SUPPORTING INFORMATION FOR

Phase Evolution in Methylammonium Tin Halide Perovskites with Variable Temperature Solid-State ¹¹⁹Sn NMR Spectroscopy

Michelle Ha¹, Abhoy Karmakar¹, Guy M. Bernard¹, Enoc Basilio¹, Arun Krishnamurthy², Abdelrahman M. Askar³, Karthik Shankar³, Scott Kroeker² and Vladimir K. Michaelis¹*

- 1. Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- 2. Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada

*Corresponding Author: vladimir.michaelis@ualberta.ca

Table S1: Density functional theory (DFT) calculated NMR parameters using ADF 2017, implementing a zero-ord	der
regular approximation, quadrupole-zeta basis set (ZORA/QZ4P).	

Compound	σ _{iso}	Span, Ω	Skew, к	Space Group	ace Group Crystal System	
	(ppm)	(ppm)				(K)
[SnCl ₆]⁴⁻	3567.27	0.001	-1.00	Pm3m	Cubic	533
[SnCl ₆]⁴⁻	3518.17	20.30	1.00	R3m	Rhombohedral	350
[SnCl ₆]⁴⁻	3430.57	234.2	0.50	Рс	Monoclinic	318
[SnCl ₆]⁴⁻	3391.60	295.6	0.09	<i>P</i> 1	Triclinic Sn1	250
[SnCl ₆]⁴⁻	3358.46	419.3	0.59	<i>P</i> 1	Triclinic Sn2	250
[SnBr ₆]⁴⁻	3184.4	0.001	1.00	Pm3m	Cubic	295
[SnBr ₆]⁴⁻	3022.7	223.2	-0.39	PmC21	Orthorhombic	200
α-[Snl ₆] ⁴⁻	2637.9	7.245	1.00	$Pm\overline{3}m$	Cubic	295
				$P4mm^1$		
β-[Snl ₆]⁴⁻	2644.5	24.08	1.00	I4cm	Tetragonal	190

1. See discussion in Stoumpus et al., 2013, Inorg. Chem., 52, 9019-9038

Table S2: Calculated magnetic shielding parameters for SnX_6^{4-} (X = CI, Br, I).

	σ ₁₁			σ ₂₂			σ ₃₃			σ _{iso}						
	σ_{para}	σ_{dia}	σ _{so}	σ_{tot}	σ_{para}	σ_{dia}	σ_{so}	σ_{tot}	σ_{para}	σ_{dia}	σ _{so}	σ_{tot}	σ_{para}	σ_{dia}	σ_{so}	σ_{tot}
SnCl ₆ ⁴⁻																
Cubic	-1974	5106	436	3567	-1974	5106	436	3567	-1974	5106	436	3567	-1974	5106	436	3567
Mono.	-2133	5104	355	3333	-2074	5105	362	3391	-1977	5106	443	3567	-2061	5105	387	3431
Tric. A	-2240	5101	323	3190	-2153	5103	328	3275	-1961	5104	470	3609	-2118	5103	374	3358
Tric. B	-2178	5105	319	3248	-2086	5106	359	3383	-1970	5108	412	3544	-2078	5106	363	3392
	SnBr ₆ ⁴⁻															
Cubic	-2195	5075	304	3184	-2195	5075	304	3184	-2195	5075	304	3184	-2195	5075	304	3184
Ortho.	-2206	5026	77	2897	-2181	5050	183	3051	-2129	5053	195	3120	-2172	5043	152	3023
Snl ₆ 4-																
Alpha	-2435	5091	-21	2635	-2435	5091	-21	2635	-2430	5091	-19	2643	-2434	5091	-20	2638
Beta	-2446	5091	-9	2637	-2446	5091	-9	2637	-2437	5091	6	2661	-2443	5091	-4	2645

Compound	$\delta_{ ext{iso}}$ (ppm)	Ω (ppm)	К	Properties	Source		
SnCl ₂	-915 (0.5)	350 (5)	0.6 (0.05)	Solid	this work		
	, <i>,</i>		· · · ·	M _p = 247 °C			
SnBr ₂	-580(50)	n d	n d	Solid	1		
UND12	-640	n.u.	11.0	M _p = 215 °C	2		
Spla	528	nd	nd	Solid	this work		
SIII2	-520	11.0.	n.u.	M _p = 320 °C			
SpCL	-150 (2)			Liquid	3		
511014	Neat	-	-	M _p = -33 °C			
SpBr	-638 (1)			Liquid	3		
SIIDI4	Neat	-	-	M _p = 31 °C			
Sple	1745	nd	nd	Solid	this work		
51114	-1745	n.u.	n.u.	M _p = 144 °C	UIIS WOIK		
SnO	208	1013	0.87	Solid	4		
5110	-208	1015	0.07	M _p = 1080 °C			
SpOr	604	101	0.84	Solid	5		
31102	-004	121	0.04	M _p = 1630 °C			
Sn metal	7567	-	-	Solid	6		
	7500	-	-	M _p = 232 °C	7		
	6864	-	-		2		

 Table S3: NMR parameters for other tin halide and oxide compounds.

Figure S1: Solid-state ¹¹⁹Sn MAS NMR spectrum of freshly purchased SnI₂ (purported to be 99%), T = 290 K; B₀ = 11.75 T; $\omega_r/2\pi$ = 12 kHz; 2048 co-added transients. The purchased material clearly contains nearly equivalent fractions of both SnI₂ and SnI₄.

Figure S2: First-order *J*-coupling splitting pattern expected for an I = 1/2 nucleus coupled to six magnetically equivalent I = 3/2 nuclei (i.e., ^{35/37}Cl or ^{79/81}Br) with negligible quadrupolar interactions and with relative peak intensities of 1:6:21:56:120:216:336:456:546:580:546:456: 336:216:120:56:21:6:1(a)⁸; the trace above this pattern illustrates the Gaussian lineshape expected if individual peaks are not resolved. The corresponding pattern for an I = 1/2 nucleus indirectly spin-spin coupled to six I = 5/2 nuclei (i.e., ¹²⁷I) with relative peak intensity ratios of 1:6:21:56:126:252:456:756:1161:1666:2247:5856:3431:3906:4221:4332:4221:3906:3431:2856:2247:1666:1161: 756:456:252:126:56:21:6:1 (b)⁸.

Figure S3: Variable temperature ¹¹⁹Sn MAS NMR spectra of MASnCl₃ (B₀ = 9.4 T; $\omega_r/2\pi$ = 3 kHz).

Figure S4: Powder X-ray diffraction patterns of decomposed MASnI₃, pristine MASnI₃, MA₂SnI₆ and SnO₂.

REFERENCES

- Marshall, A. Spectroscopic and Structural Studies of Tin Complexes. Doctoral Thesis, Durham University, Durham, UK, 1982.
- (2) Kubicki, D. J.; Prochowicz, D.; Salager, E.; Rakhmatullin, A.; Grey, C. P.; Emsley, L.; Stranks, S. D. Local Structure and Dynamics in Methylammonium, Formamidinium, and Cesium Tin(II) Mixed-Halide Perovskites from ¹¹⁹Sn Solid-State NMR. *J. Am. Chem. Soc.* **2020**, *142*, 7813–7826.
- (3) Burke, J. J.; Lauterbur, P. C. Sn¹¹⁹ Nuclear Magnetic Resonance Spectra. J. Am. Chem. Soc. **1961**, 83 (2), 326–331.
- (4) Cossement, C.; Darville, J.; Gilles, J.-M.; Nagy, J. B.; Fernandez, C.; Amoureux, J.-P. Chemical Shift Anisotropy and Indirect Coupling in SnO₂ and SnO. *Magn. Reson. Chem.* **1992**, *30*, 263–270.
- (5) Kulshreshtha, S. K.; Sasikala, R.; Sudarsan, V. Non-Random Distribution of Cations in $Sn_{1-x}Ti_xO_2$ ($0.0 \le x \le 1.0$): A ¹¹⁹Sn MAS NMR Study. *J. Mater. Chem.* **2001**, *11*, 930–935.
- Bloembergen, N.; Rowland, T. J. On the Nuclear Magnetic Resonance in Metals and Alloys. *Acta Metall.* 1953, *1*, 731–746.
- (7) Borsa, F.; Barnes, R. G. Temperature Dependence of the Isotropic and Anisotropic Knight Shift in Polycrystalline Cadmium and β-Tin. J. Phys. Chem. Solids 1966, 27, 567–573.
- (8) Lash, T. D.; Lash, S. S. The Use of Pascal-like Triangles in Describing First Order NMR Coupling Patterns. J. Chem. Educ. 1987, 64, 315.