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Abstract

Background: Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal
and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich
in essential fatty acids, linoleic (18:2v-6) and a-linolenic (18:3v-3) acids, and pulp oil that contains high levels of
monounsaturated palmitoleic acid (16:1v-7). Sea buckthorn is fast gaining popularity as a source of functional food and
nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-
grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology.

Results: GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and a-
linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454
sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141
putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and
computational prediction of metabolic pathways indicated that primary metabolism (protein.nucleic acid.carbohy-
drate.lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences
related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript
expression at four developing stages of the berry.

Conclusion: This study provides the first comprehensive genomic resources represented by expressed sequences for sea
buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic
acid and a-linolenic acid in a close to 1:1 ratio, which is beneficial for human health. These data provide the foundation for
further studies on sea buckthorn oil, the enzymes involved in its biosynthesis, and the genes involved in the general
hardiness of sea buckthorn against environmental conditions.
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Introduction

Sea buckthorn (Hippophae rhamnoides L.), belonging to the family

Elaeagnaceae, is a winter-hardy, deciduous shrub indigenous to

Asia and Europe. The female plants produce yellow to orange fruit

that is highly valued for its unique nutritional and medicinal

properties. Sea buckthorn berries, together with leaves and bark,

have been used for hundreds of years in Russia and China for

medicinal and nutritional purposes [1]. Furthermore, as a

beautiful, hardy (temperature, salt and drought resistant),

nitrogen-fixing plant that rapidly develops an extensive root

system, sea buckthorn is also used as an ornamental for enhancing

wildlife habitat, and for preventing soil erosion and conserving

essential nutrients.

Published literature indicates that sea buckthorn berries are

highly enriched in vitamins (C, A, E and K), organic acids, amino

acids, fatty acids and antioxidants [carotenoids (lycopene, b-

carotenes, zeaxanthin) and flavonoids (quercetin, kaempferol,

isorhamnetin, myricetin)] [2–5]. The pulp and seed oils have

unique compositions and contain bioactive compounds, including

phytosterols, carotenoids, and tocopherols. The pulp oil has a high

content of palmitoleic acid (16:1cisD9) (up to 43%). Since this fatty

acid is a major constituent of skin fat, the pulp oil is used for

cosmetic and healing purposes [6]. The seed oil contains linoleic

acid (18:2cisD9,12) (up to 42%) and a-linolenic acid (18:3cisD9,12,15)
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(up to 39%) in high amounts [7] and in close to 1:1 ratio, which is

different from the polyunsaturated fatty acid composition of major

vegetable oils [8]. Numerous health benefits, including antiathero-

genic, cardioprotective, antiplatelet and antiulcer activities of the

seed oil, as well as antioxidative activity of leaf extracts, have been

demonstrated using cell culture and animal models [9–12]. Sea

buckthorn berries are also rich in polyphenols, which function as

antioxidants [13–15]. Sea buckthorn flavones have been linked

with inhibition of thrombosis and hypertension [16,17], and

promotion of wound healing [18]. The positive effects of berries

and its extracts have also been demonstrated in human subjects

[19,20] thus, both historical accounts and scientific research

indicate that this plant has immense nutritional and medicinal

potential.

In the last decade, interest in sea buckthorn’s health benefits has

increased considerably in many countries. Although several

plantations have come up in Canada, there is limited information

on the metabolite composition of the currently grown cultivars.

Furthermore, this plant is currently an unexplored source of novel

traits and genes. So far, only about 2787 high quality sequences

(.100 bp in length) derived from a cDNA library prepared from

leaf tissue have been submitted to the EST database (dbEST) of

NCBI [21]. A glycerol-3-phosphate acyltransferase (GPAT) gene was

cloned and its expression was shown to increase in cold-stressed

leaves of sea buckthorn [22]. This is the extent of gene sequence

information that is available in this plant species.

Considering the repertoire of bioactives and unusual fatty acid

composition of sea buckthorn berry, and its potential as a health

product, we analysed the seed and pulp fatty acid compositions in

four Canadian-grown cultivars and generated the first sea

buckthorn seed transcriptome using high-throughput 454 se-

quencing methodology to uncover genes related to oil biosynthesis

and other important metabolic pathways as well as stress response

pathways. From the 89,141 putative unigenes in our 454 dataset,

we identified most of the genes involved in fatty acid biosynthesis.

The current dataset forms the first comprehensive genomic

resource for sea buckthorn, which establishes a basis for dissecting

metabolic pathways related to the formation of oil and bioactive

components, and developing strategies to enhance the production

of desirable compounds.

Results and Discussion

Fatty Acid Composition of Whole Berry, Seed and Pulp
Oil

Fully ripe fruit of four superior sea buckthorn cultivars (RC-4,

E6590, Harvest Moon and FR-14), selected from a seedling

population of H. rhamnoides ssp. mongolica and grown in Saskatch-

ewan, Canada, were harvested and flash frozen. RC-4 is very

hardy, and together with FR-14, has a desirable crown form, while

Harvest Moon and E6590 have other superior agronomic traits

such as fruit mass and yield, long pedicel, absence of thorns and

Figure 1. Fatty acid composition of total lipids in A) seed oil, B) pulp oil and C) whole berry oil of four cultivars RC-4, E6590, FR-14
and Harvest Moon. Results represent the mean 6 SD of three biological replicates. Minor fatty acids (accounting in total for ,3% of the fatty acid
composition) are not shown. 16:0, palmitic acid; 16:1, palmitoleic acid; 18:0, stearic acid; 18:1c9, oleic acid; 18:1c11, cis-vaccenic acid; 18:2, linoleic acid;
18:3, a-linolenic acid.
doi:10.1371/journal.pone.0034099.g001
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easy harvest. Fatty acids were analysed in total lipid extracts of

whole berries, pulp and seeds by gas chromatography-mass

spectrometry (GC-MS). In seed oil, linoleic acid and a-linolenic

acid accounted for roughly equal proportions of the total

composition, at 33–36% and 30–36%, respectively. Oleic acid

(18:1cisD99) and its isomer (18:1cisD11) were present at a combined

content of 17–20%, followed by palmitic acid (16:0) at ,7%

(Figure 1A). Palmitoleic acid and stearic acid (18:0) were each

present at ,4% of the total fatty acids. There was little variation

among the four cultivars in the fatty acid compositions of the seed

oils. The four cultivars were derived from ssp. mongolica, but only

RC-4 and FR-14 have a similar genetic background while Harvest

Moon and E6590 have different genetic backgrounds. The lack of

variation in the fatty acid composition of the four cultivars used

suggests that either the fatty acid compositions do not vary within

subspecies or that the growing environment is a major factor

controlling fatty acid composition.

In the pulp oil, the dominant fatty acid was the monounsatu-

rated palmitoleic acid at 32–42%, followed by palmitic acid at 34–

41% (Figure 1B). Interestingly, two isomers of 18:1 were detected,

18:1cisD9 at 1–5% and 18:1cisD11 (cis-vaccenic acid) at 5–7%.

Linoleic acid accounted for 8–14% of the total composition, and

all other fatty acids, including a-linolenic and stearic acids were

each at ,2% of the total fatty acids. The results represented in

Figure 1A and B confirm in the Canadian-grown cultivars what

can be considered as the trademark of sea buckthorn oil - the

generally high levels of a-linolenic acid and linoleic acid in seed oil,

and of palmitoleic acid in pulp oil. The contents of various fatty

acids in the whole berry oil were palmitic acid at 31–33%,

palmitoleic acid at 28–37%, stearic acid at ,2%, 18:1 (cisD9 and

cisD11) each at 3–8%, linoleic acid at 12–18%, and a-linolenic at

3–8% (Figure 1C). Due to the abundance of pulp tissue over seed,

the whole berry oil composition is more reflective of the pulp oil

composition.

The accumulation of major fatty acids during fruit development

was examined in seed, pulp and whole berry at four different

stages of development of RC-4. Berries were collected, using color

as a marker, when the fruits were green (G), green/yellow (G/Y),

yellow/orange (Y/O) and orange/red (O/R) (Figure S1). The

overall fatty acid profiles of various stages of fruit development

roughly mirrored that of mature seeds, but there was a decrease in

unsaturated fatty acids, especially a-linolenic acid, in seed and

whole berry oils, over the course of fruit development (Figure 2A,

C). In pulp oil, palmitic acid increased after the green stage and

then stayed relatively constant over the remaining developmental

stages (Figure 2B), while both palmitic and palmitoleic acid

continued to increase in whole berry at later stages (Figure 2C),

likely reflecting the increase in pulp mass and oil content relative to

the contribution from the seeds (Figure 2D). The oil content of the

seeds was already relatively high at the green stage, and stayed

relatively constant following the green/yellow stage, while the oil

content in pulp and whole berry continued to increase (Figure 2D).

This, along with the relatively large contribution of pulp oil to

whole berry fatty acid composition in the green stage, suggests that

oil deposition begins very early in fruit development and the green

stage sampled in this study does not represent the earliest stage of

oil biosynthesis.

Interestingly, oil-based bioactive compounds, such as a-

tocopherol and b-sitosterol, were reported as being highest in

sea buckthorn fruit fraction at an ‘early maturity stage’ [23].

Although we cannot exactly correlate the ‘early maturity stage’

with the developmental stages of berries used in the current study,

from an oil-related nutritional standpoint it would appear that

unripened sea buckthorn berries are superior to fully ripened

berries. This information is important for deciding the optimum

harvest time of sea buckthorn berries in order to fully harness the

health benefits of the oil. The health benefit of sea buckthorn seed

oil lies in the low v-6:v-3 ratio (1:1), in part due to the anti-

inflammatory effects of v-3 fatty acids [24]. Currently, the

Western diet contains a very high (15:1) v-6:v-3 fatty acid ratio,

which has been linked with cancer, cardiovascular, inflammatory

and autoimmune diseases [25,26]. a-Linolenic acid is a biosyn-

thetic precursor of long chain v-3 polyunsaturated fatty acids,

eicosapentaenoic acid (EPA; 20:5cisD5,8,11,14,17) and docoasahex-

aenoic acid (DHA; 22:6cisD4,7,10,13,16,19), which are nutritionally

important fatty acids abundant in fish oil. With growing concerns

regarding accumulation of environmental pollutants in fish oil as

well as sustainability of marine fish stocks, plants rich in v-3 fatty

acids may offer a sustainable source of these beneficial fatty acids.

The fatty acid profile of sea buckthorn seed is particularly

interesting since it contains a high proportion of v-3 fatty acids

relative to v-6 fatty acids. With the exception of flaxseed oil, which

contains .50% a-linolenic acid, such high levels of v-3 fatty acids

are uncommon in seed oils, and are usually accompanied by a

high v-6:v-3 ratio. Considerable research efforts are being put

towards the production of v-3 fatty acid-enriched products, both

for human consumption and use as animal feed [27–29]. Sea

buckthorn seed oil, with its high a-linolenic levels together with a

near 1:1 ratio of v-6:v-3 fatty acids represents a very balanced

source of polyunsaturated fatty acids for human health and

nutrition.

High levels of palmitoleic acid are present in only few plants,

such as sea buckthorn pulp oil and macadamia nut oil. Interest in

this fatty acid arises from its lower susceptibility to oxidation

compared to polyunsaturated fatty acids, which may confer

functional advantages such as stability during frying and baking.

To date, limited information is available on the effects of

palmitoleic acid on cardiovascular risk factors. A recent study

focusing on the effects of dietary palmitoleic acid in hamsters,

however, found no adverse effects on plasma lipoprotein profiles

or aortic cholesterol accumulation [30], while another study found

palmitoleic acid to have effects similar to palmitic acid (saturated

fatty acid) on plasma total and low density lipoprotein-cholesterol

concentrations [31]. At present, the best application of palmitoleic

acid is in cosmetic manufacturing, but there is enormous potential

as sustainable feedstock for producing industrially important

octane, which is used as a comonomer in the expanding

production of linear low-density polyethylene [32]. To demon-

strate proof of concept that v-7 fatty acid levels can be increased to

high levels in plants, Arabidopsis was metabolically engineered to

produce v-7 fatty acid to as much as 71% [32]. Since sea

buckthorn is low-input, high yielding plant that can grow on

marginal lands, it could serve as a sustainable plant feedstock for

industrially important chemicals due to its unusually high

palmitoleic acid level. Also, if the sea buckthorn pulp D9

desaturase enzyme is found to have higher specificity for

conversion of 16:0 to 16:1D9 than its orthologs from other

species, the gene could be used in increasing monounsaturated

fatty acid levels in plants and other organisms.

Sequencing and Assembly of Reads Generated Using 454
GS FLX Platform

Seeds were isolated from O/R stage berries of the RC-4

cultivar. Total RNA was extracted from these seeds and used for

non-normalized ds-cDNA library construction. 454 sequencing of

the seed cDNA collections provided a total of 500,392 reads,

which were assembled using two sequence data management

(SDM) and analysis platforms, Fiesta 2 and GenomeQuest, to

Sea Buckthorn Seed Transcriptome
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produce a non-redundant dataset for functional annotation and

comparative analysis. This allowed analysis of the 454 data in

different ways and produced datasets that reinforced each other.

The sequences were first clustered by TIGR Gene Indices

clustering tools (TGICL) [33] and archived on Fiesta 2 annotation

platform at the Plant Biotechnology Institute (PBI), Saskatoon.

The 500,392 reads were clustered and assembled into 37,482

contigs and 51,659 singletons, resulting in 89,141 putative

unigenes (Table 1). The second method of clustering and

annotation was done on the GenomeQuest SDM platform in

two steps, dependant on the ability of the assembler software

Newbler from Roche to only process 300,000 reads at one

time. First, the 500,392 reads were split into two buckets of

250,196 sequences each in FASTA for assembly. Using this

method, 497,182 non-redundant reads were assembled into

39,330 contigs, 58,062 singletons, and 97,392 unigenes (Table 1).

The size distribution of reads and unigenes is shown in Figure 3.

The most prominent size range for the reads and unigenes was

401–450 nts, and the average length and GC content of the

unigenes was 474 nts and 37.6%, respectively.

Next, the 97,392 unigenes obtained using the GenomeQuest

SDM platform were annotated with their best hits in public

databases by running Rapid Annotation Process (RAP) against

PLN (plant, fungal, and algal sequences) in GenBank to find

distribution of sea buckthorn sequences against other organism

sequences. RAP is based on nucleotide sequence-similarity

searching algorithm. Using this method, 44,413 unigenes

Figure 2. Fatty acid composition of total lipids during berry development stages of RC-4 cultivar. The oil samples were extracted from
A) seed, B) pulp and C) whole berries of RC-4 cultivar harvested at different stages. Results represent the mean 6 SD of three biological replicates.
Minor fatty acids (accounting in total for ,5% of the total fatty acid composition) are not shown. D) The accumulation of oil in whole berries, seeds
and pulp over four developmental stages described by fruit color: G: green, G/Y: green/yellow, Y/O: yellow/orange, O/R: orange/red. 16:0, palmitic
acid; 16:1, palmitoleic acid; 18:0, stearic acid; 18:1c9, oleic acid; 18:1c11, cis-vaccenic acid; 18:2, linoleic acid; 18:3, a-linolenic acid.
doi:10.1371/journal.pone.0034099.g002

Table 1. Summary of sea buckthorn sequences obtained on
the 454 platform.

Fiesta 2 GenomeQuest

Raw reads 500,392 500,392

Clustered/Non-redundant reads 500,392 497,182

Contigs 37,482 39,330

Range of contigs length 51 – 6,630 nts 89 – 7,176 nts

Singletons 51,659 58,062

Range of singletons length 40 – 642 nts 50 – 627 nts

Unigenes 89,141 97,392

doi:10.1371/journal.pone.0034099.t001
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(45.68%) had hits to 760 organisms, while 52,823 unigenes

(54.32%) remained unassigned (Figure 4). Maximum hits were

obtained with sequences from Vitis vinifera (10,209), followed by

Populus trichocarpa (8801), Ricinus communis (5728), Glycine max (3274)

and others. The top-hit species distribution (grape, populus, and

oil plants such as castor and soybean) may reflect the fruit, shrub/

tree and oilseed characteristics of sea buckthorn, respectively. The

unassigned sequences likely result from sequences being too short

to find high matches, regulatory RNA sequences, 59 and 39

untranslated regions of transcripts, sequencing artifacts or novel

gene sequences. Some of these sequences are likely to be of

biological relevance and will be explored in the future.

The 89,141 unigenes in Fiesta 2 were searched against both

Arabidopsis and plant databases in UnipProt using BLASTX with

an e-value cutoff of 1e-6 to find their homologues. A total of

41,166 (46%) and 43,494 (49%) unigenes had significant hits with

sequences in TAIR and UnipProt Plants, respectively.

Gene Ontology Annotation of Sea Buckthorn Unigenes
We used MetaCyc (MetaCyc.org) [34] as a reference database

with the Pathway Tools software to computationally predict the

metabolic network of sea buckthorn seed. The total number of

pathways identified was 239, which corresponded to 10,011

sequences. Within the category ‘‘biosynthesis’’, the number of

pathways in decreasing order was: amino acid, fatty acid and lipid,

secondary metabolite, and carbohydrate biosynthesis (Table 2).

Thus, the metabolic pathway prediction accurately reflects

biosynthesis and storage of proteins, lipids, and carbohydrates as

primary processes in seeds. In addition to the primary metabolites,

seeds also store a diverse range of secondary metabolites, including

flavonoids, phytosterols, saponins and other compounds of

medicinal value. Some of these compounds are involved in

defense against pathogens and predators, while others influence

seed maturation and dormancy [35]. Since sea buckthorn is

regarded as a medicinal plant rich in secondary metabolites,

sequences related to secondary metabolite biosynthesis should be

of particular interest.

The Gene Ontology (GO) system was used to summarize

possible functional classifications of the unigenes via assignment

of Arabidopsis gene identifiers with the strongest BLASTX

alignments to the corresponding sea buckthorn sequences. Of

the 89,141 sequences, 33,705 (37.8%) could be annotated under

the three major GO categories: ‘‘biological process’’ (Figure 5A),

‘‘cellular component’’ (Figure 5B) and ‘‘molecular function’’

(Figure 5C). Within the category ‘‘biological process’’ (26,305

unigenes), the two highly represented GO terms were ‘‘cellular

process’’ (50.6%) and ‘‘metabolic process’’ (49.5%), followed by

‘‘response to stimulus’’ (10.8%) and other categories (Figure 5A).

Due to our interest in oil biosynthesis, we followed the GO

term ‘‘metabolic processes’’ (Figure S2) with subterms in this

order: cellular metabolic process . cellular lipid metabolic

process . lipid biosynthetic process . fatty acid biosynthetic

process/glycerolipid biosynthetic process/others. The distribu-

tion of sequences under the subterm, ‘‘lipid biosynthetic

process’’, is shown in Table S1. We found a preponderance

of sequences related to jasmonic acid and wax biosynthesis

Figure 3. Size distribution of sea buckthorn 454 reads and assembled contigs.
doi:10.1371/journal.pone.0034099.g003
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genes within the GO category ‘‘fatty acid biosynthetic process’’,

and to diacylglycerol O-acyltransferase 1 (DGAT1) and phospholipid/

glycerol acyltransferase 9 (GPAT9) within the GO category

‘‘glycerolipid biosynthetic process’’ (Table S2). A search for

other fatty acid biosynthesis genes within the 434 sequences

shown in Table S1 identified sequences related to acetyl-CoA

carboxylase (ACCase), 3-ketoacyl-ACP-synthase III (KAS III), 3-oxoacyl-

ACP reductase (KAR), 3-hydroxyacyl-ACP dehydratase (HAD), D12 fatty

acid desaturase (FAD2), stearoyl-ACP desaturase (SAD) and acyl-ACP

thioesterases (FATA, FATB) (Table S2).

Identification of Sea Buckthorn Genes Involved in Lipid
Biosynthesis

To identify all known lipid biosynthesis genes in sea buckthorn,

the relevant Arabidopsis gene sequences were used to query (e-

value cutoff of 1e-5) the sea buckthorn dataset in Fiesta 2. Enzymes

for which gene sequences were identified in sea buckthorn are

shown in green in Figure 6A,B. With the exception of ACP-S-

malonyl transferase (MAT), sequences for most other enzymes

involved in the biosynthesis and elongation of fatty acids were

identified in the sea buckthorn seed transcriptome presented here.

With the exception of ACP-S-malonyl transferase (MAT), sequences

for most other enzymes involved in the biosynthesis and elongation

of fatty acids were identified in the sea buckthorn seed

transcriptome presented here.

The number of hits (reads, as well as contigs+singletons)

obtained against each Arabidopsis fatty acid biosynthesis gene, and

the nucleotide sequence identities between the Arabidopsis gene

sequences and the most closely related sea buckthorn contigs are

shown in Table 3. The large number of hits obtained for some

genes likely represents several possibilities: different members of

the gene family in sea buckthorn, different fragments of the same

gene, or sequencing and assembly errors. The number of reads for

any gene is dependent on the size and also on transcript

abundance in the starting material. SAD, which catalyzes the

desaturation of stearoyl-ACP to form oleoyl-ACP, had the largest

number of reads at 364 (Table 3, TableS3), which is consistent

with the relatively high levels of oleic acid and its downstream

products in sea buckthorn seed oil. DGAT1, which catalyzes the

final step in triacylglycerol (TAG) assembly, had the second

highest number of reads at 142.

In most oilseeds, lipids are stored primarily as TAGs, with the

major constituents being 16- and 18-carbon saturated and

unsaturated fatty acids. Figure 6A shows the pathway leading

from acetyl-CoA to synthesis of nascent 16–18 carbon fatty acids

in the plastid, and the pathways for TAG assembly in the

endoplasmic reticulum are shown in Figure 6B. TAG can be

Figure 4. Species distribution of top BLAST hits of sea buckthorn sequences with other plant species.
doi:10.1371/journal.pone.0034099.g004

Table 2. Biosynthesis pathways in sea buckthorn seed
transcriptome based on MetaCyc pathway collections.

Pathway Number

Amines and polyamines biosynthesis 7

Amino acids biosynthesis 43

Aminoacyl-tRNA charging 1

Aromatic compounds biosynthesis 1

Carbohydrates biosynthesis 23

Cell structures biosynthesis 3

Co-factors, prosthetic Groups, electron carriers biosynthesis 23

Fatty acids and lipids biosynthesis 34

Hormones biosynthesis 2

Metabolic regulators biosynthesis 2

Nucleosides and nucleotides biosynthesis 4

Secondary metabolites biosynthesis 26

doi:10.1371/journal.pone.0034099.t002
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synthesized through the sequential acyl-CoA dependent acylation

of a glycerol backbone, or by various acyl-CoA independent routes

which are believed to facilitate the incorporation of polyunsatu-

rated fatty acids into TAG [36,37]. Several lines of evidence

indicate that the level of DGAT activity may have a substantial

effect on the flow of carbon into seed oil. For example, in

Arabidopsis, mutant alleles of DGAT1 accumulate less TAG than

the wild type [38], while overexpression of DGAT1 increases oil

content in transgenic seeds [39].

High expression of SAD and ACCase has also been associated

with increased oil content in high-oil maize [40]. SAD catalyzes

desaturation of stearoyl-ACP to form oleoyl-ACP. A thioesterase

(FATA) catalyzes the release of the oleoyl moiety from ACP, and

the resulting free fatty acid is exported from the plastid and is

esterified to CoA. Another acyl-ACP thioesterase, FATB, has

higher affinity for saturated acyl-ACPs such as palmitoyl-ACP and

stearoyl-ACP [41]. The fatty acid desaturation (FAD) enzymes,

FAD2 (D12 desaturase) and FAD3 (D15 desaturase), along with

FAD6 and FAD7/FAD8, are responsible for sequential modifica-

tion of oleic acid to linoleic acid and linolenic acid, thereby

increasing the polyunsaturated to saturated (P:S) fatty acid ratios.

Given the potential involvement of ACC2, SAD, DGAT1, FAD2,

FAD3, FAD6 and FAD7/FAD8 in the accumulation of major fatty

acids in mature sea buckthorn seeds (Figure 6A,B), these results

warrant further studies related to expression, substrate specificity

or regulation of activity of enzymes related to lipid biosynthesis.

We have isolated full-length ORF cDNAs for DGAT1, DGAT2,

SAD and FAD2; the encoded sea buckthorn proteins share amino

acid identities of 65%, 62%, 84% and 70%, respectively, with the

Arabidopsis orthologs.

Figure 5. Gene Ontology annotation of sea buckthorn unigenes. A) Biological process; B) Cellular component; C) Molecular function.
doi:10.1371/journal.pone.0034099.g005
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Figure 6. Sea buckthorn sequences associated with fatty acid A) and triacylglycerol B) biosynthetic pathways. Enzymes with names in
full are represented on the left, and with names in short are represented on the right. Enzymes known to function at specific steps of the pathway are
represented in black. Enzymes for which sea buckthorn sequences have been identified are shown in green. EAR, enoyl-acyl-ACP-reductase; HAD, 3-
hydroxyacyl-ACP dehydratase. Enzymes responsible for phosphatidylcholine acyl editing in TAG assembly (LPCAT, CPT/PDCT, PDAT) are shown in the
shaded box in figure 6B.
doi:10.1371/journal.pone.0034099.g006
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Transcript Profiling of Lipid Biosynthesis-related Genes
During Berry Development

To see if any correlations could be found between fatty acid

compositions in developing fruits (Figure 2) and expression

patterns of lipid biosynthesis genes, we analyzed transcript

abundance by RT-PCR in RC-4 pulp and seeds at the four

different developmental stages described in Figure S1. Most of the

genes were expressed in both pulp and seeds, although the level of

expression varied considerably between the tissue types and at

different developmental stages (Figure 7). Genes involved in the

early steps of fatty acid biosynthesis, ACC2, KASIII and KAR,

exhibited relatively low transcript abundance throughout fruit

development. Considering that oil accumulation was already well

underway in the green stage (Figure 2D), this low-level expression

of fatty acid biosynthesis genes may signify a shift toward

desaturation and TAG assembly pathways. Indeed, expression of

the desaturases, FAD2, FAD3, FAD7 and FAD8 peaked in the green

or green/yellow stage and dropped thereafter, particularly in

seeds, while DGAT1 and DGAT2 were expressed at all stages of

development in both pulp and seeds. The relatively low level of

FAD3 expression in the pulp is consistent with the low levels of a-

linolenic acid in the pulp oil (Figure 2B), while the reduction in

FAD3 expression in later stages of seed development is consistent

with the observed decrease in a-linolenic acid in the orange/red

stage (Figure 2A). The high levels of DGAT1 transcripts at the

orange/red stage (Figure 7) is in agreement with the high number

of reads obtained for this gene by 454 sequencing (Table 3). FATB,

which releases palmitic acid from ACP, was also expressed

throughout development in seed and pulp tissue, but appeared to

be higher in pulp tissue, consistent with the higher proportion of

palmitic and palmitoleic acid observed in the pulp oil (Figure 2B).

In Brassica napus and Arabidopsis the expression of genes

involved in fatty acid biosynthesis, such as ACC, SAD, FAD2, FAD3,

and KASI, is characterized by a bell-shape transcript curve, with

moderate levels of expression at the initial stage followed by a

gradual increase during the rapid phase of oil accumulation and a

subsequent decline toward seed maturation [42,43]. However,

expression of genes involved in TAG assembly pathway, in

particular of DGAT1 and DGAT3, remains high throughout stages

of seed maturation [43]. The sea buckthorn genes had similar

profiles; the relatively high expression of most lipid biosynthesis

genes at the green stage reinforced the idea that lipid accumulation

was already well underway by that point.

Comparison of ESTs Corresponding to Fatty Acid
Biosynthesis Genes from Sea Buckthorn, Arabidopsis and
Flax Seeds

Because Arabidopsis and flax seeds accumulate significant

amounts of diverse fatty acids, the available gene expression

datasets relevant to fatty acid biosynthesis in these seed systems

[44,45] were used as reference to understand how similar

pathways are expressed and regulated in sea buckthorn seeds.

We compared the EST counts of key fatty acid biosynthesis genes

in the sea buckthorn transcriptome with those in Arabidopsis seeds

[44] and developing flax (Linum usitatissimum L.) seeds [45]. In

addition, we also used normalized microarray values representing

expression of Arabidopsis genes [46] to show the general

expression trends of these genes. The data represented in Table 4

shows that most components of the fatty acid biosynthesis pathway

are represented as ESTs in the sea buckthorn transcriptome, albeit

at different levels. The expression levels range from very high for

SAD, DGAT1 and ACC2 genes to very low levels for KASI, KASII,

KASIII, GPAT1, LPAT4, HAD and EAR. The presence of ESTs in

Figure 7. RT-PCR analysis of genes involved in fatty acid and triacylglycerol biosynthesis in seed and pulp tissues at different
developmental stages of fruit from RC-4 cultivar. G, G/Y, Y/O and O/R represent fruits harvested at green (6 August), green/yellow (17 August),
yellow/orange (31 August) and orange/red (22 October) stages, respectively. Ubiquitin5 (UBQ5) was used as loading control.
doi:10.1371/journal.pone.0034099.g007
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the sea buckthorn seed transcriptome corresponding to genes such

as KASI, KASII, HAD and EAR that peak in expression during the

torpedo and cotyledon stage embryos of Arabidopsis and flax,

suggests that the regulatory programs involved in the synthesis and

deposition of fatty acids are also conserved in sea buckthorn.

However, some distinct features in the sea buckthorn seed

transcriptome can be seen as considerable enrichment of DGAT1,

FATA and FATB ESTs relative to flax, and much lower

representation of FAD2 and FAD8 ESTs compared to flax.

Interestingly, genes implicated in desaturation and production of

linoleic and linolenic acids, such as FAD 2, 3, 6, 7 and 8 are

expressed at similar levels in sea buckthorn seeds, a pattern

different from Arabidopsis and flax. This observation is consistent

with the 1:1 ratio of v-6:v-3 fatty acids found in sea buckthorn.

Future studies involving expression in heterologous systems may

allow us to correlate more definitively the expression patterns of

these genes with the oil composition of sea buckthorn seeds.

Identification of Genes Involved in Isoprenoid
Biosynthesis

In plants, isoprenoid compounds are specially abundant and

diverse with roles in photosynthesis, respiration, growth regulation

and protection against pathogens and herbivores. Isoprenoids are

synthesized from the C5 precursor isopentenyl diphosphate (IPP)

and its isomer dimethylallyl diphosphate (DMAPP), also called

isoprene units [47]. Larger intermediates such as geranyl

diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15) and

geranylgeranyl diphosphate (GGPP, C20) are derived by sequen-

tial addition of isoprene units to DMAPP. These intermediates

represent the start points of multiple branches that lead to

synthesis of a diverse range of final products such as chlorophyll,

carotenoids, plastoquinone, phylloquinone, tocopherol, gibberel-

lin, abscisic acid, phytosterols, brassinosteroids, and phytoalexins,

to name a few [48]. Plants use two separate pathways, localized in

different cellular compartments, for the synthesis of IPP and

DMAPP. The mevalonic acid (MVA) pathway synthesizes IPP and

DMAPP in the cytosol (Figure 8A), whereas the methylerythritol

4-phosphate (MEP) pathway synthesizes IPP and DMAPP in

plastids (Figure 8B).

Since ‘‘isoprenoid biosynthetic process’’ was also well repre-

sented (113 sequences) under the GO term ‘‘lipid biosynthetic

process’’ (Table S1), we searched for putative genes involved in the

early biosynthetic steps leading to the synthesis of key compounds

IPP and DMAPP via the MEP and MVA pathways. With the

exception of AACT, PMK, ISPE (CMK) and ISPD (CMS),

sequences corresponding to all other enzymes of the two pathways

could be identified under the ‘‘isoprenoid biosynthetic process’’

category (Figure 8, Table S4). Sequences related to AACT, PMK

and ISPE were identified by BLAST analysis of the sea buckthorn

dataset in Fiesta 2 with known Arabidopsis sequences. A sequence

matching ISPD could not be identified in the sea buckthorn seed

transcriptome. Analysis of sea buckthorn ESTs related to

isoprenoid biosynthesis showed a preponderance of sequences

related to HMGS, HMGR, HDS (ISPG), HDR (ISPH) and IPP (IPI).

Earlier it was noted that the most abundant ESTs linked to the

MEP pathway in Arabidopsis databases, were from genes

encoding DXS and HDS, followed by HDR [48]. Since the

Arabidopsis ESTs were derived from various tissues and

developmental stages, an accurate comparison with sea buckthorn

ESTs cannot be made, but the abundance of ESTs encoding HDS

and HDR in both plant species suggests that these genes are

abundantly expressed. As would be expected, the carotenoid

biosynthesis genes [49] were abundantly represented in the seed

transcriptome of sea buckthorn (Table S4).

Identification of Abiotic Stress-related Genes
Since the third most highly represented term within the GO

category ‘‘biological process’’, was ‘‘response to stimulus’’ (2,848

sequences) (Figure 5), we analyzed the distribution of sequences in

the subcategory ‘‘response to stress’’ (1525 sequences) (Table S5).

Maximum number of sequences fell within the heat stress category

(371, 24.3%), followed by oxidative stress (349, 22.8%), osmotic

stress (223, 14.6%), cold stress (219, 14.3%), wounding (204,

13.3%), DNA damage (192, 12.5%) and water deprivation (148,

9.7%) (Figure 9). A subset of genes that were recovered as full-

length ORFs in the 454 transcriptome, along with their closest

Arabidopsis orthologs, is shown in Table 5. Under the heat stress

category, several low molecular weight heat shock protein (hsp)

genes and Hsp90-related genes were obtained with complete

ORFs. Within the dataset represented in Table 5, based on the

relative abundance of reads, contigs, and singletons, it can

tentatively be inferred that hsp genes are the most highly

represented set in the mature seed transcriptome. Two factors

may account for this: 1) sea buckthorn berry ripening and berry

collection in the summer months, which may have triggered

accumulation of hsps, and 2) the established expression and

functions of various hsps during embryo development and

maturation, and seed germination in various plant species [50–

52]. The AtRZ-1A in Arabidopsis affects seed germination and

seedling growth under low temperature [53]. The relatively high

number of contigs and singletons corresponding to AtRZ-1 family

members in the sea buckthorn seed transcriptome described here

suggests a possible developmental and/or stress-protective role in

seed germination for these genes. The Arabidopsis PDX1 and

RCI2A genes have roles in seed development and stress tolerance,

with the former involved also in vitamin B6 biosynthesis [54], and

the latter responding to environmental stimuli, such as low

temperature, dehydration, salt stress, and abscisic acid (ABA) [55].

The late embryogenesis abundant (LEA) proteins, including

LEA14, accumulate in the embryo during seed maturation and

are associated with dehydration in seeds [56]; however, AtLEA5

(also called SAG21) is constitutively expressed in roots and

reproductive organs but not in seeds, and has a specific role in

protection against oxidative stress [57].

Early response to dehydration (ERD) proteins play roles in seed

development and germination as well as protection of plants from

stresses such as cold and dehydration [58], while DREB2 proteins

are transcription factors that regulate the expression of stress-

responsive genes [59]. The multiprotein bridging factor 1 (MBF1)

gene family encodes transcriptional co-activators, which are

suggested to function as regulatory components of cross-talk

between ethylene, ABA and stress signal pathways [60]. Histone

deacetylase 2 (HD2) proteins are plant-specific histone deacety-

lases (HDAC) that do not share sequence similarities with other

known HDACs. AtHD2s are highly expressed in embryos and also

strongly induced during the process of somatic embryogenesis

[61]. Specifically, AtHD2C can modulate ABA and stress

responses [62]. By comparison to other stress categories, less is

known about the expression patterns and functions of the genes

under the DNA repair category in Arabidopsis. In conclusion,

numerous stress-related genes with key roles in seed development

and maturation were identified in the sea buckthorn transcrip-

tome. Which of these are important players in the stress tolerance

potential of sea buckthorn will only be revealed when more is

learnt about the expression and functions of the gene complements

in this plant species.

In conclusion, this study provides a comprehensive account of

fatty acid composition in sea buckthorn fruits collected from

Canadian-grown cultivars. Our results indicate that the seed oil
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contains v-3 and v-6 fatty acids that play an important role in

human health at high levels and in a desired ratio of 1:1, and the

pulp oil contains high levels of v-7 fatty acid, which promotes skin

health and has commercial applications. In addition, this study

provides the first transcriptome data for sea buckthorn, which has

identified in this plant most known genes related to fatty acid

biosynthesis. Both fatty acid and gene expression profiles in

developing seeds and fruits of sea buckthorn indicate that the early

stages of fruit development are optimal for oil quality from a

nutritional standpoint. Such correlating information at the genetic

and chemical levels will lead to superior product development and

breeding tools that will help select germplasm with optimal levels

of bioactive compounds.

Methods

Plant Material
Sea buckthorn cultivars RC-4 and FR-14 were selected from a

seedling population of Indian-Summer (H. rhamnoides ssp. mongolica)

growing in shelterbelts and wildlife plantings near Estevan,

Saskatchewan, Canada. Sea buckthorn cultivars E6590 and

Harvest Moon were selected from an open-pollinated seedling

population of H. rhamnoides ssp. mongolica growing at the

Agriculture and Agri-Food Canada, Agroforestry Development

Centre near Indian Head, Saskatchewan. Fully ripe fruits (500 g)

were harvested from these four cultivars in the field trial in August

2007, immediately frozen in liquid nitrogen and stored at 280uC
until further use. The RC-4 seeds were isolated from frozen fruits

and used for extracting total RNA for cDNA library construction.

Lipid analysis was performed on all four cultivars (RC-4, E6590,

Harvest Moon and FR-14). The whole berries of RC-4 cultivar at

different developmental stages were harvested in the field trial

during August to October 2009. The four developmental stages

described by fruit color green (G: 6 August); green/yellow (G/Y:

17 August); yellow/orange (Y/O: 31 August) and orange/red (O/

R: 22 October) were used for lipid analysis, and gene expression

profiling by RT-PCR.

Lipid Extraction
The oil from sea buckthorn fruit tissues was extracted according

to the method of Hara and Radin [63]. Briefly, isopropanol (2 mL)

was added to a known weight of seed, pulp or whole berry and the

mixture was heated at 85uC for 10 min. Samples were then

homogenized for 1 min after adding 2 mL hexane and 4 mL

hexane:isopropanol (3:2 v/v). After homogenizing, the total

volume was brought up to 12 mL using 3:2 hexane:isopropanol.

To this mixture, aqueous sodium sulphate (4 mL of 3.3% w/v) was

added to induce phase separation. The organic phase was

removed and the aqueous phase re-extracted with 8 mL 7:2

hexane:isopropanol. The combined lipid extracts were evaporated

under nitrogen, then resuspended in hexane (10 mg/mL for seed

extracts, 100 mg/ml for pulp and berry extracts) and stored at –

20uC under nitrogen until further analysis.

GC-MS Analysis of Fatty Acid Analysis in Total Lipid
Extracts of Whole Berries, Pulp and Seeds

Methanolic HCl was prepared by the gradual addition of

20 mL acetyl chloride to 100 mL cold methanol. Fatty acid

methyl esters (FAMEs) were prepared from total lipid extracts of

sea buckthorn fruit tissues by adding 1mL of methanolic HCl to

1 mg of total lipid and incubating for 1 h at 80uC. The

methylation was quenched by the addition of 1 mL 0.9% aqueous

sodium chloride, and the FAMEs were extracted twice with 2 mL

hexane. The resulting FAMEs extract was evaporated under

nitrogen and resuspended in iso-octane for GC/MS analysis.

GC/MS analysis of FAMEs was performed on an Agilent

6890N gas chromatograph with an Agilent 5975B Inert XL mass

selective detector. Chromatographic separation was achieved

using a DB-23 capillary column (J&W Scientific, Folsom CA;

30 m6250 mm60.25 mm) with the following temperature pro-

gram: initial temperature 90uC, raised at 10uC/min to 165uC,

held for 5 min, then raised at 3uC/min to a final temperature of

230uC. The inlet was operated in splitless mode at a temperature

of 290uC, with helium as the carrier gas at constant flow of

1.2mL/min. The transfer line temperature was 250uC, and the

MS ion source and quadrupole were set to 230uC and 150uC,

respectively. MS detection was carried out in electron impact (EI)

ionization mode, scanning all masses from 30–350 amu. Peaks

were identified based on mass spectral comparison with the

NIST05 MS library in combination with retention time matching

to external FAMEs standards (Nu-Chek Prep, Elysian, MN;

Standard #421A, with 100 mg/mL 18:1cis11 FAME added).

Figure 8. Sea buckthorn sequences associated with isoprenoid
biosynthesis by A) cytosolic MVA pathway and B) plastidial
MEP pathway. Enzymes for which sea buckthorn sequences have
been identified are shown in green. Abbreviations used for interme-
diates are: 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA); mevalonic acid
(MVA); mevalonate-5-phosphate (MVAP); MVAPP mevalonate-5-diphos-
phate (MVAPP); Isopentenyl diphosphate (IPP); Dimethylallyl-diphos-
phate (DMAPP); d-glyceraldehyde-3-phosphate (GAP); 1-deoxy-D-xylu-
lose-5-phosphate (DXP); 2- C-methyl-D- erythritol-4- phosphate (MEP);
4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol (CDP-ME); 2-phospho-
4-(cytidine 5’C-diphospho) 2-C-methyl-D-erythritol (CDP-ME2P); 2-C-
methyl-D- erythritol 2,4-cyclodiphosphate (MECDP); 1-hydroxy-3-meth-
yl-2-(E)-butenyl-4-diphosphate (HMBPP); Abbreviations used for en-
zymes are: Acetoacetyl-CoA thiolase (AACT); 3-hydroxy-3-methylglu-
taryl-CoA synthase (HMGS); HMG-CoA reductase (HMGR); mevalonate
kinase (MVK); diphosphomevalonate kinase (PMK); diphosphomevalo-
nate decarboxylase (PMD); isopentenyl diphosphate isomerase (IPP/IPI);
1-deoxy-d-xylulose-5-phosphate synthase (DXS); 1-deoxy-d-xylulose-5-
phosphate reductoisomerase (DXR); 4-diphosphocytidyl-2-C-methyl-d-
erythritol synthase (ISPD/CMS); 4-(cytidine 59-diphospho-2-C-methyl-d-
erythritol kinase (ISPE/CMK); 2-C-methyl-d-erythritol 2,4-cyclodipho-
sphate synthase (ISPF/MCS); 4-hydroxy-3-methyl but-2-enyl diphos-
phate synthase (ISPG/HDS); 4-hydroxy-3-methyl but-2-enyl diphosphate
reductase (ISPH/HDR).
doi:10.1371/journal.pone.0034099.g008
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Total RNA Extraction from Sea Buckthorn Seed and Pulp
RNA was extracted from sea buckthorn seeds [64]. Briefly, 0.5–

1.0 g of seeds was ground in liquid nitrogen using sterile pestle and

mortar. To the seed powder, 2 mL of basic RNA extraction buffer

(100 mM Tris-HCl, pH 9.0, 20 mM EDTA, 4% (w/v) sarkosyl,

200 mM NaCl, 16 mM DTT, and 16 mM mercaptobenzothiazol)

containing 5% (w/v) BSA and 10 mg/mL heparin were added

followed by the addition of 1.5 g of hydrated PVPP. The mixture

was ground to a homogenate for 1 min and then 6.5 mL of basic

RNA extraction buffer (no additions) were added. After homog-

enizing for 1 min, 200 mL proteinase K (10 mg/mL stock) were

added, followed by another 1 min of grinding. The mixture was

transferred to a 24 mL polypropylene screw-cap tube and

incubated at 37uC with gentle shaking for 20 min before

centrifugation at 14,0006g in Sorvall RC23 SS34 rotor for

10 min at 4uC. The supernatant was transferred to a new tube and

extracted twice with an equal volume of phenol and once with

phenol:chloroform:isoamyl alcohol (25:24:1). Centrifugation for

each extraction was conducted at 11,0006g for 15 min at 20uC.

The final upper phase was transferred to a 15 mL sterile

polypropylene tube to which 1/3 volume of 8 M LiCl was added

and the mixture was incubated at 4uC overnight. Following

centrifugation at 11,9536g in the SS34 rotor for 20 min at 4uC,

the pellet was recovered and washed twice with 2 M LiCl. The

pellet was dissolved in 2 mL of RNase-free water, followed by

ethanol precipitation. The RNA pellet was recovered by

centrifugation at 11,9536g for 30 min at 4uC and rinsed with

70% ethanol in RNase-free water. The pellet was dried and

dissolved in 50 mL of RNase-free water. Further purification was

carried out using the RNeasy Plant Mini kit (Qiagen Inc.

Mississauga, Ontario, Canada) coupled with on-column DNase

digestion. RNA quality was assessed using Agilent Technologies

2100 Bioanalyzer (Agilent Technologies). Good quality RNA

could be obtained from seeds, but not pulp, using this method.

To isolate RNA from seed and pulp tissues of berries at four

developmental stages, the protocol described [65] was employed

with minor modifications. Briefly, 10 mL 90% acetone was added

to ground 0.7–1.0 g powder, and the mixture was centrifuged at

14,0006g in the SS34 rotor for 10 min at 4uC. The pellet was

washed with 80% acetone by centrifugation at 14,0006g for

10 min at 4uC. To the dried pellet, 10 mL buffer (0.2 M Tris-

HCL pH 8.0, 1.4 M NaCl, 1% CTAB, 0.02 M EDTA pH 8.0,

1% sodium deoxycholate, 2% b- mercaptoethanol) pre-warmed at

60uC was added, followed by incubation at 60uC for 30 min. An

equal amount of chloroform was added and the mixture was

incubated for 15 min at 60uC and then centrifuged at 14,0006g

for 10 min. This extraction was repeated with the aqueous phase

and the RNA was precipitated overnight with 3 M LiCl at 20uC.

The RNA pellet was collected by centrifugation at 17,0006g for

30 min, dissolved in 0.5 mL of RNase-free water and extracted

once with phenol, once with phenol:chloroform (1:1) and once

with chloroform, with each extraction for 5 min at room

temperature. Finally, the RNA was precipitated with NaOAc

(pH 5.2) and absolute ethanol at 270uC. The pellet was washed

with 70% ethanol, dried and dissolved in 100 mL of RNase-free

water and stored at 270uC until further use.

Figure 9. Distribution of Gene Ontology terms within the category ‘‘response to stress.’’
doi:10.1371/journal.pone.0034099.g009
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Construction of cDNA Library
Poly(A) mRNA was isolated from total RNA using the Oligotex

mRNA Midi Kit (Qiagen Inc.) and the quality was assessed using

the 2100 Bioanalyzer. Samples with high RNA integrity numbers

(RIN) were selected for further processing. Double-stranded (ds)-

cDNA was synthesized from mRNA using the cDNA Synthesis

System (Roche, Mississauga, Ontario, Canada). Ten individual

reactions were performed for ds-cDNA synthesis. First-strand

cDNA synthesis was done using 1 mg of mRNA and random

hexamer primers instead of oligo (dT). The Second-

strand cDNA synthesis was performed according to the manufac-

turer’s instructions. The ds-cDNA was cleaned using the column-

based High Pure PCR Cleanup Micro kit (Roche, Mississauga,

Ontario, Canada). cDNAs were sheared by nebulization to yield

fragments approximately 500 bp in length. Standard procedures

for end polishing and purification, adaptor ligation, isolation and

estimation of ssDNA concentration, emulsion PCR with library

beads and final loading on the 454 plates were performed

according to supplier’s instructions (Roche, Mississauga, Ontario,

Canada ). The sequencing was conducted at Plant Biotechnology

Institute (PBI) of the National Research Council of Canada

(Saskatoon, Canada) using an FLX model 454 DNA Sequencer

(Roche, Mississauga, Ontario, Canada).

Transcript Assembly and Gene Ontology Annotation of
Sea Buckthorn Unigenes

The 454 reads (500,392) were assembled and annotated using

two sequence data management (SDM) and analysis platforms,

Fiesta 2 and GenomeQuest. The trimmed 454 read sequences

were assembled in Fiesta 2 using TGICL software from

TIGR (www.ncbi.nlm.nih.gov/pubmed/12651724). Overlapping

reads were assembled into contigs, and sequences that appeared

only once in the ESTs were classified as singletons. The sequences

were archived in the Fiesta 2 software package (http://bioinfo.pbi.

nrc.ca/napgen.beta//login.html) at PBI. The unigenes were

annotated against both Arabidopsis and Uniprot Plants using

BLASTX (E-value cutoff 10–6). Gene Ontology (GO) terms were

used to identify possible functional classifications of the unigenes

via assignment of Arabidopsis gene identifiers with the strongest

BLASTX alignments to the corresponding sea buckthorn EST.

On the GenomeQuest SDM platform, raw sequence files (SFF

format) were modified based on the adaptor trimming information

and the modified files were processed using the Roche Newbler

assembly program. Due to a limit of 300,000 sequences that can

be processed at one time by this software in GenomeQuest, the

500,392 raw reads were split into two buckets of 250,196

sequences in FASTA for assembly by Newbler. The unigenes

were annotated with their best hits in public databases by running

Rapid Annotation Process (RAP) against PLN (plant, fungal, and

algal sequences) in GenBank to find distribution of sea buckthorn

sequences against other organism sequences.

Computational Metabolic Network Prediction, and
Identification of Genes Involved in Fatty Acid
Biosynthesis and Abiotic Stress

MetaCyc (MetaCyc.org) is a non-redundant reference database

that contains experimentally verified metabolic pathway and

enzyme information. The largest category of pathways in

MetaCyc is biosynthesis, with 530 base pathways [66]. The

‘‘biosynthesis’’ category consists of secondary metabolites biosyn-

thesis (198 pathways), amino acids biosynthesis (91), cofactors,

prosthetic groups and electron carriers biosynthesis (83) and fatty

acids and lipids biosynthesis (51). We used MetaCyc in

conjunction with the PathoLogic component of the Pathway

Tools software (http://www.ncbi.nlm.nih.gov/pubmed/

12169551) to computationally predict the metabolic network of

sea buckthorn seeds.

Genes related to fatty acid and TAG biosynthesis were

identified using PlantCyc (http://pmn.plantcyc.org/), a compre-

hensive plant metabolic pathway database that provides access to

shared and unique metabolic pathways present in over 300 plant

species, including Arabidopsis. The Arabidopsis database [the

AraCyc Pathways Database (www.arabidopsis.org/tools/aracyc/)]

was searched for specific enzymes involved in each step of the fatty

acid biosynthesis pathway. The Arabidopsis enzyme sequences

were used to query the sea buckthorn dataset in Fiesta 2 (E-value

cutoff, 1e-5) and the total number of hits (number of contigs+sin-

gletons, reads per gene), and their lengths were recorded.

Nucleotide sequence comparisons between Arabidopsis coding

sequences and sea buckthorn sequences were done by local and

global alignment programs (http://www.ebi.ac.uk/Tools/psa).

Sequences from sea buckthorn seed were searched in the GO

subcategory ‘‘response to stress’’ arising from the GO category

‘‘response to stimulus’’, and analysed for full-length coding

sequences. The total number of hits, reads per gene and %

identities were calculated as described before.

RT-PCR Analysis
Total RNA was isolated from frozen seed and pulp tissue of RC-

4 to represent two independent biological replicates. cDNA

synthesis was performed with 1 mg of total RNA using QuantiTect

Reverse Transcription kit (Qiagen Inc. Mississauga, Ontario,

Canada) according to manufacturer’s instructions. Semi-quantita-

tive RT-PCR was performed with EST-specific primers (Table

S6), designed using Primer3 software. The amplification condi-

tions were 94uC for 4 min for initial denaturation, followed by 30

cycles of denaturation (30 s at 94uC), annealing (45 s at 56uC) and

extension (1 min at 72uC) with final extension for 4 min at 72uC.

The ubiquitin5 gene was used as internal control with 25 PCR

cycles.

The sequences have been submitted to NCBI’s Short Read

Archive (SRA) with Sample accession number, SRS290823.1.

Supporting Information

Figure S1 Sea buckthorn fruits at four developmental
stages. Fruits from RC-4 cultivar were harvested in the field trial

during August to October 2009.

(TIF)

Figure S2 Distribution of Gene Ontology terms within
the category ‘‘metabolic process.’’

(PDF)

Table S1 GO terms for biosynthetic process, lipid
biosynthetic process and isoprenoid biosynthetic pro-
cess.

(DOCX)

Table S2 A complete list of contigs and singletons
annotated with GO category ‘Fatty acid biosynthetic
process’ and ‘Glycerolipid biosynthetic process’.

(XLSX)

Table S3 A detailed version of Table 3 showing all
contigs and singletons related to fatty acid biosynthesis
genes.

(XLSX)
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Table S4 A complete list of contigs and singletons
annotated with GO category ‘Isoprenoid biosynthetic
process’. Green colour represents enzymes shown in
Figure 8.
(XLSX)

Table S5 List of genes annotated with GO category
‘Abiotic stress’, the most closely related sea buckthorn
contig, and the total number of unigenes related to a
stress gene.
(XLSX)

Table S6 Sequences of primers used in RT-PCR
analysis.
(DOCX)
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