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Abstract

Reservoir management tools use geostatistical models to make better decisions and

improve hydrocarbon recovery. Developing improved numerical modeling techniques that

lead to more accurate and precise geostatistical models will improve flow forecasting,

hydrocarbon recovery, reservoir management and contribute to more responsible and

sustainable management of our natural resources. The conventional stochastic seismic

inversion techniques integrates different source of data to obtain high quality geostatistical

models. These techniques initially provide acoustic impedance models that match well

and seismic data. Such acoustic impedance models are related to reservoir physical

properties via rock physics models. These techniques aim to reproduce the data within the

quality of data. However, there is no guarantee that the final petrophysical models will

reproduce original seismic data. Fidelity with the original seismic data will be reduced

due to an element of randomness at each step. To overcome this issue a new approach is

proposed and developed.

The new approach proposes to simulate multiple reservoir physical properties

simultaneously. This research study presents a research toward a fully coupled categorical

- multivariate continuous reservoir modeling in stochastic inversion context with

Petro-Elastic Model and convolution. The application of multivariate geostatistical

techniques would improve conventional stochastic inversion approaches. The flexibility

of using variogram based techniques and multi point statistic methods to model complex

geological features further improves the stochastic inversion approach.

The multivariate stochastic inversion approach combines a trace by trace (column wise)

adaptive sampling algorithm with multivariate geostatistical techniques to pick the best

physical properties of reservoir that match the actual seismic data. The adaptive sampling

method uses an acceptance-rejection approach to condition geostatistical models to well

and seismic data. This technique samples the realizations inside the space of uncertainty.
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The number of realizations attempted is changed based on the size of space of uncertainty.

In this study, a general framework is presented to calculate the size of the space of

uncertainty. This becomes practically relevant when rejection sampling approaches are

being used to condition geostatistical models as in the case of stochastic inversion. The

size of the space of uncertainty is shown to be the product of exponential entropy values.

This is corroborated from information theory, but the application of this in presence of

spatial correlation and conditioning data is new.

Modeling multiple reservoir properties simultaneously through the close integration of

seismic inversion and multivariate geostatistical techniques leads to high resolution

reservoir property models that are suitable for improved reservoir management. A case

study with realistic data set is developed to compare the results of multivariate stochastic

inversion approach with conventional stochastic method.

iii



To love of my life Reza

iv



Acknowledgements

First and foremost I would like to express my sincere gratitude to my advisor Prof. Clayton

Deutsch for the continuous support of my Ph.D study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor for my Ph.D

study. I admire his integrity, ingenuity, proficiency and diligence as a researcher and as a

person. In addition, I thank the Center for Computation Geostatistics and sponsors from

industry for the financial support of my research.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Hooman

Askari-Nasab, Dr. Larry Bentley, Dr. Jeff Boisvert, Dr. Juliana Leung and Dr. Mauricio

Sacchi for their insightful comments and encouragement.

My sincere thanks also goes to the department of civil and environmental engineering staff,

Alice Da Silva, Arlene Figley and Lorraine Gran for their support and contribution during

my time at university of Alberta.

I am thankful to all my colleagues at Center for Computational Geostatistics. Special thanks

to my friends Vahid Dehdari, Filipe Pinto, Mehdi Rezvendehy, Samaneh Sadeghi and Diogo

Silva, who have been a source of real friendship and support throughout my PhD time.

Last but not the least, I thank my parents for their endless support, my deepest

appreciation to my lovely sweet son and daughter, Soren and Sarina for their great

patience and understanding and most of all to Reza, thank you. This thesis is dedicated to

you.

v



Table of Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Solution and Significance of Thesis . . . . . . . . . . . . . . . . 7

1.3 Delimitation and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 14

2.1 Seismic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Quantitative Seismic Interpretation (QSI) . . . . . . . . . . . . . . . . . . 18

2.3 Seismic Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Methodology 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Multivariate Stochastic Inversion Approach . . . . . . . . . . . . . . . . . 34

vi



3.2.1 Multivariate Gaussian Simulation Technique . . . . . . . . . . . . 37

3.3 Petro Elastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Convolution and Synthetic Seismogram . . . . . . . . . . . . . . . . . . . 50

3.5 Adaptive Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Size of Space of Uncertainty 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Size of Space of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Algorithm to implement size of space of uncertainty . . . . . . . . . . . . . 61

4.3.1 Unequal Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Spatial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Conditioning Data . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Column Based Facies Modeling 75

5.1 Object Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Variogram Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Truncated PluriGaussian - TPG approach . . . . . . . . . . . . . . 77

5.3 Multiple-point Geostatistical approach . . . . . . . . . . . . . . . . . . . . 80

vii



5.4 SNESIM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Multi-Grid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Column-Wise Facies Modeling . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Column-Wise SNESIM Algorithm . . . . . . . . . . . . . . . . . . . . . . 88

5.7.1 Directed Multi-Grid . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.1.1 X − Y Multi-Grid, Full column of Z . . . . . . . . . . . 89

5.7.1.2 X − Y Multi-Grid, Z Multi-Grid . . . . . . . . . . . . . 89

5.8 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Adaptive Sampling 101

6.1 Practical Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Acceptance - Rejection Principle . . . . . . . . . . . . . . . . . . . 102

6.1.2 Reasonable Number of Realizations . . . . . . . . . . . . . . . . . 106

6.2 2-D Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Case Study 134

7.1 Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Multivariate Geostatistical Method . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Multivariate Stochastic Inversion Method . . . . . . . . . . . . . . . . . . 145

viii



7.4 Conventional Stochastic Inversion Approach . . . . . . . . . . . . . . . . 151

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Summary and Conclusion 159

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A Multivariate Stochastic Inversion 174

A.1 Parameter File Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B Column Based SNESIM 182

B.1 Column Based SNESIM Parameter File . . . . . . . . . . . . . . . . . . . 182

C Size of Space of Uncertainty 184

ix



List of Tables
4.1 Size of the space of uncertainty for K = 2 to K = 4 categories over fifty

locations (N = 50, ΔZ = 1). . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Entropy and size of space of uncertainty for the case study (N = 50,ΔZ =

1) different proportions, results are displayed in Figure 4.3. . . . . . . . . 64

5.1 Frequency, MSE of pure andmixed (MSEp&MSEm) patterns for training

image, node based (NB) SNESIM and column based (CB) SNESIM with

different multi-grid approaches. . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Multigrid level, number of columns times dynamic number of realization

per multigrid level for the second and third scenarios. . . . . . . . . . . . . 121

7.1 Multigrid level, number of columns simulated, number of realization and

total number of realizations per multigrid level. . . . . . . . . . . . . . . . 146

x



List of Figures
1.1 Flow chart of original stochastic inversion methodology (Redrawn from

Bortoli, 1992). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Schematic illustration of the sequential connection of properties in

stochastic inversion algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Sketch shows the reflected and refracted seismic wave at an interface

because of acoustic impedance contrast. . . . . . . . . . . . . . . . . . . . 9

1.4 An array of two seismic sources/receivers and reflected seismic wave

from different layers beside a schematic illustration of a seismic trace with

common midpoint (CMP) at different depth. . . . . . . . . . . . . . . . . 10

1.5 Shematic showing of seismic traces at different geological interfaces

(WWW.kgs.ku.edu). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Propagation of normal incident waves upon an interface between two

subsurfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Schematic illustration of forward and inverse modeling in seismic data. . . 23

2.3 Flow chart of deterministic inversion algorithm. . . . . . . . . . . . . . . 24

2.4 Schematically shows the matching approach in stochastic seismic

inversion, original seismic data are used for best pick from prior multiple

realizations that are conditioned to well data (Redrawn from Bortoli, 1992). 27

2.5 Schematic illustration of local optimization process in the original

stochastic inversion approach (Bortoli, 1992). . . . . . . . . . . . . . . . . 28

3.1 Schematic algorithm of multivariate stochastic inversion. . . . . . . . . . . 36

xi



3.2 Schematic form of correlation matrix of multivariate Gaussian simulation

for a facies with K categories and nc continuous variables which nf

Gaussian variables required for truncated (pluri)Gaussian. . . . . . . . . . 39

3.3 Conditioning data and two different realizations of two negatively

correlated variables (ρ = −0.7) simulated by USGSIM, axes unit (m),
color bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conditioning data and two different realizations of two negatively

correlated variables (ρ = −0.7) simulated by column based USGSIM,
axes unit (m), color bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . 43

3.5 Histogram of conditioning data and two different realizations of two

negatively correlated variables (ρ = −0.7) simulated by USGSIM. . . . . 44

3.6 Histogram of conditioning data and two different realizations of two

negatively correlated variables (ρ = −0.7) simulated by column based
USGSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Variogram (omni-directional) reproduction of two different realizations of

two negatively correlated variables (ρ = −0.7) simulated by USGSIM and
column based USGSIM (black line variogram model and red dots

variogram of simulated values), distance in (m). . . . . . . . . . . . . . . . 46

3.8 Velocity-density relationships in rocks of different lithology (Gardner et al.,

1974). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Reservoir physical properties as input of PEM and reservoir elastic

properties obtained from PEM, axes unit (m), color bar of porosity and

saturation (m3/m3), density (gr/m3), velocity (m/sec), and acoustic

impedence (gr/m2.sec). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Ricker wavelet with central frequency of 30 Hz, amplitude (m), time (sec). 51

xii



3.11 Shows 2D seismic that obtained from convolution algorithm, axes unit (m),

color bar - amplitude (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Entropy of configuration versus size of the space of uncertainty. . . . . . . 59

4.2 Sketch shows a case study, a column over 50 locations, (N = 50,ΔZ = 1). 60

4.3 shows entropy (H) VS proportion (P1), the top one and Log(M(Λ)) VS

proportion the bottom one. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 2D omni-directional variogram model with different ranges, distance (m). . 65

4.5 Size of the space of uncertainty versus variogram range (m). . . . . . . . . 66

4.6 Sketch shows distance of conditioning data compare to variogram range. . . 67

4.7 Size of the space of uncertainty versus ratio of distance to variogram range. 68

4.8 Schematically displays the size of space of uncertainty by applying some

limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Schematically displays number of realizations versus size of domain and

how this number is large for the first 20% of domain and gradually drops by

going through the simulation process as more conditioning data is available. 71

4.10 Schematically displays a column of fifty location as simulation domain and

the truth with two categories. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Number of realizations over the simulation path. . . . . . . . . . . . . . . 73

5.1 Schematic illustration of truncation of Gaussian probability density function 78

5.2 Schematic illustration of truncation of bivariate Gaussian probability

density function, facies 2, 3, 4 are ordered while facies 1 crosses all other

facies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiii



5.3 Schematic illustration of two point statistics (Left) andMulti Point Statistics

(Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Illustration of four nested 2D multi-grid (Deutsch and Silva, 2014). . . . . . 85

5.5 Correlation matrix of multivariate Gaussian simulation for a facies with

three categories and nc continuous variables. . . . . . . . . . . . . . . . . . 88

5.6 XY (left) and XZ (right) slices of training image and node based MPS

simulation with original multigrid approach, axes unit (m). . . . . . . . . . 91

5.7 XY (left) and XZ (right) slice for column based with no multi-grids and

column based with different type of multi-grids SNESIM, axes unit (m). . . 92

5.8 Frequency of patterns of training image versus simulation results for node

based SNESIM with original multi-grid approach. . . . . . . . . . . . . . . 94

5.9 Frequency of patterns of training image versus simulation results for node

based SNESIM with no multi-grid approach. . . . . . . . . . . . . . . . . . 95

5.10 Frequency of patterns of training image versus simulation results for

column based SNESIM with X − Y multi-grid approach. . . . . . . . . . . 96

5.11 Frequency of patterns of training image versus simulation results for

column based SNESIM with X − Y plus Z multi-grid approach. . . . . . . 97

5.12 XY (left) and XZ (right) slice of training image and node base MPS

simulation, axes unti (m). . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.13 XY (left) and XZ (right) slice for column base with no multi-grids and

column based with different type of multi-grids SNESIM, axes unti (m). . 99

6.1 Facies and physical properties of the example of uncertainty propagation

via PEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



6.2 Elastic properties and seismic trace of the example of uncertainty

propagation via PEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Range of velocity for multiple realizations of velocity. . . . . . . . . . . . 108

6.4 Range of reflectivity (R) and seismic trace for multiple realizations of velocity.109

6.5 Range of seismic trace for multiple realizations based on cumulative

uncertainty of PEM and wavelet extraction. . . . . . . . . . . . . . . . . . 110

6.6 Schematic illustration of number of realization versus Mean Square Error. . 110

6.7 Schematic illustration of 2-D model for unconditional and conditional

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 Comparison of reference seismic trace with synthetic seismogram

corresponded to unconditional, weak - mild - strong conditional

simulation at 10000 realizations. . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Mean Square Error versus number of realizations (Log scale) for

unconditional and conditional scenarios for case study, 2-D model (20× 20) .113

6.10 Schematic representation of the concept of multigrid and dynamic number

of realizations for each level. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated

properties (third column) for first scenario, axes unit m, color bar unit

m3/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.12 Comparison of conditioning data (first column) with different properties

of reference model (second column) and second realizations of simulated

properties (third column) for first scenario, axes unitm, color bar unitm3/m3.117

xv



6.13 2-D seismic survey considered as the reference model, axes unit (m) and

color bar - amplitude (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.14 The synthetic 2-D seismic survey of first realization of first scenario

conditioned only to the well data, axes unit (m) and color bar - amplitude

(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.15 The synthetic 2-D seismic survey of second realization of first scenario

conditioned only to the well data, axes unit (s) and color bar - amplitude (m).120

6.16 Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated

properties (third column) for second scenario, axes unit m, color bar unit

m3/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.17 Comparison of conditioning data (first column) with different properties

of reference model (second column) and second realizations of simulated

properties (third column) for second scenario, axes unit m, color bar unit

m3/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.18 The synthetic 2-D seismic survey of first realization of second scenario

conditioned to well and seismic data through the multivariate stochastic

inversion, axes unit (m) and color bar - amplitude (m). . . . . . . . . . . . 124

6.19 The synthetic 2-D seismic survey of second realization of second scenario

conditioned to well and seismic data through the multivariate stochastic

inversion, axes unit (m) and color bar - amplitude (m). . . . . . . . . . . . 125

6.20 Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated

properties (third column) for third scenario, axes unit m, color bar unit

m3/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xvi



6.21 Comparison of conditioning data (first column) with different properties

of reference model (second column) and second realizations of simulated

properties (third column) for third scenario, axes unit m, color bar unit

m3/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.22 The synthetic 2-D seismic survey of first realization of third scenario

conditioned to well and seismic data through the multivariate stochastic

inversion, axes unit (m) and color bar -amplitude (m). . . . . . . . . . . . 128

6.23 The synthetic 2-D seismic survey of second realization of third scenario

conditioned to well and seismic data through the multivariate stochastic

inversion, axes unit (m) and color bar -amplitude (m). . . . . . . . . . . . 129

6.24 Comparison of conditional variance of multiple realizations of three

scenarios for different reservoir physical properties, axes unitm. . . . . . . 131

6.25 Comparison of conditional variance of multiple realizations of three

scenarios for seismic data, axes unit (m). . . . . . . . . . . . . . . . . . . . 132

7.1 Location of well data in the case study, axes represent the grid cells. . . . . 136

7.2 3D visualization of seismic amplitude, considered as original seismic data

for the case study, axes represent grid cells, color bar - amplitude (m). . . . 137

7.3 Different slices of facies, porosity and water saturation of reference model

in different orientations, axes represent grid cells, color bar unit (m3/m3). . 138

7.4 Different slices of the 3-D seismic survey, XY-5 (top), XZ-54 (middle) and

YZ-23 (bottom), axes represent grid cells, color bar - amplitude (m). . . . . 139

xvii



7.5 Different slices of facies, porosity and water saturation of first realization

in different orientations for multivariate geostatistical modeling that are

conditioned to the well data, axes represent grid cells, color bar unit

(m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6 Different slices of facies, porosity and water saturation of second

realization in different orientations for multivariate geostatistical

modeling that are conditioned to the well data, axes represent grid cell,

color bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.7 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the first realization of multivariate geostatistical

modeling, axes represent grid cells, color bar - amplitude (m). . . . . . . . 143

7.8 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of multivariate geostatistical

modeling, axes represent grid cells, color bar - amplitude (m). . . . . . . . 144

7.9 Display minimum MSE versus different sets number of realization for few

columns of third level of multigrid (mmult = 3) in multivariate stochastic

inversion approach for the case study. . . . . . . . . . . . . . . . . . . . . 146

7.10 Different slices of facies, porosity and water saturation of first realization

in different orientations for multivariate stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color

bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.11 Different slices of facies, porosity andwater saturation of second realization

in different orientations for multivariate stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color

bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xviii



7.12 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54

(middle) and YZ-23 (bottom) for the first realization of multivariate

stochastic inversion approach, axes represent grid cells, color bar -

amplitude (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.13 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of multivariate stochastic

inversion approach, axes represent grid cells, color bar - amplitude (m). . . 150

7.14 Shows the relationship between probability of shale versus acoustic

impedance for probability model. . . . . . . . . . . . . . . . . . . . . . . . 153

7.15 Different slices of facies, porosity and water saturation of first realization

in different orientations for conventional stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color

bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.16 Different slices of facies, porosity andwater saturation of second realization

in different orientations for conventional stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color

bar unit (m3/m3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.17 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54

(middle) and YZ-23 (bottom) for the first realization of conventional

stochastic inversion approach, axes represent grid cells, color bar -

amplitude (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.18 Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of conventional stochastic

inversion approach, axes represent grid cells, color bar - amplitude (m). . . 157

xix



List of Symbols

Symbols Definition

AI Acoustic Impedance

ρ Density

v Velocity

R(t) Normal incident reflection coefficient

S(t) Seismic trace

W (t) Wavelet

λ Wave length

u Location

Z∗(u) Kriging estimation

Z(u) Data value

m(u) Mean of data

λ(u) Kriging weight

σ2
E Error-variance

E {Z(u)} Expected value of Z(u)

C(u) Covariance

F (u; z) Cumulative distribution function

F (u; z|(n)) Conditional cumulative distribution function

z(u) Unsampled value

Y (u) Random Gaussian function

y(u) Simulated Gaussian value

G−1 Gaussian backtransform

A Area of interest

m Model

E(m) Model energy

P, p Probability

xx



T Annealing cooling temperature

Qk Mismatch in annealing optimization

L Number of realization

Vp Compressional wave velocity

Vs Shear wave velocity

�u Location of column

Z l
i(�u) Multiple Gaussian variables

nf Number of facies variable

nc Number of continuous variable

K Facies category

ρf Fluid density

ρr Rock density

ρo Oil density

ρw Water density

φ Porosity

Sw Water saturation

So Oil saturation

a Gardner’s parameter

m Gardner’s parameter

Λ Space of uncertainty

M(Λ) Size of space of uncertainty

H Entropy

γ(h) Variogram

h Distance

I(z(u); k) Indicator variable

t Threshold

D Simulation domain

Dd Cascading grid over simulation domain

nd Nested grid

MSE Mean square error

xxi



List of Abbreviations

Abbrv. Definition

IEA International Energy Agency

P-wave Compressional wave

S-Wave Shear wave

SGS Sequential Gaussian Simulation

SGCS Sequential Gaussian Co-Simulation

AI Acoustic Impedance

CMP Common Midpoint

MPS Multi Point Statistics

PEM Petro Elastic Model

MSE Mean Square Error

HZ Hertz

QSI Quantitative Seismic Interpretation

AVO Amplitude Versus Offset

LHS Left Hand Side

RHS Right Hand Side

RV Random Variable

RF Random Function

Prob Probability

cdf Cumulative Distribution Function

ccdf Conditional Cumulative Distribution Function

PCA Principle Component Analysis

DSS Direct Sequential Simulation

USGSIM Ultimate Sequential Gaussian Simulation

GSLIB Geostatistical Software Library

McMC Markove chain Monte Carlo

xxii



SIS Sequential Indicator Simulation

TG Truncated Gaussian

TGS Truncated Gaussian Simulation

TPGS Truncated PluriGaussian Simulation

SNESIM Single Normal Extended Simulation

VPC Vertical proportion Curve

CCK Collocated Cokriging

Fluvsim Fluvial Simulation

xxiii



Chapter 1

Introduction

Natural resources such as hydrocarbon reservoirs are an important necessity in the

development of modern human society. Over the past century, society has developed a

dependence on hydrocarbon reservoirs because they are one of the primary requirements

to develop a safe, secure and stable society. The resources in hydrocarbon reservoirs are

declining and human population is increasing. Unfortunately, these fundamental resources

are not renewable and there is still no reliable replacement for them. According to

International Energy Agency (IEA) reports and calculations, the global oil demands was

around 75 million barrels per day in the early 2000’s which this demand will actually

double by 2030 (Birol, 2010; Hamilton, 2015). Therefore, increasing recovery and

responsible management of hydrocarbon reservoirs is important.

Geostatistics has been developed over the last forty years as a multidisciplinary field that

investigates the spatial distribution of the geological properties to predict the spatial

properties of natural resources and quantify the associated uncertainty in the predictions

(Journel and Huijbregts, 1978; Chiles and Delfiner, 2009). Two broad classes of

geostatistical modeling techniques including estimation and simulation techniques are

recognized. Estimation methods provide a single estimate for each location and leads to

overly smooth property models. Simulation techniques generate a set of stochastic models

of properties that are equiprobable and called realizations. The set of equiprobable

realizations represents property models with a reasonable pattern of variation and measure

of uncertainty due to data limitation (Deutsch and Journel, 1998).

A high quality geostatistical model consists of a detailed numerical model of reservoir

properties including facies, porosity, fluid saturations and permeability. Developing

improved numerical modeling techniques leads to more accurate and precise geostatistical
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models. Reservoir engineering and management tools such as flow simulation use

geostatistical models to make better decisions and optimize hydrocarbon recovery.

Therefore, these developed techniques will improve flow forecasting, hydrocarbon

recovery, reservoir management and contribute to more responsible and sustainable

management of our diminishing natural resources.

1.1 Background

Early techniques for the characterization of spatial variability and heterogeneity of

reservoir properties range from deterministic interpolation algorithms (Ripley, 1981;

Cressie, 2015) to geostatistical approaches such as Kriging and conditional simulation

(Journel and Huijbregts, 1978; Chiles and Delfiner, 2009). These techniques are primarily

based on local measurements from wells. Kriging and conditional simulation techniques

consider and apply the spatial variability of the well data (Thadani et al., 1987; Pyrcz and

Deutsch, 2014). Kriging method provides a single estimate that is overly smooth and does

not provide a complete understanding of the spatial variability of reservoir properties. On

the other hand, conditional simulation techniques produce a set of equiprobable

realizations that reproduce the histogram and spatial covariance of well data (Thadani

et al., 1987; Chiles and Delfiner, 2009). Due to the high cost of drilling, few wells are

drilled for exploration and well data do not provide a complete understanding of the lateral

distribution of reservoir properties. The integration of additional sources of information

such as geophysical and production data is required to improve the spatial characteristics

of geostatistical models.

Geophysical methods include seismic, gravity, magnetic and geo-electric measurements.

Seismic has made a major contribution in hydrocarbon exploration because it responds to

multiscale subsurface features (Lines and Newrick, 2004). In the content of this thesis only

2D or 3D surface seismic surveys are considered.

For surface seismic surveys, the acoustic pulses propagate through the subsurface layers

with different velocities because of different rock densities, fluid content, shear and bulk
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modulus. The reflected acoustic waves from different interfaces are recorded by seismic

receivers. A seismic source on the surface generates different waves including

compressional (P-wave) and shear (S-wave) waves. These waves expand, attenuate,

reflect, refract and change due to geological variability. Seismic data processing methods

try to understand this complexity and reveal the underlying geological structures. The

outputs of seismic data processing include different seismic attributes that are derived

from the reflectivity sequences. To integrate seismic data into geostatistical modeling, the

seismic attributes are commonly inverted to acoustic properties like acoustic impedance.

Generally, seismic data have a high lateral coverage and resolution compared to well data

while the vertical resolution of seismic data is poor compared to thewell data. Therefore, the

predictive ability of geostatistical models could be improved by integration of seismic and

well data. There are different approaches for the integration of seismic data in geostatistical

modeling. Two main approaches have been investigated (Haas and Dubrule, 1994; Hong

et al., 2006; Bosch et al., 2010) : 1) Indirect methods, and 2) Direct methods.

Indirect methods consider the large-scale seismic data as secondary variables and combine

them with primary small-scale well data through different geostatistical algorithms such as

cokriging (Doyen, 1988; Xu et al., 1992; Yao and Chopra, 2000; Grana et al., 2012),

indicator coding of seismic data (Thadani et al., 1987; Zhu, 1991; Zhu and Journel, 1993;

Moysey et al., 2003; Park et al., 2003), Kriging with external drift (Marechal, 1984; Galli

and Meunier, 1987; Bourennane et al., 2000; Bourennane and King, 2003) and block

Kriging (Behrens et al., 1998; Lee et al., 2000; Aanonsen and Eydinov, 2006). Most of

these indirect integration methods consider a combination of seismic and well data

through a probabilistic calibration. These calibrations are critical and difficult to establish

(Bortoli, 1992; Bosch et al., 2010).

Direct methods are applied for situations where the data can be considered as a

deterministic function of the numerical geological model (Hong et al., 2006). For

example, the synthetic seismogram can be obtained from an acoustic impedance model by

wavelet convolution. Direct methods combine conventional seismic inversion techniques
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with geostatistical approaches to provide high resolution numerical geological models.

These direct methods are also referred to as stochastic inversion. The original idea of the

direct method was proposed by Bortoli (1992), Haas and Dubrule (1994) in the early

1990’s. The original methodology combined a trace-by-trace optimization method with

Sequential Gaussian Simulation (SGS) algorithm (Deutsch and Journel, 1998) to provide

high resolution geostatistical models.

The original stochastic inversion approach simulates acoustic related properties that are

conditioned to the well data. For each realization, a synthetic seismogram is computed and

compared with the actual seismic trace. The synthetic seismogram that best matches to the

actual seismic data is kept. Under some specific circumstances, the acoustic related variable

can be transformed to the units of seismic data such as seismic amplitude (Bortoli, 1992).

Based on the reservoir physical properties that are desired to obtain, the related acoustic

parameter is chosen to simulated. For example, to obtain a porosity model, the acoustic

impedance could be simulated then transformed to porosity. Figure 1.1 shows a flow chart

of this methodology.

Compared to the indirect methods of seismic data integration, the original stochastic

inversion method does not require a prior probabilistic calibration step like

Markove-Bayes calibration (Journel and Zhu, 1990, Zhu and Journel, 1993). Nevertheless,

the results are sensitive to the relation between acoustic and physical reservoir properties

used to derive the final petrophysical reservoir model (Bortoli et al., 1993).

The Bortoli (1992), Haas and Dubrule (1994) method was modified by Debeye et al. (1996)

at Jason Geosystems. This algorithm generates multiple 3D facies realizations consistent

with geology and seismic data, then relates the facies to the reservoir physical properties

such as porosity. This method is an adaptation of sequential Gaussian simulation (SGS) and

sequential Gaussian co-simulation (SGCS) (Deutsch and Journel, 1998) based on simulated

annealing (Debeye et al., 1996).

In sequential Gaussian simulation, grid nodes are visited sequentially through a random

path and local conditional probability distributions are calculated under a multivariate
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Figure 1.1: Flow chart of original stochastic inversion methodology (Redrawn from

Bortoli, 1992).
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Gaussian model. Then, a value from the conditional probability distribution is drawn and

added to the conditioning data. This procedure is repeated until all the grid nodes are

simulated (Deutsch and Journel, 1998). The data are transformed to a Gaussian

distribution before the simulation. Sequential Gaussian co-simulation (SGCS) is similar to

SGS which multiple reservoir properties that are correlated to each other are simulated

simultaneously (Pyrcz and Deutsch, 2014). Simulated annealing is a global optimization

method that considers stochastic relaxation and an acceptance rule based on an analogy

with annealing. The objective function is the measure of difference between the target

spatial characteristics and those of the realization. The optimization algorithm amounts to

perturb the specific realization and then accept/reject the perturbation based on how close

the realization is to the required properties (Deutsch, 1992)

Other stochastic inversion approaches have been proposed, developed and

commercialized in recent years. In the majority of published stochastic inversion methods,

around 90% (Bosch et al., 2010), high resolution acoustic impedance models are

simulated then they are connected to the physical properties of the reservoir by using a

direct relationship or statistical correlations. In some stochastic inversion methods, facies

models associated to the acoustic impedance models are simulated directly, then these

facies models are connected to the other physical properties such as porosity and fluid

saturations.

All stochastic inversion techniques aim to generate high resolution geostatistical models

(acoustic impedance or facies) that reproduce the well and seismic data. Then, these high

resolution models are related to the reservoir physical properties via rock physics and

statistical links, Figure 1.2. There is no guarantee that the physical properties obtained

through this sequential linking will match the original seismic data. Fidelity with the

original seismic data is likely to be lost due to randomness at each step. This research

study proposes and developes a new approach to stochastic inversion to permit generating

high resolution geostatistical models with high fidelity with the original seismic traces.
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Figure 1.2: Schematic illustration of the sequential connection of properties in stochastic

inversion algorithms.

1.2 Problem Solution and Significance of Thesis

Conventional stochastic inversion attempts to reduce the uncertainty to the greatest extent

possible while providing fair uncertainty statements. They also aim to reproduce the data

within the quality of data. There is no guarantee that the final petrophysical models will

reproduce the original seismic data. To address this issue a new approach called

multivariate stochastic inversion is proposed and developed. This approach simulates

multiple reservoir physical properties simultaneously as a part of stochastic inversion

algorithm instead of relating acoustic or facies models to the reservoir physical properties

through a set of sequential connections outside the stochastic inversion algorithm. The

main purpose of this idea is to simulate multiple reservoir properties by a geostatistical

technique and condition them to the seismic data at the same time through a stochastic

inversion algorithm. The new method combines a trace by trace (column-wise)

multivariate geostatistical technique with adaptive sampling algorithm to overcome the

limitation of conventional stochastic inversion methods. The adaptive sampling algorithm

considers a different number of realizations through different steps of simulation in this
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approach.

In seismic data acquisition, the seismic waves are mechanical perturbations generated by a

seismic source. They travel into the earth at a velocity that is governed by the density, fluid

content and elastic modulus of the rock they are traveling through. The acoustic impedance

of the rock is the product of density and seismic wave velocity of the rock (AI = ρv).

When the seismic wave encounters an interface between two geological units with different

acoustic impedance, the acoustic impedance contrast causes some of seismic wave energy

to reflect and some to refract through the interface (Lines and Newrick, 2004). Figure 1.3

schematically shows the reflected and refracted seismic wave at an interface due to acoustic

impedance contrast. The reflected and refracted wave energy are detected, measured and

recorded by an array of seismic receivers (geophones) at the surface. The reflected and

refracted wave energy from different shot records with a common reflection point such as

common midpoint (CMP) at different depth represent a seismic trace, Figure 1.4 . The

point on the surface halfway between the source and receiver that is shared by numerous

source-receiver pairs is called the common midpoint (CMP). The seismic survey consists

of the seismic traces that have been stacked together from different records to reduce noise

and improve overall quality of the seismic data (Telford et al., 1990). Figure 1.5 also shows

schematically the seismic traces at the different geological interfaces.

A seismic trace represents geological information at different depth in vertical columns.

Seismic surveys are inherently column based. As a result, to apply geostatistical modeling

as part of stochastic inversion and condition the multiple reservoir properties to the

seismic data at the same time in multivariate stochastic inversion approach a full column

of multiple reservoir properties should be simulated at each simulation iteration.

Therefore, all simulation techniques and algorithms in multivariate stochastic inversion

approach must be developed and implemented in column wise manner.

The proposed technique simulates facies and reservoir physical properties at the same

time by simulating a set of Gaussian variables. Facies are assigned by truncated

(pluri)Gaussian simulation technique. The number of Gaussian variables required for
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Figure 1.3: Sketch shows the reflected and refracted seismic wave at an interface because

of acoustic impedance contrast.
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Figure 1.4: An array of two seismic sources/receivers and reflected seismic wave from

different layers beside a schematic illustration of a seismic trace with common midpoint

(CMP) at different depth.

Figure 1.5: Shematic showing of seismic traces at different geological interfaces

(WWW.kgs.ku.edu).
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facies modeling depends on ordering and transition among the facies categories. To add

more flexibility and to handle more complex geological features in reservoir modeling,

column wise multi point statistics (MPS) simulation technique is an alternative for facies

modeling. Reservoir physical properties (continuous variables) are simulated through the

column wise sequential Gaussian simulation (SGS) technique. The number of Gaussian

variables required to be simulated by column wise SGS are defined by the number of

reservoir physical properties and the number of facies categories.

Each column of multiple reservoir properties are passed to a Petro-Elastic Model (PEM)

and a convolution algorithm to derive a synthetic seismogram. The synthetic seismogram

is compared with collocated actual seismic trace through the adaptive sampling algorithm.

This algorithm selects the acceptable match to the original seismic data based on a stopping

criteria. The stopping criteria consists of a targetMean Square Error (MSE) and a reasonable

number of realizations that is adapted as the simulation proceeds.

The size of the space of uncertainty is quantified in this research study. The size of the

space of uncertainty in presence of different factors is a good indicator of the reasonable

number of realizations for each column in multivariate stochastic inversion. The

multivariate stochastic inversion approach is explained in detail in Chapter 3

1.3 Delimitation and Limitations

The integration of surface seismic geophysical data in high resolution geostatistical models

is studied. Seismic data are originally in the time domain and well conditioning data are in

depth. Although time to depth conversion is an important step, it is not in the scope of this

project. To obtain high resolution geostatistical models that honor seismic data, the actual

seismic traces should be reproduced at each column in the geostatistical model. For this

purpose the synthetic seismic traces are computed based on a convolution of reflectivity

series calculated through a Petro-Elastic Model (PEM) and an extracted wavelet.

Wavelet extraction is an important step where the synthetic trace along the well is calibrated
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to the actual collocated seismic trace. This calibration process is necessary to ensure that the

actual seismic data matches the convolution of the extracted wavelet with the reflectivity

series along the wells (Bortoli, 1992). A special type of wavelet often used for modeling

and inversion purposes is the Ricker wavelet which is defined by dominant frequency. The

Ricker wavelet is by definition zero-phase and symmetric. The convolution process can

affect not only the amplitude of a seismic traces but its phase as well. The Ricker wavelet

is known as a zero phase function which means it does not have a phase effect. Therefore,

zero phase Ricker wavelet is a good option for extracted wavelet since it can be easily

understood and implemented. This wavelet often reasonably represents the typical earth

responses (Yilmaz, 2001, Margrave, 2005). Any other extracted wavelet can be considered

and applied in convolution algorithm.

Access to real seismic data would make the study more credible to some practitioners. The

case study uses realistic data and compares the results to conventional approach; however,

the data was not collected from a real reservoir.

1.4 Thesis Statement

Characterizing multiple reservoir properties simultaneously through the close integration

of seismic inversion and multivariate geostatistical techniques leads to improved high

resolution reservoir property models. Implementation of column wise multivariate

Gaussian simulation technique and quantification of the size of the space of uncertainty

adds practical value and theoretical insight.

1.5 Thesis Outline

This thesis consists of eight chapters. Chapter 1 is the introduction. Chapter 2 reviews the

relevant literature for integration of seismic data into geostatistical modeling techniques

and mainly focuses on conventional stochastic inversion approaches. Chapter 3 provides

information and details on the proposed methodology of multivariate stochastic inversion.
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Chapter 4 focuses on the quantification of the size of the space of uncertainty and

calculation of the space of uncertainty in presence of different parameters. Chapter 5

focuses on column based facies modeling and addresses the practical challenges for

implementation of different methods of column based facies modeling. Chapter 6 covers

the practical aspects and implementation of the adaptive sampling algorithm. Chapter 7

demonstrates the practical implementation of multivariate stochastic inversion approach to

a case study with realistic seismic data. Chapter 8 wraps up the thesis with conclusions

and future works. The description of programs written for this research study is provided

in an Appendix.
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Chapter 2

Literature Review

Reservoir characterization is a collaborative field that relies on different sources of

geological and engineering information to describe petroleum reservoirs and the nature of

the rocks that contain the hydrocarbons (Lines and Newrick, 2004). Defining the spatial

variability of reservoir properties and heterogeneity of reservoir structures are the key

problems in reservoir characterization because volume calculation, flow simulation and

hydrocarbon recovery are directly affected by these parameters. A high resolution

geostatistical model is a gridded numerical model of reservoir properties that provides an

assessment of the spatial variability of reservoir properties.

Early techniques to characterize the spatial variability of reservoir properties were primarily

based on well log information at few locations. These techniques range from deterministic

interpolation algorithms (Ripley, 1981; Cressie, 2015) to geostatistical approaches such

as Kriging and conditional simulation (Journel and Huijbregts, 1978; Chiles and Delfiner,

2009; Pyrcz and Deutsch, 2014). Unfortunately, deterministic techniques do not create

numerical models that reproduce the spatial variability. Kriging and conditional simulation

consider and incorporate the spatial variability inferred from well data. Kriging provides

a single, overly smooth model that does not reproduce the spatial variability of the well

data. Conditional simulation techniques generate equiprobable realizations that reproduce

the histogram and spatial covariance of the well data (Thadani et al., 1987; Chiles and

Delfiner, 2009).

The sparsity of well data is a major issue. Well data provide high vertical resolution but do

not provide much information related to the lateral continuity of reservoir properties.

Therefore, geostatistical techniques that rely only on the well data may provide highly

uncertain input to reservoir engineering tools like flow simulation. The integration of
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different sources of geological information such as outcrop observation, seismic and

production data is important.

2.1 Seismic Data

Among the different geophysical methods, seismic techniques have the greatest role in

reservoir characterization because seismic data are capable of detecting small to large

scale stratigraphic features.

In reflection seismology, the principles of acoustic theory and wave propagation are used

to estimate the subsurface properties. A seismic source sends controlled energy into the

earth and reflected seismic waves are recorded by seismic receivers. Compressional

waves (P -wave) and shear waves ( S-wave) are generally recorded. Compressional and

shear wave also called body waves because they propagate in all directions from the

seismic source and travel through the earth. Body waves have significant contribution in

hydrocarbon exploration (Bjørlykke, 2010). Compressional waves where the particle

motion is along to the direction of wave propagation are faster than shear waves where the

particle motion is perpendicular to the direction of wave propagation. The propagation of

P and S waves through the subsurfaces depends on the acoustic impedance (AI) of the

rocks. Acoustic impedance is the product of rock density and wave velocity (AI = ρv).

When a seismic wave propagates through the subsurface a portion of the seismic wave

energy reflects. The amount of energy that reflects at each interface depends on the

contrast of acoustic impedance between the two layers. The acoustic impedance contrast

determines the seismic reflection coefficient. The quantities R is known as the normal

incidence reflection coefficient, see Equation 2.1. Figure 2.1 shows the propagation of

normal incident waves between two subsurfaces. At any interface, the normal incident

reflection coefficient (R) can be positive or negative depending on contrast of acoustic

impedance across the interface. If the acoustic impedance increases across the two

subsurfaces R is positive and if acoustic impedance decreases R is negative. A positive R

means that the polarity of the reflected wave will be the same as the incident wave. A
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negative R means that the polarity of the reflected wave will be the opposite of the

incident wave.

Figure 2.1: Propagation of normal incident waves upon an interface between two

subsurfaces.

R =
AI2 − AI1
AI2 + AI1

=
ρ2v2 − ρ1v1
ρ2v2 + ρ1v1

(2.1)

In a seismic study, there is also the travel time for a wave to arrive at the receiver from an

interface. Seismic surveys measure ground motions. The seismic response could be

represented as seismic traces that could be interpreted as the convolution of a seismic

wavelet with the normal incident reflection coefficient. Equation 2.2 shows the seismic

convolution in time domain.

S(t) = W (t) ∗R(t) +N(t) (2.2)
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Where S(t), W (t), R(t) and N(t) are seismic trace, wavelet, the reflection coefficient of

normal incident and noise respectively in time domain. S(t) given by Equation 2.2 is one

way to compute synthetic data in exploration geophysics in time domain (Margrave, 2005).

The convolution process in depth domain is similar to the convolution in time domain and

represents by Equation 2.3.

S(d) = W (d) ∗R(d) +N(d) (2.3)

Where S(d), W (d), R(d) and N(d) are seismic trace, wavelet, the reflection coefficient

of normal incident and noise respectively in depth domain (Zhang et al., 2016). In case of

dealing with depth-migrated seismic data and having reflectivity series in depth domain,

convolution in depth domain should be applied to compute synthetic seismic data.

Signal processing methods try to remove noise and obtain a reflectivity sequence that

reproduces the measured trace. To integrate seismic data into geostatistical modeling, the

seismic data are often processed to compute migration, normal moveout (NMO),

reflection coefficients and acoustic impedance. This processing is an inverse problem

since we have the result of convolution and not the stacked or migrated sections.

The ability to distinguish different geological features from seismic data depends on the

seismic resolution. The vertical resolution of surface seismic surveys is between λ/8 to

λ/4 (Widess, 1973 and Kallweit and Wood, 1982) where λ is the seismic wavelength. For

shallow events with nominal rock velocity of 2000m/s and dominant frequency of 50HZ

the seismic wavelength is 40m. The seismic wavelength for a deep event with a velocity of

3000m/s and frequency of 20HZ is 150m.

Well data have high vertical resolution with limited horizontal coverage. Seismic data

with high lateral coverage can be used to map out lateral changes in reservoir properties.

Consequently, the integration of different source of geological information such as well

and seismic data improved reservoir models.
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There are different approaches and techniques to integrate seismic information in reservoir

characterizations that are reviewed and explained in the following sections.

2.2 Quantitative Seismic Interpretation (QSI)

Conventional seismic interpretation picks and tracks seismic reflectors that are laterally

consistent to map geological structures and the stratigraphy of reservoirs. The

fundamental objective of seismic interpretation is to detect hydrocarbon reservoirs,

ascertain their extent and calculate hydrocarbon volumes. Generally, conventional seismic

interpretation has been fundamentally qualitative that requires professional skill and

experience in geology and geophysics (Telford et al., 1990). Seismic interpretation aims

to represent and map the geometry of seismic reflectors rather than provide a physical

understanding of seismic amplitude variations (Blangy, 1992). Quantitative techniques for

seismic interpretation aim to provide additional information for flow forecasting and

reservoir characterization (Avseth et al., 2010).

Quantitative seismic interpretation (QSI) represents how rock physics and elastic

properties can be applied to model reservoir properties such as facies, porosity, fluid

saturation from seismic attributes (Mavko et al., 2009). Integration of quantitative seismic

interpretation (QSI) in the early stages of seismic interpretation is an effective methods to

reduce the uncertainty in reservoir models. The common and most important quantitative

seismic interpretation techniques include: post stack amplitude analysis (bright-dim spot

analysis), offset-dependent amplitude analysis (AVO), elastic and acoustic impedance

inversion, and forward seismic modeling (Avseth et al., 2010). Seismic attributes such as

seismic amplitude represent the contrast in elastic properties between geological layers

and contain important information about reservoir physical properties that cannot be

obtained from conventional seismic interpretation (Avseth et al., 2010).

18



2.3 Seismic Data Integration

Creating precise and accurate models of reservoir properties like porosity is an important

objective in geostatistical modeling. Consideration of multiple data sources improves the

reservoir models. Beyond the traditional application of seismic data for mapping large scale

subsurface structures, the integration of seismic data could increase the local accuracy of the

geostatistical models. The approaches for the integration of seismic data into geostatistical

modeling are considered indirect methods or direct methods.

2.3.1 Indirect Methods

The most common approaches to integrate seismic data into geostatistical modeling are

indirect. Indirect methods combine primary small scale well data with secondary large

scale seismic data through algorithms such as cokriging and statistical calibration.

Kriging is one of the first methods of spatial estimation that was initially applied for

mineral deposits to estimate grades at unsampled locations. Kriging is a linear

least-square estimation technique that accounts for the spatial correlation between all data

and the location to be estimated. Kriging calculates an estimate at an unsampled location

u, Z∗(u), by assigning weights, λi, to the set of nearby data (n) (Goldberger, 1962;

Matheron, 1962; Pyrcz and Deutsch, 2014), Equation 2.4.

Z∗(u)−m(u) =
n∑

i=1

λi(u)[Z(ui)−m(ui)] (2.4)

wherem(u) is themean value at the unsampled locationu. In Kriging, theweightsminimize

the error-variance σ2
E , which is the expected squared error between the true and estimated

value, Equation 2.5.

σ2
E = E[(Z(u)− Z∗(u))2] (2.5)
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The matrix form of kriging equation system is in the following form, Equation 2.6:

⎛
⎜⎜⎜⎝

C11(u)
. . . C1n(u)

... . . . ...

Cn1(u) · · · Cnn(u)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
λ1(u)
...

λn(u)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
C10(u)
...

Cn0(u)

⎞
⎟⎟⎟⎠ (2.6)

where the left hand side (LHS) matrix of C is the data-data covariance matrix and the right

hand side matrix (RHS) ofC is the covariance between data points and unsampled location,

C10 to Cn0. The weights calculated by the Kriging system consider the spatial variability

between the data and unsampled location. The structural function that characterizes the

spatial variability among locations is called the variogram. In geostatistics, the variogram

provides the linear correlation between two data points as a function of their separation in

space. The variogram is used to calculate the covariance values (C) in Equation 2.6

This is a simple and efficient way to relate an unsampled location to nearby data values.

Different variants of Kriging such as simple and ordinary Kriging were introduced with

different constraints on the mean or transformations of the data (Journel and Huijbregts,

1978; Goovaerts, 1997; Deutsch and Journel, 1998; David, 2012; Cressie, 2015). All

Kriging estimation techniques rely on the variogram measure of spatial variability (Pyrcz

and Deutsch, 2014).

Multivariate geostatistics was developed as an extension to include several variables.

Cokriging is a method of estimation that considers multiple data types. For example,

porosity can be estimated by cokriging as a linear combination of nearby porosity values

and related seismic attributes like acoustic impedance values. For cokriging, consider the

primary well data {Z1(uα1), α1 = 1, ..., n1} that are complemented by nv − 1 secondary

seismic attributes Zi, {Zi(uαi
), αi = 1, ..., ni, i = 2, ..., nv}. In this situation, the kriging

estimator can be extended to accommodate the secondary variables (Journel and

Huijbregts, 1978; Carr et al., 1985; Pyrcz and Deutsch, 2014) , Equation 2.7.
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Z∗1(u)−m1(u) =
n1∑

i1=1

λi1(u).[Z(ui1)−m(ui1)]+
nv∑
α=2

nα∑
iα=1

λiα(u).[Zα(uiα)−m(uiα)] (2.7)

Where λi1 are the weights assigned to the primary data and λiα are the weights assigned to

the nv − 1 secondary data. To calculate the weights in cokriging the following system of

equation must be solved, Equation 2.8.

⎛
⎜⎜⎜⎝

[C11(uα1 − uβ1)] · · · [C1nv(uα1 − uβnv
)]

... . . . ...

[Cnv1(uαnv
− uβ1)] · · · [Cnvnv(uαnv

− uβnv
)]

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

[λβ1(u)]
...

[λβnv
(u)]

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

[C11(uα1 − u)]
...

[Cnv1(uαnv
− u)]

⎞
⎟⎟⎟⎠

(2.8)

Where the LHS matrix [Cij(uαi
− uβj

)] is the matrix of data-data direct and cross

covariances. The RHS matrix [Ci1(uαi
− u)] is the matrix of data-unsampled location

direct and cross covariances. The vector of [λβi
(u)] are cokriging weights.

In cokriging system of equation with n variables, the covariance matrix needs n2

variogram/covariance functions which is demanding in terms of data and also the joint

model for the covariance matrix can be difficult to model. Therefore, cokriging has not

been widely practiced and used in geostatistics (Deutsch and Journel, 1998; Chiles and

Delfiner, 2009).

Collocated cokriging is a modification of cokriging that estimates the primary variable at

unsampled location from nearby primary data values and the collocated secondary data

value at the unsampled location (Doyen, 1988; Xu et al., 1992; Chiles and Delfiner, 2009;

Cressie, 2015). By considering a primary variables with n1 samples and nv − 1 secondary

data where j = 2, ..., nv, the collocated cokriging system of equation in matrix form is:
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⎛
⎝[C11(uα1 − uβ1)] [C1j(u− uβj

)]

[Ci1(uαi
− u)] [Cij(u− u)]

⎞
⎠

⎛
⎝[λβ1(u)]

[λβi
(u)]

⎞
⎠ =

⎛
⎝[C11(uα1 − u)]

[Ci1(u− u)]

⎞
⎠ (2.9)

where [C11(uα1 − uβ1)] is the matrix of primary data-data covariances, LHS of simple

Kriging equation. [C11(uα1 − u)] is the vector of primary data-unsampled location

covariances, RHS of simple kriging. [C1j(u − uβj
)] and [Ci1(uαi

− u)] are the covariance
matrix contains cross covariances between data and collocated secondary variables.

[Cij(u− u)] is the correlation coefficients between secondary variables and [Ci1(u− u)] is
the correlation coefficients between primary and secondary variables.

Kriging with external drift (Marechal, 1984; Galli and Meunier, 1987; Bourennane et al.,

2000; Bourennane and King, 2003), indicator coding of seismic data (Thadani et al., 1987;

Zhu, 1991; Zhu and Journel, 1993; Moysey et al., 2003; Park et al., 2003) and block

Kriging (Behrens et al., 1998; Lee et al., 2000; Aanonsen and Eydinov, 2006) are other

geostatistical methods to integrate secondary data. These methods will not be pursued in

this thesis because they have not proven flexible and consistent with the original seismic

data. Kriging with external drift does not provide control on how much the seismic data

influence on the final model. In indicator coding of seismic data, multiple thresholds are

needed, calibration must be applied and a number of Markov-Bayes parameters are

required.

2.3.2 Direct Methods

Direct methods are used in cases where the secondary data can be written as a

deterministic function of the geological model (Hong et al., 2006). Direct methods

generally integrate the seismic data through the combination of geostatistical approaches

and an inversion technique. The procedure of transformation of any geophysical data into

physical properties of earth model like elastic properties is considered as seismic inversion

process, Figure 2.2.

The principles and mathematics of seismic inversion theory can be found in many
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Figure 2.2: Schematic illustration of forward and inverse modeling in seismic data.

Geophysics text books such as Parker (1994) and Oliver et al. (2008). The main objective

of applying seismic inversion is to derive physical properties that characterize the rock

and fluid properties of the reservoir. In general, inversion does not provide a unique

solution due to band limited and noise contaminated seismic data (Bortoli, 1992). Seismic

inversion methods are categorized into two major approaches: 1) deterministic, and 2)

stochastic.

Deterministic inversion is also known as stratigraphic inversion. Sparse Spike and Model

Based deterministic inversion consider optimization techniques (Russell, 1988; Yilmaz,

2001). In most of deterministic seismic inversion methods an initial acoustic model,

usually obtained by smoothly interpolating well logs, is constructed from the well. The

reflectivity sequence related to the initial acoustic model is then convolved with an

extracted wavelet to calculate synthetic seismic. Then, via a process of global

optimization the initial acoustic model is modified to minimize the mismatch between the

synthetic and actual seismic survey, Figure 2.3. The output of deterministic seismic
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Figure 2.3: Flow chart of deterministic inversion algorithm.

inversion is a 2D or 3D acoustic property that could be used as an input to geostatistical

algorithms to model acoustic properties. Finally, a set of statistical relationships are

established to relate acoustic properties to the reservoir physical properties (Russell and

Hampson, 1991; Ulrych et al., 2001).

Deterministic inversion only works in presence of high quality seismic data (Doyen and

Guidish, 1992). The output of deterministic inversion is also relatively smooth and

generally unsuitable for direct use in volumetric calculations, estimation of connectivity or

fluid flow simulation. Moreover, deterministic inversion does not consider uncertainty or

non uniqueness associated with seismic inversion. These techniques only partially

account for uncertainty attached to the inversion process (Haas and Dubrule, 1994).

One solution to some of the limitations of deterministic inversion is stochastic seismic

inversion. Stochastic seismic inversion combines the inversion process and geostatistical

techniques like sequential Gaussian simulation (SGS) to provide high resolution models
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that are conditioned to both well and seismic data. The models obtained via stochastic

inversion algorithm have higher frequency content than low resolution seismic data. The

frequencies outside the seismic bandwidth come from the well data and geostatistical

approach.

The basic statistic approaches aim to model the uncertainty about unsampled value (z) as

a random variable (RV) Z. The probability distribution is a parameter that characterizes

the uncertainty of z. A random variable (RV) is a variable that takes a specified number

of outcomes based on probability distribution. A set of random variables (RV) defines

the random function (RF) (Deutsch, 1992; Deutsch and Journel, 1998). The cumulative

distribution function (cdf) for a continuous random variable (RV) Z(u) at location of u is:

F (u; z) = Prob {Z(u) ≤ z} (2.10)

When the cdf is defined based on a set of neighboring data values Z(uα) = z(uα) , α =

1, . . . , n then the cdf is defined as conditional cumulative distribution function (ccdf):

F (u; z|(n)) = Prob {Z(u) ≤ z|(n)} (2.11)

Sequential Gaussian simulation approach is one of the most widely used geostatistical

techniques in reservoir modeling applications because it is simple, efficient and flexible.

The theory underlying sequential Gaussian simulation (SGS) is Kriging (Equation 2.4) to

estimate the parameters of local conditional Gaussian distribution. In this method each

variable is simulated sequentially based on related normal conditional cumulative

distribution function (ccdf) through the kriging estimation system, Equation 2.4 (Deutsch,

1992 and Pyrcz and Deutsch, 2014). The sequential Gaussian simulation of a continuous

variable Z(u) followed as (Deutsch, 1992; Deutsch and Journel, 1998; Pyrcz and Deutsch,

2014):
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1. Define the univariate cdf FZ(z) that relates to the entire simulation domain

2. Transform the z data values into y data with a Gaussian cdf

3. Sequentially go through a random path to visit each grid node once

4. At each grid node u, define the conditioning data that consists of original hard data

and previously simulated grids in Gaussian unit within a specific neighborhood

5. Determine the mean and variance of the ccdf for the random function (RF) Y (u) by

Kriging

6. Draw a simulated value y(l)(u) from the ccdf

7. Add the simulated value y(l)(u) to the data set to use it as a conditioning data in the

next iteration

8. Loop over step 3 to 7 until all the grid nodes are simulated

9. Backtransform the simulate Gaussian values
{
y(l)(u), u ∈ A

}
into the variables

original unit
{
z(l)(u) = G−1(y(l)(u)), u ∈ A

}

This procedure generates one realization. More realization can be generated through

different random paths
{
z(l)(u), u ∈ A

}
, l = 1, . . . , L.

The main and original idea of directly accounting for seismic data in geostatistical

modeling with close integration of inversion and geostatistical techniques was proposed

by Bortoli (1992), Haas and Dubrule (1994) at ELF in the early 1990’s. The original

methodology combines a trace-by-trace optimization method with the sequential Gaussian

simulation (SGS) algorithm. The vertical variogram is based on the well data and the

horizontal variogram obtained from seismic data (Rowbotham et al., 1998; David, 2012).

This algorithm is as follows (Bortoli, 1992):

1. Sequentially visit all traces (columns) in a random order

2. At each trace generate multiple realizations of acoustic properties conditioned to the

well data and previously simulated values

3. Compute the reflectivity series for the multiple realizations

4. Convolve the reflectivity series with the extracted wavelet to obtain synthetic

seismograms
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Figure 2.4: Schematically shows the matching approach in stochastic seismic inversion,

original seismic data are used for best pick from prior multiple realizations that are

conditioned to well data (Redrawn from Bortoli, 1992).

5. Compare the synthetic seismograms with the actual seismic trace and retain the

acoustic properties associated to the best one

6. Repeat step 2-5 until all traces are simulated.

The number of realizations performed at each trace as a part of the local optimization must

be chosen. Figure 2.4 represent the process of matching approach to the actual seismic

data in original stochastic inversion method and Figure 2.5 shows the process of local

optimization for this algorithm.

In this algorithm, the process of local optimization for selecting the best match by

comparing them with actual seismic data could cause a problem in histogram and

variogram reproduction (Deutsch, 2001). Another issue or shortcoming with the algorithm

proposed by Bortoli (1992), Haas and Dubrule (1994) is that multiple seismic data are not

used explicitly in this approach. However, this issue has been addressed by Hong et al.

(2006). They developed a study based on Bortoli (1992), Haas and Dubrule (1994)

algorithm to consider multiple-temporal seismic data as well as to integrate secondary

seismic data. Multiple-temporal seismic data is considered as time-lapse seismic data that

has many practical application in reservoir monitoring (Lumley, 2001).
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Figure 2.5: Schematic illustration of local optimization process in the original stochastic

inversion approach (Bortoli, 1992).

Lamy et al. (1998) developed a study that was based on the Bortoli (1992), Haas and

Dubrule (1994) algorithm that focused on different methods of managing and quantifying

uncertainty in the stochastic inversion algorithm by focusing on statistical parameters such

as the mean, standard deviation, P10, P50, P90 and threshold probability.

A different version of stochastic inversion similar to the Bortoli (1992), Haas and Dubrule

(1994) method with the addition of a simulation annealing optimization algorithm was

proposed by Debeye et al. (1996) at Jason Geosystems. The practical application of this

algorithm to generate multiple 3D facies and porosity realizations consistent with geology

and seismic data was applied by Sams et al. (1999) in a central Sumatra basin reservoir.

This stochastic inversion scheme is an adaption of sequential Gaussian simulation (SGS)

or sequential Gaussian co-simulation (SGCS) based on simulated annealing (Debeye

et al., 1996; Bosch et al., 2010). The simulated annealing is an iterative optimization

method based on trial and error. This method considers an initial model m0 with

associated energy or mismatch E(m0). It generates a new model mn and computes the

corresponded energy or mismatch E(mn). If the new mismatch is lower than the initial

one, then the new model accepted unconditionally. Although, if it is larger than the initial
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one, then the new model accepted with the probability, P = exp[−(E(mn)−E(m0)
T

)] where

T is a control parameter that called annealing cooling temperature (Debeye et al., 1996;

Ma, 2002; Bosch et al., 2010). The key steps in this stochastic inversion algorithm are

(Debeye et al., 1996; Deutsch, 2001; Bosch et al., 2010):

1. Generate an initial model of facies and associated acoustic impedance consistent with

geostatistical and geological models and constrained to the well data

2. Compute the synthetic seismic volume from the initial acoustic impedance model and

extracted wavelet

3. Sequentially go through a random path and pick a node:

(a) Check all other possible facies categories (k = 1, 2, ..., K) and update acoustic

impedance model based on them

(b) Recalculate the synthetic seismic and the mismatch (Qk) between synthetic and

actual seismic trace for all possible facies categories (k = 1, 2, ..., K )

(c) Pick the best facies categories and retain them as simulated values. The criteria

to keep the facies is based on simulation annealing rule. If it reaches to the

lower mismatch, the model is accepted unconditionally. Otherwise, the model is

accepted with a probability. The probability to keep each category is Pk = e
−Qk
T

(d) Go to the next node and repeat step (a) to (c)until all nodes are simulated

4. Continue the procedure over all nodes of entire simulation domain until the minimum

mismatch obtained. Some research studies showed that the number of 10-15 iterations

are required to reach the optimal solution ( Sams et al., 1999 and Latimer et al., 2000).

There is no clear application of the indicator variogram and facies proportions in this

algorithm. Facies must be transformed into acoustic impedance. There is also some

ambiguity related to how to define the annealing schedule in this algorithm (Deutsch,

2001).

Kane et al. (1999) developed a seismic-well log inversion method that combines the

geostatistical methods for well log interpolation such as kriging with a Monte Carlo search
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technique for seismic inversion. This method follows the method originally proposed by

Bortoli (1992), Haas and Dubrule (1994). Kriging estimation method is applied to the

well data to estimate the velocity and corresponding variance. Then, the velocity estimates

and associated variances are used as a prior constraints in the seismic inversion algorithm.

A trace by trace inversion algorithm is performed to obtain a complete 2D seismic section.

The velocity profiles are derived from previous seismic traces are considered as pseudo

well logs in further applications of kriging. This method applies a more efficient Monte

Carlo search algorithm in the seismic inversion step and moves away from the wells

gradually to minimize the kriging variance at each step.

Another stochastic inversion approach was introduced by Eidsvik et al. (2004). This

algorithm formulates the stochastic inversion approach in terms of Bayesian network

model. This algorithm accommodates the lateral spatial continuity in the prior distribution

of reservoir physical properties through a Markov random field model (Bosch et al.,

2010). Later, Larsen et al. (2006) modified this algorithm to incorporate vertical spatial

continuity through a stationary Markov-chain prior model.

Francis (2005) introduced a different stochastic inversion approach. This algorithm

applies the advantages of Fast Fourier transform-based spectral simulation to generate

acoustic properties faster than the sequential simulation method. In this algorithm,

conditioning to seismic data is performed by using a generalized linear inversion

algorithm to update the primary acoustic impedance model. This method can be used for

joint inversion of multiple seismic volumes such as near and far offset volumes or

time-lapse seismic data (Bosch et al., 2010).

Another major modification in stochastic inversion was developed by Escobar et al. (2006).

This algorithm assumes that both the prior distribution and likelihood are Gaussian and the

forward modeling is a linear process. By these assumptions, the high dimensional posterior

distribution can be decomposed as a product of Gaussian distributions. Then, Sequential

Gaussian Simulation draws realizations from the posterior distribution of elastic properties

(Bosch et al., 2010).
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Most of the geostatistical algorithms applied in stochastic inversion rely on the variogram

(two point statistics) to capture the spatial continuity in reservoir models. Two point

statistics methods do not incorporate complex geology features or curvature structures.

The solution to this limitation is the idea of Multi Point Statistics (MPS) with training

images (Guardiano and Srivastava, 1993).

One of the first research studies to apply MPS method in stochastic inversion and obtain

reservoir properties was introduced by González et al. (2007). This approach integrates

inversion algorithm with MPS methods to obtain reservoir properties. This technique

formulates the inversion problem as an inference problem and combines it with MPS to

include prior geological information. It also uses rock physics relationships to

characterize the relation between elastic and reservoir properties. This approach

incorporates the concepts of sampling from conditional probabilities with concepts of

optimization to generate optimal solutions. These solutions are the realizations that

reproduce the available seismic data within a certain tolerance given by the rock physics

distribution (Bosch et al., 2010).

Stochastic inversion of seismic data using fractal-based initial models was developed by

Srivastava and Sen (2010). This approach relies on a fractional Gaussian distribution

derived from the statistical parameters of available well data and also fractal theory to

generate acceptable and realistic initial models. A global optimization method like

simulated annealing algorithm minimizes the mismatch to seismic and well data.

The idea of involving a direct inversion of seismic amplitudes for physical properties of

rock such as porosity and fluid saturation that called direct petrophysical inversion was

introduced by Doyen (2011) where Petro Elastic-Models (PEM) play an important role in

connecting seismic data to reservoir properties.

The application of Principle Component Analysis (PCA) in geostatistical seismic inversion

introduced by Jin et al. (2013). PCA provides an orthogonal transformation to project the

high dimensional model to a lower dimension by using the correlation betweenmodels. The

algorithm starts with a large number of training images sampled from a prior probability
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distribution, then principle components are computed from the correlation matrix of the

training images. The number of principle components are much smaller than the original

number of model parameters, so new training images can be obtained efficiently through

the posterior probability distribution. The results from this inversion technique show better

lateral continuity compared to the trace by trace inversion using the same optimization tool

(Jin et al., 2013).

An iterative geostatistical seismic Amplitude Versus Offset (AVO) inversion methodology

based on direct sequential simulation (DSS) and co-simulation was proposed by Azevedo

et al. (2013) which allows direct inversion of prestack seismic data for density, facies,

P -wave and S-wave models (Azevedo et al., 2013). This approach is an iterative

procedure based on genetic algorithm. The best models at each iteration will constraint the

generation of models in the next iteration. This method initially simulates multiple

realizations (L) of density from available well data based on DSS algorithm (Soares,

2001) and for each density model, multiple realizations (L) of VP/VS are generated by

co-DSS with joint probability distribution that are conditioned to the previously simulated

density model. In the next step, multiple realizations of facies (L) are generated

conditioned to the previously simulated elastic properties by using classification algorithm

like Bayesian classification (Avseth et al., 2010). Then, multiple realizations (L) of VP

conditioned to the well data and simulated facies model by DSS are generated. In the

following step, multiple realizations (L) of VS condition to the well data and previously

simulated VP are modeled by co-DSS. Synthetic angle gather by linear Shuey’s

approximation (Shuey, 1985) is calculated. In the final step, the mismatch between

synthetic and actual seismic data is compared and the best local correlation in a new

volume is considered (Azevedo et al., 2013).

Another stochastic seismic inversion similar to the conventional stochastic seismic

inversion methods that works based on the calculation of the deviation between the initial

guess model and every single elastic property simulated at each simulation iteration was

proposed by Pereira et al. (2016). The conventional trace-by-trace correlation coefficient

between real and synthetic seismic data along with the deviation to the initial guess model
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are integrated as an objective function for optimization algorithm in this method. The

combined objective function works based on global optimizer to ensure the convergence

of each iteration in the simulation process. This method claims that the computational

time in conventional stochastic inversion is decreased and the convergence between

synthetic and real seismic data is increased. This method requires many conditioning data

to obtain reasonable match to the original seismic data.

2.4 Chapter Summary

High resolution numerical models of reservoir properties have a major role in reservoir

characterization as they can improve hydrocarbon recovery, flow simulation and reservoir

management. Integration of different sources of geological information such as well data

with high vertical resolution along with seismic data with high lateral coverage can

significantly improve forecasting of reservoir physical properties. Among the different

geostatistical methods for seismic data integration, stochastic seismic inversion appears

the most useful and applicable. Stochastic seismic inversion integrates different sources of

information including well and seismic data through the close integration of geostatistical

approaches and inversion techniques. Stochastic seismic inversion has the advantage of

assessing uncertainty associated with inverted elastic properties.

Conventional stochastic inversion approaches simulate either facies or acoustic impedance

and then connect them to the reservoir physical properties via a set of sequential

connection. However, there is no guarantee that final reservoir models obtained through

these sequential connection repreduces the original seismic data. To address the issues

related to the conventional stochastic seismic inversion methods, this research study

proposes and develops a new stochastic seismic inversion approach. The methodology is

explained in the next chapter.
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Chapter 3

Methodology

3.1 Introduction

Integration of seismic data into geostatistical modeling is a long-established problem. There

are different approaches for seismic data integration in geostatistical modeling. Onemethod

is combination of large scale soft seismic data with small scale hard well data through the

different geostatistical algorithms such as cokrigging (Doyen, 1988; Xu et al., 1992; Yao

and Chopra, 2000; Grana et al., 2012). An alternative to cokriging approach is stochastic

inversion which directly account for seismic data into geostatistical modeling (Hong et al.,

2006 and Pyrcz and Deutsch, 2014). There are different version of stochastic inversion

approaches in literature (Bortoli, 1992; Haas and Dubrule, 1994; Debeye et al., 1996; Sams

et al., 1999; Helgesen et al., 2000; Francis, 2005 and Bosch et al., 2010). Most of these

approaches connect a high quality facies or acoustic impedance model obtained through

close integration of geostatistical modeling and stochastic inversion to the reservoir physical

properties via statistical calibrations and petrophysical relationships (Deutsch, 2001; Bosch

et al., 2010). Although, integrity to the original seismic data may lost through the sequential

connections due to element of randomness at each step. To address the issues related to the

conventional stochastic inversion approaches, multivariate stochastic inversion approach is

proposed and developed.

3.2 Multivariate Stochastic Inversion Approach

The proposed method, multivariate stochastic inversion, applies a multivariate Gaussian

simulation technique as part of stochastic inversion. The new approach simultaneously

models all continuous and categorical variables with acoustic properties that they are
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conditioned to well and seismic data. To condition multiple reservoir properties to the

seismic data at the same time, the synthetic seismogram derived from these properties is

compared with the actual seismic trace. As previously discussed, seismic surveys are

inherently column based. Therefore, a full column of multiple reservoir properties are

required at each step. All simulation algorithms in multivariate stochastic inversion

approach are implemented in column wise manner to simulate a full column of physical

and acoustic reservoir properties simultaneously at each simulation iteration. Figure 3.2

shows multivariate stochastic inversion algorithm schematically. The new approach works

in the following order:

1. Sequentially go through a random path of columns over the simulation domain

2. Create one realization of categorical (facies) and continuous (porosity, fluid

saturations, ...) variables simultaneously

(a) Categorical variables are simulated either by column wise truncated

pluriGaussian methods (two point statistics method) or by column wise multi

point statistics (MPS) method

(b) Continuous variables are simulated through the column wise sequential

Gaussian simulation (SGS) algorithm

3. Pass the multiple variables to the Petro-Elastic Model (PEM) to calculate elastic

properties such as density, velocity, acoustic impedance and reflectivity sequence

4. Convolve the computed reflectivity series with extracted wavelet to obtain synthetic

seismogram through the convolution algorithm

5. Compare the synthetic seismogram with collocated actual seismic trace through the

selection criteria

(a) Compute MSE between actual and synthetic seismogram

(b) Check the stopping criteria: -target MSE and - reasonable maximum number of

realizations
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Figure 3.1: Schematic algorithm of multivariate stochastic inversion.

i. If computed MSE reached to target MSE within reasonable number of

realizations, go to Step 6. If the maximum number of tries is exceeded go

to Step 6

ii. Otherwise go to Step 2 and generate another realization and repeat this

procedure until meet the stopping criteria requirements

6. Retain the multiple variables related to the best synthetic trace

7. Go to the next column and repeat Steps 2-6 until all columns are simulated.

One of the major contributions of the new approach is to improve the geostatistical models

by applying multivariate geostatistical methods to model multiple reservoir physical

properties simultaneously instead of modeling them with sequential connections. This

approach models continuous and categorical variables at the same time through the

multivariate Gaussian simulation technique that will be explained below.
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3.2.1 Multivariate Gaussian Simulation Technique

The multivariate stochastic inversion approach simulates multiple reservoir properties

simultaneously via the multivariate Gaussian simulation technique. This technique

simulates multiple Gaussian variables for a full column of simulation domain, denoted by

Z l
i(�u) that i is number of multiple Gaussian variables are simulated by this technique for

the column located at �u and l number of multiple realizations. Continuous variables are

simulated by a column based sequential Gaussian simulation algorithm (Deutsch and

Journel, 1998) that performs multivariate geostatistical simulation. Categorical variables

like facies are simulated by column based truncated pluriGaussian simulation algorithm as

the primary option for facies modeling. To add more flexibility and to handle more

complex geological features in reservoir modeling by multivariate stochastic inversion

approach, column based multi points statistics (MPS) is an alternative for facies modeling.

More details about column based facies modeling are explained on Chapter 5.

The number of Gaussian variables are simulated by the multivariate Gaussian simulation

technique is a function of number of continuous variables or reservoir physical properties

(nc), number of Gaussian variables is required to define sequential order among facies

categories through the truncated pluriGaussian simulation (nf ) and number of facies

categories (K), Equation 3.1:

Z l
i(�u) i = 1, . . . , (nf +K · nc) l = 1, . . . , L (3.1)

where l is the number of realizations and �u the location of the simulated column.

In this technique, continuous variables are simulated for each facies category. At the end,

based on the simulated facies value, the corresponding simulated continuous variables are

kept for each vertical position. In case of clear sequential order among the facies categories,

only one Gaussian variable is required to simulate a facies by truncated Gaussian simulation

(nf = 1). Therefore, to simulate a facies with two categories (K = 2) like sand and shale
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and two reservoir physical properties (nc = 2) such as porosity and water saturation five

Gaussian variables are required to be simulated by this technique. One Gaussian variable

is required for facies modeling and four Gaussian variables are required for porosity and

water saturation associated with sand and shale.

To implement multivariate Gaussian simulation, a sequential Gaussian simulation

algorithm (Deutsch and Journel, 1998) that performs multivariate geostatistic simulation

called Ultimate Sequential Gaussian Simulation (USGSIM) (Manchuk and Deutsch,

2012) is modified to: (1) perform column based simulation, (2) generate multiple

realizations per column, (3) apply multivariate simulation for both categorical and

continuous variables simultaneously, (4) couple with Petro Elastic Model (PEM) to

generate multiple reservoir elastic properties, (5) convolve the elastic properties with

extracted wavelet, and (6) apply a selection criteria to retain one realization. USGSIM is a

flexible sequential Gaussian simulation algorithm where multiple variables are

cosimulated simultaneously. Multiple secondary data such as seismic and production data

can be applied by using locally varying means, Bayesian updating or collocated cokriging.

The stepwise transform is integrated in this algorithm as are collocated cokriging,

cokriging with a linear model of coregionalization and collocated cokriging with the

intrinsic model for the cosimulation of multiple variables (Manchuk and Deutsch, 2012).

Figure 3.2 shows the schematic form of the correlation matrix in the multivariate Gaussian

simulation approach for a facies withK categories that simulated by nf Gaussian variables

through the truncated pluriGaussian simulation and nc continuous variables. This matrix is

a block matrix where the top row and first column are related to the facies. The diagonal

blocks, second to theK blocks, represent how continuous variables are related to each other

within the facies. There is no reason for cross correlation among the continuous variables

between facies. Therefore, the remaining off diagonal blocks are zero.

Model validation such as visual assessment and reproduction of statistics such as

variogram and histogram is necessary for column based USGSIM algorithm because this

algorithm involved many modification steps. For checking, a 2D simulation domain
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Figure 3.2: Schematic form of correlation matrix of multivariate Gaussian simulation

for a facies withK categories and nc continuous variables which nf Gaussian variables

required for truncated (pluri)Gaussian.

(250 × 250) are considered and two negatively correlated (ρ = −0.7) variables are
simulated unconditionally. These simulated variables randomly sampled and considered

as conditioning well data for the next steps of model checking. Multiple realizations are

generated based on this conditioning data with the USGSIM and column based USGSIM

algorithm. For visual assessment, Figure 3.3 and Figure 3.4 display a map of conditioning

data and two different realizations of these negatively correlated variables for both

implementation of USGSIM. As shown in these figures, the simulation results for column
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based USGSIM reproduce the conditioning data with no apparent artifacts. The negative

correlation between two variables is reproduced. The correlation coefficient of two

different realizations of two negatively correlated variables (ρ = −0.7) simulated by
column based USGSIM are −0.71 and −0.72. Figure 3.5 and 3.6 represent histogram
reproduction of two realizations of simulated variables for USGSIM and column based

USGSIM. As shown in these figures, the first row displays histogram of conditioning data

and the rest compare the histogram of two different realizations of simulated variables for

USGSIM and column based USGSIM. Figure 3.7 displays the omni-directional variogram

reproduction of two different realizations of simulated variables for the two algorithms.

Facies and multiple continuous variables are simulated by multivariate Gaussian

simulation technique through the column based sequential Gaussian simulation and

truncated pluriGaussian simulation algorithm. The simulated multiple reservoir properties

are passed to Petro-Elastic Model (PEM) to calculate multiple reservoir elastic properties.

3.3 Petro Elastic Model

The elastic properties of the reservoir are required at the same time as the physical

properties. A Petro Elastic Model (PEM) is considered to calculate elastic properties such

as bulk density, velocity and acoustic impedance. The Petro Elastic Model (PEM) is

coupled into the multivariate geostatistical modeling algorithm. Reservoir physical

properties generated via the multivariate geostatistical approach are passed to PEM for

calculation of reservoir elastic properties.

There are different Petro-Elastic Model. In the multivariate stochastic inversion algorithm,

the bulk density will be calculated by the following equation;

ρ = φρf + (1− φ)ρr (3.2)

where φ is porosity, ρf and ρr are fluid and rock densities, respectively. The fluid density
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will be also calculated by following expression;

ρf = ρoSo + ρwSw (3.3)

in Equation 3.3, ρo and ρw are oil and water phase density and So and Sw are oil and water

phase saturation respectively.

There are many different petrophysical approaches to calculate velocity. One approach to

calculate velocity is to establish a relationship between density and velocity. Bulk density

and velocity depend on the mineral composition, the granular nature of the rock matrix,

cementation, porosity, fluid content and environmental pressure (Gardner et al., 1974).

Gardner’s equation is common. Gardner et al. (1974) expressed the relation between

density (ρ) and compressional velocity (VP ) as follows, Equation 3.4.

ρ = a(VP )
m (3.4)

The constants a and m can be determined from fitting a line to a plot of log(ρ) versus

log(VP ), Figure 3.8. Equation 3.4 takes different forms, depending on the unit of density,

velocity and also rock types (Gardner et al., 1974). In the proposed research study,

Gardner’s equation is considered to calculate velocity. The constants of a and m must be

determined on a case by case basis. The reflectivity series computed based on acoustic

impedance must then be passed to a convolution algorithm to calculate synthetic seismic

trace.

For better understanding of PEM algorithm. Let’s consider a facies model (250 × 250)

with two categories, shale (ρshale = 2.65g/cc) and sand (ρsand = 2.62g/cc), and two

related reservoir physical properties such as porosity and fluid saturation as input of PEM

algorithm. In this case the pore space consists of two phases; oleic phase

(ρoil = 0.95g/cc) and aqueous phase (ρwater = 1g/cc). The density is calculated by

Equation 3.2 and velocity is obtained from Gardner’s equation (Equation 3.4) which

a = 0.31 and m = 0.25 for this case. Acoustic impedance is computed as product of
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Figure 3.3: Conditioning data and two different realizations of two negatively correlated

variables (ρ = −0.7) simulated by USGSIM, axes unit (m), color bar unit (m3/m3).
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Figure 3.4: Conditioning data and two different realizations of two negatively correlated

variables (ρ = −0.7) simulated by column based USGSIM, axes unit (m), color bar unit
(m3/m3).
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Figure 3.5: Histogram of conditioning data and two different realizations of two

negatively correlated variables (ρ = −0.7) simulated by USGSIM.
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Figure 3.6: Histogram of conditioning data and two different realizations of two

negatively correlated variables (ρ = −0.7) simulated by column based USGSIM.
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Figure 3.7: Variogram (omni-directional) reproduction of two different realizations of

two negatively correlated variables (ρ = −0.7) simulated by USGSIM and column
based USGSIM (black line variogram model and red dots variogram of simulated values),

distance in (m).
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Figure 3.8: Velocity-density relationships in rocks of different lithology (Gardner et al.,

1974).
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density and velocity and normal incident reflection coefficient (R) by Equation 2.1.

Figure 3.9 shows the reservoir properties as input of PEM algorithm and also the reservoir

elastic properties obtained from this algorithm. The reflectivity series is used as input to

the convolution algorithm to compute the synthetic seismic.
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Figure 3.9: Reservoir physical properties as input of PEM and reservoir elastic properties

obtained from PEM, axes unit (m), color bar of porosity and saturation (m3/m3), density

(gr/m3), velocity (m/sec), and acoustic impedence (gr/m2.sec).
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3.4 Convolution and Synthetic Seismogram

The column based multiple realizations of reservoir physical properties must be compared

with the collocated actual seismic trace. The one that falls within an acceptance criteria

could be chosen. To compute synthetic seismograms at each trace, the reflectivity series

obtained via the Petro Elastic Model (PEM) will be convolved with the extracted wavelet.

The convolution of reflectivity sequence, R, with a wavelet,W , yields a seismic trace, S,

which usually written as the convolution integral:

S(t) =

∫ +∞

−∞
W(t− τ)R(τ)dτ (3.5)

When the parameters are discrete, finite length approximations to these quantities, the

convolution is written as a summation. Where Rj is reflectivity series with j = 0, 1, ..., n

andWi is the wavelet with i = −m, ..., 0, ...,m , Equation 3.6:

Si = �t
i−m∑

j=i+m

Wi−jRj (3.6)

Expanding a few terms of this summation, Equation 3.6, shows that this convolution process

can be considered as matrix operation:

S0 = ...+W0R0 +W−1R1 +W−2R2 + ...

S1 = ...+W1R0 +W0R1 +W−1R2 + ... (3.7)

Convolution is a stationary process where the convolution matrix is the same everywhere.

That is, the wavelet that is scaled and used to replace each reflectivity spike does not change

with time or location. The convolution process can affect not only the amplitude of the
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Figure 3.10: Ricker wavelet with central frequency of 30 Hz, amplitude (m), time (sec).

wave but also its phase. The Ricker wavelet known as a zero phase with central frequency

of 30HZ wavelet does not have amplitude attenuation and phase change under convolution

process (Margrave, 2009). Figure 3.10 shows a zero phase Ricker wavelet with central

frequency of 30HZ in time domain.

It is worth mentioning, the convolution in depth domain can be represent the same as

convolution in time domain. In case of dealing with reflectivity series in the depth domain

the convolution in depth domain (Equation 2.3) can be applied. In this case the Ricker

wavelet in depth domain should be considered. The Ricker wavelet in depth domain

follows the same formalism and shape as the time domain, the depth domain Ricker

wavelet is formulated with a dominant wavenumber rather than a dominant frequency

(Zhang et al., 2016).

The objective of this research study is to consider a reasonable wavelet implemented as a

robust and fast convolution algorithm. Wavelet extraction and well tie analysis are beyond

the scope of this research study. The convolution algorithm with the specific wavelet
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Figure 3.11: Shows 2D seismic that obtained from convolution algorithm, axes unit (m),

color bar - amplitude (m).

computes synthetic seismograms based on Petro-Elastic Model(PEM) results from the

multivariate sequential Gaussian simulation algorithm. The zero phase Ricker wavelet

with a central frequency or wave number are considered in this study. Figure 3.11 shows

the 2D synthetic seismic survey obtained from the convolution of Ricker wavelet and R

(Figure 3.9) computed by PEM algorithm in the previous example.

Synthetic seismograms are passed to a selection algorithm to pick the best match to the

actual seismic data based on acceptance criteria.

3.5 Adaptive Sampling Algorithm

To condition multiple simulated reservoir properties to seismic data, the synthetic

seismograms computed by the convolution algorithm are compared to the actual seismic

trace through an adaptive sampling algorithm. In multivariate stochastic inversion,

adaptive sampling algorithm defines practical stopping criteria to reach an acceptable
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match to the original seismic data within a reasonable number of realizations. The mean

square error between the synthetic and collocated original seismic trace are computed and

compared with the target MSE that is based on the inherent uncertainty in the modeling

process. The notion of the space of uncertainty in presence of different parameters is

applied to establish a reasonable number of realizations for multivariate stochastic

inversion. Adaptive sampling in content of multivariate stochastic inversion means, the

simulation process generates large number of realizations at the primary steps to reach an

acceptable match and gradually decreases this number by going through the simulation

steps as the size of space of uncertainty is reduced. More details on adaptive sampling and

stopping criteria can be found in Chapter 6. The quantification of the size of the space of

uncertainty is discussed in the next chapter.

3.6 Chapter Summary

Multivariate stochastic inversion applies multivariate geostatistical techniques as part of

the stochastic inversion algorithm and simulates multiple reservoir properties

simultaneously to provide high resolution reservoir models that reproduce the original

seismic data. Multiple reservoir properties, categorical and continuous, are simulated

through the multivariate Gaussian simulation technique. For this purpose, the Ultimate

Sequential Gaussian Simulation (USGSIM) algorithm is modified. Continuous variables

are simulated by column based sequential Gaussian simulation (SGS). The primary option

for facies modeling is truncated pluriGaussian simulation method. To be able handle more

complex geological features and add more flexibility to the multivariate stochastic

inversion approach, column based multi point statistics simulation is an alternative for

facies modeling. Reservoir properties are conditioned to the seismic data through a

selection criteria that called adaptive sampling. Adaptive sampling algorithm compares

the synthetic seismic trace with collocated original one and pick the one that reaches an

acceptable match with the original seismic data within a reasonable number of

realizations. Size of the space of uncertainty is a good indicator to define reasonable

number of realizations in multivariate stochastic inversion approach.
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Chapter 4

Size of Space of Uncertainty

4.1 Introduction

Geostatistical approaches, both estimation and simulation, have been extensively applied

in reservoir modeling. The estimation methods such as kriging creates an overly smooth

numerical model that does not represent the true spatial variability. Simulation methods

create a set of realizations conditioned to a variety of information, such as well log data,

core data, seismic surveys and production data. These methods reproduce the statistics

inferred from the conditioning data and represent the spatial variability. Normally, the set

of multiple realizations provide a qualitative and quantitative measure of spatial

uncertainty (Goovaerts, 1999). Multiple geostatistical realizations are used for three

fundamental purposes (Srivastava, 1996) : 1) assessment of impact of uncertainty, 2)

Monte-Carlo risk analysis and 3) spatial variation reproduction.

Reservoir engineers are responsible for flow forecasting and future field development.

They search for the most optimistic (P10) and pessimistic(P90) models among the

multiple realizations. Therefore, uncertainty assessment requires the generation of many

equiprobable realizations. Normally, one hundred realizations is considered to be enough

to obtain fairly stable prediction of P50 and also choose reliable P10 and P90. However,

the major concern is how many realizations are required in a stochastic inversion context

to find one that is acceptably close to the input data. This number may be much larger than

one hundred. The set of all possible outcomes is referred to as ”the space of uncertainty”.

The concept of the space of uncertainty has been discussed in many geostatistical studies

such as Rossi (1994); Srivastava (1994, 1996); Journel and Xu (1994); Journel (1997),

Myers (1994, 1996), Mukerji et al. (2001), Eidsvik et al. (2004), Kjønsberg et al. (2010),
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Grana et al. (2012) and Johansen et al. (2013). Some of these studies believe that the

space of uncertainty should be defined via the stochastic simulation algorithm by

including all possible realizations that generated by the algorithm. Although, few of them

believe that the space of uncertainty should be defined outside of stochastic simulation

algorithm regardless of the method of simulation (Goovaerts, 1999; Goovaerts, 2006).

The term of algorithmically defined the space of uncertainty was suggested later by

Deutsch (1994) and its application can be found in different geostatistical modeling

research study like Goovaerts (2006).

In addition to the geostatistical studies discussed about space of uncertainty, there are some

studies that focus on uncertainty estimation. One recent approach by Zunino et al. (2014)

inverts seismic reflection data in the framework of the probabilistic approach to inverse

problems by using a Markov chain Monte Carlo (McMC) algorithm. This method aims to

directly infer the facies and porosity of reservoir. Therefore, this method combines a rock

physics model with seismic data in a single inversion algorithm. For the large data set, the

Markove chain Monte Calro (McMC) method is computationally impractical. So, in case

of dealing with large data set, this method relies on multi-point based a priori information to

quantify geologically plausible models. The solution of inverse problem then represented

by a collection of facies and porosity models.

In geostatistical modeling, there is always some degree of uncertainty despite the fact that

there is a single and inaccessible truth for the geological structures (Pyrcz and Deutsch,

2014). Uncertainty is due to our limited data relative to the scale of variability. Multiple

realizations provide samples from the uncertainty model (Pyrcz and White, 2015). There

are different mathematical approaches to model uncertainty described in books including

Journel and Huijbregts (1978), Goovaerts (1997) and Chilès and Delfiner (2012).

Many research studies have addressed uncertainty estimation and modeling, little has been

published on the actual size of the space of uncertainty and its application in geostatistical

modeling. In the early days of simulation, there was a claim that the set of multiple

realizations generated by geostatistical simulation may include the truth (Goovaerts,
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1999;Mukerji et al., 2001; Leuangthong et al., 2004). In practice, however, we know that

the space of uncertainty is very large and the number of realizations is very small.

Therefore, the probability that one realization happens to be the truth is infinitesimally

small. Although, the size of space of uncertainty is inconceivably large it is also

interesting to understand how the space becomes smaller in presence of spatial correlation

and conditioning data.

4.2 Size of Space of Uncertainty

To quantify the size of the space of uncertainty, consider a categorical variable that can

take one of K outcomes. Consider a set of N locations that define a space of uncertainty

denoted Λ. The size of the space of uncertainty is a measure of its extent denotedM(Λ).

A multivariate distribution of values can be decomposed into a sequence of univariate

conditional distributions using the definition of conditional distributions, Equation 4.1:

fZ1,...,ZN
(Z1, . . . , ZN) = fZ2,...,ZN |Z1=z1(Z2, . . . , ZN) • fZ1=z1(Z1)

...

= fZN |ZN−1=zN−1,...,Z1=z1(ZN) • · · · • fZ2|Z1=z1(Z2) • fZ1=z1(Z1)

=
N∏
i=1

fZi|Zi−1,...,Z1=z1(Zi) (4.1)

Therefore, the size of the space of uncertainty for a multivariate distribution could also be

considered as the product of the size of the space of uncertainty of univariate conditional

distributions, Equation 4.2:
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M(Λ) = M(fZ1,...,ZN
(Z1, . . . , ZN))

= M(
N∏
i=1

fZi|Zi−1=zi−1,...,Z1=z1(Zi))

=
N∏
i

M(fZi|Zi−1=zi−1,...,Z1=z1(Zi)) (4.2)

Size of the space of uncertainty of a univariate distribution for K completely random

categories is K. This size drops to 1 in case of one deterministic category. The size of the

space of uncertainty for independent equally probable events, say K categories over N

locations, is K multiplied by itself N times, see Equation 4.3. This size dramatically

drops to the 1 in deterministic case.

M(Λ) =
N∏
i=1

K = KN (4.3)

For any probability distribution, there is a quantity called entropy that defines the

uncertainty of a single random variable (Cover and Thomas, 2006). In fact, entropy

provides a measure of uncertainty associated with the probability density function (PDF)

of a random variable. If the random variable is a discrete variable that can take K

outcomes values with probability pk, k = 1, ..., K while
K∑
k=1

pk = 1, then the entropy can

be defined as (Li and Deutsch, 2010):

H = −
K∑
k=1

pkln(pk) (4.4)

Maximum entropy occurs only when all categories are equally probable, see Equation 4.5.

Minimum entropy is achieved when only one category can happen, Equation 4.6.
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pk =
1

K
=⇒ Hmax = ln(K) (4.5)

pk = 1, pk′ = 0 ∀k �= k′ =⇒ Hmin = 0 (4.6)

As mentioned above, the maximum size of uncertainty of a univariate distribution isK for

K totally random categories. Based on the definition of maximum entropy, this size can

be defined as the exponential maximum entropy of the configuration, see Equation 4.7.

Minimum size of the space of uncertainty of a univariate distribution is 1 in case of one

deterministic category. This size can also be defined as exponential minimum entropy of

configuration, Equation 4.8. Therefore, maximum and minimum size of the space of

uncertainty of univariate distribution can be characterized by maximum and minimum

entropy of the configuration respectively. In fact, the entropy is an indicator of extent or

size of the associated distribution and exponential entropy characterizes this size perfectly

(Campbell, 1966).

Hmax = ln(K) =⇒ K = eHmax = Mmax(Λ) (4.7)

Hmin = 0 =⇒ eHmin = 1 = Mmin(Λ) (4.8)

Size of the space of uncertainty of a univariate distribution in general form can be quantified

as the exponential entropy of the configuration, Equation 4.9 . In Figure 4.1, the dash line

displays the size of the space of uncertainty of a univariate distribution for maximum and

minimum cases while the solid black curve shows exponential entropy of system which is

size of the space of uncertainty of univariate distribution in general form.

M(Λ) = eH (4.9)
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Figure 4.1: Entropy of configuration versus size of the space of uncertainty.
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Figure 4.2: Sketch shows a case study, a column over 50 locations, (N = 50,ΔZ = 1).

As a result, size of the space of uncertainty for K categories over N locations can be

calculated by Equation 4.10.

M(Λ) =
N∏
i=1

K =
N∏
i=1

eHi

=
N∏
i=1

e
(−

K∑

k=1

(pk|j=1,...,i−1)•(ln(pk|j=1,...,i−1)))i
(4.10)

Based on Equation 4.10, size of the space of uncertainty is the product of exponential

entropy values. This was proved and applied primarily in information theory (Cover and

Thomas, 2006).

The current practice of geostatistical modeling of categorical variables generally considers

K = 2 to 7 categories over N = 106 to 108 locations. Size of the space of uncertainty in

these cases is inconceivably large and cannot be understood from a practical perspective.

To have an idea about the size of the space of uncertainty in real practices, consider a case

study of a column over fifty locations (N = 50,ΔZ = 1) with K = 2 to 4 categories,

Figure 4.2.
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Table 4.1: Size of the space of uncertainty forK = 2 toK = 4 categories over fifty

locations (N = 50, ΔZ = 1).

Number of categories size of space of uncertainty
K = 2 250 ∼= 1.126× 1015

K = 3 350 ∼= 7.180× 1023

K = 4 450 ∼= 1.268× 1030

As previously discussed, maximum space of uncertainty forK categories overN locations

is KN . As shown in Table 4.1, the maximum size of the space of uncertainty for this case

study varies between order of 1015 to 1030. It is worth mentioning, one light year is in order

of 1015 (9.46× 1015m) and Milky Way radius is in order of 1022 (3.9× 1022m).

Although, size of the space of uncertainty for a case with totally random categories is very

big there are different factors that reduce this size significantly including (1) prior global

or local proportions for the categories, (2) spatial correlation of the categories, and (3)

conditioning data. To investigate the effect of different parameters on the size of the space

of uncertainty, the computation of size of the space of uncertainty is implemented.

4.3 Algorithm to implement size of space of uncertainty

Implementation of size of the space of uncertainty must be done through the sequential

probability estimation. The probability cannot be estimated without knowing the

probability of each category at location. Therefore, the computational process should be

done through the sequential simulation algorithm. For this purpose the BLOCKSIS

conventional GSLIB code (Deutsch, 2005) was modified to calculate entropy of system,

exponential entropy and the size of the space of uncertainty for the simulation domain.

The modified BLOCKSIS code performs all the calculations in this order:

1. Sequentially goes through a random path and pick a location

2. Compute pk for k = 1, ..., K using conditional data and previously simulated data

3. Calculate entropy and exponential entropy; H = −
K∑
k=1

pkln(pk), eH

4. Go to the next location, repeat step 2-4 until calculate exponential entropy for entire
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simulation domain

5. Calculate size of the space of uncertainty for simulation domain by Equation 4.10

The effects of different parameters on the extension of space of uncertainty will be discussed

below.

4.3.1 Unequal Proportion

Size of the space of uncertainty is defined as the product of exponential entropy values.

The maximum space of uncertainty is obtained in case of having maximum entropy of

configuration. The maximum entropy of system occurs when all categories are equally

probable. Therefore, any case of unequal probability that reduces the entropy of system

leads to reduction of size of the space of uncertainty. The entropy of system and

corresponding size of the space of uncertainty for different proportions are computed

through the implemented algorithm on section 4.3 for the case study with two categories

K = 2 over fifty locations (N = 50,ΔZ = 1). Table 4.2 shows the computed entropy and

size of space of uncertainty over the different proportions for this case through the

implemented algorithm. Figure 4.3 also shows the entropy and logarithm of size of the

space of uncertainty versus proportion respectively. As shown in this figure, the minimum

entropy and size of uncertainty obtained in presence of only one category and these

parameters increase by closing to the more equal categorical proportion. Maximum

entropy and size of uncertainty obtained for equal proportions (p1 = p2 = 0.5).

4.3.2 Spatial Correlation

Spatial correlation is another parameter that reduces the size of the space of uncertainty.

Spatial continuity is generally defined by variogram range and it is an indicator of data

dependency. Therefore, a very small variogram range compared to the extension of

simulation domain shows completely an independent simulation case and increases the

size of the space of uncertainty. By increasing the range of variogram compare to the
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Figure 4.3: shows entropy (H) VS proportion (P1), the top one and Log(M(Λ)) VS

proportion the bottom one.
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Table 4.2: Entropy and size of space of uncertainty for the case study (N = 50,ΔZ = 1)

different proportions, results are displayed in Figure 4.3.

P1 P2 H M(λ)
0 1 0 1
0.1 0.9 0.3251 11457426
0.2 0.8 0.5004 7.35× 1010

0.3 0.7 0.6109 1.84× 1013

0.4 0.6 0.6730 4.11× 1014

0.5 0.5 0.6931 1.13× 1015

0.6 0.4 0.6730 4.11× 1014

0.7 0.3 0.6109 1.84× 1013

0.8 0.2 0.5004 7.35× 1010

0.9 0.1 0.3251 11457426
1 0 0 1

extension of simulation domain, as more information is provided over the simulation

domain, the level of uncertainty decreases and size of the space of uncertainty reduces.

Figure 4.4 shows different variogram ranges that applied to calculate size of the space of

uncertainty for the case study with two categories. Figure 4.5 also shows logarithm of size

of the space of uncertainty versus the corresponding variogram ranges that computed

through the implemented algorithm. As shown in this figure, for variogram range a = 1

which is very small compared to the extension of simulation domain (N = 50,ΔZ = 1)

size of the space of uncertainty is very large. By increasing the variogram range compared

to the extension of simulation domain size of the space of uncertainty dramatically

decreases and this reduction continues until variogram range reaches to the half of

simulation domain (a = 25). The variogram ranges greater than half of simulation domain

have little effect on size of the space of uncertainty.

4.3.3 Conditioning Data

Conditional data generally provide valuable information over simulation domain that reduce

the level of uncertainty. Therefore, size of the space of uncertainty is decreased by more

conditioning data. Distance of conditioning data from simulated nodes compare to the range

of spatial continuity is the key parameter that governs size of the space of uncertainty. To

investigate the effect of conditioning data on the size of space of uncertainty, let’s consider

64



Figure 4.4: 2D omni-directional variogram model with different ranges, distance (m).

a 2D model of 50 × 50 nodes which size of space of uncertainty is calculated over one

column (N = 50) while the position of the column of conditioning data changes over

simulation domain through the implemented algorithm. Figure 4.6 schematically shows

the 2D model and the distance of the column of conditional data from the simulated column

compare to variogram range. Decreasing the ratio of this distance to the variogram range

directly reduces size of the space of uncertainty. Figure 4.7 shows the logarithm of size

of the space of uncertainty versus this ratio is computed via the implemented algorithm.

Minimum size of the space of uncertainty obtained when the column of conditioning data

is located adjacent the simulation column. The maximum one happened when the distance

of conditioning data to the simulated column is half of variogram range (ratio = 0.5). The

ratio greater than 0.5 doesn’t affect the size of space of uncertainty.
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Figure 4.5: Size of the space of uncertainty versus variogram range (m).
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Figure 4.6: Sketch shows distance of conditioning data compare to variogram range.
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Figure 4.7: Size of the space of uncertainty versus ratio of distance to variogram range.
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4.4 Discussion

As previously discussed, the maximum possible size of the space of uncertainty is

immensely large and cannot be understood from a practical perspective. However, this

space becomes much smaller and calculable in presence of different factors. Let’s

consider the size of the space of uncertainty forK categories over N locations in presence

of total randomness with equal probabilities as A0 which is the maximum size of space of

uncertainty and equal toKN . Applying more limitation to approximate proportion, size of

the space of uncertainty reduces to A1. Further limitation to approximate spatial

correlation (γ(h)), size of the space of uncertainty becomes smaller (A2). Additional

restriction to approximate conditioning data, size of the space of uncertainty becomes very

small, A3. Figure 4.8 schematically shows the size of space of uncertainty in presence of

different factors.

The basic promise of the algorithms that use acceptance-rejection sampling approaches to

condition geostatistical models such as stochastic inversion is to sample A3 and then reject

the results, if it is not in the target zone, A4. In stochastic inversion algorithms, the size of

target zone (A4) is defined by seismic data.

Multivariate stochastic inversion approach applies geostatistical modeling as part of

stochastic inversion algorithm to provide high resolution reservoir models by conditioning

them directly to the seismic data. For this purpose, the synthetic seismogram is computed

based on simulated reservoir physical and elastic properties then compared with

collocated actual seismic trace. This procedure is repeated by generating multiple

realizations until reach to the acceptable match to the original seismic data. The main

purpose of quantifying the size of the space of uncertainty in this thesis is to compute size

of the space of uncertainty in presence of different parameters such as unequal proportion,

spatial correlation and conditioning data (A3) and then obtain the reasonable number of

realizations at each simulation iteration of multivariate stochastic seismic inversion based

on the extension of space of uncertainty. It would be an interesting idea instead of running

constant number of realizations per column through the simulation process, define the
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Figure 4.8: Schematically displays the size of space of uncertainty by applying some

limitations.

number of realization according to the extension of space of uncertainty at each step of

simulation process in multivariate stochastic inversion.

One of the parameters that reduces the size of space of uncertainty is conditioning data.

More conditioning data over simulation domain leads to less space of uncertainty on the

domain. Figure 4.9 shows this concept schematically. The first 10% to 20% of simulation

domain (first dash line) is critically important. For this part of domain, as less conditioning

data is provided over the simulation domain then the size of space of uncertainty is large and

consequently more number of realizations is required to reach to the truth. The next 30% of

simulation domain (between the dash lines) is mildly important because more conditioning

data is provided and size of the space of uncertainty is gradually decreased. It is inevitable,

when half of domain (50%, second dash line) is simulated then for the rest of domain there is

at least one node beside them which is already informed. Therefore, for this part of domain

size of the space of uncertainty reduces rapidly and number of realizations dramatically

drops.

To demonstrate this logic, let’s consider a numerical example with the previous case study
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Figure 4.9: Schematically displays number of realizations versus size of domain and how

this number is large for the first 20% of domain and gradually drops by going through the

simulation process as more conditioning data is available.

as a simulation domain. We aim to simulate this case study under different scenarios to

obtain the match to a truth. Figure 4.10 schematically shows the simulation domain and

the truth which is a fully informed column with two categories (K = 2) over fifty location

(N = 50). The first scenario is an unconditional simulation which there is no conditioning

data over the simulation domain. In this case, size of space of uncertainty is maximum

(250) and the possibility to obtain the match to the truth among few hundreds realizations is

very small. Therefore, we need to generate multiple realizations in order of 1015 to obtain a

perfect match to the truth which is huge and impractical. For the next scenarios, gradually
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Figure 4.10: Schematically displays a column of fifty location as simulation domain and

the truth with two categories.

conditioning data is added to the domain and size of the space of uncertainty is calculated

by implemented algorithm. It is trivial, more conditioning data provide more information

over simulation domain which reduces the size of space of uncertainty and consequently

the number of realizations. When half of the domain is already informed (25 conditioning

data) size of the space of uncertainty dramatically drops to order of 103 and by reasonable

number of realizations the perfect match to the truth cab be obtained.

In another example to demonstrate this logic, consider a 2D case study ( 20 × 20) as

simulation domain and also consider a fully informed 20× 20 domain with two categories

as a truth. In this example, a full column of the 2D domain (N = 20) is simulated through

a random path at each simulation step. Multiple realizations are generated per column and

compared with corresponded column of the truth until reach to the acceptable match. The

acceptable match is the one with maximum 10% mismatch with the truth. Figure 4.11

shows the number of realization over the simulation path for the 2D case. As shown in

this figure, for the first portion of simulation domain (first dash line) the number of

realizations to obtain acceptable match to the truth is large. Then, for the second portion

of simulation domain (between dash lines) number of realizations quickly drops to around

1000. While the number of realizations for the last part of simulation domain even
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Figure 4.11: Number of realizations over the simulation path.

becomes smaller by around 100 realizations. In hence, we can claim this concept in

multivariate stochastic inversion process and apply dynamic number of realizations for

simulation process. More details is discussed in Chapter 6.

4.5 Chapter Summary

Size of space of uncertainty is only considered for categorical variables. Continuous

variables are not considered because they can take a value continuously between over a

range of values. The number of values that can be taken depends on the number of

significant digits that are preserved. The best approach would be to consider classes of the

continuous variable and, perhaps, take the limit as the number of classes approach a large
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number. A reasonable expression is presented to compute the space of uncertainty in

categorical variable modeling. The size space of uncertainty is the product of exponential

entropy of the configuration. This size in case of totally random with no correlation is

very large. However, size of the space of uncertainty becomes minimum in case of

completely deterministic. It means size of the space of uncertainty decreases by adding

more information over the configuration. Size of the space of uncertainty in some sense

provides number of realizations over the simulation domain to reach the truth.
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Chapter 5

Column Based Facies Modeling

Subsurface geological models involves modeling of facies or rock type within

stratigraphic zones. Facies are important in reservoir modeling because reservoir physical

properties such as porosity, permeability and fluid saturation are similar within facies and

different between facies. The spatial structure of facies is different from continuous

variables; the structure is usually better defined due to larger scale geological controls.

Facies are generally categorized into discrete integer codes for the purpose of modeling.

Facies can be defined as indicators or transformed values of zero or one corresponding to

theK different facies values:

I(z(u); k) =

⎧⎪⎨
⎪⎩
1, if z(u) = k

0, otherwise
(5.1)

Indicator values are exclusive and exhaustive which means each location only has one non-

zero indicator values;

K∑
k=1

I(z(u); k) = 1 (5.2)

I(z(u); k) · I(z(u); k′) = 0 k �= k
′ (5.3)

There are three broad classes of facies modeling; object based modeling, variogram based

methods and multiple-point statistics (MPS) that will be explained below.
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5.1 Object Based Modeling

Object based simulation algorithms aim to model geological objects with their geometries

at the same time (Haldorsen et al., 1984; Deutsch and Wang, 1996). Object based

approaches distribute geometric objects in the simulation domain based on some

probability rules by using marked point processes. Conditioning the simulation results to

the well data is often a trial-and-error approach by moving objects around,

adding/removing objects and modifying the size of objects. The main advantage of the

object based framework is the preservation of geological features and direct control on the

shape, size and orientation of these features (Honarkhah, 2011). In terms of conditional

simulation, it is hard to condition object based models to the local data particularly when

there are many well data or the geological objects are large. Considering seismic or

production data as conditioning data makes the simulation more challenging. There is no

explicit control of spatial correlation with object based modeling (Galli et al., 2006).

Different objects require custom algorithms to be able model complex geological features.

5.2 Variogram Based Methods

variogram based algorithms easily account for a variety of data such as well, seismic and

production data. Variogram or cell based simulation algorithms based on two-point

statistics (variogram models) include Sequential Indicator Simulation (SIS) and Truncated

PluriGaussian Simulation (TPGS). The spatial continuity of the facies could be measured

by the indicator variograms:

2.γ(k; h) = E
{
[I(z(u); k)− I(z(u+h); k)]2

}
k = 1, ..., K (5.4)

Sequential Indicator Simulation (SIS) was developed by Alabert (1987) and Journel

(1988) to simulate categorical variables. SIS considers the set of indicator variograms and

draws the categories from estimated local probability distributions to build a categorical
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image (Journel, 1988 ; Alabert et al., 1990). Indicator simulation techniques are able to

consider various types of data and different indicator variograms for each facies ( Zhu and

Journel, 1993 ; Deutsch and Journel, 1998). The simulation process visits each grid node

sequentially in a random path. The conditional distribution at each location considers well

data and previously simulated values. Once the conditional distribution is constructed, a

simulated value for the facies is drawn from the set of probabilities. The SIS method does

not reproduce the cross-correlations and transitions between the different facies (Galli

et al., 2006). These limitations motivated Matheron et al. (1987) to propose a truncated

Gaussian random function.

Truncated Gaussian simulation (TGS) was developed by Matheron et al. (1987) to

simulate ordered categorical variables with locally varying proportions. Later, the

algorithm was extended to pluriGaussian simulation by Galli et al. (1994). The

multivariate stochastic inversion algorithm in this study considers this approach as one

approach for facies modeling when simulating categorical and continuous variables

simultaneously. This method and its application in the proposed stochastic inversion

approach will be explained below.

5.2.1 Truncated PluriGaussian - TPG approach

In truncated Gaussian simulations (TGS), the facies are simulated indirectly via the

simulation of a stationary Gaussian random function. The simulated Gaussian values are

then transformed into facies variables by truncations. For example to simulate a facies

with two categories, 1 and 2, first simulate a Gaussian variable and then if the simulated

Gaussian value is lower than the specific number t1 is facies category one (1) otherwise is

category two (2). The value of t1 is called a threshold or cut-off, see Figure 5.1.

To define thresholds in TG approach, let u be any location over the simulation domain,

z(u) be the indicators of facies and y(u) the corresponding simulated Gaussian function at

location u. The threshold mathematically defined by:
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Figure 5.1: Schematic illustration of truncation of Gaussian probability density function

z(u) = 1 ⇐⇒ −∞ ≤ y(u) < t1 (5.5)

In general, for more than two facies the thresholds defined by:

u ∈ zk (k = 1, ..., K) ⇐⇒ z(u) = k ⇐⇒ tk−1 ≤ y(u) < tk (5.6)

that t0 = −∞ and tK = +∞. ForK possible facies, there areK−1 thresholds in increasing
order that lead to facies that are exclusive and exhaustive:

t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk ≤ tk+1 ≤ . . . tK−1 (5.7)

Although, the truncated Gaussian approach reproduces the ordering between facies there is

only one variogram of the Gaussian variable. Truncated pluriGaussian (TPG) simulation

is a generalized form of truncated Gaussian approach that has more flexibility to overcome

the limitations related to transitions and anisotropies in TG approach (Galli et al., 2006).
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Truncated pluriGaussian (TPG) considers more than one Gaussian variable.

The idea is to use rules to transfer the multiple Gaussian values to facies types. The

proportion and ordering of facies are controlled by truncation rules and the multivariate

Gaussian distribution controlled by the variograms of the Gaussian variables (Deutsch and

Deutsch, 2013).

In truncated pluriGaussian simulation the main and initial step is defining a model type

that depends on the pattern of relations and transitions between facies. The two key

parameters that controls the truncated pluriGaussian simulation results are the thresholds

that define the truncation of Gaussian variables and variogram models of the underlying

Gaussian variables. The proportion of facies categories, facies rules and the correlation

between the Gaussian variables determine the thresholds. The facies rules are represented

by a diagram that determines the contacts and transitions between facies, see Figure 5.2.

Moreover, the mathematical relation between indicator variograms and the variogram of

Gaussian variables defines suitable variogram models for the underlying Gaussian

variables. In case of conditional truncated pluriGaussian simulation the conditioning data

need to be transformed into the Gaussian values. The last step in truncated simulation

approaches is to transform the simulated Gaussian values into facies categories by the

rules and threshold.

Although variogram based methods are practical for geostatistical modeling, they cannot

handle complex geological features. Multiple-Point Statistics (MPS) Simulation technique

is an option to overcome these limitations and handle complex geological features with

straightforward conditioning.
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Figure 5.2: Schematic illustration of truncation of bivariate Gaussian probability density

function, facies 2, 3, 4 are ordered while facies 1 crosses all other facies.

5.3 Multiple-point Geostatistical approach

The heterogeneity of subsurface reservoirs may be too complex to be captured by

two-points statistics, or variogram based techniques. Multiple-points statistics (MPS) is an

alternative to model complex and curvilinear geological features. The idea of using

non-Gaussian models to consider spatial continuity in facies modeling was proposed by

Alabert and Journel (1989). A multiple-point statistics approach (MPS) to model more

complex geological features was proposed by Guardiano and Srivastava (1993). The

multiple-point method accounts for a configuration of more than two points which helps

reproduction of non-linear spatial continuity. Figure 5.3 shows the two points

configuration that infer the statistics from variogram (left) and an example five point

configuration illustrative of MPS method (right).

The frequency of different multiple-point configurations come from a conceptual training

image. The conceptual image characterizes the geometry and complexity of geological

features deemed relevant to the reservoir under consideration. The spatial relationships
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Figure 5.3: Schematic illustration of two point statistics (Left) and Multi Point Statistics

(Right).

that come from a training image represent more information than variograms because they

consider many points at the same time. Object based simulation algorithms are sometimes

used for generating training images.

The original MPS algorithm of Guardiano and Srivastava (1993) applies the concept of

multiple-point statistics by considering an n + 1 configuration template of

(0, h1, h2, . . . , hn), similar to the shown in Figure 5.3, but in 3D with more points. In the

next step, the training image is scanned based on the template to compute the frequency of

the specific n+ 1 pattern. The n data are fixed and the unsampled location could take 1 to

K outcomes with different frequency. The empirical conditional distribution of Z(u) at

grid node u can be obtained from these replicates. Then, a value can be sampled from this

distribution and assigned to the simulation grid. The sequential approach used in this

method to simulate the grid nodes is similar to variogram-based geostatistics (Honarkhah,

2011). The original MPS algorithm was impractical in terms of computational time

because of scanning the entire training image for each grid node. Since then, many

multiple-points statistics algorithms have been developed due to the importance of

modeling complex geological features in reservoir management.

The first practical multiple-point statistics algorithm called ”single normal (extended)

simulation (SNESIM)” was proposed by Strebelle (2000). To overcome the computational
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limitations of the original approach, this method scans the training image once and stores

probabilities in a search tree. The SNESIM algorithm follows a probabilistic approach

similar to the original algorithm proposed by Guardiano and Srivastava (1993). In this

approach the probability of each facies given the nearby conditioning multiple-points data

event and the training image. The SNESIM approach will be explained below.

5.4 SNESIM Approach

As previously mentioned, the MPS method considers multiple-point configurations and

infers spatial statistics from a training image to go beyond bivariate moments to handle

more complex geological features. The SNESIM algorithm is a robust MPS technique that

handles the computational issues of the original approach by the use of a search tree and

multiple grid. The search tree is an effective dynamic algorithm that allows the fast

retrieval of conditional probabilities during the simulation process. The search tree

represents a chain of nodes that connect the multiple data events based on the location of

the data in the template (Deutsch and Silva, 2014). A template is an arrangement of 2D or

3D nodes with regard to a central location that is used for estimation of conditional

probability values in MPS modeling. The SNESIM algorithm works in a sequential

manner where each grid node is simulated and added to the conditioning data for

subsequent grid nodes. SNESIM algorithm considers multiple-point data events and

simulates the categorical variables by inferring conditional probabilities from the training

image. The multigrid approach is essential to reproduce large scale features. The main

steps of the SNESIM algorithm are briefly explained below (Deutsch and Silva, 2014):

Build/Store Search Tree

The training image is scanned based on a maximum template size and the multiple-points

data event frequencies stored in the search tree.
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Set up Multigrid Simulation Path

All the conditioning data are relocated to the the closest grid node. The purpose of this

relocation is computational convenience and to maximize the effect of the conditioning

data on the final model.

Create a Pseudo-Random Path

Similar to sequential indicator simulation, all the nodes are simulated sequentially through

a random path but in the manner where the most informative nodes are visited first. This

means an informative factor is integrated to the random path generation which the most

informative nodes are visited first without significant change in the randomness of the

simulations. The process generates the random path by assigning a random value from a

uniform distribution to all the nodes in the simulation domain. Based on the search

parameters, all the nodes are then visited to count and store the number of conditioning

data within the search ellipsoid. After visiting all nodes, the number of conditioning data

in the neighborhood are added to the random values of the path. At the end, the

pseudo-random path is obtained by sorting the updated random sequence in a descending

order.

Select Data Event

In case the data event is not found in the search tree, the data event will be updated by

dropping the most distant conditioning data.

Computation of Conditional Probability

Based on the proportion obtained from the search tree, the conditional probability of each

facies at the unsampled central grid node is computed.

83



Draw Simulation Value

The facies is simulated by Monte Carlo Simulation from the conditional probabilities.

More details about the MPS approach can be found in geostatistical text books like

”Geostatistical Reservoir Modeling” by Pyrcz and Deutsch (2014) and ”Guide to MPS

Simulation” by Deutsch and Silva (2014).

5.5 Multi-Grid Approach

The concept of a multi-grid was introduced by Gomez-Hernandez (1991). Later, Tran

(1994) applied the concept in sequential simulation algorithms for dense simulation grids

with long-range variograms. The concept of the multi-grid permits reproduction of

large-scale features with small templates.

In multi-grid framework, the simulation domain (D) contains of a set of cascading grids,

Dd. The cascading grids discretize the simulation domain into increasingly nested finer

grids and vary from 1 to nd (1 ≤ d ≤ nd) where D1 relates to the final simulation grid and

nd is the total number of cascading grids or multi-grids. The grid nodes of multi-grid d is

separated by 2d−1 nodes of the finest grid which is the final simulation grid. An example

of four nested multi-grids is displayed in Figure 5.4.

The template of each multi-grid is a scaled version of the original template and will be

rescaled by vector of 2d−1. For each multi-grid, all stages of the simulation process

including scanning of the training image, computation of conditional probabilities and

drawing simulation value of the nodes will be performed independently. The simulated

nodes of previous multi-grid are considered as conditioning data for the next multi-grid.

In this way, the large scale geological patterns condition the short scale ones to facilitate

the reproduction of spatial geological features of the training image (Deutsch and Silva,

2014).

Facies modeling is required in the developed multivariate stochastic inversion approach.
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Figure 5.4: Illustration of four nested 2D multi-grid (Deutsch and Silva, 2014).
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Seismic surveys consist of seismic traces that are the convolution of an extracted wavelet

and a vertical column of corresponding reflectivity series. Therefore, the framework of

multivariate stochastic inversion developed in this thesis is inherently column based. This

means that facies and property modeling algorithms must be implemented in a column-wise

manner instead of a node based order.

5.6 Column-Wise Facies Modeling

Conventional stochastic seismic inversion techniques initially provide acoustic impedance

model that is conditioned to both well and seismic data. Later, the acoustic impedance

model is related to reservoir properties through a rock physics models. Although, there is

no guarantee that the physical properties obtained from such a model matches the actual

seismic data (Bortoli, 1992 ; Bosch et al., 2010). To provide high quality reservoir models

and overcome this limitation, the multivariate stochastic inversion approach simulates

multiple reservoir properties (continuous and categorical) simultaneously as a part of

stochastic inversion algorithm instead of relating acoustic impedance or facies models to

reservoir physical properties through the sequential connection outside the stochastic

inversion algorithm. In the multivariate stochastic inversion approach, the multiple

variables are simulated via the multivariate Gaussian simulation technique. As seismic

data depends on the full vertical column through convolution, the multivariate Gaussian

simulation technique must proceed in a column-wise manner where multiple variables for

a full column are simulated at each iteration.

The multivariate Gaussian technique simulates a full column of multiple Gaussian

variables at the same time, denoted by Z l
i(�u), see Equation 3.1. The number of Gaussian

variables are simulated by multivariate Gaussian simulation approach is defined by

number of Gaussian variables is required to define the sequential order among the facies

categories through the truncated pluriGaussian approach (nf ), number of reservoir

physical properties or continuous variables (nc) and the number of facies categories (K).

In general, the nf Gaussian variables simulated and turned to indicator vector of facies by
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truncated pluriGaussian approach and each reservoir physical property is simulated per

facies categories by sequential Gaussian simulation (Deutsch and Journel, 1998) approach.

Based on the simulated facies value of each cell, the corresponding simulated continuous

variables are retained. When there is a clear sequential order among the facies, only one

Gaussian variable is required (nf = 1) and facies are simulated by the truncated Gaussian

approach. Therefore, the number of Gaussian variables are simulated by multivariate

Gaussian technique drops to 1 + (K · nc). Figure 5.5 is a schematic of the correlation

matrix in the multivariate Gaussian simulation approach. The matrix is a block matrix that

represents three facies categories (K = 3) simulated by truncated Gaussian approach

(nf = 1) and nc reservoir properties. The first column and top row are related to the

facies. The second, third and forth diagonal blocks represent how the continuous variables

are related to each other in the first, second and third facies category, respectively.

To add more flexibility to the multivariate stochastic inversion approach and be able to

handle more complex and curvilinear geological features in reservoir models, the SNESIM

approach is an alternative to truncated Gaussian (TG) or truncated pluriGaussian (TPG)

simulation of facies. For this purpose the SNESIM algorithm ismodified to perform column

based MPS simulation. An issue for implementation of column wise SNESIM is the multi-

grids approach.
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Figure 5.5: Correlation matrix of multivariate Gaussian simulation for a facies with three

categories and nc continuous variables.

5.7 Column-Wise SNESIM Algorithm

The nature of seismic data is inherently column based. Therefore, the framework of

stochastic inversion developed in this thesis is column wise: the multivariate stochastic

inversion approach simulates a full column of multiple reservoir properties (categorical

and continuous variables) simultaneously with multivariate geostatistics techniques. The

simulated column of multiple reservoir properties passed to a petro-elastic model to

compute reservoir elastic properties and a seismic reflectivity series. Then, seismic

reflectivity is convolved with the extracted wavelet to compute synthetic seismic traces

and pick the best match to the corresponding actual seismic trace. A realization is

ultimately chosen for subsequent conditioning. As a result, facies and property modeling
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algorithms must be implemented in a column wise manner instead of a completely random

node based order. For this purpose, the original SNESIM algorithm is modified to perform

column wise multi point statistic facies modeling. However, the original multi-grid

approach is not based on columns. Therefore, the original multi-grid approach was

modified to be applied in column wise fashion. The modified multi-grid approach called

directed multi-grid.

5.7.1 Directed Multi-Grid

A directed multi-grid performs the concept of multi-grid approach in different dimensions

or directions individually to satisfy the requirement of column based MPS simulation for

multivariate stochastic inversion. Two types of directed multi-grid can be considered for

MPS simulation: 1) X − Y multi-grid, full column of Z and 2) X − Y multi-grid plus Z

multi-grid.

5.7.1.1 X − Y Multi-Grid, Full column of Z

In this approach, a 2−Dmulti-grid inX−Y direction is applied and at every step ofX−Y

multi-grid a full column of Z is simulated with a random path. For example consider a 3D

simulation domain by 128 × 128 × 64 (nx × ny × nz ) grid nodes and 6 nested finer grid

(d = 6, 1 < nd < 6). Based on this directed multi-grid approach, the grid nodes are

simulated by the sequence of (4 × 4 × 64), (8 × 8 × 64), . . . , (128 × 128 × 64). In this

approach reproduction of large scale geological features in Z direction may be an issue.

5.7.1.2 X − Y Multi-Grid, Z Multi-Grid

This directed multi-grid approach is similar to the previous one. However, in this approach

a 2−D multi-grid inX−Y direction is applied and at every step ofX−Y multi-grid a full

column of Z is simulated with another set of multi-grid. In fact, at one column there is a

multi-grid that is embedded in a 2−Dmulti-grid. This means in a 3D grid of 128×128×64

(nx × ny × nz ) by ndX−Y
= ndZ = 6, for the first stage of the multi-grid in X − Y
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direction which is (4× 4), each full column is simulated by another set of multi-grid that is

(4, 8, 16, 32, 64). Then, it goes to the next level of multi-grid in X − Y that is (8× 8) and

applies another set of multi-grid for each full columns. This procedure is replicated until

reach to the last step of X − Y multi-grid which is (128× 128).

The SNESIM algorithm is modified to perform the column wise MPS simulation. Both

directed multi-grid methods that explained above are available in column based SNESIM

algorithm.

The column wise SNESIM algorithm consists of many independent modification steps

including different multi-grid approaches. Therefore, model validation is necessary to

make sure all concepts are applied and implemented correctly.

5.8 Model Checking

There are alternatives to check simulation results and judge different multi-grid approaches

including, visual assessment, reproduction of lower order statistics such as the variogram

and reproduction of higher order statistics such as the frequency of multiple point data

events.

Visual assessment is qualitative, but very useful. To evaluate column wise SNESIM

algorithm an example of 3D grid by 128 × 128 × 64 (nx × ny × nz) nodes with two

categories is considered, category one (K1) with 0.7 proportion (P1 = 0.7) and category

two (K2) with 0.3 proportion (P2 = 0.3). The XY and XZ slices of training image and

node based SNESIM as a reference (Figure 5.6) compared with column based SNESIM

with different multi-grid approaches; no multi-grid, X − Y multi-grid-full Z and X − Y

multi-grid plus Z multi-grid (Figure 5.7). As shown in these figures, column based

SNESIM with no multi-grid shows a very noisy result that emphasizes the importance of

multi-grid in reproduction of large scale geological features in the MPS simulation

process. The MPS simulation algorithm with X − Y multi-grid and full column of Z

approach shows a better result on X − Y slice while the Z slice is noisy. Although, the
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MPS with X − Y multi-grid plus Z multi-grid represent better reproduction of large scale

geological features in three dimensions.

Figure 5.6: XY (left) and XZ (right) slices of training image and node based MPS

simulation with original multigrid approach, axes unit (m).

Visual assessment is the first step for quality control and model checking. Using the

variogram to check MPS results is not convincing since the variogram is deemed

inadequate in the first place.

Another option for checking theMPS simulation results is comparing the frequency of some

multiple point patterns. IfN (10 to 20) points are chosen in a reasonable configuration- for

K categories, there are KN configurations. A compact configuration is considered to be

the most informative. The patterns can be indexed by i = 1, . . . , KN and the proportion
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Figure 5.7: XY (left) and XZ (right) slice for column based with no multi-grids and

column based with different type of multi-grids SNESIM, axes unit (m).

or frequency of each configuration denoted by Pi. The multiple point patterns should be

reproduced better with the multigrid.
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A configuration by 3 × 3 × 2 nodes (N = 18 locations) is considered and the proportion

calculated and compared. When the frequency of the patterns (Pi) is computed, the first and

the last one are pure facies with no mixing (either 0 or 1 category) but the rest are different

mixed patterns (both 0 and 1 category). By keeping all the patterns together, pure and mixed

one, the results will be dominated by the pure ones since they have amuch higher proportion.

Therefore, they will be kept separate and the Mean-Square Error (MSE) computed for the

others, Equation 5.8, where n is the number of patterns, P ∗i is the frequency of patterns in

the realization being checked and PRef
i is the frequency of patterns in the reference training

image.

MSE =
1

n

n∑
i=1

(P ∗i − PRef
i )2 (5.8)

One option is to consider a relative of Mean-Square-Error, MSERel (Equation 5.9).

However, zero frequency patterns cause numerical instability. Zero proportion features

may be implausible and could be important. An observed zero may also be due to a small

simulation domain. The only way to know the difference between real and relative zero is

with a very large model.

MSERel =
1

n

n∑
i=1

(
P ∗i − PRef

i

PRef
i

)2 (5.9)

Figure 5.8 to Figure 5.11 show the frequency of multiple point data events of a training

image versus node based and column based SNESIM with different multi-grid approaches.

As these charts show, the simulation results for node based SNESIM is similar to the training

image data (close to 45 ◦ line). The SNESIM with directed multi-grid approaches show

better results compare to the SNESIM without multi-grid and also their trends are closer

to the node based SNESIM. Table 5.1 also shows the MSE of pure and mixed data events.

These results demonstrate that the column wise SNESIM with X − Y multi-grids plus Z

multi-grid approach works better than X − Y multi-grid and full column of Z approach

and they both represent better reproduction of large scale geological features compare to
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Figure 5.8: Frequency of patterns of training image versus simulation results for node

based SNESIM with original multi-grid approach.

the SNESIM without multi-grid.

Figure 5.12 and Figure 5.13 show another example of column based SNESIMwith different

multi-grid approaches for three categories. As shown in these figures, the column based

SNESIM with directed multi-grid shows better results that are closer to the node based full

multigrid SNESIM than no multi-grid.
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Figure 5.9: Frequency of patterns of training image versus simulation results for node

based SNESIM with no multi-grid approach.
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Figure 5.10: Frequency of patterns of training image versus simulation results for

column based SNESIM with X − Y multi-grid approach.
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Figure 5.11: Frequency of patterns of training image versus simulation results for column

based SNESIM with X − Y plus Z multi-grid approach.
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Table 5.1: Frequency, MSE of pure and mixed (MSEp &MSEm) patterns for training

image, node based (NB) SNESIM and column based (CB) SNESIM with different multi-

grid approaches.

% White % Black MSEp(×10−3) MSEm(×10−10)
Training Image 61.37 22.67 − −
Node Based 52.55 28.66 5.63 2.70
CB,No MGRD 36.91 28.48 49.70 27.40
CB,XYMGRD-FullZ 46.58 17.76 12.20 8.80
CB,XY&ZMGRD 48.27 23.15 8.59 8.07

Figure 5.12: XY (left) and XZ (right) slice of training image and node base MPS

simulation, axes unti (m).
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Figure 5.13: XY (left) and XZ (right) slice for column base with no multi-grids and

column based with different type of multi-grids SNESIM, axes unti (m).
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5.9 Chapter Summary

Different facies modeling techniques have been reviewed. Variogram based andmulti-point

statistic (MPS) simulation are appropriate for column based stochastic inversion. Among

the different variogram based methods, truncated (pluri) Gaussian is a good candidate for

facies modeling in multivariate stochastic inversion approach to simulated categorical and

continuous variables simultaneously. Multi-point statistics (MPS) simulation techniques

have seen a lot of popularity recently as they can handle more complex geological features

on reservoir modeling. Therefore, column wise truncated (pluri) Gaussian and column wise

multi-point statistics simulation technique have been implemented in this research study and

considered as different options for facies modeling.

In multivariate stochastic inversion approach, facies and reservoir physical properties

could be simulated by multivariate Gaussian simulation techniques simultaneously. In this

method, facies is simulated by truncated (pluri) Gaussian technique and reservoir

properties are simulated by sequential Gaussian simulation technique. The number of

Gaussian variables are required for facies modeling via the truncated (pluri) Gaussian

simulation technique depends on the number of Gaussian variables that describe the

sequential ordering among the facies categories. The number of Guassian variables for

simulation of reservoir properties is also defined by the number of reservoir properties and

facies categories.

To be able to handle more complexity in reservoir modeling, column wise multi-point

statistics is an alternative for facies modeling in multivariate stochastic inversion. For this

porpuse, the directed multigrid approach is implemented in this thesis to be able to apply

column wise multi-point statistics simulation.
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Chapter 6

Adaptive Sampling

Multivariate stochastic inversion simulates a full column of facies and multiple reservoir

physical properties simultaneously through the multivariate Gaussian simulation technique.

To condition the simulated reservoir properties to the seismic data, the synthetic seismic

trace related to the simulated column ofmultiple properties is computed through the forward

modeling process in the PEM and convolution algorithms. The synthetic seismic trace is

compared with the corresponding actual seismic trace in the adaptive sampling algorithm.

Multiple realizations are generated per column through the described procedure to reach

to an acceptable match with the original seismic data. The multiple simulated reservoir

properties related to the acceptable match is kept as simulated values for the column. This

process is replicated for all the columns to simulate the entire domain and obtain a facies,

porosity and fluid saturations that reproduce the original seismic data.

The set of multiple realizations is used for uncertainty assessment and reservoir

management. Uncertainty assessment requires many equiprobable realizations

(Goovaerts, 1999). In the early days of simulation, there was a claim that the set of

multiple realizations generated by geostatistical simulation may include the truth.

Although, in reality, the space of uncertainty is vast and the number of realizations is very

small. Therefore, the probability that one realization happens to be the truth is

infinitesimally small (Goovaerts, 1999; Mukerji et al., 2001; Leuangthong et al., 2004).

Also, considering the computational time and CPU usage, it is not practical to generate

many realizations through the geostatistical simulation algorithm. Besides, uncertainty in

the upstream petroleum industry is typically summarized by a P10 and P90 that only

requires hundreds of realizations to infer reliably (Pyrcz and Deutsch, 2014).

The space of uncertainty is very large. The maximum size of space of uncertainty is KN
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for K categories over N locations. For only three categories (K = 3) over fifty locations

(N = 50) the size of space of uncertainty is 350 or about 1023. To have a sense of how big

this is consider that the radius of MilkyWay is about 1022 meters. The current geostatistical

practice deals withK = 2 to 7 categories and N = 106 to 108 locations; therefore, the size

of the space of uncertainty is inconceivably large and it is impossible to sample through the

simulation process.

As mentioned above, sampling the full space of uncertainty to obtain a perfect match to

the original seismic data in multivariate stochastic inversion requires an unreasonably large

number of realizations. Moreover, it may not even be possible to generate a true model

due to modeling assumptions. A practical stopping criteria is required for the simulation of

multivariate properties simultaneously conditional to the well and seismic data.

6.1 Practical Stopping Criteria

The multivariate stochastic seismic inversion approach simulates multiple reservoir

physical properties simultaneously as a part of stochastic inversion algorithm to obtain

high resolution reservoir models that recreate the seismic data through an adaptive

sampling algorithm. A practical stopping criteria is defined two factors: 1)

acceptance/rejection principle for the column based realizations, and 2) a reasonable

maximum number of realizations.

6.1.1 Acceptance - Rejection Principle

In the proposed algorithm, the synthetic seismogram is compared to the collocated original

seismic trace and the Mean Square Error (MSE) is calculated to pick the best match to the

original seismic data. Multiple realizations are considered until a reasonable match to the

original seismic data is attained. One basis for the target MSE is based on the inherent

uncertainty in the model. There are different levels of uncertainty in the modeling process.

One source of uncertainty is the Petro-Elastic Model (PEM). A number of parameters
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influence the reservoir elastic properties such as rock density and velocity. Facies and

porosity can be related to the velocity empirically by the time-average equation. This

equation is the most reliable when the rock is under significant pressure, saturated by

brine and contains fine cemented grains (Gardner et al., 1974). Rock density and velocity

depend upon the granular nature of the rock matrix, cementation, mineral composition,

porosity, fluid content and pressure. Depth of burial and geological age also have some

effect (Gardner et al., 1974). There are different empirical and practical connections

between different reservoir elastic properties. A popular relation between rock density and

velocity is Gardner’s equation (ρ = 0.31Vp
0.25) that connects the density (ρ(g/cc)) to

compressional velocity (Vp(m/sec)) in rocks based on different lithology, see Figure 3.8.

This empirical relationship between density and velocity is based on laboratory and field

observations for different sedimentary rock types. Reservoir elastic properties are related

to each other through the empirical relations. Therefore, there is some level of error or

uncertainty related to the elastic properties such as density and velocity that are computed

by the Petro-Elastic Model (PEM) in multivariate stochastic inversion approach.

Inherent uncertainty in multivariate stochastic inversion is also related to seismic

procedures like wavelet extraction. Seismic wavelets are essential inputs for many seismic

processes such as inversion algorithms because they link geology to seismic amplitudes.

Since they are generally unknown, an accurate extraction of the wavelet is a prerequisite

for reliable seismic data analysis and any error or variation could lead to inaccurate

results. Quantification of uncertainty related to seismic analysis has been documented by,

for example, (Buland and Omre, 2003) Generally, there are two different approaches for

wavelet extraction: 1) analytical wavelet extraction, and 2) data - driven optimization

(Buland and Omre, 2003).

Analytical wavelets such as Ricker or Ormsby wavelet (Ryan, 1994) are often applied in

quantitative seismic interpretation, seismic modeling and seismic inversion. The

analytical wavelets are easy to define as they are determined by a limited number of

parameters such as skewness, amplitude and polynomial order. The shape of the wavelet

is predefined and adjustment to a more realistic wavelet shape is challenging (Skauvold

103



et al., 2015). The parameters that define the shape of the extracted wavelet vary over

simulation domain because the geology and consequently seismic amplitudes are

changing. The wavelet may be non-stationary with its shape varying over the area of

interest.

A data- driven optimization method may be applied if many well data are available. The

most common methods are based on the Walden and White (1998) approach but

alternative methods have been developed by Buland and Omre (2003) and Gunning and

Glinsky (2006). These methods are based on tying amplitude of seismograms in the

neighborhood of one or more wells to the synthetic seismograms calculated by well data.

The goal of this method is to extract the spectral properties of seismic data which is the

reflectivity series by removing the geological contribution to the seismic data. There is

also an uncertainty related to the seismic well-tie process. There is inevitable uncertainty

in stochastic inversion due to the wavelet extraction procedure.

A zero phase Ricker wavelet with a central wavenumber is considered here for the

multivariate stochastic inversion approach. Uncertainty in the parameters of this wavelet

will be considered. Alternatives could be considered in practice with specific well and

seismic.

An example of the uncertainty that propagates into the final model via the Petro-Elastic

Model (PEM) algorithm in the multivariate stochastic inversion is developed. A column

with fifty locations (1 × 50) with different reservoir physical properties, elastic properties

and seismic data is displayed in Figures 6.1 and 6.2 respectively. In the Petro-Elastic

Model (PEM) algorithm, the velocity model can partially cause the uncertainty in

multivariate stochastic inversion results. In this study, the velocity is calculated by

Gardner’s equation (ρ = aVp
m) via the Petro-Elastic Model (PEM) which a = 0.31 and

m = 0.25 are the fitting factors obtained through the empirical relationships and are

uncertain. To quantify the uncertainty related to the velocity model, two Gaussian

distribution Y1(mean, std) = Y1(0.31, 0.05) and Y2(mean, std) = Y2(0.23, 0.03) are

assigned to the fitting factors. The standard deviation is small, yet considered
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representative given some of the experimental published results (Mukerji et al., 2001;

Goovaerts, 2006). Multiple realizations of velocity generated over the range of fitting

factors were simulated. Corresponding elastic properties such as acoustic impedance (AI),

reflection coefficient (R) and seismic data are calculated for the multiple realizations.

Figures 6.3 and 6.4 show the range of velocity, R and seismic trace for multiple

realizations. The average Mean-Square Error (MSE) between seismic data obtained from

multiple realizations of velocity and the original one (MSEave = 9.4 × 10−4) over the

variance of original seismic data (σ2 = 1.6 × 10−2) represent around 6% relative error in

the seismic data. This helps define the acceptable mismatch between original seismic data

and simulated one via the multivariate stochastic inversion in presence of uncertainty in

the Petro-Elastic Model (PEM). The adaptive sampling algorithm could stop when the

MSE reaches to the order of 10−4.

As discussed above, some part of the cumulative uncertainty in the final model is due to

wavelet extraction. To get closer to the cumulative uncertainty of velocity modeling and

wavelet extraction, a random noise is added to the Ricker wavelet in the previous

example. In this situation, the average Mean-Square Error (MSE) between multiple

realizations of seismic data and the original one (MSEave = 1.53 × 10−3) over the

variance of original seismic data (σ2 = 1.6 × 10−2) represent around 10% error in the

seismic data. Figure 6.5 shows the range of seismic data for this situation. The uncertainty

in velocity modeling and extracted wavelet process leads to higher mismatch between

synthetic and actual seismic data and increases the target MSE. Therefore, the relative

error of the final model is increased as well. Considering the other source of uncertainty in

the model may increase the target MSE or mismatch more than this number.

The discrepancy between reality and model obtained through the multivariate stochastic

inversion is mainly because there are many steps and algorithms involved in this

approach. The uncertainty in the Petro-Elastic Model (PEM) is not only about the

parameters that define the elastic properties. The fundamental physics may not be

completely or correctly represented in the PEM. The PEM may also change over the area

of interest. In the convolution process, the sources of uncertainty include the nature of the
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extracted wavelet, time-depth relationship, edge effects, fundamentals of physics and

stationarity. There may also be a scale effect, that is, using grid blocks with the constant

properties when reality is variable at all scales. There are many sources of uncertainty in

the final model that cannot be considered and processed. Some sensitivity analysis has

been done on the PEM and wavelet extraction.

In general, each step and algorithm embedded in multivariate stochastic inversion

approach should be analyzed and its associated uncertainty quantified. The cumulative

uncertainty defines the acceptable target MSE and relative error for seismic data

matching. These parameters support the primary stopping criteria in the adaptive

sampling algorithm.

6.1.2 Reasonable Number of Realizations

In multivariate stochastic inversion approach, multiple realizations are generated through

the multivariate Gaussian simulation technique. These multiple realizations are processed

and compared to the actual seismic data. The question being considered here is how many

realizations should be generated to obtain an acceptable match with seismic data. The

acceptable match principle and target Mean Square Error (MSE) have been discussed

above. In this part, the focus is on the practical and reasonable number of realizations for

the multivariate stochastic inversion approach.

The size of the space of uncertainty is very large and cannot be exhaustively sampled. It

is not necessary to obtain a perfect match with the actual seismic data as there is some

level of error and uncertainty associated with data and models. Nevertheless, a reasonable

number of realizations for simulation process must be chosen. The size of the space of

uncertainty will be reduced in presence of conditioning data. Therefore, as the simulation

proceeds the number of realizations will be reduced. An acceptable match or target MSE

with the actual seismic data would likely be reached with less realizations in presence of

strong conditioning data. More realizations are required to reach the target MSE early in

the simulation process far from conditioning data. When the conditioning data is close to
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Figure 6.1: Facies and physical properties of the example of uncertainty propagation via

PEM.

the simulation location, the size of the space of space of uncertainty is reduced and number

of realization dramatically drops. Figure 6.6 schematically represents this concept.

To demonstrate this concept, a 2-D model (20 × 20) is considered. A column of this 2-D

model is simulated unconditionally and conditionally through the multivariate stochastic

inversion approach. For the conditional simulation, three different positions are

considered with weak, mild and strong conditioning. Figure 6.7 illustrates these scenarios.

Ten thousand realizations are generated to simulate multiple reservoir properties

simultaneously through the multivariate Gaussian simulation algorithm. The multiple
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Figure 6.2: Elastic properties and seismic trace of the example of uncertainty

propagation via PEM.

Figure 6.3: Range of velocity for multiple realizations of velocity.

realizations of different reservoir properties are passed to the PEM and convolution

algorithms to calculate synthetic seismograms. Calculated synthetic seismograms are
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Figure 6.4: Range of reflectivity (R) and seismic trace for multiple realizations of

velocity.

compared with actual seismic trace and the MSE is computed with the best fit. Figure 6.8

shows the comparison of synthetic seismogram related to the minimum MSE and actual

seismic trace for unconditional and different conditional simulation scenarios. As shown

in this figure, unconditional and weak conditional simulations reach a higher MSE or

mismatch with original seismic data within a fixed number of realizations (10000)

compared to the mild and strong conditional simulation. Strong conditional simulation

almost reaches to a perfect match with actual seismic data.

In another example, a single column is simulated as above but this time trying to reach a

specific targetMSE. The realizationwith the lowestMSE is retained as simulation proceeds.

Figure 6.9 displays the number of realizations versus MSE for this example. The MSE
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Figure 6.5: Range of seismic trace for multiple realizations based on cumulative

uncertainty of PEM and wavelet extraction.

Figure 6.6: Schematic illustration of number of realization versus Mean Square Error.

of the first realization for unconditional simulation is large but the target MSE (10−4) is

reached within 1000 realizations. The MSE of the first realization for the conditional case

is very low compared to the unconditional one. The weak conditional simulation reaches

to the target MSE within 500 realizations while mild and strong simulation reach to the
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Figure 6.7: Schematic illustration of 2-D model for unconditional and conditional

simulation.

target MSE within 100 and 10 realizations, respectively. Figure 6.9 demonstrates that the

number of realizations drops when going through the simulation path as more information

is provided from previously simulated locations, that is, a better match or lowerMSE can be

reached within less realizations as the simulation proceeds. The issue being considered is

how the different stages for conditioning data should be defined through the simulation steps

in multivariate stochastic inversion to define and generate different number of realizations

on the different stages of conditioning data.

Multigrid approach is a solution to this issue. The multigrid approach uses a structured

sequence to visit the grid nodes in the simulation domain. Two or more grids are defined

over the simulation domain. The sequence starts with the coarsest multigrid. At this stage
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Figure 6.8: Comparison of reference seismic trace with synthetic seismogram

corresponded to unconditional, weak - mild - strong conditional simulation at 10000

realizations.

of multigrid, since the spacing between grid nodes is large, the simulation is not strongly

conditioned. Since the simulated nodes at each level of multigrid are added to the

conditioning data, these levels of multigrid can be considered as weak, mild and strong

conditional simulation. Therefore, a different number of realizations can be considered for

each stage of the multigrid. Figure 6.10 schematically represents this concept. The

multigird approach is important in simulation as it can facilitate the local conditioning and

reproduction of large scale features.

The different levels of multigrid are considered as different stages for conditioning data in

multivariate stochastic inversion in that simulation process starts with large number of

realizations in the first level of multigrid and gradually decreases the number of

realizations by going through the different levels of multigrid. The multivariate stochastic

inversion approach considers a directed multigrid, X − Y multigrid with full column of

Z. The number of realizations per multigrid stage and the target MSE must be defined for

the adaptive sampling algorithm. The number of realization within each multigrid stages
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Figure 6.9: Mean Square Error versus number of realizations (Log scale) for

unconditional and conditional scenarios for case study, 2-D model (20× 20) .

will be kept the same for simplicity.

The multivariate stochastic inversion approach simulates multiple reservoir properties

simultaneously through the multivariate Gaussian simulation in column wise manner.

These simulated properties are passed to PEM and convolution algorithm to compute

reservoir elastic properties and corresponding synthetic seismic. The synthetic

seismogram is compared with actual seismic trace and MSE calculated through the

adaptive sampling algorithm. This procedure is continued by generating multiple

realizations until the column either reaches the target MSE or the maximum number of

113



Figure 6.10: Schematic representation of the concept of multigrid and dynamic number

of realizations for each level.
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realizations for the level of multigrid. A 2-D example demonstrates the work flow and

shows how the different number of realizations are defined for each level of multigrid.

6.2 2-D Example

A 2-D example is considered to demonstrate the performance of the multivariate stochastic

inversion approach. A 40×40model of facies, porosity, water saturation and seismic survey
are simulated as a reference model. Column 20 is sampled and considered as well data

for conditioning. The objective is to reproduce the reference model through the different

scenarios with different stopping criteria.

As a first scenario, the reservoir properties are only conditioned to the well data. The

synthetic 2-D seismic model related to the different realizations are calculated through the

forward model. Figure 6.11 and Figure 6.12 show these simulated properties for two

different realizations beside the conditioning data and reference model respectively.

Figure 6.13 to 6.15 show the reference seismic survey and the synthetic seismic surveys

obtained by forward modeling for two different realizations.

In the second scenario, the reservoir properties are simulated simultaneously through the

multivariate stochastic inversion approach conditioned to the well and seismic data. In

this scenario, five levels of multigrid is considered for simulation process. The number of

multiple realizations for each multigrid level is displayed in the second column of Table

6.1. The target MSE is defined as 10−4. The adaptive sampling algorithm, at each column,

either reaches to the target MSE within the defined number of realizations for each

multigrid level or stops on the defined number of realizations and considers the simulated

values related to the minimum MSE as simulation results for the corresponded column.

Figure 6.16 and 6.17 show these simulated properties for two different realizations beside

the related conditioning data and reference models. Figure 6.18 and 6.19 also show the

synthetic seismic for two different realizations of this scenario. In this scenario, only the

finest level multigrid (mmult = 1) converges to the target MSE. The rest of multigrid

levels stop at the maximum number of realizations before reaching the target MSE. As
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Figure 6.11: Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated properties (third

column) for first scenario, axes unitm, color bar unitm3/m3.
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Figure 6.12: Comparison of conditioning data (first column) with different properties of

reference model (second column) and second realizations of simulated properties (third

column) for first scenario, axes unitm, color bar unitm3/m3.
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Figure 6.13: 2-D seismic survey considered as the reference model, axes unit (m) and

color bar - amplitude (m).
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Figure 6.14: The synthetic 2-D seismic survey of first realization of first scenario

conditioned only to the well data, axes unit (m) and color bar - amplitude (m).

119



Figure 6.15: The synthetic 2-D seismic survey of second realization of first scenario

conditioned only to the well data, axes unit (s) and color bar - amplitude (m).
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mentioned before, defining the stopping criteria in the adaptive sampling algorithm is a

trade off, fewer of realizations requires less computational time yet leads to a higher

mismatch between synthetic and original seismic data.

Table 6.1: Multigrid level, number of columns times dynamic number of realization per

multigrid level for the second and third scenarios.

Level of Multigrid No.Columns × No.RLZ(SC 2) No.Columns × No.RLZ(SC 3)
5 3× 100 3× 500
4 5× 50 5× 250
3 10× 20 10× 100
2 20× 10 20× 50
1 2× 5 2× 25

The third scenario increases the number of realizations to improve the mismatch between

original and synthetic seismic. The number of multiple realizations for this scenario

displayed in the third column of Table 6.1. Figure 6.20 and 6.21 show these simulated

properties for two different realizations beside the related conditioning data and reference

models. Figure 6.22 and 6.23 show the synthetic seismic survey of two different

realizations for this scenario. In this scenario, the number of multiple realizations at each

multigrid level is five times the second scenario and the majority of simulation iterations

converge to the target MSE. The computational time is also increased linearly by the

number of realizations. However, a better match with original seismic data is obtained

with this scenario.

Figure 6.24 shows the conditional variance of multiple realizations of different properties

for these three scenarios. Figure 6.25 shows the conditional variance of the seismic survey

for the first scenario that is only conditioned to the well data and also the conditional

variance of seismic surveys related to the second and third scenario that are conditioned to

well and seismic data through the multivariate stochastic inversion. As shown in these

figures, the conditional variance of reservoir properties and seismic for the first scenario

are very low in the middle of simulation domain which is well location. However, the

variance increases away from the well. The conditional variance of different properties

and seismic data for the second scenario are lower compared to the first scenario.
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Figure 6.16: Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated properties (third

column) for second scenario, axes unitm, color bar unitm3/m3.
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Figure 6.17: Comparison of conditioning data (first column) with different properties of

reference model (second column) and second realizations of simulated properties (third

column) for second scenario, axes unitm, color bar unitm3/m3.
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Figure 6.18: The synthetic 2-D seismic survey of first realization of second scenario

conditioned to well and seismic data through the multivariate stochastic inversion, axes

unit (m) and color bar - amplitude (m).
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Figure 6.19: The synthetic 2-D seismic survey of second realization of second scenario

conditioned to well and seismic data through the multivariate stochastic inversion, axes

unit (m) and color bar - amplitude (m).
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Figure 6.20: Comparison of conditioning data (first column) with different properties

of reference model (second column) and first realizations of simulated properties (third

column) for third scenario, axes unitm, color bar unitm3/m3.
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Figure 6.21: Comparison of conditioning data (first column) with different properties of

reference model (second column) and second realizations of simulated properties (third

column) for third scenario, axes unitm, color bar unitm3/m3.
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Figure 6.22: The synthetic 2-D seismic survey of first realization of third scenario

conditioned to well and seismic data through the multivariate stochastic inversion, axes

unit (m) and color bar -amplitude (m).
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Figure 6.23: The synthetic 2-D seismic survey of second realization of third scenario

conditioned to well and seismic data through the multivariate stochastic inversion, axes

unit (m) and color bar -amplitude (m).
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Conditioning to the seismic data via the multivariate stochastic inversion reduces the

conditional variance and provides improved reservoir models. Moreover, the third

scenario with more realizations shows lower conditional variance compared to the other

scenarios.
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Figure 6.24: Comparison of conditional variance of multiple realizations of three

scenarios for different reservoir physical properties, axes unitm.

131



Figure 6.25: Comparison of conditional variance of multiple realizations of three

scenarios for seismic data, axes unit (m).
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6.3 Chapter Summary

The multivariate stochastic inversion approach applies multivariate geostatistical modeling

as part of stochastic inversion technique to condition the reservoir properties to the seismic

data directly. For each column of simulation domain, multiple reservoir physical and elastic

properties are simulated and synthetic seismic trace related to these simulated properties is

compared with collocated actual seismic trace through the adaptive sampling algorithm.

The adaptive sampling algorithm selects the acceptable match with original seismic data

and retains the corresponded simulated multiple reservoir properties as simulated values of

the column. This selection is based on the acceptance-rejection criteria which consists of

target MSE and reasonable number of realizations.

The target MSE is defined based on the cumulative uncertainty in the final model. The

cumulative uncertainty of the model is attributable to different sources such as

geostatistical modeling process, PEM, wavelet extraction, seismic convolution, etc.

Recognition and quantification of all sources of uncertainty in the final model is difficult

but would be required to accurately define the target MSE.

To obtain the acceptable match to the original seismic data and reach to the target MSE at

each simulation iteration a reasonable number of realizations should be generated for each

column. As the conditioning data increases over the simulation domain, the size of space

of uncertainty reduces. Therefore, by adaptive sampling means more realizations generates

in the early stage of simulation and the number of realizations gradually decreases through

the simulation process. The dynamic number of realizations per multigrid level adapts to

this observation.
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Chapter 7

Case Study

The developed multivariate stochastic inversion is applied to a case study. Access to well

and seismic data from a real reservoir would add value to study and make it more

persuasive to some practitioners; however, access to processed 3-D seismic data is quite

challenging in the petroleum industry. Moreover, Time-Depth conversion and well-tie

analysis are not in the scope of this research study. A realistic data set consisting of a 3-D

model of facies, reservoir physical properties such as porosity and water saturation and

related 3-D seismic survey are generated and considered as the reference models for the

case study. Although, the data set is not collected from a real reservoir. Multiple reservoir

property models and synthetic seismic surveys obtained through the different approaches

including multivariate geostatistical modeling, multivariate stochastic inversion and

conventional stochastic inversion approach are generated and compared in this case study.

7.1 Reference Model

The reference model is a 3-D model of 64 × 64 × 32 which each grid node is

20m × 20m × 1m. Initially, a 3-D facies model with two facies categories (shale and

sand) is generated by the fluvsim program and considered as reference facies model.

Fluvsim is a program for object-based stochastic modeling of fluvial depositional systems

(Deutsch and Tran, 2002). For porosity, two unconditional realizations are generated by

sequential Gaussian simulation. Two uniform distributions between (0.1, 0.4) and

(0.05, 0.15) are generated and transformed to the normal score units. Then, the two

unconditional realizations are transformed back to the original units. The purpose is to

generate porosity models for the two facies categories. The uniform distribution between

(0.1, 0.4) is an indicator of sand porosity and the one between (0.05, 0.15) is an indicator
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of shale porosity. These two porosity models are merged based on reference facies model

to obtain the reference porosity model. For water saturation, two unconditional

realizations that are negatively correlated ( ρ = −0.7) with the two previous unconditional
realizations for the porosity are generated by SGS algorithm. Two uniform distributions

U1(mean, std) = U1(0.15, 0.05) and U2(mean, std) = U2(0.3, 0.05) are generated and

transformed to normal score units. Then, the two unconditional realizations are

transformed back to original units. The uniform distribution,

U1(mean, std) = U1(0.15, 0.05) is for sand water saturation or net water saturation. The

uniform distribution, U2(mean, std) = U2(0.3, 0.05) is for shale water saturation or

non-net water saturation. The two water saturation models are merged based on the facies

categories of each cell in the facies reference model to generate water saturation reference

model.

The facies, porosity and water saturation models are passed to the Petro-Elastic Model to

calculate reservoir elastic properties. In the reference model, the pore space consists of

two phases; oil phase (ρoil = 0.95g/cc) and water phase (ρwater = 1g/cc). The density is

calculated by Equation 3.2 and velocity byGardner’s equation, Equation 3.4. TheGardner’s

parameters are considered as a = 0.31 andm = 0.25 for the reference model. The acoustic

impedance is calculated as product of density and velocity. The normal incident reflection

coefficient is computed by Equation 2.1. The reflectivity series is convolvedwith zero phase

Ricker wavelet to obtain a 3-D seismic survey. This 3-D seismic survey is considered as

original seismic data for this case study. For well data in this case study, three different

columns of facies, porosity and water saturation model are sampled and considered as well

log information. Well data are located on (14, 56), (32, 39) and (40, 54) grid cells. Figure

7.1 shows the location of well data and axes represent grid cells.

Figure 7.2 shows the 3-D visualization of the seismic survey that is considered as the original

seismic data. Three different slices of facies, porosity, water saturation reference model

and original seismic survey in different orientations are shown in Figure 7.3 and 7.4. Slice

XY = 5, XZ = 54 that is located close to the well 1 and Y Z = 23 is located between

well 1, 2 are displayed. The same slices of facies, reservoir physical properties and seismic
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Figure 7.1: Location of well data in the case study, axes represent the grid cells.

survey that computed through the different approaches will be compared with these slices

of reference models and original seismic data in the following sections. The axes unit of

all slices of facies, porosity, water saturation and seismic that are displayed in this chapter

for different approaches and settings represent the grid cells. The color bar unit for porosity

and water saturation arem3/m3. Color bar unit for seismic amplitude ism.
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Figure 7.2: 3D visualization of seismic amplitude, considered as original seismic data for

the case study, axes represent grid cells, color bar - amplitude (m).
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Figure 7.3: Different slices of facies, porosity and water saturation of reference model in

different orientations, axes represent grid cells, color bar unit (m3/m3).
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Figure 7.4: Different slices of the 3-D seismic survey, XY-5 (top), XZ-54 (middle) and

YZ-23 (bottom), axes represent grid cells, color bar - amplitude (m).
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7.2 Multivariate Geostatistical Method

In the first setting of the case study, facies and multiple reservoir physical properties like

porosity and water saturation are simulated simultaneously condition to the well data by

the multivariate Gaussian simulation technique through the column based ultimate

sequential Gaussian simulation (USGSIM) algorithm. Facies simulated by TGS, porosity

and water saturation are simulated by SGS. In this case the constant number of realizations

per column, 100, are generated. Multiple realizations of facies, porosity and water

saturation are passed to PEM and convolution algorithm to compute the synthetic seismic

cubes through the forward modeling process. The synthetic seismic cubes are compared to

the original seismic survey to compute the mismatch. Figure 7.5 and 7.6 show the best

two realizations of facies, porosity and water saturation. Figure 7.7 and 7.8 also show the

synthetic seismic cubes of these realizations that have lower mismatch with the original

seismic data compared to the other realizations. In general, for case of 64 × 64 × 32 with

100 realizations per column, 409600 column of realizations are generated.

As shown in Figures 7.5 and 7.6 and also comparing them with the reference models, the

reservoir propertymodels that are conditioned only to the well data do not capture the spatial

variability and heterogeneity of reservoir. Well data do not provide much information on

lateral variability of reservoir properties due to low areal resolution. According to the Figure

7.7 and 7.8 and comparing them with the original seismic data, these models also could not

reproduce the original seismic data. In these figures, the results of sliceXZ = 54 are better

compare to the other slices as this slice is close to the well 1 data. However, the slices that

are away from the wells are more noisy compare to the slice is close to the well location.

Integration of seismic data with high areal coverage and well data with high vertical

resolution into geostatistical modeling significantly improves the quality of reservoir

models. Stochastic seismic inversion is the most common method that directly accounts

for the seismic data integration into geostatistical modeling. In the next two settings for

the case study, multiple reservoir properties and synthetic seismic cubes are generated by

developed multivariate stochastic inversion and conventional stochastic inversion
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approach and the results will be compared.

Figure 7.5: Different slices of facies, porosity and water saturation of first realization in

different orientations for multivariate geostatistical modeling that are conditioned to the

well data, axes represent grid cells, color bar unit (m3/m3).
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Figure 7.6: Different slices of facies, porosity and water saturation of second realization

in different orientations for multivariate geostatistical modeling that are conditioned to the

well data, axes represent grid cell, color bar unit (m3/m3).
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Figure 7.7: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the first realization of multivariate geostatistical modeling, axes

represent grid cells, color bar - amplitude (m).
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Figure 7.8: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of multivariate geostatistical modeling,

axes represent grid cells, color bar - amplitude (m).
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7.3 Multivariate Stochastic Inversion Method

Now the facies, porosity and water saturation are simulated simultaneously conditioned to

the well and seismic data through the developed multivariate stochastic inversion

approach. The stopping criteria in this setting is considered as follows. The target MSE is

in order of 10−3 that defined based on inherent uncertainty of PEM model and extracted

wavelet. Five levels of multigrid are considered for the simulation process, mmult = 5.

A dynamic number of realizations per multigrid level is considered. To help choose how

many realizations are required per multigrid level, a few columns of each multi-grid level

are simulated. A different number of realizations are generated for each column and

minimum mismatch between synthetic and original seismic data (minimum MSE) for

each set of multiple realizations is recorded. This procedure is replicated for each column

until a relative stable minimum MSE is reached. Figure 7.9 shows the minimum MSE

versus different number of realizations for third level of multigrid (mmult = 3). As

shown in this figure, for most of the columns after 100 number of realizations the MSE

changes slightly over more number of realizations and the curves reach to plateau.

Therefore, 100 number of realizations is considered for this level of multigrid. The

number of realizations per multigrid level for this setting is displayed in Table 7.1. As

shown in this table, the simulation process starts with a large number of realizations for

the first level of multigrid and gradually reduces this number for lower levels of multigrid

that consider more conditioning data. The total number of realizations for all the columns

are generated is 38272 for this process which is less than the number of realization for the

case of generating a constant number of realizations, 100, per column which is 409600.

Two different realizations of facies, porosity and water saturation for this setting are

displayed in Figure 7.10 and 7.11. The corresponded synthetic seismic cubes of these

realizations are also shown in Figure 7.12 and 7.13. As shown in these figures and also

comparing them with reference models, multivariate stochastic inversion approach by

applying geostatistical modeling as part of stochastic inversion technique to condition

reservoir model to the seismic data directly provides reservoir models that reproduce the
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seismic data.

Table 7.1: Multigrid level, number of columns simulated, number of realization and total

number of realizations per multigrid level.

Multigrid level No.Columns No.Realization Total NO.Realization
5 [4× 4] 1000 16000
4 [(8× 8)− (4× 4)] 200 9600
3 [(16× 16)− (8× 8)] 100 1920
2 [(32× 32)− (16× 16)] 10 7680
1 [(64× 64)− (32× 32)] 1 3072

38272 < 409600
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Figure 7.9: Display minimum MSE versus different sets number of realization for few

columns of third level of multigrid (mmult = 3) in multivariate stochastic inversion

approach for the case study.
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Figure 7.10: Different slices of facies, porosity and water saturation of first realization in

different orientations for multivariate stochastic inversion approach that are conditioned

to the well and seismic data, axes represent grid cells, color bar unit (m3/m3).
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Figure 7.11: Different slices of facies, porosity and water saturation of second

realization in different orientations for multivariate stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color bar unit

(m3/m3).
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Figure 7.12: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the first realization of multivariate stochastic inversion approach,

axes represent grid cells, color bar - amplitude (m).
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Figure 7.13: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of multivariate stochastic inversion

approach, axes represent grid cells, color bar - amplitude (m).
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7.4 Conventional Stochastic Inversion Approach

In this section the facies, porosity and water saturation are simulated conditioned to the

well and seismic data by conventional stochastic inversion. In conventional stochastic

inversion, a high quality acoustic impedance or facies is simulated and connected to the

reservoir physical properties such as porosity through a set of sequential connections. The

methodology of conventional stochastic inversion applied in the case study followed as:

1. Calculate proportion of facies categories on an 8 cell moving average at well locations

• In general the vertical resolution of seismic data is coarser than vertical

resolution of well data, so moving average is applied

• Proportion or probability of shale is denoted by Psh and for sand is Ps = 1−Psh

2. Extract acoustic impedance (AI) at well locations

3. Cross plot AI versus proportion at well location to obtain vertical proportion curve

(VPC), Figure 7.14

4. Convert AI to probability model cell by cell

5. Extract proportions of facies categories at well locations and convert them to the

Gaussian units

• ysh = G−1((Psh)/2) and ys = G−1((1 + Psh)/2)

6. Apply truncated Gaussian simulation (TGS) with local proportion to simulate facies

• Take care of conditioning data to consider the area with low and high AI which

means preparing the conditioning data for each facies categories separately

7. Cross plot porosity of shale and sand versus AI to obtain the correlation coefficient

per facies categories

8. Run sequential Gaussian simulation (SGS) by facies considering collocated cokriging

(CCK) to simulated porosity of shale and sand

9. Merge two porosity models based on facies categories of each cell at simulation

domain
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10. Simulate water saturation for shale and sand by SGS correlated with porosity (ρ =

−0.7) and merge them based on facies categories of each cell at simulation domain
11. Pass facies and reservoir physical properties to the PEM to calculate reservoir elastic

properties

12. Convolve reflectivity series with extracted wavelet to obtain synthetic seismic cube

via the forward modeling

Figure 7.15 and 7.16 show different slices of the facies, porosity and water saturation for

two different realizations obtained by conventional stochastic inversion approach. By

comparing the conventional results with reference models, the conventional approach

generated high quality facies. Although, the resolution of reservoir physical properties

that obtained through the sequential connections are reduced gradually. Figure 7.17 and

7.18 display the synthetic seismic cubes related to the two realizations of conventional

stochastic inversion approach. According to these figures and based on visual assessment,

the reservoir properties model generated by conventional stochastic inversion approach do

not reproduce the original seismic data within the quality of the data. Moreover, the MSE

between the seismic reference model and synthetic seismic cube obtained via the

multivariate stochastic inversion is 7.8 × 10−3 while the MSE for conventional stochastic

inversion is 6.4× 10−2.
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Figure 7.14: Shows the relationship between probability of shale versus acoustic

impedance for probability model.
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Figure 7.15: Different slices of facies, porosity and water saturation of first realization in

different orientations for conventional stochastic inversion approach that are conditioned

to the well and seismic data, axes represent grid cells, color bar unit (m3/m3).
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Figure 7.16: Different slices of facies, porosity and water saturation of second

realization in different orientations for conventional stochastic inversion approach that

are conditioned to the well and seismic data, axes represent grid cells, color bar unit

(m3/m3).
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Figure 7.17: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54

(middle) and YZ-23 (bottom) for the first realization of conventional stochastic inversion

approach, axes represent grid cells, color bar - amplitude (m).
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Figure 7.18: Different slices of the synthetic seismic survey, XY-5 (top), XZ-54 (middle)

and YZ-23 (bottom) for the second realization of conventional stochastic inversion

approach, axes represent grid cells, color bar - amplitude (m).
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7.5 Chapter Summary

A case study based on a realistic data set is developed to compare the results of

multivariate stochastic inversion with multivariate geostatistical modeling and

conventional stochastic inversion. Multivariate geostatistical modeling simulates facies

and multiple reservoir properties at the same time that are conditioned only to the well

data. Due to limited areal coverage of well data, the reservoir models that are conditioned

to the well data do not match the seismic data away from the well locations.

Conventional stochastic inversion, generates a high quality facies model conditioned to the

well and seismic data. Then the facies model is linked to the reservoir physical properties

including porosity and fluid saturations through the statistical calibrations and sequential

connections. Although, the fidelity with original seismic data is lost via the sequential

connections. Based on the visual assessment and comparison of MSE, these models do not

reproduce the original seismic data within the quality of data.

Multivariate stochastic inversion simulates multiple reservoir properties simultaneously

through the multivariate Gaussian simulation technique. This approach applies

multivariate geostatistical modeling as part of stochastic inversion technique to condition

the reservoir models to the seismic data at the same time. This approach generates high

resolution reservoir models that reproduce the original seismic data. The MSE between

multivariate stochastic inversion and original seismic data shows this method reproduce

the original seismic data better than conventional stochastic inversion approach.
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Chapter 8

Summary and Conclusion

This chapter summarizes the contributions and discusses some limitations of the research

undertaken in this thesis. It also proposes some future works. A new stochastic inversion

approach called ”multivariate stochastic inversion” has been developed and tested on

different 2-D and 3-D synthetic and realistic data sets. The main objective of the new

approach is to overcomes the limitations of conventional stochastic inversion approach

and provide high resolution reservoir property models that reproduce the original seismic

data. The conventional stochastic inversion approach simulates acoustic impedance or

facies. The high resolution acoustic impedance or facies is linked to the reservoir physical

properties like porosity by a set of statistical calibrations and sequential connections.

There is no guarantee that the models obtained through the sequential connections

reproduce the original seismic data.

8.1 Summary of Contributions

The multivariate stochastic inversion approach applies a multivariate geostatistical

modeling technique as part of stochastic inversion. The objective of this close integration

is to simulate multiple reservoir properties simultaneously and condition them to the

seismic data at the same time. As the seismic surveys are inherently column based, to

condition the reservoir properties to the seismic data at the same time all the geostatistical

modeling techniques must be implemented in column wise manner. Multiple categorical

and continuous reservoir properties are simulated simultaneously by multivariate

Gaussian simulation technique. This technique simulates a full column of multiple

Gaussian variables to simulate facies and reservoir physical properties. Facies is

simulated through the truncated Gaussian simulation and continuous properties are

159



simulated through sequential Gaussian simulation technique. The number of Gaussian

variables simulated by this technique depends on the number of Gaussian variables

truncated for the facies categories and the number of continuous variables.

To handle complex and curvilinear geological features in the reservoir models and add

more flexibility to the new approach, column based multi points statistics (MPS)

simulation is an alternative for facies modeling. To implement the column based MPS

algorithm, a new multigrid approach is proposed and developed. The multigrid approach

allows the reproduction of large scale features with small templates in facies modeling. In

multivariate stochastic inversion for the column based MPS, a 2 −D multigrid in X − Y

direction is applied and at every step of X − Y multigrid a full column of Z is simulated.

A full column of simulated facies and reservoir physical properties are passed to PEM and

convolution algorithm to compute synthetic seismogram. The synthetic seismic trace is

compared to the collocated actual seismic trace via the adaptive sampling algorithm. The

adaptive sampling algorithm defines the stopping criteria when an acceptable match with

the original seismic data is attained. The stopping criteria consists of a target MSE and

reasonable number of realizations. The target MSE is defined based on cumulative

inherent uncertainty of entire modeling process. The size of the space of uncertainty is a

good indicator to help define the reasonable number of realizations for the multivariate

stochastic inversion approach.

The size of the space of uncertainty for categorical variables is quantified as the product of

exponential entropy of the configuration. This is not defined for continuous variables as

they vary continuously over a range of values. This size is implausibly large which can not

be understood from practical perspective in geostatistical modeling. The size of space of

uncertainty is significantly reduced by different factors such as unequal proportions, spatial

correlation and conditioning data. The size of the space of uncertainty in presence of these

factors helps choose the number of realizations over the simulation domain to reach to

the truth in multivariate stochastic inversion. Adaptive sampling in multivariate stochastic

inversion means that the simulation process starts with a large number of realizations in the
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first columns and gradually reduces the number of realizations going through the simulation

path. The previously simulated columns are added to conditioning data and the size of the

space of uncertainty reduces through the simulation path.

The multivariate stochastic inversion is applied for a 3-D realistic data set and the

reservoir properties and synthetic seismic results are compared with results of multivariate

geostatistical modeling and conventional stochastic inversion approach. Multivariate

geostatistical modeling simulates multiple reservoir properties including facies , porosity

and water saturation through the column based Gaussian simulation technique conditioned

only to the well data. This method does not generate reservoir models away from the well

data due to limited number of well data.

The conventional stochastic inversion generates facies models conditioned to the seismic

data. Then, this model constrains the reservoir physical properties like porosity and water

saturation. Although the facies model is high resolution, the quality of porosity and water

saturation are reduced through the statistical calibrations and sequential connections due to

an element of randomness at each step. Moreover, compared to the multivariate stochastic

inversion, the conventional stochastic inversion approach cannot reproduce the original

seismic data within the quality of data. As a result, multivariate stochastic inversion

provides high resolution facies and reservoir physical properties simultaneously that

reproduce the original seismic data within quality of data better than the other approaches.

8.2 Limitations

The integration of surface seismic geophysical data in high resolution geostatistical models

is studied inmultivariate stochastic inversion. Seismic data are originally in the time domain

and well conditioning data are in depth. Although time to depth conversion is an important

step, it is not in the scope of this project. To obtain high resolution geostatistical models that

honor the seismic data, the actual seismic traces should be reproduced at each column in

the geostatistical model. For this purpose the synthetic seismic traces are computed based

on a convolution of reflectivity series calculated through a PEM and an extracted wavelet.
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Some knowledge of rock above and below the reservoir is required.

Wavelet extraction is an important step where the synthetic trace along the well is calibrated

with actual collocated seismic trace. This calibration process is necessary to ensure that the

actual seismic data matches to convolution of the extracted wavelet with the reflectivity

series along the wells. The typical zero phase Ricker wavelet is considered in this study

because the specific details of the wavelet are not critical to the developed approach.

Access to real seismic data would make the study more creditable to some practitioners.

Although, access to processed 3-D real seismic data is challenging. A realistic data set is

generated as a reference model and applied in the case study.

8.3 Future Works

The multivariate stochastic inversion has a great potential to be applied in practice. There

are many areas of future work including:

1. Fully developing MPS and other facies modeling techniques

2. Apply local truncation in truncated Gaussian simulation for facies modeling instead

of Global truncation. This will improve the quality of facies modeling and accelerate

convergence

3. Understanding the sensitivity of grid size for modeling

4. Modeling the rock above and below the reservoir zone of interest

5. Exploring alternative Petro-Elastic models and convolution operators

6. More closely coupling the number of realizations generated to the size of the space

of uncertainty

7. Accelerating convergence by considering improved conditional simulation

realizations as input to the selection process

8. Practical application for refinement of the technique and adaptation in industrial

practice.
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Appendix A

Multivariate Stochastic Inversion

MSInv (Multivariate Stochastic Inversion) is a new stochastic inversion program that

applies a multivariate geostatistical modeling technique as part of stochastic inversion

algorithm to condition the reservoir models to the seismic data at the same time. The main

purpose of this close integration is to overcome the limitations of conventional stochastic

inversion approaches and provide high resolution reservoir models that reproduce the

original seismic data within the quality of the data. The new stochastic inversion approach

simulates facies and multiple reservoir physical properties simultaneously through the

multivariate Gaussian simulation technique. As the seismic surveys are inherently in the

column based fashion, all the geostatistical modeling techniques in multivariate stochastic

inversion approach are implemented in the column wise manner.

In multivariate stochastic inversion approach, a full column of facies and multiple

reservoir properties are simulated via the multivariate Gaussian simulation technique. The

facies is simulated by TGS and continuous variables are simulated by SGS. To condition

these properties to the seismic data at the same time, a full column of the multiple

simulated reservoir properties are passed to the Petro Elastic Model (PEM) and

convolution algorithm to compute reservoir elastic properties and synthetic seimogram.

The computed synthetic seismogram is compared with collocated actual seismic trace to

choose the acceptable match. To implement multivariate Gaussian simulation technique

and integrate it with the stochastic inversion algorithm, the Ultimate Sequential Gaussian

Simulation (USGSIM) that performs multivariate geostatistical modeling is modified to:

(1) perform column based simulation, (2) generate multiple realizations per column, (3)

apply multivariate simulation for both categorical and continuous variables

simultaneously, (4) couple with Petro Elastic Model (PEM) to generate multiple reservoir

elastic properties, (5) convolve the elastic properties with extracted wavelet, and (6) apply
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a selection criteria to retain one realization. The multivariate stochastic inversion

parameter file is described below.

A.1 Parameter File Sections

Parameter file of MSInv is similar to the USGSIM parameter file. The parameter file

consists of a number of required and optional blocks. All the blocks will be described

based on their order in the parameter file. The first block is theMAIN block that includes

number of realization, number of simulated Gaussian variables, random seed number, grid

size and out put file. The number of realization in the MAIN block is to generated a 2-D

or 3-D multiple reservoir properties with different seed numbers. The number of Gaussian

variables are required by multivariate Gaussian simulation technique which depends on

the number of Gaussian variables are needed for TGS, number of facies categories and

number of continuous variables to be simulated must be defined in this block.
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11

12

13

14

The next block is Facies-Modeling block. As mentioned before, the primary option for
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facies modeling in multivariate stochastic inversion is truncated Gaussian simulation

approach. In this block number of facies categories to be simulated, categories and global

proportion are defined.

1

2

3
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5

6

7

The SRCH block consists number of data, multigrid option, search radius and anisotropy

and also the other search parameters. The data are assigned to the closest grid node. In

case, they fall outside the grid they are not used. The size of covariance look up table is

automatically calculated and allocated based on the search parameter.
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The variogram definition for facies and reservoir physical properties is defined in the

VARG block. The specification of variogram is as the other GSLIB programs. The

variograms for facies modeling by TGS must be defined first. Then, the variogram for

continuous variables are defined. The order of variogram for continuous variables does

not matter. The multivariate Gaussian simulation technique simulated continuous

variables per facies code. Later, they merged based on facies code of each cell in the
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facies model. Therefore, it is necessary to define the facies code, Gaussian variable’s

number related to this facies code, continuous variable’s number related to this facies code

and Gaussian variable and variogram parameters for this set. These parameters must be

defined in VARG block for all continuous variables per facies code. For example for a

facies with shale (code 0) and sand (code 1) categories that needs one Gaussian variable

for TGS and two continuous variable such as porosity and water saturation, five Gaussian

variables are required to be simulated. The Gaussian variable 1 is for facies modeling.

The category 0, Gaussian variable 2, continuous variable 1 is for shale porosity with

related variogram parameters. The category 1, Gaussian variable 3, continuous variable 1

is for sand porosity with related variogram parameters and so on. Later, Gaussian

variables number 2 and 3 are merged to obtain the final porosity model.
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21

22

23

24

25

26

27

28

29

30

The DATA block is an optional block that is required for conditional simulation. If this

block is not in the parameter file or there is no data file for conditioning data, the code

applies an unconditional simulation. The conditioning data must be defined per facies

categories as the continuous variables are simulated per facies categories. The data point

have coordinates and declustering weights.
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The TRAN block transfers the conditioning data to the Gaussian units and back transforms

the simulated values from Gaussian unit to original units. If the option is no transform, then

the conditional data must be in Gaussian units and the out-put file for simulation will be in

Gaussian units.

1

2
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The details about multivariate geostatistical modeling and joint simulation of multiple

variables are specified in MULT block. Multiple variables may be simulated

independently (code 1) with no correlation, with collocated cokriging.

179



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The parameters for stochastic inversion algorithm are defined in the Stochastic-Inv

block. The original seismic 2-D or 3-D is specified in this block. If there is no input file

for the seismic data, the code applies multivariate geostatistical modeling, passes the

simulated values to the PEM and convolution algorithm to compute synthetic seismic

cube through the forward modeling. The PEM parameters, including: bulk densities, fluid

densities and Gardner’s parameters are defined in this block. The multivariate stochastic

inversion approach considers the zero phase Ricker wavelet with a central frequency for

the convolution algorithm. The frequency of Ricker wavelet is defined in this part. The
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stopping criteria for adaptive sampling algorithm such as target MSE and reasonable

number of realization per multigrid level are defined in this block.

1
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All the input and output files are in GSLIB conventional format. The out-put of

multivariate stochastic inversion is two files. One file includes the facies and reservoir

physical properties such as porosity and fluid saturations. The other out put file is the

synthetic seismic cubes based on stopping criteria in adaptive sampling algorithm.
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Appendix B

Column Based SNESIM

The primary option for facies modeling in multivariate stochastic inversion is truncated

Gaussian simulation (TGS). Although, to handle more complex geological features, the

column based multi point statistics (MPS) simulation is an alternative for facies

modeling.The seismic data is inherently column based; therefore, the SNESIM code is

modified to perform column based simulation. The concept of original multi grid

approach does not work in column based SNESIM because a full column must be

simulated at once. For this purpose, a new multigrid approach called directed multigrid is

developed and applied in column based SNESIM. There are two different versions of

directed multigrid: 1) X − Y multigrid, full column of Z and 2) X − Y multigrid plus Z

multigrid.

B.1 Column Based SNESIM Parameter File

The parameter file for column based SNESIM is quite similar to the original SNESIM code.

More details about the original SNESIM code can be found in different sources including the

guide book ”Guide to MPS Simulation” by Deutsch and Silva (2014). Three lines added to

the end of the original SNESIM parameter file. First line specifies to apply column based

MPS with or without multigrid approach. The next line defines the number of multigrid

levels. At the last two line the directed multigrid version can be defined.
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Appendix C

Size of Space of Uncertainty

The size of the space of uncertainty in presence of different parameters such as: unequal

proportions, spatial correlation and conditioning data is a good indicator to define the

dynamic number of realizations per column in multivariate stochastic inversion. The size

of the space of uncertainty also quantified as the product of exponential entropy of the

system. The probability of each category at location must be estimated to compute size of

the space of uncertainty. The BLOCKSIS (conventional GSLIB Code) is modified to: 1)

compute pk for k = 1, . . . , K sequentially through a random path at each location, 2)

calculate entropy H and exponential entropy eH , 3) repeat this procedure over the entire

simulation domain and 4) calculate size of the space of uncertainty by Equation 4.10. The

out put file for size of space of uncertainty is in the GSLIB format that represents pk, H ,

eH and size of space of uncertainty.
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