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ABSTRACT

Bifurcation theory is the study of equations with multiple solutions. Specifically,
by bifurcation we mean a change in the number of solutions of an equation as a
parameter varies. For a wide variety of differential equations, problems concerning
multiple solutions can be reduced to studying how the solutions z of a single scalar
equation f(z,A) =0 vary with the parameter A.

The equivariant degree is a to’pologica.l tool that can be effectively applied to the
study of this equation in the presence of symmetry. Its many properties make it
versatile, and it can be especially used to characterize the Hopf bifurcation.

In this thesis, we further develop abstract methods to compute the equivariant
degree, we present explicit calculations for certain symmetries and we apply these

results to establish the existence of bifurcation.
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Introduction

The recent development of equivariant topological methods, such as equivari-
ant degree theory, provides a powerful tool for the qualitative theory of differential
equations with symmetries. Problems involving dynamical systems with symme-
tries naturally arise in many applications in physics, chemistry, mathematical bi-
ology, and engineering. As these new topological methods may be effectively, and
relatively simply, used to study nonlinear equations with symmetries, their further
development may have an important impact in this area.

The objective of this thesis is to further develop abstract equivariant degree
techniques, in particular for some classical non-abelian Lie groups, and to present
some applications of the computational results obtained to differential equations

and bifurcation theory.

Motivated by the existence problem of periodic solutions of nonlinear differential
equations, many researchers have been interested in various techniques involving S!-
equivariant degrees.

As an example, consider the problem of finding a periodic solution, of an un-

known period p, to the following system of autonomous ODEs

¥ = f(y).

By introducing the period as a parameter (by using the substitution z(r) =
¥(£T)), we transform this equation into the following parameterized BVProblem:
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' = £ f(z)
z(0) = z(2x)

This problem can be reformulated as a fixed-point problem in a function space of
continuously differentiable 2r-periodic functions, on which there is a natural action
of the group S' (by shifting of argument). An important observ:';tion is that, as
the system is autonomous, this fixed point problem is symmetric (equivariant) with
respect to this ST action. In order to prove the existence of a solution to this problem
we employ the S'-equivariant degree, which is a particular topological degree taking
into account the presence of the S'-symmetry.

The idea of an equivariant degree is not new. Several authors introduced such a
tool to study symmetric equations. In particular:

(i) Ulrich (cf. [53]), following the work of Dold ([11]), introduced the notion of a
G-equivariant fixed point index for f: V — V (as an element of the Burnside
ring A(G));

(ii) Dylawerski, Geba, Jodel, Marzantowicz ([14]) introduced a notion of S'-degree
for mappings f: V xR - V;

(iii) Ize, Massabé, Vignoli ([34,35,36]) introduced a general G-degree theory, includ-
ing an S'-degree for mappings f : V — W, where V and W are possibly two
different representations of G.

(iv) Dancer ([9]) introduced a notion of S!-degree, following the work of Rubinsztain,
for S'-equivariant gradient fields;

(v) Ggba, Massabé, Vignoli ([20]) introduced a general G-degree for gradient fields

(vi) Ggba, Krawcewicz, Wu ([19]) developed an analytic definition of a G-degree
which is defined for mappings f: V x R® — V and is represented as a sequence
of integers indexed by orbit types in V' x R™.
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The advantage of the equivariant degree theory introduced by Geba, Krawcewicz
and Wu lies in the fact that'it may be defined through an elementary analytic
construction (based on the same idea as the analytic construction of the Brouwer
degree) therefore it allows for direct calculations in many concrete examples.

In this thesis we develop new abstract methods for computations of the equi-
variant degree, we use these in explicit calculations for certain non-abelian actions,
and we apply the results obtained to bifurcation theory.

Let us now pass to a more detailed description of the individual chapters.

In Chapter One, after introducing the analytic version of the equivariant degree
of Ggba, Krawcewicz and Wu, we treat the equivariant degree theory in the absence
of the parameter space. In this case the degree is defined as an element of the
Burnside ring of the group G. We show that our definition is equivalent to that of
Ulrich and we present an alternative proof of the multiplicativity property. This
property is of fundamental importance both theoretically and for the computations.
We discuss some multiplication formulae for the elements of the Burnside ring and
we then give a complete multiplication table for the Burnside ring of SO(3). These
results are applied for the computation of the SO(3)-degree of —Id on some of its
irreducible representations: the importance of this special case stems later on from

Proposition 3.4.1.

Chapter Two is mostly computational. We develop several formulae relating
the G-equivariant degree to more easily computable topological invariants. This is
done in several steps. First we present an Ulrich type formula, in case of a one
dimensional parameter space, which reduces the calculations to the well understood
S'-degree. Then, under some assumption on f : VxR — V (condition A), we prove

that the G-degree (G abelian) can be computed by means of the restriction of f to
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certain isotypical components of V. In the last section we show how to apply the
previous results to the equivariant Hopf bifurcation. Given the problem

z=F(z,\), (z,)) eW xR?

where W is an orthogonal representation of the group G =T x S, T a compact Lie
group, and F' a G-equivariant map. We assume that there exists a 2-dimensional
submanifold M of trivial solutions. The existence of a branch of nontrivial solutions
bifurcating from a point (z9, \g) € M is then related to the nontriviality of the
G-degree of the map fy: VxR -V

fo(z, '\) =(z - F(:!?, /\),0(22, ’\))

where V' = W x R and 0 is an auxiliary invariant function. A global result is also
established.

In Chapter Three, we extend the concept of normality to equivariant bifurcation
problems. The “normality” condition prevents the bifurcation branches of larger
orbit types from collapsing into branches with smaller orbit types. We prove that
every equivariant bifurcation problem, parameterized by n variables, can be arbi-
trarily well approximated by a “normal” equivariant map with the same sets of
singular points and bifurcation points.

We then use equivariant degree techniques to study normal bifurcation and we
establish a Branching Lemma and a global result. With an example of steady state
bifurcation with SO(3)-symmetry we show that the equivariant degree can detect
branches of nontrivial solutions even of submaximal types.

In Chapter Four, we consider the case G =T x G where I is a finite group and
Go is a compact Lie group. The multiplicativity property of the G-degree (described
in Chapter One for G abelian or in absence of the parameter space) is extended to
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a new case involving the action of the group I"' x Gy. We study more extensively the
case Dy x S and in particular we present the multiplication tables for the Burnside
ring of the dihedral group A(Dy) and a table for A(Dy) x A;(Dy x S') (the type
needed for the multiplicativity property).

The computational formula presented in Chapter Two is also extended to the
case G =T x S! (T finite). We again consider G = Dy x S! and its irreducible
4-dimensional representations to show the possibility of effective calculations of the

topological invariants involved in such formula.

In Chapter Five we apply the computational results from Chapters Two and Four
to the Hopf bifurcation theory for functional differential equations. It is known that
the problem of looking for bifurcating periodic solutions with prescribed symmetries
can be, in the abelian case, always reduced to the case of spatial symmetry group
Zy or Z, := S™. Our results in nonabelian case are described in detail for the case
of the nonabelian group Dy x S*. It is shown how the wealth of different irreducible
representations implies spontaneous symmetry breaking and appearance of multiple
branches of periodic solutions of various types.

In the last section we show how temporal delay in coupling between cells may
cause many oscillation patterns that cannot appear in the absence of the delay. This
finds applications to chemical or biological oscillators.



Chapter One

The Equivariant Degree and

the Burnside Ring

1.1 Introduction

We begin this chapter by briefly recalling some basic notions to present the setting for
the definition of the equivariant degree due to Geba, Krawcewicz and Wa [19]. This
degree is defined for continuous functions from V' x R™ into V, commuting with the
action of a Lie group G on V (acting trivially on R™). As a natural generalization of
the Brouwer degree, it possesses several properties, most important of which are the
topological invariance with respect to G-equivariant homotopies and the existence
of zeros for functions with nontrivial degree. This degree, however, is an element
of a complicated algebraic object (free group) An(G) derived from the structure of
conjugacy classes of subgroups of G. In the case n =0 (or G abelian) it also admits
a multiplication operation and A(G) becomes a Burnside ring.

The definition that we present is not the original one from [19], but an equivalent
analytical version from [47). The analytic construction presented in [47] allows for
a more direct comprehension and visualization of the degree, thus we prefer it.
The degree is built up by means of approximations of a given function by smooth
functions satisfying certain ‘normality’ and regularity conditions, and evaluating
relevant determinants corresponding to some orbit types (conjugacy classes of closed
subgroups of G). Although the process is in spirit close to the one used for the
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to a subgroup of H. For a closed subgroup H of G, we use N (H) to denote the
normalizerof H in G, and W (H) to denote the Weyl group N (H)/H of H in G. For
every n € Zy :={0,1,2,...}, we put ®,(G) := {(H) € O(G) : iimW(H) = n}.

A compact Lie group is called bi-orientable if it has an orientation which is
invariant (ie. under all left and right translations). By definition, every abelian,
finite, or. connected Lie group is bi-orientable; however, the group O(2) is an example
of a compact Lie group which is not bi-orientable. We will also use the following

notation:

B3 (G) == {(H) € ®.(G) : W(H ) is bi-orientable },
®.(G) == {(H) € ®,(G) : W(H) is not bi-orientable },
Aa(G) =Z[27(C)] ® Z2[2; ().

For every element a = (H) from the set &} we choose an invariant orientation of

W(H). An element of ¥ € An(G) will be written as a finite sum ¥ =), NaQ, Where

Z ifaed}(G);
Z, ifaecd(G).

N €

Let W be a real finite-dimensional orthogonal representation of the Lie group
G. We consider the product space W @ R", where we will always assume that G
acts trivially on the second component. For a given z € W @ R™, we denote by
G: := {g € G : gz = z} the isotropy group of z. According to our previous notation
the conjugacy class (G) will be called the orbit type of z. For an invariant subset



Brouwer degree, the presence of the symmetry (the action of G) complicates the
calculations, especially for nonabelian group actions.

It is important to note that the equivariant degree considered throughout this
thesis is a proper extension of previously introduced degrees. In Theorem 1.2.4, of
Section 1.2, we prove that this degree in the particular case n = 0 (ie. in absence
of the parameter space) is equivalent to the well known degree of H. Ulrich [53]. °

This result will be extensively used later on for the computation of the degree
and an extension of this result to the case n = 1 will be found in Chapter 2. In
Section 1.3 we consider again the case n = 0 and we discuss the degree as an
element of the Burnside ring. We analyze the structure of the Burnside ring since
the multiplicativity property of the degree, which arises naturally in case n =0, is
heavily based on it. We compute the multiplicativity table of a particular nonabelian
group SO(3): the SO(3) symmetry is one of the most often studied for practical
applications [4,25,29]. In Section 1.4, we explicitly compute the SO(3)-degree using
the results of the previous sections. The function considered is —Id : Q; — V; where
§; is the unit ball in the irreducible representation V; of SO(3) (i=1l, ... ), and
the relevance of the computation of the degree for this particular map will be clear
later in Chapter 3 (Example 3.4.2).

1.2 The Equivariant degree

Throughout this thesis we assume that G is a compact Lie group. We say that
two closed subgroups H and K are conjugate in G, denoted by H ~ K, if there
exists g € G such that H = gKg~!. The relation ~ is an equivalence relation. The
equivalence class of H is called a conjugacy class or orbit type of H in G and will be
denoted by (H). We denote by O(G) the set of all orbit types of closed subgroups
of G. The set O(G) is partially ordered: (H) < (K) if and only if K is conjugate
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X C W @&R™, a closed subgroup H of G and an orbit type a € O(G) we put

X¥:={zeX:hz=zforal he H);
Xa:={ze€eX:G,=H});
XxH .= {zeX:ngH};
X®:={ze X:(G.:) <al
Xo={z € X:(G;)=a}.

We will denote by J(X) the set of all orbit types of points in X, i.e. J (X) ==
{(G:) : T € X}. It is well known (see, for example, [2,37]), that if Q C W @ R™
is an open invariant subset, then for every a € J(Q) the set Q, is a G-invariant
submanifold of W & R™.

Suppose that M is an invariant submanifold (or simply G-submanifold) of V :=
W @ R". Let N(M) = {(z,v) € M x V : v L T.M} denote the normal bundle
of M in V and N(M) the normal space to M at z € M. Then N(M) is a G-
vector bundle. Moreover, there exists a continuous invariant function v : M — R,
such that the restriction of the map pu : N(M) — V, u(z,v) = z + v, to the set
N(M,v) := {(z,v) € N(M) : |jv]| < v(z)} is a G-diffeomorphism. The image
p(N(M,v)) is called a G-tubular neighbourhood of M in V.

Let @ C W @ R™ be an open bounded invariant subeet, we say that a G-
equivariant map f : 1 — W (i.e. f satisfies gf(z) = f(gz) for every z € W®R" and
g € G) is admissible if f(z) # O for all z € 8Q. We will also say that an equivariant
homotopy k : @ x [0,1] — W is admissible if the map h¢ := h(-,t) is admissible for
every t € [0,1].

Theorem 1.2.1  To every admissible map f : {3 — W we can assign an element



G-Deg (f,R2) € An(G) such that the following properties are satisfied: '

(P1) (Eristence) If G-Deg(f,Q) = Yo Maa i8 such that there is n, # 0, then there
erists z € QL N £-1(0), where (H) =a;

(P2) (Homotopy Invariance) If h : Q1 x [0,1] — W is an admissible homotopy, then
G-Deg (he, ) does not depend on t € [0, 1];

(P3) (Ezcision) If Q, C Q is an open invariant subset and f~1(0) C ,, then
G-Deg (£, ) = G-Deg (£, Q). '

(P4) (Additivity) If 2, and Q; are two open invariant subsets of Q such that NNy =
@ and f~1(0) C Q, Uy, then

G-Deg (f, Q) = G-Deg (f,Q;) + G-Deg (f, 02);

The element G-Deg(f,2) € An(G) is called the G-(equivariant) degree of the
map f with respect to the set Q. The formal construction of the above G-degree
theory was presented in [19], but we would like to mention another approach, which
can be called analytic, to the definition of such equivariant degree. This approach
is based on the notion of a normal map and the fact that every admissible map
can be approximated by normal maps. More precisely, we introduce the following

definition:

Definition 1.2.2 An admissible map f : @ — W is called normal if for every
z € f~1(0) and H = G; there exists an &, > 0 such that f(z+h) = h for all vectors
h € Nz(Qa) with [|h]| < &z, where a = (H). In addition a normal map f is called a
regular normal map if f is of class C! and for every H = G, where z € F10), 0
is a regular value of the restricted map fg := fiay : Qu - WH,

In [47,56] the following regular approzimation theorem was proven:
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Theorem 1.2.3  For every admissible map f : {1 — W and for everyn > 0 there
ezists a regular normal map f : 0 — W such that sup,.q || f(z) — f(z)[| <n. The
last inequality simply says that f is an 7-approzimation of f.

Consequently, we can use this approach to give an analytic definition of G-degree
(cf. [47,56]):

Let f: @ — W be an admissible map, and put 27 := infresq || f(z)]|- By the
regular normal appraximation theorem, there is a regular normal n-approximation
f of f. Then we put G-Deg (£,9Q) = 3", nqa, where for a = (H)

0 if « ¢ J(F1(0));
N = ZW(H):C F-1(0), SiER DfH($)|s, if W(H) bi-orientable;
lf“(O)n/W(H)l(mod 2) if W(H)not bi-orientable,

where S; denotes the linear slice to the orbit W (H)z in the space WH @R™ at z, and
l f~10) /W (H )l denotes the number of all the W (H) orbits in the set f~1(0)g. We
choose an orientation of the slice S, such that the natural orientation of the tangent
space T W (H)z, induced by the chosen invariant orientation of W (H), followed by
the orientation of S; gives the (fixed) orientation of VE @ R* = T,W (H)z & S,.
We refer to [47,56] for all the details and the verification that the above definition
indeed leads to an equivariant degree satisfying all the properties (P1)-(P4).

Assume now that V is an infinite dimensional isometric Banach representation
of the group G. We consider the space V' x R™ and denote by 7 : V x R® — V the
natural projection. The G-equivariant degree can be extended to compact fields in
V by the standard method of finite dimensional approximations (see [43]). More
precisely, let # — F : V x R® — V be an Q-admissible compact field on Q, ie.
92N (w — F)~1(0) = 2, then for every ¢ > 0 there exists an equivariant finite
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dimensional map F : V xR™ — V (i.e. F.(Q) C Vp, where V} is a finite dimensional

invariant subspace of V) such that
|Fe(z) — F(z)|| <e, Vzell.
Then we may define
G-Deg(f,Q) := G-Deg (x — F"Voxwﬂ Qn (Vo xR™)).

It turns out that the G-equivariant degree for compact fields, as defined above,
satisfies all the standard properties as in Theorem 1.2.1 (see [16,21,46,56]).

A G-equivariant degree for n = 0, i.e. when the parameter space R™ is absent,
was introduced by Ulrich (cf. [53]). We now prove that our definition of the G-degree
for n = 0 coincides with the definition of H. Ulrich.

Thearem 1.2.4  For every Q-admissible map f : Q — V, where Q is an open

invariant subset of V, we have
G-Deg(f,)= 3  mm(F)-(H), (1.2.1)
(H)e®¥(G)
where F(z) =z — f(z) forz € Q and

m)(F) = [I(F¥) - I(FH)/jw(R)), (1.2.2)

where I(FH) and I(FIH1) denote the fized point indices of FH : Q8 — VH , and
FUH] . QIH] —, VIH] respectively.

Proof. The formula (1.2.1) was obtained from the definition of the G-equivariant
fixed point index of F, introduced by H. Ulrich in [53], which satisfies all the standard
properties of the fixed point index, i.e. existence, additivity, homotopy invariance,

excision, multiplicativity and commutativity properties. We refer to [53] for more
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information about the G-fixed point index.

Due to the results of [47,56] and the equivalent definition of equivariant de-
gree therein, we may assume, without loss of generality, that f is regular normal.
Moreover, due to the additivity property of both the equivariant degree and fixed
point index, we may assume that f~1(0) C () consists of a single orbit, where
(L) € ®(G) is the minimal orbit type in 2. f£: QL — VL ig W (L)-equivariant and
W/(L) is finite thus (f£)~1(0) = W(L)z, is also a finite set. Moreover, since fL is
W (L)-equivariant, for every g € W(L) we have fE(9z,) = gfE(z,), and therefore,
DfE(gz,)0og =go DfE(z,). Consequently, det DfL(gz,) = det DfE(z,) for all
g € W(L). This implies that

I(FF) = n¢gy |W(L)|,

where n(y) is the (L)-component of G-Deg (f,9). Since Q] = g, m) = n).
Assume now that K G L. Since f = Id—F'is (L)-normal, it follows from the product
property of the fixed point index that I(FK) = I (FE). In order to compute I (FIK])
we remark that QF C Q1. If QK1 \ QL = g, then clearly Mk = 0. Hence,
assume that QK1 \ QL % & Since f is (L)-normal, FX(u,v) = (¢(u),0) near
f71(0), where (u,v) € O, u € QL, v is orthogonal to £, and ¢ : QL — VL, Let
r : QK — QK] denote a retraction onto K], Then by the definition of the fixed
point index for ANR-spaces, I(FIK]) := I(F), where F = For: OK — VK. We
claim that H; := tFX +(1~¢)F is an admissible homotopy (without fixed points on
the boundary of QX). Indeed, if Hy(u,v) = (u,v), then it implies that v = 0, and
thus (u,v) € QL. Since r restricted to 1L acts as identity, ¢(u) = u, the homotopy
H, has the same fixed points as FL. Consequently, by the homotopy property of
the fixed point index I(FIX]) = [(FK) = J(FL), thus m(x) = 0 and the statement
follows. a
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1.3 The Burnside Ring and the Multiplicativity Property

In this section we recall the definition of the Bumnside ring A(G).

Let ®(G) denote the set of conjugacy classes (H) such that N (H)/H is finite.
We denote by A(G) the free abelian group generated by (H) € ¥(G). 1t is clear
that A(G) = Ao(G). There is a multiplication operation on A(G) which induces
a structure of a ring with identity on A(G). In order to define the multiplication

operation, we remark that

(G/H x G/K)(1)/G = (G/H x G/K)./N(L)
C (G/H x G/K)*/N(L)
= (G/H! x G/K*)/(N(L)/L).

Since the spaces G/HL and G/KL consist of finitely many N(L)/L-orbits and by
assumption N(L)/L is finite, G/HE and G/KT are finite. Consequently the set
(G/H x G/K)(L)/G is finite.
The multiplication table of the generators (H) is given by the relation
(H)-(K)= Y ng(L) (13.1)
(L)e®(G)

where n;, denotes the number of elements in the set (G/H x G/K) /G, i.e.
ng :=|(G/H x G/K))/G|.

The ring A(G) is called the Burnside Ring of G.
In order to effectively use the ring structure of A(G) for the computations of
G-degree we need to be able to evaluate the multiplication table for A(G), ie. to

compute the numbers ny, in formula (1.3.1).

Some information on the number nr may be obtained from a purely group-
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theoretic argument. Given closed subgroups L and H of the group G, we put.
N(L,H) ={g €G; gLg~' c H}.

N(L, H) is a closed subset of G, and hence a compact set. If we define a left G-action
on G by (k,g) — hg, then N(L, H) is an N(H)-invariant subset of G. Since N(L, H)
is a compact H-space and the natural projection = : N(L,H) —+ N(L,H)/H is
continuous, the orbit spaces N(L, H)/H and N(L, H)/N (H) are compact. It should
be pointed out that the set N(L,H) is not a group in general (cf. [29]). The
correspondence H(g) + g~ H gives a homeomorphism & : N(L,H)/H — (G/H)~.

Let us introduce, following [29], the number n(L, H), which denotes the number

of conjugate copies of L contained in the subgroup H, i.e.

N(L, H)

o )= [ S50

If @ = (L) is a minimal orbit type in G/H x G/K, then

H)|- [W(K)|

WD) (1.3.2)

ng, = n(L, H) - n(L, K) 7L

Assume that @ = (L) € &(G) is not a minimal orbit type in X := G/H x G/K.
We denote by Af the set of all closed subgroups M such that (G/H xG/K)L =
G/H" x G/KE \Upren, (G/H x G/K)p. As G/HE x G/K?" is finite, the set A,
is also finite. Consequently

((G/H x G/K)c| = |G/H" x G/K*| - Y kulG/HM x G/K™|
MeA,

where the coefficients km are integers representing the “repetitions” in the count of
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the elements of G/HM x G/KM. Therefore,

(G/H x G/K)L| =|W(H)|- W(K)|[n(L, H) n(L, K)—
Y ku n(M, H) n(M, K)]. (1.3.3)

MeA,

In the case where G is an abelian group the formula (1.3.1) simplifies to
(H) - (K) = nank(H N K)

where ngnk is equal to the number of all (H N K)-orbits in G/H x G/K. In this
case, the number n in the formula (1.3.1) represents the number of elements in
(G/H x G/K) ) /G, i.e. it is the number of G-orbits in G/H x G/K of the orbit
type (L), ie. n, = |(G/H x G/K)/G| = |(G/H x G/K)|/|G/(H n K)|.

The G-equivariant degree for n = 0, i.e. in absence of the parameter space, is
an element of the Burnside ring. In this case the G-degree has one more additional
important property called the Multiplicativity Property:

(P5) (Multiplicativity) Let V;, V; be two orthogonal representations of G % CV,
1 = 1,2, two invariant open bounded subsets, f; : §; — Vi, it = 1,2, two

equivariant admissible maps. Then

G-Deg (f1 % f2, x Q) = G-Deg (f1, 1) - G-Deg (f2, 23),

where the product is taken in the Burnside ring A(G).
Proof. We may assume, without loss of generality, that both maps f; = Id — F,
i = 1,2, are regular normal and f;"1(0) = G(z;) for i = 1,2, i.e. for both maps
the solution sets f;"'(0) are composed of one single orbit. Assume in addition
that G-Deg (f1, ) = a1(H) and G-Deg(f2,Q;) = az(K), where a1, a3 = +1 and
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H =G;,, K = G;,. Using the same notations as above, we can assume that
(G/H x G/K) =G/H* x G/KEL\ U (c/8™ x 6/K™).
MeA,

We will use the following notation

F :=F1 X Fz,

U:=(Q x N)E, Y =W x Va)~.

It is clear that F(Upr) C Y™ for every M € A and therefore, by additivity and
multiplicativity property of the fixed point index, we obtain

I(FsU) =I(F119{l) I(&aﬂg)
=a103|G/H"| - |G/K™|
=aan(L, H)n(L, K)|W(H)||W(K)|,

and

I(FUE) = 3 kyI(F,UM),
MeAr

where the coefficients kys are exactly the same as in (1.3.3). On the other hand,

I(F,UM) =q,0,|G/HM| - |G/K™|
=aan(M, H)n(M, K)|W(H)||W(K)).

Therefore, using (1.3.3), we obtain

I(F,U) - I(F, U™ =a,aa|W (H)||W (K)|[n(L, H)n(L, K)~
Z an(M’ H)n(Mr K)]
MeA,
=a,62|(G/H x G/K)L|,
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and consequently, by applying the Ulrich formula, we have

G-Deg(f1 x f2, x Q) = G-Deg(f1,9;) - G-Deg (f2, Ma).

We also recall that when the group G is abelian, for every n > 0, the set A,(G)
admits the structure of an A(G)-module. The action of A(G) on A,(G) can be
described as follows: if (H) € ®(G) and (K) € ®,(G), then (H ) (K) =ngnx(HN
K) where nynx denotes the number of elements in the set (G/H xG/K)/G. Thus,
for G abelian, another kind of multiplicativity property is defined, an analog of (P5)
where Q2 C V2 x R™.

Computation of the Burnside ring A(G), in some cases, may be quite complicated
and require good knowledge of the subgroup structure of G. However, we may
use another description of the Burnside ring, due to tom Dieck (cf. [10]), which
uses the fact that A(G) may by isomorphically mapped onto a subring of the ring
C(G) := C(®(G); Z) of continuous functions from ®(G) into the discrete space Z.
In order to present this description we need first to explain some facts about the
topology on the space (G).

Let S(G) denote the set of closed subgroups of G. As the group G is a metric
space, we may equip S(G) with the usual Hausdorff metric, so S(G) becomes a
compact metric space such that the action G x S(G) — S(G) defined by (9.H) —
gHg™! is continuous. Moreover, the orbit space S(G)/G , which is exactly O(G)
is countable and thus a totally disconnected Hausdorff space such that ¥(G) is a
compact subspace of O(G) (see [9]). It can be shown that for every (H) € ®(G) the
function zg : (G) — Z, defined by

2 ((L)) = |(G/H)*| = IN(L, H)/H| = n(L, H) - [W(H)), (1.3.4)
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for (L) € &(G), is continuous and thus belongs to C(G). Therefore, we can define a
Z-homomorphism ¢ : A(G) — C(G), which is defined on the generators (H) € $(G)
by ¢((H)) = zg. The map ¢ is in fact a well defined injective ring homomorphism,
and C(G) is a free abelian group with basis {IW(H)|" zg; (H) € ®(G)}.

Since the image ©(A(G)) may be identified with A(G), it is possible to describe
the ring structure of A(G) just by computing the generators 2z, for (L) € (G),
and then to express the products zp - Zxk as a linear combination of the generators
zr. We will illustrate this process in our example showing how to compute the ring

structure in A(SO(3)).

Example 1.3.1 We consider the group SO(3) of all 3 x 3 orthogonal matrices of
determinant 1. For all details and additional information we refer to (4,25]. It may
be shown that every proper closed subgroup of SO(3) is conjugate to one of the
following subgroups:

. . . . A 0

(i) The subgroup of SO(3), consisting of all 3 x 3 matrices [ 0 signdetA

O(2), which may be identified with the orthogonal group O(2).

| ae

(ii) The subgroups of O(2): SO(2), D,, n = 2,3,..., Z,, n=123,.... The
subgroup D is conjugate to Z2, and therefore is not included in the list. On the
other hand, the group Dy, ~ Z, © Z; is traditionally called the Klein group of
order 4, and is denoted by V.

(iii) The ezceptional groups: tetrahedral T, octahedral O, and icosahedral I, which are
“rotational” symmetry groups of the regular tetrahedron, octahedron (or cube),
and icosahedron (or dodecahedron), respectively. It is well known, that the group
T is isomorphic to the alternating group Ay, the group O is isomorphic to the
symmetric group Sy, and the group I is isomorphic to the alternating group As.
The subgroups of SO(3) can be represented in a lattice of conjugacy classes of
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50(2)/ 0(2)\0,. D, / I ><:: \Ds
NN X
\ z,2

subgroups of SO(3) (see Figure 1.3.1).

We will also need to identify the subgroups with finite Weyl group (see Table 1.1).

Weyl groups of subgroups in SO(3)

H N(H) | wE)

0(2) 0(2) z,

SO(2) 0o(2) z,

Dn1 n 2 3 Dﬁn Z2

Va Sy S3

Z.,n>2 | 0@ | 0@

z, 50(3) | so@3)

Ss Sy z,

As As z,

Ag Sy zZ,
Table 1.1



We have the following generators of A(SO(3)):
Q(‘5'0(3)) = {(30(3))1 (0(2))1 (A4)1 (A6)1 (S4)1 (Dn); n=2,3,... }'

We will compute the multiplication table for the ring A(SO(3)). We need Table
1.2, borrowed from [4], showing the numbers n(L, H) for the subgroups of SO(3).

Values of n(L, H)

H

0(2)
D,
Dy
0(2)
0(2)

2
&~
L

. condition

n/meZ m>3
n even
m>3

o
2
BB B = DN NN W G

L
SO(2)
D,,
Va
D
V4

D3

Dy S
D3

Ds

Va

Vi

Vi

Ay

Ay

Table 1.2

Since all the computations of the multiplication table for A(SO(3)) follow the
same pattern, we will show only, as an example, the computation for the product
(H)-(K), where H = S4 and K = Ajg. It is clear from the subgroup lattice that the
only possible orbit types in G/H xG/K, which belong to A(SO(3)), are (L)) = (Ad),
(L2) = (Ds) and (L3) = (V4). Consequently, (S;)-(As) = ny(As) +n2(D3)+na(Va).
Since (A4) and (Dj3) are evidently the minimal orbit types in G/H x G/K, we may
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use the formula (1.3.2) to compute the numbers n; and ny. We have

. ’ (W (Sa)| - [W(4s)]
™= n(de, 51) - (A, As) —irrr
=2. 1-15—1- =1
_ [W(S4)| - [W(As)|
m = (D3, 54)-n(Ds, dg) 0L T
=2. 2% =2

In order to compute the coefficient n3 we will use the ring inclusion ¢ : A(SO(3)) —
C(50(3)), which is defined on generators (H ) € A(SO(3)) by ((H)) = zx, where
zg is given by the formula (1.3.4). Since we waat to compute the product (Sy)-(As),
it follows from the fact that @ is a ring homomorphism that

©((Sa) - (As)) = zs, - 245 = n124, + 22Dy + 32y,

=24, t+ 2ZD, + n3zy,.

Consequently, we need to compute the values of the functions zy for (H) € (SO(3)),
which we will express in a form of a table, and find the number n3 by inspection.
For two positive integers n and k we define [n|k] by

1 if k divides n;
e = { .
0 otherwise,
and [n|lky, ..., k] =1ifn € {ky,...,k.}, or zero otherwise.

The values of 2y can be computed directly from (1.3.4) using Table 1.2 (see
Table 1.3).

Now, by using the information from the table we obtain
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Values of z((L))

zg\(L) | SO@) | O(2) | SO(2) | A¢ | 45 | S¢ | V4 Dn,n23

230(3) 1 1 1 1 1 1 1 1

zo(2) 0 1 1 0 0 0 3 1

Z350(32) 0 0 2 0 (1] 0 (1] 0

zg, 0 0 0 1 0 1 4 2[n||3, 4]

Zag 0 0 0 2 1 0} 2 2[n||3, 5]
{ Zza, 0 0 0 2 0 0 2 0

Zpg 0 0 0 0 0 0 (1] 2[n|5]

zp, 0 0 0 0 0 0 ] 2[n|d]

zZp, 0 0 0 0 0 0 0 2[n|3]

2v, 0 0 0 0 0 0 6 0

2D 0 0 0 0 0 0 6[nj2] 2[m|n]

where m > 3
Table 1.3
Computation of n3
SO(3) | 0(?) SO(2) | A« | As | S¢ | Va | D3 | Dp,n>3

Z4, 0 0 0 2 0 0 2 ] 0
2zp, 0 0 0 0 0 0 0 4 0
2v, 0 0 0 0 0 0 6 0 0
Z3.-ZAg | O 0 0 2 0 |o |8 |4 o

(the sum of middle rows is equal to the last row, thus nz = 1)
and consequently we obtain
(S4) - (4s) = (Aq) + 2(D3) + (Va).

In a similar simple way one can compute the complete multiplication tables for
A(SO(3)) (see Tables 1.4 and 1.5).
We have

(Dn) - (D) = 2[1](Dx) +2(3 - [M) 2] (Va),
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First multiplication table for A(SO(3))

(0(2)) (Se) (As) (Ad)
©0(2)) | (0(2)+ (Va) (D4) +(Ds) + (Va) (Ds) + (Ds) + (V) (Va)
(S4) (Da) +(D3) +(Va) | (Sa) + (Ds) + (Ds) (A4) +2(Ds) + (Va) (Ad) + (Va)

+(Va)
(As) (Ds) +(Ds) +(Va) | (Ad) +2(Ds) + (Va) (4s) + (Aq) + (Ds) 2(A4)
+(Ds)
(A4) (Va) (Ad) + (Va) 2(A4) 2(A4)
(Ds) (Ds) 0 2(Ds) 0
(D4) (D4) +2(Va) 2(Dy) +2(V4) 2(Va) 2(V4)
(Ds) (Ds) 2(Ds) 2(Ds) 0
(Va) 3(Va) 4(Va) 2(Va) 2(v4)
(Dn) (Dn) +2[n{2](V4) 2{n[4](D4) +2[n|31(D3) | 2[n|SI(Ds) + 2[n[3](Ds) | 2n|2](Va)
+2(2 - [n}4])n[2](Va) +2[n|2)(V4)
(where n > 3)
Table 1.4
Second multiplication table for A(SO(3))

50(2) (Ds) (D) (Ds) (Va)
(0(2) | (SO(2)) (Ds) (D4) +2(Va) (Ds) 3(Va)
so@) | 2(so@) | o 0 0 0
(S4) 0 0 2(D4) +2(V4) 2(Ds) 4(Va)
(As) 0 2(Ds) 2(Va) 2(Ds) 2(Va)
(A4) 0 0 2(V4) ] 2(Va)
(Ds) 0 2(Ds) (1} 0 o
(Dq) o 0 2(Dq4) +-4(V4) 0 6(V4)
(Ds) 0 0 0 2(Ds3) 0
Va) 0 0 6(Va) 0 6(Va)
(Dn) 0 2[n[S[(Ds) | 2[n|4)(Dy) +2(3 — l4DI[2A(V2) | 2m3](Ds) | 6Mmi2(Va)

(where n > 3)

Table 1.5




where | = ged(n, k) is the greatest common divisor of n and k, and
0 ifi<3,
i = { 1 ifI>3.
1.4 The SO(3)-Degree

Let us now consider the case where G = SO(3). Using the results from the previ-
ous sections we will compute the degree of a particular function. This computations
will be used later on in Chapter 3 to introduce an example of bifurcation.

It is a classical result that SO(3) has precisely one real irreducible representation,
up to isomorphism, in each odd dimension 2k +1. These irreducible representations
may be described with the help of vector spaces Wi of homogeneous polynomials
P : R® — R of degree k. The group SO(3) acts on Wi by (Ap)(z) := p(A~'z),
where A € SO(3). For k = 0 the representation W, is a one-dimensional trivial rep-
resentation of SO(3); for k =1 the representation W; is the natural representation
of SO(3) in R3. However, for k > 2 the representation W is reducible. In order
to describe the irreducible representations of S0O(3), we denote by p the polynomial
p(z) =22 + 22 + z3, where z = (z1,z2,23), and we define a linear (injective) oper-
ator Ji : W2 — Wi, k> 2, by ji(p) = pp, where p € Wi_s. Put J; = Te(Wi—2)
and let Vi be the space spanned by the spherical harmonics of degree k, that is, the
elements p € W, for which Ap = 0, where A denotes the Laplacian. The subspace
Vi is also invariant under SO(3). We have the following result (see for example (3]
and [25]):

Theorem 1.4.1  The representations Vi are precisely the irreducible representa-
tions of SO(3) such that:
(i) We=Jr &V, ie. Vi is an SO(3)-invariant complement to Jy;
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(#) dim Vi =2k + 1;
(ii) The representations Vi are absolutely irreducible.

We will compute SO(3)-Deg(—1Id,2;), where €; denotes the unit ball in Vi,
t=1,2,3,4,5. For the purpose of computations we will need the following lattice
(reduced t6 the case of those subgroups H such that (H) € $(S0O(3))) of the isotropy
groups in V;, where each isotropy group H is written in the form H(dimV),

SO(3)©@ SO(3)©®
SO(2)W o(2)(™

vP
@) i=1 (b) i =2

For more details regarding the computation of isotropy lattices for the repre-
sentations V; we refer to Thm. 8.1 in [25]. We begin with the computations of
S0O(3)-Deg(—1Id, ;). We use the function () given by

1 iftg%;
1) =¢ -3t+2 if3<t<?;
0 if 2<t,

and we correct the map f = —Id to a normal map g(z) = (2y(|z]) = 1)z. The
restriction of g to the one-dimensional subspace V#, where H = SO(2), has exactly
one W(H) = Z-orbit of critical points. Therefore, by direct computation we obtain
SO(3)-Deg(~1d, ) = SO(3)-Deg(g, 2:) = (SO(3)) — (SO(2)).

In a similar way, we can compute the degree SO(3)-Deg(—1d, Q). Again, we

correct the map —Id to a normal map g(z) = (2y(|z|) — 1)z. The space VH, where
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H = 0(2), is again one-dimensional, and since W(0O(2)) = Z,, the mapping g¥ has
exactly two critical points (more precisely, two orbits of critical points). In the case
H =V,, we have dim V¥ = 2, F(z) = 2z. Therefore, in this case, IFB)=1.In
order to determine the set Q(H], we need to find all the subgroups K € (O(2)) such
that V4 C K. It is easy to verify that for the group

100 -1 0 0 -1 0 0 1 0 O
Vai=g[0 1 0f{,[0 1 0}],]0 -1 0{,]0 =1 o0
001 0 0 -1 0 0 1 0 0 -1

there are exactly three subgroups Ki, K2, K3 € (O(2)) such that V; C K;, i =
1,2,3. Thus I(F!H]) = 5 and m(g) = (1 +5)/6 = 1. Consequently, we obtain that
S0(3)-Deg(~Id, ) = SO(3)-Deg(g, 02) = (SO(3)) — 2(0(2)) + (Va)-

We have obtained

SO(3)-Deg (~Id, Q1) = (SO(3)) — (SO(2))
SO(3)-Deg (~Id, ;) = (SO(3)) ~ 2(0(2)) + (V4),

where the subgroups SO(2) and O(2) were maximal isotropy groups for V; and V3

respectively.

In what follows, we will compute SO(3)-Deg(—Id, ) also for i = 3, 4, and
5. For this purpose we will need the lattice of isotropy subgroups of V; (reduced to
subgroups H such that (H) € $(SO(3))). We refer to [4] for more details concerning
these lattices of isotropy groups. We start with the lattice of isotropy subgroups for
Vi:
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S0(3)©

Isotropy Lattice for V3

We may compute SO(3)-Deg (—Id,3), in a similar way as above, i.e. we correct
the map —Id to a normal map g(z) = (2v(Jz[) — 1)z and compute the degree
as follows. The space VA, for H = Ay, SO(2), and Dj is, in this case, one-
dimensional, and since W(H) = Z; we know that g/ has exactly two critical points
(i.e. one orbit of critical points). Consequently, SO(3)-Deg(—1d,3) = (SO(3)) —
(A4) — (SO(2)) — (D3). We may also apply the formula (1.2.2) to compute this
degree SO(3)-Deg(—1Id,3). Since the only orbit types (H) in Q3 which belong to
$(SO(3)) are (SO(3)), (As), (SO(2)), and (D3), we have that

SO(3)-Deg (—1d, Q3) = mo(SO(3)) + m1(Ay) +m2(SO(2)) + ma(Ds),
where for F(z) = 2z, we have

mo = I(FH), H=250(3),
m; = [I(FH) - (FE)/\w(H)|, i=1,2,3

where H = A4, SO(2), and D3 respectively. For H = SO(3), we have that FE .
{0} — {0}, thus I(FH) =1 and so mg = 1. For H = A,, SO(2) or D3, we have
FH :QH —, VH and since VH is one dimensional space, I (FH) = —1. On the other
hand, Q] = {0}, thus FIH1: {0} — {0} and therefore I(FIH]) = 1. Consequently,
my; = (—1-1)/|W(H)| = —2/2 = ~1. So again we obtain

SO(3)-Deg (—1d, 3) = (SO(3)) — (A4) - (SO(2)) - (Ds).
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For the representation V;, we have the following reduced lattice of isotropy groups
(i.e. we omit all the orbit types (H) which do not belong to A(G)):
50(3)(

Isotropy Lattice for Vj
In order to compute SO(3)-Deg (—1d, Qy), we apply formula (1.2.1). In this case

S§0(3)-Deg (~1d, Q) = Y mqry - (H),
(H)

where (H) € {(SO(3)), (O(2)), (S0), (Ds), (Ds), (Va)}. For B = SO(3), we
obtain trivially mzy = 1. For H = O(2) or S,, since dim V¥ = 1, we obtain
I(F¥) — I(FWH1) = -1 — 1 = —2. In this case, W(H) = Z,, thus myy) = —2. Now
we have to compute m gy for H = D3 or Dj. Since, in this case, dim VH = 2, and
since F'(z) = 2z, we obtain that I(FH) = 1. Now we need to determine the set (1.
First, we need to find all the subgroups K such that H C K and K is conjugated to
O(2) (resp. to S;). We will use here some well known facts about the maximal torus
of a compact Lie group. Let us recall that a subgroup I of a Lie group G is called a
torus if it is isomorphic to a product group S x...x S. A maximal subgroup of G
isomorphic to some torus is called a mazimal torus (see [3] for more details). Any
two maximal tori are conjugate and if G is a connected compact Lie group, then
any element is contained in at least one maximal torus. In SO(3), each nontrivial

element is contained in precisely one maximal torus isomorphic to SO(2). This
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property may be seen from the fact that such an element has a unique eigenvector
with eigenvalue +1. The rotations about this eigenvector form the maximal torus.
Clearly, the maximal torus also contains all powers of this element. In the case of
the group D3 or Dy, it is clear that there is only one maximal torus, namely SO(2)
which contains Z3 and Z,. Consequently, if K € (O(2)) and Dj3 or D, are contained
in K, then K = O(2). In order to determine all the subgroups K € (S,), which in
fact are symmetry groups of an octahedron (or cube), such that K contains D3 and
D4, we notice that D3 or Dy completely determines the position of the octahedron,
and thus there is only one such group K, namely S4. This implies that

(H] = QH A [yO@ | ySe).
Q] = QF A [V y vS)

We can identify QH] with the subset of a plane composed of two lines transversally
intersecting at the origin. We have F(z) = 2z, and since Q! is an ENR’s, we
can compute that I(FI#l) = —3. Consequently, for H = D3 or Dy migy = (1+
3)/|W(H)| =4/2=2.

In the case H = V,, we have dim V¥ = 3, F(z) = 2z. Therefore, in this case,
I(FH) = —1. In order to determine the set QH] we need to find all the subgroups
K € (D4) such that V3 C K. Since the rotations of K belong to a unique maximal
torus, it is easy to verify that for the group Vj there are exactly three different planes
of rotations, which implies that there are exactly three subgroups K, K, K3 €
(D4) such that V; C K;,i=1,2,3. It may be verified that VK1 N\ VK2 AVEs = VS
Indeed, the group Sy of the orientation-preserving symmetries of the octahedron (the
cube) contains three subgroups of symmetries of the parallel faces in the octahedron,
which are exactly K, K, and K3. On the other hand, it is clear from the lattice
of subgroups of SO(3) that any two of the subgroups K, K7 and K3 generate Sy,
therefore VX N VKs = VSt for § # j, 4,5 € {1,2,3}. Consequently, Q] may be
identified with the subset of R3 consisting of three planes intersecting along a single
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line (containing the origin). We need to compute I(F [H]), where FIHI . QlH] _, OIH]
is given by FI#l(z) = 2z. Let X denote the subspace of R2 consisting of three lines
intersecting at the origin. Then Q¥ may be identified with the product X x R and
FH] = | x F), where Fi(z)=2z,i=1,2, ;: X - X,and F> : R - R. Then by
the product property, I(FIHl) = I(F,) - I(F;). Since I (F1) = -5, and I(F) = -1,
we obtain I(FIH]) = 5, and consequently m) = (—1 —5)/6 = —1. Finally

SO(3)-Deg (~Id, ) = (SO(3)) — 2(0(2)) — 2(S4) + 2(Ds) + 2(Ds) — (V).

Let us now compute SO(3)-Deg (~Id, Q25). We have the following reduced lattice
of isotropy subgroups for Vj:
50(3)©

so@®”~  p pP o

v
Isotropy Lattice for Vj

It is easy to see for H = SO(2), Ds, Dy, or D3, we have my) = 1. For H =V,
we have already computed that there are exactly three subgroups K, K, K3 €
(D4). We have I(FH) = 1. Since QIH] may be identified with the set of three lines
in a plane passing through the origin and since F(z) = 2z, we have I(FIHl) = —5.
Consequently, m(g) = (1 — (—5))/6 = 1. This implies

SO(3)-Deg (~1d, Qs) = (SO(3)) - (SO(2)) — (Ds) ~ (Da) — (D3) + (V).
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Chapter Two

Computation of the Degree

and Applications to Symmetric Bifurcations

2.1 Introduction

We consider a G-equivariant map f: V x R® — V, where V is a finite dimensional
orthogonal representation of a compact Lie group G. In this chapter we provide
further development of the equivariant degree with emphasis on the Ulrich-type
computational formula. The detailed computations are carried out ounly in the case
where G is a compact abelian group. We will discuss in Chapter 4 the case I x S l
for a finite group I', and the method could in principle be used for more general
non-abelian groups, in particular, for the group SO(3) x S'.

The formulae obtained are essential in the study of the equivariant bifurcation

problem
z = F(z, ), (z,\) e W xR?, (2.1.1)

where W is an orthogonal representation of the product group G =T' x S, I' is
a compact Lie group and F is a G-equivariant map. We assume that there exists
a 2-dimensional submanifold M € WS' x R? such that every point (z,)) € M
satisfies (2.1.1). Points in M are therefore called trivial solutions of (2.1.1). We are
interested in locating bifurcation points of (2.1.1), i.e. all the points (z,,\,) € M

such that every neighbourhood of (z,, Ao) in W x R2 contains a nontrivial solution.
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This type of abstract bifurcation problem arises naturally from the Hopf bifurca-
tion theory of differential equations with spatial symmetries, where the action of S!
comes from the usual shifting of the temporal argument and the action of I repre-
sents the spatial symmetry of the equation under consideration. For details, we refer
to [21,32,33,43,46,56]. In the absence of spatial symmetry (I' = {Id}), the above
bifurcation problem has been extensively studied. It has been shown that there is a
close relation between the (local) bifurcation and the nontriviality of certain topo-
logical invariants related to homotopy classes of parametrized linear (or nonlinear)
operators acting on W, and that various topological degrees can be employed to
prove the nontriviality of those homotopy classes. For details, we refer to [25,33,43]
and references therein.

The impact of the presence of symmetries on the existence of bifurcation points
has been studied by many authors, see [4,20,21,30-36,39-46] and references therein.
Our approach to the equivariant bifurcation problem was inspired by [21], where an
S'-equivariant bifurcation problem is studied with the use of S'-degree constructed
in [14]. We relate the existence of a branch of nontrivial solutions of (2.1.1) bifurcat-
ing from (Z,, Ao) to the nontriviality of the G-degree of the mapping fo : VxR — V
defined by

fo(zv A) ='(:l: - F(:L‘, ’\)10(‘77 ’\))1 (za A) €V x Ra

where V = W x R and 0 is an invariant function defined in a sufficiently small
neighbourhood U of (z,,),) and with negative values on U N M. The computation
of G-degree of fj is a problem of formidable mathematical complexity. Nevertheless,
we will show, in the case where I' is a finite (Chapter 4) or an abelian group,
that the G-degree of fs can be completely determined by the information of linear
approximation of fs on certain isotypical components of W with respect to the
group action I'" x ST,



In Section 2.2, we consider the case n = 1 (one dimensional parameter space) and
prove an Ulrich type formula (cf (43,49,53]) for the equivariant degree. This for-
mula relates the G-degree of the map f to the more easily computable S'-degree
(cf. [14,43]). The generalization to the case n = 2 is also briefly discussed. In
Section 2.3, we apply these formulae to the computation of G-degree in the case
where f : VX R — V has regular zeros in V¢ x R and G is abelian. In Theo-
rem 2.3.2, the G-degree is expressed, with the use of the Multiplicativity Property,
as a product of a certain element v(w) and a winding element p(w). Both v(w)
and p(w) can be computed by using linearization of the original map restricted to
appropriate isotypical components of the space V. In section 2.4, we discuss the
equivariant bifurcation problem related to Hopf bifurcation problems with symme-
tries. We develop some bifurcation invariants to detect bifurcation points and the

global continuation of local branches of bifurcation points.

2.2 Ulrich Type Formula

We would like to begin with a brief discussion on the S'-degree introduced by
Dylawerski et al. in [14] and the related index. This degree is a special case of
l-parameter (i.e. n = 1) G-degree, where G = S!. It leads to the definition of a
corresponding G-fixed point index I of G-ANR's in a standard way. To be more
Precise, assume that Y is an isometric Banach representation of SlL,and QCcY&R
is an open S'-invariant subset. Let f :=Id— F :  — Y be an S'-equivariant
map such that F' is a compact map and Fix (F) = {(z,\) €Q; F(z,\)==z}isa
compact subset of . Then the S'-fired point indez of F in Q is simply defined as

Is1(F,Q) :=5"-Deg(Id — F, Q) = Y _ degx(Id — F, Q) - (Zs)
k

where dege(Id — F, Q) - (Z;) is the k-th component of the S'-degree characterizing
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the zeros of Id — F' with orbit type (Z) (cf. [43]). We will also denote Isi(F)z, ==
degi(Id ~ F,Q). Let X be an S-ANR space, U ¢ X xR an open S!-invariant
subset. We consider a compact S'-map F : U — X such that Fix (F) is a compact
subset of U. Then, by using the fact that every SI-ANR is equivariantly dominated
by an open S'-subset of a Banach S!-representation (cf. [37]), we can define the
S'-fixed point index Is:(F,U) = S'-Deg(Id—ioFor, (), wherei: X xR — Y ®R
is an S'-imbedding, r : @ — U is an Sl-retraction, and @ C Y &R is an Sl-invariant
open subset. It is well known (cf. (37]) that, for a compact Lie group G, if X isa
G-ANR then XH and X4 are W (H)-ANRs.

Let’s now consider V an orthogonal representation of a compact Lie group G and
(H) € ®1(G). Since W(H) is a one dimensional manifold, the connected component
of 1 € W(H) can be identified with S!. In the case when (H) € F(G), i.e. the
group W(H) has a fixed invariant orientation, the imbedding S W (H) is defined
in a unique way. Let @ C V @R be an open bounded G-invariant subset and
f=Id-F:V®&R — V be an N-admissible map. Then f# = Id ~ FH .
VE@®R — VH is QH_admissible and fI#] = Id — FIf . ylHl g R — VA i
QH]-admissible. Since both FH and FIH] are W (H)-equivariant, they must be S!-
equivariant and hence, the S'-fixed point indices Isi (FH) and Isi(FIH1) can be
defined. According to the definition of the Sl-fixed point index, Is: (FIH]) can be
defined as §'-Deg(Id —i o Fifl o r, OH), where QX is an S'-neighbourhood of QIA]
in VE @R, r: QF -, QlHl gy S'-retraction, and i : VA — VH ig the natural
inclusion. It can be verified, by using the commutativity property of S!-fixed point
index, that both Is1(FH) and Is: (FIH1) do not depend on G-equivariant homotopies
and satisfy the excision and additivity properties.

Let G be a compact Lie group and let V be an orthogonal representation of G.
Assume (H) € 81(G). Then S' C W(H) and we have the following result:

35



Theorem 2.2.1 (ULRicH TYPE FORMULA FOR G-DEGREE) Let R C V&R be
an invariant bounded open subset and f :=Id— F: V@R~V be a G-equivariant
Q-admissible map. Then

GDeg(f,0)= 3  mg-(H), (2.2.1)
(H)€®1(G)

where for (H) € ®,(G)

mar = [T (F)2, ~ 1sn(r1), | /|G (mod 9 o 1 € 97 ).

Proof. Observe that if f is a regular normal map, then for (H) € J(f~1(0)) and
(H) = (G:) € 81(G), every W(H)-orbit of solutions W(H)z, of the equation

fAz)=0, zeqf, (2.2.2)

forms a closed submanifold of dimension at most 1. On the other hand, S* ¢ W(H)
acts on V¥ @R and any 1-dimensional orbit W(H)z can be considered as a finite
number of S'-orbits of solutions to (2.2.2).

Since the definitions of Is1 (F#) and Is:(FI#1) do not depend on Q-admissible
homotopies and satisfy the excision and additivity properties we may assume, with-
out loss of generality, that f is a regular normal map such that f~1(0) N Q consists
of a single orbit Gz, with G, = H, (H) € &,(G). In addition, we may assume that
2 is a tubular neighbourhood of Gz,. Thus, (H) is the minimal orbit type in
(cf. [37]). We observe that fH : QH — V'H ijs W(H)-equivariant and since W(H) is
l-dimensional, the orbit W(H)z, is a 1-dimensional submanifold of VE @R. Denote
by S the linear slice to the orbit W(H)z, at z,. If W(H ) is bi-orientable, the slice
S has a natural orientation induced by a fixed orientation of V. By definition of
G-degree, my = signdet D fg (z5). Considering W(H )z, as composed of Sl-orbits,
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we obtain from the definition of S'-degree (cf. [14,43]) that
k -
deg: (f%, Q%) =) "signdet DfZ (z£), (2.2.3)
i=1

where k = |W(H)/S'| and S; is the slice to the i-th S'-orbit in W(H)z, and
zi = g;x, for some g; € W(H),i=1,2,...,k. Since f¥ is W(H)-equivariant,

Df¥(gz) 0 g = D(f* 0 g)(z) = D(g o f7)(z) = g o Df*(z).
Moreover, since gi|s : S — S; is an isomorphism, we have
DfH(gizo) = g 0 DfH(z,) o g7t
and
Df]’.s{‘ (9i%0) = gi|s © Df.s}'lr (zo) 097 1[s.;°
Therefore, for any choice of a basis in S;, we have

signdet D f[‘;.‘r‘K (9:x,) = sign det [g; IS © Df,’é(zo) °g; 1|.<>'.-]
= signdet [g;,] - sign det D,ﬁg(zo) - signdet [g;;5,] 7"

= signdet DfI'SI (zo) =mpg.
Consequently, it follows from (2.2.3) that

deg: (f¥,QH) = l%’ﬁ - signdet Dff(z,) = l%@, -my.

Since (H) is the minimal orbit type in Q, we have Q] = 5 and ng := Isi(FH) =
mpy - [W(H)/S"|. Therefore, formula (2.2.1) holds for the orbit type (H).

Now consider K ¢ H. Since f is (H)-normal, from the product property of
S'-degree it follows that Isi(FH)z, = I (FK )z,- Now, we compute I's:(FIK]).
Observe that QF ¢ QIK], If QIKI\ QH ~ @, then clearly mg = 0 and the validity
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of formula (2.2.1) follows. Assume therefore that K1\ Q¥ £ &. Since f is (H)-
normal, we may assume without loss of generality that FX(u,v) = (¢(u), 0), where
(v,v) € 0K, u € Q% and W(K)QH = Qi y...uQHs, j = [W(K)/S!|. We notice
that the subsets 25 are disjoint (since (H) is the minimal orbit type in ). Suppose
that r : QK — QIK] js an S retraction onto QIX1. Then Isi (FIK]) = [ (FIKlor) =
S'-Deg(Id — Fi¥1 0 r,QK). Put F; := tFK + (1 - t)FXl o r. Then F; is an 0X-
admissible homotopy. Indeed, if Fi(u,v) = (4,v), then v = 0 and ¢(u) = u, and
consequently F; has the same fixed points as FZ. Thus,

ISI(F[K]) = Isl (FK) = ISl (FH)9

and mg = 0. This completes the proof.

Remark 2.2.2 We point out that the above Ulrich Type Formula for the one-
parameter G-degree could be generalized to the G-degree with 2-dimensional pa-
rameter space. In this case, we have that if (H) € ®(G) then the connected
component of 1 € W(H) can be naturally identified with the torus 72 = S! x S!
and consequently, we can have an analogue of the formula (2.2.1) with the S-fixed
point index Is replaced by the T?-fixed point index Ira. However, this approach
will fail in the case of 3-dimensional parameter space, since for (H) € ®3(G) the
group W(H) may contain the non-abelian group S°.

2.3 Some Computational Formulae for the G-Degree

We begin this section with a technical Lemma which we will need later.

Lemma 2.3.1 LetU be an orthogonal irreducible representation of real type (cf.
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[5,25]) of a compact Lie group G and U = U @g C be the complezification of U.
Assume that Q:={vel; L <|v] <1} and f : Q — U is given by

f(v) =201 -2pf)v, vel.

Then G-Deg(f,Q) = 0, where G-Deg (f,Q) is considered to be an element of the
Burnside ring A(G).

”

Proof. Let (H) € J(S). Consider the map f# =Id— FH . QF —, yH, fH .- fiaw-
It can be verified that

Deg(va Qfl) = Deg(-Ida B]_(O)) -1

= ()™ -1=0,

where B (0) denotes the unit ball in ¥ and ng = dimUH. Therefore, I(FH) =
I(FH1) = 0 and the conclusion follows from the Ulrich formula (cf. 1.2.4). a

Let V be an orthogonal representation of a compact Lie group G. Consider the

following isotypical decomposition of V'
V=vSeo P,
Bes

where each component Vj is a direct sum of all subrepresentations of V' which are
equivalent to a fixed irreducible representation Up of the group G. We will denote
bymthesetofallﬂemsuchthatUpisofrealtype, by € the set of all § € B
such that Up is of complex type, and by § the set of all B € B such that Uj is of
quaternionic type. Then B = RUCU $. Denote by dg the number of irreducible
components of Vg, i.e. Vg = [Us]*. Then GL%(V3) ~ GL(K, dg), where K denotes
R, C, or H, if U is respectively of real, complex or quaternionic type. However,

since we assume that V is a real representation of G, the complex structure on Vj for
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B € € is not determined uniquely. Assume, therefore, that this complex structure
is chosen. Consequently, 1 (GL®(V3)) a Z for 8 € €, where the isomorphism
V : 11 (GLC(Vg)) — Z is given by

V(lo]) = deg(det (o)),

for o : S' — GLS(V) and [o] is the homotopy class of 0. If B € ﬁ, then
71(GLC(Vp)) = m(GL(H, dg)) =0.

For a given w : S' — GL®(V) and 8 € €, we define the B-winding number ug(w)
of w by

pe(w) = V([wg]),
where wg(0) = w(o)y,.

Let us assume for the rest of this section that G is a compact abelian Lie group.
Then every nontrivial isotypical component Vg corresponds to a subgroup Hg of
G such that G, = Hp for v € V3 \ {0}. It is well-known (cf.[3]) that if (Hp) €
®.(G), i.e. dim G/Hg = 1, then B € € and the space Vg has a natural complex
structure uniquely induced by the chosen orientation of G/ Hg. We put €, = {B €
€; dimG/Hg = 1}, and we define the winding element u(w) € A(G) for w : St —
GLC(V) by

p(w) =Y pp(w) - (Hg). (2.3.1)
Bee,

We may describe the element u(w) in a different way. Put
Q= {(v,2) €Us 8 C; [lv]| <1, % <l <2},
and let f3 : g — Us ® R be given by

f8(v,2) = (z- v, |2{(llv]l — 1) + ||v]| + 1), (23.2)
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for (v,z) € Q. Since B € €, the map fs is well defined. It is also clear that fz is
{}3-admissible. One can verify that G-Deg (f3,928) = (Hg). Consequently, we have
p@) = Y pa(w) - G-Deg(fs, ). (23.3)

Beg,

Suppose now that 3 € ‘B is such that G/Hg ~Z;. Then clearly 8 € R. We will
denote by R, the set of all 8 € R such that G/Hg ~Z,. (Since we assume that G
is abelian, it follows ([3]) that :t = 9R3). For a given 4 € GLC®(V), we define the
element v(A4) € A(G) by

v(4) := [] G-Deg(4s,9p), (2.3.4)
BeR,
where Ag = Ay, and Qg denotes the unit ball in Vs. Then G-Deg(Ag,SY) =
G-Deg (vs(A)Id, Bg) = (G) ~ vg(Hp), where vg = }(—£4(A4) + 1) and e5(A) :=
signdet p(Ag).

Assume now that f : V@R — V is a G-equivariant C'-map satisfying the

following hypothesis:

(A) There is an open bounded invariant set @ C V & R such that f i Q-
admissible, 0 is a regular value for flq and

T=0)nNQcVvCaR
i3 diffeomorphic to S!.

It is clear from the assumption (A) that VG # {0}. We choose an orientation of
VC and we orient V¢ @ R with the product orientation. Since 0 is a regular value
of fla, for z € X the derivative Df(z) maps the orthogonal complement of T, X
in VS @R, ie. N, :=(T,Z)tNVC @R, isomorphically onto V. Consequently,
it induces an orientation of N;. We fix a diffecomorphism 7 : S — ¥ such that
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the orientation of T X (induced by ) followed by the orientation of N_, gives the
chosen orientation of VG @ R.

By assumption (A), we can define w : S! — GLE(V*), where V* := Dsen Va:
by

wNv:=Df(n(\)v, ve@ Vs reS'. (2.3.5)
Be®

Now, we are in the position to present the first main result of this section.

Theorem 2.3.2 LetGbea compact abelian Lie group. Suppose that f : VER —
V' is @ G-equivariant mapping satisfying assumption (A). Then

G-Deg (£, =+(e) - o) = ( T (@) ~v(ti) ( X natm)),

BeMR, pee,y

where w is defined by (2.3.5), p(w) by (2.3.1), and v(w) by (2.9.4).

Proof. We may assume, without loss of generality, that

(i) Qo := 2N (VE ©R) is a tubular neighbourhood of £ in VE @ R. We denote

by 7 : {09 — X the natural projection of £ onto ¥ so that every element z € g

can be written uniquely as z = 7(z) + w, where w is normal to £ at w(z).

() @ = Q0 x {1, where { := Qo3 x &, Qo2 = [Tgem, B(Vp), B(Vp) is the unit

ball in V3, € is the unit ball in V = Bpem\n, V5-

(iii) f(z,v) = fo(x) + Df(n(z)}v, where fo := flgz and (z,v) € T x 0.

For § € Ry, we can choose a (real) basis for the space V3 and identify it with R,
where dg = dimg V. Clearly, every R-linear operator A : V3 — Vj is G-equivariant.
If the homotopy class of wg : St — GLS (Va) = GL(R, dg) is trivial, then it contains
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a representative Bg : S' — GL(R, dg) defined by

(&ﬂ* 0 ... 0
0 1 ... 0
Bg(A) =Bg = . R I R —, R¥s. (2.3.6)
. 0 0 ... 1]

If the homotopy class of wy is not trivial, then it contains a representative Bg :
S! — GL(R, dg) given by

[ (—1)% cos(ks) ~sin(ké) ... 0]
Bs(\) = (-=1)*#sin(k8) cos(kf) ... O R . g
L 0 0 ee. 1

where A =cosd + % siné, and k is an integer.

In our next step we will show that, without loss of generality, we may always
assume that for all § € R, the homotopy class of wg : S' — GL%(V;) is trivial
and therefore, we may use the form (2.3.6) of Bg. To achieve this, let us consider
a fixed B € M, such that the homotopy class of wg : S — GLS(V3) is not trivial.
For simplicity, we may assume (by using the product property) that V3 = C and
vg = 0. Consequently, Bg(A)z = A2, z € C.

We introduce the following piecewise linear function

1 fo<t<i
)= -2%+3 fi<t<}
0 if 3 <t

Define the map Cp : S x C — C by
Cs(X, 2) = g(|2])z + (1 ~ ¢(2])) Bs ()=

It is easy to verify that Cg(A,z) =0 if and only if z=0or |2| = 3 and \* = 1.
Put 9 = 00 x [Tg.z5 B(Vp), U = B(Vj). Thus 2 = U x Q*. Define f' : I —
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V by
f'(z,2,v) = (Cs(n~(n(2)), 2), £ (z,v)),
where zeU,z €0, v € [Is4s B(Vzr). By the homotopy invariance, we have
G-Deg(f, ) = G-Deg(f’, Q).

The set f~1(0)NQ = T U Us_.Tj, where Ty = {0} x £ x {0} C U x Qg x
nﬂ'# B(Vﬁ')s and

Lj={(z=,v); [2l=4%, z€ X, n~(z) = A;, v=0}

for A\; = e  and J =1,...,k. Since on a small tubular neighbourhood Q; of
[j,j=1,2,...,k, the mapping f’ is G-homotopic to the mapping

f(z,2,v) = (2(1 - 2lz|2), f(z,v)) = (¢(2), f(z,v)),

it follows from the product property and Lemma 2.3.1 that G-Deg(f"”,9;) =0, and

consequently
G-Deg(f, ) = G-Deg(f', ),

where ()’ is a small neighbourhood of T'y. It is clear that the mapping f’ still satisfies
assumption (A) with respect to I'g = {0} x £ x {0}, but in this case, for 8 € Ry, the
corresponding homotopy class of wy is trivial. This implies that for the purpose of
our computations we may assume, without loss of generality, that for every 8 € MR,
the homotopy class of wg is trivial, and consequently the mapping Bg has the form
(2.3.6).

We may define a mapping f : Q= V by

f(z,v) = fo(z) + Alx(z))v, veD, ze,
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where forc € &

A(r(z)) = @ Bs© Df(n(z)),p-

BeER,y

It follows from the homotopy invariance that
G-Deg(f, ) = G-Deg(f, ),
and consequently, using the multiplicativity property for G abelian,
G-Deg (£,9) = v(w) - G-Deg (F,0°),

where Q° := Qo xQ C Vo := VCexV, f:0° - V° and fz,v) = Jo(z)+Df(n(z))v
for v € V. In order to compute G-Deg (f, ﬁ), we use Theorem 2.2.1 and a similar
computational formula for S'-degree (see Thm.6.3.5 in [43]). We notice that for
every B € €, we have G/Hpg ~ S!. Thus

my, = Isi(FH8)g, — g (FlHel)y, = g,

and hence G-Deg (f, 2°) = p(w). This completes the proof. a

Assume now that G = I'xS!, where"isa compact abelian Lie group. We choose
the natural orientation of S! and assume that for every orbit type (H) € ®,(G) there
has been chosen an invariant concordant orientation of G/H i.e. we assume that the
map {1} x S? < I x S! — G/H preserves the orientations.

Assume again that V is a finite dimensional orthogonal representation of G and

let
V=WheVieVie---eV (2.3.7)

be the isotypical decomposition of V' with respect to the restricted action of St, i.e.
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for z € V; \ {0}, J=12,...,k, we have G- N ({1} x S') = Z;, and for = € V; \ {0}
we have Gz N ({1} x St) = SL. For every j = L,2,...,k, the subspace V; has a
natural complex structure given by

(a+1d) -z :=az+bexp(i{;)z, a+ibeC, zeVj.

Since G is the product of I and S, every G-isotypical component V3 of V is con-
tained in some V;. Moreover, if V3 Vj, where j # 0, then it can be verified that
there is a homomorphism g : ' — S'/Z; such that

Hg = {(v,2) €T x S'; z€05(7)}. (2.3.8)

We will call such orbit type (Hp) a basic orbit type, and 0p the associated homo-
morphism of the G-isotypical component Vs.

Definition 2.3.3 Let G=Tx S' be a compact abelian Lie group. We denote by
A}(G) the Z-submodule of A;(G) generated by all non-basic orbit types of G, and
by 4, (G) the Z-submodule of A;(G) generated by all basic orbit types of G.

We can identify the quotient module A4, (G)/A}(G) with 4, (G).

We denote

B*:= {B€B; Vs W}

B:={8eB; VaCV;, j£0}

It follows from (2.3.8) that if 8 € B then dim G/Hp = 1. Therefore, B C €;.

Corollary 2.83.4  Suppose G =T x S!, whereT is a compact abelian Lie group.
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Under the same assumptions as in Theorem 2.3.2, we have
G-Deg(f, Q) = £*(w) +&(w),
where £*(w) € A1(G), £(w) € 41(G), and

&w) = Y us(Hp).

feB

Proof. Assume that (K) is a generator of A(G) such that G # K. Then K is an
open and closed subgroup of G =T x S1. Therefore, there exists an open and closed
subgroup D of ', D #T, such that K = D x S!. Since for every 3 € €;, (KN Hpg)

can not be a basic orbit type and
(K) - (Hg) = n(K N Hp),

where n = [(G/K x G/Hpg)/G]|, we have (K)- (Hp) € A1(G). As A4,(CG) = A}(G) @
A1(G), we get

(O - (@) ( T Ho(Ha)) =€) +Ee),

BeRN, pee,

where §(w) = Yg¢5 pa(Hp)- u

2.4 Equivariant Bifurcation Problems

We begin this section with the following example of an equivariant Hopf bifurcation

problem.

Example 2.4.1 Suppose that V := R¥ is an orthogonal representation of a com-
Pact Lie group I' and let f : V x R — V be a Iequivariant C'-map. We are
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interested in branches of periodic solutions of the autonomous system
& = f(z,a) (2.4.1)

bifurcating from stationary points of (2.4.1). The problem of finding periodic solu-
tions of (2.4.1) can be transformed into the fixed-point problem with two parameters

(a,p)
2= (L= Py = Ny(i(2), &) ~ Pj(z)] = 0, (24.2)

where z € C1(S%;V), S' =R/27Z, Lz = 2, j : C}(S%; V) — C(S% V), Ny(u,a)(t) =
f(u(t), @) for u € C(S';V), and Pz = = jf" z(t)dt. Assume that all the stationary
points of (2.4.1) (i.e. the solutions of the equation f(z, a) = 0) are nondegenerate
(ie. D.f(z,a) is an isomorphism for every stationary solution (z, a) of (2.4.1)). In
addition, we assume that every center of (2.4.1) (i.e. a stationary solution (z, @)
of (2.4.1) having a pair of purely imaginary characteristic values) is isolated. Hopf
bifurcation deals with a bifurcation of periodic solutions from a stationary solution.
Since equation (2.4.1) is -symmetric, equation (2.4.2) is ' x S'-symmetric. In
this case all stationary solutions (z,a,p) € C}(S%;V) x R x R of (2.4.2) form a
two-dimensional submanifold M of V, x R2?, where V, denotes the space VS, We
are interested in maximum continuation of periodic solutions bifurcating from M.
We will show that the relations between statiopary points belonging to a maximal
but bounded branch of periodic solutions can be characterized by the fact that the
sum of I' x S'-degrees computed in neighbourboods of bifurcation points is equal
to zero. Since the equivariant degree describes (generically) symmetry properties
of the solutions, it may be used to justify or to explain certain pattern formations
observed in specific dynamical systems with symmetries. This example will serve as

a motivation for our abstract setting.
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Suppose that I is a compact Lie group, G = I" x S, and W is a real Banach
isometric representation of G.

Recall that Wy denotes the set of all fixed points of W, called stationary points,
with respect to the restricted S'-action, ie. Wy = {z € W; £z = z for all e St}

We consider the nonlinear problem
z=F(z,A), (z,)) eW xR? (2.4.3)

where F: W xR2 - W is a given G-equivariant completely continuous map and

satisfies the following condition:

(H1) There exists a 2-dimensional G-invariant submanifold M C Wo x R? such
that for every (z,A) € M,

(i) z = F(z,)), and

(i) Flwoxge : Wo x R2 — W, is continuously differentiable and

Idw, — D:F(z,A)|lw, € GL(W,) (Nondegeneracy Condition).

Note that in assumption (H1), we only assume M to be a subset of Wo x R2?
(not W€ x R2).

Each point in M is a solution of (2.4.3), which will be called a trivial solution.
Other solutions will be called non-trivial. A point in M is called a bifurcation point
if every neighbourhood of the point contains a non-trivial solution of (2.4.3). Our
main goal in this section is to use the G-degree to determine which elements of M
are the bifurcation points of (2.4.3). It follows from the implicit function theorem
that for every (Zo, Ao) € M, there exist an open neighbourhood Uz, of g in Wy, an
open neighbourhood U), of A in R? and a Cl-map 5 : Uy, — W) so that

M0 (Uz, x Uxo) = {('7(’\)’ ’\); A€ Uy} (2.4.4)
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Assumption (H1) excludes the existence of bifurcation of stationary solutions.

Lemma 2.4.2  Under assumption (H1), we have the following
(i) For every (zq,)q) € M, the sotropy group I'(;, »,) of (Zo, Ao) with respect to
the action of T is a closed subgroup of T' such that diim T = dim ;4 00);
(ii) Isotropy groups of points in the same connected component of M are tdentzcal.

Proof. (i) Using the uniqueness guaranteed by the implicit function theorem, we
can see that if v € I' is such that (o, Ao) = (yz0,\0) € Uz, x Un,) N M, then
(720, Aa) = (o, Ao). Therefore, the orbit I'(zg, Ag) must be finite. Consequently,
dim I' = dim DIy a,)- (ii) It follows from (i) and the compactness of I' that
there are only a finite number of orbit types in M. Let My denote a connected
component of M. Assume that a = (K) is a minimal [-orbit type in Mp. Then
(Mo)x = M§€ = Mo N (W x R?). So, M is a nonempty closed subset of M.

On the other hand, the mapping g : Wy x R2 — Wo, g(z,A) =z — F(z,)) for
(z,A) € Wy x R?, is K-equivariant and the derivative D.g(z, A) is an isomorphism
for every (z,A) € M. Therefore, for a given (Zo,Xo) € M{, D.g¥(zo,X) =
Dzy(:z:o,Ao)IWoK is also an isomorphism, where gK = glwo,‘xl,. By the implicit
function theorem, there is a neighbourhood & C U, of A9 in R? and a mapping
p:U — W such that

9(P(A), ) =g¥(p(1),A\) =0 for rel.

MoN Uz, xU) € {(p(A),N); A €U} N My C MK

and I‘(p o) = K for A € U. This implies that M is open in M,. Consequently,
M€ = Mo. This completes the proof. 0
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We consider the set of singular points A := {(z,A) e M; Id — D.F(z,)) ¢
GL(W)}. Suppose that (o, Ag) € M is an isolated singular point and n : U, — W
is the C'-map defined in (2.4.4). Let U(r,p) = {(z,)) € W x R ||lz — gVl <
T, [A = Ao| < p} be a special neighbourhood of (o, Ao) with respect to the action of
Go :=Tg x S, where I’y = L(z,,.) C T denotes the isotropy group of (z,, A,),
and p are sufficiently small positive numbers. Suppose that 0 : m —Risa
Go-invariant complementing function (with respect to U(r, p)), i.e. 8((2),A) < 0
and 6(z,A) > 0 for ||z —n(\)|| = r. As a particular example of a complementing

function, we can take
0(z,2) = A = doll (= ~ 7N - ) + llz =7Vl (2.45)
Consequently, Go-Deg (fo, U(r, p)) is well defined.

Note that for every v € I'\T'o, YU (r, p) is a special neighbourhood of the singular
point (Yzo, Ag). Therefore, GU(r, p) is composed of a finite disjoint union of special
neighbourhoods of G(xg, Ag). We extend the Gy-invariant function @ to a G-invariant
function 6 : GU(r, p) — R.

To associate the orbit of singular points G(zo, Ao) with a local invariant, we need
the formula for G-Deg (f5, GU(r, p)) given in the following:

Proposition 2.4.3  Let (z9,)\0) € M be an isolated singular point such that
G(zo,00) = Go, U(r,p) a special neighbourhood of (zo, o) and 0 : U(r,p) = Ra
complementing function. Suppose 8 : GU (r,p) — R is a G-invariant estension of

the complementing function 0. Then

G-Deg (f5: GU(r, p)) = T(Go-Deg(fs, U(r, p)), (2.4.6)

where T : A1(Go) — A1(G) is the natural homomorphism given by T((H)) = (H).
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Proof. We may assume, without loss of generality, that the G-mapping f; is regular
normal in GU(r, p) = U(r, p) U U(r, p)U-- -UnU(r, p) for some v;,...,m € "'\ Ty.
We claim that the Go-mapping f; is regular normal in U (r,p). Indeed, let p € U(r, p)
be such that fg(p) =0 and let G, = H. Then Hp = (Go)p =Go N H. Let S denote
the slice at p to the orbit G(p). The G-normality condition for f¢ means that for
every vector v € S such that [[v]| is sufficiently small and v 1 SH, we have fo(v) =
fo(v) = v. Since Hy C H, S7 C SHo, every vector v perpendicular to SH° is also
perpendicular to S¥, and thus fy is Go-normal. Regarding the regularity condition,
we notice that Dfy"(p) = DfH(p) ® Id. Therefore, sign D fHo(p) = sign DfH(p).
This shows that f, satisfies the regularity condition.

We need to show that formula (2.4.6) is well defined. Indeed, if (Go), = Ho then
it follows from the assumptions that Hy =g x S!, where I'/Ty is a finite set. It is
clear that if v € I \ [y, then for every T € S, (7, 7)p € U(r, p), and consequently
(7:7) ¢ H = Gp. Therefore, H = G, = (Go)p = Ho and the the formula (2.4.6)
follows. a

Now we can state and prove the following global bifurcation theorem.

Theorem 2.4.4  Suppose that every singular point in M is isolated and M is
complete. Let S denote the closure of the set of all nontrivial solutions to (2.4.9).
Then for each bounded connected component C of S the set GC N M is finite and is
composed of a finite number of disjoint I'-orbits
q
GeNM = JT(z:, M)
i=1

Moreover, we have

q

>_ G-Deg(f3,, CU;) =0, (2.4.7)

i=1
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where U; denotes the special neighbourhood of (z;, \:) and 8; is an auziliary function
on GU;.

Proof. The proof is standard. Nevertheless, we present it here for the sake of
completeness. Since every point of GCNM is a bifurcation point and singular points
of M are isolated, the set GCN M is finite. Put GCNM = T(z1, A1) U- - UT(zq, Aq)
for some integer ¢ > 0. Choose r > p > 0 sufficiently small so that for each i =
L,2,...,q, we can choose a special neighbourhood U; = Ui(r, p) of the point (z;, A;)
and GU; NGU; = & if i # j. Let U=GUiUGU U---UGU,. The set U is
G-invariant and we can find 2; C W & R?, an open bounded G-invariant subset
suchthat \ NM =02, GC\UCQ, and 90, \UNS = 2.

We put @ = U U Q;. We construct 8 :  — R such that
(D) 0(z,2) = —|]A = A\l if (z,A) € ;1 M,
(i) 8(z,r) =rif (z,)) € Q\U.

Let fg : 2 — W x R be defined by
fo(z,A) £ (z - F(z,1),0(z,))), (z,A) €.

Then f;7'(0) € GC and hence G-Deg (fy, Q) is well defined.

We now consider the homotopy H : 2 x [0,1] —» W x R given by
H(z,\t) = (z - F(z,A), (1 - )8(z,\) + tp), (z,A\,t) €T x o, 1]

By (i)-(ii), H(z,,t) # 0 for all (z,A,t) € 9 x (0,1], thus H is an Q-admissible
homotopy. Since H(z,,0) = f3(z,)) and H(z, A, 1) = (z — F(z,\), p) # 0 for all
(z, ) € Q, we have G-Deg (fs, Q) = 0. By (ii), Fg '(0) € GCNU. Therefore, by the
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excision and additivity properties, we have

9
G-Deg (fo, ) = Y _ G-Deg(fs,, GU).
=1

Let us remark that the local invariants G-Deg(fy,, GU;) in formula (2.4.7) can
be computed by using Proposition 2.4.3 and Theorem 2.3.2 (in the case where '
is an abelian Lie group) (or Theorem 4.3.1 in Chapter 4, in the case where T is
a finite group). Indeed, assume that p; = (zi, M) is an isolated singular point of
(2.4.3) such that G; = G,, U(r;, p;) is a special neighbourhood of p;, and 0; :
U(ri, pi) — R is the complementing function given by (2.4.5). Then by taking the
map 0; + ¢, wheree > 0 is a sufficiently small number, we obtain a G;-mapping
fo. : U(ri, p;) — R which satisfies hypothesis (A) of Section 3. Consequently, it is
possible to compute the degree G;-Deg(fo,, U(r;, pi)) by using the winding elements
#(z:, A;) given by (2.3.3) and the elements v(z; A;) given by (2.3.4). It is also
important to notice that G-Deg(fs,,GU;) # 0 if and only if there is a nonzero
winding number pg;(z;, A;), but the relations between these winding numbers can
be quite complicated. In the case where G is an abelian group and the manifold M
is contained in WS x R?, these relations become relatively simple. Suppose that we
have the following bifurcation points (z;, ), ..., (T4; Aq) belonging to the closure
of a bounded branch of nontrivial solutions of (2.4.3). Then we can express these
relations in the following Corollary:

Corollary 2.4.5 Let G be an abelian group. Suppose that M C W€ @ R?, all
the singular points in M are isolated and M is complete. Let S denote the closure
of the set of all non-trivial solutions to (2.4.3). Then Jor each bounded connected
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component C of S, we have GC = C, GC N M is finite:

ch = {(3]_, Al_), ceey (zq, Atl)}s

and
q

3 @i, As)pni(ziy As) =0

=1
foreveryn>0,i>1.
Proof. By Theorem 2.4.4, we have
q
Z G-Deg(f, 9:,Us) =0,
=1
where U; is a special neighbourhood of (z:, As) and 0; is an auxiliary function on Us.
It follows from Corollary 2.3.4 that
q q _
0= Z G'Deg(fOi) (ji) = Ze(zia Ai)(e.(xia Al') +€(£i1 A1')) .
=1 =1
Consequently
q _ q _
0= (3 ela ) (€@ X + 8@ 0) ) = 3 el M)Elen ),
i=1l i=l

where p: A;(G) — A;(G) is the natural homomorphism, and the conclusion follows.
0

Corollary 2.4.5 can be further refined as follows:

Corollary 2.4.6  Suppose that M C WS @ R?, dll singular points in M are
isolated and M is complete. Let S™ denote the closure of the set of all nontrivial
solutions in WCi =: Wni_ Then for each bounded connected component C™ of S™,
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we have GC™ = C™ C™ N M is a finite set:
c™ nNM= {(‘01, Al.)s (021 A2)1 coey (vlp ’\q)}:
and

q
D ek, Me) - pini(vr, Ae) =0.
k=1
Proof. Let f3* = fo|wnixpa. Then J¥ : W™ x R?2 - W™ W™ ig G-invariant and
M C (W™)C x R2. Therefore, by Theorem 2.4.5, we have

q
E G-Deg (f3*,U*) =0,
k=1

where U is a special neighbourhood in W™ x R? of (v, Ax). It is easy to observe
from the construction of the G-degree that the (Gps)-component of G-Deg (f38,0r%)
is the same as that of G-Deg (fy, Uy). Therefore, we have
q
Ze(vka Ak)ﬂni(vky Ak) =0.
k=1

This completes the proof. a

In the case where I' is a finite group, global relations between the winding num-
bers of various bifurcation points can be established in a similar way, using our
computations in Chapter 4.

Finally we point out that the symmetric bifurcation theory outlined in this sec-
tion can be extended, in principle, to the case of higher dimensional parameter

spaces.
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Chapter Three

Normal Bifurcation

Problems

3.1 Introduction

In this chapter we propose a concept of normality for equivariant bifurcation prob-
lems. Our approach is based on the idea of approximating an equivariant map with
a map having all the orbit types of its zeros separated. More precisely, let W be
an orthogonal representation of a compact Lie group G, and f : W xR® - W
be a continuous G-equivariant map such that it has no zeros on a boundary of an
invariant open bounded subset Q of W. Then we recall from Chapter 1 that f is
called normal in Q if it satisfies the following normality condition:

foreveryz € f‘I(O)ﬂQ and H = G, there ezist ane, > 0 such that f(z+h) =h

for all vectors h normal to the submanifold (W x R™) ) at the point z with

A < &z.

This condition imposes some kind of obstacle between different types of zeros of
f preventing orbits of zeros with larger orbit type from collapsing onto orbits with
smaller orbit type.

We will extend the notion of normality to a class of equivariant bifurcation
problems. We consider a complete submanifold M of the representation W€ dR" of
dimension n, and let f : W@R™ — W be an equivariant map such that M C F0).
We are interested in describing branches of solutions, and their possible orbit types,
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bifurcating from points in M. For this purpose we impose on f an additional
normality condition which will prevent, in a similar way as in the case of a normal
map, the branches of solutions with different orbit types, bifurcating from M, from
mixing together. This condition can be expressed as follows:

Jor every z € f~1(0)\ M and H = G, there exists €z > 0 such that f(z+h) = h,
where the vector h is normal to the submanifold (W eR"™)(x) at the point z with
]l <e.

One of the main results of this chapter is that the set of such normal bifurcation
maps is in fact dense in the set of all bifurcation maps. In other words a bifurcation
problem may be “corrected” slightly to a normal bifurcation problem which will
produce the largest possible number of bifurcation branches with different orbit

types.

In order to study the normal bifurcation we apply the concept of equivariant
degree developed in the previous chapters to establish several branching results for
local and global normal bifurcation problems.

In Section 3.2 we introduce the notion of normal bifurcation map and present a
proof of the Normal Approximation Theorem, which is next used in Section 3.3 to
define the notion of a-essential bifurcation. Next we prove the Equivariant Branch-
ing Lemma and the global bifurcation results for isolated compact M-singular sets.
Finally, in Section 3.4 we applied the obtained results to a problem of steady-state
bifurcation with SO(3) symmetry. We show that the equivariant degree detects the
orbit types of normal bifurcation and it may also be applied in the case of reducible
representations of SO(3). It should be emphasized that this method permits de-
tection of branches of nontrivial solutions not only of maximal orbit type but also

those with submaximal orbit types.
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3.2 Normal Approximation for Equivariant Bifurcation
We again assume that W is an orthogonal representation of the compact Lie group
G. We denote by V the representation W & R™.

In what follows let M be an n-dimensional smooth complete submanifold of
WS @R™. For an element z € M we denote by T: M the tangent space to M at z
and by N; M the normal space to M at z, i.e. we have WO R =T, M & N M.

We denote by Cjps the class of all conti'nuous equivariant maps f : W @R - W
such that
(i) f is differentiable at every point z € M and the derivative Df(z) depends

continuously on z € M;

(i) M f~1(0), i.e. for all z € M we have f(z) = 0.
Let f € Cpr, we define the set
A(f):=={zeM:D,f(z) = Df(z)in.am : NeM — W is not an isomorphism},

which we will call the set of M-singular points of f.
By the class of equivariant bifurcation maps on M we mean

Chxr:={f €Cur: f is of class C! on the set W e R™\ A(f)}.

Suppose that f € C};. The condition (i) implies that the manifold M is con-

tained in the solution set of the equation
f(z)=0, TeWoR", (3.2.1)

and therefore we will call the points from M the trivial solutions of the equation
(3.2.1). All other solutions of (3.2.1) will be called nontrivial We will also say that
a point £, € M is a bifurcation point of (3.2.1), if in every neighbourhood of z,
there exists a nontrivial solution of (3.2.1). We will denote be B(f) the subset of M
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of all bifurcation points of (3.2.1).

It follows from the implicit function theorem that if Z, € M is a bifurcation point
of (3.2.1), then z, € A(f), i.e. B(f) C A(f). We are interested in describing the
problem of bifurcation of branches of nontrivial solutions for (3.2.1) from z, € A(Y),
where f € C},.

We introduce the following definition of an equivariant normal bifurcation map
on M:

Definition 3.2.1 Assume that ACW@R" isa compact invariant subset and let
f €C}y. We say that f is an (equivariant) normal bifurcation map, or just simply a
normal b-map, if for every z € [f~1(0) \ M] N A (i.e. for every nontrivial solution z
of (3.2.1) from A), there exists &; > 0 such that the following a-normality condition,
for a = (G;), is satisfied:

f(z +h) =h for all h € N(V,,) with ] < ez.
We will denote by Gpr(A) the set of all normal b-maps.

Since the space C}, is a subset of the complete locally convex space C(W @
R™; W) of continuous maps ¢ from W @ R" to W, equipped with the topology
induced by seminorms pg(p) = sup,ek ll¢(z)[|, where K is a compact subset of
W @ R", Cy, has the induced topology.

The following result is the main result of this section:

Theorem 3.2.2 (NORMAL APPROXIMATION THEOREM) Assume that AC W&
R™ is a compact invariant subset and let f € Clc- Then for everyn > 0 there eists
f € Gr(A) such that
(}) supzewer~ IF(z) - f(z)]| <7,

(i) A(F) = A(),

(i) B(f) = B(f).



Consequently, the set Gyr(A) is dense in Ci,.

Proof. In our proof we use a finite inductive procedure on the orbit types in V' \ M.
We construct an approximation of f that at each step “increases” its property of
being normal. At the n-th step the approximation that we construct is a-normal
for every a < a,, (a,, being the orbit type considered at the n-th step).

We define the following continuous function & : V — R, &(z) := [dist (z, M)]3.

Since M is an invariant manifold, the function ¢ is also invariant. We put
&(z)
E z - -—,
() =52

where ny; is a positive integer which will be specified later. We put Z, := [f~1(0)\
M) N A and we define

D, ={z €V \ M : dist(z, Z) < e1(z)},

Li={zeV\M:dist(z, Z,) < 2¢1(z)},

e1(z) ).

Ai={zeV\M:dist(z,Z) < 5

It is clear that D;, L; and A, are open subsets of V\M. Moreover, if € L; N M,
then z is a bifurcation point of (3.2.1). Indeed, let z, € L; be a sequence such that
Tn — z. By definition dist (z,, Z;) < 2@!”_‘5‘1;ML’ — 0, hence there is a sequence
Yn € Zy such that ||z, — y,|| — 0, and therefore Iz = ynll < |z — zall+]|Zn ~ ]| =
0, which implies that z is a bifurcation point.

We extend the partial order in the set J(V \ M) of all possible orbit types in
V\M to atotalorder oy < ag < --- < o < Qg41 < --+ < @4y, and consider the
minimal orbit type a = a;. Note that due to [37] the number of possible orbit types
is finite.

Put Dy :== DyNVa C Ly and & = 4, NV, C L. If A, = 2, then we put
fi(z) = f(z). Assume therefore A, # &. Since the function = — dist (z,Z,) is an
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invariant function, the open sets Dh, L, and A; are also invariant, and consequently
D, is an open invariant subset of V,. Thus, there exists a continuous invariant
function 1, : D; — R4 such that v(z) < ‘-&ﬂ and the mapping 4 : N(V,) — V,
#(v,w) = v + w, restricted to the set N (51,111) is a G-imbedding into L;. We put
Ny == p(N(Dy,11)). Let 7 : V\ M — [0,1] be an invariant C*-function such that
N(z) = 1 for z € p(N(4;, %)) and 1(z) =0 forz e V\ (MU N,). We define
H:Vo>Why ’

f(z), forz e V\ Ny

fi(z) = 1n(z)(f(v) +w) + (1-n@@)f(z), forz=v+we Ny,

where £ = v + w denotes the decomposition v € Dy and w e N, (51))
We put §; := max_ .5 v1(z). We may now assume that the number ny; is
chosen to be sufficiently large such that the corresponding function vy (z) may also

be chosen in such a way that

sup [[f(v) - flv+w)| <2 -6
v+weEN;

This is evidently possible, because the above estimation is done on a relatively com-
pact (in V) neighbourhood of the set Z1, on which the function f is zero, therefore
the existence of such a number n;; follows from the continuity of f. Consequently,

sup || fi(z) - f(z)|| = sup || fi(z) - f(z)||
zeV zEN;
= _sup [Im(z)(f(v) - f(z)) +n(z)w]|
r=v+weEN;

S sup [f(v) - f(z)]| + &
€M

T=vd$w

SZ-5+6=2.

This implies that f; : V — W is a well defined L-approximation of f. It is also
clear that f; is a C'-function on V \ M. Morecver J1 is invariant and satisfies the

following conditions; for every z € [f~1(0) \ M]N A such that (G.) = a, for every
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w € N, V,, |lu|| < i‘éﬁ, we have fi(z +w) = fi(z) + w. On the other hand, the
set [f7(0) \ M] NV, N A is contained in A;. That means that in the first step of
our construction we have “corrected” the map [ to a new map f;, such that, f;

satisfies a;-normality condition.

We need only to check that f; € CL,. We will show that f1 is differentiable at
every point £ € M and that the derivative Df:(z) depends continuously on z € M.
It is clear that fi(z) = f(z) forallz € Z,NM , and therefore we need only to check
the differentiability at the points z € Z; N M. We will show that forz € Z1N M
we have Dfi(z) = Df(z). For this purpose, assume that z + h € N; and let
z+h=v+w, wherewe N.,ﬁl. Then we have

If1(z + k) — Df(z)h]

=z +k)(f(v) + w) + (1 = na(z + h)f(z + h) — Df(z)h]|

< If(z+h) = Df()A]| + [lm(z + ) (f(v) +w ~ f(z + h))]|

S f(z +h) ~ Df(@)A|| + 1| (v) +w — f(z +h)|

< |f(z+ k) —~ Df(z)A|

+1f(2) = Df(z)(v - 2) - (f(z + k) — Df(z)h) + Df(z)(v — z — h)|| + |||
< 20f(z + k) = Df(2)hl| +|1f(v) = Df(z)(v - z)|| + | Df()[|[lw]| + juw]

< 20([Ill) + o(llv — z{l) + | D () lllwll + Jlaw]]-

Let H =G, SincezeV® z-veVygcCV,thusz—v is orthogonal to
w. That implies that ||z — v||? + [[w||? = ||A]2. We may assume that [|h| < 1,
then dist (v, M) < |lz—v|| < 1, as well as |lw|| < 1. Let y € I be such that
dist (£ + h, M) = ||z + h — y||. Then

o —ull < llz + b —yll + llwll = dist (z + h, M) + [|w]),
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thus
dist (v, M) Syigfullv-yll < dist (z + h, M) + ||w]|.

Since [lv]] < MiEmGMP o distCM) | therefore dist (v, M) < dist(z + h, M) +
2!’_&(22_&, hence dist (v, M) < 2dist (z + h, M). Consequently

< 2(dist (z + h, M)? < 2||||?,

o] < (it MO

and thus
If1(z + h) — Df(z)h]| = o(||Rl]).

This means that f; is differentiable at every point z € M. Since D fi(z) = Df(z)
and f € Cly, thus f; € C},. Moreover, it is clear that A(f1) = A(S).

We put Q; := u(N(4,, 4)).

In the k-th step we consider the set

Zi == (ffH O\ (MUQLU---U_y)) N A4,

which has to be disjoint from all the sets 2, {3, ..., ;. Moreover, all the orbit
types in Z; are bigger than ay.;. Next, we define the function

ex(z) ==

£(z) | = dist (2, Q1)
T

=2 N

where the integers ny;,..., Nik4+1 are chosen to be sufficiently large. We put

Dy := {z € V\ M : dist (z, Z¢) < ex(z)},
L == {z € V\ M : dist (z, Zi) < 2ex(z)},
Ak = {.‘Be V\M:dist(z,Z,,) < e_k;i)},

and for @ = o weconsidert:hesetsﬁ,c =D NV, C L a.nd;fg = ANV, C
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Li. If Ay = & then we put fi = fi—, otherwise we find a continuous invariant
function v : Dy — R, such that i (z) < %ﬂ and the mapping 4 : N(V,) — V,
#(v, w) = v +w, restricted to the set N(Di, 1) is an G-imbedding into Ly. We put
N := p(N(Dg, ve)). Let i : V\ M — [0, 1] be an invariant C*-fanction such that
Te(z) = 1 for z € u(N(Ag, %)) and %(z) =0 for z € V \ (M U Ni). We define
fe: V> Wby

fulz) = Je-1(z), if z €V \ Ny
T @) (fe-1() +w) + (1 = %(2)) feer(z), Ez=v+wE Ng.

We put & = max, 5, vi(z), and we may assume that
Sup || fi-1(v) = fam1(v +w)|| < Z — &k
v+weEN,
Consequently,

:‘e‘g Ife(z) - f(z)]| < ::3 Ifi(z) = fromr @)]] + t,,:'m
< __swp  [lfec1(®) — femr (@)l + 6 + S
z=v4+weEN)

< k&
- m

Next, by similar arguments as before, fi € Cls and by induction assumption f;
satisfies the a-normality condition on A for all a = ay,a,...,a. Moreover,

Dfi(z) = Df(z) for all z € M and thus A(fi) = A(f).

For m = k, we put f := fm, and it is now clear that
sup | f(z) - f(z)| S mZL =1,
zeV

and that f satisfies all the required properties. a
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3.3 Equivariant Branching Lemma

We assume that f € C}; and we consider the following bifurcation equation on M
f(z)=0, zeWeR" (3.3.1)

As it was already pointed out in Section 3.2 the set of bifurcation points of the
equation (3.3.1) is contained in the set A(f) of M-singular points of f. Suppose
that K C A(f) is a compact component of A(f). We want to use the equivariant
degree to determine the existence of a bifurcation point in K. For this purpose we
consider (using Tietze-Gleason thearem) an open bounded neighbourhood D of K
in M such that DNA(f) = K. Since Dis a compact subset of M, there exists a
sufficiently small € > 0 such that the restriction of the map u : N(M) - W & R™,
#(z,v) = T + v, to the set N(D,e) = {(z,v) € N(M); z € D, flv| < €} is an
equivariant imbedding. As we may choose £ > 0 to be an arbitrary small positive
number, we may also assume that for every z € &D and 0 < [[v]l < & we have
f(z +v) # 0. Indeed, dD N A(f) = @ thus all the points = from @D are not
M-singular points of (3.3.1). We put & := u(N(D, €)), and we will call the set I
a special neighbourhood of the compact component K of A(f), which we will also
call an isolated compact M-singular set. Let ¢ : il — R be an invariant continuous
function such that ¢(z) < 0 for all z € D and (z) > 0 for all £ = u + v satisfying
4 € D and |jv|| = . We will call such function ¢, following [30,31], a complementing
Junction.

In order to study the problem of existence of a bifurcation point in the set K we
define the map f,: U - W @R by

fo(2) = (f(z),0(z)), zell.

It is clear that f,(z) # O for all z € 8U, therefore, the G-degree G-Deg(f,,U) is
well defined. We have the following result.

66



Proposition 3.3.1  The G-degree G-Deg (f,,U) does not depend on the choice of
the special neighbourhood U of K nor on the choice of the complementing function
¥. Moreover, if G-Deg(f,,U) # O then the set K contains a bifurcation point of
(3.8.1).

Proof. Suppose that g, ; : I — R are two complementing functions. Then for
every t € [0, 1] the function

e(z) = tp1(z) + (1~ t)po(z)
is also a complementing function, thus it follows from the homotopy property that
G-Deg (f0,U) = G-Deg (f,,,U) = G-Deg (f,,,, U).

Suppose now that U, U; are two special neighbourhoods of K such that u; =
B(N(D;,€;)), where Dy D, . Since the compact set D, \ Dy contains no M -singular
point, there exists € > 0 such that & < min{ep, ; } and the set A4 := p(N(D;y\Dy,¢))
contains no nontrivial solution of (3.3.1). Let ¢ : W @ R® — R be an invariant
function such that p(u+v) > 0 for z € Uy, z = u+v, u € Dy and vl > &,
and ¢(z) < 0 for z € D;. Then ¢ is a good complementing function for both
special neighbourhoods U and ;. Therefore, by using twice the excision property

we obtain the following equalities

G-Deg (fy,t4) = G-Deg (fp, u(N(Dy,¢)))
= G-Deg (fm p.(N(Do,E)))
= G-Deg (£, Uo),

thus G-Deg (f,,,U) does not depend on the choice of a special neighbourhood U of
the set K.
Suppose now that G-Deg ( fo,U) # 0 and let V be an arbitrary open neighbour-
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hood of the set K in W @ R™. Then there exists another special neighbourhood U;
of K such that U C UNYV. Assume that ¢1:U; - Risa complementing function.
Then 0 # G-Deg(f,,U) = G-Deg (for,U1), hence by the existence property there
exists a solution to the system

fz) =0

v1(z) =0,

which is evidently a nontrivial solution of (3.3.1). This means that in an arbitrary
small neighbourhood of K there is a nontrivial solution of (3.3.1). Since K is
compact, there exists a bifurcation point in K. a

Definition 3.3.2 Let a € J(W@®R™). We say that an isolated compact M-singular
set K C A(f) is an a-essential bifurcation set of (8.3.1) if for every bounded open
neighbourhood U of K in W @ R™, there is n > 0 such that for all € Gar(T)

satisfying
(i) sup ewer» If(z) — flz)]| <m;
(i) A(f) = A(S);

the equation
fz)=0, zeWaR" (3.3.2)

has a sequence of nontrivial solutions {Zn} such that
(1) dist (2, K) — 0 as n — oo;
(2) (Gz,)=aforalln=1,2,....

Lemma 38.3.3 IfK C A(f) is an a-essential bifurcation set of (3.9.1), then K

contains a bifurcation point.



Proof. If K contains no bifurcation points, then there exists a neighbourhood U
of K in W & R™ which does not contain a nontrivial solution of (3.3.1). Then the
mapping f = f belongs to Gpr(U), and therefore K is not an a-essential bifurcation
set of (3.3.1) for all @ € J(W @ R™). O

Theorem 3.3.4  (BRANCHING LEMMA) If G-Deg (forld) = 3 noa is such that
ne #0, where a € ®,.-1(G), then K is an a-essential bifurcation set of (3.5.1), i.e
there exists 7 > 0 such that every f € Gu(U) satisfying sup.ewer~ | f(z) — f(z)ll
<mn and A(f) = A(f), has a continuum C,, of nontrivial solutions bifurcating from
the set K, such that (Gz) =a for dllz € C,. We will call Ca an a-branch of
nontrivial solutions bifurcating from K.

Proof. Let p(N(D,¢)) be the special neighbourhood U of the isolated compact M-
singular set K and let ¢ : 4 — R be a complementing function on U. Assume

that
0<2n <inf{||f(z)]| : 2 =u+v, w€ D, |jv]| <, o(z) =0}.

Then for every f € Gar(U) such that A(f) = A(f) and sup,ey 1f(z) — f(2)]| <,
the homotopy

ho(,t) := (tf(z) + (1 - )f (), 0(z)), =z €T, te[o,1],

has no zero in GU. Indeed, for all £ = u+v such that u € oD, |lv|| <€ and p(z) =0

we have

IE£(z) + (1 - )£ @I 2 I f @) - I f(z) - £
2 277 -n> 01
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thus
G-Deg (f,.,U) = G-Deg (f,, U).

The map f,; is not normal but it may be “corrected” to a normal map f:; such that
f;‘l(O) = f.;-’l(O). For this purpose we consider the set Z = f:;l(O) = f-1(0) n
#~1(0). Since f is a normal bifurcation map, thus for eyery z € Z with a = (G;)

we have
f(z +h) = f(z) +h, (3.3.3)

where h € N(V,), with [[h]| < &;. We may assume without loss of generality that
the a-normality condition is satisfied for £ € U,, where U, is an open invariant
neighbourhood of Z C V, in V,, for all & € J(Z). We may assume that all the orbit

types in J(Z) are totally ordered, i.e. we have an order
a <ag <--- < G,

and let @ = a;. We consider the set Z, = Z N V,. We claim that Z4 is compact.
Indeed, if {zn} C Z, is a sequence such that z, — z & Za, then by the slice theorem
(cf. [37]) (Gz) < (Gz,) = @, and this is a contradiction with the assumption that o
was the minimal orbit type in J(Z).

Consequently, we may find two relatively compact open invariant neighbour-

hoods A; and B; of Z, in V, such that
Za C A CZ1 chB C-B.], C U,.

Then there is an §; > 0 such that §, < ¢, for all z € B;, and we can put N} =
#(N(B1,61)). We denote by 71 : V — [0,1] an invariant C*™-function such that
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T11(z) =1 for = € u(N(4,, %’»)), and 7;(z) =0 for z € V' \ N;. Then we may define

Fiz) ={f;(z), ifzeV\Ng;
’ Nlfe(¥) +u] + (1 -n(@))fp(z), forz=v+weN,
where z = v+w denotes the decomposition v € By, w € N, (Va). Let us notice that

for z = v+ w € N; we have

fo(@) = (M@ (F0) +w) + (1 — (=) f2), n@)e®) + (1 - 11(2))e())
= (f(v) + w,m(2)e@) + (1 - 1 (z))e(z))

= (f(@):, n@)e®) + (1 — 11(z)p()).

Since for £ € N} we have that f,}(a:) = 0 if and only if w = 0, f(v) =0, and ¢(v) =0,
thus it implies that :f},(z) =0 if and only if f,;(z) =0. We put Q; = u(N(A,, %1)).
Consequently, the mapping “f}, is normal in the set ;.

Assume for the purpose of induction, that we have constructed the mapping f?;
such that it is normal in the open invariant sets 2, ..., Q such that ZN Va; C 4,
and that f&(z) = 0 if and only if f,(z) = 0. Then we consider the orbit type
@ = ai4) and the set Z, = ZNV,. We claim that the set Z, is compact and
ZaNQy =2 foralli=1,2,...,k. Indeed, suppose {zn} C Z, is a sequence such
that £, — £ ¢ Z,. Then 8 = (G;) € {ai,...,0¢}, and consequently fg satisfies
fB-normality condition in a neighbourhood of z in V3. But this condition excludes
the possibility of the existence of other zeros of ij , with the orbit type larger than
B, in a neighbourhood of z, and this is a contradiction with the assumption that
Tn — ZT.

Now we may define relatively compact open invariant neighbourhoods Ag4; and
Bj41 of Zy in V,, such that

Za C Ak41 C Agy1 C Bry1 C Byt C Us.
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Then there is §g4+; > O such that Sk+1 < & for all z € Biy; and we can put
Niet1 = p(N(Biy1,6k41))- Let Yeyr : V = [0, 1] be an invariant C*°-function such
that e41(z) =1 for z € u(N(Ax41, fﬁ}‘-)) and Ye4+1(z) =0 for z € V\ Niy1. Then

we may define
& X (@), if z €V \ Nigr;
foti(z) = ~

Y1 [fE(v) +w]+ (1 - 'ykﬂ(z))fg(z), fz=v+we€ Niq,

and again
75 (@) = (F@) mear@)e(®) + (1 ~ Tes1 (2)0(2)).

Thus, for K = m — 1 we obtain f:,;(a:) = f;,"(z), and f; is the required normal
mapping such that f; L) = f; 1(0).

In the above construction, we have constructed a new complementing function
@ such that f,‘;(x) = (f(z), #(z)) is a normal mapping.

In order to conclude the proof we need only to remark that it follows from the
normality of f:; that for every n, # 0 there is an z such that f:;,'(z) = 0 and
(Gz) = a. Since f; 1) = f;jl(O), the conclusion follows from the fact that we may

use an arbitrary complementing function ¢. 0

Now we shall discuss the global bifurcation problem.

Definition 3.3.5 We say that the sequence {K;} of compact subsets of A(f) is an
admissible decomposition of A(f) if

(1) A(f) =U:2, Kq,
(ii) for every K there is an open subset U; of M such that K; C Uiand U;NK; =2
for all j # 1.

In other words, the existence of an admissible decomposition {K;} implies that
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A(f) is a disjoint union of isolated M-singular sets K;. Consequently, for every
subset K; there exists a special neighbourhood U;, together with a complementing
function ¢; : :; — R such that U; nﬁj = @ for © # j. Since for every subset
K; the G-degree does not depend on the special neighbourhood U;, either on the
complementing function g;, for every a € &,_; (G) we may define the integer n,(K;)
by

G-Deg (fo, i) = Y na(Ki)a,
a
and we will call nq(K;) the a-bifurcation inveriant of the set K.

Let us denote by &(f) the closure of the set of all nontrivial solutions of (3.3.1),

Le.

&(f)={zeV\M: f(z)=0}.

Definition 3.3.6 Let € be a component of the set S&(f). We say that € is {K;}-
compatible if for every set K; such that € N K; # @ the following condition is
satisfied

eifreS(f)NK;thenze €N K;.

In other words, the above condition says that if the component € intersects the
set K; then there is no other component of &(f) connected to K;, or simply €

contains all the connected components of &(f) intersecting K.

Let us remark that if A(f) admits an admissible decomposition {K;} such that
K; = {z;}, i.e. there are only isolated M-singular points in A(f) and the sets K;
contain only one point each, or if the sets K; are connected, then every component

€ of the set §(f) is {K;}-compatible. Moreover, if € is a connected component of
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&(f) such that there is K; such that €N K; # &, then € is an invariant set. There-
fore, if € is {K;}-compatible component of & (f), and if it contains only connected
components intersecting A(f), then € is necessarily an invariant set.

Now we are in the position to state our global bifurcation result.

Theorem 3.3.7 Let {K;} be an admissible decomposition of A(f) and let €
be a bounded invariant {K;}-compatible component of the set 6(f). Then there
ezists only a finite collection of sets K; such that €N K; # &, which we denote by
{Ksy,--.,K:.}. Moreover, for dlac ®9.—1(G) we have the following relation:

ina (K;,) =0. (3.3.4)

=1

Proof. We claim that the set {K; : K;N€ # 2} is finite. Indeed, suppose there is a
sequence {zx} C B(f) N &. Since € is bounded, the sequence {z;} is also bounded,
and therefore it contains a convergent subsequence. We may assume that z; — z,
as k — oo. Since the set of all bifurcation points B(f) is closed, z, € B(f). Let
K;, be such that z, € K;,. Then there is an open neighbourhood U;, of K; in M
such that U;, N K; = @ for j # i,. Therefore, for k sufficiently large zx € K;,, and
consequently the set {Kj : K; N € # 2} is finite.

We put {K; : K;N€ # 2} = {Ki,,..., K. }. We can choose special neigh-
bourhoods U;; of K;; such that i, NU;, = & for i; # ix. We also assume that
U;; = p(N(D;,,€)), where D;; = {z € M : dist (z, K;,) < p}, and the numberse > 0
and p > 0 are chosen sufficiently small. Let V = Uj=1 ;. Since € is bounded, we
may choose a bounded invariant open subset V; C W @ R™ such that € \VCcW,
VWNM=gand (0V,\V)NE=2. We putUd =VUV,.

Let € : U — R be an invariant continuous function such that e(z) < 0 for all
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zeﬁﬂMande(z):a>0forz€L—l\V. We define f, : U - W &R by

fe(z) = (f(z)e(z)), zel.

Then f;1(0) C U and hence G-Deg (fe;U) is well defined. We consider the following
homotopy h: U x [0,1] - W @ R™ given by

h(zv t) = (f(z)r (1 - t)e(z) - tp)a (Z', t) € U x [01 1]1

where p > 0. We claim that h is an U/-admissible homotopy. Indeed, suppose by
contradiction that h(z,t) = 0 for some t € [0,1] and z € 8U. Since f(z) # 0 for
Tz € (U\V), thusz €8V = U;f:1 9U;;. On the other hand, f(z) = 0 implies that
T € CUM. Since z € €N 9V implies z € V}, we have z € M, but e(z) < 0 for
T € M NU, thus (1 —t)e(z) ~— tp < 0, which is a contradiction to the assumption
that h(z,t) =0.

Clearly ho = f,, thus G-Deg( fe,U) = G-Deg (hy,U). However, since hi(z) =
(f(z),—p) #0 for all z € U, we have G-Deg(fe,U) = G-Deg (h,,U) = 0. Moreover,
since f.(z) #0 for z € V; \ V, thus

0 = G-Deg (f.,U)
= G-Deg (f.,V)

= G-Deg (fcv U ulj)

j=1

=) G-Deg(f.,U;,)

=1

- z,.: ( inc(K,-,))a,

j=1
and consequently
"
D na(Ki;) =0
i=1
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for all a e Qn—l(G). D

3.4 Steady-State Bifurcation — Spontaneous Symmetry Breaking

Let G be a compact Lie group and W = R™ an orthogonal representation of G.
Assume that ' : W x R — W is a smooth G-equivariant map, ie. F(gz,\) =
gF(z,]) for all g € G, £ € W, A € R. Copsider the ordinary differential equation

%:‘ = F(z,\). (3.4.1)

We assume that F'(0,A) =0, and L := D.F(0,0) is singular. Thus L has a zero
eigenvalue. Due to the presence of symmetries, A = 0 is not a simple eigenvalue in
general.

In this section, we shall present, as an example, some particular classes of steady-
state bifurcations for the action of the group SO(3). We believe that similar ar-
guments should be applied to other groups, in particular, to O(3) and possibly to
O(n).

There is much interest in finding solutions of (3.4.1) with special symmetry such
as the axisymmetric solutions. The lattice of isotropy subgroups of G, for irreducible
representations of G, provides a way to classify solutions by their symmetry. Let
z € W and H = G; be the isotropy group of z. Then the mapping F preserves
the fixed-point subspace WH, je. WH is flow-invariant, that is, any trajectory of
(3.4.1) starting in W¥ remains in WH. We would like to know when there exists a
branch of solutions, with isotropy H, bifurcating from the solution z = 0. Since this
branch of solutions have less symmetry than the solution z = 0, this phenomenon
is called spontaneous symmetry breaking.

Since the isotropy subgroups of points on the same orbit are conjugate, we will

talk about orbit types (H) rather than isotropy groups H when we describe the
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symmetry property of the orbit.

In this section, we will study the case where V = Ker(L) is an absolutely
irreducible representation of G. So the only linear maps on Ker(L) that commute
with G are scalar multiples of the identity, and therefore the multiplicity of the zero
eigenvalue of L is equal to the dimension m of Ker(L). Let us denote by o(L,)
the spectrum of the operator Ly := D F(0,)\), and let o (resp. o) denote the
number of negative eigenvalues of Ly for A = —p (resp. A = p) for some sufficiently
small p > 0. We will call the integer ¢ = o — o4+ the crossing number for the
problem (3.4.1). We assume that o = +m, i.e. the eigenvalue of L changes sign by
passing through zero.

Since we have assumed that V = Ker(L) is an absolutely irreducible represen-
tation of G, VE = {0} and for all z € V' \ {0} the isotropy group G, is not equal
to G. If (H) is a minimal orbit type in V'\ {0}, then the isotropy group H is called
mazimal All other isotropy groups in V' \ {0} are called submazrimal.

The following version of the equivariant branching lemma was first proved by
Cicogna [6]. Here we present a proof of this result, based on an application of the

equivariant degree.

Proposition 3.4.1  Suppose that W is an orthogonal representation of the Lie
group G, F : W xR —» W is a smooth G-equivariant map such that F(0,)) = 0,
Ly := D.F(0,)) is nonsingular for A\ # 0, and singular for A = 0. Moreover,
assume that Ker(Lo) =V is an absolutely irreducible representation of G such that
the crossing number o associated with (3.4.1) is equal +m, where m = dimV. Then
for every mazimal isotropy group H in V such that dimVH is odd, there erists
a branch of stationary points of (3.4.1) bifurcating from (0,0) with the orbit type
ezactly (H).



Proof. Without loss of generality, we can assume that a reduction has been carried
out and that Ker(L) = R® = W. We will apply Proposition 3.3.1. Therefore, we
need to compute

G‘Deg (Fvs U(rt P)) = G°Deg (F—1 n-(r’ P)) - G‘Deg (F+’ Q+(T, p))s

where Q%(r, p) = {z e W; lzll <}, U(r,p) is a special neighbourhood of (0,0),
Fy : W — W is defined by Fy(z) = F(z,+p), z € W, and ¢ is a complementary
function. By using the linearization at the points (0,%p), we may assume that
Fyi(z) = £z (or Fr = Fz). Since G-Deg(Id,Q*(r,p)) = (G), we need only to
prove that (H)-component mg) of G-Deg (F_,Q(r,p)) = G-Deg(—Id,Q(r,p))
is non-zero.

For this purpose, we will apply formula (1.2.2), that is
mmy(F-) = [I(F¥) — I(FEY) /1w (m)).

Since WH is an odd-dimensional space and we can replace F_ by —Id, we have
I(FH) = —1. By the assumption that H is a maximal isotropy group, it follows that
WHl = {0}. Thus I(FLH]) = 1, and consequently mgy = (-1 — 1)/|W(H)| = -2
or —1 (since in this case [W(H)| has to be 1 or 2). This shows that the (H)-
component of G-Deg (F,,, U(r, p)) is not equal to 0, and the conclusion follows from

Proposition 3.3.1.

The methods employed in the proof of Proposition 3.4.1 illustrate the importance
of computing G-Deg (—Id, 2), where Q denotes the unit ball in V = K. er(L), in order
to determine the occurrence of bifurcations. In particular, for every non-zero (H )-
component mg) of G-Deg(~Id,Q) — (G) there exists a branch of solutions with
orbit type (K) such that (G) < (K) < (H). Unfortunately, due to the topological
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nature of the problem, we are unable to determine if for a submaximal isotropy
group H there is a bifurcating branch with the orbit type (H). However, it is
possible to construct a kind of a parametrized ‘normal’ mapping F such that, as
with normal mappings constructed for the purpose of the definition of G-degree,
such a mapping satisfies the property that if my) # 0, then there exists a branch
of solutions with orbit type (H). More precisely, if G-Deg (Fe,U(r,p)) = 3., macx
is such that mq # 0, then (0,0) is an a-essential bifurcation point in the sense of
Definition 3.3.2.

We should also mention that our approach may be used to study more com-
plex situations, such as the case where Ker(L) = V is a direct sum of two or
more absolutely irreducible representations of G. In this case the multiplicativ-
ity property as well as the multiplication table for A(G) can provide the informa-
tion necessary to compute the degree G-Deg (Fp,U(r, p)) = G-Deg(F-,Q(r,p)) —
G-Deg (F4, ¥t (r, p)). We will illustrate this situation by an example.

Let us consider the case where G = S0(3). In Section 4 of Chapter 1 we
computed SO(3)-Deg(—Id,(Q;), where §; denotes the upit ball in the (2 + 1)-
dimensional absolutely irreducible representation V; (i = 1,2,3,4,5) of the group
SO(3). We obtained the following results:

SO(3)-Deg (-1d, ) = (SO(3))—(SO(2))
SO(3)-Deg (~Id, ) = (SO(3))-2(0(2)) + (Va)

SO(3)-Deg (—1d, 03) = (SO(3))—(As) — (SO(2)) - (D3)

SO(3)-Deg (~1d, ) = (SO(3))~2(0(2)) — 2(S4) + 2(Ds) + 2(Ds) — (Va)
SO(3)-Deg (~1d, 5) = (SO(3))~(SO(2)) ~ (Ds) - (D4) — (D3) + (Va)

Using the results from Section 1.3 and Section 1.4 of Chapter 1 we now present
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the following

Example 3.4.2 Consider the steady-state bifurcation problem (3.4.1) in the case
where G = SO(3) and Ker(L) = V3 ® V5. Assume for simplicity that V = V3 @ Vs,
and that Ly, : V3 — V3 (resp. Lapy; : Vs — V5) changes its eigenvalue from
positive to negative (resp. from negative to positive), as A crosses 0 passing from
negative to positive values. Then, in order to determine the ‘essential’ orbit types
for bifurcating branches of solutions, i.e. the orbit types that have orbit types (H)
corresponding to a non-zero component m ) of the degree SO(3)-Deg (F,, U(r, p)),

it is sufficient to notice that

SO(3)-Deg (F,, U{r, p) = SO(3)-Deg (~Id, Q) — SO(3)-Deg (Id, )
= (SO(3)-Deg (—Id, 013)) - (SO(3)-Deg (~Id, 2s)) — (SO(3))

= —(Ay) — (Ds) (D;) + (V4)

where (2 denotes the unit ball in V. Consequently, we can detect the existence of
branches with the orbit types H, where H = A4, D5, D4 (which reflects the fact that
the corresponding fixed point spaces VH are one-dimensional) and H = V;, which
is not a maximal orbit type. The interaction between two representation, due to
nonlinear coupling, destroys the essential bifurcation of the branches with the orbit
types SO(2) and Dj; thus detecting them is difficult. Possibly, there is no normal
bifurcation of this type at all. The method developed in this section, although it
can not detect exact orbit types of bifurcating branches, can be effectively applied
to those situations where there are several irreducible components in Ker(L), to

determine what type of bifurcation can surely take place.



Chapter Four

An Extension of the

Computational Formulae

4.1 Introduction

This chapter may be considered as an appendix of Chapter 2 and an introduction
to Chapter 5.

In Section 4.2 the multiplicativity formula for an equivariant degree, so far in-
vestigated only in the case n = 0 or G being abelian, is extended to G = I’ x Gy,
where I is finite and Gy is a compact Lie group. We illustrate the general results
with the group Dy x S*. This gives us the opportunity to introduce the dihedral
symmetries which will be extensively studied again later in Chapter 5.

In Section 4.3, we apply these formulae to the computation of G-degree in the
case where f : V X R — V has regular zeros in VG xR and G = I" x S! with T
being a finite group.

The obtained results are studied for I' = Dy and complete computations are

carried out in this case.

4.2 An Extension of the Multiplicativity Formula

Our next goal is to develop a specific multiplicativity formula for the G-degree with
non-abelian group G, similar to the multiplicativity formula for the G-degree with
an abelian compact Lie group G established in [19]. In the following result we
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assume that G =T x G,, where I is a finite group.

Lemma 4.2.1 LetT be a finite group and G, a compact Lie group. Then there
is a natural structure of A(T')-module on An(T x G,), where the product A(T') x
An(T X Go) = An(T' x G,) is defined on generators by the formula:

)= Y n-@),

(L)E®a(T'xG,)

and

I'xG, TI'xG,
KxC, X H )(L)/(FXG°)

, (4.2.1)

ng =

where K C T is a subgroup, (H) € ®,(T' x G,). The integer ny denotes the number

ite sn LXG 'xG,
of (L)-orbzts mn KLXG:. X —’;1—3.

Proof. Since the group I is finite and P—’;{Ql has a finite number of (L)-orbits (see [2]),
formula (4.2.1) defines a finite number n;. Since (K) and (H) are free generators
of A(T') and A, (T x G,), the statement follows. a

Theorem 4.2.2  (MULTIPLICATIVITY PROPERTY) Suppose that G =T'x G, is a
compact Lie Group, where T is a finite group. Let W be an orthogonal representation
of I' and V' be an orthogonal representation of G. Assume that Q, C W is a
bounded open invariant subset, f,: W - W is a I'-equivariant Q,-admissible map,
QU C V is an open bounded invariant subset, and H: VAR -V isaG-
equivariant (2, -admissible map. Then the map f : WOV AR - WeaV defined by
flw,v,}) = (fo(w), fi(v,A)), (w,v,)) € WSV SR™, is an Q = Q, X Q; -admissible
G-map (where W is a representation of G =T x G, with the action of G, trivial),
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and

G‘Deg (f: Q) = P’Deg (fm Qo) iy G'Deg (fla nl)'

Proof. We may assume, without loss of generality, that fo and f; are both regular
normal, f;7}(0) N Q, consists of exactly one orbit I'w, such that I'v, = K, and
FH0)NQ; consists of exactly one orbit Gz, such that G,, = H and (H) € ®}(G).
It is clear that f~1(0) N2 = I'(w,) x G(z;), therefore it is G-diffeomorphic to the
space

I'x@G, xl"xG.,
KxG, H ~

Since I' is finite, we claim that the map f is regular normal in Q. Indeed, let (L)
be an orbit type in '1%‘1’ X P"—H-Gﬂ- Then L = yK4~! x G, N H for some v € I.
We may assume for simplicity that y = 1. Thus L C K x G, and L C H, and
hence WX € WL and V¥ c VL. By the assumption, dim W(H) = dim W(L). So
the orbit N(H)z, in V¥ @ R™ has the same dimension as the orbit W(L)(w,, 1)
in Wl @ VL @ R™. As both fo and f, are normal, f, (and similarly f,) acts as
identity operator on small vectors v in the linear slice to the orbit G(z;) at z;
which are orthogonal to VZ @ R™. Consequently, [ also acts as identity operator on
small vectors (w,v) in the linear slice to the orbit G(w,,z,) at the point (w,, ;)
orthogonal to WX @ VL @ R™. This implies that f is normal and regular. So the
conclusion follows from the analytic formula of G-degree. a

Example 4.2.3 Suppose that I' is a finite group and G = T' x S!. It is easy to
verify that the generators of A, (I x S*) are the so called I-folded 0-twisted subgroups
K®! of T" x S, where K is a subgroup of ', # : K — S a homomorphism,  a
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non-negative integer, and
K®) := {(v,z) e K x §%; 0(v) =2}

For certain groups G =T x S, it is possible to compute the multiplication table
or - : A(T') x A1(G) — A,(G) directly from the multiplication table of the Burnside
ring A(T). Let H = M©®¥) C T x S! and K C T be two subgroups. Then we have

that
(K)-(M@D)y = 3" ng,-(LOD),

(L)(M)
where the numbers n(;) are given by (4.2.1). Assume that the subgroup M@+
satisfies the following properties:
(i) for every subgroup L C M and forevery g € N(L,M) :={g€T; g~Lgc M},

we have 0(g~1vg) = 0(v) for v € L;
(i) N(M©D) = N(M) x St.
Then n(g) = m(r), where the coefficients m(r) are given in the formula
(K)-(M)= ) mq,- (L)
(L)<(M)

To justify this, it is enough to notice that we have the following

L(.v l)

(o) = (5 92)
()~ )
( II;)L 3 N(Lill\(lo?l)x Sl/l‘:l)((,gl) W)
( )/W(L)

The above formula also shows that if (L?*)) is a minimal orbit type in the product
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& X 375y then n(z) = m,)|N(L)/My|, where N (L®D) = N x S*.

]

We now derive the multiplication table where I' = Dy, N > 2. We start with
the classification of conjugacy classes of subgroups of Dy. Note that if n is an odd

number, then
®(Dn) = {(Dx), (Ze); kIN);
and if n is even then

®(Dy) = {(Dx), (Dx), (Z+); k| N},

where D = Zi URENZ, En = e’ and k = [ é _?1] . We have the following table

Table 4.1.
Dy, 2k{N Dy Y A
Dy, 2k|N | Dy z,
ka 2k fN Qk Zl
Dy, 2k l N Doy Z,
Z Dn D‘E
where k | N.

Using Table 4.1, together with the results discussed in Section 1.3 of Chapter 1 and

[4], we are able to compute the multiplication table for the Burnside ring A(Dn).
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Table 4.2. Multiplication Table for A(Dy)

(Dum) (Dm) (Dem) (Dm) Zm)
2mi{N 2m|N 2m{N 2m|N
(D) (D )+ (Do)+ s (Z1) (Zy) =)
%tN | Momkg) Yi=mk(Z,)
(D&) (Di)+ 2(Dn)+ Pt () e (Zy) £y
2k l N Nl,—“mk (Zl) NI:ank (zl)
Dx) | & (Zy) Tz (Zy) (D) + (D+ =@
2%k f N Nl'—nmk (z') Nl;mk (Z()
(Ds) = (Zy) 2(Zy) Do)+ 2(Dy)+ =2y
2| N @) | (e
Ze) —=(Z) X (Zy) =2z 2 IN(Zy)

where | = ged(m, k), m | N and k| N

We have the following classification (up to conjugacy classes) of the non-trivial
l-folded #-twisted subgroups of Dy x S:

- The subgroups D,(:") and ﬁ,(:"), where ¢ : Dy — Z3 is a homomorphism such
that Ker ¢ = Z;,

- The subgroup D,(cd’l) (resp. 5,':") (when k is even), where d : Dy — Z; (resp.
d: Dy — Z;) is a homomorphism such that Ker d = Dy (resp. Kerd = 5;)

- If k is divisible by 4 then there exists the conjugacy class of the subgroup D,(j’l) ,
where Ker d = D; = Z; U tcsz,} with fk =ei,

- The subgroups Z("’ ; where the hbomomorphism ¢ is given by ¢(z) = 2¥, v is an
integer and 2 €Z; Cc S c C.

- If k is an even number, we have also the homomorphism d : Z; — Z, such that
Ker d = Zy, for which we have the I-folded d-twisted subgroup Z{*.
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One can verify that, except the subgroups D,(:") for 2k | N, all other [-folded
0-twisted subgroups satisfy conditions (i) and (ii). Therefore, we can use the multi-
plication formula in the Burnside ring A(Dy) to compute the multiplication table
or - : A(Dn) x A1(Dy x S*) — A1 (D x S!). For example, we have Table 4.3.

Table 4.3. Table of Multiplication

(D£°1 1) (Dgc-‘)) (Zﬁi’) )
®) | DRV +Eem @ xZy) | DS + Mpeke @, xZ) | EpEZ@)
2r{N
@) | DR+ 252t @,, xZ) | ADE") +(NgetirZ,, xZ)) | ApEZED)
2r{N
Z-) !5.'2(2-» xZ;) L{%"-(Zm x Zy) z!sv;g(zsg'l))

where m = ged(k,r), r | Nand k| N

Suppose now that k and r are even numbers such that k[N and r|N. Consider
the subgroup D of Dy x S!. We have (Dy) - (D{*D) = ny (DED) + ny(Z5).
The only problem with the computations of the numbers n; and ng occurs when
2|N. However, for L@} = D& the orbit type (L) is maximal in 2& x —*"&‘-ﬁi
Therefore, n; = 2 whenever exactly one of the numbers 2k or 2r divides N, and

= 4 if both numbers 2k and 2r divide N. We can compute n3 just by counting the
orbits. In the first case, we obtain 3 = 24 —1 and in the second case, ng = % -2

That gives us the following multxphcatlon table
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Table 4.4.

o), 20k @), 2k
2%t N 2K|N
(Dr), 2jr | excluded 2(DE") + Im=2ur Z(d0))

2r{N

(D), 2Jr '2(D'(:-l)) + ml;;ikr(z,(:.l)) 4(0(4 l)) + mldkr(z(d.'))
2r|N

Where we assume m = ged(k, r) is such that 2m|N

4.3 An Extension of the Computational Formula for I x S, T" finite

We will now consider a special but important case of a non-abelian Lie group G.
More precisely, suppose that G =T" x S!, where I is a finite group not necessarily
abelian. Let V' be an orthogonal representation of G such that
v=vo PV
Bes

is the isotypical decomposition of V. Denote by Va, n =0,1,2,...k, the isotypical
components of V' with respect to the action of S C I' x S!, where V; := V5" and
for n > 0 we have that the S™-isotropy group of a non-zero element in V,, is exactly
Z,.. Then, if V3 is of complex type and there is an orbit type (H) € #1(G) in Vj,
then Vg C V,, for some n > 0. Since V,, for n > 0 has a natural complex structure
induced by S-action, it is clear that all the components V; contained in V,, are of
complex or quaternjonic type. We denote by €; the set of all B such that Vg C V,,
for some n > 0 and Vj is of complex type, and by 3 the set of all B such that V3 is

of real type.
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Assume that f : V@R — V is a G-equivariant C!-map satisfying condition (A)
in Section 2.3 of Chapter 2. If we use the same notation as before, we can define
w: St — GL%(V*), where V* := @Dsem Vs, by w(A)v := Df(n(A\))v, v € V*. Then
we can define u(w) by (2.3.3) and v(w) by

v(w) := [ T-Deg(ws(2s), Bs), (4.3.1)
Ben
where By denotes the unite ball in V3 and A, € S!. Since for 8 € % we have
GLC®(Vp) ~ GL(ng,R), we can use this identification to define the number y(w) =
sign det (w(),)), where det : GL(ng,R) — R*. Then we have

I-Deg (ws(Xs), Bg) =TI-Deg (va(w)Id, Bg).

Theorem 4.3.1 Let G =T x S', where I is a finite group, and let V be an
orthogonal representation of G. Suppose that f : VOR — V is a G-equivariant
mapping satisfying assumption (A). Then

G-Deg (£, Q) = v(w) - p(w),
where v(w) is given by (4.9.1) and p(w) by (2.9.9).

Proof. The proof is analogous to that of Theorem 2.3.2.
We may assume, without loss of generality, that the following conditions are
satisfied:
(i) Qo := 2N (VC &R) is a tubular neighbourhood of £ in VG & R. We denote
by 7 : 3 — X the natural projection of Qg onto X, so that every element z €
can be written uniquely as £ = m(z) + w, where w is normal to T at = (z).
(ii) 2 = x Q, where & := Q. x &, O := [[gem B(V3), B(Vs) is the unit ball
in Vg, 1 is the unit ball in ¥ = @\ V-
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(iii) £(z,v) = fo(z) + Df(x(z)}v, where fo := flz= and (z,v) € Tlg x Q1.

For § € R, we may identify GL®(Vj) with GL(R, dg). By a similar argument to
thc;se of Theorem 2.3.2 and Lemma 2.3.1, we may assume that the homotopy class
of wp is trivial and thus contains a representative Bg : St — GL(R, dg) given by

[(-1)»s 0 ... 0]
0 1 ...0
Bg()\) = Bg = ) . .| :RI¥— R (4.3.2)
. 0 0 ... 1]

We may define a mapping f' 10—V by
f(z,v) = fo(z) + A(x(z))v, vell, zeh,
where forac € T

A(r(z)) = €D Bs ® Df(n(z))p-

BeR,

It follows from the homotopy invariance that
G-Deg(f, Q) = G-Deg(f, ),
and consequently by Theorem 4.2.2, we have
G-Deg (f,9) = v(w) - G-Deg (£, 2°),

where 2° ;= x @ C V¢ @V, f: T — V° and f(z,v) = fo(z) + Df(n(z))v for
v € V. We will compute G-Deg (f, ).

We choose a total order in B\ so that we can write B\R = {B1,...,0n, Bntl,---
-++sBntr}, where €, = {,.. -+Bn}. For a vector v € ‘7, we denote by v; the Vj,-

component of v,i=1,...,n+r, and put

v"=vl+'ug+-~+v,-, 1<i<n+r.
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We will simplify the form of the linear mapping D f(x(z)). Foralli=1,2,...,n,
we identify GL%(Vj,) with GL(C, dg,) and choose a representative of the homotopy
class of wg, : S' — GL(C,ds,) which has the following matrix form

(A% 0 ... 0]
0 1 ...0

b(N)=] . . |:Cckoc* (4.3.3)
. 0 0 ... 1]

where p; = pg, ;== A([wg,]) and d; := dg,. If Up, is of quaternionic type, then we

can assume that b;(\) = Idvy,,, for others 8; we put b; = wg,.

We can define a mapping g: 1° — V by
9(z,v) = fo(z) +a(m(z))v, ve ‘71 zT€E .Q—(;y
where foroc € &

n+r
a(e) = Y as(o),

i=1

ai(0) := (b; o™ 1)(0), a;i(0) : Vg, = Va,, i=1,...,n+r
It follows from the homotopy invariance that

G-Deg(f,9°) = G-Deg(g, 2°).

We now introduce the following piecewise linear functions

1 if0<t<s;
g(t) =3 —L(t-t;) ifs;<t<i; (4.3.4)
0 ift; <t,
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where j=1,2,..., and

8; = J - 1

TTi+1 235 +2)?

S | 1

BTt G voe
1

gj=tj—8;= W
Clearly, & T4 = ;ﬁ, q,(;i—l) = 3, and ¢;(¢) # 0 for t € (sj,¢;).
Our next step is to further deform g to a new mapping h. We define
ci:° — Va,y i=1,...,n+r
by the following formula
¢i(2,v) = guir1([v*)¥: + (1 = gnossr (J0*]]))as(x(2))2;, (4.3.5)

where ¢ = 1,2,...,n, v € V, z € Qp and ¢; = a; fori=n+1,...,n+r. Let
h: 8% — V° be defined by

h(z, v) = fO(z) +¢(z, v), TE ms vE ‘71

where c(z,v) = Y74 ¢i(z,v), v € V. Then again, by the homotopy property, we
have

G-Deg (f,Q2°) = G-Deg (h, Q°).

It is clear that £ C A~1(0). In order to describe other zeros of k in 2, we note
that k(z,v) = 0 if and only if z € = and ¢;(z,v) = 0 for all i = ,...,n+r. It
implies that fori=1,...,n

tn-i+1(I0* )% + (1 = gusa (W) as(0)s =0, z=0+w,0 =n(z).

If for some © € {1,...,n}, v; # 0, then it follows from the definition of a;(o) that
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v = (ziaoa-“vo) € Cd‘: z; #0, and
gn—i+1(IV°])) + (1 = gnsts (IP*1))A* =0, A =1n"1(0).

Therefore,

n—-i+1

— =1, 4.3.6
n—-i+2’ A 1 (4.3.6)

i 1 i
-1V’ =35, [l =

We claim that if (z, v) is a solution of the equatic;n h(z,v) =0, then the vector v can
not have more than one non-zero component v;. Indeed, suppose on the contrary
that v has two nonzero components v; and v;, where 1 <7 < j < n. Then it follows
from the definition that [|v*]| < [[v7|. However, by (2.12), we have

n—i+1_ n-j+1 _
n—i1+2 n—-j+2

71l

lo*ll =

a contradiction.

Consequently, we can classify all the solutions of the equation h(z,v) = 0 as
follows:

(I) the set Z;

(II) for every ¢ € {1,...,nr} there are |u;| sets of solutions Eie = {z¢} x

{v,0,...,0) € Ug“', [v] = :—::—1% > -;- and Ay,..., A, denote the complex roots

of the equation A\ = —1 with z, =n(\,).

We now compute G-Deg(h,(2). We first compute G-Deg(h,U) for a neigh-
bourhood U of E. Note that if [[u| < 1, then [[v¥]] < 3 for all i, and thus
gn—i+1(J|v*]l]) = 1. Therefore, the mapping h transforms vectors v € v, vl < &,
identically into themselves, i.e. h(z,v +v) = h(z,v9) +v. Thus, it is normal and
G-Deg(h,U) =0.

We choose an invariant neighbourhood U; 2 of Z; 4 such that

) 1 forj<i, (z,v) €Uy,
tn-j+1(llv7])) = { 0 forj>i, (z,v) €l,.
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Vo v g

Therefore, the map h on U; ¢ is homotopic (by an U; +-admissible homotopy) to a
map h(; g(z,v) = fo(z) + &(v), where €= @D<; with ¢j =Idvg, for j # i and

‘Ei(vs}a v?s eeey vf‘) = (Qn-i+1("v}")vt} + (1 - Qn-i-i-l("vt}")v}a 1)?, ooy vg‘)'

In addition, by changing the coordinate system in VG @ R, we may assume that
fo(4,2) = (u, 1 — |2]), where (u,z) = (u,t,s) € (VExR)®R =VC &R, and that
Zie = (0,...,1,0). It is now clear that G-Deg (k, Uie) = G-Deg(f5,,03s,), where
fau(02) = (-9, [2{(Ioll = 1) + o + 1) for (u,2) € T, = {(0,2) € Up, OC; [ <
1, 3 <|lz| <2}. Now, by using the additivity property, we obtain that

G-Deg (F,0°) = G-Deg (h, 2°) = 3 s - G-Deg (f,, 05,).

=1

This completes the proof.

Finally, we present the following example for the application of the previous
theorem and of Theorem 4.2.2 (multiplicativity property) to the computations of
the G-degree of a certain function f equivariant under the action of the non-abelian

group Dy x St.

Example 4.3.2 We consider the group G = Dy x S!, where N > 3. The irreducible
4-dimensional representations of G (such that both the action of Dy and S* are
nontrivial) can be described as the action of G = Dy x S! on the space R”Z O R? =
C & C given by:

(al) (7, 7)(21, 22) := (721,797 23) for (7,7) € Zn x S

(82) (k7 7)(21, 22) := (Y97 22,9497 2)) for (v, 7) € KZy x S,
where (21,22) € COC,1=1,2,3,..., j = L,2,...,[¥] and A = gcd(j, N) is such
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that m := {{ > 2 (otherwise the action of G is abelian and the representation C@ C
is reducible).

If N is odd then we have nontrivial irreducible two-dimensional representations
on R? =C of Dy x S! which are given by:

(b1) (v,7)z=1!2, (v,7) € Zn x S,

(b2) (k7,7)z = —7!2, (k7,7) € KZN x S,
where [ =1,2,3,....

If N is even then there are additional two-dimensional irreducible representations
on R? = C (non-trivial with respect to the action of Dn) of Dy x S! given by

(c1) (g,7)z=1'2,if (9,7) € Dy x SY

(c2) (9,7)z = —7!2, if (9,7) € (DN \ Dg) x S*.

Finally, we have two dimensional representations on R2 = C of Dy x S, where
2|N, given by

(d1) (7, 7)z = y¥ 1!z, where (1,7) €ZN x S,

(d2) (7, 7)z = —y¥ 142, where (xv,7) € xZy x S

We consider a representation V' = C @ C of G given by (al) and (a2), where
h = ged(j, N) is such that m := & > 2. Denote

2= {02 €VOC Il <1, ; <l <2}.
In what follows, we will consider the map
F: Q- VeoR,
previously encountered in Chapter 2 (2.3.2), given by
f(v,2) = f(z- v, l2l(llv]| - 1) + [|of| +1). (4.3.7)

The map f is evidently G-equivariant and Q-admissible. We will compute G-degree
of f in Q.
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Case m is odd: In this case, we have the following lattice of the isotropy groups
inV:
(DN xS 1)(ﬂ)

@¥)®  (Dhxz)® (e
(Z,. X Z,)“)

where 0; : Zy — S! is given by 0;(y) = v 9, v € Zy, j is an integer, and the
numbers in brackets denote the dimension of the corresponding fixed-point space.
We also have the following table:

Table 4.5. Normalizers and Weyl's Groups of Isotropy Subgroups

H N(H) W(H) # of conjugated
subgroups

DN x St DN X Sl I 1

z0 Zyx St | st 2

Dy x Z; Dy x St St m

D Dyx St | st m

Z,,xZ, DNXSI D,,.xSl 1

Now we are in the position to compute the G-Deg (f,Q) for m odd. By using
the results for S'-degree (cf. [21,43]), we obtain immediately that for H = Z§3’ D,
Dn x Z4, or D,(f'l), the coefficient n(g) of the degree is equal to 1. In order to

compute the coefficient ") for H = Z;, x Z;, we remark that

S'-Deg (f7,0F) = 2(Z,, x Z,)).
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It follows from the above table that

Y (sl-Deg (rX, nK)) =2+m+m.
K2H

Therefore,

ng = (2 -(2 +m+m))/(2m) =-1.

Consequently,

G-Deg (£,9) = (Z"") + (Dn x Z;) + (DEV) — (Zn x Z1).

Case m = 2 (mod 4): In this case, we have the following lattice of isotropy
subgroups:
(DN xS 1)(0)

ZHH® OEH@ (@@
(3™

and the following table:
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Table 4.6. Normalizers and Weyl's Groups of Isotropy Subgroups

H N(H) W (H) # of conjugated
subgroups

DN x St DN x St I 1

zy" Zy xSt | &t 2

Dg;” Dy xSt | 8t z

Déf;') Dyx St | St m

z3 DyxS' | Dgp xSt |1

By arguments similar to those above, we obtain:

G-Deg (£,Q) = (Z{") + (D§Y) + (DL — (289).

Case m = 0 (mod 4): In this case, we have the following lattice of isotropy

subgroups:
(D N XS 1) (0)
@y ofghE (B
@)@

and the following table:
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Table 4.7. Normalizers and Weyl's Groups of Isotropy Subgroups

H N(H) W(H) # of conjugated
subgroups

DN x St DN x St ) | 1

y A ZyxS' | st 2

07‘,{'" Dyp x St | St n

5?‘;';‘) Dy x S' | 8t =

Zgi") Dy x S1 D? x St 1

It is now easy to verify that
G-Deg (£,9) = (Zy"") + (D) + (DY) - (z5h).

It is now clear that in the case of an arbitrary orthogonal representation V of
G = Dy x S! and a G-equivariant mapping f: VOR = V satisfying assumption
(A), the winding element u(w), as defined in (2.3.3), can be computed using the

above formulas. Consequently, the G-degree of f is fully computable.
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Chapter Five

Hopf Bifurcations of FDE’s

with Dihedral Symmetries

5.1 Introduction

In this chapter, we develop a Hopf bifurcation theory for functional differential
equations (FDEs) with dihedral symmetries with emphasis on the description and
classification of all possible types of Hopf bifurcations with the dihedral group. We
will also discuss the joint impact of the time delay and the spatial dihedral symmetry

on the multiplicity of bifurcating solutions in coupled cells.

Our main technical tools are the computational formulae obtained in Chapters 2
and 4 ([42]) for the equivariant degree. In principle, the computation is a key and
crucial issue in the application of the equivariant degree. However, in the case where
the involved nonlinearity is a family of equivariant maps parametrized by a single
real parameter, the Ulrich type computation formula obtained in Chapter 2 [42]
shows that the computation of the equivariant degree can be significantly simplified
to the calculation of the relatively simpler S*-degree [14,16] and to the counting of
certain orbits of the zeros of the nonlinear map restricted to certain subspaces. We
will show that the aforementioned formula together with the idea of complement-
ing functions and the standard linear homotopy technique enables the development
of the degree theoretical approach to the Hopf bifurcation theory for FDEs with
dihedral symmetries. The existence of a large number of branches of periodic solu-
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tions can be obtained by using information about the subgroup structure and the
irreducible representations of Dy x S! and by using certain local Hopf bifurcation
invariants which can be completely calculated from the classical Brouwer degree of
an analytic function arising from the linearization of the FDEs at equilibria.

This approach, based on equivariant degree and complementing functions, pro-
vides an alternative method for the study of symmetric Hopf bifurcation problems.
It does not require genericity conditions on vector fields and dimension restrictions
on some point spaces. Moreover, the procedure for the calculation of the local
bifurcation invariants is quite standard and involves only elementary algebraic com-
putations of subgroups and irreducible representations of the involved groups. We
are presenting a comprehensive example in the case of Dy x S!, but the method can
be applied in a similar (but, of course, more complicated) fashion to one-parameter
symmetric bifurcation problems involving more complex spatial groups such as O(2),
SO(3) and O(3).

Symmetric bifurcation problems have been extensively studied and the mono-
graphs [17,24,25,33] provide some detail account of the subject for ordinary differ-
ential equations and partial differential equations. As for FDEs, an analytic (local)
Hopf bifurcation theorem was obtained in [58] as an analogue of the Golubitsky-
Stewart theorem [23]. Moreover, a topological Hopf bifurcation theory was devel-
oped in [45] for FDEs in the case where the spatial symmetry group is the abelian
group Zy or Z,,. While the problem of looking for bifurcations of periodic solu-
tions with prescribed symmetries in a general case can always be reduced to the one
where the spatial symmetry group is Zy or Zo, (see [17,23)), examining the global
interaction of all bifurcated periodic solutions requires the consideration of the full
symmetry. Our results, especially the presented application to coupled cells aris-
ing from neural networks with memory [65,57], illustrate that a non-abelian action,

due to the fact that its irreducible representations may contain many different orbit
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types, can cause spontaneous bifurcations of multiple branches of periodic solutions
with various types. For example, if a coupled cell consists on N cells with N being
a prime number, then at certain critical values of the parameter (usually the de-
lay) the system possess at least 2(N +1) distinct branches of non-constant periodic
solutions with certain spatio-temporal patterns.

Section 5.2 contains the general results on (local) Hopf bifurcations of FDEs with
dihedral group symmetry and Section 5.3 presents some applications of the general

results to coupled cells.

5.2 Hopf Dn-Symmetric Bifurcation Theorems

Let 7 > 0 be a given constant, n a positive integer and C, , the Banach space of

continuous functions from [—, 0] into R™ equipped with the usual supremum norm

lell= sup |p(@), ¢€C,,.
—r<6<0

Also, if z : [~7, A] — R" is a continuous function with A > 0 and if £ € [0, A], then
z¢ € Cp r is defined by

z:(0) = z(t+0), 0¢€[-70].

In what follows, for any z € R™ we will use # to denote the constant mapping
from [—7,0] into R™ with the value z € R".
Consider the following one parameter family of retarded functional differential

equations
T = f(z¢, a), (5.2.1)

where z € R®, a € R, f: Ca,r X R — R" is a continuously differentiable and

completely continuous mapping. Assume there is an orthogonal representation © :
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I' 4 O(n) of T := Dy, N > 2, on R®, which naturally induces an isometric Banach
representation of I on the space C, , with the action - : " x Cn,+ — Cp + given by:

()(0) :=6(7)(¢(@), €T, 0€[-7,0].

We make the following assumptions

(Al): The mapping f is I-equivariant, i.e.
f(7‘P!a) =7f(‘P1a)1 p€ Cn,'n a€R, 7eT.

(A2): f(0,a) =0 for all « € R, i.e. (0, a) is a stationary solution of (5.2.1) for every
axeR.

Since R™ is an orthogonal representation of the group Dy, we have the following

unique isotypical decomposition of R™ with respect to the action of Dy
V=R"=VyeVi&---0& Vi, (5.2.2)

where k = (N +1)/2if N is odd, k = (N +4)/2 if N is even [25], and

(i) Vo denotes the fixed-point space of the action of I', i.e. Vo: =Vl ={v e V; ¥y €
' yv =v}.

(ii) Each one of the subrepresentations V;, (j = 1,...,k) called an isotypical com-
ponent, is a direct sum of all subrepresentations of V equivalent to a certain
irreducible orthogonal representation on Dy, and all the irreducible subrepre-
sentations p of Dy are described as follows:

(al) For every integer number 1 < j < [%—r] there is an orthogonal representation

p;j (of real type) of Dy on C given by:

vz: =92, v€Zpn, z€C;

Kz :=Z,
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where 47 - z denotes the usual multiplication of the complex numbers;

(a2) There is a representation c: Dy — Z; C O(1), such that Ker ¢ = Zy;

(a3) If N is even, there is an irreducible representation d : Dy — Z3 C O(1), and
Ker d = Dq,, and

(a4) If N iseven and j = %’-, there is an irreducible representation d : Dy — Z; C

O(1), and Ker d = ﬁg,.

We will denote by U := C™ the standard complexification of V = R™. It is
not difficult to see that the isotypical decomposition (5.2.2) induces the following

isotypical decomposition of the complex representation U:
U=Uge Uy S--- U, (5.2.3)

where Up := UT and each of the isotypical components Uj; is characterized by com-

plex representation of the following types:

(b1) For 1 £ j < [4] the representation 75 on C@ C is given by

Yz, 22) = (v 21,77 -2), y€Zn, z, €C,

K(zy, 2) := (22, 21);

(b2) The representation ¢: Dy — Zy C U (1), such that Ker ¢ = Zy;

(b3) In the case when N is even, the representation d : Dx — Zy C U(1), such that
Kerd = D;;; and

(b4) In the case when N is even, the representation d : Dy — Z; C U(1) such that
Kerd=D §-

An element (z,a) € R™ xR is called a stationary solution of (5.2.1) if f(Z,a) = 0.
A complex number A € C is said to be a characteristic value of the stationary solution
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(z,a) if it is a root of the following characteristic equation
detc A(z,a)(A) =0, (5.2.4)
where

Az,a)(A) := Ad — D, f(Z, a)(e*1d).

A stationary solution (g, ag) is called nonsingularif A = 0 is not a characteristic
value of (2o, a¢), and a nonsingular stationary point (zo, ag) is called a center if it
has a purely imaginary characteristic value. We will call (zo, o) an isolated center

if it is the only center in some neighborhood of (zg, ag) in R™ x R.

We now make the following assumption:

(A3): There is a stationary solution (0, ag) which is an isolated center such that A =
B0, fo > 0, is a characteristic value of (0, ag).

Let ©; := (0,b) x (B0 — ¢, B0 + ¢) C C. Under assumption (A3), the constants
b>0, c>0and § >0 can be chosen such that the following condition is satisfied:

(*) For every a € [ag — §,ag + 6] if there is a characteristic value u + iv € 89 of

(0, ) then u +iv = iy and a = ay.

Note that A(g,q)(}) is analytic in A € C and continuous in a € [ag ~ 6, ag + é].
It follows that det cA(0,a026)(A) # 0 for A € 89;.

Since the mapping f is I-equivariant, for every « € R and A € C the oper-
ator A(g,q)(A) : C* — C" is Iequivariant and consequently for every isotypical
component U; of U = C™ we have Ag,q)(A)({U;) CU;j for j =0,1,...,k.
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We put
Aa;(A) == A,a)(Mly; : Uj — Uj.
Solutions A € C of the equation
detcAq,j(A) =0

where j =0,1,...,k, will be called the j-th isotypical characteristic values of (0, ).
It is clear that ) is a characteristic value of the solution (0, ) if and only if it is a
J-th isotypical characteristic value of (0, a) for some j =0, 1,...,k.

Following the idea of a crossing number in a non-equivariant case (cf. [16,21,43,46]),

we define
c1,i(ao, Bo) := degp(det cAaqy—s,5(-), ) — degg(det cAag+5,5(*), )

for 0 < j < k. The number ¢y ;(aq, B) will be called the j-th isotypical crossing
number, for the isolated center (0,aqg) corresponding to the characteristic value
ifo. The crossing number c¢; j(aqg, Bo) indicates how many j-th characteristic values
(counted with algebraic multiplicity) of the stationary points (0, a) “escape” from
the region 2, when a crosses the value ayg.

Since an integer multiple of i3, can also be a j-th isotypical characteristic value
of (0, ag), we define for I > 1

a,j(ao, Bo) := degg(det cAae—s,i(-); ) — degg(det cAag+55(:), 1)

where § := (0, b) x (6o —c, !Bo+c) C C and the constants b >0, ¢ > 0and § > 0 can
be chosen to be sufficiently small so that there are no characteristic values of (0, @)
in 8€Y except perhaps ilf; for @ = ag. In other words, ¢ g(ao, Bo) = ¢ j(ao,lB0). If
2 is not a j-th isotypical characteristic value of (0, ag) then clearly ci,j(ao, Bo) = 0.
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In order to establish the existence of small amplitude periodic solutions bifur-
cating from the stationary point (0, ag), i.e. the existence of Hopf bifurcations at
the stationary point (0,ap), we will use the standard degree-theoretical approach
(cf. [16,21,43,45,46]). We reformulate the Hopf bifurcation problem for the equa-
tion (5.2.1) as a I x S'-equivariant bifurcation problem (with two parameters) in
an appropriate Hilbert isometric representation of G = I' x S!. For this purpose
we make the fdllowing change of variable z(t) = z(%t) for t € R. We obtain the

following, equivalent to (5.2.1), equation
(t) = 3% f(z9,), (5.2.5)
where 2 g5 € Cy + is defined by
zp(0) ==2(t+ £46), 0¢e[-70].

Evidently, 2(t) is a 1-periodic solution of (5.2.5) if and only if z(t) is a %—periodic
solution of (5.2.1).
Let S' =R/Z, W = L?(S%;R™) and define

L:HY(SYR*) =W, Lz(t)=2(t), z€ HY(SY;R"), teSY;
1
K:H'(SSRY) =W, Kzt)= / x(s)ds, ze HY(SLR"), teS.
0

It can be easily shown that (L + K)~! : W — H'(S';RY) exists and the map
F:W x (ag — 6,a0 + 6) % (B — ¢, fo + ¢) ~ W defined by

F(z,a,8)=(L+K)™! [Kz + 23"- Ng(2,a, ﬂ)]

is completely continuous, where Ny : W x (ag — 8, ag +8) x (Bo — ¢, o +c)+Wis
defined by

Nt (2,0, 8)(t) = f(ze,@), te S, (2,0,8) €W x (a0 — 6,a0 +6) x (Bo — ¢, fo + ©).
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Moreover, (z, a, 8) is an 1-periodic solution of (5.2.5) if and only if z = F(z,a, 8).
The space W is an isometric Hilbert representation of the group G = Dy x S?
with the action being given by

(7,0)z(t) = 7(z(t +0)), 0,t€S", vy€ Dy, z€W.

The nonlinear operator F is clearly G-equivariant.
With respect to the restricted S-action on W, we have the following isotypical

decomposition of the space W

- -]
w=pw,
=0

where Wy is the space of all constant mappings from S! into R™, and W}, with I > 0
is the vector space of all mappings of the form z sin 2ir - +y cos 27, z, y € R™. For

{ > 0, the subspace W; can be endowed with a complex structure by
i- (zsin2ir - +ycos2n-) = rcos2n - —ysin An-, =z, y €R™.

Since the above multiplication by i induces an operator J : W; — W; such that
J? = —Id, it follows that Id +J is an I'equivariant isomorphism and every function
in Wi can be uniquely represented as e2/** (z+1iy), z,y € R™. In particular, we notice
that the above defined complex structure on W coincides with the complex structure
given by = + iy € C*. In addition, the complex isomorphism A; : W; — U := C"
given by Ai(e™(z + iy)) = z + 4y, = + iy € C™ is equivariant. Thus, as a
complex I'-representation, W; is equivalent to U. Consequently, the isotypical I'-
decomposition (5.2.3) of U induces the following isotypical I'-decomposition of W;

Wii=Wo @ Wi 0 & Wiy,

where the isotypical components Wi, 1 > 0 can be described exactly by the same
conditions (bl)-(b4). On the other hand the component Wy is exactly the rep-
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resentation V' = R™, which admits the isotypical decomposition (5.2.2). To unify
the notations, we denote this isotypical decomposition by Wy = Woo® - Wiy,
where for every j we have W;g := V;. As the complex structure on W;, with 5 >0
was defined using the S'-action, and all the subspaces W;,, with [ > 0 are complex
T-invariant subspaces, W;,; with [ > 0 are also S'-invariant. Therefore, W, are the

isotypical G-components of the representation W.

For every j and I, we define

a5 ) =14 = L+ K [+ F DN 0,08)] |
£x

where (a, 8) € (ag — 8,00 + ) x (Bo ~ ¢, fo +¢).
We observe that

(L+K)-—1 (ei2l1r-(x+iy)) — ;51,;8‘2’”'(3: +iy) (5.2.6)
for every z, y € R™, and since

a,-,g(a, B) = (L+K)-1 [ -B-D N¢(0,a, ) LV

we obtain
aji(a, B)e? ™z = (L + K)™! [i2l1r ez~ %’-e‘zl"’Dz f0,a) (e“ﬁ')z]
= ' 50(0,0)(E8)(2)-
Consequently,

aj1(, B) = 7504,;(i8)-

A standard idea of using topological degrees to study the existence of Hopf

bifurcations and the various symmetry properties of the solutions is based, as we

109



bave seen in the previous chapters, on the notion of a complementing function. More
precisely, let A = a+if3 = (a, 8) € R? = C and A\g = ag+ 9. In this case, we define
a special neighborhood U (r, p) of the solution (0, \g) € W x R? by

U(r,p) :={(z,A) EW x C; |zl <7, and |A—Ao| <p}.
By taking sufficiently small > 0 and p > 0, we may assume that the equation
F(z,)) =0, zeW, AeC=R?, (5.2.7)

has no solution (z,A) such that (z,A) € AU(r,p), z # 0 and |A — Ag| = p. A
G-invariant function £ : U(r, p) — R define by

£(2,2) = A= Xo|(llzll = ) + [l

is called a complementing function with respect to Ul(r, p). Define the mapping
Fe:U(r,p) > W xR by

Fe(2,2) := (F(2,A),£(z, 1)), where (z,1) € U(r, p). (5.2.8)

The mapping F; is a compact G-equivariant field. It is well known that the G-
equivariant degree G-Deg (F, U(r, p)) does not depend on the numbers r > 0 and
p >0 (if r and p are sufficiently small), thus the standard properties of G-degree
imply that if G-Deg (Fg, U(r, p)) # 0 then (0, Ag) is a bifurcation point of (5.2.7), i.e.
there exists a continuum C C U(r, p) of non-constant periodic solutions of (5.2.7)
such that (0, o) € C. We can consider the G-degree G-Deg (Fe,U(r, p)) as a local
bifurcation invariant.

The computations in Chapter 2 and Chapter 4 provide us with a complete infor-
mation needed to evaluate the exact value of G-Deg (F¢, U(r, p)). To illustrate this
point, we need a more detailed description of the G-isotypical components Wia.
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For every isotypical component Wj,;, we denote by Yj,; the corresponding irre-
ducible representation of G (i.e. Yj, is equivalent to every irreducible subrepresen-
tation of Wj). We describe the action of the group G = Dy x §', N >3, 0n Y},
with j > 0 as follows:

The first type of the isotypical components W, corresponds to the irreducible
4-dimensional representations Yj; of G (described as complex Dy-representations
in (b1)), where the action of G = Dy x S on the space R? @ R? = C® C is given
by:

(1721, 22) = (V7' 21,7771 n) for (v,7) € Zy x S

(&7, 7)(21, 22) == (Y797 23, 497! 2)) for (w7, 7) € KZy x ST,
where (21,22) €eC®C,1=1,2,3,...,1<j < [%'-] We put h = ged(j, N), m = -1,%
(i1): m is odd: In this case, we have the following lattice of the isotropy groups in
Yiu:

(DN X Sl)(o)
(ngj»l))(z) (Dp, x Zz)(z) ( D,(‘c,l))(z)
(Zh, xZ)@

where 8; : Zy — S? is given by 0;(v) =~77, v € Zy, j integer and the numbers
in brackets denote the dimension of the corresponding fixed-point space. We define

the following element of A;(Dy x St)
* a— (o.f 11) (C,l)
deg;; := (Zy'") + (Dn x Z,) + (DEY) - (zn x Z1).
(i2): m =2 (mod 4): In this case, we have the following lattice of isotropy subgroups

in Y;u:
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(Dn x S1)©@

) (D)@ (DG
el

and we define

degjy = (Zy') + (DGP) + (DGY) - (Z5).

(i3): m = 0 (mod 4): In this case, we have the following lattice of isotropy subgroups

in ¥;u:
(DN xS 1)(0)
@yH®  (DEhH® (D)@
zZ5")®
and we put:

deg;, = (Zy") + (D) + (DR) - 237).

(i4): For an isotypical component W;,1 corresponding to irreducible two-dimensional

representation Y;,; on R? = C of Dy x S which is given by
(v.1T)z=1!2, (v,7) € ZNy x ST;
(7, 7)z = —7!2, (k7,7) € KZN x S,
where | =1,2,3,... and we have the following lattice of the isotropy groups in Yiu
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(D x S1)©@

(f)l(;") )@
We define

deg;, := (135:’") .

(i5): If N is even then there is a two-dimensional irreducible representation on
Yj:i =R? =C of Dy x S! given by
(9,7)z="1l2,if (g,7) € Dy x 8%
(9,7)z = —7!2, if (3,7) € (Dn'\ Dy) x S*.
We have the following lattice of the isotropy subgroups in Yiu
(Dn x S1)©)

(D)@
In this case, we put

deg;, := (ng’l)) .

(i6): Finally, for N even and j = g—, there may also be an isotypical component
Wy, corresponding to the two dimensional representation on Yy, :=R*=Cof
Dy x S given by
(1, 7)z = v¥ 112, where (v, T) €Zy x S,
(k7,7)z = —y¥1lz, where (k7,7) € KZy x S
In this case, we have the following lattice of the isotropy groups in Yi‘-‘
(Dn x S1)©

(D)@
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and we define

d
deg;; := (Dl(v")) .

(J1): For the isotypical component corresponding to the type (al) of the irreducible
representations of Dy i.e. Wjo :=Vj, where1 < j < [1—}], we have the following -

lattice of isotropy groups of Y0

(Dn)©@ (DN)©@
(Dy)® (Dr) (D)™
(Zn)® (Zn)®

For m odd For m even

where h = ged(j, N) and m := % If m is odd, we put
deg; := (Dp) + (Zn)
and if m is even, we put
deg; := (Dn) + (D) - (Za).
(32): For the isotypical component W1 corresponding to the irreducible represen-

tation Y 0 of type (a2), we have the following lattice of isotropy groups in Yj,
(Dn)©

(Zn)
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and we put

deg; := (Zn).

(33): For W}, corresponding to the irreducible representation Yo of type (a3), we
have the following lattice of isotropy groups in Y;,;
(Dn)©@

(Dy)®

and we put

deg; := (Dgc)-

(§4): In the case j = %r-, W0 = Vj corresponds to a one-dimensional irredncible
representation Y g of type (a4), having the following lattice of isotropy groups
(Dn)©@

(Dg)®
and we put

deg; := (ﬁ})

We also define, for every j =0, 1,..., k, the number

1 if signdetajo(ao,B0) = —1,

vj(ao, Bo) = { 0 ifsigndetajo(ao,fo) = 1.

We have the following result:

Theorem 5.2.1  Under the above assumptions, the degree of the function F¢ in
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(5.2.8) is given by
k
G-Deg (Fe, U(r, p)) = v ( [ | (D) ~ v5(cx0, 50) deg;)) (3 ailan, fo) deg;, )-
i=t kI>0
where vg := vp(ao, Bo) and the products are given by the multiplication in the Burn-
side ring A(Dn) and by the multiplication A(Dx) x A1(Dy % S 1) — 4,(Dn x SY),
respectively.

Proof. Let Q; denote the unit ball in the isotypical component W;o. We denote
by Yj, the irreducible representation (except for these (7,1) such that j = &) cor-
responding to the isotypical component W1, where | > 0. We also denote by

Qir:={(v,2) eY;;8C; || <1, -;- < |z| < 2}.
By Theorem 4.3.1 in Chapter 4, we have

G-Deg (F¢,U(r, p)) =

k
=1 ( I Dx-deg (a;0(a0, o), Q,-)) ( Y_ <j(ao, Bo) G-Deg (fj,, 9:’,1))’

j=1 >0

where f;;:Y;; ®C — Y;; ®R is define by
f(v,2) = (z- v, l2|(llvll - 1) + lo]l + 1).

The computations of G-Deg ( fi4:K,1) were essentially done in Example 4.3.2 in
Chapter 4 ([43]), where the Ulrich Type Formula (Theorem 2.2.1) was applied to
show that for every (4,1) such that ! > 0 we have G-Deg(f;1,%25,) = deg;;. In
order to compute Dy-deg (;,0(ao, fo), ;) we can use the properties of the Ulrich
equivariant degree (the case n = 0) (cf. [53]) and the standard computations based
mostly on the evaluation of appropriate fixed point indices (see [43]) In particular,
we can verify that Dy — deg (aj,0(o,fo)) = (Dn) — v(a, Bo) deg;. a

116



Theorem 5.2.2  Under the above assumptions, for every nonzero crossing num-
ber ¢;j(ao,Bo) there exist, bifurcating from (0, aq, By), branches of non-constant
periodic solutions of (5.2.5) such that:

(i1) if the element deg;,; corresponding to the indez (j,1) is (Z&'P) + (Dn x Zi) +
(D(c' )) ~(Zn xZ;), i.e. m =1 (mod 8), then there are 2 branches of periodic
solutions with the orbit type (Z(o’ D), m = X branches with the orbit type (Dr x
Z;), and m = ¥ branches with the orbit type (DY),

(i2) if degjy = (Zy"") + (DGP) + (D) — (ZD) (ie. m =2 (mod 4)), then
there are 2 branches of periodic solutions with orbit type (Z(O’ '0), #5 branches
with the orbit type (Dgz') ), and JX branches with the orbit type (Dg:‘) );

(i3) if deg;y = (ZY*") + (DS) + (D('“’) (Z$H) (ie. m =0 (mod 4)), then
there are 2 branches of periodic solutions of type (Z(a’ h ), branches of orbit
type (D éd ')), and r branches of the orbit type (D(d’l));

(i4) if deg;; = (Dg”l)), then there is one branch of periodic solutions of the orbit type
(DF);

(¥5) if deg;; = (D,(:,"l) ), then there exists one branch of periodic solutions of the orbit
type (DiV);

(i6) if deg;; = (DG), then there exists one branch of periodic solutions of the orbit
type (D).

Proof. Using the fact that all the orbit types mentioned in Theorem 5.2.2 are
maximal, it follows from Theorem 5.2.1 that if the crossing number c¢; ;(ag, Go)
is nonzero, then there is a non-zero component a,j(ao, Bo) deg;;, of the degree
G-Deg (F,U(r, p)). Consequently, from the existence property of the G-degree, it
follows that to every maximal orbit type (H) contained in deg;,; corresponds to at
least |G/H| branches of bifurcating from (0, ag, Bo) non-constant periodic solutions
of the orbit type exactly equal to (H). O

117



Remark 5.2.3 Note that in Theorem 5.2.2, for a sequence of non-constant periodic
solutions z(t) of (5.2.1) corresponding to the 1-periodic solutions (zx(t), ak,Bi) of
(5.2.5) such that (z(t),ax,B) — (0,a0,80) in W ® R? as k — oo, %’f is not
necessarily the minimal period of zx(t). However, by applying the same idea as in
[45], one can show that if py is a minimal period of zi(t) such that limg_, o px = po
then there exists an integer r such that %’f = rpo and irfy is a characteristic value
of (0,a). In particular, if éther pure imaginary characteristic values of (0, ag) are
not integer multiples of +if,, then %f is the minimal period of z(t).

Remark 5.2.4 We should emphasize that the computational formula for G-Deg (F¢,U(r, p))
gives more information than what was used in the proof of Theorem 5.2.2. For ex-
ample, we did not refer to the factor
k
vo( II ((Dw) = vi(a0, o) deg;) ) € AD)

i=
which provides additional information about the type of symmetries involved in
this Hopf bifurcation. At this stage, we are unable to predict the existence of
branches of periodic solutions corresponding to sub-maximal orbit types but the
computational formula for G-Deg (F¢, U(r, p) indicates that there is a potential for
this type of branches. It was shown in Chapter 3 [40] that in the case of a finite
dimensional symmetric bifurcation, a non-zero component of the equivariant de-
gree corresponding to an orbit type (H) (possibly sub-maximal) implies that the
existence of a branch of solutions with the orbit type (H) can be achieved using
arbitrarily small perturbations of the original equation. Finally, we point out that
the degree G-Deg (F¢,U(r, p)) can be regarded as a local invariant characterizing
the Hopf bifurcation from (0, ag, Bo). If we are interested in the global behavior of
the branches of periodic solutions, we can use the standard method to show that for

a bounded component of non-constant periodic solutions the sum of the above local
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invariants has to be 0. As the G-degree is fully computable for the D n-symmetric
Hopf bifurcation, this type of global bifurcation result would provide a set of re-
lations which can be used to gain more information about the existence of large
amplitude periodic solutions. We refer to papers [43] and [45] for more details and

examples.

5.3 Hopf Bifurcations in a Ring of Identical Oscillators

In this section we consider a ring of identical oscillators with identical coupling
between adjacent cells. Such a ring was modeled by Turing (cf. [52]) and pro-
vides models for various situations in biology, chemistry and electrical engineering.
The local Hopf bifurcation of this Turing ring has been extensively studied in the
literature, see [1,22,28,45,51,57] and references therein.

There are many reasons to emphasize the importance of temporal delays in
coupling between cells, for example in many chemical or biological oscillators the
time needed for transport or processing of chemical components or signals may be
of considerable length (see [45]).

We will analyze how the temporal delay in the kinetic and in the coupling of
cells together with the dihedral symmetries of the system may cause various types
of oscillations in the case when each cell is described by only one state variable. It
has been shown in [25] that such oscillations can not occur if the temporary delay

is neglected.

We consider a ring of N identical cells coupled symmetrically by diffusion along
the sides of an N-gon (see Figure 5.1). Each cell may be regarded as a chemical
system with m distinct chemical species. In what follows we will assume, for the
sake of simplicity, that m = 1. However, our method based on the use of the G-

equivariant degree can also be effectively applied to more complex systems including
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the case where m > 1. We denote by u7(t) the concentration of the chemical species
in the j-th cell, 0 < j < N — 1. We assume that the coupling is “nearest-neighbour”
and symmetric in the sense that the interaction between any neighbouring pair of
cells takes the same form. For simplicity, we also assume that the coupling between
adjacent cells is linear. Thus, we have the following system of retarded functional
differential equations

&) =f(d,0) + K(@)(uf ™ —2ud +f*!), 0<j<N-1, (5.3.1)

where ¢t € R denotes the time, a € R is a parameter, ul(0) = w(t+6),0< j < N—1,
f:C([-7,0;R) xR - R is continuously differentiable, and K(a) : C([-,0]; R) —
R is a bounded linear operator and the mapping K : R — L(C([-,0];R),R) is
continuously differentiable. In (5.3.1) we assume that the integer j + 1 is taken
modulo N. Cel1l

Cell 2

.Cdlo

Cell N2
Cell N4

Figure 5.1

The function f describes the kinetic law obeyed by the concentrations 47 in every
cell, and K(a) represents coupling strength, where the additional term

K(@ud™" ~uf) + K(a)(f* —uf), 0<j<N-1

in (5.3.1) is usually supported by the ordinary law of diffusion, i.e. the chemical
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substance moves from region of greater concentration to region of less concentration,
at a rate proportional to the gradient of the concentration. We refer to [1,52] for
more details.

We assume that
f(0,a) =0. (5.3.2)

Then (0,0,...,0, a;) €R¥xRisa stationary solution of (5.3.1) and the linearization
of (5.3.1) at (0,0,...,0, a) is

&% (8) = D:f(0, )z + K()[ef ™" —2of +28*Y, 0<j<N-1. (5.3.3)

Therefore, a number A € C is a characteristic value of the stationary solution (0, a) €

RY x R if there exists a non-zero vector z = (20,...,2x_1) € CN such that
diag (AId - D:f(0,a) (e'\'Id))z +r(a,A)z =0,

where diag (z\Id-D,,. f(0,a) (e"'Id)) denotes the diagonal N x N matrix and r(a, A) :
CN — CV is defined by

{r(@,Nz2}; = K(e)[e* (251 — 22 + z41)]; 0<j<N—-1.

We put {6z}; = 2j-1—22;+2;41,0<j< N-1. The operator ¢ is the discretized

Laplacian. Therefore, a number )\ is a characteristic value if and only if the matrix
Aa(A) = diag (AId ~ D, £(0, a)(e* Id)) ~ r(a, A)
is singular, i.e. the following characteristic equation is satisfied
detcAq(A) =0.

We have the following
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Proposition 5.3.1 A number A € C is a characteristic value of the stationary
solution if and only if

N-—-1
detcAa(A) = [] [ - D.£(0,a)e* + 4sin? = K(a)e*] = 0.

r=0

Proof. For every z € C and r € {0,1,...,N — 1}, we have

(Ba(N)(L,€7,...,60=D")2) 0y
=" = D=£(0,a)(eM )€ — K(a)et (€G+Dr — 9gin 4 gl=1ry,
=~ D:f(0,a)e* ~ K(a)e* (€™ ~ 2 + £ )7z
=\~ Dzf(0,a)e* — K(a)e* (2Re¢" — 2)]67" 2
=[A ~ D=£(0,a)e* — 2(cos 2ZF — 1)K (a)eM]€7" 2
=[A ~ Dz £(0,a)e* + 4sin? T K (a)et e 2.

O

It is well known (see [25]) that a Hopf bifurcation from a stationary solution
(0, ) can not occur if the equation (5.3.1) has no temporal delay. However, the
temporal delay in the coupling cells may cause various types of oscillations in the
system (5.3.1) as will be illustrated in the following.

It is clear that the system (5.3.1) is equivariant with respect to the action of
the dihedral group Dy, where the subgroup Zy of rotations acts on RM in such
a way that the generator £ := e*# sends the J-th coordinate of the vector £ =
(%0, T1,. -, ZN~1) ERY to the j+1 (mod N) coordinate, and the flip  sends the
J-th coordinate of z to the —j (mod N) coordinate. We assume that N > 2 and
denote this representation by © : Dy — O(N).

First, we consider the action of Zy on the complexification U := CV of the
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T AN e

representation ©. It is clear that the Z n-isotypical decomposition of U is given by
U=[.Ioel71®--°®ﬁlv—1,

where U, := {z(1,¢ & €N, 2 € C). The flip « sends U, onto U_,,
where —r is taken (mod N), thus Uy := 0y and U, := I, @U_, for 0 <r < [¥] are
the isotypical components of U with respect to the action of Dy. If N is even, there
is one more isotypical component U y = U, ¥- It is easy to see that the isotypical
components U, 0 <r < [-QL], correspond to the representations of Dy on C& C of
the type (bl) given by

V(21 2) = (Y- 21,97 - z2) if v € Zny;

~(z1,2z) = (22, 21),
where (2,,2) e Ca C.

If N is an even number, the isotypical component U 4 is equivalent to the Dy-

representation on C = R? of the type (b3), where

-2 ifyGDN\Dg,
gz = .
z lfgeD%[.

We make the following hypothesis:

(H1) There exists (0,a0) € RY x R such that (0,a0) is an isolated center of (5.3.1)

such that detcA(o,ao) (iBo) =0, By > 0.

It is straightforward to obtain the next two technical results:

Corollary 5.3.2 A compler number A € C is a J-th isotypical characteristic
value of (0,a), where 0 < j < [¥1], if and only if

Pa,j(A) := A - D, f(0, a)e™ + 4sin? 3# K(a)et =0.
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Corollary 5.3.3  Under the assumption (H1), the j-th isotypical crossing number
for the isolated center (0, ag) corresponding to the value ilf, is equal to
(i) for 0 <j < [¥]

aj(ao, fo) =2 (dega (Pag-5,5(-), U) ~ degg(Pag+5.i(-), 9:))
(%) forj=0o0rj= FGFNis even)
a; (ao, :30) =degp (pco~5.j (): Ql) - degB(pao-!-&j (), ),

where Q := (0,b) x (Ifs — c,1f0 + ¢) C C and the constants b >0,c>0andé6>0
are sufficiently small.

Using Theorem 5.2.2, we can establish the following

Theorem 5.3.4  Assume the hypothesis (H1) is satisfied. If c; j(ao,B0) # O,

then the stationary point (0, a) is a bifurcation point of (5.3.1). Moreover,

(i) fl<j< %’-, h = gcd(j, N) and-,’% i3 odd, then there are at least 2 branches of
periodic solutions corresponding to the orbit type (Zg’ 1) , ¥ branches of periodic
solutions corresponding to the orbit type (D, x Z,), and -1‘,;'- branches of periodic
solutions corresponding to the orbit type (D,(f'l));

(@) if1<j< ¥, h=gcd(§,N) and N = 2 (mod 4), then there are at least 2
branches of periodic solution corresponding to the orbit type (Z%*V), & branches
of periodic solutions corresponding to the orbit type (Dgz’l)), and % branches of
periodic solutions corresponding to the orbit type (Dg:'l) );

(W) if1 < j < ¥, h = ged(j,N) and X =0 (mod 4), then there are at least 2
branches of periodic solution corresponding to the orbit type (Zg’ 1) ) -g; branches
of periodic solutions corresponding to the orbit type (Dg"l) ), and % branches of
periodic solutions corresponding to the orbit type (bg‘;';l) );

(iv) ifj = -g’-, then there ezists at least one branch of periodic solutions corresponding
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to the orbit type (Dg") );
(v) 5 =0, then there ezists at least one branch of periodic solutions corresponding
to the orbit type (Dn x Z;).

Example 5.3.5 We consider the following system of retarded functional differential
equations (cf. [45])

25(8) = —az;(t) + ah(z;(2))[g(zj~1) - 29(z;(t - 1)) + glzj41(¢ — 1)), (5.3.4)

where 0 < j < N — 1 and we use the convention that j + 1 is always taken (mod
N),a>0,h, g:R >R are continuously differentiable, h does not vanish and
9(0) =0, ¢’(0) > 0. By using an appropriate change of variables and rescaling the
time, the equation (5.3.4) can be transformed into an equation of the same type as

the equation (5.3.1). In addition we have

Pa,j(A) = A + a + 4sin® Trape™,

where 4 = h(0)g’(0). Assume that there exists Jy 0 < j < &, such that
u > zi;l,?, then the number 00,5, where B ; € (§,7), is the unique solution
of cos By ; = -m— is a j-th isotypical characteristic value corresponding to the
stationary solution (0, ag, ), where @, = ~fo,j cot Bp,j. It can be computed (see
[45]) that (0,ap ;) satisfies the assumption (H1) and we have ¢, j(ao,j, fo,;) < O.

Consequently, by Theorem 5.3.4 we have

Proposition 5.3.6  Let h = gcd(j, N). If there exists j, 0 < j < & such that p >
mﬁ—#, then the stationary solution (0,aq) is a bifurcation point for the equation
(5.3.4). In particular,
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(i)

(iii)

if % ts odd, then there are at least 2 branches of periodic solution corresponding
to the orbit type (Z3y'"), X branches of periodic solutions corresponding to the
orbit type (D x Z;), and -,I:I branches of periodic solutions corresponding to the
orbit type (D)

if % =2 (mod 4), then there are at least 2 branches of periodic solution corre-
sponding to the orbit type (zf& 1) ), % branches of periodic solutions correspond-
ing to the orbit type (D§;'"), and & branches of periodic solutions corresponding
to the orbit type (DSIV);

if £ =0 (mod 4), then there are at least 2 branches of periodic solution corre-
sponding to the orbit type (Zl(gj ) ), #% branches of periodic solutions correspond-
ing to the orbit type (Dg’,’;l)), and f,’; branches of periodic solutions corresponding
to the orbit type (DSY).

. . T - _ N
Corollary 5.3.7 Assume that N is a prime number. If there exists j, 0 < j < T

such that p > “—inl,?, then there are at least 2(N + 1) different branches of non-

constant periodic solutions of (5.3.4) bifurcating from the stationary solution (0, ag).
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