-active resource constraints of the form g;(m;) < 0, where g =1,2,3,...,2, we
incorporate the constraint violations as penalties (Goldberg, 1989) to the function
we want to minimize.

F'=F+ i F,

g=1

where,
F' = Modified function to be minimized
F = Original function to be minimized
z = Number of constraints, and
P, = Penalty for the violation of constraint g, such that

P = D’ lf gq(mj) 2 0
e |gq(m;)|, otherwise

This penalty method to handle constraints was tested successfully to solve reliabil-
ity related non-linear optimization problems with discrete variables from Tillman,
Hwang and Kuo (1985).

For each subsystem j, the number of components m; is coded as a 4-bit string.
Each possible system design can then be described by a 16-bit string. For fitness

evaluation for each coded string it is assumed that the failure rate constraint, i.e.
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resource constraint in this formulation is referred as the investment consiraint,
and is given by the equation (6.24).

4

> $;AC;(1 + my) < 2500 (6.24)

i=1
Since the GAs are set up to maximize fitness, the optimization model is converted
from a minimization problem to a maximization one. This is done by subtracting
each string’s AAC and constraint violation penalty from the largest in the current
population to give a positive fitness value.

In the implementation of GAs, linear scaling is used to regulate the number
of copies of extraordinary individuals within a population, using Goldberg’s scal-
ing routines: procedure prescale, function scale and procedure scalepop. We use
Stochastic remainder selection without replacement and a linearly decreasing mu-
tation rate for the first 40 generations with initial mutation probability as 0.05,
decreasing to 0 at the end of the 40th generation. Mutation in early gencrations
run the creation of an individual via mutation generally will be the one with lower
fitness of that population. Hence, it is not recommended to have mutation after
40 generations as it might be counter productive in obtaining a global optimum.
A convergence criterion is set up to stop a run when the average fitness in the
population is within 0.5% of the maximum fitness. We performed an cmpirical
putation time, without a proportionate increase 1 the probability of converging
to the global optimum.

The deterioration factors for each subsystem are given by equation (6.25) and
(6.26). According to these deterioration factors, the components in subsystems
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1 and 4 deteriorate slower than the components in subsystems 2 and 3 after PM

action.

bi=05=1+ z (L +1) (6.25)

i-1 3k ) o
Oy = O = 1 + Z (2& - 1) (6.26)

The salvage value function defined by equation (6.10) was used with

)

©
I

1.2

I'n=1TIy=12,1I =T, +0.1 for i=3,4,5, ....

To calculate the optimal system design for minimal life cycle cost we follow the
five step methodology. It is found that the optimal system design is 7,3,2 and 2
components in subsystem 1, 2, 3 and 4 respectively (Table 6.2). The system should
undergo PM at 1.227, 2.136 and 2.849 years. At the end of 3.420 years the system
should not be maintained but replaced. The average annual cost of the system for

its economic life is 526.785 dollars.

Table 6.2: Implementation of Five Step Methodology considering salvage value

i | AAC; | ml +1 | AAC (M) | AACi (M) > AACT | Action
1[ 765113 | 7,3,1,2 | 615.754 ~ No [ Next 4
2613156 | 7,322 | 545.016 No Next i
3|545.016 | 7,322 | 526.785 No Next
452.785| 7,322 | 528.679 Yes Stop
51528679 | 7,322 | 537.429 - -
6| 537.429 | 7,322 | 578.898 - -

We then consider the same system but ignore the salvage value. The optiinal
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design of 6,3,2 and 2 components for subsystems 1, 2, 3, and 4 respectively is
obtained. For such a system, it is found that PM should be performed at 1.165,
2.036, 2.714, 3.269, 3.738, 4.145, 4.507, 4.833 and 5.127 years. The system should
be replaced at the end of 5.399 years. The expected average annual cost of the

system over its economic life is 760.477 dollars (Table 6.3). The economic life of the

Table E 3: Implementatmn of Five Step Methodology when salvage value is ignored
i | AAC; [mT 41 AAC,+1(m“J ) AAC‘,+1(m( ’) > AAC?‘ Action

1996.055 | 7,3.2,2 | 1241570 No Next
1241570 | 7,322 | 1004.051 No Next
1004.051 | 7,3,2,2 896.246 No Next, i
896.246 | 7,3,2,2 837.207 No Next i
837.207 | 7,3,2,2 803.063 No Next, i
802.066 | 6,3,2,2 781.953 No Next i
781.953 | 6,3,2,2 768.687 No Next i
768.687 | 6,3,2,2 762.664 No Next i
762.664 | 6,3,2,2 760.477 No Next, i
10 | 760.477 | 6,3,2,2 761.527 Yes Stop
11| 761.527 | 6,3,2,2 764.441 . -

12| 764.441 | 6,3,2,2 760.324 - -

O 00 ~T BB G BT e

system is defined as the optii:;»1 '2ngth of time for which a system has a minimum
average annual cost. In the case when the salvage value of the system is ignored,
the net acquisition cost of the system (defined by equation (6.10)) is constant.
The system cost increases with time due to increasing number of PM actions and
minimal repairs. However, if the salvage value of the system is adjusted from the
acquisition cost, the net acquisition cost of the system is no longer a constant
the system decreases right after the PM action. +:"ormed (due to increase in

the salvage value) and then increases with a steyer slope than in the preceding
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interval. In such a situation when the economic life of a system is calculated at the
end of each interval, there exists an economic incentive of capturing the decreasing
salvage value of the system. This decreasing salvage value of the system pushes
the system to be replaced earlier, hence making the economic life of the system
shorter than the case when the salvage value is ignored. In addition, the minimal
AAC is smaller.

Whether the salvage value of the system should be included in the cost function
of a design problem will depend on the type of system one is considering. If one is
designing a system which has a custom defined function with a very limited market,
then one is better off ignoring the salvage value of the system. The examples of
such system are computer integrated manufacturing systems which are custom
designed to perform a very specific task like assembly of an expensive defense
equipment. However, if there exists a market application for a system then there
exists a salvage value for which the system can be sold readily at any given point
of time. For such i)roducts, it is justified to include the salvage value at the design
stage to incorporate the economic impact of salvage value on system design.

It must be recognized that system design is very sensitive to system failure
characteristics and its relation to the salvage value function. When developing
the salvage value function for a given system, the user should carefully select
various constants in the proposed salvage value function to reflect the actual salvage
value of the system at a given point of time. For systems with short product life
cycle, this would mean that the salvage value will be a very steep monotonically
decreasing function. However, for systems with long product life cycle the salvage

value will decrease faster at the beginning and more slowly later on.
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6.5 Concluding Remarks

This formulation contributes towards effective economic evaluation of system de-
sign when the system has a given salvage value. A general salvage value function of
a system with increasing failure rate is proposed. The salvage value function also
incorporates the economic effects of PM. The modified PM modeling incorporates
both externally and internally induced failure rates to give a non-zero failure rate
at time equal to zero. Genetic algorithms are used as an optimization tool for
non-linear constrained cost function with discrete variables. The inclusion of the
salvage value while evaluating a system design can be more of a strategic manage-
ment decision than an engineering decision. However, such decisions will be more
at any given point of time.

In the next chapter we present a formulation to design an optimal series-parallel
system over its life cycle including all the three characteristic periods of the fail-
ure rate bathtub curve of a system, namely, infant mortality, useful period and
increasing failure rate period. The formulation gives an optimal system design,
burn-in period, PM intervals and replacement time for a system for a given war-

ranty period.
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Chapter 7

Reliability Based Design
Considering Maintenance and
Warranty

7.1 Introduction

Product design deals with activities such as conceptual design, product devel-
opment and testing. Manufacturing deals with the processes which ensure that
the items produced conform to design specifications. Design, manufacturing and
quality control decisions determine product characteristics such as reliability and

maintainability. These characteristics can be further enhanced through burn-in

after a product is manufactured. This reduces the expected cost of warranty and

of burn-in and subsequent warranty. In Chapters 5 and 6, we developed reliabil-
ity based design (RBD) formulations for systems with monotonically increasing
failure rates. In this chapter we develop a RBD formulation for a series-parallel
system with components which follow a bathtub shaped failure rate curve. The

system cost include burn-in, warranty, installation, preventive maintenance and



preventive maintenance intervals and replacement time for a system which must

perform below a given failure rate for the users. In section 7.2, we present a bricf

overview of various warranty policies, followed by a discussion of system cost both
from the manufacturer’s and the customer’s perspective. In section 7.3 we develop
an expression for system cost over the useful life of the system and formulate the
optimization problem. Section 7.4 presents a numerical illustration of the formu-
lation and analyzes three distinct types of failure rate bathtub curves to sce the

change in system design and burn-in period for different warranty periods.
7.2 Warranty: A Brief Review

A warranty is a contractual obligation offered by tlie manufacturer (vendor or
seller) in connection with the sale of the product (Berke and Zaino, 1991). The
warranty contract is intended to assure the buyer (customer or consumer) that the
product will perform its intended functions under the mutually agreed conditions
for a specific period of time. If it fails to do so, the suﬁplier will repair the product
or provide replacements at no cost or at reduced cost to the buyer depending on
the warranty terms. A warrantied product entails a greater cost to the supplicr
than that of an identical item sold without warranty. Logically, a buyer should be
willing to pay more for a warrantied item than for an identical system sold without,
warranty (Blischke, 1990).

Customers need warranties to assure that the manufacturer assumes the re-
sponsibility /liability for its product for a specified time. Long warranties serve as
an indicator of the reliability of the product and may increase sales. The length

of the warranty period, however, is market driven and strongly influenced by the
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competitor’s product. At the same time, warranty protects the manufacturer’s
interests by requiring that certain responsibilities in the part of the customer must
be met (for example proper use of the product, adequate care and so on) and also
explicitly restricting the liability of the manufacturer.

For new and innovative products, warranties serve an important additional
role. Such products are often viewed with a degree of uncertainty by consumers
at large. The uncertainty is reduced as more customers buy the product and
information about the product performance is spread by consumer publications
or through the word of mouth. This can often be a lengthy process, resulting
in slow sales during the early stages following product introduction. Sales may
be accelerated by signaling mechanism which conveys information to reduce the
uncertainty or risk perceived by the customer. Warranty serves as one such signal.
Better warranty terms convey that the risk is low and hence induce the consumer
to buy the product. As a result, warranty is used as an advertising tool, similar
to price or product performance, to compete with other manufacturers (Blischke
and Murthy, 1992).

Wasrranty policies can be divided into two groups based on whether or not a
policy involves product development after sale (Figure 7.1). Policies which do not
involve product development can be further divided into two subgroups: Subgroup
A comprises of policies applicable for single item sales while Subgroup B comprises
of policies applicable only for the sale of a group of items (also called block or lot
sales). Policies in Subgroup A can be subdivided into two further subgroups based

on whether the policy is renewing or non-renewing.
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Warranty Policies

I | ) ) A

Involving Product Development

Not Involving Product Development

- Y )
i .
Single ltem Group of items
(Block or Lat)
B |
Y ¥
Renewing Non-Renewing
r \ A Y
y B ]
Simple Combination

Simple refers to Free Replacement Warranty (FRW) or Pro-Rata Warranty
Combination refers to a policy which consists of a combination of FRW and PRW

Figure 7.1: Classification of warranty policies (Blischke and Murthy, 1992)



In a renewing policy, whenever an item fails under warranty, it is replaced by a

new item with a new warranty replacing the old one. In the case of a non-renewing

for non-renewing policies the replacement item assumes the remaining time of
the item it replaced. The most common simple consumer warranties are the free
replacement warranty (FRW), and the pro-rata warranty (PRW). Under FRW, the
manufacturer agrees to repair or provide replacements for failed items free of charge
up to a time w from the time of initial purchase, where w is called the warranty
period. If a product is under a PRW then the replacements are provided under
pro-rated cost to the consumer. Most of the warranty policies are combination of
simple policies. These policies are specific for different products and are referred
to as combination policies.

A common warranty policy utilized in commercial and government transac-
tions, particularly in military acquisition of complex equipment, is the reliability
improvement warranty. Warranties of this type are tg;pically complex contractual

agreements with many features unique to the particular acquisition. Salient fea-

for field repair or replacement of failed items and incentive fees for demonstrated
improvements in reliability (Trimble 1974). A detailed classification of various
warranty policies is presented by Blischke and Murthy (1992).

For majority of consumer durables the most common warranty is non-renewing.
The product can be either repairable or non repairable. After a failure, a failed
product is restored to the operating condition by repair (for repairable products)

or is replaced by a new one (for non-repairable products). We assume that repair



and replacement times are negligible. For non-repairable products the sequence of
failures with replacements constitute a renewal process, and the expected number
of replacements in [0, T'], M(T), is given by the following rene*al equation (Barlow
and Proschan, 1967):

M(T) = F(T) + [ M(T = )dF() (7.1)

where F(t) is the cumulative failure distribution function.

For repairable products, it is assumed thst the failure rate of the product
remains unchanged after a repair, i.e. minimal repair or bad as old model (Nguyen
and Murthy, 1982). This is a reasonable assumption for complex and expensive
products, since the repair involves only a small part of the product. According to
Barlow and Proschan (1967) the expected number of repairs in [0, T}, E[N(T)|, is
given by:

EIN(T)] = [ " h(t)dt (7.2)

where h(t) is the failure rate function.

As mentioned earlier, the study of product w*arraﬁt.y is of importance to both
manufacturers and customers, although the reasons and motivation for such study
can be different for both groups. In the next section we discuss the two different
perspectives and briefly review consumer and manufacturer cost models for non-

renewing FRW for repairable systems.

7.2.1 Manufacturer’s Perspective

All manufacturers desire to maximize profits. Offering a warranty results in addi-
tional cost due to service of the warranty and at the same time, if used properly
as a marketing tool, increases sales. Warranty servicing cost depends on product

characteristics and the usage patterns of consumers. If the extra revenue generated

83



exceeds the warranty servicing cost, then it is more sensible to sell the product
with warranty. As a result, manufacturers are interested in the study of warranty
in order to seek answers to a variety of warranty related questions in context of
manufacturing, marketing and servicing (Murthy and Blischke, 1992).

Models based on selecting warranty conditions so as to maximize profit have
also been investigated by Glickman and Berger (1976). They deal with the selection
of selling price ¢ and warranty period w that maximize the profit to the seller.
Optimal values are obtained assuming gamma-distributed lifetimes, constant cost
of repair and a log-linear demand function.

The use of burn-in as a means of increasing reliability of items under warranty
has been considered by Nguyen and Murthy (1982) for several warranty policies.
Burn-in costs money and at the same time reduces warranty cost. Determination
of the optimal burn-in period involves the trade-off between the burn-in cost and
warranty cost. It is found that burn-in is cost effective if the initial failure rate is
high and cost of repairs during warranty is high.

Renewal-theoretic results have been used to investigate other aspects of a
seller’s warranty cost as well (Nguyen and Murthy, 1984). In particular, if the
sales rate as a function of time is known, then the expecied warranty return rate
and expected cash flow can be determined.

Nguyen and Murthy (1984) also consider a number of assumptions regarding
the life distributions of repaired items and compare the results. As one would
expect, average cost for good-as-new repair are identical to those for minimal
repair if lifetimes are exponentially distributed (assuming the same cost structure
for repair). Average warranty costs are less for good-as-new if the distribution is

IFR (increasing failure rate) and more if it is DFR (decreasing failure rate). Mixed
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good-as-new and minimal repair is also considered.

Nguyen and Murthy (1986) suggest that in the case of repairable items, the
seller/manufacturer often has the option of choosing between repairing a failed item
and replacing it with a new one. This leads to further modifications of the cost
models. One such policy has been investigated under the assumption that lifetimes
of items have an increasing-failure-rate (IFR) distribution and that minimal repzair
is made. This is described as follows: if an item fails at an age less than or equal
to a specified value o, where 9 < o < w, then it is repaired and returned to stock
for use only as replacement for another failed item. The failed item is replaced by
a new item if it fails prior to a fixed time (w — v), where 0 < v < w, otherwise
it is replaced by a repaired item. An optimal policy is to choose values of ¢ and
v which minimize the expected warranty cost. The optimal choice is obtained as

the solution to a nonlinear programming problem.

7.2.2 Consumer’s Perspective

A consumer is usually faced with a decision of choosing between products with
different characteristics and accompanying warranty policies. He or she would
like to know if the warranty is worth the additional cost when the warranty is
optional. This is important as there is a growing trend among manufacturers to
offer extended-term warranties. These involve additional cost and the terms can
vary considerably. For example, both labor and parts may be covered initially but
only parts later on. The consumer needs to decide, often at the time of purchase
and based on very limited information, whether to opt for an extended warranty
and to determine the best extended terms for the situation when there are multiple
options.

For users of industrial products, such cost can have a significant impact on
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their profits. Users of such products often have the skills and expertise and the
bargaining power to demand relevant data from manufacturers to carry out such
analyses and to negotiate terms on an individual basis. Here again, the most
effective and appropriate approach is mathematically model the problem and solve
it analytically when possible.

Let". C be the cost to the buyer of individual items sold under a FRW and Cg be
the total cost to the buyer over the period of use of the product, for non-renewing
FRWs. In the analyses, it is assumed that failed items are repaired instantancously.
The buyer’s total cost of a single item covered under a non-renewing FRW is pre-
sented next. This cost includes not only the original purchase price, but also
installation cost, energy, maintenance and repair cost (except as covered by war-
ranty) and many potential incidental cost, including possible legal costs, cost of
invoking the warranty, unrecoverable incidental damages caused by failures, and,
ultimately, the cost of disposal. All the formulations include installation cost as
part of the purchase price and ignore disposal cost; other costs are included under
incidental.

For a non-renewing FRW, the total time period involved may be written as
w + t,,. where i, is the residual life of the item in service at time w. Note also
that under a FRW the buyer is responsible for maintenance and repair only after
w, but is responsible for energy and most incidental costs for the entire period of
its use. Based on these factors, the total cost of a single item under a FRW may

be expressed as:
Cp =C+ Co(w +ty) + Cyl(w,w + t,) + Cr(w + L) (7.3)

where Co(w + t,,) is the total operating cost over the lifetime of the item and

Cu(w,w + ty) is the cost of maintaining the item from time w to time w 4 {,,
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including parts, service, shipping, possible overhaul and so forth (costs assumed
to be covered by the warranty until time w), and Cg(w + t,,) denotes incidental
costs of ownership for the lifetime of the item (Blischke, 1990).

In a simplified form if only minimal repairs are performed on the system by the
buyer, then one can easily write the total cost to the buyer for a time period of t,,

after a warranty period of w as:

e B[N (w, w + ty)]

e /D " h(w + )dt (7.4)

Co(w,w + tw)

where ¢, is the repair cost during the warranty period and E|N(w,w + t,,)] is the
expected number of repairs in period {w, w + 1,

In the recent years, the use of imperfect repair/Preventive Maintenance (PM) to
improve the condition of the deteriorating system has become prevalent. Limited
research has been done in the area of warranty management considering PM. Chun
and Lee (1992) determine optimal replacement time for a system with PM under

a modified warranty policy. The modified warranty policy is a mixed type of free

to the consumer. Numerical example using the Weibull distribution is presented.

Jack and Dagpunar (1994) consider a system with a monotonically increasing
failure rate which is sold to a user with a warranty period of w. Under this warranty
policy, manufacturer performs both minimal repairs and PM on the system during
the warranty period. Each PM action makes the system younger, thus reducing
the expected number of minimal repairs after the PM action. Optimal number
of PMs is found by minimizing the expected cost of minimal repairs and PMs
over the warranty period. Dagpunar and Jack (1994) further modified the policy
under the assumption that the manufacturer has control over the amount of age
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reduction at each PM where the cost of PM depends on both the age reduction
and age of the system. In the above formulations it is assumed that PA can be
performed at anytime and there does not exist & prespecified maximum allowed
failure rate below which the system must perform. The analysis is performed for
a fixed system design with increasing failure rate only and hence the effccts of
burn-in are not incorporated.

In the next section we analyze the system over the three periods of the bathtub
shaped , namely, infant mortality, useful period and increasing failure rate regions
of the system. PM is performed only when the system reaches a maximum allowed

failure rate, while minimal repairs are performed if the system fails at other times.

7.3 System Characteristics and Problem Formu-
lation

In the earlier research performed in the area of warranty management, the cost
models were developed separately from manufacturer’s and customer’s perspective.
The manufacturer’s costs includes: production cost, cost of burn-in end warranty,
were calculated either for infant mortality and useful period (Nguyen and Murthy,
1982; 1988) or for increasing failure rate period of the system (Chun and Lee,
1992; Chun, 1992; Jack and Dagpunar, 1994; Dagpunar and Jack, 1994). From
the consumer’s perspective the analysis considered only the post warranty costs
of the system, ignoring the effects of burn-in on the system failure characteristics
after warranty (Blishcke, 1990). None of these formulations consider the complete
bathtub shaped failure rate curve. Analyses are performed only on a part of a
bathtub curve with a fixed system design. However, if the analysis is performed

considering the whole failure rate bathtub curve, then one can see that length of
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burn-in and warraaty period affects both the system costs during post warranty
period and the system design.

The objective of aur analysis is to find the optimal system design and burn-in
period, which minimizes the total cost incurred on the system by customer and
manufacturer over its useful life. The useful life of the system is defined as the
time over which the system is used to sustain a process which directly or indirectly
generates revenues. It is assumed that the useful life of the system begins when
the system starts working and hence does not include the burn-in period for the
system.

We consider a series-parallel sysiem comprising of n subsystems in series. Sub-
system j (j = 1,...,n) consists of (1 4+ m;) identical components in active redun-
dancy. All the components are statistically independent. Each subsystem acts as
a l-out-of-m:G configuration. All the component failure rates follow a bathtub
shaped failure rate curve.

In our formulation, we assume that this analysis is performed after the com-
ponents have been produced and its estimated failure rate is known. At this time
we evaluate the system based on its failure characteristics to recommend burn-in
or no-burn-in for a given warranty period to minimize its costs over the useful life.
Since the design is also a variable in our formulation, the model will evaluate vari-
ous configurations to provide an optimal design, optimal burn-in recommendation
of b years where b < 0, optimal PM schedule and optimal replacement time for the
system. All the costs incurred during the burn-in period are treated as additional
costs due to burn-in at the beginning of the useful life. This is a fair assumption
as burn-in costs are treated as part of manufacturing costs (Nguyen and Murthy,

1982) and hence can be treated as part of the acquisition cost of the system at the
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beginning of the useful life of the system.

It is required that over its useful life, the system should operate below a maxi-
mum allowed failure rate. In the carlier chapters we proposed a PM poliey, where
PM is performed when & system reaches the maximum allowed failure rate. If the
system fails between these intervals, minimal repairs are performed. In the current
formulrtion we use the same policy after the system is installed. As mentioned
earlier, the system comes with & given warranty period. In the formulation we fol-

low a simple non-renewable FRW policy for repsirable systems. This means that

Installation and setup Cost, (c) Warranty Cost, and (d) Post Warranty Cost.
Manufacturing Cost

The manufacturing cost for components in subsystem j contains four costs (Nguyen
and Murthy, 1982):

“0j is the manufacturing cost per component without, burn-in

C1; is the setup cost of burn-in per component,

Cy; is the cost per unit time of burn-in per component

Cs; is the repair cost of the subsystem per failure during burn-in

Let V; be the expected manufacturing cost for subsystem j with (1 - my)

components and a burn-in time b. Using equation (7.2) we have:
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b
‘v':. = (1 + mj)(Coj + C]j + ngb) + C3j/o h,j(t)dt (75)

Installation and Setup Costs

Once the system completes the burn-in, it is installed and setup to be used by
the customer. Depending on the type of system, the installation costs (JC) can be
dependent or independent of design. In this formulation, we assume that it is a one
time cost incurred at the beginning of the system’s useful life and is independent

of system design.
Warranty Cost

As mentioned earlier, the manufacturer is responsible for all repair or replacement
costs during warranty period [0, w]. For this policy, the expected cost of repair of

subsystem j, W, during the period [b,b + w| can be written as:
W= (Cy; + C4,-)/O hj(b+t)dt + 7 (7.6)

where Cy; is the additional cost that arises when a failure occurs during the war-
ranty period (e.g. handling costs, warranty administration cost, etc.) and v is a
one time warranty implementation cost independent of number of failures during

warranty.
Post Warranty Cost

Post warranty cost is incurred by the customer and include the cost due to pre-
ventive maintenance (PM) and cost of minimal repair after the warranty period.
Preventive maintenance is performed when the system reaches a maximum

allowed failure rate. When a PM is performed on the system, all components
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undergo PM. Thus the cost of a PM action for a subsvstem j with (m; + 1)
components will be M C;(m; + 1).

PM is modeled using the age reduction concept proposed by Nakagawa (1988).
According to this concept the PM action reduces the effective age T} to T} /a,
where a is an improvement factor due to PM, such that, 1 < a < . Assuming
that the failure function form of the system does not change after PM ar* the
improvement factor is the same for all the components in all the subsystems, then
for a given system design, a closed form of T; (for i > 2) can be expressed as a

function of T} (See chapter 5):

i-1

T,-=le("‘l)k (7.7)

k=0 o

where, © = 2,3, 4, .... Figure (7.2) shows thc PM scheduling and system failure rate
after each PM action. It is important that the value of a is chosen such that T /a
will lie in the increasing failure rate region of the failure rate bathtub curve of
the system. This is important because PM action on a system is only valid for
the increasing failure rate region and in real life any PM action cannot improve
the condition of a system to such an extent that it will follow a decreasing or a
constant failure rate curve after the PM action.

Minimal repairs are performed if the system fails between the scheduled PM
Intervals. The cost associated with minimal repairs depends on the frequency of
failures in a system. The frequency of these failures is related to the individual sub-
system’s failure rate function. According to Boland (1982), the expected minimal

repair cost of subsystem j in interval [0, T is Cpy;:

T
Cunj = ij/O hj(t)dt (7.8)
where h;(t) is the failure ratc function and cn; is the cost of minimal repair of
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subsystem j. This equation can be rewritten in terms of reliability of the jth

subsystem, R;(t), as:

T RY()
R;(t)

= ¢mj In[R;(T)] (7.9)

C,hfj = _Q"’.mj A di

assuming R;{0) = 1.

In our case the system is working for (b + w) before it enters the post warranty
period (See Figure 7.2). Hence the expected minimal repair costs of subsystem j
during post warranty period is given by:
= Ry(b+w +t)

o Rij(b+w+t)
= —cmjln [Rij(b+w+z)] + cmjln [R;(b+ w)] (7.10)

CMjl = = Cnj

If W = b+ w+ z;, then Ty is the first PM point. At 77 the PM is performed
and the effective age of the system becomes T)/a instead of 77. At the second
maintcnance point we can find the total expected minimal repair costs during the

period (z; + T2), Cmje:

where A is the effective age of subsystem j after the first PM action and is equal

to T1/a. Simplifying we get.:

(7.12)

Cumj2 = cmjln R;(b+ w) R;(A;) :l

7Rj(T1) R:(Ai + Igi)
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If 7. = Ti., +z;, then the expected cost of minimal repairs till 7; for subsystem

J is given as:

i-1
i 11 R;(A)
Cumiji = emjln | =0

_ (7.13)
ILI{D R_-,(Az + Il+1)

where A; = Tj/a and Ay = &+ w. Thus post warranty costs for subsystem j after

a warranty period of w and i PM intervals is PWj;:

At Tj, the total cost of the system over its useful life is given by equation:

=1

AAC = — e —— (7.15)

IC+ 3 (V; + Wy + PWy,)

where AAC; is the average annual cost of the system at the end of ith interval.
After the installation, the system should always perform below maximum allowed

failure rate, £&. This means that the following condition should be satisfied:
hei(Ti) < € (7.16)

where h,;(T;) is system failure rate in the ith interval. There zan be additional re-
source constraints like weight, volume and capital which can be active or nonactive
constraints on the system. These constraints are usually functions of system de-
sign. In this formulation, we will assume that these constraints are linear function

of system design such that:
Yo g(1+my) <G (7.17)
j=i

where, g; is the resource associated with a component in subsystem j and G is the

maximum allowed resource.



As mentioned earlier, PM is performed when the system reaches a maximum
allowed failure rate. At this point one of the following actions is selected, (a)
either to keep the system and perform PM, or (b) replace the system with an
identical system. This decision is made by comparing the average annual cost of
the system at the end of each interval and checking whether the system has reached
its economic life or not. The economic life of a system is also called the minimum
cost life or optimal replacement time. If the values of m; are known, then using the
failure rate constraint (equation (7.16)) and equation (7.7) one can find the values
of Ty, Ty, ..., T;, and T;4,. The corresponding values of AAC; ¢sn be calculated
using equation (7.15). We stop when AAC;;, > AAC;. The system is replaced at.
T; which is the economic life of the system.

To calculate the optimal system design and burn-in period over system'’s life
cycle, we follow the five step methodology proposed in chapter 5. To calculate the
optimal values of m; and b, we minimize the expected average annual costs AAC
with respect to failure rate constraint for each value of ¢ to obtain AAC?. Once
the optimal system configuration and burn-in is obtained for the first i intervals,
we calculate AAC;,, using the optimal configuration and optimal burn-in period
obtained for 7. If this AAC;,, is less than AAC} then it implics that for the given
optimal configuration and burn-in period for intervals 1 to i, the corresponding
value of T; is not system’s economic life. The system design and burn-in is then
optimized for i+1 intervals. This process is repeated and we stop when AAC,,,;
is greater than AAC]. The basis behind this methodology is that if the system
is replaced after the ith interval, the system cost should be minimum for 7;. The

five step methodology for this formulation is as follows:

Stepl Seti=1
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Step 2

Step 4

Step 5

Minimize the expected average annual costs AAC with respect to

is formulated as,
Minimize: AAC;, subject to:

he(Tx) < €, where k =1 to i, and

We then obtain AAC; and m{, b), where m{" and b®) are the optimal

values of m; and b for the first 7 intervals.

Calculate AACi+1(m§i)3 b)), where AA(‘Z'i+1(m§i), b®) is the expected average
(1)

annual cost of the (i + 1) intervals for the system configuration m;"

and burn-in period b(.

If yes, then stop. 7‘?1?) is the optimal system configuration and b®) is the
optimal burn-in period with 7; as the economic life of the system.

If no, then go to Step 5.

Set i =i+ 1 and go to Step 2.

The optimization problem in step 2 is a non-linear mixed integer program-

used to perform the optimization. In the next section we present the numerical

illustration of the formulated problem.

7.4 Numerical Illustration

We consider a system with three subsystems in series. We need to determine the

optimal number of parallel components in each subsystem and the optimal burn-in
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period for a given warranty period. All the components have a bathtub failure rate
curve. Mathematical models of the reliability bathtub curves have been covered
extensively by Kececioglu (1991). In this formulation we use Kececioglu's model
4 based on a bathtub function developed by Dhillon (1979). The model has five

parameters, with the failure rate function being:
h(t) = keAts™ + (1 — k)bt~ ge’ (7.18)
The reliability function for a component in subsystem j can be written as:
, T .
ry(t) = e Jo Mot (7.19)

For failure rate curves, we used § = A = 1 and k = 0.5. The failure rate curves
were developed for different values of b and ¢. Thus the reliability function used

in this formulation for components in subsystem j§ is given by:
p N 4 Yy
& 75 |
?*j(T) = = 0-5(T% +el 7 =1) (720)

The various costs (in dollars) associated with system components are presented

in Table 7.1. The installation cost of the system is 400 dollars. The one time

Table 7.1: Costs related to system components

ilC [C[C[Cs[Ci|MC
1100 1 1 [10]| 20
2150 1 2 10| 20
31200/ 1 25|15 20

[
s

i on :mmsm

warranty implementation cost, 7, is equal to 10 dollars. The maximum allowed

failure rate is 2 failures per year. The maximum number of components allowed in
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each subsystem is 15. A resource constraint is added with g,=10, go=15, g3=20,
and G'=200. The improvement. factor (a) for all the components is 1.67.

To solve the optimization problem, Goldberg’s classical GA is implemented.
For cach subsystem j, (m;) is coded as a 4-bit string. We also use a 4-bit string for
length of burn-in period, however we further discretize the burn-in period between
minimum burn-in (bmin) and maximum burn-in period (bmaz) using linear trans-
formation. Thus for a user defined bmin and bmaz, the burn-in period is calculated

as:
bmax — bmin
Burn-in period (b) = bmin + ————— X, (7.21)

where L is the length of the string and X; € [0,1,2,...,2F — 1]
To handle the non-active resource constraints of the form g,; < 0, we incor-

porate the constraint violations as penalties (Goldberg, 1989) to the function we

F' = AACi + P (7.22)

where P = penalty for constraint violation such that

p={Y if g(m;) < 0
lg(m;)|, otherwise

For fitness evaluation of each coded string it is assumed that the failure rate
constraint (equation (7.16)) is active. For the given values of m; and b, this con-
straint equation is solved to give the value of T; and subsequently AAC;. Since GAs
are setup to maximize fitness hence the optimization model needs to be converted
from a minimization to a maximization one. This is done by subtracting each
string’s AAC and constraint violation from the largest in the current population
to give a positive fitness value. In the GA implementation we use linear scaling

and stochastic remainder selection without replacement. A constant mutation rate
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of 0.005 is used. A convergence criteria is set up such that the algorithm will stop
when the average fitness in the population is within 0.5% of the maximum fitness.
A population size of 80 is used as a population size of higher than 80 leads to
excessive computation time without a proportionate increase in the probability of
converging to a global optimum.

The study was performed on three systems with the same cost parameters
but three distinct failure characteristics (Figure 7.3). The failure rate parameters
related to these cases are mentioned in discussion of each separate case. Discussion
of the findings are presented next.

Case I

In this case, the initial failure rate is not too higk. The slope of the DFR region is
steep and the length of the DFR region is very short. This is followed by a small
period of constant failure rate after which the system detcriorates very quickly.
Such characteristics model a simple and a highly deteriorative system with short,
product life.

For failure rate parametersof b; = 1.5,b; = 1.2,b3s = 0.7,¢; = 0.3, ¢z - 0.4, ¢4 =
0.4 for components in subsystems 1, 2 and 3 respectively, it is found that, if the
warranty period is less than or equal to 613.2 hours, then the optimal system
design is 5, 1 and 1 components in subsystem 1, 2, and 3 with an optimal burn-in
period of 175.2 hours. For a warranty period greater than 613.2 hours the optimal
design becomes more reliable with an additional component, in subsystem 1. The
components in subsystem 1, 2 and 3 are 6, 1 and 1 respectively and the optimal
burn-in period is 140.16 hours. The optimal system design, optimal burn-in period,
PM intervals and system economic life for w = 0 and 0.5 year are tabulated in

Table 7.2.
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Table 7.2: System design,burn-in, PM intervals and economic life for Case 1

w m; +1 b 1st PM | 2nd PM | Economic Life AAC
(in years) (in hours) | (in years) | (in years) (in years) (in dollars)
0 5 1,1 175.2 0.772 1.082 1.205 1303.795
0.5 6,1, 1 140.16 0.828 1.159 1.269 1348.963
Case I1

In this case, the initial failure rate is very high followed by a useful period which
has a gradually increasing failure rate and merges with the faster increasing failure
rate region. Such characteristics can be related to simple mechanical products
which are prone to early failures and gradually deteriorate over time.

Simulating the above conditions using failure rate parameters b, = 0.8,b, =
0.8,b3 = 0.7,¢; = 0.5,c2 = 0.05,c3 = 0.3, it is found that the system design
followed a similar trend as in Case I. For a warranty period less than 3942 hours
(approximately 6 months), the optimal system design is recommended as 6,1, and 1
components in subsystem 1, 2, and 3 respectively with an optimal burn-in of 385.44
hours. The system desizn becomes more reliable with 7,1, and 1 components in
subsystems 1, 2 and 3, for a warranty period greater than or cqual to 3942 hours
and a reduced burn-in of 350.4 hours is recommended. The optimal system design,
optimal burn-in period, PM intervals and system economic life for w = 0 and 1
year are tabulated in Table 7.3.

Case III
This case represents the system for which the initial failure rate is very high and the
system has a distinct DFR region which decreases gradually over longer period than

the last two cases. The system’s useful life is long and the system deteriorates very
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Table 7.3: System design,burn-in, PM intervals and economic life for Case II

w m;+1| b | 1st PM | 2nd PM | Economic Life | AAC
(in years) (in hours) | (in years) | (in years) (in years) (in dollars)

350.4 1.159 1.622 1.808 1059.033

38544 | 1.086 | 1.521 1.695 1028.068

gradually. Such characteristics model complex systems which have a high failure
rate initially, because of the complexity. However, if given sufficient burn-in period

which involves a lot of debugging, the system will perform under the maximum

allowed failure rate for a longer time.

!

The failure rate parameters by = 0.2,b, = 0.4,b3 = 0.1,¢; = 0.7,¢0 = 0.7,¢c3 =
0.6 are used. For such systems it is found that although the system design be-
comes more reliable as the warranty increases, it is recommended to have a con-
sistent burn-in period which is optimal for the given system characteristics. In
this case for a warranty period less than 3854.4 hours, the optimal design is 6,1
and 1 components in subsystem 1, 2 and 3 respectively. When the warranty pe-
riod is greater than 3854.4 hours, the optimal design is 7,1 and 1 components in
subsystem 1, 2 and 3 respectively, while for both the designs a burn-in of 578.6
hours is recommended. The optimul system design, optimal burn-in period, PM

intervals and system economic life for w = 0 and 1 year are tabulated in Table 7.4.

In general for all the three cases, it is found that the average annual cost of the
system and the total number of components in the system increase as the warranty
period increases. Higher average annual costs are due to the assumed higher repair

costs during a warranty period. Thus as the warranty period increases the average

[
=
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Table 7.4: System design,burn-in, PM intervals and economic life for Case 111

w  |m;+1] b 1st PM | 2nd PM | Economic Life | AAC
(in years) (in hours) | (in years) | (in years) (in years) (in dollars)

13

0 6,1,1| 5186 1.36 1.004 2121 | 824305
1 7.1, 1 578.6 1.45 2.037 2.269 825.456

annual costs of the system increases. Also as the warranty period increases the

system goes towards a more reliable design (more number of parallel components).
A more reliable design also gives a longer economic life for the system.

For all the three cases the system burn-in period decreases as the design be-
comes more reliable. This is because a ]:;ett.er design will have less number of
failures during its infant mortality phase and hence the need for a smaller burn-in
period. In our formulation the constant failure rate period of system in Casc I is
the shortest, while Case III has the longest constant failure rate period. For Case
warranty period. It is also found that for a given warranty period, Case 111 has
the lowest average annual cost, while Case I has the highest. This is due to the
reason that for a system with longer constant failure rate period, the number of
repairs performed during that period are lower and hence the costs are lower. Also
longer constant failure rate period implies that system has an overall longer useful
life which implies a lower average annual cost,

In all the cases, if only manufacturer’s cost is minimized (Nguyen and Murthy,

]

4 o 3 . ] )
1982), i.e. X (Vj + IC + W;) then it is found that optimal system design is 1,1
i=1 '

and 1 for subsystem 1,2, and 3 respectively for all the three cases. For Case I no
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burn-in is recommended due to low initial failure rate while for Case 1I and III, the
burn-in increases to a maximum and then starts decreasing as the warranty period
increases. These results match the conclusions of Nguyen and Murthy (1982),
which states that for repairable systems, as the warranty period increases, the
optimal burn-in period increases to a maximum value and then decreases.

One of the reason that higher number of system components are recommended
in our formulation is that higher number of redundancies decrease the failure rate
of the system during the wear-out period of the system. This extends the useful

life of the system which in return decreases the average cost per unit time.

7.5 Concluding Remarks

In the previous research related to product warranty management, the systems
have been economically evaluated for different warranty periods from cither con-
sumer’s or manufacturer’s perspective. Most of these analyses have been limited
to the infant mortality and useful life period of the system. The issues of optimal
reliability allocation for systems undergoing minimal repair considering warranty
has been considered by Nguyen and Murthy (1988). However, they assume that
system failure rate is constant over the warranty period. This research analyzes a
system’s cost over its useful life to incorporate all the costs incurred on the system
during all the phases of system life cycle and gives a more comprehensive mathe-
matical model for optimal system design with optimal burn-in period, optimal PM

intervals, and optimal system replacement time.

105



Chapter 8

Conclusions

In the area of reliability based design (RBD), extensive rescarch has been doue
considering systems with constant component reliability. This constant component.
reliability is the probability that the component will survive for a given mission
period. Thus the system designs obtained in these formulations are valid only
for the given mission period and can be applied only to non-repairable systems.
In order to incorporate the effects of repair and maintenance during the system
design phase, it is imperative that the system component reliability be modeled as
a function of time. However, no research results are available for reliability based
designs for such systems.

This research contributes to the area of reliability based design of series-parallel

comprehensive model which calculates optimal system design, optimal preventive
maintenance intervals and optimal system replacement time.
In Chapter 5, we have developed two RBD formulations based on PM models

proposed by Nakagawa (1988) for systems with increasing failure rate. If the PM
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action involves routine checkup and replacement /repair of minor components, then
in this case age reduction concept is applicable and formulation 1 is used. Hazard
rate model used in formulation 2 models PM which involves actions like lubrication,
adjustment of tolerances and minor overhaul of components subject to wear. A five
step methodology is presented which provides the designérrwith optimal system
design, optimal PM intervals and optimal replacement time for the system.

In Chapter 6, we proposed a modified PM model which adds more tunability
to Nakagawa's hazard rate PM model and allows the user to model real life sys-
tems, which have non-zero failure rate at time zero. Based on system failure and
maintenance characteristics, a salvage value function for deteriorating systems is
proposed. The function incorporates the economic effects of failure rate deteriora-
tion and preventive maintenance. Using the modified PM model and salvage value
function, we developed a RBD formulation and studied the effects of salvage value
on system design for given failure, maintenance and cost characteristics,

Typically a product follows a characteristic bathtub shaped failure rate curve,
after it has been produced. The early infant mortality period is represented by high
initial failurc rate decreases with time. The infant mortality period is later followed
by a period of constant failure rate which represents the useful period of the system.
The period of system deterioration and wear follows the system’s useful period.
This period is represented by the increasing failure rate. If a system is sold with
a warranty, then to lower the costs incurred on the system during warranty, it is

economical to recommend initial burn-in of the product. This reduces the expected

useful life of the product. In Chapter 7 we developed a comprehensive model which

minimizes the total cost incurred on the system during its life and provides the
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designer with optimal burn-in period, optimal system design. optimal PM intervals

significant contribution to the area of product warranty management.

In this thesis Genetic Algorithms (GAs) are used as an optimization tool to
minimize system costs subject to failure rate and resource constraints. GAs were
chosen due to their flexibility and ease to solve a complex nonlinear mixed integer
programming problem like the one in our research.

The area of reliability based design is becoming strategically one of the most
important areas in system design. In the last decade the use of varions maintenance
actions to improve system reliability has become increasingly popular. The focus
of the system design has shifted accordingly. The designers who used to design
systems for low production costs are now focusing on minimizing the system costs
over its lifecycle. In order to achieve this objective, it is imperative to consider

The results presented in this research are one step towards the compreliensive

k]

analysis of reliability based design of the system which incorporate the cffects of
maintenance, repair, salvage value and warranty. These results can be applied to
design high cost computer aided manufacturing systems which must, perform below
a maximum allowed failure rate.

Along the line of this thesis, further studies can be done in the following areas:

Improvement and Deterioration Factors

Our formulations are very sensitive to both improvement and deterioration
factors used while modeling PM using age reduction hazard rate coneept.
These factors represent level and extent of system degradation after PM.

Malik (1979) recommends expert judgment on determining the improvement,
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improvement factors. Empirical studies need to be done to determine what
major factors affect the improvement factor of the system. The study should
also be performed to recommend values of these factors for different tyvpes of
PM actions on different types of equipment/systems.

Inspection of Deteriorating Systems

Our formulations are applicable only to systems which are continuously mon-
itored. The costs of continuous monitoring of a system can be quite high.
Such costs are justified for highly automated systems with high production
rate or where failure of the system can result in loss of human lives. How-
ever, when designing systems which have a lower production rate, the cost
of monitoring can be lowered considerably if the system is inspected regu-
larly instead of being monitored continuously. In such models the failures
can only be detected by an inspection and the objective is that the system
should operate reliably between these inspection intervals. Much research
has been done in the area of inspection of manufacturing systems. In a re-
cent work by Mohandas, Chaudhuri and Rao (1992), the authors provide an
optimal periodic replacement strategy for a deteriorating production system
considering inspection and minimal repair. These inspection schedules can
be combined into a reliability based design formulation where the users can
define the maintenance strategy and select the option of continuous moni-
toring or inspection. This selection will be driven by the costs of each option

and system requirements.

Warranty Policies

The reliability based formulations can be further extended to various type of
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warranty policies like pro-rata and combined warranty policies. The models
can also be modified to incorporate the expected sales function of the system

which will further dictate the system design according to the marketing needs.

In summary, this research introduces PM and minimal repair into reliability
based design. It makes contributions to reliability based design over system life

cycle and opens a fertile research area for optimal system designs.
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