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ABSTRACT  

With matrix metalloproteinases-2 (MMP2) deficiency, we observed 

thoracic aortic aneurysm in 70% of MMP2-/- mice but no abdominal aortic 

aneurysm following four weeks of angiotensin II (Ang II) infusion. We found 

markedly suppressed recoil properties in the thoracic aorta of MMP2-/-- Ang II 

mice. mRNA and protein levels of elastin, but not collagen, were significantly 

reduced in the thoracic aorta of MMP2-/--Ang II compared to WT-Ang II mice. This 

reduction in elastin levels was due to significantly reduced TGFβ-Smad signaling 

pathway that mediates synthesis of extracellular components. Thus, the adverse 

remodeling in the thoracic aorta of MMP2-deficient mice was associated with 

decreased synthesis of extracellular matrix proteins without concomitant 

upregulation of proteolytic activities. These findings suggest a protective role of 

MMP2 in the development and progression of aortic aneurysm, and as such 

inhibition of MMP2 may exacerbate vascular remodeling and lead to development 

of thoracic aortic aneurysm. 
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1.1 Introduction overview 

Aortic aneurysm is pathological dilations of the aorta. By convention, an 

enlargement of 50% or greater is considered aneurysmal. As an aortic aneurysm 

enlarges, the aorta may eventually rupture. Because the aorta is the largest artery 

that delivers blood from the heart to the body, the mortality due to aortic rupture is 

extremely high. Collectively, aortic aneurysm represents the 13th most common 

cause of death in the United States, and the prevalence of the disease is increasing1. 

Gender, race, age, smoking, hypertension, atherosclerosis, and family history are 

risk factors for aortic aneurysm. Despite various clinical trials, there is insufficient 

evidence to prove the effectiveness of therapeutic interventions of aortic aneurysm. 

It is therefore important to identify the underlying mechanism of aortic aneurysm, 

establish the mechanism of disease progression, and develop more effective 

therapeutic interventions. 

1.2 The cardiovascular system 

The cardiovascular system is the unique network of blood vessels (arteries, 

capillaries and veins) that transport oxygen, nutrients and wastes products in 

multicellular organisms. The heart pumps the blood throughout the vascular 

network through systemic and pulmonary circulations.  

1.2.1 Structure of the heart 

The heart is a four-chamber muscular pump that pumps blood to body. 

Ventricular wall comprises of three layers: an endocardium (inner lining of the 

heart), myocardium (thick muscle layer), and epicardium (a connective tissue that 
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covers the heart). Left side of the heart pumps blood for systemic circulation and 

right side of the heart pumps blood for pulmonary circulation. Oxygenated blood 

from the lungs returns to the heart through the pulmonary vein and enters the left 

atrium (LA), flows to the left ventricle (LV) via the mitral valve, it is then pumped 

into aorta through the aortic valve, and circulates through the rest of the body. Blood 

from the body enters the right atrium (RA) through superior and inferior vena cava. 

Blood from the RA flows to the right ventricle (RV) via the tricuspid valve. The 

RV pumps the blood into the pulmonary artery through the pulmonary valve to the 

lungs for oxygenation.  

1.2.2 Structure of the vasculature 

Blood vessels allow circulation of blood to and from the heart, and to all 

organs and tissues. Arteries, which serve as a pressure reservoir, carry blood away 

from the heart to other organs. Arteries then further divided into arterioles and 

capillaries. Capillaries consist of a single layer of endothelial cells that allow 

exchange of nutrients and waste products between blood and tissue. Capillaries then 

merged to venules and veins. Veins, which serve as a blood reservoir, carry blood 

from other organs to the heart.  

1.3 Structure of the aortic wall in normal physiology  

The aorta is the largest artery that delivers blood from the LV to the rest of 

body. The aortic wall is made up of three layers: the tunica intima, the tunica media, 

and the tunica adventitia (Figure 1.1). The innermost layer, the tunica intima, is 

made of endothelial cells supported by a basement membrane. Endothelial cells 
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form a physical barrier between blood and tissue, regulate platelet function, 

maintain the vascular wall by regulating smooth muscle proliferation, and provide 

a smooth surface that allows blood to flow with low resistance2, 3. The tunica intima 

contributes little to the mechanical properties of the aorta. The tunica media is 

composed of smooth muscle cells (SMCs), elastin and collagen fibers. SMCs, 

circumferentially and spirally oriented, regulate the diameter of the blood vessel 

upon contraction and relaxation. Elastin fibers work as a pressure reservoir and 

provide elasticity which allows the arterial wall to change diameter in response to 

pressure changes to regulate blood flow. Collagen fibers provide strength against 

pressure to prevent the arterial wall from rupturing. The tunica adventitia, the 

outermost layer of the aortic wall, is composed mainly of longitudinally arranged 

collagen fibers and fibroblasts. The tunica adventitia also contains small blood 

vessels that provide nutrients to the aortic wall, called the vasa vasorum. 

 

Figure 1.1 Structure of aortic wall. 

The aortic wall is made up of three layers: the tunica intima, the tunica media, and 

the tunica adventitia. Adapted from Tortora & Derrickson4. 
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1.4 Regional heterogeneity within the aorta 

Thoracic and abdominal regions of the aorta have different developmental 

origins. Vascular smooth muscles cells (VSMCs) in thoracic aorta have neural crest 

origin whereas VSMCs in abdominal aorta are derived from the mesoderm5. Due 

to this developmental heterogeneity, thoracic and abdominal regions of the aorta 

respond differently to growth factors6. In addition, composition of the aortic wall is 

different between thoracic and abdominal aortas. Although the total amount of 

elastin plus collagen is similar, the proportional amount of elastin and collagen are 

different between the thoracic and abdominal aorta as thoracic aorta contains more 

elastin than collagen fibers and opposite compositions are observed in the 

abdominal aorta7, 8. Moreover, abdominal and thoracic aortas show different 

expression patterns for over 100 genes in the normal and disease state9, as such 

different genes may play different role in thoracic versus the abdominal aorta. 

These structural and molecular heterogeneities lead to different histopathologies 

between abdominal and thoracic regions of the aorta.  

1.5 The extracellular matrix (ECM) 

1.5.1 ECM remodeling 

The extracellular matrix (ECM) is a network structure which holds the 

cellular components together to provide structural integrity of the vessel wall. 

Collagen and elastin fibers are the predominant structural components of the aortic 

ECM. Collagen fibers, which comprise 20% of total protein in normal aorta, work 

as a blood reservoir to protect the aortic wall from rupturing, and elastin fibers 

provide elasticity which allow the aortic wall to recoil during cardiac relaxation10, 
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11. Collagen and elastin fibers are synthesized by medial SMCs and fibroblasts in 

the adventitia12. Excessive degradation or deposition of these structural proteins 

leads to impairment of mechanical strength and integrity of the aortic wall7. Matrix 

metalloproteinases (MMPs) degrade these ECM proteins and their activities are 

tightly regulated by their physiological inhibitors, tissue inhibitor of 

metalloproteinases (TIMPs). The ECM constantly undergoes turnover and its 

integrity is maintained by homeostasis of MMPs and TIMPs levels. Overall 

imbalance in its turnover leads to adverse pathological remodeling of ECM.  

1.5.2 Matrix metalloproteinases (MMPs) 

Matrix metalloproteinases (MMPs) are members of zinc-dependent 

endopeptidases which degrade a wide range of extracellular components. By 

actively modulating in ECM remodeling and turnover, MMPs play an important 

role in regulating physiological and pathological processes including cell apoptosis, 

embryogenesis, tissue morphogenesis, would healing, bone development13-15. There 

are 26 MMPs discovered to date16, 17. MMPs have been traditionally classified 

according to their preferential substrates: collagenases (MMP1, MMP8, MMP13 and 

MT1-MMP), stromelysins (MMP3, MMP10, and MMP11), membrane-type MMPs 

(MT1-MMP, MT2-MMP, MT3-MMP, and MT4-MMP), gelatinases (MMP-2 and -9), 

elastase (MMP12), epilysin (MMP28), and matrilysin (MMP7 and MMP26)18-21. 

Although MMPs have substrate specificity, most of MMPs are not specific to a single 

substrate such that a number of MMPs degrade a wide range of ECM proteins.  

MMPs generally contain five conserved domains: amino (N)-terminus 

signal peptide, pro-domain, catalytic domain, hinge region and carboxyl (C)-
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terminus hemopexin domain (Figure 1.2). The signal peptide directs translocation 

of MMPs to the endoplasmic reticulum for secretion22. The pro-domain containing 

cysteine sequences forms a bond with a zinc ion located at the catalytic domain to 

maintain MMPs as a form of inactive zymogen23. The hinge region regulates 

autoproteolysis and collagenolytic activities of MMPs24. The hemopexin domain 

contributes to recognition and cleavage of substrates25. Tissue inhibitors of 

metalloproteinases (TIMPs) are physiological inhibitors of MMPs that bind to the 

catalytic domain to regulate activity of MMPs22, 26.   

MMPs are regulated at three levels: transcription, activation and inhibition. 

MMPs are induced at transcriptional level by bioactive molecules (Angiotensin II 

or Endothelin-1), inflammatory cytokines (Tumor necrosis factors, or interleukin-

1β), growth factors (transforming growth factors), oxidative stress, or mechanical 

stimuli27-30. Catalytic domain of inactive zymogens is blocked by the pro-domain. 

Proteolytic degradation or reactive oxygen species expose the catalytic domain of 

MMPs by unfolding or cleaving the pro-domain31. Activated MMPs are inhibited 

by their predominant inhibitors TIMPs. 
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Figure 1.2 Structure of MMPs.  

The MMPs generally contain five conserved domains: amino (N)-terminus signal 

peptide, pro-domain, catalytic domain, hinge region and carboxyl (C)-terminus 

hemopexin domain. Extracted from Ra & Parks 32. 

 

1.5.3 Tissue inhibitors of metalloproteinases (TIMPs) 

TIMPs are a family of four endogenous MMP inhibitors with 37-51% 

homology33 (Figures 1.3 and 1.4). TIMPs consist of two domains, amino (N) 

terminal and carboxyl (C) terminal domains and cysteine-rich proteins with three 
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disulfide bonds stabilize these domains34. TIMPs work as competitive and 

reversible inhibitors of activated MMPs by forming a non-covalent bond between 

N-terminus of the TIMPs and the catalytic domain of MMPs in a 1:1 stoichiometric 

ratio35, 36. Among four TIMPs, TIMP2 forms a trimolecular complex with 

proMMP2 and MT1-MMP37, 38. TIMP2 inhibits the activity of MMP2 at higher 

concentrations while is required for cell surface activation of proMMP2 at lower 

concentrations39. In addition to MMP inhibitory functions, TIMPs have other 

functions. TIMP2 has been shown to stimulates cell growth40. TIMP3 has been 

found to inhibit angiogenesis and to stimulate VSMCs apoptosis41, 42.  
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Figure 1.3 Molecular structure of TIMP1 and TIMP2. 

TIMP1 (A) and TIMP2 (B) sequence. Arrow indicates N- and C-terminus junction. 

Adapted from Moore et al. 43.  
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Figure 1.4 Computational structure of TIMP3 and TIMP4.  

TIMP3 (A) and TIMP4 (B) sequence. Arrow indicates N- and C-terminus junction 

Adapted from Moore et al. 43.    

 

 

A) 

B) 
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1.6 Types of vascular remodeling 

Structure and function of arteries undergo vascular remodeling as an 

adaptive response to stress including exercise, hypertension, stenosis, kidney 

diseases or aneurysm44. Impaired integrity of the vascular ECM due to alterations 

in the homeostasis of MMPs and TIMPs leads to physiological and pathological 

vascular remodeling. The changes associated with a decrease or an increase in the 

circumference can be classified as inward or outward vascular remodeling, 

respectively (Figure 1.5).  The change in wall mass can be classified as hypotrophic 

(decreased in wall mass which leads to lower wall to lumen ratio than normal), 

eutrophic (constant wall mass), or hypertrophic (increased in wall mass which leads 

to higher wall to lumen ratio than normal). Inward eutrophic or hypertrophic 

remodeling is associated with hypertension, and outward remodeling is often 

associated with aneurysm.   

 

Figure 1.5 Types of vascular remodeling 

Different types of pathological vascular remodeling showing changes in wall to 

lumen ratio. Adapted from Mulvany et al44. 
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1.7 Aortic aneurysm 

By convention, an enlargement of 50% or greater in aortic diameter 

compared to its baseline diameter is considered aneurysmal. Aortic aneurysm can 

affect any region of the aorta, including the aortic root, the ascending thoracic aorta, 

the aortic arch, the descending thoracic aorta, and the abdominal aorta. The most 

common form of aortic aneurysm is the infrarenal abdominal aortic aneurysm 

(AAAs), usually associated with atherosclerosis, while thoracic aortic aneurysm 

(TAAs) are also commonly encountered in clinical practice. Collectively, aortic 

aneurysm represents the 13th most common cause of death in the United States, and 

the prevalence of the disease is increasing1. Gender, race, age, smoking, 

hypertension, atherosclerosis, genetic disposition and family history are risk factors 

for aortic aneurysm. Generally, AAA is linked to modifiable risk factors including 

life style, age, gender and pre-existing health conditions, while TAA is more linked 

to genetic predisposition such as Marfan syndrome. As aortic aneurysm enlarges, 

the aorta can eventually rupture; since the aorta is the largest artery, delivering 

blood from the heart to the body, the mortality due to aortic rupture is extremely 

high. Thoracic aortas with aneurysm are also prone to acute aortic dissection, 

another potentially life-threatening event in which the intima and media are 

dissected off the adventitia, creating a false lumen and potentially pinching off 

branch vessels. Though AAAs and TAAs are common and potentially life 

threatening, to date there are no effective medical therapies to treat aneurysm or to 

prevent their growth. To monitor presence and progression of aortic aneurysm, 

imaging techniques such as ultrasonography, computed tomographic scanning, or 
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magnetic resonance scanning are recommended. Vascular surgeries such as open 

or endovascular repair are available for patients with sufficiently large aortic 

aneurysm.  

1.8 Clinical studies on aortic aneurysm 

1.8.1 Classification 

Each type of aortic aneurysm shows distinctive characteristics of 

histopathology, disease mechanisms, and clinical presentations. Commonly used 

classification for aortic aneurysm is based on the anatomical location. According to 

the anatomic classification, aortic aneurysm can be divided into AAA and TAA 

depending on its location relative to the diaphragm.  

1.8.2 Histopathology of aortic aneurysm 

Aortic aneurysm is a degenerative disease which leads to progressive 

dilation of the aorta. Pathological vascular remodeling of aortic aneurysm, which 

mainly occurs in the medial layer of the aorta, includes disruption of elastin and 

collagen fibers, infiltration of inflammatory cells, and loss of SMCs45-48. In addition, 

deposition of collagen fiber correlates positively with aortic diameter in patients 

with AAA49. The association between wall thickness and aortic aneurysm is not 

clear. While wall thickness was decreased in aorta from patients with TAA, patients 

with AAA did not show thinning of the aortic wall49, 50.  

1.8.3 Abdominal aortic aneurysm  

AAA is divided into suprarenal, pararenal or infrarenal; of these, the most 

common form is the infrarenal form. An aorta with a diameter greater than 3 cm is 
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considered aneurysmal in the abdominal segment, which is 1.5 times larger than the 

normal diameter for this segment. The average annual expansion rates are 1 to 4 

mm for smaller aneurysmal aortas and 7 to 8mm for larger aneurysmal aortas51. 

Prevalence of AAA is 1.3% for men and 0% for women aged 45 to 54 years and 

12.5% for men and 5.2% for women 75 to 94 years of age52. AAA are rare in Asian 

populations compared to white populations53. Aortic rupture is the main 

complication of AAA, though thromboembolic complications and dissection can 

occur.   

Smoking shows a strong association to aortic aneurysm events54. Smoking 

is thought to promote the production of reactive oxygen species to activate MMPs, 

which have the capacity to disrupt aortic wall structure55-57. Prevalence and 

mortality increase with smoking due to increased rate of aneurysm expansion58, 59. 

Interestingly, after cessation of smoking, risk of prevalence of AAA decreased 

minimally60.  

Hypertension is another risk factor for aortic aneurysm. More than 80% of 

patients with aortic aneurysm have hypertension61. However, direct association 

between aortic aneurysm and hypertension is not clear. AAA patients with 4 to 5.5 

cm in aortic diameter showed significant association between risk of rupture and 

mean blood pressure62. However, in another study, hypertension did not show any 

association to the expansion rate of AAA59.  

Atherosclerosis, or lipid deposition in the aortic wall, also correlates with 

aortic aneurysm. Progression of type 2 lesions to advanced lesions is faster and 
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greater in quantity in aortic tissues from patients with AAA compared to TAA63. In 

addition, prevalence of aortic aneurysm with atherosclerosis disease is higher in 

AAA than in TAA61. The lipoprotein level in serum, a risk factor for atherosclerosis, 

is generally elevated in patients with AAA64. 

Genetic predisposition has been shown to play a role in AAA where 15 to 

30% of patients with AAA had first-degree relatives suffering aneurysm65, 66. While 

genetic syndromes such as Marfan syndrome, Loeys-Dietz syndrome, and Ehlers-

Danlos syndrome mostly exhibit abnormalities in thoracic region of the aorta, 

degenerative changes can occur in the abdominal aorta as well.  

Inflammation is also associated with AAA, forming a specific sub-type of 

AAA called an inflammatory AAA. Abnormal accumulation of macrophages and 

cytokines in the aneurysmal aortic tissue leads to inflammation. Patients with 

inflammatory aneurysm showed larger aortic diameter compared to patients with 

non-inflammatory aneurysm67. Inflammatory aortic aneurysm was present in 

approximately 5% of patients with AAA68, 69. Staphylococcus and Salmonella are 

the common cause of infectious, or mycotic, aneurysm but the prevalence of this 

type of disease is rare.  

1.8.4 Thoracic aortic aneurysm 

TAA is divided into ascending, arch, or descending TAA. As in other 

segments of the aorta, an increase of greater than 50% in thoracic aortic diameter is 

considered aneurysmal. Prevalence of TAA is 10.4 cases per 100000 population. 

Aortic diameter increases with age and the difference between genders decreases 
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with age70. The average rate of TAA expansion is about 0.1 to 0.42 cm/year71. 

Possible complications associated with TAA are aortic rupture and aortic dissection. 

Similar to AAA, smoking and hypertension show correlation with development and 

progression of TAA. 

Bicuspid aortic valve (BAV), where the aortic valve has two leaflets as 

opposed to three leaflets in normal aortic valve, is the most common congenital 

abnormality of the aortic valve affecting about 1 in 100 of the population72, 73. Due 

to structural abnormalities of the ascending aorta, BAV is frequently associated 

with aortic aneurysm such that individuals with BAV are prone to developing aortic 

aneurysm and aortic dissection74, 75. The congenital BAV predisposes to majority 

of TAA development76, 77. Patients with BAV showed larger diameter of aortic root 

and ascending aorta78. In addition, TAA patients with BAV showed greater elastin 

degradation than patients with tricuspid aortic valve (TAV)79. Elevated MMP2 and 

MMP9 levels were observed in BAV patients with TAA80, 81. 

Genetic predisposition plays a role where 10% of patients with TAA have a 

first-degree relatives with TAA82. About 20% of TAA are due to genetic 

syndromes1. Genetic syndromes with abnormal connective tissue are associated 

with TAA. Marfan syndrome is a heritable disorder of the connective tissue due to 

mutations in the Fibrillin-1 which is an essential protein for elastin assembly in the 

medial layer of the aorta. Abnormalities in the connective tissue lead to abnormal 

manifestations in cardiovascular, ocular and skeletal systems. Patients with Marfan 

syndrome are highly predisposed to TAA and aortic dissection where most patients 
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present dilation of the aortic root/ascending aorta or Type A dissection83. Loeys-

Dietz syndrome is an autosomal dominant disorder with mutations in either the 

Transforming growth factor receptor type I or II genes where most patients exhibit 

aortic root aneurysm84. Ehlers-Danlos syndrome is a rare autosomal dominant 

disorder with defect in type III collagen which is encoded by the COL3A1 gene. 

Characteristic symptoms of this disorder are hyperelasticity of skin, and rupture of 

arteries or other organs. The most fatal complication is arterial rupture which 

attributes to aortic ruptures and dissections. Since Fibrilin-1 and collagen are crucial 

for assembly and production of ECM structural proteins within the aortic wall, 

patients with these genetic syndromes are prone to aortic rupture and dissection. 

Inflammatory diseases are also associated with TAA. Takayasu arteritis is 

an idiopathic vasculitis of elastic arteries where aorta can develop either aneurysm 

or stenosis. Prevalence of aortic aneurysm in the abdominal region is higher than in 

the thoracic region where 23% of patients with Takayasu arteritis exhibit AAA85. 

This disease affects all ethnic groups with moderately higher prevalence in Asian 

population84. Unlike other cardiovascular disease, women are affected about 10 

times more than men83, 86. Giant cell arteritis is an elastic vessel vasculitis involving 

the aorta and its secondary and tertiary branches. The main difference between this 

disease and Takayasu arteritis is the distribution of patients’ age. While patients 

above the age of 50 years are mostly affected by giant cell arteritis, patient with age 

below 40 years old are affected by Takayasu arteritis87.  
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Infectious etiology are rare but it can affect the entire thoracic aorta and lead 

to TAA. Saccular aneurysm is the most common type of infectious aneurysm. The 

clinical outcome is poor with 30% to 50% mortality. Although thoracic aortic 

atherosclerosis is less common than abdominal aortic atherosclerosis, 

atherosclerotic TAA showed association with prevalence of ischemic stroke88.  

1.8.5 Clinical presentations and complications 

Aortic aneurysm is usually asymptomatic until the size of aneurysm is 

noticeably large and it is close to rupturing. Depending on the anatomical location 

of aneurysm, symptoms vary. Following aortic expansion or rupture, symptoms 

might occur more frequently with severe extent.  

A common symptom of AAA is pain especially at the back and abdomen. 

Fullness or pulsations in the abdomen may occur as well89. The most common 

complication of AAA is aortic rupture. Common symptoms of TAA include chest 

pain or upper back pain90. Dyspnea (shortness of breath) or dysphagia (difficulty in 

swallowing) can occur due to an increased pressure on the trachea. However, most 

symptoms are not specific to TAA. The most common complication of TAA is 

aortic dissection, though aortic rupture can still occur. 

Since the aorta is the largest artery that delivers blood to the entire body, 

aortic rupture may lead to a life-threatening event following massive hemorrhaging. 

Paralysis can occur when the aneurysm is large enough to compress surrounding 

spinal cord or after aortic rupture. Less common complications are embolization, 
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fistulae or thrombosis. In addition, presence of aortic aneurysm increases 

prevalence of other cardiovascular diseases.  

1.8.6 Treatments  

Treatment approaches for aortic aneurysm vary depending on the subtype 

of aneurysm. The ultimate goal of the treatment is to slow down the progression of 

the aortic expansion and aortic rupture. Available treatment options for aortic 

aneurysm are surgical intervention (open and endovascular aortic aneurysm 

repairs), risk factor reduction (smoking, hypertension, or hyperlipidemia), and 

therapeutic interventions. In this review, therapeutic interventions will be discussed 

in detail.  

There are clinical trials on the different therapeutic interventions for AAA. 

One of the approaches is to control risk factors such as hypertension or 

hyperlipidemia. Propranolol is used as a non-selective β adrenergic blocker. 

Patients with AAA showed no significant differences in the annual growth rate and 

mortality rate between placebo and propranolol groups91. Angiotensin-converting 

enzyme (ACE) inhibitors are used to block the conversion of Angiotensin I to 

Angiotensin II. In a small study, aneurysm growth was fastened in patients taking 

ACE inhibitors92. However, in a large study, patients who took ACE inhibitors prior 

to admission showed significantly less prevalence of aortic rupture93.  In this study, 

researchers found out that other anti-hypertensive agents including β blockers, 

angiotensin II receptor blocker (ARB), thiazide diuretics, calcium channel blocker, 

and α blocker did not show any significant prevention against aortic rupture. 
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However, in another study, while ACE inhibitors lower the abdominal aortic 

rupture, ARB did not show any protection against aortic rupture compared to 

placebo group93. Statin is used to lower cholesterol level in patients with AAA. 

However, after 5 years of follow-up, no association was found between statin and 

expansion rate of AAA94. Another approach is to inhibit MMPs which have been 

shown to be altered in patients with aortic aneurysm. Doxycycline is an antibiotic 

which can inhibit broad range of MMPs. Doxycycline was given in patients with 

AAA (3.0 to 5.5 cm in diameter) for 6 months but there were no significant changes 

in the aortic diameter and overall expansion rate between treatment and placebo 

groups95. However, in another study, taking doxycycline for 3 months significantly 

reduced expansion rate of AAA (3.0 cm in diameter) over the 18 months 

surveillance96. Roxithromycin is a semi-synthetic macrolide antibiotic and patients 

with small AAA showed reduced annual expansion rate following the treatment97. 

There are limited clinical trials on the therapeutic interventions for TAA. 

Patients with Marfan syndrome showed significantly lower rate of aortic dilation as 

well as better survival rate following propranolol treatment98. 24 weeks of 

perindopril, an ACE inhibitor, treatment reduced aortic stiffness and aortic root 

diameter in patients with Marfan syndrome99. Losartan, an ARB, showed slower 

rate of progression in thoracic aorta in patients with Marfan syndrome100. In another 

study, statin treatment did not show improvement in the long-term mortality in 

patients with TAA101. However, regardless of various clinical trials on medical 

therapy, there is insufficient evidence to prove effectiveness of therapeutic 

interventions on the expansion of aortic aneurysm.  
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1.9 Role of the ECM in aortic aneurysm 

Development of aortic aneurysm is a complicated process which involves 

pathological changes in both cellular and extracellular levels. Common 

pathological changes in the aneurysmal aortic wall are destruction of elastin and 

collagen fibers, and loss of SMCs90, 102, 103. MMPs and TIMPs play a significant 

role in the development of aortic aneurysm such that alteration in MMPs and TIMPs 

levels disrupts collagen and/or elastin structures in aortic wall and leads aorta prone 

to aneurysm. In addition, polymorphism of the genes associated with MMPs and 

TIMPs have been constantly reported in patients with aortic aneurysm104. 

1.9.1 Alterations in expression of MMPs and TIMPs in aortic aneurysm 

Expression patterns of MMPs and TIMPs vary depending on the anatomical 

location of aortic aneurysm (abdominal vs. thoracic region)105. Abdominal aortic 

wall tissue from patients with aneurysm showed increased MMP2 and MMP9 

complementary DNA expression compared to normal aortic tissue106. In another 

study, mRNA level of MMP2 was significantly increased in the inferior mesenteric 

arteries, which is in close proximity to the abdominal aorta, from patients with AAA 

compared to control107.  

Expression patterns of MMPs and TIMPs were examined in patients with 

TAA with BAV or TAV. Compared to control, MMP2 levels were significantly 

elevated only in patients with BAV whereas TIMP2 level was significantly reduced 

in patients with TAV79. In this paper, the relationship between MMPs and TIMPs 

expression levels and aortic diameter was examined where the alteration of MMPs 
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and TIMPs were different between patients with BAV and TAV. While patients 

with BAV showed alterations in MMP2, MT1-MMP and TIMP1 levels, patients 

with TAV showed alterations in MMP3, MMP7, MMP13 and TIMP2 levels. Taken 

together, these data imply that expression of MMPs and TIMPs are not only 

dependent on the anatomical location but also specific pathology of the disease.  

1.9.2 Role of MMP2 in aortic aneurysm 

Among 26 MMPs that have been discovered, MMP2, known as a gelatinase, 

works as a collagenase and an elastase108, has been consistently reported to be 

linked to TAA and AAA109-112.  In addition, abdominal and thoracic aortas show 

different expression patterns of MMP2 gene in the normal and disease state9. 

mRNA levels and activity of MMP2 were lower in patients with atherosclerotic and 

non-atherosclerotic TAA than control113. Elevated MMP2 levels were observed in 

aortic biopsies collected from small AAA110. Smooth muscle cells taken from 

patients with AAA showed increased MMP2 production in culture medium111. 

Isolated aortic fibroblast from CaCl2-exposed TAA showed elevated expression of 

MMP2112. In addition, MMP2-/- mice did not develop AAA following adventitial 

CaCl2 exposure114. However, the role of MMP2 in TAA has not been yet explored. 

The abundance and expression of MMP2 vary depending on not only the types but 

also the size of aortic aneurysm as such the direct role of MMPs including MMP2 

is still not clear115-117.  
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1.9.3 Role of MMP2 in TGFβ signaling pathway 

One of the upstream regulators of ECM synthesis is the Transforming 

Growth Factor-beta (TGFβ) signaling pathway. TGFβ is a soluble anti-

inflammatory cytokine that is synthesized by many cell types in its latent form. 

Latent TGFβ and latency-associated peptide (LAP) form a non-covalent complex 

called a small latent complex (SLC). SLC forms a disulphide bond with a latent 

TGFβ binding protein (LTBP) to form a large latent complex (LLC). This complex 

is sequestered to the ECM components including Fibrilin-1. In normal 

physiological state, Fibrilin-1 forms a cross-linkage with the LLC to stabilize its 

microfibriliar structure and sequesters TGFβ. Latent TGFβ can be activated by 

heat118, acid119, reactive oxygen species120, and proteases121-124. MMP2, MMP9 and 

MT1-MMP have been shown to cleave the bond between LAP and LTBP to release 

TGFβ121-123. The released (active) TGFβ binds to type II TGFβ receptor (TGFβ R2) 

which then recruits and phosphorylates type I TGFβ receptor (TGFβ R1).  

Subsequently, the activated TGFβ R1 phosphorylates and activates Smad2/3. 

Following phosphorylation, Smad2/3 interacts with Smad4 and then this complex 

translocates to the nucleus where regulation of matrix-associated protein expression 

which includes elastin, collagen and MMPs occurs (Figure 1. 6)125-127.  
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Figure 1.6 TGFβ-Smad signaling pathway. 

The TGFβ binds to its receptor and activates Smad signaling pathway which 

regulates matrix-associated protein expression. Modified from Lindsay & Dietz128. 

 

TGFβ participates in various cellular responses such as proliferation129, 

angiogenesis via regulating proliferation and migration of endothelial cells130, 131, 

would repair, apoptosis132, 133 and inflammation134. In addition, TGFβ plays a 

crucial role in vascular remodeling via regulating matrix deposition and 

degradation. TGFβ1-/- mice die about 20 days after birth due to inflammatory 

responses135. Mutations in TGFβ receptor genes have been observed in patients with 

AAA136. TGFβ expression is upregulated in abdominal aneurysmal aortic wall137. 
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On the other hand, complementary DNA level of TGFβ is significantly decreased 

in patients with AAA compared to patients with TAA or normal aorta105. Patients 

with Marfan syndrome (mutation in Fibrilin-1) showed increased circulating 

TGFβ1 and TGFβ receptor 2 levels compared to control group115, 138. In TAA 

samples taken from Marfan syndrome patients, a decrease in MMP2 activity was 

found compared to normal aortic samples109. Patients with Loeys-Dietz syndrome 

(mutation in the gene coding for TGFβ receptor 1 or receptor 2) showed increased 

activity of TGFβ139, 140. Interestingly, patients with heterozygous mutations of 

TGFβ receptor 1 or 2 showed enhanced TGFβ signaling in the aortic wall139. 

Alterations in TGFβ signaling pathway is examined in patients with AAA. Since 

TGFβ signaling pathway has been shown to stimulate collagen and elastin 

production, these alterations in TGFβ signaling molecules might be the mechanism 

underlying reduction in elastin and collagen in aneurysmal aortic wall126, 141. 

Histological analyses showed decreased elastin content and fragmented elastin fiber 

in aortic tissue from patients with Marfan syndrome142.  Moreover, alteration of 

collagen architecture has been observed in patients with AAA and TAA associated 

with Marfan syndrome143.  

In addition, VSMCs from rat thoracic aorta show enhanced Smad activation 

through AT1 receptor following Ang II treatment144. In another study, Ang II-

induced activation of latent TGFβ1145 and phosphorylation of Smad2 and Smad3146, 

147 has been reported in kidney and cardiac fibroblast148. In cardiac fibroblast, 

losartan (AT1 blocker) attenuates activation of TGFβ1149. 
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1.10 The renin-angiotensin-aldosterone system 

The renin-angiotensin-aldosterone system (RASS) that regulates blood 

pressure, fluid and electrolyte homeostasis in body. Alterations in the RASS has 

been reported to promote physiological and pathological changes in the 

cardiovascular diseases150. Angiotensin, which is released from the liver, is cleaved 

by renin, which is a proteolytic enzyme secreted from the granulated cells of the 

juxtaglomerular cells, and forms the decapeptide Angiotensin I (Ang I) (Figure 

1.7)151-153. Subsequently, angiotensin converting enzyme (ACE) converts Ang I to 

Ang II. Ang I and Ang II can be cleaved by ACE2 to generate Ang-(1-7). ACE2 

converts Ang I to Ang-(1-9) which then subsequently degraded to Ang-(1-7) by 

ACE. ACE2 also coverts Ang II to Ang-(1-7)154, 155. Ang II predominantly binds to 

angiotensin II receptor, type-1 (AT1) and promotes vasoconstriction, cell growth 

and oxidative stress156-159. Ang II also binds to angiotensin II receptor, type-2 (AT2) 

and promotes vasodilation, nitric oxide (NO) release, and apoptosis158-161. Ang-(1-

7) binds to Mas, G protein-coupled receptor to mediate vasodilation, anti-

proliferation and anti-hypertrophy162-164. 
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Figure 1.7 The renin-angiotensin-aldosterone system 

ACE : angiotensin converting enzyme, AT 1 receptor : angiotensin II receptor type 

1, AT 2 receptor : angiotensin II receptor type 2. Adapted from Lemarie & 

Schiffrin165. 

 

Ang II, primary agonist of the RAAS, affects function of many organs 

including heart, kidneys, and vasculature. Ang II induces nitric oxide (NO) 

synthesis166, inflammation167, 168, hypertrophy169, 170, and ECM remodeling171, 172 in 

VSMCs, endothelial cells, and cardiomyocytes. Ang II induced elevations in pro-

inflammatory cytokines (TNF-α)173 and oxidative stress in turn upregulate 

expression of MMP2174, 175. Co-localization of Ang II and MMP2 atherosclerotic 

lesions has been reported176. Upregulation of Ang II has been shown to promote 

aneurysm formation in the aorta177-179.  
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1.11 Animal studies on aortic aneurysm 

1.11.1 Experimental models to induced aortic aneurysm 

Several experimental models have been used to study aortic aneurysm in 

rodents. Intraluminal elastase perfusion or adventitial calcium chloride (CaCl2) 

exposure models have been used to induce aortic aneurysm180-182. Since disruption 

of elastin structure is commonly observed in the aorta from patients with aortic 

aneurysm, elastase is used to mimic the pathology of the disease. Elastase perfusion 

model is mostly used to study AAA. Abdominal aorta is clamped near the renal 

vein and the segment of isolated aorta is perfused with elastase through an 

aortotomy at the bifurcation. Elastase is perfused for 5 minutes from the lumen to 

the adventitia wall of the aorta180, 183. Since the elastase is extracted from porcine 

pancreas, it is hard to conclude that development of aortic aneurysm is purely due 

to elastin disruption by elastase or inflammatory response against porcine elastase. 

In addition, elastase perfusion model is invasive and it can only applied to the 

specific region of the aorta to induce internal injury. Thus, this is not the best 

experimental model to study underlying mechanism on the formation of aortic 

aneurysm.  

CaCl2 exposure model is widely used to study AAA and TAA. CaCl2 is 

applied for 15 minutes on the outer surface of the abdominal aorta between renal 

arteries and the bifurcation of the iliac arteries for AAA or distal half of descending 

thoracic aorta for TAA181, 182. CaCl2 leads to structural degradation of medial layer 

by activating MMPs which have binding site for calcium184, 185. In addition to 

dilation of the lumen of the aorta, aortic wall becomes more susceptible to aneurysm 
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development. Similar to elastase infusion model, this model is limited to examine 

systematic effect of CaCl2 in the development of aortic aneurysm.  

Another experimental model of aortic aneurysm is systemic infusion of Ang 

II via an osmotic pump allowing the release of Ang II into the entire body at a 

constant rate186. This allows examination of the systematic effect of Ang II in the 

development of aortic aneurysm in both abdominal and thoracic regions at the same 

time. Since Ang II is a physiological hormone, which is elevated in patients with 

cardiovascular disease187,188, this experimental model is physiologically relevant. 

Therefore, Ang II infusion is the most promising study model to induce aortic 

aneurysm in animal model to examine underlying mechanisms of the development 

of aortic aneurysm.  

1.11.2 Genetically engineered mice 

In order to understand the underlying mechanisms of aortic aneurysm, 

genetically engineered mice have been used. Whole body knockout mice that show 

alterations in ECM components are widely used to study aortic aneurysm. TIMP1-

/- mice exhibited increased TAA size compared to wild-type following CaCl2 

infusion189. In addition, TIMP3-/- mice developed AAA following Ang II infusion 

for 4 weeks and by deleting both TIMP3 and MMP2, mice with Ang II developed 

more severe AAA than TIMP3-/- mice177. MMP2-/- and MMP9-/- mice did not show 

dilation of the abdominal aorta following CaCl2 infusion114. However, there is no 

reports on TAA formation in MMP2-/- mice. In a different study, MMP9-/- mice 

were protected against TAA following CaCl2 infusion181.  
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As prominent ECM components in aortic wall, mice with defects in collagen 

or elastin structures are used to study aortic aneurysm. Lysyl oxidase (Lox) 

maintains ECM integrity by initiating covalent cross-linking of collagen and 

elastin190.  Most of Lox-/- mice died at the end of gestation or as neonates but live 

born pups showed large aortic aneurysm191. Deletion of Fibrilin-1, which is 

essential for elastin assembly, has been used as an animal model of aortic aneurysm 

associated with Marfan syndrome192, 193.   

Hyperlipidemic mice are also used to study atherosclerotic aortic aneurysm. 

Following high fat diet, Apolipoprotein-/- (ApoE-/-) mice developed AAA with 

atherosclerotic lesions194-196. ApoE-/-/;MMP3-/- mice showed less frequent TAA but 

larger atherosclerotic lesions in the abdominal aorta was observed compared to 

ApoE-/-/;MMP3+/+ mice following a high fat diet for 6 months195. In addition, ApoE-

/-/;TIMP1-/- mice showed less atherosclerotic lesions throughout the aorta but more 

frequent AAA and TAA compared to ApoE-/-/;TIMP1+/+ mice194. 

1.12 Hypothesis and objective 

1.12.1 Hypothesis 

Since MMP2 can degrade a number of ECM proteins, such as collagen and 

elastin fibers, MMP2-/- mice will be protected against excess proteolysis and aortic 

aneurysm following Ang II infusion, due to the suppressed ECM-degrading 

function of MMP2. 
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1.12.2 Objective 

The main objective of this study was to examine the role of MMP2 in 

vascular remodeling and development of aortic aneurysm. This would provide 

crucial information on the underlying mechanism and therapeutic interventions for 

aortic aneurysm. 
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2.1 Animal Care 

WT and MMP2-deficient (MMP2-/-)197 mice in C57BL/6 background (The 

Jackson Laboratory; Bar Harbor, MN, USA) were housed in our animal facility at 

University of Alberta. WT and MMP2-/- mice were bred to generate WT, 

heterozygous, and homozygous knockout age-matched littermates. All animal 

experiments were performed in accordance with Canadian Council on Animal Care 

Guidelines and regulations of Animal Policy and Welfare committee at University 

of Alberta.  

2.2 Genotyping 

2.2.1 Isolation of DNA from toe 

Small piece of toe was cut from mice at 2 weeks of age. Toe was placed in 

eppendorf tube with 175µL of toe digestion buffer (Table 2.1) and 0.12mg of 

Proteinase K and incubate overnight at 56 °C for digestion. Samples were chilled 

on ice for 5 minutes. 67.5 µL of saturated 5 M NaCl was added and samples were 

mixed by inversion. Samples were centrifuged at 14,500 × g for 15 minutes at 4 °C. 

Supernatant was transferred to eppendorf tube. 150µL of isopropanol was added. 

Tubes were gently inverted to precipitate DNA. Samples were centrifuged at 14,000 

× g for 15 minutes at 4 °C. The supernatant was removed and discarded. 0.25 mL 

of cold 70% ethanol was added to wash pellet and samples were pipetted until the 

pellet was completely dislodged. Samples were centrifuged at 14,000 × g for 15 

minutes at 4 °C. The supernatant was removed and discarded. 20 µL of TE buffer 

was added to re-suspend pellet. 2 µL of DNA was diluted into 200 µL of dH2O for 

quantification.  
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Table 2.1 Toe digestion buffer 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 N/A 50 mM 

Sodium chloride (NaCl) 58.44 N/A 100 mM 

SDS 288.38 N/A 1% 

EDTA 372.24 N/A 100mM 

Proteinase K N/A 5mg/mL 0.4mg/mL 

 

2.2.2 MMP2 Multiplex Polymerase chain reaction (PCR) 

Primer sequences are shown in Table 2.2197, 198. Reaction mix was prepared 

and ran for PCR reaction (Table 2.3 and 2.4). Upon completion of PCR reaction, 

6× DNA loading dye (Thermo Scientific; Willmington, DE, USA.) was added to 

samples. Samples were loaded into 1.5% agarose in TAE buffer containing SYBR® 

Safe DNA Gel Stain (Invitrogen; Burlington, ON, Canada.) and ran for 30 minutes 

at 80V. Gel was scanned using ImageQuant LAS 4000 (GE ImageQuant LAS 4000; 

GE).  
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Table 2.2 Primer sequences for MMP2 genotyping 

Primer sequences 5’ to 3’ 

MMP2 WT CAG GGA GCC AGA ACA GAA GTG GGA 

MMP2 Anchor CCA GGT CGT GAG AAG GCA CAG A 

MMP2 NeoA TGG CGG CGA ATG GGC TGA 

 

Table 2.3 Reaction mix for MMP2 genotyping 

ddH2O 17.5 µL 

10x PCR Buffer 2.5 µL 

MgCl2 (50mM) 1 µL 

dNTP (10µM) 0.5 µL 

MMP2 WT (10pmol/µL) 0.75 µL 

MMP2 Anc (10pmol/µL) 0.75 µL 

MMP2 NeoA (10pmol/µL) 0.75 µL 

Taq (5U/µL) 0.25 µL 

DNA 1 µL 
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Table 2.4 Polymerase chain reaction (PCR) program for MMP2 genotyping 

 PCR Program  

1 94°C 2 min 

2 94°C 1 min 

3 67°C 1 min 

4 72°C 1 min 

5 Repeat step 2-4 x40 

6 72°C 10 min 

7 4°C 10 min 

 

2.3 Experimental animal disease model 

Eight-week old male WT and MMP2-/- mice were anesthetized with 1% 

isoflurane using 100% oxygen. A 1 cm incision was made on dorsal region and 

Alzet micro-osmotic pumps (Model 1002, Durect Co.) were implanted 

subcutaneously to deliver 1.5 mg/kg/day of Angiotensin II (Ang II, Sigma-Aldrich; 

Oakville, ON, Canada) 199-201, 30mg/kg/day of Phenylephrine (PE, Sigma-Aldrich; 

Oakville, ON, Canada) or saline (control). The incision was closed using a 6-0 silk 

suture. The pumps were replaced at day 14 to allow for continuous infusion for 28 

days. 
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2.4 Tissue Collection 

2.4.1 Mortality and autopsy 

WT and MMP2-/- mice were monitored regularly and autopsy was 

performed on each mouse found dead throughout the course of the experiment. 

Mortality due to aortic rupture was confirmed by the presence of blood clot in the 

chest cavity close to the heart. The aorta was isolated and confirmed directly under 

a stereomicroscope.  

2.4.2 Tissue collection from WT and MMP2-/- mice 

At 2 weeks or 4 weeks after Ang II infusion, mice were anesthetized with 

0.2 mL of Ketamine-Xylazine combination (2 mL of 100 mg/mL Ketamine stock, 

1mL of 20 mg/mL Xylazine stock, and 7mL of Normal saline 0.9% (Hospira Inc. 

Montreal. QC. Canada). Prior to any tissue collection, status of anesthesia was 

checked by pinching toes to confirm that the animal was in surgical plane. The 

heart, the entire aorta from the right beneath of the atria to the suprarenal arteries, 

mesenteric arteries, and carotid arteries were harvested. Samples were flash-frozen 

in liquid nitrogen and stored at -80 °C for further molecular analyses. Tibial length 

was measured as a measure of growth. Body weight, heart weight and kidney 

weight were measured and normalized to tibial length to examine hypertrophy in 

response to Ang II treatments.  



 

39 

 

2.5 In vivo aortic structure and function assessment 

2.5.1 Tail Cuff Blood Pressure Measurement 

Blood pressure was recorded using the non-invasive tail-cuff system (iiTC 

Life Sciences; Woodland Hills, CA).  Mice were acclimatized be being placed in 

the restrainer tube 3 days prior to the actual blood pressure measurement (10 

minutes/day). Baseline blood pressure was measured over one week before 

implantation of osmotic pumps (three measurements). Temperature inside chamber 

was maintained at 30 °C. During the first 2 weeks of Ang II infusion, systolic blood 

pressure, diastolic blood pressure and heart rate were measured. In order to 

minimize any variations due to circadian rhythm, measurement was done at the 

same time of the day. Each measurement was done triplicates. 

2.5.2 Ultrasound Imaging of aorta 

In vivo systolic and diastolic aortic diameters of thoracic, proximal and 

abdominal regions were measured non-invasively by ultrasound recording 

(Vevo770 high-resolution in vivo micro-imaging system; VisualSonics, Toronto, 

Canada) as previously described202, 203. Mice were anaesthetized 1% isoflurane in 

100% oxygen. Hair was removed using hair removal cream. Ultrasound gel was 

applied on the chest and abdomen of the mouse.  The aortic diameters were 

measured by M-mode at three different regions: between Brachiocephalic artery 

and left common carotid artery for thoracic diameter, between aortic arch and the 

diaphragm for proximal diameter, and suprarenal region for abdominal diameter.  

The maximum aortic lumen diameter (aortic systolic diameter corresponding to 

cardiac systole) and the minimum aortic lumen diameter (aortic diastolic diameter 
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corresponding to cardiac diastole) were measured. Aortic expansion index (%) was 

calculated using the following equation: 

Aortic expansion index (%) = 
systolic aortic diameter−diastolic aortic diameter

systolic aortic diameter
 × 100 

2.6 Histological analysis 

For histological analysis, 1mL formalin was directly injected from the left 

atrium and aorta was slowly perfuse-fixed with formalin (Buffered, 10%, phosphate 

buffer) for 30 minutes at 80mmHg. Aorta was carefully harvested and cleaned for 

any adipose tissue and fixed in formalin for 48 hours. Perfuse-fixed aortas were 

paraffin-embedded for Gomori Trichrome (Alberta Diabetes Institute Histology 

Core; University of Alberta, Edmonton, AB, Canada) and Verhoeff-Van Gieson 

(VVG) staining (University of Alberta Department of Laboratory Medicine and 

Pathology; Edmonton, AB, Canada). 

2.6.1 Gomori Trichrome (GT) stain 

Paraffin-embedded aortas were cross-sectioned (5μm in thickness) for 

Gomori trichrome staining (Alberta Diabetes Institute Histology Core; University 

of Alberta, Edmonton, AB, Canada). Slides were deparaffinised and hydrated with 

distilled water. Slides were placed in 60 °C Bouin’s solution (Sigma-Aldrich; 

Oakville, ON, Canada) for 30 minutes and cool it at room temperature for another 

30 minutes. Slides were washed with water for 5 minutes and stained with trichrome 

stain (1.2 g of chromotrope 2R, 0.6 g of light green SF, 1.6 g of 

dodecatungstophospho -ric acid, and 20 mL of distil water) for 20 minutes. Slides 



 

41 

 

were placed in 0.5% glacial acetic acid for 2 minutes and dehydrated through 100% 

ethanol.  

2.6.2 Verhoeff-Van Gieson (VVG) stain 

Slides were deparaffinised and hydrated with water. Slides were placed in 

Verhoeff’s solution (20 mL of 5% alcoholic hematoxylin, 8mL of 10% ferric 

chloride and 8mL of Weigert’s iodine solution (2% potassium iodide and 1% iodine 

in distill water)) for 1 hour. Slides were rinsed with water and incubated with 2% 

ferric chloride for 2 minutes. Slides were washed with water and treated with 5% 

sodium thiosulphate for 1 minute. Slides were washed in water for 5 minutes and 

counterstained in Van Geison’s solution (15 mL of 1% aqueous acid fuschin, 50 

mL saturated aqueous picric acid and 50mL of distill water) for 3 minutes. Slides 

were dehydrated in 95% and 100% alcohol and cleared in xylene for 3 minutes 

each. 

2.7 RNA expression analysis 

2.7.1 RNA extraction  

Prior to any molecular work, blood in the vessels were flushed away. Any 

adipose tissue or nerves were removed as well. For aorta, side branches including 

brachiocephalic artery, left and right common carotid arteries were removed. 

Samples were homogenized by using tissue crusher. 500 μl of ice-cold Trizol 

(Invitrogen; Burlington, ON, Canada) was added to each tube. Tubes were 

incubated in ice for 5 minutes and centrifuged at 12,000 × g for 10 minutes at 4 °C. 

Supernatant was transferred to new tube and 500 μl of ice-cold Trizol was added to 
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each tube and the mixture was pipetted up and down. Tubes were incubated in ice 

for 5 minutes and centrifuged at 12,000 × g for 10 minutes at 4°C. Supernatant was 

transferred to the tube with which contains supernatant from previous step and 200 

μl of chloroform was added.  Tubes vigorously were shook for 15 seconds and 

incubated in ice for 5 minutes. Tubes were centrifuged at 12,000 × g for 15 minutes 

at 4 °C and the upper colorless phase was transferred to new tube. 500μl of 

isopropanol was added to each tube and tubes were incubated at -20 °C for 7 days. 

After incubation, tubes were centrifuged at 12,000 × g for 10minutes at 4 °C. The 

supernatant was removed and discarded. 1mL of 75% ethanol was added to each 

tube and the mixture was pipetted until the pellet was completely dislodged. Tubes 

were centrifuged at 7,500 × g for 5 minutes at 4 °C and the supernatant was removed 

and discarded. The pellet was dried for 5 minutes to remove any ethanol remnant. 

12 μl of RNA –free water was added to dissolve RNA. 1 μl of RNA was loaded to 

NanoDrop 1000 Spectrophotometer (Thermo Scientific; Willmington, DE, USA) 

to measure the concentration.  Samples were stored at -80 °C. 

2.7.2 Taqman RT-PCR 

In order to generate complementary DNA (cDNA), RNA was reverse 

transcribed. PCR water was added to 1 μg of RNA to make final volume of 9 μl. 2 

μl of random hexamers was added. Samples were incubated at 70 °C for 10 minutes 

and centrifuged briefly at 10,000 × g at 4 °C. 9 μl of mixture (4 μl of 5× buffer, 2 

μl of DTT from 0.1M stock, 1 μl dNTP from 25 mM stock, 1 μl SuperScript II 

Reverse Transcriptase(Invitrogen; Burlington, ON, Canada), 1 μl RNase inhibitor 

from 40 U/μl stock(Invitrogen; Burlington, ON, Canada). Tubes were incubated at 
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40 °C for 1 hour. 396 μl of PCR water was added to 4 μl of RT products. 10μl of 6 

serial dilutions of standard (0.625, 1.25, 2.5, 5, 10 and 20μg) were added to each 

well of 384-well white bottom plates. 4.17μl of Mastermix (Applied Biosystems; 

Carlsbad, CA, USA), 0.35μl of forward primer, 0.35μL of reverse primer, 0.35μl 

of probe, 2.78μl of H2O, and 5μl of sample cDNA were added to each well. All 

samples were run in triplicates. Optical adhesive film was used to cover the plate. 

Real-time PCR reaction was performed for 2 hours using the LightCycler® 480 

Real-Time PCR System. Readings were normalized by control HPRT 

(hypoxanthine-guanine phosphoribosyltransferase-1). The primers and probes of 

genes used in our study are listed in Table 2.5. 

Table 2.5 Taqman primers and probe sequences. 

Gene Primer/Probe Sequence 

HPRT 

 

 

Forward: 

Reverse: 

Probe: 

5'-AGC TTG CTG GTG AAA AGG AC-3' 

5'-CAA CTT GCG CTC ATC TTA GG-3' 

5'-FAM-CAA CAA AGT CTG GCC TGT ATC 

CAA C-TAM RA-3' 

TIMP1 Forward: 

Reverse: 

Probe: 

5'-CAT GGA AAG CCT CTG TGG ATA TG-3' 

5'-AAG CTG CAG GCA CTG ATG TG-3' 

5'-FAM-CTC ATC ACG GGC CGC CTA AGG 

AAC-TAM RA-3' 
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TIMP2 Forward: 

Reverse: 

Probe: 

5'-CCA GAA GAA GAG CCT GAA CCA-3' 

5'-GTC CAT CCA GAG GCA CTC ATC-3' 

5'-FAM-ACT CGCT GTC CCA TGA TCC CTT 

GC-TAM RA-3' 

TIMP3 Forward: 

Reverse: 

Probe: 

5'-GGC CTC AAT TAC CGC TAC CA-3' 

5'-CTG ATA GCC AGG GTA CCC AAA A-3' 

5'-FAM-TGC TAC TAC TTG CCT TGT TTT 

GTG ACC TCC A-TAM RA-3' 

TIMP4 Forward: 

Reverse: 

Probe: 

5'-TGC AGA GGG AGA GCC TGA A-3' 

5'-GGT ACA TGG CAC TGC ATA GCA-3' 

5'-FAM-CCA CCA GAA CTG TGG CTG CCA 

AAT C-TAMRA-3' 

MMP2 Forward: 

Reverse: 

Probe: 

5’-AAC TAC GAT GAT GAC CGG AAG TG-3’ 

5’-TGG CAT GGC CGA ACT CA-3’ 

5’-FAM-TCT GTC CTG ACC AAG GAT ATA 

GCC TAT TCC TCG-TAM RA-3’ 

MMP9 

Forward: 5’-CGA ACT TCG ACA CTG ACA AGA AGT 

-3’ 
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Reverse: 

Probe: 

5’- GCA CGC TGG AAT GAT CTA AGC-3’ 

5’-FAM-TCT GTC CAG ACC AAG GGT ACA 

GCC TGT TC-TAM RA-3’ 

IL-1β 

 

 

 

Forward: 

Reverse: 

Probe: 

5'-AAC CTG CTG GTG TGT GAC GTT C-3’ 

5'-CAG CAC GAG GCT TTT TTG TTG T-3’ 

5'FAM-TAG ACA GCT GCA CTA CAG GCT 

CCG AGA TG-TAMRA-3’ 

IL-6  

 

 

 

Forward: 

Reverse: 

Probe: 

5'-ACA ACC ACG GCC TTC CCT ACT T-3’ 

5'-CAC GAT TTC CCA GAG AAC ATG TG-3’ 

5'FAM TTC ACA GAG GAT ACC ACT CCC 

AAC AGA CCT-TAMRA-3’ 

pro-

collagen I-

α1 

Forward: 

Reverse: 

Probe: 

5’-CTTCACCTACAGCACCCTTGTG-3’ 

5’-TGACTGTCTTGCCCCAAGTTC-3’ 

5’-FAM-CTGCACGAGTCACACC-TAMRA-3’ 

MCP-1 

Forward: 

 

Reverse: 

 

Probe: 

5’- GTT GGC TCA GCC AGA TGC A-3’ 

 

5’-AG CCT ACT CAT TGG GAT CAT CTT G-

3’ 

 

5’-FAM-

TTAACGCCCCACTCACCTGCTGCTACT-

TAMRA-3’ 

 

Elastin 
 Applied Biosystems Assay ID Mm00514670_m1 
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(premixed primers/probe) 

TGF-β 
 Applied Biosystems Assay ID Mm01178819_m1 

(premixed primers/probe) 

TGF-β: transforming growth factor-beta; TNF-α: tumor necrosis factor-alpha; 

MCP-1: monocyte chemoattractant protein-1; IL-1β: interleukin-1 beta; IL-6: 

interleukin-6; 

2.8 Protein analysis 

2.8.1 Protein extraction 

Samples were homogenized by using tissue crusher.  Liquid nitrogen was 

constantly applied to prevent samples from thawing. Eppendorf containing 

homogenized sample was centrifuged for 5 seconds. 80 µl of RIPA without EDTA 

extraction buffer (Table2.6) containing protease inhibitor (Cocktail Set III; 

Calbiochem; San Diego, CA, USA), phosphatase inhibitors (Cocktail Set II; Sigma-

Aldrich, Oakville, ON, Canada, and Cocktails Set IV; Calbiochem; San Diego, CA, 

USA) was added to each tube. For elastase activity assay, Cytobuster Protein 

Extraction Buffer (Novagen; Madison, WI, USA) was used to extract protein. 

Tubes were vortexed for 1 minute and kept in the ice for 5 minutes. This step was 

repeated three times. Samples were centrifuged at 14,000 × g for 15 minutes at 4 

°C. Supernatant was transferred to a new tube and samples were dilute in 1 to 5 

ratios for quantification. 
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Table 2.6 RIPA Protein extraction buffer pH 7.4 in ddH2O  

Chemical name M.W. 

(g/mol) 

Conc.stock Conc.final 

Tris-HCl 121.14 N/A 50 mM 

Sodium chloride (NaCl) 58.44 N/A 150 mM 

Triton X-100 (detergent) 624.00 N/A 1% 

SDS (detergent) 288.38 N/A 0.1% 

NP40 (detergent) N/A N/A 1% 

Sodium deoxycholate 

(detergent) 

414.55 N/A 1% 

 

2.8.2. Protein quantification 

5 µl of protein standard (series dilution of BSA in ddH2O starting from 2.0 

µg/mL) and samples to each well of 96-well clear bottom plates. Protein 

concentration was measured by using the Bio-Rad DC protein assay kit (Bio-Rad; 

Missisauga, ON, Canada). 25 μl of Solution A’ (mixture of 1000 μl of Solution A 

to 20 μl of Solution B) and 200 μl of Folin Reagent were added to each well. All 

samples were run in triplicates. The plate was wrapped with foil and incubated at 

the room temperature for 10 minutes. Absorbance was measured at 750 nm using 

SoftMax Pro. Based on the absorbance (optical density), concentration of protein 

was calculated. Data was plotted in scatter plots with concentration on X-axis and 

optical density on Y-axis. Actual concentration was calculated based on the slope 
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of the regression/trend line. Samples were stored at -80°C for western blot or in 

vitro gelatinase analyses. 

2.8.3 Western blotting 

Samples were prepared by combining 25 μg of protein, protein loading 

buffer (Table.2.7) and PBS (Table.2.8) and boiled for 5 minutes to denature the 

protein. Samples were loaded into 5% sodium dodecyl sulphate-based 

polyacrylamide (SDS) stacking gel and separated through SDS loading gel (8-15% 

gradient gel) via electrophoresis at 120V (Bio Rad; Mississauga, ON, Canada) in 

the presence of running buffer solution (Table 2.9).   

Table 2.7 Sample loading buffer pH 6.8 in ddH2O - Western blot  

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 130 mM  65 mM 

SDS 288.38 4.6%  2.3% 

Bromophenol Blue 669.96 0.2%  0.1% 

Glycerol 92.09 20%  10% 

Dithiothreitol (DTT) 154.25 2%  1% 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

Table 2.8 Phosphate-buffered Saline (PBS) pH 7.4 in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Sodium chloride (NaCl) 58.44 1370 mM  137mM 

Potassium chloride (KCl) 74.55 27 mM  2.7 mM 

Sodium phosphate dibasic 

(Na2HPO4) 

141.96 100 mM  10 mM 

Potassium phosphate 

monobasic (KH2PO4) 

136.09 18 mM 1.8 mM 

 

Table 2.9 Running buffer pH 8.3 in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 250 mM  25 mM 

Glycine 75.07 1920 mM  192 mM 

Sodium dodecyl sulfate 

(SDS) 

288.38 10% 1% 

 

Samples was transferred polyvinylidene fluoride (PVDF) membrane at 200 

mAs for 90 minutes in the presence of transfer buffer solution (Table 2.10). The gel 

was stained with commasie blue staining solution (Table 2.11) for 2 hours at room 

temperature and destained with water. This gel was used for loading control. The 

membrane was blocked with 5% skim milk in TBS (Table 2.12) with 0.1% Tween 

(TBST) for 2 hours at room temperature.  
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Table 2.10 Transfer buffer pH 8.3 in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris- HCl 121.14 200 mM 20 mM 

Glycine 75.07 1500 mM 150 mM 

Methanol 32.04 N/A 20% 

 

Table 2.11 Coomassie blue staining solution in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Coomassie Brilliant Blue 825.97 N/A 2% 

Methanol 32.04 N/A 25% 

Acetic acid 60.05 N/A 10% 

 

Table 2.12 Tris-buffered Saline (TBS) pH 8.0 in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Sodium chloride (NaCl) 58.44 1250 mM 125 mM 

Tris-HCl 121.14 250 mM 25 mM 

 

Primary antibody, diluted in 5% skim milk in TBST, was applied overnight 

at 4 °C. Next day, the membrane was washed with TBST three times for 10 minutes 

to remove leftover primary antibody. Appropriate species-based horse radish 

peroxidase (HRP) linked-secondary antibody, diluted 5% skim milk in TBST, was 

applied for 2 hours at room temperature. The membrane was washed with TBST 

three times for 10 minutes. Enhanced Chemiluminescence prime (GE Amersham; 

Baie d’Urfe, QC, Canada) was applied to the membrane for 5 minutes and the 
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membrane was developed and imaged using a luminescent image analyzer housing 

a chemiluminescence-sensitive camera. (GE ImageQuant LAS 4000; GE). The 

PVDF membrane was then stripped with a mild stripping buffer (Table 2.13) for 30 

min at 55 °C for subsequent immunoblotting of the membrane. 

Table 2.13 Western blot Membrane Stripping buffer pH 6.8 in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 1000 mM (pH 6.8) 62.5 mM 

SDS 288.38 20% 2% 

β-mercaptoethanol 78.13 14300mM 100mM 

 

2.8.4 In vitro Gelatin zymography 

Samples were prepared by combining 20 μg of protein, protein loading 

buffer (Table.2.14) and PBS (Table.2.8). Samples were quickly centrifuged and 

loaded to 8% gelatin-based polyacrylamide gel. HT-1080, a fibrosarcoma cell line 

which produce high levels of MMPs, in particular MMP2 and MMP9, was used as a 

positive control. The gel was ran at 60 mA for 75 minutes. After electrophoresis, the 

gel was rinsed with 2.5% Triton X-100 for 1 hour to remove remaining SDS. After 

another washing with ice-cold substrate buffer (Table 2.15) for 40 minutes, the gel was 

incubated in cold substrate buffer (Table 2.16) at 37 °C for 48 hours. The substrate 

buffer was changed after first 24-hour incubation. The gel was stained with staining 

solution (Table 2.11) overnight at room temperature. The gel was destained for 1 

hour using destaining solution (Table 2.17) and imaged using a luminescent image 
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analyzer housing a chemiluminescence-sensitive camera. (GE ImageQuant LAS 

4000; GE). 

Table 2.14 Sample loading buffer pH 6.8 in ddH2O - Zymography)38  

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 125 mM 62.5 mM 

Glycerol 92.09 20% 10% 

SDS 288.38 4% 2% 

Bromophenol Blue 669.96 0.02% 0.01% 

 

Table 2.15 Substrate buffer in ddH2O - Zymography 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Tris-HCl 121.14 2000 mM 50 mM 

Calcium chloride 

(CaCl2)•2H2O 

147.02 2000 mM 5 mM 

Sodium chloride (NaCl) 58.44 N/A 150 mM 

Sodium azide (NaN3) 65.01 5% 0.05% 

 

Table 2.16 Polyacrylamide Gel Staining solution in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Coomassie blue 854.00 N/A 2% 

Methanol 32.04 N/A 25% 

Acetic acid 60.05 N/A 10% 
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Table 2.17 Polyacrylamide Gel Destaining solution in ddH2O 

Chemical name M.W. (g/mol) Conc.stock Conc.final 

Methanol 32.04 N/A 30% 

Acetic acid 60.05 N/A 1% 

 

2.8.5 Quantification of bands on Western blots and gelatin zymography 

Quantification of the protein bands on either the western blot or zymography 

was measured using densitometry analysis software (ImageQuant TL 7.0; GE). 

Intensity of target bands relative to the background were measured. This value was 

normalized to the density of its corresponding loading control. 

2.9 Elastase in vitro activity assay 

Total elastase activity was measured using fluorescent-based EnzChek® 

Elastase Assay Kit (Invitrogen; Burlingtion, ON, Canada). Soluble elastin from the 

kit is labeled with dye which quench fluorescence from conjugate and non-

fluroescent substrate is digested by elastase which gives off fluorescence. Proteins 

were extracted using Cytobuster Protein Extraction Buffer (Novagen; Madison, WI, 

USA). 50 µl of 1× reaction buffer, 50 µl of 100 µg/mL of elastin working solution, 

and 100 µl of the diluted elastase were added to each well. 35 µg of protein was 

added to each well. Fluorescence was measured every 10 minutes for 4 hours with 

excitation at 485 nm and emission at 520 nm using SoftMax Pro. Data was plotted 

in scatter plots with time on X-axis and amount of fluorescence on Y axis. Actual 

activity was calculated based on the slope of the regression/trend line. 



 

54 

 

2.10 Isolation of vascular smooth muscle cells (VSMCs) for cell culture  

Mice were injected with 50 µL Heparin (10 units/ml; LEO Inc. Thornhill. 

ON. Canada) to prevent any blood clot formation inside of the aorta. After 10 

minutes, mice were anesthetized with 0.2 mL of Ketamine-Xylazine combination 

(2 mL of 100 mg/mL Ketamine stock, 1mL of 20mg/mL Xylazine stock, and 7 mL 

of Normal saline 0.9%). Incision site was sterilized with 70% ethanol. Thoracic 

aorta (from the beneath of the atria to the diaphragm) and abdominal aorta (from 

the diaphragm to renal arteries) were carefully harvested in small Petri dishes 

containing 2 mL of PBS with gentamicin. Any adipose tissue or nerves were 

removed carefully. Aortic wall was exposed by cutting open in longitudinal way. 

Adventitial layer was peeled off with a forceps and endothelial layer was scraped 

off. The aorta was cut into small pieces (1mm × 1mm) and aortic explants were 

placed carefully into a Petri dish. The dish was incubated in a humidified 

atmosphere at 37 °C in 5% CO2 and 95% O2 for 15 minutes. 3 mL of Dulbecco's 

modified Eagle medium (DMEM; Invitrogen; Burlingtion, ON, Canada.) 

supplemented with 20% fetal bovine serum (FBS; Sigma-Aldrich; Oakville, ON, 

Canada),  Gentamicin sulphate (Santa Cruz; Santa Cruz, CA, USA) and Fungizone 

(Invitrogen; Burlingtion, ON, Canada) were added to the dish. Dish was incubated 

for first 7 days and the medium was replaced every two days (DMEM with 10% 

FBS, Gentamicin sulphate and Fungizone). When cells reached greater than 90% 

confluency, cells were split 1:1 using 0.12% trypsin (Worthington Biochemical 

Corporation; Lakewood, NJ.) and 0.005% Ethylenediaminetetraacetic acid (EDTA; 

Sigma-Aldrich; Oakville, ON, Canada) in PBS. 
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2.11 Statistical analysis 

An unpaired t test was used to compare the effects of regional heterogeneity 

in figure 3..1 Two-way analysis of variance (ANOVA) was performed to compare 

data sets with two factors (genotype and treatment). Two-way repeated-measures 

ANOVA analysis was performed for blood pressure data in Figures 3.5 and 3.21. 

Statistical analyses were performed using SPSS software (Chicago, Illinois, 

Version 10.1). Normality test (Sahpir-Wilk) was performed to confirm normal 

distribution of all data. Averaged values are represented as mean ± SEM. Statistical 

significance is recognized at p<0.05. 

. 
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3.1 Regional heterogeneity of the expression levels of ECM structural proteins, 

MMPs and TIMPs between thoracic and abdominal aortas from WT mice 

To examine regional heterogeneity of expression levels of ECM structural 

proteins, MMPs and TIMPs in WT mice, aortas were separated into thoracic and 

abdominal regions. mRNA expression levels of Collagen I, elastin, MMP2, MMP9, 

MMP13, MT1-MMP, TIMP1, TIMP2, TIMP3, and TIMP4 in thoracic and 

abdominal aortas from WT mice were measured (Figure 3.1). Compared to thoracic 

aorta, abdominal aorta shows significantly decreased expression levels of Collagen 

I, elastin. MMP2, TIMP1, TIMP2, and TIMP3. No significant differences is 

observed in expression levels of MMP7, MMP9, MT1-MMP and TIMP4.   
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Figure 3.1 mRNA expression levels of ECM structural proteins, MMPs and TIMPs 

in WT aortas. 

Averaged mRNA expression levels of Collagen I, elastin, MMP2, MMP9, MMP13, 

MT1-MMP, TIMP1, TIMP2, TIMP3, and TIMP4 from WT aortas 

(N=5/group/genotype). *P<0.05 for the main effect. 
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3.2 MMP2-deficient mice develop thoracic aortic aneurysm (TAA) following 4 

weeks of systemic Ang II infusion 

The entire aortas from WT and MMP2-/- mice were dissected for images 

(Figure 3.2). We did not find differences in baseline phenotype between WT and 

MMP2-/- aortas. Following 4 weeks of systemic Ang II infusion (1.5mg/kg/day), 

WT aortas underwent constructive remodeling with uniform dilation throughout the 

aorta. None of the WT mice developed thoracic or abdominal aortic aneurysm. We 

found that MMP2-/- aortas underwent destructive remodeling and as such, 70% of 

these mice developed thoracic aortic aneurysm (TAA). Abdominal aortic aneurysm 

was not detected in MMP2-/- mice.  

 

 

Figure 3.2 MMP2-/- - Ang II mice developed thoracic aortic aneurysm. 

Representative images of the entire aorta from saline and Ang II-infused WT and 

MMP2-/- mice. 

 

 

 

 

MMP2
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- Ang II MMP2
-/-
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3.3 MMP2-deficient mice show impaired recoil property in thoracic aorta 

following Ang II infusion 

Aortic diameters were measured using ultrasound recording in B-mode (A) 

and M-mode (B) (Figure 3.3). Baseline aortic diameters were similar between WT 

and MMP2-/- mice. MMP2-/- - Ang II aortas exhibited greater dilation than WT – 

Ang II mice.  Compared to other groups, MMP2-/- - Ang II aortas showed 

significantly reduced aortic wall motion which is indicated by the flat line in M 

mode (Figure 3.3B). Following Ang II infusion, both genotypes showed 

significantly increased systolic and diastolic aortic diameters compared to the 

parallel saline groups (Figure 3.4A and B). Diastolic aortic diameter was 

significantly different between the two genotypes following Ang II infusion (Figure 

3.4Bi). Aortic expansion index, which is calculated as the percent difference 

between systolic and diastolic diameters, was markedly suppressed in MMP2-/- - 

Ang II aortas compared to WT - Ang II aortas (Figure 3.4Ci). Aortic expansion 

index of proximal aorta was similarly reduced in both genotypes following Ang II 

infusion (Figure 3.4Cii). These data indicate impaired recoil property of MMP2-/- - 

Ang II thoracic aortas. 
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Figure 3.3 Representative ultrasound images of the thoracic aortas from WT and 

MMP2-/- mice. 

Representative ultrasound images of the thoracic aorta taken at the B-mode (A) and 

M-mode (B) in saline and Ang II-infused WT and MMP2-/- mice. TAD indicates 

thoracic aortic diameter. SD indicates systolic diameter and DD indicates diastolic 

diameter. 
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Figure 3.4 Averaged aortic diameter and expansion index of saline and Ang II-

infused WT and MMP2-/- mice. 

Averaged systolic (A), diastolic aortic diameters (B), and aortic expansion index 

(C) in thoracic (i), proximal (ii), and abdominal (iii) aortas of saline and Ang II-

infused WT and MMP2-/- mice (N=7/group/genotype). *P<0.05 for the main effect, 

#p<0.05 for the interactions. 

3.4 Blood pressure is similarly increased in WT and MMP2-deficient mice 

following Ang II infusion 

During the first 2 weeks of Ang II infusion, blood pressure was measured, 

and WT and MMP2-/- mice showed a similar hypertensive response to Ang II 

infusion (WT: 164.5±1.12 mmHg and MMP2-/-: 172.9±0.24 mmHg; Figure 3.5). 

We did not observe a significant difference in baseline blood pressure between 

genotypes.  
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Figure 3.5 Blood pressure of WT and MMP2-/- mice following Ang II infusion 

Blood pressure was measured using the non-invasive tail-cuff system from saline 

and Ang II infused WT and MMP2-/- mice (N=6/group/genotype). Repeated-

measures analysis was performed for statistical analysis. 

3.5 Thoracic aortas from MMP2-deficient mice exhibit adverse aortic 

remodeling following 4 weeks of Ang II infusion 

We assessed aortic remodeling by analyzing the predominant arterial 

structural proteins, elastin and collagen fibers. Gomori trichrome (GT) staining, 

which indicates collagen structure in green, showed disorganization of collagen 

structure in the thoracic aorta of MMP2-/- - Ang II compared to WT - Ang II mice 

(Figure 3.6). Similarly, Verhoeff-Van Gieson (VVG) staining, where elastin fibers 

appear as black lines, showed more disruptions of elastin fibers in the thoracic aorta 

of MMP2-/- - Ang II compared to WT - Ang II group. We do not find differences in 

WT and MMP2-/- saline mice. Abdominal aortas from saline and Ang II infused 

WT and MMP2-/- mice show intact collagen and elastin fibers (Figure 3.7). 
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Figure 3.6 Gomori trichrome (GT) and Verhoeff-Van Gieson (VVG) staining of 

thoracic aortas from saline and Ang II infused WT and MMP2-/- mice. 

Representative images of thoracic aortas from saline and Ang II infused WT (A and 

C) and MMP2-/- (B and D) mice stained with GT (i) and VVG staining (ii). Red 

arrows show disruption of corresponding structural proteins. 
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Figure 3.7 Gomori trichrome (GT) and Verhoeff-Van Gieson (VVG) staining of 

abdominal aortas from saline and Ang II infused WT and MMP2-/- mice. 

Representative images of abdominal aortas from saline and Ang II infused WT (A 

and C) and MMP2-/- (B and D) mice stained with GT (i) and VVG staining (ii).  
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3.6 Aneurysmal thoracic aortas from MMP2-deficient mice show reduced 

mRNA and protein levels of elastin  

In WT mice, compared to the saline group, following 4 weeks of Ang II 

infusion protein level of α-elastin in thoracic and abdominal aortas is significantly 

elevated (Figure 3.7 i). Compared to the saline group, in MMP2-/- mice, protein 

levels of α-elastin in abdominal but not thoracic aortas showed significant increase 

following 4 weeks of Ang II infusion (Figure 3.7 ii). Ang II infusion resulted in a 

significant increase in the mRNA expression of elastin in WT mice, but not in 

MMP2-/- mice (Figure 3. iii). 

 

Figure 3.8 Protein and mRNA expression levels of α-elastin. 

Representative Western blot image for α-elastin (i). Average protein (ii) and mRNA 

(iii) levels of α-elastin from saline and Ang II-infused WT and MMP2-/- mice 

(N=5/group/genotype). Coomassie blue-stained gel was used as the loading control. 

*P<0.05 for the main effect, #p<0.05 for the interactions. 
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3.7 WT and MMP2-deficient mice do not show significant differences in 

protein levels of Collagen I following 4 weeks of Ang II infusion 

Saline and Ang II infused aortas from WT and MMP2-/- mice show similar 

changes in the protein levels of collagen type I (Figure 3.8 i and ii). Following Ang 

II infusion, Collagen I protein levels is significantly increased in WT and MMP2-/- 

mice compared to the parallel saline groups. mRNA expression of Collagen I is 

significantly increased in both WT and MMP2-/- mice following Ang II infusion 

and significant difference between the genotypes is observed in abdominal aorta 

(Figure 3.8 iii). 

 

 

Figure 3.9 Protein and mRNA expression levels of Collagen I. 

Representative western blot image for Collagen I (i). Averaged protein (i) and 

mRNA (ii) levels of Collagen I from saline and Ang II-infused WT and MMP2-/- 

mice (N=5/group/genotype). Coomassie blue-stained gel was used as the loading 

control. *P<0.05 for the main effect, #p<0.05 for the interactions. 
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3.8 Expression profile of MMPs in thoracic and abdominal aortas from WT 

and MMP2-deficient mice 

Expression of MMPs (MMP2, MMP9, MMP13 and MT1-MMP), which 

have been consistently reported in aneurysmal aortas, are examined to study the 

role of these MMPs in TAA formation in MMP2-/- Ang II mice. mRNA expression 

levels of MMP2, MMP9, MMP13, and MT1-MMP were measured in saline and 

Ang II infused thoracic and abdominal aortas from WT and MMP2-/- mice (Figure 

3.10). MMP2 levels were significantly elevated in both thoracic and abdominal 

aortas from WT - Ang II mice compared to the saline group (Figure 3.10 i). MMP9 

levels were significantly elevated in WT mice following Ang II infusion but this 

elevation is not observed in MMP2-/- mice (Figure 3.10 ii). MMP13 levels were 

significantly elevated following Ang II infusion in all groups (Figure 3.10 iii). 

Abdominal aorta from WT mice showed significantly higher MMP13 levels 

compared to other parallel groups. MT1-MMP levels were significantly elevated in 

WT and MMP2-/- mice following Ang II infusion (Figure 3.10 iv). Taken together, 

mRNA expression patterns of MMP2, MMP9, MMP13, and MT1-MMP in thoracic 

aorta from MMP2-/- -Ang II mice does not explain TAA formation in MMP2-/- mice. 
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Figure 3.10 mRNA expression levels of MMP2, MMP9, MMP13 and MT1-MMP 

Averaged mRNA expression levels of MMP2 (i), MMP9 (ii), MMP13 (iii), and 

MT1-MMP (iv) from saline and Ang II-infused WT and MMP2-/- aortas 

(N=5/group/genotype). *P<0.05 for the main effect, #p<0.05 for the interactions. 

 

3.9 mRNA expression levels of TIMPs in thoracic and abdominal aortas from 

WT and MMP2-deficient mice 

To examine the balance between MMPs and TIMPs, mRNA expression 

levels of endogenous MMP inhibitors, TIMPs were measured in saline and Ang II 

infused thoracic and abdominal aortas from WT and MMP2-/- mice (Figure 3.11). 

mRNA expression of TIMP1 was significantly elevated in thoracic and abdominal 

aortas from WT-Ang II mice but in MMP2-/- mice, this increase was only observed 

in abdominal aortas (Figure 3.11 i). mRNA expression of TIMP2 was significantly 
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elevated in WT aortas but the Ang II-induced increase was not observed in MMP2-

/- aortas (Figure 3.11 ii). TIMP3 mRNA expression levels were only increased in 

Ang II infused WT abdominal aorta (Figure 3.11 iii). Ang II infused MMP2-/- aortas 

showed significantly reduced TIMP3 levels compare to the parallel WT groups 

(Figure 3.11 iii). mRNA expression of TIMP4 was significantly elevated following 

Ang II infusion in WT aortas but this increase was not observed in MMP2-/- mice 

(Figure 3.11 iv).  

 

Figure 3.11 mRNA expression levels of TIMP1, TIMP2, TIMP3, and TIMP4 from 

saline and Ang II infused WT and MMP2-/- aortas. 

Averaged mRNA expression levels of TIMP1 (i), TIMP2 (ii), TIMP3 (iii), and 

TIMP4 (iv) from saline and Ang II-infused WT and MMP2-/- mice 

(N=5/group/genotype). *P<0.05 for the main effect, #p<0.05 for the interactions. 



 

71 

 

3.10 Thoracic aortas from MMP2-deficient mice do not show enhanced ECM 

degradation 

In order to determine the mechanism underlying the reduction of elastin in 

thoracic aortic wall of MMP2-/- mice, the contributions of proteases in thoracic 

aortas were investigated. In vitro gelatin zymography showed no significant 

differences in MMP9 levels between WT and MMP2-/- mice (Figure 3.12). 

Following Ang II infusion, WT mice showed increased levels of pro-MMP2 and 

cleaved/active MMP2. There are no significant difference in MMP9 activation 

between groups. Total elastase activity was elevated in Ang II infusion groups 

compared to the parallel saline groups and the extent of elevation was significantly 

reduced in MMP2-/- -Ang II mice compared to WT-Ang II  mice (Figure 3.13).  

 

Figure 3.12 No significant differences in activation of MMP9 

Representative images of in vitro gelatin zymography (i). Averaged activation 

levels of pro-MMP2 (ii), MMP2 (iii), and MMP9 (iv) (N=6/group/genotype). 

Coomassie blue-stained gel was used as the loading control *P<0.05 for the main 

effect. 
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Figure 3.13. No significant differences in total elastase activity 

Total elastase activity of the thoracic aortas from saline and Ang II infused WT and 

MMP2-/- mice (N=5/group/genotype). *P<0.05 for the main effect, #p<0.05 for the 

interactions. 

3.11 Thoracic aortas from MMP2-deficient mice show reduced active TGFβ 

levels 

In order to determine the underlying molecular mechanism of the 

development of TAA in MMP2-/- - Ang II mice, we examined TGFβ signaling 

pathway in thoracic aortas from WT and MMP2-/- mice. Following Ang II infusion, 

protein level of active TGFβ were significantly elevated in WT and MMP2-/- mice 

(Figure 3.14). However, MMP2-/- - Ang II aortas showed a significantly lower 

levels of active TGFβ protein compared to the parallel WT – Ang II aortas.  
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Figure 3.14 Protein levels of active TGFβ 

Representative image of western blot of active TGFβ (A). Averaged protein levels 

(B) of TGFβ (N=6/group/genotype). *p<0.05 for the main effect, #p<0.05 for the 

interactions. 

 

3.12 Thoracic aortas from MMP2-deficient mice show impaired Smad 

signaling pathway  

In order to examine downstream of TGFβ signaling pathway, protein levels 

of phosphorylated-Smad2 (P-Smad2), phosphorylated-Smad3 (P-Smad3), total 

Smad2 and total Smad3 were measured in thoracic aortas from WT and MMP2-/- 

mice (Figure 3.15). WT, but not MMP2-/- mice showed significantly elevated 

protein levels of P-Smad2 and P-Smad3 following 4 weeks of Ang II infusion 

(Figure 3.15 ii and iii). Protein levels of total Smad2 and Smad3 were also 
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significantly elevated in WT - Ang II compared to WT saline whereas this increase 

was not observed in MMP2-/- mice (Figure 3.15 iv and v).  

 

Figure 3.15 Protein levels of P-Smad2, P-Smad3, Smad2, and Smad3. 

Representative image of western blot of P-Smad2, P-Smad3, Smad2, and Smad3 

(i). Averaged protein levels of P-Smad2 (ii), P-Smad3 (iii), Smad2 (iv), and Smad3 

(v) (N=6/group/genotype). *P<0.05 for the main effect, #p<0.05 for the 

interactions. 

3.13 Inflammatory cells do not contribute to the development of thoracic aortic 

aneurysm in MMP2-deficient mice 

We examined the mRNA expression levels of inflammatory markers in 

thoracic aortas from WT and MMP2-/- mice (Figure 3.16). Following Ang II 
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infusion, WT and MMP2-/- aortas showed elevated expression levels of MCP1, and 

IL-1β. MMP2-/--Ang II, but not WT-Ang II mice showed significant elevation in 

expression levels of TNF and IL-6. Compared to WT-Ang II, MMP2-/--Ang II 

aortas showed lower levels of inflammatory markers but this difference does not 

reach statistical significance. Immunofluorescence staining for neutrophils was 

performed to examine localization of inflammatory cells in thoracic aortas from 

WT and MMP2-/- mice and positively stained neutrophils are comparable between 

the four groups. (Figure 3.17).  

 

Figure 3.16 mRNA expression levels of inflammatory markers from WT and 

MMP2-/- thoracic aorta 

Averaged mRNA expression levels of MCP1, TNF, IL-1β, and IL-6 from WT and 

MMP2-/- thoracic aorta in response to Ang II (N=5/group/genotype). *P<0.05 for 

the main effect. 
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Figure 3.17 Immunofluorescence staining for neutrophils 

Immunofluorescence staining for neutrophils (red) superimposed with DAPI 

nucleus staining (blue) in thoracic aortas from WT and MMP2-/- mice. 

3.14 Effect of Ang II or TGFβ on vascular smooth muscle cells from WT and 

MMP2-/- thoracic aorta  

To identify the role of vascular smooth muscle cells (VSMCs) in 

susceptibility of MMP2-/- mice to thoracic aortic aneurysm, cultured VSMCs from 

WT and MMP2-/- thoracic aortas were treated with Ang II (10μM) or TGFβ 

(10ng/mL). mRNA expression levels of ECM proteins, elastin and collagen, were 

measured in response to Ang II or TGFβ (Figure 3.19). Ang II treatment did not 

increase mRNA expression of collagen type I in WT VSMCs, but resulted in a 

significant increase in MMP2-/- VSMCs. Elastin levels were markedly elevated in 

both WT and MMP2-/- VSMCs following Ang II treatment (Figure 3.18 A). In 
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respond to TGFβ, both WT and MMP2-/- VSMCs showed significantly increased 

Col1 and elastin levels, indicating that the downstream pathway of TGFβ is intact 

in the MMP2-/- VSMCs (Figure 3.18 B).  

 

Figure 3.18 mRNA expression of collagen and elastin in VSMCs from WT and 

MMP2-/- thoracic aorta in response to Ang II or TGFβ 

Averaged mRNA expression levels of elastin and collagen I in response to Ang II 

(A) or TGFβ (B) (N=3/group/genotype). *P<0.05 for the main effect, #p<0.05 for 

the interactions. 
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3.15 WT and MMP2-deficient mice are protected against aortic aneurysm 

following 6 weeks of nicotine infusion 

To investigate the role of smoking in aortic aneurysm, nicotine 

(5mg/kg/day) was systemically infused to WT and MMP2-/- mice. Following 6 

weeks of nicotine infusion, WT and MMP2-/- mice did not develop aortic aneurysm 

(Figure 3.19). Aortic diameter and expansion index were comparable between 

groups (Figure 3.20).  

 

 

Figure 3.19 WT and MMP2-/- mice did not develop aortic aneurysm following 

nicotine infusion 

Representative images of the entire aorta from WT and MMP2-/- mice following 6 

weeks of nicotine infusion. 
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Figure 3.20 Averaged aortic diameters and expansion index of saline or nicotine-

infused WT and MMP2-/- mice 

Averaged systolic (A) and diastolic aortic diameter in thoracic (i), proximal (ii), 

and abdominal (iii) aortas of saline and nicotine-infused WT and MMP2-/- mice 

(N=7/group/genotype). Aortic expansion index (C) is measured.  

 

3.16 WT and MMP2-deficient mice develop hypertension but not aortic 

aneurysm following 4 weeks of phenylephrine infusion 

To investigate the role of hypertension in the development of aortic 

aneurysm, phenylephrine (PE; 30mg/kg/day), a sympathomimetic agent which 

elevates blood pressure, is systemically infused. During the first 2 weeks, blood 

pressure is measured and WT and MMP2-/- mice show similar hypertensive 
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response to PE (WT: 167.4±1.18 mmHg and MMP2-/-: 166.0±1.75 mmHg; Figure 

3.21). Following 4 weeks of PE infusion, both WT and MMP2-/- mice are protected 

against aortic aneurysm (Figure 3.22). 
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Figure 3.21 WT and MMP2-/- mice showed hypertensive response following PE 

infusion 

Black lines represent WT mice and blue lines represent MMP2-/- mice 

(N=5/group/genotype). Blood pressure were recorded using the non-invasive tail-

cuff system. 
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Figure 3.22 WT and MMP2-/- mice do not develop aortic aneurysm following PE 

infusion 

Representative images of the entire aorta from WT and MMP2-/- mice following 4 

weeks of PE infusion. 
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Development of aortic aneurysm is a complicated process which involves 

pathological changes in both cellular and extracellular levels. Integrity of the ECM 

is important for keeping the aortic wall intact. Homeostasis of MMPs and TIMPs 

levels regulates the constant turnover of the ECM under physiological condition. 

When this balance between MMPs and TIMPs is disrupted, excessive deposition or 

degradation of ECM structural proteins lead to stiffening or progressive weakening 

of aortic wall respectively. Mechanical strength and integrity of the aortic wall is 

impaired such that the aorta will undergo destructive remodeling and become prone 

to developing aneurysm. My interest was to study the role of MMP2 in vascular 

ECM remodeling and development of aortic aneurysm. 

4.1 Summary of important findings 

With MMP2 deficiency, we observed thoracic aortic aneurysm in 70% of 

MMP2-/- mice but no abdominal aortic aneurysm following four weeks of Ang II 

infusion. The Ang II infusion model is widely used and is a physiological relevant 

method to induce vascular remodeling in murine animal models. We found 

markedly suppressed recoil properties in the thoracic aorta of MMP2-/-- Ang II 

mice. Histological analyses showed disorganization and disruption of elastin and 

collagen fibers in the thoracic aorta of MMP2-/-- Ang II compared to WT- Ang II 

mice. In addition, mRNA and protein levels of elastin, but not collagen type I, were 

significantly reduced in the thoracic aorta of MMP2-/--Ang II compared to WT-Ang 

II mice. This reduction in elastin levels was not due to excess degradation since in 

vitro gelatin zymography and total elastase activity were not elevated in the MMP2-

/--Ang II mice. Our study demonstrates that loss of MMP2 impaired TGFβ-Smad 
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signaling pathway that mediates synthesis of elastin and collagen in response to 

stimuli such as Ang II, resulting in thoracic aortic aneurysm. Compared to WT-Ang 

II, MMP2-/--Ang II showed reduced active TGF, and phospho-Smad2/3 levels. 

Therefore, the adverse remodeling in the thoracic aorta of MMP2-deficient mice 

was associated with decreased synthesis of ECM structural proteins without 

concomitant upregulation of proteolytic activities. This was the first study to 

demonstrate the protective role of MMP2 in Ang II-induced aortic aneurysm.  

4.2 Regional heterogeneity leads to differential response to Ang II infusion 

between thoracic and abdominal aortas 

Thoracic and abdominal regions of the aorta have developmental, structural 

and molecular heterogeneities which lead to differential histopathology between 

these two regions6, 204. In this study, we found that mRNA levels of MMP2 and 

elastin were significantly higher in WT thoracic aorta compared to abdominal aorta. 

This molecular heterogeneity leads to differential response to Ang II such that 

MMP2 deficiency promotes only TAA but not AAA. MMP2-/- mice has been 

reported to be protected against AAA, but thoracic aorta from MMP2-/- mice was 

not examined114.  

The inflammatory cells have a differential role in the thoracic and 

abdominal aortas. The inflammatory cells play an important role in development 

and progression of AAA where approximately 5% of patients with AAA were 

exhibited inflammatory aortic aneurysm68, 69. However, inflammatory aneurysm is 

rare in the thoracic aorta205, 206. Consistently, we observed comparable expression 
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levels of inflammatory markers including TNF-α, MCP-1, IL-1β and IL-6 between 

WT-Ang II and MMP2-/-- Ang II thoracic aortas. Since inflammatory cells have 

been reported as the main source of MMP9207, 208, it is consistent with no 

upregulation of MMP9 in the thoracic aorta of MMP2-/--Ang II mice was observed. 

These data collectively demonstrate a regional heterogeneity within the aorta such 

that therapeutic approaches need to be carefully applied to specific region of interest 

to prevent adverse side effects.  

4.3 Imbalance between degradation and synthesis leads to thoracic aortic 

aneurysm in MMP2-/--Ang II mice 

Aortic aneurysm is the outcome of destructive remodeling of the vascular 

wall ECM. The imbalance between MMPs and their endogenous inhibitors TIMPs 

is one of factors that mediates adverse ECM remodeling. When this balance is 

disrupted, the aorta undergoes pathological remodeling and becomes prone to 

develop aortic aneurysm.  

In this study we used genetically modified MMP2-deficient mice as an 

animal model. Among 26 MMPs discovered to date16, 17, MMP2 has been 

consistently reported to be linked to patients with TAA and AAA109-112. Since we 

hypothesized that MMP2-deficient mice would be protected against aortic 

aneurysm due to suppressed ECM degrading function of MMP2, TAA formation 

in MMP2-deficient mice was completely opposite to what we expected. We 

observed that elastin levels were markedly suppressed in MMP2-/--Ang II thoracic 

aortas which is consistent with aneurysmal aortic specimens from patients50, 209.  
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Elastin plays an important role in vasculature development by regulating 

VSMC proliferation210, 211 as such mice with a null mutation in the elastin gene (Eln-

/-) die shortly after birth due to occlusion of the blood vessel by over-proliferation 

of VSMC212. Elastin is critical in regulation of blood pressure by providing 

elasticity which allows the arterial wall to change the arterial diameter. Studies 

using elastin-haploinsufficient mice (Eln+/-) showed that the arterial pressure and 

the number of elastin lamellae are increased in order to compensate for vessel 

stiffness213, 214. TGFβ has been reported to upregulate elastin synthesis by 

stabilizing elastin mRNA transcription126, 127, 215, 216.  Surprisingly, aneurysmal 

VSMCs isolated from CaCl2-exposed aorta showed significantly elevated elastin 

synthesis in the presence of TGFβ and hyaluronan oligomers which containing 

optimized ECM-derived bimolecular factors217. Overall, the compositional 

remodeling, reduced elastin and increased collagen, leads to stiffening of MMP2-/- 

- Ang II aortas and fails to withstand stress from repeated stretch and recoil during 

the cardiac cycle. 

This is the first study to demonstrate the critical role of MMP2 in vascular 

ECM remodeling. MMP2, MMP9 and MT1-MMP have been shown to cleave and 

release latent TGFβ from the ECM121-123. Compared to WT-Ang II aortas, MMP2-

/- - Ang II aortas showed significantly reduced mRNA levels of MMP9 and no 

significant differences in mRNA levels of MT1-MMP. Overall, these data suggest 

that MMP2 cleaves and activates latent TGFβ as such in the absence of MMP2, 

TGFβ signaling pathway is attenuated. Our finding on the protective role of MMP2 

is opposite to predominant notion about the ECM degrading property of MMP2. 
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Thus, MMP2 levels need to be maintained at the optimal range because absence or 

overexpression of MMP2 would impair the integrity of the vascular ECM. 

Therefore, the broad spectrum MMP inhibitors or MMP2 specific inhibitors may 

not be a suitable therapeutic approach for TAA since reduced MMP2 levels could 

lead to adverse vascular remodeling which exacerbates vascular disease such as 

aortic aneurysm. 

4.4 MMP2 mediates TGFβ-Smad signaling pathway by activating latent TGFβ  

TGFβ, which regulates various cellular responses, can be activated by 

proteases such as MMP2, MMP9 and MT1-MMP121-123, 218, 219. TGFβ is synthesized 

in its latent form and is sequestered by Fibrilin-1 to the ECM. Aneurysmal patients 

with Marfan syndrome, a genetic disorder due to a mutation in Fibrilin-1 (FBN-1), 

have shown upregulation of TGFβ signaling.  

FBN-1 is the major fibrillin isoform in elastin fibers which regulates 

deposition and the organization of elastin fibers220, 221. FBN-1 forms cross-links 

with the elastin precursor called tropoelastin and provides a structural scaffold of 

microfibrils for proper spatial and temporal arrangement of elastin fibers in the 

ECM. Fbn1C1039G/+ mice show reduction in elastin levels222, 223. 

FBN-1 plays an important role in TGFβ signaling by regulating activation 

of TGFβ under physiological conditions. Elevation of TGFβ signaling has been 

reported in both human and animal with FBN malfunction115, 138, 193, 224. In addition, 

doxycycline, a broad-spectrum MMP inhibitor, has been reported as an effective 

treatment for Fbn1C1039G/+ mice, well-validated animal model for Marfan 
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syndrome193, 225. The proposed mechanism is that doxycycline attenuates aneurysm 

expansion by blocking MMPs especially MMP2 and MMP9.  

Studies have shown up-regulation of TGFβ signaling pathway with 

significantly reduced elastin levels in both humans and animal models with FBN-1 

mutation. The underlying mechanism for this observation is that in the absence of 

FBN-1, increased elastin synthesis conjoined with significantly elevated 

availability of activated TGFβ is observed. However, tropoelastin is not capable of 

depositing into microfibrils to form the elastin fibers. Therefore, elastin synthesis 

is elevated but the amount and stability of elastin is markedly reduced, therefore 

making the aorta susceptible to aortic aneurysm in Marfan syndrome.  

In MMP2-/- mice, however, the reduced elastin synthesis (rather than 

impaired elastin assembly as in Marfan syndrome) is associated with significantly 

reduced TGFβ activation and the downstream Smad signaling pathway activity, 

leading significantly reduced elastin levels.  

Taken together, these data indicate that although histological phenotypes 

are similar between Marfan syndrome and MMP2-/- -Ang II mice, the underlying 

mechanisms are completely different. In Marfan syndrome, the defect is in elastin 

assembly, as opposed to elastin synthesis in MMP2-/- -Ang II mice. This suggests 

that idiopathic and genetic driven aortic aneurysm requires different therapeutic 

approaches and diagnostic options. 
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4.5 Elastin but not collagen synthesis is impaired in MMP2-/--Ang II aortas 

We found that MMP2 plays a major role in cleaving and activating latent 

TGFβ. Since the TGFβ signaling pathway has been reported to regulate collagen141, 

226 and elastin127, 227 synthesis in different cell types, it was unexpected to observe 

impaired elastin synthesis but intact collagen synthesis in MMP2-/--Ang II aortas. 

Smad signaling pathway is a canonical downstream TGFβ signaling pathway. It has 

been reported that Smad 2/3 and Smad 1/5/8 are activated by TGFβ but serve 

different roles228. Smad 1/5/8 is downstream of TGFβ R2 and Smad 2/3 is 

downstream of TGFβ R1229, 230. Bone morphogenetic proteins (BMP1) deficient 

mice showed abnormal collagen fiber formation231. Alterations in collagen 

expression levels were observed with TGFβ R2 mutation139, 232, 233. Studies on 

CaCl2-exposed TAA mice model showed switching of Smad 2/3 to Smad 1/5/8 

pathway234. Taken together, these data imply that in the absence of MMP2, 

impaired cleavage and activation of TGFβ mainly affects Smad 2/3 pathway that 

regulates elastin synthesis whereas Smad 1/5/8 pathway that regulates collagen 

synthesis is intact.  

4.6 Disparity between in vivo and in vitro data in response to Ang II 

To identify the role of VSMCs in susceptibility of MMP2-/- mice to TAA, 

we examined the response of VSMCs to Ang II or TGFβ and found lack of 

correlation between experimental data from aortic tissue and VSMCs in response 

to Ang II. In WT, Ang II-induced increase in Col I expression was only observed 

in aortic tissues but not in VSMCs. Moreover, we observed markedly suppressed 

elastin levels in MMP2-/--Ang II thoracic aortic tissues but this reduction was not 
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observed in MMP2-/- VSMCs. While isolating VSMCs for cell culture, adventitial 

and endothelial layers were scraped off. By culturing VSMCs alone, the influence 

of endothelial cells on VSMCs was excluded. Thus, the disparity between in vivo 

and in vitro data in response to Ang II might be due to the absence of endothelial 

cells which mediate VSMCs function235-237.  

4.7 Aneurysm formation is specific to Ang II infusion as MMP2-deficient mice 

do not develop aneurysm in response to nicotine or phenylephrine infusion 

Smoking and hypertension are considered as risk factors of aortic aneurysm. 

Smoking is thought to promote the production of reactive oxygen species (ROS). 

ROS is tightly regulated to maintain cellular homeostasis under physiological 

condition. ROS regulates expression and activity of MMPs by disrupting the bond 

between the pro and catalytic domains to expose the catalytic site of MMP for 

proteolytic activity238, 239. Increased proteolytic activities alter aortic wall ECM, and 

as such the aorta becomes prone to expansion and rupture55-60. While smoking 

shows a strong association to aortic aneurysm events54, the direct role of smoking 

in aortic aneurysm is still not clear. 

In order to examine the role of smoking in aortic aneurysm, we infused 

nicotine via osmotic pumps. We found that nicotine alone was not sufficient to 

induced aortic aneurysm that we observed in Ang II infused MMP2-/- mice. We 

confirmed intact structural and functional integrities of WT and MMP2-/- aortas 

following nicotine infusion. In MMP2-/-- Ang II mice, TAA formation is due to 

reduced elastin synthesis.  Moreover, WT and MMP2-/- mice showed comparable 
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proteolytic activities at baseline and post-Ang II infusion. In contrast to Ang II 

which affects both ECM synthesis and degradation, smoking mainly alters 

proteolysis by activating MMPs57, 238, 239. Therefore, these data indicate that the 

extent of smoking-induced elastin degradation is comparable between WT and 

MMP2-/- mice, and as such, increased in proteolytic activities alone is insufficient 

to lead to aneurysm formation in MMP2-/- mice. 

Hypertension is defined as blood pressure persistently higher than 

physiological range (140/90 mmHg). Hypertension is the most common 

cardiovascular disease which affects 1 in 3 adults in the United States and untreated 

hypertension leads to other cardiovascular diseases240. More than 80% of patients 

with aortic aneurysm have hypertension61. In response to hypertension, aortic wall 

undergoes remodeling which significantly changes structure, mechanical 

properties, and function of the aorta in order to maintain wall shear stress241-243. 

Thus, aortic wall thickness and stiffness are increased compared to baseline244-246. 

However, the direct relationship between hypertension and aneurysm is still 

unclear. Phenylephrine (PE) is a synthetically derived α1-adrenergic receptor 

agonist that mimics effects of norepinephrine. PE binds to post-synaptically located 

α-receptors on VSMCs and induces vasoconstriction247, 248.  

In order to examine the role of hypertension in aortic aneurysm, we infused 

PE. We found that BP was similarly elevated in MMP2-/- mice following Ang II or 

PE infusion, but none of PE mice developed TAA or AAA. We confirmed intact 

structural integrities of WT and MMP2-/- aortas following PE infusion. These data 
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indicate that the underlying mechanism of TAA formation in MMP2-/- mice 

following Ang II infusion is independent of hypertension.  

Taken together, protection against aortic aneurysm following nicotine or PE 

infusion confirms that TAA development is specific response to Ang II infusion. 

From these data, we confirmed that TAA formation in MMP2-/- mice is due to 

reduced elastin synthesis but not due to increases in proteolysis nor hypertension.  

4.8 Conclusion 

The findings in this thesis show that the balance between degradation and 

synthesis of ECM components is crucial in maintaining the integrity of the ECM. 

MMP2 plays an important role in vascular remodeling by mediating TGFβ 

activation such that reduced MMP2 levels lead to formation of aortic aneurysm. 

Interestingly, aortic aneurysm is observed in thoracic but not abdominal aortas due 

to developmental, structural and molecular heterogeneities between these two 

regions of the aorta. The protective role of MMP2 in thoracic aortic aneurysm 

provides a new perspective of examining role of MMP2 in vascular remodeling.  

4.9 Study limitations 

4.9.1 Whole-body knockout mice as an experimental disease model 

The usage of whole body knockout mice is widely used approach to 

examine direct role of specific gene. However, since many genes have multiple 

roles in producing different phenotypic characteristics, we took precautions to 

minimize possible implications of gene deletion in other organs including the heart 

and the kidneys in the development of aortic aneurysm. We used a large number of 
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MMP2-deficient mice where we found comparable baseline vascular function, and 

structural and molecular changes between WT and MMP2-deficient mice. In 

addition, with MMP2-deficient mice, we observed similar pathological conditions 

as human TAA patients present. We were certain that aneurysm formation is 

primary due to Ang II infusion as we did not observe baseline defects in 

cardiovascular structure or function. However, since the RAAS exists in several 

organs including the heart and the kidneys, organ specific or conditional knockout 

would be a better approach to limit the effect of systemically infused Ang II on 

other organs.  

4.9.2 Studies on vascular smooth muscle cell culture 

Elastin which is responsible for the mechanical properties of the aorta, is 

predominantly synthesized by VSMCs11. VSMCs are important in vascular 

function during pathological condition. VSMCs regulate contraction and blood 

vessel tone-diameter249. VSMCs exhibit phenotypic plasticity during pathological 

conditions to promote repair and remodeling of aortic wall via activation of cell 

migration and proliferation250, 251. Contractile function of VSMCs have been shown 

to prevent TAA and aortic dissections252. It has been reported that VSMCs 

apoptosis is one of the pathological vascular remodeling that result in TAA and 

AAA10, 47, 253-255. In pathological conditions, due to VSMCs apoptosis in the tunica 

media in aortic wall, the aorta is not capable of undergoing constructive vascular 

remodeling which then leads to thinning of the aortic wall.  
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In this study, we examined the response of VSMCs to Ang II or TGFβ. We 

expected impaired elastin synthesis in VSMCs from MMP2-/- mice, but we found 

that elastin expression levels were comparable between WT and MMP2-/- mice 

following Ang II treatment. VSMCs behave differently in culture than in vivo in the 

aortic wall since the aortic wall consists of VSMCs, endothelial cells, fibroblasts, 

and other ECM proteins. As a result, by excluding the interaction between the 

VSMCs and other cell types (e.g. endothelial cells and fibroblasts) within the aortic 

wall, our data from VSMCs are limited to examining what is happening in these 

cells alone. 

4.10 Future directions 

4.10.1 Rescue experiments 

In this study, I mainly focused on identifying the role of MMP2 in aortic 

aneurysm so I did not perform any rescue experiments. Since MMP2, which is a 

main MMP, has already deleted and the underlying mechanism in the observed 

TAA involves reduced elastin synthesis with reduced proteolytic activities, using a 

broad spectrum MMP inhibitor is not a good rescue approach. In addition, in 

MMP2-/- mice, we observed reduced elastin levels due to impaired TGFβ signaling 

pathway. Thus, RNA interference (RNAi) technique using microRNA (miRNA) 

that regulates multiple mRNAs to reduce the protein levels of their target genes 

may not be useful in MMP2-/- mice256, 257. 

Since in vitro experiment showed that intact downstream TGFβ signaling 

pathway in VSMCs from MMP2-/-  thoracic aortas, a potential rescue approach in 
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preventing aneurysm progression could be replenishment of TGFβ using gene 

therapy such as adeno-associated viral vectors. Adenovirus is a non-enveloped 

virus containing a double-stranded DNA genome. The adenoviral vectors 

containing the gene of interest can be injected directly to the aneurysmal aortic 

tissue to introduce the specific gene of interest to synthesize functional proteins258. 

However, injected adenoviral vectors might initiates immune responses by 

activating inflammatory cytokines259-261. In addition, molecular and cellular 

changes vary depending on the location, etiology, and size of the aneurysm. Thus, 

more research is necessary to ensure safety and effectiveness of replenishing TGFβ 

to prevent progression of thoracic aortic aneurysm. Moreover, proper screening 

approach is needed to identify patients with thoracic aortic aneurysm due to 

significant reduction of MMP2 levels. 

4.10.2 Influence of endothelial cells on vascular smooth muscle cells 

Modification of the experimental protocol is needed to examine the 

disparity that we found between in vivo and in vitro data. The endothelial cells in 

the aortic wall can release paracrine factors to mediate VSMCs function235-237. In 

the future, it would be helpful to understand the interaction between endothelial 

cells and VSMCs by co-culturing VSMCs with endothelial cells, or to treat VSMCs 

with Endothelin-1 which has also been shown to activate VSMCs262, 263. In addition, 

it would be useful to see how these co-cultured cells respond to both Ang II and 

TGFβ. If cells show impaired elastin synthesis, addition of recombinant MMP2 can 

be used as a rescue option. This will provide role of VSMCs in the formation of 

aortic aneurysm. 
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4.10.3 TAA development in females 

We used WT and MMP2-/- male mice to investigate the role of MMP2 in 

aortic aneurysm. Our preliminary data showed that MMP2-/- female mice were 

protected against AAA and TAA. These data suggest that MMP2 appears to have a 

regional and gender specific impact in Ang II-induced aortic remodeling, such that 

lack of MMP2 leads to thoracic aortic aneurysm in male but not in female mice. It 

has been reported that estrogen plays a protective role in cardiovascular diseases. 

Following estrogen treatment, reduction in cholesterol levels and aortic legion size 

were observed264-266. By regulating expression of MMPs, estrogen plays a role in 

vascular remodeling266. Several literatures showed the role of estrogen in renin-

angiotensin system where estrogen reduced expression of Angiotensin II receptor 

type 1 and Angiotensin I-converting enzyme (ACE)267-269. It would be informative 

and useful to examine gender-specific heterogeneity in the expression pattern of the 

ECM components and other related factors in aortic wall. By comparing male and 

female mice, it will provide crucial information on the underlying mechanisms as 

well as possible therapeutic interventions for aortic aneurysm. 

4.10.4 Temporal molecular and cellular events during progression of TAA in 

MMP2-/- mice post-Ang II infusion 

In this study, we examined vascular remodeling in WT and MMP2-/- mice 

following 4 weeks of Ang II infusion. It would be useful to examine molecular and 

cellular changes at different time points (2 weeks and 8 weeks post-Ang II 

infusion). Temporal changes in the abundance of MMPs and TIMPs has been 

examined in from CaCl2-exposed TAA in mice270. However, temporal changes in 
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infiltration of inflammatory cells, oxidative stress, and ECM remodeling have not 

been yet explored. Thus, it would be useful to profile temporal changes in MMPs, 

TIMPs, inflammatory cells, oxidative stress, proteolytic activities (elastase and 

collagenase activities), and synthesis of ECM components (TGFβ signaling 

pathway) in MMP2-/- mice at different time points. This will provide a better 

understanding of temporal relationship between molecular and cellular changes that 

occur throughout the progression of aortic aneurysm.  
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