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Abstract

Neutron stars are some of the densest objects in the Universe, with densities

in their cores that are larger than that of the atomic nucleus. Their relatively

small size allows them to spin very rapidly, with speeds at the equator that

are a large fraction of the speed of light. Being some of the densest objects in

existence, it is understandable that we want to know what they are made of.

Different proposals have been made leading to various equations to describe

the state of matter inside, also known as equation of state (EOS), but there

is no conclusive evidence proving that one EOS is correct. In this work, we

show simulations for the rotational evolution of various neutron stars from a

static state to their maximum spin frequencies for different EOS. We show

the fractional increase in mass, M , and radius, R, during the spin-up process

of these rapidly rotating objects. We also find quasi-universal relations that

depend on the dimensionless quantities of compactness (GM/Rc2) and the

squared value of angular velocity (Ω2R3/GM) that are almost independent of

the EOS used.
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Preface

This thesis is the original work by Jorge Calderon Noguez, conducted under

supervision by Sharon Morsink at the University of Alberta.

Chapters 3, 4, 5 of this thesis consists of a manuscript in preparation, to

be submitted to a refereed journal as Calderon Noguez & Morsink, “Effect of

spin on mass and radius of neutron stars”.

For the work presented in Chapter 3, we modified a code written by Ster-

gioulas & Friedman (1995) to compute sequences of neutron stars, each of them

with a constant value of rest mass (mass of all the particles in the star).

Our modifications in the software based on Stergioulas & Friedman (1995)

will be available as a public domain code under the name of NSSS (Neutron

Stars Spin Sequences). Along with this, we also wrote NSSPlots (Neutron

Star Sequences Plots) to show graphs of different physical properties of the

sequences computed.
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“Study hard what interests you the most in the most undisciplined, irreverent

and original manner possible”

Richard P. Feynman
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Chapter 1

Introduction

1.1 Neutron Stars

When a massive star reaches the end of its life, it goes supernova. This powerful

explosion pushes the top layers of the star out and, combined with gravitational

collapse, the core is compressed to higher than atomic densities. The object

left behind is called a neutron star (NS), and it is one of the densest objects

in the universe. The first time an object like this was proposed, was by Baade

& Zwicky (1934); they thought that a very small and very dense object com-

posed of mostly neutrons must exist. After some years the first computation

of such massive compact objects was made by Oppenheimer & Volkoff (1939).

Nowadays, when we know for sure that these kind of stars exist, we have found

approximately 2700 neutron stars, according to the ATNF pulsar catalogue1.

Neutron stars (NSs) have been discovered mainly in radio wavelengths. This

radiation comes from synchrotron and curvature radiation emitted by acceler-

ated electrons and positrons. These objects are often observed as pulsars, which

are NSs that emit radiation from their magnetic poles. The first pulsar was

found by Jocelyn Bell, and published by Hewish et al. (1968). Even when the

1https://www.atnf.csiro.au/research/pulsar/psrcat/
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majority of the discoveries were in radio, the first study of a NS observation

in X-rays was that of Scorpius X-1, by Shklovsky (1967), who concluded that

it was a neutron star undergoing accretion. After this event the discoveries

were more frequent, like the discovery of the Crab pulsar in the following year

(Comella et al., 1969).

NSs have a typical mass of M = 1.4 M�, a typical radius of R = 12 km, and

a typical temperature of T ∼ 106 to 108 K, which cools as time passes. NSs

make several rotations per second (conservation of angular momentum from

the original star is one way to impart spin), and when accreting matter from

a companion in a binary system, they can be spun up by accretion to spin

periods on the order of milliseconds. The fastest known pulsar is PSR J1748-

2446, discovered by Hessels et al. (2006). This pulsar has a spin frequency

of ν = 716.356 Hz, and is located in the globular cluster Terzan 5. There is

another pulsar that, at the time of its discovery in 2007, made people think

that it was the fastest spinning pulsar. This pulsar was XTE J1739-285 (Kaaret

et al., 2007), with a burst oscillation frequency of ν = 1122 Hz, but there is no

evidence that this is the real spin frequency (Chakrabarty, 2008).

It is not known, with precision, the density of neutron star matter, but it is

thought that it has values close to ρns = 2.8× 1014 g/cm3, which is the nuclear

saturation density (density in an atomic nucleus), but in the core densities

could potentially be 10 times higher (Pethick et al., 1991).

1.2 The Physics of Neutron Stars

Oppenheimer & Volkoff (1939) hypothesized the existence of a star composed of

a neutron gas. To describe it, they assumed, as first approximation, that there

is no interaction between all the neutrons in the gas. Nowadays, we know that

this cannot happen; in a neutron star there are degenerate neutrons, protons,

and relativistic electrons. This mixture occurs at densities above 4×1011 g/cm3.
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A gas composed purely of neutrons would be unstable if the electrons are non-

degenerate; the neutrons will decay following the β-decay process,

n→ p+ e− + ν̄e, (1.1)

which, as we can see, produces energy. A process that happens inside a neu-

tron star is the inverse β-decay process, in which protons are converted into

neutrons, because energy is provided in the form of electrons that move with

velocities close to the speed of light (Longair, 2011; Zeldovich & Novikov, 2014)

e− + p→ n+ νe. (1.2)

This decay process happens when the total energy of the electron exceeds the

mass difference between the neutron and the proton,

E = γmec
2 ≥ (mn −mp)c

2 = 1.29 MeV, (1.3)

where me, mn, and mp are the masses of the electron, the neutron, and the

proton, respectively. When the density increases, matter will be composed

mainly of neutrons; in a neutron star there are approximately 8 neutrons per

proton. The electrons and ions fill up all the free states. Due to this the star

maintains a neutral charge. The large ratio of neutrons compared to protons

and electrons assures that the neutron degeneracy pressure dominates over the

electron degeneracy pressure.

In a neutron star, the neutrons’ Fermi momenta is

pF = h

(
3n

8π

)1/3

, (1.4)

where n is the number density of neutrons. Following on this, the Fermi energy

3



will be

EF =
(
p2
F c

2 +m2
nc

4
)1/2

. (1.5)

Using equations (1.4) and (1.5) we can find the Fermi energy for a neutron in a

NS with a number density of n = 5.6×1037 cm−3. We assume that, in equation

(1.5), m2
nc

4 = 0, because degenerate pressure comes from the momentum of the

relativistic particles,

En
F = 237 MeV. (1.6)

And considering that T = 106 K, the thermal energy is

En
T = 8.62× 10−5 MeV. (1.7)

Comparing the results (1.6) and (1.7), we can see that the Fermi energy is

seven orders of magnitude larger than the thermal energy.

1.3 Evolution of a Neutron Star

When a main sequence star that is 8 M� or above reaches the end of its life,

it becomes a supernova (Bally & Reipurth, 2006). In this high-energy event, a

neutron star is formed.

As the progenitor star approaches the supernova stage, the fuel being burnt

by nuclear reactions produces iron, which accumulates in the core. Since iron

cannot be used to power the star, the thermal pressure will decrease, and the

star will not be able to overcome gravitational collapse. Temperature and

density increases, and electrons and protons combine via electron capture, pro-

ducing neutrons and antineutrinos that fly away at speeds close to the speed

of light. In this stage, a process called photodissociation occurs, which is the

4



breakup of iron nuclei into alpha particles by high-energy gamma rays. Den-

sity increases until it reaches a value of the order of 1014 g/cm3, which is the

average nuclear density (ρns). At this point, the collapsing outer layers of the

star are pushed away by the neutrinos, causing the supernova explosion and

leaving behind a NS (Prakash et al., 2001).

Figure 1.1: Ṗ−P diagram (Lorimer & Kramer, 2004) that shows the spin down
rate as a function of the period of the known pulsars. There are also lines that
denote the constant values of characteristic age (in Myrs), magnetic field (in
G), and spin down luminosity (in erg s−1).

Approximately one minute after the supernova explosion, the newly created

NS becomes transparent to neutrinos. During this state, the cooling of the star

5



happens in two ways: one is neutrino emission from the entire star; and the

other is by the thermal emission from the surface of the star. In the latter

process, photons come from the internal structure of the NS, which will stay

in this non isothermal state for the first 10–100 years of life. During this

period of time and approximately for the next 105 years, neutrino emission

is the dominant cooling process. After that stage, thermal photon emission

dominates. The fact that the cooling process is dominated by neutrino emission

does not mean that it is the only mechanism taking place in the neutron star;

cooling is also regulated by photon emission, superfluidity of its interior, and

by heat insulation in the outer layers due to the presence of lighter elements in

the surface (Haensel et al., 2007).

The majority of isolated NSs are observed as radio pulsars. This is because

they have a strong magnetic field, and they rotate with a high frequency. A

radio pulsar emits a non-thermal multiwavelength magnetospheric radiation

and, sometimes, thermal-like radiation from its hot polar caps on the surface,

just like the Vela and Geminga pulsars, which have been observed from the

infrared to the gamma range (Danilenko et al., 2011).

1.4 Spin Evolution

The spin evolution of NSs can be studied by plotting them on the Ṗ−P diagram

(Haensel et al., 2007), which can be seen in Figure 1.1. In this diagram we see

Ṗ as a function of P . The latter variable, P , is the period of the NS, which is

the time that the NS takes to complete one revolution. Ṗ is the spin down rate,

or in other words, it is the rate of change in the period or the time increased

per unit time. This will be discussed in subsection 1.4.1.

In Figure 1.1 we can see four populations of pulsars. The NSs found in

supernova remnants (SNR) are located in the top (where the Crab and Vela

pulsars are labelled). Binary pulsars are made up of a pulsar, and a star or

6



NS companion, they are located in the lower left part of the diagram. AXP

(Anomalous X-ray pulsars) and SGR (Soft Gamma-ray Repeaters) are objects

that emit large amounts of gamma and X-ray radiation; they are located at

the top right of the diagram, and are believed to be magnetars (young and

isolated NSs with large magnetic fields). Radio-quiet objects are NSs that do

not seem to emit in radio; they are in the same region in the diagram as the

SNR pulsars. The final population are the pulsars represented by a simple dot,

they are pulsars that are loosing energy relatively quickly and spin relatively

slowly.

Old and slow rotating isolated neutron stars have weak electric fields and

therefore produce a weak outflow of particles from their surfaces. This means

that their magnetospheric activity is slowly disappearing and, as a result, they

have little, or even, no radiation in radio (Haensel et al., 2007). These NSs

have large P and small Ṗ and could be placed in the lower right part of the

diagram, where the graveyard is located. The line separating the graveyard

from the neutron stars and pulsars is called the pulsar death line, which can

change depending on the equation of state (Zhou et al., 2017).

Depending on the circumstances of the neutron star, it can decrease or

increase its rotational frequency. This is known as spinning-down and spinning-

up.

1.4.1 Neutron Star Spin-Down

Let us consider an isolated neutron star. We know that after a supernova

the core of the original star collapses to a neutron star, and it spins at high

values of frequency. But, as time passes, the rotational kinetic energy will be

radiated away by magnetic dipole radiation and eventually, the star will come

to a static state. This is the reason why older neutron stars take several seconds

for a single revolution. This can be seen in the Ṗ − P diagram in Figure 1.1,

where the slowest pulsars are on the right-hand side (the longer the period, the

7



Figure 1.2: The Crab nebula, that contains the Crab pulsar (red star in
the centre) shown in X-ray (blue) and in the optical spectrum (red). This
image combines data from the Chandra X-ray Observatory and the Hubble
Space Telescope (Credits: X-ray: NASA/CXC/ASU/J. Hester et al.; Optical:
NASA/HST/ASU/J. Hester et al.).

slower the rotation is; the shorter the period, the faster the rotation is).

The dashed lines represent lines of constant characteristic age, τ , spin-down

luminosity, Ė, and the lines with negative slope represent constant magnetic

field, B. Related to these lines, we have magnetic dipole radiation, which

extracts energy from a pulsar making them rotate slower.

As the neutron star ages, the emission powered by the rotational kinetic

energy will cease (Condon & Ransom, 2016), and the star will no longer be

observable. It may seem unbelievable that all the observed luminosity of a

neutron star can come from its rotational kinetic energy, but it happens. An

example of this is the Crab pulsar (Figure 1.2). The luminosity of the nebula is

comparable to the rate that the neutron star is losing rotational kinetic energy.

8



1.4.2 Neutron Star Spin-Up

As we described in the last subsection, neutron stars can be formed with a large

rotational frequency and consequently, an oblate shape, where the equatorial

radius is larger than the polar radius. As time passes they usually slow down

and become more spherical, but there is an instance in which neutron stars

increase their rotational frequency. This can happen because a neutron star

is accreting material that is orbiting around it. This material comes from a

companion star, which makes the neutron star rotate faster (Ritter & King,

2001), as long as the neutron star and its stellar companion are in a close

binary system. The fastest rotating NSs are found in Figure 1.1 in the lower

left corner. Those binary systems may have been accreting in the past, which

is why they are spinning so fast.

This increment of spin frequency due to a companion star is seen in pulsars

like the millisecond X-ray pulsar, XTE J1808-359, which is clearly accreting

(Wijnands & van der Klis, 1998).

1.5 Equations of State

An equation of state (EOS) is the relationship between pressure, density and

temperature, and it is used to describe how the matter behaves. For NSs we

have to consider the relative effects of density and temperature. The average

temperature of a NS is 106 K, but the thermal energy is approximately 7

orders of magnitude smaller than the Fermi energy (as calculated at the end

of Section 1.2). This means that we can neglect temperature, and treat NSs

as zero-temperature objects. Therefore, the equation of state for neutron stars

describes the pressure as a function only of the density.

The equation of state of matter at high densities is one of the most impor-

tant properties that are being studied about NSs (Lorimer & Becker, 2009). A

possible way to identify the EOS of neutron star is by measuring both the mass

9



Figure 1.3: Top: Pressure as a function of the density for EOS APR. Bottom:
Mass as a function of the equatorial radius of the neutron star for EOS APR.
Notice that as the star’s radius gets bigger, the less massive it is.
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and radius of a neutron star. The Tolman-Oppenheimer-Volkoff (TOV) equa-

tions predict a curve of possible masses and radii given an EOS. It would be

good news if we only needed one or even two measurements, but we would need

to measure several objects in a wide range of masses, probably from 1.0 M� to

more than 2 M� (Özel & Freire, 2016). Radius is very difficult to measure; if

we approximate a neutron star as a pure black body (Lorimer & Becker, 2009),

we have that the flux, F , in Newtonian gravity, is given as a function of the

distance to the neutron star, D, the surface temperature, T , and the radius,

R, so that

F = σT 4

(
R

D

)2

. (1.8)

As we can see, to find the size of a neutron star we need flux, the temperature

and the distance. That is why measurements of thermal emission are very

important to find the radius, which right now, is still very imprecise.

Mass and radius are dependent on the neutron star’s EOS (Ozel & Psaltis,

2009). For example, for EOS APR, we can see their dependence in Figure 1.3;

in the top plot we see the pressure increasing along with the density, but it is

the opposite for the mass and radius of a NS. In the bottom plot we see that

as the star’s radius increases, the star’s mass is smaller. Both the mass and

the radius are dependent on the pressure of the neutron star at densities of

1.85− 7.4 ρns (Lattimer & Prakash, 2001), where ρns is the nuclear saturation

density.

There are many proposed EOS because the real one is not known, yet. To

make these different EOS, three-body and two-body interactions are considered,

as well as other types of forces. There are people who think that there are

interacting quarks in the cores of neutron stars (Özel et al., 2010), and others

who think that the cores are populated with just neutrons (Page et al., 2011).

To find out what the real composition is, we have to wait more time to get

11



data from future observation projects, like NICER, NuSTAR, or the proposed

eXTP and STROBE-X.

1.6 Gravitational Light-Bending

Figure 1.4: Photon paths of a neutron star, which show bending due to effects
of general relativity, allowing the observer (located to the right in this figure)
to see the hidden part of the neutron star (Nollert et al. (1989)).

A curious property of NSs is that we can see beyond the circular shape that

they project (Figure 1.4). Depending on the strength of their gravitational

field, we can see a varying amount of the surface behind it. This is due to

general relativity, which causes light to travel on curved paths (Kraus, 1998;

Nollert et al., 1989). According to general relativity, a massive object will cause

spacetime to curve. This effect is described by the Schwarzschild metric, and

this curvature will change depending on the object’s mass and radius ratio. The

curved spacetime will affect the photon’s path, which could be bent around the

star, orbit the star, fall into it, or escape the star’s gravitational well. All of

these possibilities make a neutron star look very different compared to how it

is in reality. Depending on the paths the photons take, we may see parts in

the back of the star, and we could even see the complete surface of the neutron

star if the star is small enough.
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One way to determine how much the light will be deflected is using the

Schwarzschild theory, specifically, using the quotient, R/rs, where rs is the

Schwarzschild radius given by rs = 2GM/c2. This is the radius at which we

would need to compress an object to make it a black hole, where G is the

gravitational constant, M is the mass of the object, and c is the speed of light.

The more the ratio decreases, the more surface we can see from the neutron

star. This deflection of light helps us determine the X-ray pulse profile of the

star (Pechenick et al., 1983; Watts et al., 2016; Sotani & Miyamoto, 2018). To

know more about this topic, consult Amason (2019).

Another way to predict how the light will be bent, Sotani & Miyamoto

(2018) proposed the use of compactness, which is the quotient of the mass and

the radius of the neutron star. For a less compact neutron star, the photons

emitted from the back of the star will not be visible to an observer (Pechenick

et al., 1983; Watts et al., 2016); but if the star is very compact, the photons

will be bent in such a way for the observer to look at the back of the star. This

quotient involves the radius of the neutron star, which can be determined if

the NS spins rapidly since the Doppler effects are proportional to the radius of

the star (Watts et al., 2016).

Due to the strong gravitational field of a neutron star, some of its physical

properties change drastically (Potekhin, 2010). The photon frequency, ν0, in an

inertial frame of reference fixed on the neutron star, is redshifted to a frequency

of value ν∞ (the subscript ”∞” represents the quantity measured by an observer

far from the star), given by

zg =
ν0

ν∞
− 1, (1.9)

=

(
1− 2GM

Rc2

)−1/2

− 1. (1.10)

Just like the photons’ frequencies, the thermal radiation of a star, Teff , is

also shifted, in this case to a lower temperature due to relativistic effects; this
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perceived temperature by an observer at infinity is

T∞eff = Teff

√
1− 2GM

Rc2
. (1.11)

The photon luminosity of the star, L, measured in its frame of reference will

also go through a change caused by the gravitational redshift that is described

by

L∞ =

(
1− 2GM

Rc2

)
L, (1.12)

so an observer far from the star detects a dimmer star. The previous equa-

tion can also be expressed in terms of the apparent radius and the apparent

temperature of the neutron star,

L∞ ∝ R2
∞
(
T∞eff

)4
. (1.13)

The apparent radius, measured by an observer at infinity, appears larger than

its real radius, R, due to the gravitational lensing,

R∞ = R(1 + zg). (1.14)

This means that both the radius R∞, and the luminosity, L∞ agree with the

concept of bending of light and the time dilation due to a massive body. This,

as we discussed before, allows us to see behind the neutron star. For pulsars,

for example, there are instances when both of the polar caps are observed.

1.7 Observations

There were telescopes about 30 to 40 years ago, like EINSTEIN and ROSAT,

that had finding NSs in the X-ray range of the electromagnetic spectrum
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(Lorimer & Becker, 2009) as one of their goals. Nowadays, there are more

advanced telescopes that are being used to focus on the study of NSs. These

telescopes are NICER, NuSTAR, Chandra X-ray Observatory, XMM, eXTP

and STROBE-X.

NICER (Neutron star Interior Composition ExploreR) was launched in June

2017, allows rotation-resolved spectroscopy of the thermal and non thermal

emission of NSs in the soft (0.2-12 keV) X-ray band 2. This will allow us to

uncover the nature of the matter inside a neutron star, dynamic processes,

radiation mechanisms, and the threshold of collapse to a black hole (TOV

limit). NICER is designed to observe the pulsed emission from X-ray pulsars

to indirectly measure the mass and radius with less than 10% uncertainty, as

described in the previous section. As a result, we will have a closer idea of

what a neutron star interior looks like.

Another telescope is NuSTAR (Nuclear Spectroscopic Telescope Array),

launched in June 2012. It observes in the high energy X-rays (3-79 keV)3

range, which allows NuSTAR to see through dust and gas to study black holes

and neutron stars in the Milky Way and other galaxies

Another famous device is the Chandra X-ray Observatory, launched in July

1999. This telescope is designed to observe X-ray4 emissions from very hot

regions of the universe, like supernovae, clusters of galaxies, and matter around

neutron stars or black holes.

The observation of thermal flux from neutron stars is very useful nowadays

to find the radius of a NS (Heinke et al., 2014). Alongside Chandra, XMM5

(X-ray Multi-Mirror Mission) also observes the thermal flux from NSs. This

mission collects X-rays to determine properties of black holes and even inves-

tigate the formation of galaxies.

2NASA’s HEASARC. https://heasarc.gsfc.nasa.gov/docs/nicer/
3NuStar website. https://www.nustar.caltech.edu/page/instrumentation
4Chandra website. http://chandra.harvard.edu/about/
5XMM website. http://sci.esa.int/xmm-newton/31249-summary/
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A future project that will shed some light on the unknown properties about

neutron stars is eXTP6 (enhanced X-ray Timing and Polarimetry). Its goals

are to find the EOS of matter at super-nuclear density, take measurements of

QED effects in magnetized stars, among others.

Another proposed telescope is STROBE-X7, which will be focusing on X-ray

timing and spectroscopy in the 0.2 to 30 keV band. It will provide information

on the effects of strong-field general relativity of black holes, as well as their

mass and spin. It will also determine the neutron-matter equation by measuring

the neutron star’s mass-radius relation.

1.8 The Purpose of this Thesis

In this work we analyze how the mass and radius of a NS changes as its rota-

tional frequency increases. Our work considers axial symmetry and solid body

rotation. It is based on the numerical methods developed by Komatsu et al.

(1989) and Cook et al. (1994).

Each proposed EOS predicts a certain curve of possible mass and radius

values if the star is not spinning. However, rotation increases both the mass

and radius of a star. So, in reality, each EOS predicts a surface of possible

mass, radius and spin values. In this thesis, the relationship between mass,

radius, and spin is investigated using the equations of general relativity. As

a result, a quasi-universal relation between the fractional increments of mass

and radius are found to depend on the dimensionless quantities of compactness

(GM/Rc2), and the squared value of angular velocity (Ω2R3/GM). However,

they seem to be independent on the EOS used for the computations.

6eXTP website. https://www.isdc.unige.ch/extp/
7STROBE-X website. https://gammaray.nsstc.nasa.gov/Strobe-X/index.html
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1.9 Structure of this Thesis

The organization of this thesis is as follows. Chapter 2 involves the mathemat-

ical theory to understand neutron stars. Chapter 3 goes over the structure of

the code used to compute sequences of rotating neutron stars. Chapter 4 dis-

cusses the results found from the analysis of the fractional increase in mass of a

rotating NS. Chapter 5 discusses the results that we found when investigating

the fractional increase in radius as a NS rotates. Lastly, Chapter 6 summarises

the findings of this work. Appendix A has some of the equations computed by

the code used here.
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Chapter 2

Theoretical Background

In this chapter we are going to discuss the mathematics behind neutron stars

and the computation of properties of the same rotating objects. General rela-

tivity has to be taken into account when describing neutron stars; the relativity

parameter, GM/Rc2, for a neutron star with a mass of 1.4 M�, and a radius of

12 km, is

GM

Rc2
=

(6.67× 10−8 cm3g−1s−2)(1.4 M�)

(12× 105 cm)(2.99× 1010 cm/s)2
,

= 0.17. (2.1)

Just for comparison, the value of this term for the Earth is GM⊕/R⊕c
2 =

13.9 × 10−10. It is nearly zero. This means that the escape velocity is a

negligible fraction of the speed of light, c, and equation (2.1) shows that the

escape velocity for a NS is a significant amount of c. Therefore the effects

of general relativity must be considered in the description of these compact

objects. Since the gravitational potential energy contributes to the total mass

of the NS, the effective force of gravity has to be stronger.

In Section 2.1 we discuss the metric that describes the region outside of

non-rotating neutron stars; this is the Schwarzschild metric. In Section 2.2

we go over some of the physics that are involved in NSs, like the differential
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equations that, when integrated, give us the structure of a nonrotating neutron

star, also known as, the Tolman-Oppenheimer-Volkoff (TOV) equations. Along

with these structure equations we discuss the TOV mass limit for NSs, which is

an equivalent to the Chandrasekhar mass for white dwarfs. Finally, in Section

2.3 we go over the equations that are used to compute the physical properties

of rotating NSs.

2.1 General Relativity in the Exterior of Spher-

ical Objects

Neutron stars are objects so compact that its escape velocity is a considerable

fraction of the speed of light (Wilson, 1974), due to this reason, we have to

consider general relativity to describe such massive stars. We begin by assuming

spherical symmetry; so we use spherical coordinates (r, θ, φ). In a spacetime

without gravity, the line element in the Minkowski space is written as (e.g.

Schutz, 2009)

ds2 = −c2dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.2)

This tells us that each surface of constant r and t is a two-dimensional spherical

surface (a two-sphere). The distances along curves confined to these surfaces

are given when dt = dr = 0, then

dl2 = r2
(
dθ2 + sin2 θdφ2

)
= r2dΩ2. (2.3)

The sphere has a circumference of 2πr and a surface area of 4πr2. Any two-

surface, where the line element is given by the above equation with r2 indepen-

dent of θ and φ, has a two-sphere geometry.
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Now, the metric for a general static spherically symmetric spacetime with

gravity is

ds2 = −e2Φc2dt2 + e2Λdr2 + r2dΩ2, (2.4)

with Φ = Φ(r), and Λ = Λ(r) (e.g. Schutz, 2009). Φ(r) is interpreted as the

gravitational field in the Newtonian limit, and for Λ, we have

e2Λ =

(
1− 2Gm(r)

rc2

)−1

, (2.5)

where m(r) is an unknown function, which we will find to be the mass at a

position r.

Another thing that has to be taken into account is the source of the gravi-

tational fields in the spacetime in general relativity. The sources are contained

in the stress-energy tensor, T (sometimes called stress-energy-momentum ten-

sor). Some of the components are pressure and density, which means they are

sources of gravitational fields, and we know that they are related by an equa-

tion of state, which, for neutron star matter, have different formulations that

are still being tested to find the true EOS.

In general relativity there are also conservation laws, which are involved in

the stress-energy tensor. The divergence of this tensor vanishes and we get one

equation,

(c2ρ+ P )
dΦ

dr
= −dP

dr
. (2.6)

This tells us what pressure gradient is needed to keep the fluid static in the

gravitational field inside the star. Now, we need to think how we can describe

the exterior of the star. Outside the star there is no matter, so we can safely say

that ρ = P = 0, which coincidentally, also describe the surface of this spherical
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object. Then, we obtain the following set of equations (Schutz, 2009),

dm

dr
= 0 and (2.7)

dΦ

dr
=

mG

rc2(r − 2mG/c2)
. (2.8)

When we solve the previous differential equations using the boundary condition

Φ→ 0 as r →∞, we obtain

m(r) = M = constant and (2.9)

e2Φ = 1− 2GM

rc2
, (2.10)

which tells us that m(r) is the mass contained in a sphere of radius r, thus M

is the total mass of the object. This means that, the metric in the exterior,

will be given by the following:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
.

(2.11)

This is called the Schwarzschild metric. Due to the Birkhoff’s theorem, which

states that in the vacuum exterior of any spherically symmetric object, the only

solution to the Einstein field equations is given by the previous metric (Haardt

et al., 2015).

This is the metric that will be used to describe the exterior of a NS. To

describe the interior structure we use the Tolman-Oppenheimer-Volkoff (TOV)

equations, which are a set of differential equations that can be solved to find

more about these compact objects.
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2.2 General Relativity in the Interior of Spher-

ical Objects

The TOV equations describe the structure of nonrotating stars. They are

the equations of hydrostatic equilibrium for a spherically symmetric body in

general relativity (Potekhin, 2010). According to Walecka (2017), to obtain the

TOV equations we must assume spherical symmetry, a static situation, and an

isotropic fluid with no shear forces, and begin our analysis with the Einstein

field equations,

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (2.12)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the

metric tensor given by the metric in equation (2.2), and Tµν is the stress-energy

tensor. The TOV equations are

dP

dr
= −Gm(r)ρ(r)

r2

(
1 +

P (r)

ρ(r)c2

)(
1 +

4πr3P (r)

m(r)c2

)(
1− 2m(r)G

rc2

)−1

,

(2.13)

dm

dr
= 4πr2ρ(r) and (2.14)

c2dΦ

dr
= −1

ρ

dP

dr

(
1 +

P (r)

ρ(r)c2

)−1

, (2.15)

where Φ is the potential and m is the mass contained in a sphere of radius r.

If we integrate equation (2.14) we get the total mass of the star (e.g. Schutz,

2009)

M = 4π

∫ R

0

ρr2dr, (2.16)
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Figure 2.1: Computed relationships between the mass and the radius of non-
rotating neutron stars for different equations of state.

while the rest mass is

M0 = 4π

∫ R

0

ρr2√
1− 2Gm/rc2

dr. (2.17)

This is the mass of all the particles that make up the neutron star. The TOV

equations are used to calculate masses and radii of NSs, so it is understandable

that they are also called the equations of structure. To find the relationship

between the mass and the radius of a NS (Figure 2.1), they have to be solved

numerically (e.g. Lattimer & Prakash, 2004). We computed these relationships

for ten different EOS, and considered the stars to be static. In this process we

have to take into account some boundary conditions when integrating the TOV

equations. We have to assume P (R) = ρ(R) = 0, which defines the surface of
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the neutron star, which is located at r = R. Also, initial values of pressure

and density are needed when r = 0, these are P0, and ρ0, respectively. In the

limit of weak gravitational fields, the stellar structure equations reduce to the

Newtonian equation for hydrostatic equilibrium and mass conservation.

When we consider the TOV equations, (2.13), (2.14), and (2.15), we can

see them as corrections for the Newtonian equations, especially equation (2.13),

where the second and third terms in between brackets come from the assump-

tion that pressure is a source of gravity. In other words, pressure is important

if P/ρ is large (gas particles are moving with high speeds) and the last term in

equation (2.13) comes from the curvature.

2.2.1 Tolman-Oppenheimer-Volkoff (TOV) Limit

We know that the Chandrasekhar limit is the maximum mass that a white

dwarf can have, which is MCh = 1.4 M�. White dwarfs by themselves have

a mass lower than this value. If the mass increases by mass transfer of some

sort, the electron degeneracy pressure in the white dwarf will not be enough to

prevent the collapse, and the white dwarf will collapse and possibly explode in a

Type Ia supernova. Similarly to the Chandrasekhar limit, the maximum mass

for a neutron star is the Tolman-Oppenheimer-Volkoff (TOV) limit, which if

surpassed, leads to the inevitable collapse of a neutron star into a black hole.

There are also NSs with a rest mass that exceeds the maximum mass of a

spherical nonrotating star, they are known as supramassive neutron stars (Cook

et al., 1994). The TOV limit depends on the unknown EOS. Theoretically, for a

nonrotating NS the limit on the mass is 3.2 M� (Rhoades & Ruffini, 1974), and

later improved by Hartle (1978). This limit in mass is due to the relativistic

particles having a maximum value of energy, because the speed of light is a

constant value.

Observations in 2017 of the first occurrence of gravitational waves due to

a neutron star binary merger (GW170817) set a potential mass limit, M ≤
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2.7 M� (Abbott et al., 2017; Margalit & Metzger, 2017). This was the mass

of one of the neutron stars involved in the collision. Recently, Rezzolla et al.

(2018), combining observations of gravitational waves from merging binary

systems of NSs, and quasi-universal relations, were able to set lower and upper

limits for the TOV mass, MTOV,

2.01+0.04
−0.04 ≤

MTOV

M�
. 2.16+0.17

−0.15. (2.18)

There is a way to measure the mass of NSs, known as the Shapiro delay

method. In the solar system it is the measurement of time delays between

the transmission of radar pulses and the detection of the reflected ones when

pointed to a source (Shapiro, 1964). For pulsars, a delay in pulse arrival times

due to the curvature of spacetime is observed when a pulsar passes behind its

stellar companion. In this year, using this method, the mass of the millisecond

pulsar MSP J0740+6620 was measured, M = 2.14+0.10
−0.09 M� (Cromartie et al.,

2019a; Cromartie et al., 2019b). This object clearly falls in the range of the

TOV limit. Earlier, this discovery there was another measurement using mag-

nesium triplet lines, the pulsar PSR J2215+5135, which is in a binary system,

has a mass of 2.27+0.17
−0.15 M� (Linares et al., 2018). This last method is less ac-

curate than the Shapiro delay, and is likely to have systematic errors. If the

latter pulsar is confirmed to have that mass, it could be the most massive one

yet, and will modify the TOV limit, and therefore put constraints on the EOS

of neutron star matter.

Another constraint on the EOS comes from the rotation of the neutron star

(Lattimer & Prakash, 2004). The upper limit in the rotation a neutron star

can have is called the Kepler limit, vK ,

vK =
1

2π

√
GM

R3
, (2.19)

which is the approximation in Newtonian gravity. General relativity gives a
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result of similar order of magnitude, but that equation is not so simple. This

is also known as the mass-shedding limit, and it depends on the relationship

between pressure and density in the interior of the star. This limit is obtained

when the velocity of the stellar surface matches the one of a particle orbiting

the star just above the surface.

2.3 Computing a Rotating Neutron Star

For this section to be consistent with the sources (Cook et al., 1994; Komatsu

et al., 1989), we are going to use a different notation for some parameters, like

density. First of all, the metric considered to compute rotating NSs is

ds2 = −eγ+ρdt2 + e2α
(
dr2 + r2dθ2

)
+ eγ−ρr2 sin2 θ (dφ− ωdt)2 , (2.20)

where ρ, α, γ, and ω are metric potentials, which are a function of r and θ. The

field equations used to find the metric potentials are found in the Appendix.

To compute rotating neutron stars, the code (described in detail in Chapter

3) will solve the stellar structure equations for rotation that come from the

Einstein field equations using a Green’s function method.

The integrals to find the different types of mass, angular momentum, and

rotational kinetic energy are written in terms of dimensionless quantities of the

radial coordinate, r, the angular velocity of the star, Ω, the rest–energy density,
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ρ0, the energy density, ε, and the pressure, P , given by Cook et al. (1994),

r̄ = κ−1/2r, (2.21)

Ω̄ = κ1/2 1

c
Ω, (2.22)

ρ̄0 = κ
G

c2
ρ0, (2.23)

ε̄ = κ
G

c2
ε, (2.24)

P̄ = κ
G

c4
P, (2.25)

where κ = c2/(Gε0), with ε0 = 1015 g/cm3, G is the gravitational constant, and

c is the speed of light.

The computation of all the properties is made on a grid (further discussed

in Chapter 3) that is in term of the variables µ and s, defined as

µ = cos θ and (2.26)

s =
r̄

r̄e + r̄
, (2.27)

where r̄e is the coordinate radius of the equator, and r and θ meet the conditions

0 ≤ r ≤ ∞, and 0 ≤ θ ≤ π/2, respectively. The variables s and µ follow

0 ≤ s ≤ 1, and 0 ≤ µ ≤ 1. The total mass, M , which is the sum of the mass of

all the particles in the star, and the one due to the effects of rotational kinetic

energy and gravitational potential energy, is computed as

M =
4πκ1/2c2r̄3

e

G
×∫ 1

0

s2ds

(1− s)4

∫ 1

0

d µe2α+γ

{
ε̄+ P̄

1− v2

[
1 + v2 +

2sv

1− s
(1− µ2)1/2ω̂e−ρ

]
+ P̄

}
,

(2.28)

where v is the proper velocity of matter at the equator with respect to a zero

angular momentum observer. It is also called gravitational mass in some liter-
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ature. The total rest mass of the star, M0, is

M0 =
4πκ1/2c2r̄3

e

G

∫ 1

0

s2ds

(1− s)4

∫ 1

0

d µe2α+(γ−ρ)/2 ρ̄0

(1− v2)1/2
. (2.29)

This mass is also known as baryonic mass. Both of this types of masses were

described, from the relativistic point of view, in Section 2.2. The total angular

momentum of the system, J , is

J =
4πκc3r̄4

e

G

∫ 1

0

s3ds

(1− s)5

∫ 1

0

d µ(1− µ2)1/2e2α+γ−ρ(ε̄+ P̄ )
v

1− v2
, (2.30)

and finally, the total rotational kinetic energy of the system, T , is given by

T =
2πκ1/2c2r̄3

e

G

∫ 1

0

s3ds

(1− s)5

∫ 1

0

d µ(1− µ2)1/2e2α+γ−ρ(ε̄+ P̄ )
vΩ̂

1− v2
, (2.31)

where Ω̂ = r̄eΩ̄. We can also notice that the rotational kinetic energy, T , can

be simply be obtained as a function of J ,

T =
1

2

Ω̂

cκ1/2r̄e
J. (2.32)

Considering the equations in this section and the stellar structure equations

for rotation, we can compute a series of rotating neutron stars, which will be

further explained in the next chapter.
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Chapter 3

Computation of Spinning

Neutron Stars Sequences

In this chapter we go over the NSSS (Neutron Star Spin Sequences) code and

its capabilities. This code, written in C, is based on the work of Stergioulas &

Friedman (1995), which computes the structure of a rapidly rotating neutron

star and gives us the mass, M , its equatorial radius, R, the orbital frequency, ν

(both co-rotating and counter-rotating), of a particle orbiting at the Innermost

Stable Circular Orbit (ISCO), and many other properties of rotating neutron

stars. We are modelling normal sequences, which means that the rotating

star is stable to radial perturbations when it is spun to zero spin frequency.

Rotating stars that are not stable to radial perturbations when spun down to

zero spin are called supramassive (Cook et al., 1994).

The purpose of NSSS is to compute sequences of rigidly rotating NSs, each

with a constant value of rest mass. These sequences allow us to trace the

change in a NS’s properties as it spins down to slower spin rates without losing

any matter.

In Section 3.1 we describe how NSSS works based on a grid that represents

a quarter of a NS. In the section 3.2 we explain how one NS is computed. In

Sections 3.3 and 3.4 we explain the two different types of sequences that this
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software can compute: one that finishes when the Kepler limit, νK , is reached;

and the other that finishes when a spin limit, νmax, is given. In Section 3.5

we go over an interpolation method used to simulate NSs with the same value

of rest mass. In Section 3.6 we show some examples of the output. Lastly,

in Section 3.7, we present the physical properties computed for every NS, and

some examples of plots obtained with the python code NSSPlots.

3.1 NSSS Code

To compute the structure of rotating NSs this code uses a two dimensional

grid. To do this, the spatial coordinates must first be discretized into this grid.

Each cell corresponds to a point where the polar angle, radial coordinates,

and the corresponding functions depending on them will be evaluated. The

discretization will be made in terms of the variables s and µ, which, in each

cell of the grid, will be

s = SMAX
i− 1

SDIV − 1
and (3.1)

µ =
m− 1

MDIV − 1
, (3.2)

with SMAX = 1, and µ = cos θ, such that 0 ≤ θ ≤ π/2. SDIV represents the

maximum value in i and MDIV is the maximum value in m. An example of

how the grid is structured is seen in Figure 3.1. This grid has a resolution of

MDIV × SDIV = 7 × 9. In this figure we can see the axes, which are i and

m, both of which follow 0 < i < SDIV and 1 < m < MDIV, respectively.

If i = 0, we have s = 0 (which represents the centre of the neutron star); if

i = SDIV, we have s = SMAX (a point at infinity outside the neutron star).

In the case of µ, if m = 1 we have µ = 0 (the equator of the neutron star);

and if m = MDIV we have µ = 1 (the north pole of the neutron star). These

quantities are represented in Figure 3.2. In each bin we have values of physical
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Figure 3.1: Grid that shows how the code is structured. In this case MDIV ×
SDIV = 7× 9.

quantities of the NS, such as the total mass, M , the rest mass, M0, the angular

momentum, J , and the rotational kinetic energy, T . All of which were defined

in Section 2.3.

The default grid size of NSSS is MDIV × SDIV = 151 × 301 (this can be

changed in the file makefile). The higher the resolution of this grid is, the more

accurate the results will be, but also the more time consuming it will be. After

each modification in makefile the object files (with “.o” extension) have to be

deleted. NSSS is able to compute the following:

• One neutron star with a certain value of oblateness;

• Sequences of neutron stars with constant rest mass (mass of the parti-

cles that make up the star, denoted by M0) by increasing the rotational

frequency from zero to the limiting spin frequency, νK (Kepler limit); and

• Sequences of neutron stars, each with constant M0, by increasing the

rotational frequency from zero to a maximum frequency, νmax, given by

the user.
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Figure 3.2: Section of a NS where the computation of the data in the star takes
place, which is the region from θ = 0 to θ = π/2. The equatorial radius of the
NS is along the horizontal line and the spin axis goes along the vertical line.

These tasks will be further discussed in Sections 3.2, 3.3, and 3.4. The input

parameters that are needed to compute the different tasks are in Table 3.1.

Table 3.1: Input parameters to run NSSS.

Parameter Description

-f Name of the file with the tabulated equation of state (EOS)
-e Central energy density, εc (in g/cm3)
-n Number of sequences to be produced
-m Central energy density for the maximum-mass NS for a given EOS, εc,M
-r Ratio of rp/re (between 0 and 1)
-t Maximum spin frequency, νmax (in Hz)

To compute the neutron stars we make use of the five different classes of

equations of state: ABPR, APR, BBB, HLPS, and L. The first one on the list,

ABPR, proposed by Alford, Braby, Paris, & Reddy (2005), describes nuclear

and quark matter. There are three versions of it. The EOS APR (Akmal,

Pandharipande, & Ravenhall, 1998) describes matter made up of neutrons,

32



protons, and leptons at zero temperature in its lowest energy state considering

two-nucleon (NN) interaction. The EOS BBB proposed by Baldo, Burgio, &

Bombaci (1996) describes asymmetric nuclear matter. There are two versions

of this equation (BBB1 and BBB2); they also consider NN interactions. The

EOS HLPS was presented by Hebeler, Lattimer, Pethick, & Schwenk (2013).

It is based on NN and 3N (three nucleons) interactions for microscopic neutron

matter. There are three versions of this EOS. The last EOS considered in this

work, L, describes the matter as a solid pion, π0, condensate (Pandharipande

et al. (1976), and Pandharipande & Smith (1975)), which is a superfluid formed

by these pions that, most of the times, decay into gamma rays.

In NSSS we follow the spin-down of a NS from the maximum spin rate to

zero spin without losing or gaining matter. However, computationally speak-

ing, spinning up the star is more helpful to find the rotational limit these

objects have. To analyse the data obtained from NSSS we use the python

code NSSPlots (Neutron Star Sequences Plots). The plotted data are the

physical properties of rotating NSs. These properties can be seen in Table 3.3

in Section 3.7, and are also some of the ones considered in the analysis of NS

sequences done by Cook et al. (1994).

3.2 Computing One Neutron Star

To compute a single neutron star we need a tabulated equation of state, a

value of the central energy density, εc, and the value of the ratio of the polar

radius and the equatorial radius, rp/re, which tells us how oblate the neutron

star is (Figure 3.3). This quotient is indicative of how fast the neutron star is

spinning. The faster it rotates, the more oblate it becomes. For example, when

we have a ratio of rp/re = 1 the neutron star is spherical and not spinning. The

EOS and the central energy density will be used to create a zero-spin neutron

star with a certain mass and radius. Then, the quotient rp/re, will be used to
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Figure 3.3: Left: Model of a nonrotating neutron star with the two radii con-
sidered in NSSS, the equatorial radius, re, and the polar radius, rp. In this
case, they are equal to each other. Right: Rapidly rotating neutron star, where
now re > rp, because of the rotation.

make the star oblate, and therefore, spinning, which will change its equatorial

radius and the total mass, since it will gain mass due to the rotational kinetic

energy. An example of the command line used to compute a single NS would

be

./nsss -f filename -e 1.6e15 -r 0.9

The word filename is the name of the EOS file (the ten different EOS used can

be found in Table 3.2), “-e 1.6e15” indicates that the central energy density

at which we begin to computer the first sequence is 1.6× 1015 g/cm3. The “-r

0.9” indicates the value of rp/re.

3.3 Computing Sequences from Zero Spin to

the Kepler Limit

The sequences that are computed in this part contain neutron stars that are

being spun up until they reach the Kepler limit. The condition is that the NSs

that make up one sequence must have the same value of rest mass (also called
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baryonic mass). In other words, no matter is being added to the NS and no

matter is lost; the mass of the particles that make up the star is kept constant.

Similar to the computation of only one NS, to compute a sequence of neu-

tron stars we need to have a value of εc, a tabulated EOS, and the value of

the central energy density at which we get the maximum-mass neutron star for

each EOS, εc,M . We computed this last value and its corresponding mass, MM ,

rest mass, M0,M , and radius RM . They can be found in Table 3.3.

Table 3.2: Data corresponding to the value of R, rp/re, and εc when M ∼ 1 M�
for each EOS considered here (this is one combination). It also shows the value
that εc has to have when a nonrotating NS with the maximum mass, MM , is
computed; the corresponding values of radius and rest mass are RM , and M0,M ,
respectively.

R and εc when M ∼ 1 M� εc when MM is obtained

EOS M R rp/re εc MM M0,M RM εc,M

(M�) (km) (g/cm3)×1015 (M�) (M�) (km) (g/cm3)×1015

ABPR1 1.009 11.48288 0.996 0.739545 1.93468 2.26467 10.8059 2.3317

ABPR2 1.004 10.49412 0.994 1.09338 1.49662 1.69859 9.28537 3.3454

ABPR3 1.004 11.57512 0.984 0.983153 1.47598 1.65273 9.67557 3.1508

APR 1.000 11.38782 0.998 0.775 2.23685 2.71921 9.89745 2.8437

BBB1 1.000 11.21119 0.988 0.836243 1.78951 2.08233 9.6527 3.07827

BBB2 1.000 12.09300 0.872 0.777099 1.91853 2.26798 9.48855 3.7733

HLPS1 1.003 9.68367 0.996 1.04467 2.0423 2.51353 9.23051 3.1781

HLPS2 1.000 14.48549 0.706 0.5598 2.49576 3.05768 11.5378 1.9929

HLPS3 1.005 13.21363 0.998 0.449864 2.98219 3.7009 13.3676 1.455

L 1.000 15.18746 0.914 0.352224 2.71085 3.22955 13.7477 1.44216

First of all, to create a sequence of NSs, a nonrotating spherical NS is

created. This is going to be the first star in the sequence, and will have a

central energy density of εc,1, and a rest mass of M∗
0 . We make sure to store

this value of rest mass, because it will be needed to find the stars that continue

the sequence.

Now, we need more stars with the same M0 as the static one, but these stars

will rotate gradually faster until one of them reaches the Kepler limit, where

the NS gets destroyed due to its rapid rotational frequency. To do this, the
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value of rp/re, originally equal to one, is decreased, and three neutron stars are

computed, each with this same ratio, but with the following values of central

energy density, εc,1, εc,2, and εc,3, such that εc,3 < εc,2 < εc,1. These NSs will

have rest masses M0,1, M0,2, and M0,3, such that M0,3 < M0,2 < M0,1. We

can notice that M0,1 will not be exactly equal to M∗
0 because the NS is now

rotating.

To find a NS with a rest mass equal to M∗
0 , the code makes use of the

3-point interpolation method (described in Section 3.5) to find a value of ε̂c

such that

εc,3 < ε̂c < εc,1. (3.3)

This value will guarantee the creation of a rotating NS with M0 = M∗
0 . Then,

using ε̂c and a smaller value of rp/re, the second NS in the sequence is created,

which will have εc = ε̂c and M0 = M∗
0 .

This process goes on and rp/re is made smaller (the NS rotates faster) for

each computation of one NS, and it continues until the star reaches the Kepler

limit, which is the maximum rotational frequency that the star can rotate at.

At this point one sequence of neutron stars with constant value of rest mass,

M∗
0 , is obtained.

To compute another sequence εc is increased and the code computes another

set of stars in the same way, starting with rp/re = 1. This task of computing

sequences continues until the total mass, M , of the nonrotating NS is equal

to the maximum mass of a nonrotating NS for the given EOS, MM . Another

way to stop the process is by including a parameter (-n) that tells the code to

compute only a certain number of sequences. An example of a command line

to compute 10 sequences would be

./nsss -f filename -e 1.6e15 -n 10 -m 2.3327

filename can be replaced with the file of the chosen EOS (Table 3.2), “-e 1.6e15”
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represents the value of εc, “-n 10” tells NSSS to compute 10 sequences, and

“-m 2.3327” is the value of εc,M (notice that we do not need to represent it in

scientific notation like εc). This last value is needed to compute the maximum-

mass NS for each EOS to later be able to normalize some properties.

3.4 Computing Sequences up to a Given Value

of Spin Frequency

This task is very similar to the one described in the previous section. The

difference is that, in this case, the maximum rotational frequency is not the

Kepler limit. It can be set by the user, no matter which EOS is being used. We

need a tabulated EOS, a value of εc, the value of εc,M at which the maximum-

mass neutron star is obtained, and one parameter that tells NSSS to compute

NSs up to a certain spin frequency, νmax. The value of νmax has to be given in

Hz. An example of the command line of initialization for this task is

./nsss -f filename -e 1.6e15 -n 10 -m 2.3317 -t 800

This line is the same that was used in the previous section, we just added “-t

800”, which tells the code to only compute sequences of neutron stars that

rotate with a frequency less than νmax = 800 Hz.

3.5 3-point Interpolation in NSSS

When computing a sequence of neutron stars, we use the 3-point interpolation

method to find a star that can continue the sequence with the same value of

rest mass as the initial neutron star in the sequence, that is, M0 = M∗
0 . The

difference is that the new computed star has a larger ν, and a smaller εc, which

will be found using this method.

The interpolation function takes three NSs computed with the same value
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of rp/re and close values of central energy density, εc,1, εc,2, and εc,3, such that

εc,3 < εc,2 < εc,1. The rest masses of the corresponding NSs are M0,1, M0,2, and

M0,3, such that M0,3 < M0,2 < M0,1. A graphical representation of this method

shows the three stars with these values in Figure 3.4.

The equation of interpolation will be given by

0 = a(εc − εc,2)(εc − εc,3) + b(εc − εc,1)(εc − εc,3) + c(εc − εc,1)(εc − εc,2),

(3.4)

with a, b, and c given by the following equations:

a =
y1

(εc,1 − εc,2)(εc,1 − εc,3)
; (3.5)

b =
y2

(εc,2 − εc,1)(εc,2 − εc,3)
; (3.6)

c =
y3

(εc,3 − εc,1)(εc,3 − εc,2)
, (3.7)

with

y1 = M∗
0 −M0,1, (3.8)

y2 = M∗
0 −M0,2, and (3.9)

y3 = M∗
0 −M0,3, (3.10)

Rewriting equation 3.4 we have

a(εc,2 − εc,3εc − εc,2εc + εc,2εc,3) + b(ε2
c − εc,3εc − εc,1εc + εc,1εc,3)+

c(ε2
c − εc,2εc − εc,1εc + εc,1εc,2) = 0,

(a+ b+ c)ε2
c − (aεc,3 + aεc,2 + bεc,3 + bεc,1 + cεc,2 + cεc,1)εc+

aεc,2εc,3 + bεc,1εc,3 + cεc,1εc,2 = 0. (3.11)
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Figure 3.4: Top: Example of the 3 point interpolation method. Notice that on
the left side one solution is ε̄c, which is outside the range of the 3 values of εc.
Bottom: A closeup of the right side of the plot, where the points are very close
together. The solution, ε̂c (red triangle), is in between the three values of εc.
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Notice that the equation is quadratic,

(a+ b+ c)ε2
c − Aεc +B = 0, (3.12)

with A and B being

A = aεc,3 + aεc,2 + bεc,3 + bεc,1 + cεc,2 + cεc,1 and (3.13)

B = aεc,2εc,3 + bεc,1εc,3 + cεc,1εc,2. (3.14)

To find the two values of εc we simply use the quadratic formula,

εc =
A±

√
A2 − 4(a+ b+ c)(B)

2(a+ b+ c)
. (3.15)

The three neutron stars with εc,1, εc,2, and εc,3 can be found in Figure 3.4, along

with the two solutions, ε̄c and ε̂c. Notice that only the latter is considered to

continue the computation of the following NS, because it falls in the range of

εc,3 < ε̂c < εc,1.

3.6 Output

Let us see some examples of output data from NSSS. First, consider the fol-

lowing command line

./nsss -f eos-master/eosL -e 0.36e15 -n 5 -m 1.44216 -t 800

This command will take the tabulated L equation of state, that is located in

the folder “eos-master”, it will also take a starting value of the central energy

density, εc = 0.36 × 1015 g/cm3; the “-n” parameter tells NSSS to compute 5

sequences of NSs, each with a constant M0. The next command, “-m 1.44216”

tells NSSS to compute the nonrotating neutron star with the highest mass

for the L equation, which happens at εc,M = 1.44216 × 1015 g/cm3. The last
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parameter tells the code that the sequences will finish when the NSs reach

νmax = 800 Hz. Therefore, this line will output the following

Computing star with spin frequency from 0 to 800 Hz

e c Mass Mass 0 StatM Radius R-ratio StatR Spin K freq

e15 Msun Msun Msun km – km Hz Hz

Energy center = 0.36

0.36 0.99737 1.04661 0.99737 14.51368 1.000 14.51368 0.000 1047.09802

0.35978 0.99738 1.04661 0.99737 14.52606 0.998 14.51368 52.552 1044.55302

0.359603 0.99743 1.04662 0.99737 14.54023 0.996 14.51368 76.061 1042.68951
...

...
...

...
...

...
...

...
...

In the headings, “e c” is εc, “Mass 0” is M0, “R-ratio” is rp/re, “StatM” is

the mass of the first nonrotating NS in each sequence, and it has a radius given

by “StatR”, “Spin” is the spin frequency, and “K freq” is the Kepler frequency.

Notice that the statement before the headings tells us that the NSSS code is

computing the sequences up to νmax = 800 Hz. Even if not all of the physical

properties of the neutron star are displayed (see Table 3.3), all of them will be

in the output file.

To compute the sequences up to the maximum spin frequency we just omit

the command “-t 800”, and now the statement above the headings will be

“Computing sequences with spin frequency from 0 Hz to the Kepler limit”.

Now, let us see how the input and output will be if we compute one neutron

star. An example of this would be the following line of commands

./nsss -f eos-master/eosL -e 0.36e15 -r 0.9

Similar to the last example, this command uses the tabulated equation of state

L, the NS will have a central energy density of εc = 0.36 × 1015 g/cm3 and it

will have a ratio of the polar and the equatorial radii of rp/re = 0.9, which tells

us that the neutron star is rotating. The output is the following set of data

that belongs to this one star, which like the previous case, it is denoted by a

sentence before the headings:
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Computing one neutron star

e c Mass Mass 0 Radius R-ratio Spin K freq

e15 Msun Msun km – Hz Hz

0.36 1.05561 1.10903 15.34503 0.900 384.982 995.61897

3.7 Properties Obtained from NSSS

The physical properties of each NS that NSSS outputs are seen in Table 3.3.

Note that these are some of the parameters used by Cook et al. (1994) to do a

similar analysis of NS sequences.

Table 3.3: Physical properties obtained from NSSS for every single NS com-
puted.

Parameter Description

εc Central energy density

M Total mass (in M�)

M0 Rest mass, also known as baryonic mass (in M�)

M∗ Mass of the first nonrotating NS in a sequence (in M�)

MM Maximum mass of a nonrotating NS for a given EOS (in M�)

R Equatorial radius of the NS (in km)

rp/re Ratio of the polar radius and the equatorial radius

R∗ Equatorial radius of the first nonrotating NS in a sequence (in km)

ν Rotational frequency (in Hz)

νK Kepler limit for rotation (in Hz)

J Angular momentum (in cm2g/s)

T Rotational kinetic energy (in g)

U Gravitational binding energy (in g)

RM Radius of the maximum-mass NS for a given EOS (in km)

MM/RM Compactness of the nonrotating maximum-mass NS for a given EOS

To analyse the physical properties we make use of various different plots.

For some of them, we consider dimensionless or normalized quantities. This is

because the behaviour of some of the data can be seen better when it depends

only on dimensionless variables. The dimensionless angular velocity can be
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calculated in the following manner:

Ω

(
R3

GM

)1/2

, (3.16)

where G is the gravitational constant; M and R are the already known mass

and equatorial radius. The compactness is given by

ζ =
GM

Rc2
, (3.17)

where c is the speed of light. A way to normalize the previous quantity is by

dividing it by the maximum compactness, which is the one corresponding to

the maximum-mass NS for a given EOS. Its mass and radius are MM , and RM .

The latter is the radius of the maximum-mass NS, not the maximum radius.

Thus the normalization will be

ζ

ζmax

=
M/R

MM/RM

. (3.18)

The Kerr spin parameter can be obtained as well,

a =
cJ

GM
, (3.19)

where J is the angular momentum. The normalized version of this parameter

is

a

M
=

cJ

GM2
, (3.20)

which obeys 0 ≤ a/M ≤ 1. The fraction of mass that comes from relativistic

sources compared with the rest mass is given by

M −M0

M0

. (3.21)
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The fractional increase of M compared to the mass of the nonrotating neutron

star in the beginning of each sequence is

M −M∗
M∗

, (3.22)

where we keep in mind that M0 is the same in each sequence. Similarly to the

above relation, the fractional increase of the equatorial radius compared to the

radius of the nonrotating NS in the beginning of the sequences, is

R−R∗
R∗

, (3.23)

We can see in Figures 3.5, 3.6, and 3.7 some examples of the plots that

can be obtained using the dimensionless and normalized quantities previously

mentioned.

Figure 3.5: Sequences of fractional mass gained for rotating NSs with constant
value of M0. It is a function of the spin frequency. We considered the APR
equation of state.
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Figure 3.6: Fraction of total mass gained for ten EOS for rotating NSs, all
of them as a function of the squared dimensionless angular velocity, and the
dimensionless compactness.

Figure 3.7: Fractional increase in radius as a function of the squared dimen-
sionless angular velocity and normalized compactness. The ten EOS were con-
sidered.
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Chapter 4

Fractional Increase in Mass

In general relativity, Einstein theorized that mass was not the only thing that

curves spacetime, energy does as well. When a NS rotates it has a certain value

of rotational kinetic energy, T . Thus it is logical to think that a NS gains a

larger amount of mass as its spin frequency gets higher. In this chapter we are

going to derive an approximation of this gain in mass, M , as a function of its

intrinsic properties, like angular velocity, Ω, rest mass, M0, and radius, R.

The various EOS can generally be divided into two types: stiff and soft.

In simple terms, in a stiff EOS there is a large change in pressure for a given

change in density, which means that NSs with stiff EOS are harder to compress

and are more stable. On the other hand, soft EOS are easier to compress, and

the change in pressure is not as big for the same given change in density. This

means that NSs arising from soft EOS will not be as massive as NSs with stiff

EOS, and that NSs with stiff EOS will have a larger radius than those with

soft ones.

In Section 4.1 we are going to derive an order of magnitude approximation

showing how the mass of a rotating NS changes compared to its value of rest

mass, which is the mass of all the particles making up the NS. In Section 4.2

of this chapter we are going to derive an order of magnitude approximation for

another increase in mass, but now compared to the mass of a static star with
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the same rest mass. In Section 4.3 we numerically compute, using NSSS, these

fractional increases in mass. We graphically analyse these relationship and we

find a quasi-universal relation between said fractional increases in mass, and the

angular velocity and compactness. In Section 4.4 we show the comparison of

the changes in mass with the two recently discovered pulsars, MSP J0740+6620

and PSR J1614-2230.

4.1 Fractional Increase of Mass Compared to

Rest Mass

We know that rotation modifies the shape of a NS and its X-ray emission

(Morsink et al., 2007), but rotation also affects its mass, making it increase.

This is because, as general relativity tells us, energy is also a source of gravity.

A rotating NS has kinetic rotational energy, T , and combined with the gravita-

tional binding energy, U , these energies modify the total mass of the star, M .

Let us analyze how the mass of a NS changes when compared to its rest mass

as it rotates. An approximation of this change in mass, considering relativistic

sources is given by

M = M0 +
U

c2
+
T

c2
. (4.1)

We need the expressions for U and T . Let us assume that the NS is a sphere of

uniform density, thus in this approximation, we take the Newtonian equation

for U , then

U = −3

5

GM2
0

R
, (4.2)

T =
1

2
IΩ2, (4.3)
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where G is the gravitational constant, R is the equatorial radius, I is the

moment of inertia of the NS, and Ω is the angular velocity.

Substituting (4.2) and (4.3) into (4.1) gives us the following relationship

M = M0 −
3

5

GM2
0

Rc2
+

1

2

IΩ2

c2
. (4.4)

Replacing I for the moment of inertia of a solid sphere,

M = M0 −
3

5

GM2
0

Rc2
+

1

2

(
2

5
M0R

2

)
Ω2

c2
, (4.5)

= M0

(
1− 3

5

GM0

Rc2
+

1

5

R2Ω2

c2

)
. (4.6)

Now, we multiply and divide the last term by R3/GM0,

M = M0

[
1− 3

5

GM0

Rc2
+

1

5

R2Ω2

c2

(
R3

GM0

)(
GM0

R3

)]
. (4.7)

Rewriting the last term on the right side,

M = M0

[
1− 3

5

GM0

Rc2
+

1

5

R2

c2

(
Ω2R3

GM0

)(
GM0

R3

)]
. (4.8)

We define now the following dimensionless angular velocity

Ω̄2 =
Ω2R3

GM0

. (4.9)

Thus, the mass of the NS becomes,

M = M0

[
1− 3

5

GM0

Rc2
+

1

5

R2

c2
Ω̄2

(
GM0

R3

)]
, (4.10)

= M0

[
1− 3

5

GM0

Rc2
+

1

5

GM0

Rc2
Ω̄2

]
. (4.11)
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Taking out the first term inside the brackets,

M = M0 +M0

[
−3

5

GM0

Rc2
+

1

5

GM0

Rc2
Ω̄2

]
, leading to (4.12)

M −M0 = M0

[
−3

5

GM0

Rc2
+

1

5

GM0

Rc2
Ω̄2

]
, (4.13)

Therefore, the approximate fractional change in mass of a rotating NS due to

relativistic sources compared to its rest mass is

M −M0

M0

=
GM0

Rc2

[
−3

5
+

1

5
Ω̄2

]
. (4.14)

This fractional change in mass has a negative slope, and it is directly propor-

tional to the compactness of the NS. We can see that, as the spin frequency

increases, the magnitude of this mass fraction will decrease.

4.2 Fractional Increase in Mass Compared to

a Nonrotating NS

In the previous section we found that the approximate mass of a rotating NS

depends on U and T . We will make use of the same approximation by taking

into account the mass given by equation (4.4). Now we will analyse the change

in mass from a different point of view, we will see how the total mass of a

rotating NS changes compares to the total mass of a nonrotating NS, both

with the same rest mass. The mass is then

M = M0 −
3

5

GM2
0

Rc2
+

1

5

M0R
2

c2
Ω2. (4.15)

Subtracting, on both sides, the mass of a nonrotating NS, M∗,

M −M∗ = M0 −M∗ −
3

5

GM2
0

Rc2
+

1

5

M0R
2

c2
Ω2. (4.16)
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Multiplying and dividing the last term on the right side by R3/GM0,

M −M∗ = M0 −M∗ −
3

5

GM2
0

Rc2
+

1

5

M0R
2

c2
Ω2

(
R3

GM0

)(
GM0

R3

)
. (4.17)

Dividing now by M∗,

M −M∗
M∗

=
M0 −M∗

M∗
+

1

M∗

[
−3

5

GM2
0

Rc2
+

1

5

M0R
2

c2

(
GM0

R3

)
Ω̄2

]
. (4.18)

Rewriting the right side of the equation,

M −M∗
M∗

=
M0 −M∗

M∗
+

1

M∗

[
−3

5

GM2
0

Rc2
+

1

5

GM2
0

Rc2
Ω̄2

]
. (4.19)

We now know the fractional increase in mass of a rotating NS compared to the

mass of a static NS,

M −M∗
M∗

=
M0 −M∗

M∗
+
GM0

RC2

[
−3

5

M0

M∗
+

1

5

M0

M∗
Ω̄2

]
. (4.20)

If we compare both fractional increases of mass as a NS rotates, we can see

that (4.20) involves a fractional change in rest mass compared to the mass of

a static NS. This means that this relation predicts a smaller change in mass

than the one described by equation (4.14), in the previous section.

4.3 Graphical Analysis

After computing sequences of NSs with constant rest mass using NSSS, we

can take a look at them and see how the mass of a NS increases as its angular

velocity gets larger.

Figure 4.1 shows the fractional increase in total mass compared to the rest

mass, this fractional change depends on the dimensionless angular velocity,

Ω (R3/GM)
1/2

. In this figure we have a set of sequences for EOS ABPR1

for different values of M0. Each of the, approximately horizontal, rows of
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Figure 4.1: Fractional mass gain compared to the rest mass for ESO ABPR1.
It is a function of the dimensionless angular velocity.

points corresponds to a constant rest-mass sequence of stars. The less massive

sequences of NSs are located in the bottom of this plot, and the most massive

on top.

A curious result is that, for the least massive sequence, the change in mass

is almost non existent; this sequence is almost horizontal. Therefore we could

even consider Newtonian mechanics to describe the less massive NSs. We can

see that the lowest row of points is approximately linear with a negative slope,

which is exactly the Newtonian approximation from equation (4.14). We see

that relativistic effects are more dominant in high-mass sequences located at

the top of the plot. Figure 4.2 shows all the sets of sequences for each of the

ten EOS considered here. In this plot we can see that the maximum change in

M with respect to M0 is almost 20%.
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Figure 4.2: Fractional mass gain compared to the rest mass. It is a function of
the squared dimensionless angular velocity and dimensionless compactness.

Figure 4.3 shows the change in mass of a NS compared to the mass of the

nonrotating NS that begins each sequence. Each of them has the same value

of M0 for EOS ABPR1. We can see that the fractional change (M −M∗)/M∗
follows a squared increase compared to (M −M0)/M0, however the change is

more significant in the latter. In the former, the fractional change in mass

increases up to 3.5%.

The matter in a neutron star is degenerate, this means that the star is a

very compact object, where the space between particles is close to the size of a

neutron. This means that NSs with a high mass are smaller than those with a

low mass. As a result, high-mass NSs have a higher increase in mass because

they are more tightly bound together than lower-mass NSs, which results in a

more gravitationally stable star. The considered EOS also plays a role here, if

we have a stiff EOS, the star can be held together easily as it rotates, which

results in a higher increase in mass before it breaks apart.
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Figure 4.3: Fractional mass gain compared to the mass of a nonrotating NS for
EOS ABPR1. It is a function of the dimensionless angular velocity.

In Figure 4.4 we can see the same fractional increase in mass as in Figure

4.3, but this time as a function of the dimensionless squared angular velocity

and the dimensionless compactness. It shows a clear trend, where the maximum

increase in mass is approximately 5% for all EOS.

If we focus our attention on the 3D plots in Figures 4.2 and 4.4 we see that

either fractional change in mass follows a clear trend. Thus it is possible to find

a surface that best fits all the sequences for all the EOS. The equation of the

surface (shown in Figure 4.5 and 4.6 for two different angles of visualization)
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Figure 4.4: Fractional mass gain compared to the mass of a nonrotating NS,
considering ten EOS. It is a function of the squared dimensionless angular
velocity and dimensionless compactness.

that best approximates the data of (M −M0)/M0 is given by

M0 −M
M0

= −0.015 + 0.893y − 3.725y2 + 15.991y3 − 22.045y4+

x
[
−0.211 + 1.386y − 3.947y2 + 3.314y3

]
+

x2
[
1.709− 6.443y + 3.943y2

]
+

x3 [−5.459 + 9.348y] + 5.906x4, (4.21)

where

x = Ω2

(
R2
∗

GM∗

)
, (4.22)

y =
GM∗
Rc2

. (4.23)

We chose an even power for the polynomial fitting because the change in
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Figure 4.5: Best fit surface of the data for (M0 − M)/M0 for the ten EOS
considered in this work.

mass described by equation 4.14 depends on the squared angular velocity. To

estimate how good the fit is, we use the coefficient of determination1, R2, which

is the proportion of the variance in the dependent variable ((M −M0)/M0, in

this case) that is predictable from the independent variable (angular velocity

and compactness). It follows the condition 0 ≤ R2 ≤ 1, with R2 = 1 being the

surface that matches exactly the behaviour of the data, and R2 = 0 represents

the surface that does not fit the data at all. For this fit, the coefficient of

determination is R2 = 0.95719, which means that is close to being an perfect

fit.

Now, the surface that best approximates the behaviour of the second frac-

1Python documentation for R2. https://scikit-learn.org/stable/modules/model_

evaluation.html#r2-score
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Figure 4.6: A different view of the best fit surface of the data for (M0−M)/M0

for the ten EOS considered in this work.

tional change, (M −M∗)/M∗ (Figures 4.7 and 4.8 show two different angles of

visualization), is given by

M −M∗
M∗

= −0.004 + 0.034y − 0.152y2 + 0.491y3 − 0.729y4+

x
[
0.109− 0.274y +−0.255y2 + 2.693y3

]
+

x2
[
−0.966 + 2.739y + 0.089y2

]
+

x3 [2.903− 3.596y]− 2.978x4, (4.24)

where x and y are the same as the previously defined variables. For this best fit

surface equation we get a coefficient of determination of R2 = 0.97869, which is

in a better agreement with the data than the previous surface equation, (4.21).
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Figure 4.7: Best fit surface of the data for (M − M∗)/M∗ for the ten EOS
considered in this work.

Figure 4.8: Another view of the best fit surface of the data for (M −M∗)/M∗
for the ten EOS considered in this work.
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Figure 4.9: Residual percentages for EOS BBB1 and the (M−M0)/M0 surface,
described by equation (4.21).

To check whether the equations for best fit surface, (4.21) and (4.24), are

a good fit, we compute the residuals between these equations and the data

from each EOS. In Figure 4.9 we have the residuals for (M −M0)/M0 for EOS

BBB1, and in Figure 4.10 we see the residuals for (M −M∗)/M∗ considering

EOS APR. We consider those two EOS because they are the ones that have the

least amount of difference between the surface and the data. The residuals for

(M−M0)/M0 vary from 0.4% to 2.5%, while the residuals for (M−M∗)/M∗ vary

from 0.1% to 1%, which means that, in all the EOS, both fractional changes in

mass are independent of the EOS.

The trend that both fractional changes follows makes us think that it has

something to do with universality. Universal relations have being found be-

tween the deviations of the effective acceleration due to gravity, the compact-

ness, the dimensionless squared angular velocity and the latitude on the star’s

surface (Yagi & Yunes, 2013); or a universal relation between the moment of

inertia, the Love number and the quadrupole moment, which are independent
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Figure 4.10: Residual percentages for EOS APR and the (M−M∗)/M∗ surface,
described by equation (4.24)

of the neutron star’s internal structure (AlGendy & Morsink, 2014).

This time we found a universal relations for (M−M0)/M0 and (M−M∗)/M∗,

both dependent on the dimensionless squared angular velocity, Ω2R3/GM , and

the dimensionless compactness, GM/Rc2. Both of these relations are nearly

independent of the EOS used.

We are assuming that NSs are uniformly rotating, which means that we

consider them to be rigid bodies, where each part of it is rotating at the same

speed. On the other hand, differential rotation in NSs means that different

parts of a NS will rotate at different rates, like the Sun, where areas on the

surface in the poles rotate at a faster rate than areas in the equator. Differential

rotation is not very likely to happen in NSs, although the merger of two NSs

could result in a differentially rotating super massive neutron star (Morrison

et al., 2004), where the fractional changes in mass could reach up to a 50%

increase respect to the rest mass (Kaplan et al., 2014), while the increase in

uniformly rotating NSs, as we have seen before, reaches 20%.
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Another consequence of differential rotation are glitches, which are a sudden

change in the rotation of a NS. These have been observed to happen in the Vela

pulsar in 2016 and in the Crab pulsar in 2017 (Keitel et al., 2019), which leads

to the conclusion that there is a superfluid in the interior of these massive

objects, that rotates at a different rate below the solid crust, and when the two

catch up, a glitch is observed.

4.4 Comparison with High Mass Pulsars

Figure 4.11: Mass fraction of all equations of estate showing the pulsars MSP
J0740+6620 (black vertical line), and PSR J1614-2230 (blue vertical line).

We can use some of the sequences to compare with two recently discovered

pulsars, MSP J0740+6620 (Cromartie et al., 2019a) with a total mass of M =

2.17+0.11
−0.10 M� and ν = 346.5319 Hz; and PSR J1614-2230 (Demorest et al.,

2010), with a mass of M = 2.01 ± 0.04 M� and a rotational frequency of

ν = 317.379 Hz. Both of them are millisecond pulsars (MSP), which are a type
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Figure 4.12: Frequency as a function of mass of the neutron stars computed
here. The black vertical lines represent the 1σ range in the mass of MPS
J0740+6620; the black central vertical line is the central value, M = 2.17 M�.
The blue horizontal line represents its spin frequency, ν = 346.5319.

of neutron stars that have a period in a range of 1-10 milliseconds. Since we

cannot measure M0, we compare the sequences of (M −M∗)/M∗ with these

two discoveries. In Figure 4.11 we can see the ten maximum-mass sequences

and the location of both pulsars’ spin frequency, the black vertical line is MSP

J0740+6620, and the blue vertical line represents PSR J1614-2230. We can

notice that the stiffest EOS (HLPS3 and L) are above the rest that follow a

similar rate of change. The changes in mass for both of the millisecond pulsars

are less than 0.3%.

Similarly, in Figure 4.12 we can see a plot of ν as a function of the mass

of the NSs (the sequences of stars are now vertical). In this, we plot the

data for MSP J0740+6620 as a comparison. The black vertical lines represent

(2.07 M�, 2.28 M�), or in other words, the 1σ measurement in the mass of
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the pulsar. The majority of the EOS in the plot are stiff which, as we know,

allow a NS to have a larger mass, in this case more than 2 M�. Those five

EOS shown (APR, HLPS1, HLPS2, HLPS3, L) are the only ones in our library

that reach a maximum mass above 2 M�. We can also see that EOS HLPS1

is almost ruled out by the 1σ mass limit. However, more observations of this

pulsar are required to reduce the size of the error bars on the mass. For the

relatively low spin rate of 346.53 Hz, the change in mass caused by rotation

is insignificant. This means that the upper mass limit derived from the TOV

equations is sufficient to use this pulsar’s mass to rule out any EOS.
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Chapter 5

Fractional Increase in Radius

Similarly to the previous chapter, we will analyse a fractional increase, but now

it will be in the equatorial radius of a NS as it spins, (R − R∗)/R∗. With this

ratio we investigate how the equatorial radius, R, increases compared to the

radius of a nonrotating NS, R∗. Both of the radii involved in the fractional

change belong to a sequence of NSs with the same value of M0.

In Figure 5.1 we can see the fractional change in radius as a function of

the dimensionless angular velocity. In this plot, the sequences are shown as

continuous lines instead of individual points that represent the stars, this is

done to see, in a better way, the behaviour of the sequences. We can notice

that all of them approach an asymptote, this is the Kepler limit. Close to this

limit is where the largest rate of growth in radius occur, and as we can see, it

can get to 40% larger than a nonrotating NS, in the case of EOS APR.

The three-dimensional plot in Figure 5.2 is the graph of all the sequences

with constantM0, considering the ten EOS. In this plot we can see the fractional

increase in radius as a function of dimensional variables, the squared value of

the angular velocity and the compactness, GM∗/R∗c
2.

Looking at Figure 5.2 we see that the rates of change define a surface,

because there is a clear trend in all the sequences. Thus we do a similar analysis

to that of Chapter 4, and we find that the best fit surface to these points does
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Figure 5.1: Fractional increase in radius as a function of the dimensionless
angular velocity. The sequences are represented as lines for EOS APR.

not represent a good fit compared the previous fractional changes in mass in

chapter 4, where we obtained values of R2 close to one (which means perfect fit).

Due to this issue we make another plot to do the same analysis. This new plot

is found in Figure 5.3, where (R−R∗)/R∗ is now a function of the dimensionless

squared angular velocity, and the normalized compactness, (M/R)/(MM/RM),

where MM , and RM are the mass and radius of the maximum-mass NS for each

EOS.

Taking into account the new fractional change in Figure 5.3, we construct

a best fit surface that can be seen in Figure 5.4. This surface is described by
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Figure 5.2: Fractional increase in radius as a function of the squared dimen-
sionless angular velocity and dimensionless compactness. The ten EOS were
considered.

the following equation

R−R∗
R∗

= −1.079 + 7.230y − 16.945y2 + 16.525y3 − 5.723y4+

x
[
10.218− 39.826y + 57.450y2 − 27.006y3

]
+

x2
[
−44.715 + 73.352y − 40.445y2

]
+

x3 [121.997− 63.912y]− 118.469x4, (5.1)

where x and y are given by

x = Ω2

(
R2
∗

GM∗

)
, (5.2)

y =
M/R

MM/RM

. (5.3)

This equation of the best fit surface has a coefficient of determination of

65



Figure 5.3: Fractional increase in radius as a function of the squared dimen-
sionless angular velocity and normalized compactness. The ten EOS were con-
sidered.

Figure 5.4: Best fit surface of the data for (R − R∗)/R∗ for all equations of
state considered in this work.
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Figure 5.5: Residual percentages for EOS APR and the (R − R∗)/R∗ surface,
described by equation 5.1.

R2 = 0.77769. This value is close to the one corresponding to the NS sequences

in Figure 5.2, which is R2 = 0.76808.

The best fit surface follows, in a good way, the behaviour of the data points,

so let us compute the residuals (Figure 5.5) between the surface equation (5.1)

and the data from EOS APR.

Unlike the residuals for mass in Chapter 4, the residuals for radii are not

small, they vary from 10% to 40%. This means that all the sequences fol-

low a trend, specially in the regions were Ω2(R3
∗/GM∗) . 0.2, which shows

that (R − R∗)/R∗ is almost independent of the EOS considered. The trend

suggests a possible universality, similar to previous studies done by AlGendy

& Morsink (2014), and Yagi & Yunes (2013)). Equation (5.1) describes only

a quasi-universal relation, one that is only dependent of dimensionless vari-

ables, the squared angular velocity, Ω2R3/GM , and the normalized compact-

67



Figure 5.6: Residual percentages for EOS APR and the (R − R∗)/R∗ sur-
face considering the data from Figure 5.2. It is a function of Ω2R3/GM and
GM∗/Rc

2.

ness, (M/R)/(MM/RM).

Both fractional increases in radius considered here (one as a function of

GM∗/R∗c
2, and the other as a function of (M/R)/(MM/RM)) vary significantly

compared to the fractional change in mass. Let us consider the data that

depends on GM∗/R∗c
2 and the dimensionless squared angular velocity. We

can see in Figure 5.6 the residuals for EOS APR, which are the smallest (up

to 10%) among the ten EOS. The majority of them have residuals that go up

to 40%. A way to find a better fit would be to only use data that goes up to

Ω2(R3
∗/GM∗) . 0.2, which represents, approximately, ν = 800 Hz. This would

be a better fit because the rapid increase in R occurs at higher values of spin

frequency, and nowadays, there have been no observations of NSs that rotate

faster than ν = 800 Hz. The fastest spinning pulsar has a spin frequency of

ν = 716 (Hessels et al., 2006).
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Chapter 6

Conclusions

We know the relation between mass and radius of neutron stars for a given

EOS when the star is static. For every single one of them there is a different

value of mass and radius. But things change when the NS rotates, relativistic

effects will change the relationship between mass and radius. That is why it it

important to understand the effects rotation has on a NS’s mass and radius.

There was a small difference between both of the fractional changes in mass,

(M −M0)/M0 and (M −M∗)/M∗. In the first one we obtained residuals up to

2.5% when compared to the best fit surface. In the second case we got residuals

of less than 1%. This difference is due to the intrinsic difference in total mass

and rest mass. The latter is around 15% larger than the former. On the other

hand, compared to a non rotating star, the radius of a rotating NS increases

to below 50% before reaching the Kepler limit and breaking apart.

We found that both fractional changes, in mass and radius, follow a trend,

no matter which EOS we are working with. This is telling us that there is

a universal relationship in the changes in mass and radius, which depend on

the dimensionless value of the squared angular velocity, and either the dimen-

sionless compactness, or the normalized NS’s compactness. These relationships

are clearly more accurate for the fractional changes in mass than for those in

radius.
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In the case of the fractional increase in radius, we notice that the surface is

in good agreement with the data that meets the condition Ω2(R3
∗/GM∗) . 0.2.

This is because, for spin frequencies higher than ν ≈ 800 Hz, the change in R

increases almost exponentially, and as of today, there had not been observations

of NSs with spin frequencies higher than that.

The future of NS observation is looking promising, new telescopes and

projects (NICER, eXTP, STROBE-X) are being developed to obtain more ac-

curate observations of NSs. The simulations in this work will help us compare

the results obtained here with the observations, which will be helpful to con-

strain the number of EOS to a more appropriate equation to describe a NS’s

interior.
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Appendix A

Equations of Stellar Structure

for Rotating Neutron Stars

The metric considered to compute rotating neutron stars with axial symmetry

is Cook et al. (1992)

ds2 = −eγ+ρdt2 + e2α
(
dr2 + r2dθ2

)
+ eγ−ρr2 sin2 θ(dφ− ωdt)2, (A.1)

where the potentials ρ, γ, α and ω are functions of r and θ. Notice that we

are following the notation from Komatsu et al. (1989). To compute NSs it is

considered that G = c = 1. The matter is assumed to be a perfect fluid with a

stress-energy tensor given by the following

T µν = (ρ0 + ρi + P )uµuν + Pgµν , (A.2)

where ρ0 is the rest-energy density, ρi is the internal energy density, P is the

pressure, and uµ is the four-velocity. The Einstein Field equations to solve for
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the potentials ρ, γ and ω are

∇2
[
ρeγ/2

]
= Sρ(r, µ), (A.3)(

∇2 +
1

r
∂r −

µ

r2
∂µ

)[
γeγ/2

]
= Sγ(r, µ) and (A.4)(

∇2 +
2

r
∂r −

2µ

r2
∂µ

)[
ωe(γ−2ρ)/2

]
= Sω(r, µ), (A.5)

where ∇2 is the Laplacian in a flat space with spherical coordinates, µ = cos θ,

and Sρ, Sγ, and Sω are source functions, which can be found in Komatsu et al.

(1989), along with the definition of the metric potential α.

To find the metric potentials the code first starts by having initial guesses

for all of them, which come from the spherical solutions of the TOV equations.

Then it tries different values of the equatorial radius to find the suitable shape

of the star. Then, the code computes new values of the potentials in a following

iteration. The solution if found when the difference of each quantity between

two successive cycles becomes sufficiently small.
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