
University of Alberta

A Vulnerability Modeling Approach for Certifying Security in

Components for E-commerce

by

Zhixiong Li

A thesis submitted to the Faculty of Graduate Studies and Research in

partial fulfillment of the requirement for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45844-0
Our file Notre reference
ISBN: 978-0-494-45844-0

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Today most of the e-commerce applications are component-based and a security

breach in any one of the components that comprise an e-commerce application

may destroy the whole application. However, commerce components are

commonly delivered in black box. End-users often suspiciously question the

quality of these components. Thus demands for software certifications regarding

the quality and security from third-party-independent agencies are becoming

stronger and stronger. This, in turn, increases the demands for new certification

technologies and methodologies.

This thesis proposes a product-based security certification process, Vulnerability

Modeling Certification Process (VMCP). It works on design specifications and

source code using white box technologies to identify software vulnerabilities and

evaluate risk associated with these vulnerabilities. The security certification,

which indicates the security level of the component, is then generated based on

the identified and rated vulnerabilities. VMCP can be used as a basis for

certifying components regarding security.

Acknowledgements

/ am greatly indebted to my supervisor Prof. Dr. James Miller whose help,

stimulating suggestions and encouragement helped me in all the time of research

for and writing of this thesis.

Especially, I would like to give my special thanks to my wife Qi Wang whose

patient love enabled me to complete this work.

Table of Contents

1 Introduction 1
1.1 Why Security Is Important to E-commerce? 2
1.2 Security - What Is ASecure System? 3
1.3 Modern Approaches in Constructing Web and E-commerce Applications -
COTS based 4
1.4 The Need for a Security Assessment of COTS Component 5
1.5 Software Certification 6
1.6 Related Work 8
1.7 Objectives of This Thesis 15

2 Process Overview and Framework 16
3 Comparison between VMCP and Microsoft's Threat Modeling Process 21

3.1 Difference on High Level Concepts 21
3.2 Differences on Low Level Implementation 23

4 Security Attacks & Vulnerabilities Taxonomy 27
5 Gain an architecture overview from the security perspective 31
6 Model the component from an adversary's View 36

6.1 Identify Assets 38
6.2 Identify Entry Points 43
6.3 Identify Trust Boundaries 48

7 Model Attack Paths and Security Criteria 51
7.1 Attack Path and Security Criteria 51
7.2 Enhanced Data Flow Diagram 54
7.3 How to model attack paths and Security Criteria 55

8 Identify Attacks 61
8.1 Identify attacks by Outside-In and Inside-Out 61
8.2 Steps to identify attacks in VMCP 63
8.3 Classify and document attacks 68

9 Identify Vulnerabilities 72
9.1 Analyze attacks using attack tree 72
9.2 Identify vulnerabilities by verifying attack trees along attack paths 77
9.3 Attack Pattern Library 80

10 Rate Vulnerabilities 81
11 Certify the component 88
12 Conclusion 89
References 92
Appendix A: Sample I - JSPCART 97

Overview 97
Develop a common security risks and vulnerabilities taxonomy 97
Gain an architecture overview from the security perspective 98
Model the component from an adversary's View 100
Model attack paths and security criteria 102
Attack analysis 107
Vulnerabilities identified and rates 109
Certification I l l

Appendix B: Sample II - Duke's Bank Application 112
Overview 112
Develop a common security risks and vulnerabilities taxonomy 112
Gain an architecture overview from the security perspective 112
Model the component from an adversary's View 115
Model attack paths and security criteria 117
Attack analysis 120
Vulnerabilities identified and rates 123
Certification 124

Appendix C: Sample III - Credit Card Payment Component 125
Overview 125
Develop a common security risks and vulnerabilities taxonomy 125
Gain an architecture overview from the security perspective 125
Model the component from an adversary's View 127
Model attack paths and security criteria 129
Attack analysis 133
Vulnerabilities identified and rates 135
Certification 136

Appendix D: Security Attacks & Vulnerabilities Taxonomy 137
Input and data validation 137
Authentication 141
Authorization 143
Session Management 145
Insecure Data Storage 147
Insecure Configuration Management 149
Cryptography 151
Parameter Manipulation 152
Exception handling, Auditing and Logging 154

List of Abbreviations

ACL access control list

API application programming interface

CERT computer emergency response team

CMMI capability maturity model integration

COTS commercial off-the-shelf

DAO data access object

DFD data flow diagrams

DoS denial of service

DREAD damage potential, reproducibility, exploitability, affected users and

discoverability

EDFD enhanced data flow diagram

GUI graphical user interface

HTML hypertext markup language

HTTP hypertext transfer protocol

NASA national aeronautics and space administration

RPC remote procedure call

SCSP software certification services provider

SQL structured query language

SSL secure sockets layer

STRIDE spoofing, tampering, repudiation, information disclosure, denial of

service, and elevation of privilege

URL uniform resoure locator

VMCP vulnerability modeling certification process

V&V validation and verification

XML extensible markup language

XSS cross-site script

1 Introduction

Electronic commerce means doing business online, using the power of the
Internet to gather and understand the needs and preferences of each customer and
partner, to customize products and services for them, and then to deliver the
products and services as quickly as possible. Personalized, automated services
offer businesses potential benefits such as increasing revenues, lower costs, and
good customer satisfaction, and good partner relationships. Electronic commerce
is a realistic way to achieve these benefits, and thus many companies today are
engaging in direct marketing, selling, and customer service; online banking and
billing; secure distribution of information; value chain trading; and corporate
purchasing.

Although the benefits of electronic commerce systems are enticing, there are still
many aspects that keep companies from moving to electronic commerce. First,
developing, implementing, and managing these systems is not always easy.
Second, besides adopting new technology, many companies will need to
reengineer their business processes to maximize the benefits of electronic
commerce. Usually companies approach from traditional commerce to electronic
commerce in three steps. At the beginning, companies slowly place some of their
advertising onto the web, online versions of printed brochures. Gradually, they
add other services, such as pricing and product information. This quickly leads to
online ordering, procurement, and customer service systems. Now many of these
so-called staid, old companies are fully web integrated. They have faced the
Internet challenges, adapted to the changes, and replaced many of their business
methods to facilitate web-based customer and vendor transactions.

Nowadays E-commerce is mainly used to automate many mundane, labor-
intensive processes, including:

• Product research
• Request for quotes
• Automated customer inquiry
• Electronic order entry
• Outbound and inbound logistics
• Electronic payments
• Customer support and communications

Besides, the way business transactions are performed has also been changed by E-
commerce. You can now shop online for insurance, loans, real estate, and even a
local dentist. If you want to trade equities, then the web-enabled trading systems
are there to execute the orders. If you want to buy a car, you can shop around
online for the best price from different dealerships. Online banking is almost a
must for any commercial bank. Customers pay bills, transfer money, and monitor
their investments online. Tickets for sports and entertainment events are also sold

-1 -

on the web. You can even reserve your theater tickets online and see a view of the
stage from the seat you are purchasing.

1.1 Why Security Is Important to E-commerce?

The Internet's very openness implies that all communication traveling over it is
inherently difficult to secure. Companies are also suffering from the openness, the
lack of security of web-based transactions, and the ease with which the privacy of
online communications can be violated. To make matters worse, hacking is an
epidemic that is on the rise. The security issues are not limited to e-commerce, but
rather are part of much broader issues affecting computer and information
systems throughout the world. Organizations are losing millions of dollars each
year because of the security-related crimes ranging from virus attacks to business
fraud, including the theft of sensitive business information and confidential credit
card information.

The cost of damages related to security breaches is estimated as billions of dollars.
However, the situation is becoming worse and worse because of the fact that with
the ever increasing number of users of information systems, easy access to
information, and the increasing number of knowledgeable users, one can easily
assume that the number of technology misuses and security threats will increase
proportionally. Ira Winkler, president of the Internet Security Advisors Group in
Severna Park, Md., and author of "Corporate Espionage" (Prima Publishing, 1999)
succinctly states the average e-commerce business's security dilemma: "To a
hacker, you're just an IP address. You get hit because you let yourself be an easy
mark." Here are some eye-opening figures to contemplate: A study by Gartner Inc.
indicates that 50 percent of all small to midsize enterprises were hacked in 2005,
with almost 60 percent of those not even knowing they had been hacked.
According to the Computer Emergency Response Team (better known as
"CERT," www.cert.org), a total of 137,529 incidents were reported in 2005. But
incidents are rapidly increasing — there were 173,521 reported incidents in 2006.

What makes things worse is that in their haste to get on the web, many
organizations do not take security into account. As a result, the required controls
often were not put in place. Moreover application developers who build the web-
based applications are not experienced at web security. When they design and
implement applications, developers focus on functionality. Thus hackers can
attack an organization at will. New exploits enable them to shut down or seriously
disrupt business processes.

Regrettably, as many businesses are reluctant to reveal that their systems have
been infiltrated, and to share knowledge about their incident and the extent of the
damage, the true extent of damages incurred by businesses related to e-commerce
security crime cannot truly be known. The reason why businesses are reluctant to
share information regarding their security breaches is because they fear that once
the public learns about their incident, their customers will lose confidence in the

- 2 -

http://www.cert.org

business's ability to protect its assets, and as a result the business will lose
customers in turn losing their profitability. Nobody is willing to provide financial
information to an online shopping website after the company has reported that
they were attacked by hackers. Businesses have nothing to gain by voluntarily
admitting to having been victimized by security-related crimes. To maintain the
business's survivability and competitive stance companies have to maintain a
positive image regarding e-commerce security in today's media madness
regarding the Internet.

1.2 Security - What Is A Secure System?

Security is fundamentally about protecting assets from illegal access. Assets may
be tangible items, such as a file on your hard driver or the application database, or
they may be intangible, such as your company's reputation or the availability of
your web site. Security is a path rather than a destination. It is all about risk
assessment and management, and implementing effective countermeasures. As
you analyze and design your applications, you identify potential threats and assess
the corresponding risks of each threat. Then you decide the most effective and
economical approaches to mitigate these threats, making tradeoffs between the
cost and benefit. A secure system should have powerful mitigation strategies and
implementations against both external and internal threats of the following aspects:

• Authentication

Authentication addresses the question: who are you? It is the process of
uniquely identifying the clients of your applications and services by
validating the user to whom they claims to be, typically through
credentials, such as a user name and password. These clients may be end
users, other services, processes, or servers.

• Authorization

Authorization addresses the question: what can you do? It is all about
granting or denying access to the resources and operations for which
access is requested by the authenticated client. Authorization is usually
accomplished based on user identity and role membership. Resources
include files, databases, tables, rows, and so on, together with system-level
resources such as registry keys and memory data. Operations include
performing transactions such as purchasing a product, depositing and
withdrawing money from one account, or updating a user profile. .

• Auditing

Auditing addresses the question: who has done what? It is all about
logging events that have happened, which is the key to non-repudiation.
Non-repudiation guarantees that a user has to admit what they have done,

- 3 -

such as performing an operation or initiating a transaction. For example, in
an online banking system, non-repudiation mechanisms are required to
make sure that a consumer cannot deny transferring $1000 from one
account to another account.

• Confidentiality

Confidentiality, also referred to as privacy, is all about keeping secrets. It
is the process of keeping private confidential data from unauthorized users
or eavesdroppers who monitor the flow of traffic across a network. Two
common means of enforcing confidentiality are encryption and access
control lists (ACLs).

• Integrity

Integrity is all about protecting data from accidental or deliberate
(malicious) modification. For data passed across networks integrity is a
key concern as serious as privacy (confidentiality). Hashing techniques
and message authentication codes are typically used to protect the integrity
of data in transit.

• Availability

Availability is all about keeping systems operational for legitimate users.
Denial of service attacks are the most common threats to applications
regarding availability.

1.3 Modern Approaches in Constructing Web and E-commerce Applications
- COTS based

The world software and services market has grown into a huge industry, about
500 billion US dollar per year. It is proven that one of the most efficient ways to
reduce the cost of software design and development is to use software
components, either COTS or those built in house. Component-based Internet
technologies such as J2EE and .NET are making the use of software components
easier and more pervasive than ever before. Nowadays, the Internet is being
harnessed by mainstream businesses of all sizes for group collaboration,
communication, and inexpensive dissemination of information. Component-based
technologies such as Java applets, JavaBeans, and ActiveX controls make it
possible for businesses to build faster and cheaper Web-based applications. The
next step in the evolution of business on the Internet is electronic commerce.

Today both government and commercial organizations are already being prepared
for systems that employ COTS functionality. For example, guidelines or standards
have already been put forth by the US Federal Aviation Administration, US
Department of Defense, and the US Food and Drug Agency [22].

- 4 -

1.4 The Need for a Security Assessment of COTS Component

Today when people talk about e-commerce security most of them refer to
encryption technology and protocols for securing the data transaction. However it
is easy to understand that a weakness in any one of the components that comprise
an e-commerce system may lead to a security breach. For example, a flaw in the
server side validation may allow a criminal access to the data stored in the
database without forcing the criminal to break any cipher text at all. Similarly,
vulnerabilities in security models for online banking may allow insecure behavior
to originate from client-side interaction. Therefore the first thing for e-commerce
to obtain mass market acceptance is to adequately address the security issues of
component based commerce systems.

Today we are still in the early stages of building secure components and there are
many aspects responsible for the poor security in these components. The most
important reason is that building secure components is a hard, a complex task
with no well-established processes to follow. Design and implementing security-
critical components require development teams to have strong skills within at
least three areas: cryptography, computer security, and software engineering.
Complexity comes from the intersection and coupling of these three area and the
conflicting interests. An example is usability versus authentication mechanisms.
Also, in developing web-based applications, the choice of communication models,
multi-thread programming, and session management add to the complexity.
Recently, a number of Web-application vulnerabilities have been discovered and
all of them are related to the same problem: improper input validation [2].

Another reason contributing to the poor security is the shortage of people with
security background and training. Because of the shortage a large number of
unqualified technicians are developing secure software systems. The situation in
today's software industry much likes that of the British banking industry in the
80's and early 90's, where implementations by untrained personnel were the
cause for the majority of security breaches. A central issue of secure software is
the definition of security. Infrastructure security people often associate security
with systems such as firewalls and intrusion detection systems while developers
of web applications tend to think of the Secure Sockets Layer (SSL) protocol
when talking about web security. However, security is an emergent system
property, not only a feature, but the sum of a set of non-functional goals, which
include procedures for prevention, traceability, auditing, monitoring, privacy,
confidentiality, anonymity, authentication, and integrity. Experts who are able to
perform an extensive security evaluation are a rare breed.

Due to the complexities involved in designing and implementing secure systems,
most of application developers and end users will have to rely on trusted software
provided by third parties as they cannot fully understand a security-critical
program's inner workings. On the other side, besides building trustworthy
systems, the providers of secure components face another challenge to find ways
to gain trust from consumers. Software components are often delivered as

- 5 -

executable objects ("black-boxes") with licensing agreements that forbid
decompilation back to source. It is easy to think that a more expensive component
is more reliable and it might have received more testing. But it is not always the
fact. A less expensive component that has experienced more usage may actually
have higher quality. Component providers need a way to show the real quality of
their components. Objective and scientific security assessment is essential to this
step.

1.5 Software Certification

Today, commerce components are commonly delivered in black box (executable
format). End-users often suspiciously question their quality, thinking they do not
meet their security requirements, do not match the functionality described in the
manual, and are not tested thoroughly. The component provider cannot do much
to change this situation, without some form of independent third-party validation.
There are several reasons accounting for this: the liability associated with making
claims concerning quality, end-user distrust of providers, software publishers are
likely to not test components to the levels that would justify software warranties
because of the cost and rush to put the components on the market, and publishers
are likely to make incorrect assumptions about how users will use the software.
Therefore, in the software world a new demand or business is being raised by
both the component producers and consumers that independent agencies certify
that programs meet certain criteria. Vendors want proof of the quality of their
products and consumers want unbiased assessments from a third party. By hiring
neutral agencies to do assessments on components and grant certificates,
publishers get official testimony of their product's quality while end-users will
also benefit from these unbiased assessments.

In recent years the business case for creating independent agencies to certify
software quality has become stronger and stronger. Agencies that perform third-
party-independent software certification are referred to as Software Certification
Services Providers (SCSPs). In addition to all the advantages mentioned above,
another advantage of having independent SCSPs is that they provide a "fair
environment" for each publisher, assuming that each product of a certain field
receives equal treatment. Though the demands for SCSPs are strong there are not
many SCSP today. A key reason of this situation is the liability of being a certifier.
When certified software fails in the field in a manner that was claimed to not be
possible, the certifier bears some level of liability. This requires that the certifiers
must be very confident about their assessment results before issuing a certificate.
Although SCSPs have not become widespread there are several relatively
unkonwn SCSPs in existence today. KeyLabs is such an organization; it handles
applications for 100% Pure Java. Other than these small specialized labs, the next
closest organization is Underwriters Laboratory (UL). UL certificates electrical
product designs to ensure that safety concerns are mitigated.

To certify software, the first and also one of the most important steps for the

SCSPs is to setup the criteria against which the software is validated and assessed.
Both subjective and objective software criteria can be tested for by SCSPs,
spanning the spectrum from guaranteeing functionality to counting the lines of
code. Subjective criteria tend to be imprecise and prone to error while objective
criteria are precise and less prone to error. For example, deciding whether a
component's behavior is correct or not is subjective as what "correctness" really
means for a piece of software depends on how the certifier defines the rules
against which the component is tested. SCSPs should be more careful when
rendering professional opinions for criteria that are as contentious as this. But it is
easy for SCSPs to assess characteristics such as whether a program has input data
validation in it and how many lines of code a program has. Testing for these
criteria is not very hard. However when an SCSP tries to estimate a criterion such
as software security troubles will begin as how hackers attack a component and
how the component in question defenses itself is quite subjective and greatly
based on the testers' experience, if there is no well-defined, relatively-experience-
free process to follow.

Today, the number of approaches and standards for certifying software quality is
increasing. The most popular approaches are process-based (e.g., ISO9000 and
SEI-CMMI). These approaches either validate the integrity of the software
product development processes or personnel. NASA is one of the most successful
organizations in adopting process-based certification approaches, though it is not
a commercial SCSP. NASA requests independent certification both for the
software they write as well as the software they purchase and built its own SCSP -
- the Independent Verification & Validation facility in Fairmont, WV.
Intermetrics is hired as the prime contractor by the facility to oversee the
certification process and provide the necessary independent assessment.
Intermetrics is a real commercial SCSP and provides NASA with a common
software assessment process over all software projects.

With the development of software industry, particularly the widespread use of
COTS, process-based certification approaches appear more and more inefficient
and limited. Today components of one software product may come from several
publishers. How can we know the quality of this software? If only a subset of
these publishers are process-based certified. In addition, process-based
certification is not for a certain software product but for the ability of a company
to produce a high quality product. For example, CMMI is a certification which
focuses on improving software quality by improving the software development
process. It is a certification for the company but not for the individual products.
Additionally, CMMI is extremely time- and cost- consuming, as it impacts not
only the software development process but also the culture and organization of
companies. So far, there are still very few companies that have passed the highest
level of CMMI, Level 5.

Thus new approaches of independent "product-based" software certification are
getting more and more interesting. "Product-based" approaches certify the quality

- 7 -

of software products, based on the certain criteria and information provided by
publishers. This is normally accomplished via verification and validation
approaches. This kind of certificate is very much helpful when a customer
determines whether a candidate component is dependable enough for their needs.
It also enables customers to decide which component to purchase amongst several
competing options given components' dependability scores and licensing costs (if
alternatives exist). These "product-based" certificates also provide small and
medium publishers with an opportunity to increase consumer confidence. The
National Security Computer Association (NCSA) is a for-profit SCSP that has
taken product-based approaches in firewall certification program. They use only
objective criteria that specific known problems are not present in an applicant's
system.

There is a group of industry representatives who meet periodically to decide what
known problems should be checked for. NCSA uses their opinions as the base of
their certification program and gradually introduces additional criteria into the
certification process. This adaptive certification process adds rigor to the firewall
certification process and thus produces a steady stream of business for the NCSA.
To further reduce liability. NCSA makes a disclaimer that their firewall certificate
does not cover firewall security.

Currently the biggest issue for "product-based" certificate is still the liability issue.
When a software component fails in the field that an independent party has
provided an assessment for, what responsibility should the independent party take
for the failure and/or the loss caused? This is the main reason why "process-
based" certificates are overwhelming "product-based" certificates in business.

In term of technology "product-based" procedures are much difficulty. A single
"product-based" certification methodology is probably not going to "fit all" types
of software but a single process-based methodology is good for most companies.
Numerous certification methodologies will be needed and the basic requirement is
that these methodologies are able to provide assessment in two areas: (1) what the
component does, and (2) what level of integrity is guaranteed by the certificate's
"seal of approval."

Despite of all these difficulties, it is believed that the stage has been set for
independent "product-based" software certificate. With the emergence of new
"product-based" technologies, and the maturity of these technologies, "product-
based" certification will become more and more popular. In this thesis, I will
propose a new technology to certify the security of components for e-commerce.

1.6 Related Work

Microsoft's Threat Modeling Process

Threat modeling is a fairly new technique used to develop more secure
applications. It is, in essence, the act of creating a security design specification
and later testing that design. By assessing and documenting the security risks
associated with an application, the threat modeling methodology first creates a
threat profile of the application being developed, which is an enumeration of the
entire adversary's goals for the system. Then it analyzes every threat to find out
the best way to mitigate the threat.

Although threat modeling is mainly used in application development, it provides
us with new concepts on how to build a product-based certification process. That
is creating an attack profile of a given component, which contains all potential
attacks to the component, and then verifying how the component defends these
attacks; in other words, how the threats are mitigated. This is the basic concept of
this thesis.

So far the most mature version of a threat modeling process is presented by
Swiderski and Snyder [5]. process is comprised of three high-level steps:
understanding the adversary's view, characterizing the security of the system, and
determining threats. Each of these steps has logical sub-steps. Figure 1-6-1
illustrates the process.

Figure 1-6-1: The high-level process of threat modeling.

• . . ' . i * . .
% _ t

The following briefly explain each of the steps.

Understanding the Adversary's View
Threat modeling takes an outside-in approach to understand the adversary's view
of the system. That is enumerating entry points and assets, as well as cross-
referencing them with trust levels.

• Entry Points
Entry points are any location where data or control transfers between the
system being modeled and another system. They show all the places where the
adversary can attack the system, including transfer points such as open sockets,
remote procedure call (RPC) interfaces, Web services interfaces, and data

fcSfy Pews,

; rii - . . • ' . 1,-.. :f . .

. . . . „ . .n ...•

...;.. ,.j

-9-

being read from the file system.

• Assets
Assets are the resources the component or system has that an adversary might
try to modify, steal, or otherwise access or manipulate. Assets can be tangible,
such as a process token, or more abstract, such as data consistency (for
example, a string class that maintains a length field).

• Trust Levels
Trust levels define how external entities are characterized for the system. They
define the privilege that an external entity should have to legitimately use an
entry point or functionality at the entry point, and they dictate which assets
external entities should normally be allowed to access or affect in some way.

Characterizing the Security of the System
Characterizing the security of the system involves bounding the threat model,
gathering information about dependencies that are critical to security, and
understanding the internal workings of the system.

• Define usage scenarios.
Development teams must ask themselves how the component or system will
be used. Conversely, the teams can ask themselves how the component or
system will not be used.

• Identify assumptions and dependencies.
Development teams should collect information such as external dependencies,
external and internal security notes, and implementation assumptions.

• Model the system.
Data flow diagrams (DFDs) or other diagrams, such as process models, are
used to understand the actions a system performs at a given entry point. DFDs
are visual representations of how a system processes data.

Determining Threats
Enumerating threats creates a threat profile for a system, describing all the
potential attacks that architects and developers should mitigate against. The
security of a system can be expressed in terms of threats with appropriate
mitigation vs. total threats, taking into account the severity of the threats with
insufficient mitigation.

• Identify threats.
For each entry point, the development team determines how an adversary
might try to affect an asset. Based on what the asset is, the team predicts what
the adversary would try to do and what his goals would be.

• Analyze threats.
Development teams model threats to determine whether they are mitigated.
Using threat trees, a development team can decompose a threat into individual,

- 1 0 -

testable conditions. Threats that are not mitigated become vulnerabilities—
security bugs that must be remedied.

There are other 2 articles published at Microsoft MSDN website addressing threat
modeling. Though processes proposed by these articles are much less mature and
complete than the one presented above, they are still worth being read. The first
one is [20]. Figure 1-6-2 represents the process proposed.

Figure 1-6-2. An overview of the threat modeling process

Threat Modeling Process

3, Decompose the Application

4, Identify the Threats

5, Document the Threats

i . Rate the Threats

The six threat modeling steps are:

Step 1: Identify assets.
Identify the assets that you need to protect. This could range from confidential
data, such as your customer or orders database, to your Web pages or Web site
availability.

Step 2: Create an architecture overview.
Use simple diagrams and tables to document the architecture of the component,
including subsystems, trust boundaries, and data flow.

Step 3: Decompose the application.

Decompose the architecture of the component, including the underlying network
and host infrastructure design, to create a security profile for the application. The
aim of the security profile is to uncover vulnerabilities in the design,
implementation, or deployment configuration of the component.

Step 4: Identify the threats.

- 1 1 -

Keeping the goals of an attacker in mind, and with knowledge of the architecture
and potential vulnerabilities of the component, identify the threats that could
affect the application.

Step 5: Document the threats.

For each threat, document each threat using a common threat template that
defines a core set of attributes to capture.

Step 6: Rate the threats.

Rate the threats to prioritize and address the most significant threats first. These
threats present the biggest risk. The rating process weighs the probability of the
threat against the damage that could result should an attack occur.

Output

The output from the threat modeling process is a document for the various
members of your project team. It allows them to clearly understand the threats
that need to be addressed and how to address them. Threat models consist of a
definition of the architecture of the component and a list of threats for the
component scenario, as Figure 1-6-3 shows.

Figure 1-6-3. Components of the threat model

Architecture
•>M'.]r,ims and \

D(inn:tifjrrs

kitjritifi&ii
riireuts tint]

Threat
AftributRS

1 • • • •

1 _ri_H

Threat #1

Threat #2

Threat #3

Throat *n

U

-12 -

The other article is [6]. Figure 1-6-4 represents the process proposed.

Figure 1-6-4. The iterative threat modeling process

'. '-

•J)

u
£"~ «* —
= 12
zj p !

"3 T '
— W 1

>
,-

.

I

1. Identify Security j
Objectives \

j i

1 j * ; . - *MI | ,- 4" --vJ*

*.— J ' - - .̂
^ '

- • ^ , - • "

i

i

-'*''" *"-̂
^ ' 2. Application ^

Overview

/ ' \

i-

4. Identify - —-
Threats

1
„ i

i
" i

i.
j

.-'
w\ > •

.T3 5
EE: *̂

f o ^
1 rj 3

— •a
o ©
3 W) .

O ,'

The five threat modeling steps are:

• Step 1: Identify security objectives. Clear objectives help you to
focus the threat modeling activity and determine how much effort to
spend on subsequent steps.

• Step 2: Create an application overview. Itemizing your application's
important characteristics and actors helps you to identify relevant
threats during step 4.

• Step 3: Decompose your application. A detailed understanding of the
mechanics of your application makes it easier for you to uncover
more relevant and more detailed threats.

• Step 4: Identify threats. Use details from steps 2 and 3 to identify
threats relevant to your application scenario and context.

• Step 5: Identify vulnerabilities. Review the layers of your application
to identify weaknesses related to your threats. Use vulnerability
categories to help you focus on those areas where mistakes are most
often made.

- 1 3 -

Trike Methodology

Trike [21] is a unified conceptual framework for security auditing from a risk
management perspective through the generation of threat models in a reliable,
repeatable manner. It is supposed to be used by a security auditing team to
completely and accurately describe the security characteristics of a system from
its high-level architecture to its low-level implementation details. In general, Trike
uses the following four models to identify and assess threats in a system.

Requirements Model
Trike believes all threat models must begin with an understanding of what the
system is intended to do. It uses an Actor-Asset-Action matrix to represent the
requirement of a system. Trike looks at who interacts with the system (actor),
what things the system acts upon (asset), and the actions taken by actors that the
system is intended to support. Also Trike looks at what rules exist in the system to
constrain those actions, and ties all of this information up in a convenient tabular
format.

Implementation Model
Trike starts the implementation model by looking at those actions in the system
which do not fit into the intended actions framework and how actions interact
with the state of the system. It then looks at how the different software and
hardware components of the system fit together in the data flow diagram. Finally
Trike maps from the actions and state of the system into the data flow diagram.

Threat Model
Trike identifies threats from the full model for both the requirements of the
application and the implementation of the application. Then it proceeds by
building the attack graph and examining the actual system to verify all
weaknesses in the system. This done, Trike can determine the vulnerabilities to
the system and apply mitigations.

Risk Model
Trike calculates a threat risk value by multiplying the exposure for the threat by
the probabilities associated with the vulnerabilities that implement that threat.
This provides users with a set of values, which take into account the technical
security issues and relate them to the business impact of those issues.

Although by the time of this thesis being written, Trike was under heavy
developed and only published a draft version, it is still a valuable paper on threat
modeling and security assessment.

- 1 4 -

1.7 Objectives of This Thesis

This thesis is supposed to propose a new product-based certification process to
certify the security in components used by e-commerce applications. The new
process will work on design specifications and source code using white box
technologies to identify software vulnerabilities and evaluate risk associated with
these vulnerabilities. The security certification, which indicates the security level
of the component, is then generated based on the identified and rated
vulnerabilities.

- 1 5 -

2 Process Overview and Framework

Process Overview

The Vulnerability Modeling Certification Process (VMCP) is a product-based
security certification process. It assesses and documents the security
vulnerabilities associated with a component. VMCP can help SCSPs (Software
Certification Services Providers) identify vulnerabilities and assess the risk of
these identified vulnerabilities and thus it serves as a basis for certifying
components regarding security.

VMCP is based on white box technologies. Its key concept is very simple and
straightforward: identifying architecture and implementation vulnerabilities by
reviewing design documentations and performing code review. First VMCP tries
to figure out the potential attacks based on the component's architecture and
design and then VMCP tries to see how the component defends these attacks.
Vulnerabilities are expected to be exposed during the procedures. VMCP consists
of a series of steps that are structured and practiced enough to be used in real life
projects. The rest of this thesis will describe each step in details.

VMCP involves understanding an adversary's goals in attacking a system based
on the system's assets of interest. It looks at a component from an adversary's
perspective to anticipate attack goals. VMCP is based on two premises:

• An adversary will not attack the system without assets of interest. This
first principle is very easy to understand. An adversary's goals are always
based on the system's assets. The adversary has no reason to attack the
system unless it contains something of value to them—for example,
corporate or personal data, processing resources, or financial information.
Assets are resources that the component or system possesses that an
adversary might try to modify, steal, or manipulate. Assets can be tangible,
such as data stored in the database or more abstract (intangible), such as
the availability of services. Assets are the basis for attacks. It is impossible
to have an attack without a corresponding asset because assets are
essentially attack targets.

• An adversary cannot attack a system without entry points—
interfaces the system has with the outside world. Entry points are any
location where data, or control, transfers between the system being
modeled and another system. In most cases, the adversary must actively
jeopardize the application's security via entry points. Entry points show all
the places where the adversary can attack the system from, including
transfer points such as open sockets, remote procedure call (RPC)
interfaces, Web services interfaces, and data being read from the file
system. Entry points are not only the places where data or commands flow
into the system but include points where data or information flows out of

- 1 6 -

the system. For example, some wireless applications broadcast
information that is unsolicited. A passive attacker who listens for this
information could discover valuable information about the application.

VMCP bases on a system's entry points (in other words, interfaces the system has
with the outside world) to determine the functionality that an adversary can
exercise on the system and what assets he can affect. This allows SCSPs to
enumerate potential attacks and vulnerabilities are discovered when attacks are
analyzed. VMCP involves the following main steps:

• Develop and understand a common taxonomy of security attacks and
vulnerabilities. VMCP certifies components by assessing how
components defend known attacks. A common taxonomy of security
attacks together with vulnerabilities that make these attacks possible
should be developed and deeply understood. This taxonomy covers the
most common application level attacks and vulnerabilities that plague
web-based enterprise applications.

• Understand components from an adversary's view. Check the
component in question to see

1. How it accepts data from outside providers and how it interacts
with the outside environment;

2. What might be the interesting assets to attackers;
3. Where are the weakest points that attackers might conduct their

attack through; and
4. Where are the attack paths through which attackers are able to

reach assets of interest and how attackers break the security rules
on these paths?

• Identify potential attacks. Having a good understanding from an
adversary's view and a common taxonomy of security attacks in mind,
assessors are able to identify potential attacks on the component. Attacks
are identified along the attack paths by thinking about how attackers reach
the assets that are connected to these attack paths.

• Discover and rate vulnerabilities. Using techniques such as threat
(attack) trees to analyze attack vectors, VMCP can find architectural
vulnerabilities as well as direct code reviews to find implementation
vulnerabilities. Rating is done by evaluating potential impact of each of
the vulnerabilities on the system using the component. VMCP considers
five aspects when analyzing impact: Damage potential, Reproducibility,
Exploitability, Affected users and Discoverability (DREAD) [67].

• Certify components. Draw a conclusion on the component in question
regarding the security according to the rated vulnerabilities and risks
caused.

- 17-

Process Framework

VMCP is a structured activity for identifying and evaluating attacks and
vulnerabilities that are most likely to affect the component's security. First from
the perspective of an adversity, VMCP tries to figure out how the component can
be attacked and then disclose the vulnerabilities through verifying how the
component defends the attack. Figure 2-1 shows the framework of VMCP.
Basically, there are 3 phases and 8 steps in the VMCP process.

Phase I: Preparation Phase. In this phase, we do some pre-work before
modeling vulnerabilities of a certain component.

• Step 1: Develop a common taxonomy of security attacks and
vulnerabilities. This taxonomy is used as the start point in later steps
identifying attacks and vulnerabilities. It covers the most common
application level attacks and vulnerabilities that plague web-based
enterprise applications. For each category within the taxonomy, VMCP
first identifies the attacks and then the related vulnerabilities that may pose
the risks by using some effect-cause analysis techniques.

Phase II: Modeling Phase. This phase is iterative. By iterating the modeling
phase, we can gradually refine our modeling result when we become more and
more familiar with the component.

• Step 2: Gain an architecture overview from the security perspective.
In this step, we try to understand the component from the perspective of
security. We focus these materials that will help us to identify relevant
risks during latter steps, such as the end-to-end deployment scenario, roles,
key usage scenario, technologies used and application security mechanism.
Usually we derive them from the specifications coming with the
component.

• Step 3: Model the component from an adversary's View. VMCP looks
at a component from an adversary's perspective to anticipate attack goals.
VMCP is based on the following two premises:

1. An adversary will not attack the system without assets of interest.

2. An adversary cannot attack a system without entry points, interfaces
the system has with the outside world

Here we break down the component in question to identify all assets of
interest and entry points, together with trust boundaries where trust levels
change.

- 1 8 -

Figure 2-1: VMCP Framework

Vulnerabi l i ty Model ing Cert i f icat ion Process

Phase I

Dcvulnp Kccuiiiy
I axonumy

Phase II

Gain an architecture
overview from the security

perspccnvL'
s~

Mtnlol '.ho Ciinipnni-ni Ironi
j an adversary's View

Mi ' ik - I Jl i i iel . pai1. .i.;il
-.1 / . I " I l \ I ' l l l l ' M H

Identify attaclcs

Jtlcntifv Vulnerabilities

Rate Vulncrahilities

Phase Ml
Certify Component

Step 4: Model attack paths and security criteria. An attack path in
VMCP is a business logic path within the component that shows how
information or control goes through an entry points and reaches the assets.

-19-

Attackers can only perform attacks along these attack paths, as they cannot
invade any assets isolated from any entry points. VMCP uses DFD (Data
Flow Diagram) to model attack paths and document for each identified
attack path the passengers (the legal users of a path), actions (actions that
can be done on each of the assets connected to the path), and rule (security
criteria).

• Step 5: Identify attacks. With the documented attack paths and security
criteria tied to them, attack analysis turns to check each of these paths and
see how to break the security criteria. Actually some of the paths are very
similar in nature, and, from the perspective of adversaries, they are the
same and can be broken the same way. So when analyzing attack, we do
not need to analyze every attack path. We can group some similar paths
together according to certain criteria and pick up one or several typical
paths to do an attack analysis. As for each individual path in the group we
only pay attention to the particular rules. The output of this step is list of
possible attacks along the chosen attack paths.

• Step 6: Identify Vulnerabilities. Given an attack path and a set of
potential attacks, we can begin to look at ways in which those attacks may
be realized. An attack is a threat-specific, implementation-specific, or
technology-specific step an attacker could take to realize or help to realize
exploiting a system. Through thoroughly analyzing how an identified
attack may be realized and how the application defends itself, we can
figure out the application's vulnerabilities. VMCP adopts attack tree to
analyze attacks and then identify vulnerabilities.

• Step 7: Rate vulnerabilities. That is done by evaluating potential impact
of each of the vulnerabilities on the system which uses the component. We
consider five aspects when analyzing impact: Damage potential,
Reproducibility, Exploitability, Affected users and Discoverability
(DREAD).

Phase III: Certification Phase. Draw a conclusion on the component in question
regarding the security according to the rated vulnerabilities and risks caused.

-20 -

3 Comparison between VMCP and Microsoft's Threat
Modeling Process

Although the basic concept of VMCP is derived from Microsoft's threat modeling
methodology and some technologies and steps used by Microsoft also appear in
VMCP, VMCP is totally different from Microsoft's threat modeling on both the
high level concepts and the low level implementation. In this chapter I will
explicitly compare and contrast VMCP and Microsoft's threat modeling from
these two levels.

3.1 Difference on High Level Concepts

Microsoft's threat modeling is not an independent process. It is only one phase of
application security life cycle, which is integrated into the development life cycle
to develop a secure application. Figure 3-1 is from [5] and illustrates the 7 phases
in the application security life cycle.

Figure 3-1: Phases in the application security life cycle.

In this security life cycle threat modeling is used to identify and analyze the
security threats that are always present for the system. Generally threat modeling
has two main steps:
1. It first creates a threat profile of the application being developed by assessing

and documenting the security risks associated with the application. The threat

-21 -

profile is an enumeration of the entire adversary's goals for the system.
2. Then it analyzes threats to determine whether they are mitigated.

The outputs are used to refine the security design, plan for penetration testing, and
drive code reviews, but how to use them for these three purposes is outside of the
scope of threat modeling.

VMCP is an independent product-based security certification process. It is
supposed to be used by SCSPs (Software Certification Services Providers) to
identify security vulnerabilities (unmitigated threats) associated with a component
and assess the risk of these identified vulnerabilities. VMCP has three main steps:
1. First VMCP identifies the potential attacks (threats) based on the

component's architecture and design. This is similar to the first step of
Microsoft's threat modeling.

2. Then VMCP verifies how the component defends these attacks by reviewing
the detailed design and source code. Vulnerabilities are expected to be
exposed in this phase.

3. Finally, VMCP analyzes identified vulnerabilities and assesses risks of these
vulnerabilities.

In conclusion, VMCP emphasizes on how to identify vulnerabilities (unmitigated
threats) and how to assess the risks of these vulnerabilities. VMCP can be
considered an extension of Microsoft's threat modeling, as both has similar first
step, identify threats (attacks), but VMCP goes much further.

- 2 2 -

3.2 Differences on Low Level Implementation

Threat modeling is a concept framework but not a practical process. What it
proposes are ideas or concepts on how to create a threat profile for an application,
as well as some technologies and methodologies that could be used for this
process. It does not provide detailed information about how to actually operate the
process and how to use those technologies and methodologies in an effective
manner.

Threat modeling is built upon the assumption that users of this process are
very familiar with all specifications and even source code of the application
being modeled. As mentioned above threat modeling is one of the seven phases
of application security life cycle and it is designed to be used by development
teams, so it is built upon the assumption that these teams are very familiar with all
specifications and even source code of the application. As a result all detailed
steps are developed focusing on how to identify threats. As to how to determine
whether or not a certain threat is mitigated by the architecture design, detailed
design or powerful coding, very little is addressed, only several pages in [5].

VMCP is a practical process or even a guideline that can be used by any real
life project. VMCP implements, extends and refines Microsoft's threat modeling
in a practical manner. It intends to provide Software Certification Services
Providers with a step-by-step manual on how to certify components on security.
Though VMCP borrows some concepts, technologies and methodologies
proposed by threat modeling, VMCP emphasizes on implementing those concepts
and using those technologies and methodologies in an effective manner.

VMCP is built upon the assumption that users of this process know nothing
about the component at the time when they start to certify the component.
VMCP is based on white box technologies. Its key concept is very simple and
straightforward: identifying architecture vulnerabilities and implementation
vulnerabilities by reviewing design specifications and performing code review.
Review design specifications and source code is very time- and effort- intensive.
What VMCP really does is to develop an approach to perform these boring tasks
effectively and efficaciously.

The following compares VMCP with Microsoft threat modeling step by step.

Step 1: Develop a common taxonomy of security attacks and vulnerabilities.
Threat Modeling does not mention this. It depends much on expert experience to
identify threats. VMCP uses its taxonomy as the start point to identify attacks and
vulnerabilities. It covers the most common application level attacks and
vulnerabilities that plague web-based enterprise applications. For each category
within the taxonomy, VMCP first identifies the attacks and then the related
vulnerabilities that may pose the risks.

- 23 -

Step 2: Gain an architecture overview from the security perspective.
This step in VMCP is identical to "Step 2: Create an architecture overview" of the
modeling process presented in [20].

Step 3: Model the component from an adversary's View.
The modeling process present by [5] has a similar step "Understanding the
Adversary's View" where it defines three elements of a system that are interesting
to any adversary whoever wants to attack the system, and briefly describes how to
collect these elements.

• Entry Points. Where data or control transfers between the system being
modeled and another system.

• Assets. Resources the component or system has that an adversary might
try to modify, steal, or otherwise access or manipulate.

• Trust Levels. They define the privilege that an external entity should have
to legitimately use an entry point or functionality at the entry point, and
they dictate which assets external entities should normally be allowed to
access or affect in some way.

VMCP adapts this step from threat modeling by making the following
enhancements:

• Import Entry Points and Assets are still utilized, but two new features are
added: "trust roles" and "category". These two features play important
roles in later attack analysis.

• Replace Trust Levels with Trust Boundaries, which refer to places where
trust levels change. A trust boundary can be imaged as a line drawn
through a component. On one side of the line, data is un-trusted. On the
other side of the line, data is trustworthy. (See charter 7 for more details).

• Provides more detailed approaches to collect these elements.

Step 4: Model attack paths and security criteria.
When modeling applications, Microsoft uses traditional DFDs. No detailed
information is provided on how to use DFDs to model applications, except some
basic concepts such as start from the high level and gradually descend to the
desired low level.

VMCP creates and implements an innovative approach to model applications
using EDFD (Enhanced Data Flow Diagram, a term introduced by VMCP). The
following new concepts and approach have been defined and implemented:

• Attack Path. Traditionally attack paths refer to an unmitigated path from
the root node to a leave in an attack tree or threat tree. In VMCP, an
attack path is redefined as a logical path that connects entry points and
assets, through which external or internal data or controls flow from the
entry points to the assets.

-24-

• Security Criteria. Security rules associated with an attack path. It
defines who the legal passengers of an attack path are and what actions
these passengers can perform on this attack path.

• EDFD (Enhanced Data Flow Diagram). The traditional DFD has been
enhanced for the benefit of vulnerability modeling by replacing External
Entities with Entry Points, replacing Data Stores with Assets and adding
Trust Boundaries into the diagram.

• A new approach. VMCP develops and implement a new, concrete
approach to model attack paths and security criteria using EDFD.

Step 5: Identify attacks.
Threat modeling proposes the concepts of identifying threats by correlating
threats and assets, and starting with known vulnerabilities. Again it emphasizes
the concepts and no concrete approach is proposed. Threats identified are
classified using STRIDE [67].

VMCP develops and implements another innovative approach for identifying
attacks. This approach is a combination of inside-out and outside-in approaches
based on the attack paths, security criteria and the taxonomy developed in step 1.
The basic idea is to check attack paths and see if and how to break the security
criteria with the help of the taxonomy. As to attack clarification, VMCP adopts
STRIDE too, similar to threat modeling.

Step 6: Identify Vulnerabilities.
Threat modeling uses threat trees to analyze threats and determine if there are
unmitigated paths existing. These unmitigated paths are vulnerabilities. Threat
modeling proposes performing code and design review on the most potential
places to identify vulnerabilities but nothing is discussed on how to determine and
find out where are these most potential places, assuming that you are a member of
the development team and should know where these potential places are

VMCP uses the same technologies to identify vulnerabilities, attack trees (threat
trees), code and design reviews, as they are the commonly used V&V
technologies. The difference is VMCP explains and provides guidance with regard
to the process, e.g. it discusses where are the most likely locations of threats and
how to identify both architecture and implementation vulnerabilities using attack
trees, attack paths, security criteria and the taxonomy. In order words, VMCP tells
you how to perform code and design review in an effective and efficacious
manner, specifically for vulnerability determination rather than the more
traditional defect removal. Also VMCP has something new in this step:

• Enhancing the traditional attack tree by adding a pre-condition branch into
the diagram; and

• Importing the concept of an Attack Pattern Library
These two points are very helpful in identifying vulnerabilities, and will be the
corner stones of computationally automatic analyzing of attacks.

- 2 5 -

Step 7: Rate vulnerabilities.
Threat modeling use DREAD method to assess risks associated with identified
threats. It gives a brief definition of different security levels for each metric of
D.R.E.A.D, but no information on how to use exist tools or methods to assist the
assessment. Threat modeling uses continual numbers such 1 to 10 to score threats,
which does not consider the qualitative nature of threats. The problem is how you
can tell the exact difference between 2 and 3 when estimating potential damage.

VMCP also uses the DREAD method to assess risks associated with identified
vulnerabilities. Differences are:

• VMCP uses discrete numbers such as 5, 10 and 15 to score vulnerabilities,
combining the advantages of both the quantitative method and the
qualitative method. This not only takes into account the qualitative nature
of vulnerabilities but makes it possible to perform quantitative analyst on
them.

• VMCP uses attack trees and assets to assist in assessing risks. Detailed
information is provided.

Step 8: Certify the component.
Obviously this step is exclusive to VMCP. VMCP certifies the security level of a
component based on the score calculated in step 7.

-26-

4 Security Attacks & Vulnerabilities Taxonomy

This taxonomy will be used as the start point in later steps to assist with
identifying attacks and vulnerabilities. It focuses on the most common application
level attacks and vulnerabilities that plague web-based enterprise applications.
Effect-cause analysis technologies were used to develop this taxonomy, thinking
of the attacks as the effects and the vulnerabilities as the causes whose existence
in the application makes the attacks realizable. Some attacks are very similar in
nature, for example SQL injection and cross-site scripting are both execute
malicious code in the backend of applications. Moreover, these attacks are caused
by the same vulnerabilities, say using non-validated input or relying upon only
client-side validation. Therefore we grouped these attacks and related
vulnerabilities together as one category. So far this classification is by no means
thorough and detailed enough for real business projects because developing a
thorough taxonomy is complex enough for a separate research topic and is out of
the scope of this thesis. At this stage I classified security attacks and
vulnerabilities into nine groups. Appendix D is a sample taxonomy which has
detailed information about these nine groups.

1. Input and data validation
2. Authentication
3. Authorization
4. Session Management
5. Insecure Data Storage
6. Insecure Configuration Management
7. Cryptography
8. Parameter Manipulation
9. Exception handling, Auditing and Logging

Input and data validation

Input and data validation requires applications not to blindly trust any input or
data before they pass the validation of the type, length, format, range or even the
content. It is a must to validate the input or data before processing them. An
attacker can compromise your application if any such vulnerability is identified.
Applications that do not perform input and data validation are susceptible for
following attacks.

• Buffer Overflow
• Cross-site scripting
• SQL injection
• Canonicalization
• Format string attacks

-27 -

Authentication

Authentication addresses the question: who are you? It is the process of uniquely
identifying the clients of your applications and services by validating the user
with whom they claims to be. This is typically achieved through credentials, such
as a user name and password. These clients may be end users, other services,
processes, or servers. Following are the possible attacks that an attacker can
conduct to exploit failures in an application.

• Brute force attacks
• Dictionary attacks
• Cookie replay attacks
• Credential theft

Authorization

Authorization addresses the question: what can you do? It is all about granting or
denying access to the resources and operations for which the authenticated client
requests access. Authorization is usually accomplished based upon user identity
and role membership. Resources include files, databases, tables, rows, and so on,
together with system-level resources such as registry keys and memory data.
Operations include performing transactions such as purchasing a product,
depositing and withdrawing money from one account, or updating user profile.
Top attacks that exploit authorization are

• Elevation of privilege
• Disclosure of confidential data
• Luring attacks

Session Management

In order to provide a friendly environment to the users, web-based applications
often use sessions to maintain states through user's subsequent requests. Sessions
are stored on servers and linked to users by session IDs. Session IDs are an
attractive target for hackers as they can act as the associated users once they get
their session ID. Moreover, sometimes applications store sensitive information in
the session objects managed by the application layer. The attractive session ID
and sensitive information stored in the session objects lead to potential attacks.
They include:

• Session hijacking
• Session fixating
• Session forging
• Session replay

Insecure Data Storage

-28-

There is a misunderstanding that if the encryption is strong enough no sensitive
data will be stolen. However encryption may be totally compromised by a single
vulnerability. This answers the question why devastating thefts of sensitive data
continue to occur even though enterprises worldwide spent approximately $20
billion per year on IT security. Sensitive data is always at great risk as it is always
the target of malicious attacks. Most of the security cost and effort are usually
spent on protecting sensitive data. Common attacks regarding data storage are:

• Unauthorized access to data in storage
• Unauthorized access to data in memory
• Network eavesdropping
• Data tampering

Insecure Configuration Management

Today web applications frequently use services provided by the application server
and/or web server such as data storage, directory services, mail and so on.
However the component development group (provider) is separate from the group
using the component (consumer). Very often a wide gap between those who write
the component and those responsible for the operations environment (consumers)
is created by the improper assumptions made by the writers that how consumers
will configure their server. Web application security concerns often span this gap.
In addition, Most of the web applications are configurable and store the
configuration parameters in files or databases. To facility management of
configuration, applications normally provide configuration management
interfaces to allow users with high privileges, say administrators, to change
configuration parameters and perform maintenance. This makes the situation even
worse. The following are common attacks due to insecure configuration
management.

• Unauthorized access to configuration management interfaces
• Unauthorized access to configuration stores
• Retrieval of plain text configuration secrets

Cryptography

Today most web-based applications use cryptography to protect sensitive
information when transmitted and stored. Basically cryptographic systems can
provide four services: authentication, non-repudiation, confidentiality and
integrity. Cryptography is one of the most advanced topics of application security
and there are many approaches to encryption, each with advantages and
disadvantages. Very often expert experience is needed when architects and
developers try to choose a cryptography approach and implement it correctly and
accurately. A small mistake in configuration or coding may result in a useless
cryptography. Typical cryptographic attacks are:

- 2 9 -

• Cryptographic key attacks

Parameter Manipulation

Manipulating the data sent between the browser and the web application is a
simple but effective way to change application behaviors. Information captured
from the browser is usually sent to the server in one of these four formats: URL
query string, form fields, cookies and HTTP headers. In a badly designed and
developed web application, malicious users can modify data before it is be
transmitted so even cryptographic protection in the transport layer (SSL) is
insufficient. Parameter tampering can often be done with:

• URL Query String
• HTML Form field
• Cookie
• HTTP header

Exception handling, Auditing and Logging

Exception handling, auditing and logging are three different aspects of the same topic:
how to track events within an application. Applications should always fail safe. When
an application fails to an unknown state, the exception information shown might
not be making sense for the end user but might be a very interesting message for
an attacker. Motivated attackers may be able to exploit this indeterminate state to
access unauthorized functionality, or worse manipulate data. Well-written
applications enable auditing and logging to easily track or identify potential fraud or
anomalies end-to-end. This helps to identify which user is trying to exploit and
what actions have been done. With this kind of information necessary actions can
be taken to prevent the system from such attacks. The following attacks are
related to this area.

• Detailed error message attacks
• Repudiation
• Escape from being traced
• Cover tracks

- 30 -

5 Gain an architecture overview from the security perspective

Basically all security vulnerabilities fall into two types: implementation and
architecture vulnerabilities. Implementation vulnerabilities are related to how the
component is implemented. For example, no server side data validation will make
injection attacks possible. Architecture vulnerabilities are related to how the
component is designed and what kinds of technologies are used. For example, any
session-based component is prone to the following architectural-level
vulnerabilities: session identifier replay, unsecured session
identifiers and injection attacks.

Today there are many mature technologies addressing implementation security
problems. One common method that has become prevalent is using code reviews.
However even a thorough code review will not discover architecture-level
vulnerabilities. The reasons are obviously. Code review, conducted either by
humans or by automatic scanners, focuses on a very limited context, reviewing
the source code line by line. Moreover, a code review can only discover security
problems that have been written into the applications. Many security problems are
caused by the technologies used and how the component is deployed, rather than
bad code.

Currently, security experts rely on their experience to recognize architecture-level
security issues in components. Teams that are trying to understand the risk their
applications face have broad guidelines to work with and use methodologies that
often center on brainstorming for analyzing component. The vulnerability
modeling process described in this thesis enables anyone trying to examine the
security architecture of a component to work with a procedural approach to
identify commonly known architecture flaws, and to identify new issues—
including those specific to a particular component. VMCP makes the application
security analysis less reliant on intuition and allows people with less experience in
security analysis to evaluate a component's security strength.

In this chapter, I will present a procedure of how to obtain an architectural
overview of the component in question from the security perspective. This is the
base stone of analyzing architecture vulnerabilities. To understand the component
from the perspective of security, VMCP tries to:

• Draw the end-to-end deployment scenario.

• Identify roles.

• Identify key usage scenarios.

• Identify security mechanisms.

• Identify technologies.

-31 -

Draw the End-to-End Deployment Scenario

How will the component be deployed determines the component's architecture at
the high level. For example if the component will be deployed in a distributed
fashion, the client-server architecture pattern is the best choice. To obtain a good
understanding of the component, the first step is thinking of how it is deployed.
Moreover some attacks and vulnerabilities are related to a particular architectural
pattern. Cookie manipulating and HTML Form field manipulating will never
happen to non-web-based components. When drawing the deployment scenario,
we first draw a big picture that includes the sub-composition and structure of the
component, its subsystems, and its deployment characteristics. Then add details
about the authentication, authorization, and communication mechanisms to the
big picture.

In general, the deployment diagram should include the following:

• End-to-end deployment topology. The topology should indicate the
layout of the servers and the access of intranet, extranet, or Internet. We
can start with logical network topologies, and then refine them to more
detailed physical topologies.

• Logical layers. These layers are the software layers of the component,
indicating where and how the presentation layer, business layer, and data
access layers reside. Logical layers need to be refined to include physical
server boundaries.

• Key sub-components. It is not possible and necessary to include every
sub-component in the deployment scenario diagram. Only the important
components within each logical layer should be included.

• Communication ports and protocols. We need to know which servers
and components communicate with each other and what protocols they
use, e.g. HTTP, or HTTPS. The specifics of inbound and outbound
information packages should be included.

• External dependencies. If the component has dependencies on external
systems they should be indicated. Later in the modeling process, this will
help us identify attacks and vulnerabilities that can arise if any
assumptions the component makes about the external systems are false or
if the external systems do not work as expected.

Identify Roles

Identify who can do what and cannot do what within the component. For each
role, we need to figure out what are the legal and illegal activities. In other words,
what is supposed to and not supposed to happen. Particular attention should be
paid to higher-privileged groups of users. Below is an example from appendix A:
Sample I - JSPCART. JSPCART is an online Shopping Cart which has three roles:

- 32 -

Anonymous user, Authenticated user and Administrators. Each role has legal and
illegal activities.

Identified Roles of JSPCART

Anonymous user:

Legal activities:

o Browse product or catalog list

o Create a cart, and browse or modify items in the cart

o Create a user account

Illegal activities:

o Checkout items in a cart created by his/her own.

o Browse, modify or checkout items in carts created by
others

o Browse or modify user profile

o Change products or catalogs information

o Browse or modify orders

Authenticated user:

Legal activities:

o Browse product or catalog list

o Create a cart, and browse, modify or checkout items in the
cart.

o Create a user account

o Browse or modify his/her own profile

o Browse or modify his/her own orders

Illegal activities:

o Browse, modify or checkout items in carts created by other
users

o Browse or modify profiles of other users

o Change products or catalogs information

o Browse or modify orders created by other users

- 3 3 -

Administrators:

Legal activities:

o Full control on user accounts, carts, products, catalogs and
orders.

Illegal activities:

o None

Identify Key Usage Scenarios

Key usage scenarios can be derived from use cases that come with other
specifications. At least they should cover all important features of the component
and identify the dominant application functionality and usage, especially in the
Create, Read, Update, and Delete aspects. This kind of information helps us
understand how the component is intended to be used and how it can be misused.

When discovering key usage scenarios, we need to avoid attempting to analyze
every possible use case. Instead, we focus on the main use cases that exercise the
predominant Create, Read, Update, and Delete functionality of the component.
For example, the important usage scenarios of the JSPCART are:

• Anonymous user browses the product pagers.

• Anonymous user adds and/or removes items to the shopping cart, modify
the item quantity.

• Anonymous user logs in to authenticate prior to placing an order.

• Anonymous user creates a new account prior to placing an order.

• Authenticated user places, browses and modifies an order.

• Authenticated user browses and/or modifies his/her user profile.

• Administrator manipulates user profiles, products, catalogs and orders.

Identify Security Mechanisms

The purpose of this effort is to gain high level knowledge of the security
mechanisms used by the component. For example, we might know how the
component is authenticated by the database or how users are authorized. We
might know what mechanisms are used to perform authentication and
authorization and where they are performed. We might also know certain details
about if there is server side data validation and how it is to be performed.

-34 -

Basically we need to identify any key points that we can derived from the
specifications about the following:

• Authentication

• Authorization

• Input and data validation

• Configuration management

• Sensitive data

• Session management

• Cryptography

• Parameter manipulation

• Exception handling, Auditing and logging

Identify Technologies

Technologies used by the component contribute much to the security. For example
if the component is developed in C, you have to pay special attention to potential
buffer flows. Identifying technologies also helps us to focus on technology-
specific attacks and vulnerabilities later in the modeling activities. When
identifying technologies, we focus on the following aspects:

• Operating systems

• Web server software

• Database server software

• Technologies used in the presentation, business, and data access layers

• Development languages

-35-

6 Model the component from an adversary's View

VMCP uses a defensive approach to certificate security. For a specified
component, VMCP first figures out all potential attacks that an adversary might
use to exploit the component. For each attack, VMCP verifies how the component
defends against the attack. To model the adversary view VMCP is based on the
following three premises:

• An adversary will not attack the system without assets of interest. This
first principle is very easy to understand. An adversary's goals are always
based on the system's assets. The adversary has no reason to attack the
system unless it contains something of value to him/her—for example,
corporate or personal data, processing resources, or financial information.
Assets are the resources the component or system has that an adversary
might try to modify, steal, or manipulate. Assets can be tangible, such as
data stored in the database or more abstract (intangible), such as such as
the availability of services. Assets are the basis for attacks. It is impossible
to have an attack without a corresponding asset because assets are
essentially attack targets.

• An adversary cannot attack a system without entry points, interfaces
the system has with the outside world. Entry points are any location
where data or control transfers between the system being modeled and
another system. In most cases, the adversary must actively jeopardize the
application's security via entry points. Entry points show all the places
where the adversary can attack the system from, including transfer points
such as open sockets, remote procedure call (RPC) interfaces, Web
services interfaces, and data being read from the file system. Entry points
are not only the places where data or commands flow into the system but
includes the points where data or information flows out of the system. The
remaining passive attacks (those attacks where the adversary simply
consumes data from the application) are information disclosure attacks. In
this case, the adversary is still interacting with the application by listening
on the appropriate channel, which might be a network, an event, or
another message channel. For example, some wireless applications
broadcast information that is unsolicited. A passive attacker who listens
for this information could discover valuable information about the
application.

• An adversary always attacks the system at the weakest points, the
trust boundaries. By identifying all assets of interest and entry points,
adversaries gather the basic information for undertaking attacks, what are
the attack targets and where they can enter the system to reach the assets.
Then what is left is to figure out where is the most possible points they can
break the system, in other words the weakest points of the system. In great

-36-

part these are the trust boundaries, where privilege of an external or
internal entity to access system's assets changes. A login page is an
example of external trust boundary as an external user's privilege changes
after the authentication procedure. The interface between application and
back-end database is an example of internal trust boundary. Database
usually has its own authentication procedure for each application instance
trying to connect to it.

VMCP use a systematic method to model the component from these three aspects,
assets of interest, entry points and trust boundaries, to get enough information for
later attack analysis.

-37 -

6.1 Identify Assets

Definition of an Asset

Assets are abstract or concrete resources that the system must protect from
incorrect or unauthorized use by adversaries. Assets can be tangible, say user
account, or intangible like the availability of service.

• Tangible assets. Tangible assets are physical assets such as data stored in
database or configure file stored on a disk. Tangible assets also include
non-persistent assets. Tangible assets are generally easy to understand and
identify.

• Intangible assets. Intangible assets are abstract assets that cannot be seen,
touched or physically measured, such as the availability of services or
processes running on a server. Intangible assets are easy to ignore.

Assets, either tangible or intangible, can be transitive through their relationship
with other assets. A component within a system usually is not independent but
interacts with other components. If a component acts as a gateway to the
functionality and assets of the other components, the assets of the other
components are called the transitive assets of the gateway component. Let's think
about an access control component in a file system. The component implements
an authorization mechanism to check entries on a resource to see whether a user
has access rights to that resource. We can consider the resources as a transitive
asset of the access control component because other components determine
whether to grant access based solely on the information returned by the access
control component, even though it does not interact directly with that resource
and simply checks the access control list on behalf of others.

How to identify Assets

Identifying assets can be one of the more difficult parts of the VMCP, and if you
are going to miss something, it is probably an asset. VMCP uses security
objectives to guide the identification of assets. Security objectives are goals the
component is developed to achieve, or constraints the component is developed
under. Security objectives are often described in terms of constraints. For example,
an unauthorized user must not change account information. VMCP classifies
security objectives into four catalogues:

• Confidentiality. How the component protects against unauthorized
information disclosure.

• Integrity. How the component prevents unauthorized information changes.

• Availability. How the component protects provide the required services
even while under attack.

- 3 8 -

• Traceability and auditing. How the component find out who did what
and when they did.

Security objectives are very helpful when we try to identify assets. One place to
start is by looking at what are the objects of each security objective. Also, look at
what nouns are used repeatedly in security objectives. For example, if one of the
security objects is to protect customer account details as sensitive data, then we
can identify customer account details as assets as this kind of information is
interesting to the attackers. To identify the security objectives, consider the
following questions:

• What is the sensitive data does the component needs to protect?
Sensitive data, like use user credential, customer credit card numbers,
financial history and transaction records, are always interesting to attacks.
They are the most critical asset.

• Are there any compliance requirements? Is the component developed
under any compliance requirements such as security policy, privacy laws,
regulations, and standards?

• Are there intangible assets that you need to protect? The most common
intangible asset is the quality of service requirements including
availability and performance requirements.

• What kinds of activity should be recorded for further auditing?
Activities on sensitive data should be recorded, such as update, delete, and
store records in production price table.

The following are examples of some common security objectives:

• Prevent attackers from obtaining sensitive customer data, e.g. profile
information.

• Meet service-level agreements for application availability and
performance.

• Record activities on sensitive customer data.

How to record assets

When identify assets VMCP gathers the following information.
• ID A unique number assigned to the asset, which is used to cross-

reference assets with attacks and vulnerabilities later in the modeling
process.

• Name A short title for the asset, which should be descriptive enough to
identify the asset—for example, User credentials, order data, and
availability of service.

• Description The brief description of the asset.
• Trust Roles The trust roles are those who are normally allowed to

- 3 9 -

access or otherwise interact with the asset. The allowed access
(authorization) of each role to the asset should also be document. VMCP
checks four types of access, C: Create, R: Retrieve, U: Update, D: Delete.

• Category The category to which the asset belongs to. Currently we
classify the assets into three categories

• Application data Transient or persistent data meaningful to
business logics such as Order and Account.

• Non-Functionality Assets related to non-functionality
implementation. Besides business logics components usually
implement some general non-functional requirement say auditing
and monitoring.

• System resource Assets of the environment where the component
is running, e.g. files stored in the file system.

In some systems, it is easier to identify assets if they are grouped according to the
part of the system they belong to. This is particularly useful in Web-based
applications and other multi-user systems. For example, the assets of a Web
commerce application that processes user orders could include the users' credit
card numbers, the purchase invoices, and the website availability. These assets
might belong to the application data, and non-functionality categories,
respectively. Categorizing assets in this manner can ensure that significant types
of assets are not missed altogether.

Examples

This section contains identified assets from the three samples: an online shopping
cart Jspcart, Duke's Bank Application and Credit Card Payment Component.
Appendix A, Appendix B and Appendix C have the complete information of these
three samples.

Table 6-1-1: Asset Table of Jspcart
ID
Al

A2

A3

A4

A5

A6

Name
User
credentials
User profile

Cart

Order

Product

Shopping

Description
Username and password

User profiles stored in back-end
database
Cart information stored in back-
end database, e.g. the name and
quantity of items in a cart.

Orders stored in back-end
database
Products stored in back-end
database

Shopping information for orders.

Trust Roles
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user(R)
Authenticated
user (R)
Administrator
(CRUD)
Authenticated

Category
Application
data
Application
data
Application
data

Application
data
Application
data

Application

- 4 0 -

A6

A7

A8

A9

A10

information

Catalog

Process

Physical
Machine asset

Ability to
trace and audit
actions
occurred
Availability of
service

Catalogs stored in back-end
database
Processes running within the
same machine where the
component is running
Assets of the environment where
the component is running, e.g.
files stored in the file system.
Ability to trace hacker's exploit
action and audit what users have
done.

Ability to keep the service
available to users during a
certain period.

user (CRU)
Administrator
(CRUD)
Administrator
(CRUD)
N/A

N/A

N/A

N/A

data

Application
data
System
resource

System
resource

Non-
Functionality

Non-
Functionality

C: Create, R: Retrieve, U: Update, D: Delete.

ID
Al

A2

A3

A4

A5

A6

A7

A8

Table 6-1
Name
User
credentials

Customer Data

Account Data

Transaction
Data
Process

Physical
Machine asset

Ability to trace
and audit
actions
occurred
Availability of
service

-2: Asset Table of Duke's Bank Application
Description
Username and password

Customer information stored in
back-end database
Account information stored in
back-end database.

Transaction information stored
in back-end database
Processes running within the
same machine where the
component is running
Assets of the environment
where the component is
running, e.g. files stored in the
file system.
Ability to trace hacker's exploit
action and audit what users
have done.

Ability to keep the service
available to users during a
certain period.

Trust Roles
BankCustomer,
BankAdmin
(CRUD)
BankAdmin
(CRUD)
BankAdmin
(CRUD)
BankCustome
(RU)
BankCustome
(CR)
N/A

N/A

N/A

N/A

Category
Application
data

Application
data
Application
data

Application
data
System
resource

System
resource

Non-
Functionality

Non-
Functionality

C: Create, R: Retrieve, U: Update, D: Delete.

-41 -

Table 6-1-3: Asset Table of Credit Card Payment Component
ID
Al

A2

A3

A4

A5

A6

A7

A8

Name
Credit Card
Information

Order

Configuration
Data
Geographic Zones

Process

Physical Machine
asset

Ability to trace
and audit actions
occurred
Availability of
service

Description
The cardholder, card number
and expire date, stored in
memory.
Order information stored in
memory.
Configuration information
stored in back-end database.
Geographic Zones and
countries.
Processes running within the
same machine where the
component is running
Assets of the environment
where the component is
running, e.g. files stored in the
file system.
Ability to trace hacker's
exploit action and audit what
users have done.
Ability to keep the service
available to users during a
certain period.

Trust Roles
Invoker(R)

Invoker(R)

Invoker(CRUD)

Invoker(R)

N/A

N/A

N/A

N/A

Catalogue
Application
data

Application
data
Application
data
Application
data
System
resource

System
resource

Non-
Functionality

Non-
Functionality

C: Create, R: Retrieve, U: Update, D: Delete.

- 42 -

6.2 Identify Entry Points

Definition of Entry Points
Entry points are interfaces where a component interacts with the outside world,
and where control and data crosses the boundary of the component. Entry points
include all junctions between the system and the external environment. They are
also called attack points from the perspective of adversaries, as entry points
represent a means of interacting with the system. Entry points are used by VMPC
to determine the functionality that an adversary can exercise on the component
and what assets s/he can affect. Basically VMCP treats entry points as two types:
external entry points and internal entry points.

• External Entry Points. These types of entry points are intended to be
exposed to the external environment of the system within which the
component is used. Clients or attackers have direct access to these Entry
Points. The following are common external entry points.

• User interfaces. Where users interact with the component.
Components use user interfaces to accept use input. If the input
and data validation mechanism is not secure enough, lots of attacks
can be conducted via user interfaces such as buffer overflow, cross-
site scripting, SQL injection and Format string attacks.

• Network interface. Where component interact with network. For
example, web server listening port is a network interface where the
front-end Web application listening for HTTP requests. This entry
point is intended to be exposed to clients. Attackers can bypass the
web browser and set data directly to the server. Also attackers can
exploit sensitive data using network monitoring software that can
capture traffic leading to host which is on the same network.

• Internal Entry Points. These types of entry points are intended to be
exposed to the internal environment of the system within which the
component is used. Clients or attackers do not have direct access to these
entry points but they can indirectly interact with them. The following are
common internal entry points:

• System interface. Where the component interact with the
environment it residents in. Components may read data from the
file system or configuration store, such as a registry. If attackers
can manipulate these data by attacking the file system or registry
then they can change the behaviour of components.

• Component interface. Where the component interact with other
components. These entry points exposed by subcomponents across
the layers of a component may exist only to support internal
communication with other components. Components usually have
APIs through which other components or systems can invoke
functions provided. If attackers can control the way a component
or system invokes the APIs they can indirectly control the

-43 -

behaviour of the invoked components.

How to identify entry points
Entry points are actually the interfaces between a component and external and/or
internal environment so the most efficient way to identify entry points is to
identify the component's interfaces. As mentioned above, most entry points fall in
one of these four types: user interfaces, network interfaces, system interfaces and
component interfaces. When identifying entry points, VMCP focuses on these
four types of interfaces of a component, which usually cover almost all the entry
points. Also, VMCP checks the following three aspects.

• Exit points. Exit points are where a component sends data or message to
clients or to external systems. VMCP treat exit points as entry points
because they share similar characteristics and both are refer to locations
where control or data moves between the component and the external
world. Although exit points only pose threats of information disclosure,
hackers might gather useful data at an exit point to perform other types of
attacks. Thus, it's necessary to include exit points in the entry point
enumeration, particularly these where a component outputs data that
includes client input or includes data from entrusted sources, such as
shared databases.

• Layered Entry Points. In web-based applications (components), entry
points can be layered. Basically each Web page can be considered an entry
point as it might be used by an attacker to interact with the application.
However a certain page can provides multiple disparate functions based on
the parameters carried by the URL string or Form items. For example, an
online shopping system has a Web page called MyOrder.jsp. This page
depending on the Action parameter may perform different actions. A
request for / MyOrder.jsp?Action=View might show the order details,
whereas / MyOrder.jsp?Action=Delete might delete the order. In this
example, the View and Delete functions are layered entry points on the
MyOrder.jsp page.

• Level of Granularity. When identifying entry points we have to make
trade off between the completeness of entry points and the effectiveness of
the modeling process. Entry points should be identified to a level that is
enough to cover all component functionality but not so granular that they
overwhelm the modeling process. In general, the entry points outlined will
be detailed enough to identify all unique potential attacks. Initially, VMCP
focuses on higher-level entry points, and over time, include more granular
entry points.

How to record entry points

When identify assets VMCP gathers the following information.

-44-

• ID A unique number assigned to the entry point, which is used to cross-
reference the entry point with attacks and vulnerabilities later in the
modeling process.

• Name A short title for the entry point, which should be descriptive
enough to identify the entry point—for example, Web server listening port
or Login Page.

• Description A brief description of the entry point.
• Trust Roles The trust roles are those who are normally allowed to access

or otherwise interact with the entry point.
• Category The category to which the entry point belongs to.

Currently we classify the assets into four categories
• User interface. Where users interact with the component.

Components use user interfaces to accept use input.
• Network interface. Where component interact with network, say

web server listening port.
• System interface. Where the component interact with the

environment it residents in.
• Component interface. Where the component interact with other

components.
The classification of entry points is very important for later attack
analysis. Each type of entry points has its own unique characteristics and
vulnerabilities. For example, the way an adversary attacks an entry point
of user interface type is totally different from that he/she attacks an entry
point of system interface type.

Examples

This section contains identified entry points from the three samples: an online
shopping cart Jspcart, Duke's Bank Application and Credit Card Payment
Component. Appendix A, Appendix B and Appendix C have the complete
information of these three samples.

Table 6-2-1: Entry Point Table of Jspcart

ID
EP1

EP2

EP3

EP4

EP5

Name
Web server
listening
port
Login Page

Signup
Page
Cart Page

ChangePas

Description
The port on which the Web server
listens. All web pages are layered on
this entry point.
Get user credentials and passed them to
server side for authentication
Create a user profile and pass it back to
server side
Users modify quantity of items and
remove items from cart.
Authenticated users change password

Trust Roles
All

All

All

All

Authenticated

Category
Network
Interface

User Interface

User Interface

User Interface

User Interface

- 4 5 -

EP6

EP7

EP8

sword page
ChangePro
file page
Shipping
page

MyOrder
Page

Authenticated users change profile

Authenticated users input shipping
information

Authenticated users enquiry order
details and/or cancel orders

user
Authenticated
user
Authenticated
user

Authenticated
user

User Interface

User Interface

User Interface

Table 6-2-2: Entry Point Table of Duke's Bank Application

ID
EP1

EP2

EP3

EP3

EP4

EP5
EP6

EP7

Name
Web
container
listening
port
EJB
container
listening
port
Logon
Page
Account
List Page
Transfer
Funds Page
ATM Page
Customer
Info GUI
(Applicatio
n Client)
Account
Info GUI
(Applicatio
n Client)

Description
The port on which the Web container
listens. All web pages are layered on this
entry point.

The port on which the EJB container
listens. Remote application client
communicates with application server
via this port.
Get user credentials and passed them to
server side for authentication
List account details of a customer and
transaction history of a account
Transfer funds between accounts

Withdraw and deposit funds
Manipulate customer information

Manipulate account information

Trust Roles
All

All

All

BankCustomer

BankCustomer

BankCustomer
BankAdmin

BankAdmin

Category
Network
Interface

Network
Interface

User Interface

User Interface

User Interface

User Interface
User Interface

User Interface

Table 6-2-3: Entry Point Table of Credit Card Payment Component
ID
EP1

EP2

EP3

EP4

Name
update_status()

j avascript_validation()

selection()

pre confirmation chec
k()

Description
Determine if the credit card
payment is enabled.
Return a snippet of input
validation javascript program.
Return Forms which accept
user's input

Validate the credit card
accepted.

Trust Roles
Invoker

Invoker

Invoker

Invoker

Catalogue
Component
interface
Component
interface
Component
interface
Component
interface

-46 -

EP5

EP6

EP7

EP8

EP9

EP10

confirmation()

process_button()

before_process()

after_process()

installO

remove()

Return masked credit card
information
Return Forms with hidden
fields of credit card
information.
Store card number to order

Email order information to
customer.
Store configuration
information to the
configuration table.

Remove configuration
information from the
configuration table.

Invoker

Invoker

Invoker

Invoker

Invoker

Invoker

Component
interface
Component
interface

Component
interface
Component
interface
Component
interface
System
interface
Component
interface

-47 -

6.3 Identify Trust Boundaries

Definition of Trust Boundaries
Trust boundaries refer to places where trust levels change. A trust boundary can
be imaged as a line drawn through a component. On one side of the line, data is
un-trusted. On the other side of the line, data is trustworthy. When data or control
wants to cross the trust boundary (to move from un-trusted to trusted), it must
pass a security check just as what we do at the airport. The security check in a
component is validation logic that prevents bad data or control from entering the
component. Take an online banking system for example, the trust level changes
after a user logs into the application. Before this he cannot complete any
transactions. Once they successfully log into the system, they can do any thing
that the logon ID has privilege to achieve. In this case we think there is a trust
boundary between the logon page and the web application. To facility identifying
trust boundaries, VMCP classifies trust boundaries into four categories.

• User Interface Boundary. This is a trust boundary between a UI and the
component. The data users input through a GUI or Web page becomes
trusted by the component once it goes cross the boundary.

• Service Boundary. This is a trust boundary between the component and
an external service provider or requestor. A component might call other
components to request a service or it might provide services to others.
Components must have an effective mechanism to ensure that the data
returned is valid and is from the appropriate service providers, or only the
appropriate callers are allowed access to request service from it.

• Network Boundary. This is a trust boundary between the component and
Internet or intra-net. The firewall is a typical network trust boundary. It
moves qualified information from the un-trusted Internet to the web
application. The listening port of an http server or application server is
another typical network boundary of web applications. Data or requests
from Internet become trustworthy while they cross this boundary.

• System Boundary This is a trust boundary between the component and
the system it resides on or connects to. Components usually interact with a
file system or database to store or retrieve information. Vulnerabilities
might be found here if components trust the information without a good
reason.

How to identify Trust Boundaries
When identifying trust boundaries VMCP uses the following 3 steps:

• Start by identifying boundaries between a component and the external
environment or systems. For example, a component may read

-48 -

configuration files from a file system, it may make calls to the database
server, or it may call a remote service provider for services. There must be
trust boundaries between a component and the external environment or
systems systems.

• Check high privileged places where access requires additional privileges.
If users want to access to these places they have to obtain prevalent
privileges, which means the trust level changes. In other words, there are
trust boundaries keeping users from directly going to these places. For
example, an administration page is restricted to managers. The page
requires high privileges and also requires that the user is a member of an
administrator role.

• Check data or process flow to identify trust boundaries. We do not have to
dig into the detailed diagrams deeply but just to the extent that we can tell
the places where the upstream data flow or user input becomes trusted
from un-trusted and how the data flow and input is authenticated and
authorized.

How to record Trust Boundaries

When identify assets VMCP gathers the following information.
• ID A unique number assigned to the trust boundary, which is used to

cross-reference the entry point with attacks and vulnerabilities later in the
modeling process.

• Name A short title for the trust boundary, which should be descriptive
enough to identify the entry point.

• Description The brief description of the trust boundary.

Examples

.This section contains identified trust boundaries from the three samples: an
online shopping cart Jspcart, Duke's Bank Application and Credit Card Payment
Component. Appendix A, Appendix B and Appendix C have the complete
information of these three samples.

Table 6-3-1: Trust Boundary Table of Jspcart
ID

TBI

TB2

TB3

Name
Client
Boundary
Login
Boundary
Database
Boundary

Description
The boundary between remote clients and backend
applications in server side.
The boundary between the login model and other
models
The boundary between the application and database.

Category
Network Boundary

User Interface
Boundary
System Boundary

-49-

Table 6-3-2: Trust Boundary Table of Duke's Bank Application
ID

TBI

TB2

TB3

TB4

Name
Web Clinet
Boundary
Application
Clinet
Boundary
Database
Boundary
Logon
Boundary

Description
The boundary between remote web client and
backend application on the server side.
The boundary between remote application client
and backend application on the server side.

The boundary between the application and
database.
The boundary between the logon model and other
models

Category
Network Boundary

Network Boundary

System Boundary

User Interface
Boundary

Table 6-3-3: Trust Boundary Table of Credit Card Payment Component
ID
TBI

TB2

TB3

Name
API
Boundary
Database
Boundary
Memory
Data
Boundary

Description
The boundary between outside invokers and the
component.
The boundary between the component and database.

The boundary between processes and Memory Data

Category
Service Boundary

System Boundary

System Boundary

- 5 0 -

7 Model Attack Paths and Security Criteria

7.1 Attack Path and Security Criteria

Attack Path

In VMCP, an attack path is defined as a logical path that connects entry points and
assets, through which data or controls flow from entry points to assets. In other
words, an attack path represents the computational logic within a component that
connects discrete entry points to assets.

When performing attacks, hackers feed malevolent data or controls to the system
being attacked and try to cheat the system to treat the malevolent data or controls
as trusted data or controls. Then these malevolent data or controls are able to flow
within the system along paths that trusted data or controls usually take and
disasters occurs when these bad data and control are processed by the system.
Before attackers begin to attack a system, they must know that there are
something valuable (assets) and there are places (entry points) where they can
access the system. But there is still something uncertain to them. That is whether
or not the malevolent data or controls they input can reach the assets and bring
back whatever they expect. Therefore most of their "attacking work" is to figure
out whether or not there are logical paths within the systems that their malevolent
data or controls can take to reach the assets. These paths are attack paths. Attack
paths can be presented in form of data flow diagram or other flow diagrams like
process or work flow diagrams. VMCP enhances traditional data flow diagram to
present the computational logic of a component by adding assets, entry points and
trust boundaries to the data flow diagram. We will detail enhanced data flow
diagram in next section. Figure 7-1-1 is the enhanced data flow diagram of
JSPCart, an online shopping cart. In this diagram, rectangles with label "EP#"
represent entry points, pairs of horizontal parallel lines with label "A#" represent
assets, and arc lines with label "TB#" represents trust boundaries.

For example, a hacker tries to attack Order data of the JSPCart. He can start the
attack from any of the entry points such as the Login Page, Signup Page, or Cart
Page. However the malevolent data or controls he inputs via the Login Page and
Signup Page will never reach the Order data because there is no logic path
connecting Login Page and Signup Page with the Order data. Thus attacks
originate from these two points will never hurt the Order data. However attacks
initialized from the Cart Page are likely to be successful as it is possible for the
malevolent data or control to reach the Order data through paths 3-^8-M5-M9 or
3->8->7-M6-M9 if the hacker can cheat the JSPCart to trust the data or controls
fed by him. These two paths are attack paths.

-51 -

Figure 7-1-1 Enhanced DFD of JSPCart

8. Login

14. Cart

TB3

15. Checkout

5 7. MyOrders j.

TBI /

/ ' *{ 16. Orders

Cart'
A' Stored in

V-fmory)

f, 19. DAO /
Orders \

'»i2 Order
T*' A4

Security Criteria

Security Criteria are rules associated with an attack path, VMCP considers
security criteria of an attack path from two aspects, authentication and
authorization.

- 52 -

• Authentication: prescribes who are permitted to use an attack path,
or whose data can pass through an attack path. Any unauthenticated
passenger is forbidden to use the attack path for any purpose. In the
JSPCart example, the legal passenger of attack path 3^8->15->19or
3->8->7->16->19isan authenticated user.

• Authorization: prescribes what kind of actions a legal passenger can
perform via a certain attack path. The passenger can only perform the
actions that he is authorized to do. In the JSPCart example, an
authenticated user is authorized to create, update, retrieve or delete the
Order data of this own, but not to touch the Order data of others.

When a hacker attacks a system via a chosen attack path, what he needs to do is to
break the security criteria by either cheating the system that he is the right person
to use the attack path or cheating the system that he is doing what he is allowed to
do. Contrarily, the security level of a system depends on how the system defends
these kinds of tactics.

Why Attack path and Security Criteria

Basically VMCP is a procedure based on white box technologies. It detects
architectural and implementation vulnerabilities by reviewing design
documentations and performing code review. First VMCP tries to figure out the
potential attacks based on the component's architecture and design and then
VMCP tries to see how the component defends these attacks by reviewing the
detailed design and code. Vulnerabilities are expected to be discovered during this
procedure. This procedure would be very time- and cost-consumed if we spend
too much effort on the places where attacks are not possible. By using attack
paths and Security Criteria, we can greatly:

• Reduce the effort to find out potential attacks. Actually attack paths
are where the potential attacks will occur. By modeling all attack paths
VMCP only focus on the right place to find out potential attacks.

• Reduce the effort to review how a system defends potential attacks. When
reviewing the defending mechanism, VMCP knows where to check, that is
along attack paths, and what to check, that is how the system implements
the security criteria. This will greatly reduce the time and cost.

-53 -

7.2 Enhanced Data Flow Diagram

Data flow diagrams (DFDs) provide a logical depiction of the implementation of a
system and show the large-scale architecture of the system. It shows what entities
exist in the implementation of the system, and along what paths these entities
exchange information. VMCP uses DFDs to gain better understanding of the
operations of a component. They provide a visual representation of how the
component processes data and control. This representation allows the component
to be modeled based on transformations and processes applied to data and
controls an adversary might supply.

The data flow approach in VMCP follows the adversary's data and controls as
they are processed by the system, analyzing how they are parsed and acted upon,
as well as noting which assets they interact with. Because an adversary can attack
only the parts of an application that they can exercise in this manner, the data flow
approach provides an ideal way to show where the application could be
susceptible to security failures. To let the DFD serve VMCP better, we enhanced
the traditional DFD in the follow aspects:

• Replace External Entity with Entry Point. In a traditional DFD,
the external entity shape represents an inter-actor that exists outside
the system being modeled. It shows WHO interacts with the system.
However, rather than WHO, VMCP is more interested in WHERE.
Entry points have all information of where an external entity can
interact with the systems.

• Replace Data Store with Asset. In traditional DFD, the data store
shape represents a repository for data—such as the registry, file
system, or database—WHERE data is saved or retrieved. Contrary to
the external entity, here VMCP is more interested in WHO rather than
WHERE. Assets represent particular data that is interested to attackers,
e.g. Order, Transaction Records and so on.

• Add Trust Boundary into the diagram. VMCP extends traditional
DFDs to include trust boundaries, which can help us identify attacks.
Trust boundaries separate two processing nodes (or a processing node
and an entity point or asset) that have different trust levels associated
with them, or nodes that perform actions with different trust levels.

The enhanced data flow diagram (EDFD) provides a systematic approach to
identify potential attacks. Rather than simply brainstorming attacks, the
certification team is able to follow data and controls through the system along
attack paths to identify potential attacks. Any transformation or action on behalf
of the data could be susceptible to attacks. Thus, the team members are better able
to enumerate attacks because at any point they are dealing with a specific
processing action on specific data from a specific entry point.

-54-

7.3 How to model attack paths and Security Criteria

Enhanced data flow diagrams (EDFDs) are the preferred method of diagramming
components in VMCP, because they show processes that occur based upon data
input. An adversary cannot attack a software system without supplying it with
data. Therefore, failures caused by attacks to a system can occur only at these
places where the system transforms, takes action based on, or otherwise processes
data that is ultimately supplied by the adversary. These places are process nodes
in a data flow diagram. An attack path consists of a sequence of process nodes
that process data flowing from entry points to assets—that is, any of the
aforementioned nodes that process data or controls from a potentially malicious
source.

Modeling attack paths is actually modeling EDFDs because an attack path is a
particular path in EDFDs, a series of process nodes starting from an entry point
and ending at an asset. When we model EDFDs, it is not necessary to draw out all
branches. We only enumerate the connections between entry points and assets.
VMCP follows below steps to model EDFDs, a collections of attack paths.

1. Uses all identified entry points as start points and then extends them to
anywhere the data or controls that enter the component by these entry points
can go. By this way we can draw out all paths interacting with these entry
points and find out all possible assets the attacker can reach through the entry
points. We may also find out some new assets that have not been identified
before.

2. Use all identified assets as end points and figure out all paths through which
data or controls flow into these assets. Then go backward along these branches
until the starting points of the data or controls. By this way we can get all
possible paths leading to the assets and all entry points connected to paths. We
may also find out some new assets that have not been identified before.

3. Integrate identified trust boundary into the flow chart. After stepl and step 2
we must have found out all paths connecting entry points and assets. These are
the attack paths. Add identified trust boundary into the flow chart to indicate
the most possible place a successful attack may occurs. Figure 7-3-1 is the
EDFD of an online shopping cart, JSPCart.

- 5 5 -

Figure 7-3-1 EDFD of JSPCart

When modeling attack paths we must gather the following information. Figure 7-
3-1 is the EDFD of appendix A: sample I Jspcart and table 7-3-1 is the
documented attack paths.
• ID A unique number assigned to the attack path, which will be used to cross-

reference attack paths with attacks and vulnerabilities later in the modeling
process.

• Description A brief description of the attack path. Write down all nodes of
the paths and briefly describe what data is passed on the path and what
processes it interacts with.

-56-

Passenger The role/roles who create the data or control passing through the
path. For instance, the username and password passed on the path PI of table
7-3-1 are created by an anonymous user, so the passenger of this path is
anonymous user.
Action on Asset A pair of asset and actions, indicating what assets interact
with the path and what kind of actions can be done on a certain asset. VMCP
decomposes any (virtual) action into one of "Create", "Read", "Update", and
"Delete" (CRUD), or a compound action based on one or more of these
actions. Action on Asset is presented in form of Asset (Action) pair, e.g.
Anonymous User(R) and Authenticated User (CRUD).
Rule The security criteria of each action. Rules define the circumstances
within which an action can occur. The rules for an action are a set of
declarative sentence fragments, connected by logical connectives (and, or, and
not). Actually the Passenger and Action on Asset are also the rules. We list
them separately because they are the most basic rules that almost all actions
will have. Rules other than these two are expected here, like the frequency
that actions can be taken or when they may or must occur, what portions of an
asset can be affected by an action

Table 7-3-1 Attack Paths of JSPCart

Path ID

Description

Passenger

Action on
Asset

Rules

PI

l-»8-»17

Anonymous user inputs username and password at webpage. Login
model compares the credential passed by login pager with that got
from data access object (DAO) users.

Anonymous user

User profile (R)

Action is only allowed to the profile of user's own.

Path ID P2

Description l-»8-»4-»ll-»17

1. Authenticated users input new password on ChangePasswrod
page

2. ChangePasswrod page passes the new password to server side

- 5 7 -

Passenger

Action on
Asset

Rules

model ChangePassword.

3. ChangePassword pass it to DAO users.

4. DAO users update the user profile.

Authenticated user

User profile (U)

Action is only allowed to the profile of user's own.

Path ID

Description

Passenger

Action on
Asset

Rules

P3

1 ^ 8 ^ 5 ^ 1 2 ^ 1 7

1. Authenticated users change profile on ChangeProfile page

2. ChangeProfile page passes the changed profile to server side
model ChangeProfile.

3. ChangeProfile pass it to DAO users.

4. DAO users update the user profile.

Authenticated user

User profile (U)

Action is only allowed to the profile of user's own.

Path ID

Description

Passenger

P4

1^9^17

Anonymous user input username. Getpassword model retrieves the
password using the username through DAO users.

Anonymous user

- 5 8 -

Action on
Asset

User profile (R)

Rules Action is only allowed to the profile of user's own.

Path ID

Description

Passenger

Action on
Asset

Rules

P5

2 ^ 2 0 ^ 1 7

Anonymous user input signup information. Signup model create the
profile through DAO users.

Anonymous user

User profile (C)

NA

Path ID

Description

Passenger

Action on
Asset

Rules

P6

3 ^ 8 ^ 1 5 ^ 6 ^ - 1 3 ^ 1 7

Authenticated user check out the items in the shopping cart, and
input shopping information. Shopping model retrieves some basic
personal information from user profile through DAO users

Authenticated user

User profile (R)

Users can only retrieve their own profile.

Path ED

Description

P7

3-»8-»15-»6-M3-M8

Authenticated user check out the items in the shopping cart, and

-59-

Passenger

Action

Rules

input shopping information. Shopping model stores shopping
information to database though DAO Shipper.

Authenticated user

Shipping information (CRU)

Users can only check out the cart created by themselves

Path ID

Description

Passenger

Action on
Asset

Rules

P8

3 ^ 8 ^ 1 5 ^ 1 9

Authenticated user checkout the shopping cart. Checkout model
creates an order through DAO orders.

Authenticated user

Orders(C)

Users can only check out the cart created by themselves

Path ID

Description

Passenger

Action on
Asset

Rules

P9

3 ^ 8 ^ 7 ^ 1 6 ^ 1 9

Authenticated user updates orders.

Authenticated user

Orders (CRUD)

User can only update orders under their identifier.

- 60 -

8 Identify Attacks

8.1 Identify attacks by Outside-In and Inside-Out

Identifying attacks is often the most difficult part of any vulnerability modeling
process. However, —in VMCP it can be straightforward as all of the required
information is at hand: the pre-defined security attacks and vulnerabilities
taxonomy, the architectural overview of the component from the security
perspective, collected entry points and assets, and the enhanced data flow
diagrams (EDFDs). VMCP uses a combination of tow complementary approaches,
outside-in and inside-out, to perform attacks analysis.

• Outside-In
The Outside-In approach begins with a set of potential, well-known and pre
defined attacks, and matches them to the details of the situation. With this
approach, we consult a list of attacks and determine whether they apply to a
certain environment. The list VMCP uses is the Security attacks &
vulnerabilities taxonomy defined in chapter 4, which focuses on the most
common application level attacks and vulnerabilities that plague web-based
enterprise applications.

Outside-In is a general and easy approach, however it does have its limitations.
First, every component is unique. Although two components might share some
features, a certain amount of these features will be system specific. Thus
portions of their potential attacks will differ. Working backward from well-
known attacks typically yields only common attacks, and system-specific
attacks require a deeper analysis of the unique qualities of the component
being modeled. Second, when we determine whether a common attack applies
to a certain component, other issues will occur. Where to check? How much to
check? Do we have to check anywhere in the component? Definitely we need
a guideline pointing out where are the possible and necessary places to check.
The Inside-Out approach resolves these questions.

• Inside-Out
Inside-Out begins with the details about the situation and identifies attacks
associated with them. With this approach, we study a component and repeatedly
ask ourselves what might go wrong here? More particularly, for each part of the
component, we need to consider what weakness or possible failures exists in the
component, could there be any inputs or situations that might exploit a
vulnerability and trigger a failure in this component, and who or what would be
impacted by potential attacks and how bad would the damage be.

The Inside-out approach is a direct form of attack analysis. It requires
substantial technical insight and expert experiences. If we do not have expert
knowledge of attacks and how these attacks exploit systems, we won't find

-61 -

anything even if we check the component multiple times. This also reveals the
biggest disadvantage of this approach, depending too much on personal
experience and knowledge.

Approach used by VMCP

VMCP combines these two approaches when identifying attacks, enhancing the
advantages and counteracting the disadvantages. The overwhelming advantages
of the combination are:

• VMCP not only has a list of common attacks to check against, but
also specifies a collection of places to check for these attacks and
component-specific attacks. In chapter 7, we defined the attack paths
and security criteria. The security criteria are component-specific, so
component-specific attacks can be identified when we check if
attackers can and how they break these security criteria. Attack paths
in VMCP are places where potential attacks will occur. When
identifying attacks, VMCP checks and only checks attacks along these
attack paths. Other places outside the attack paths are not necessary to
check, because they are not security-related.

• The security attacks & vulnerabilities taxonomy defined by VMCP
focuses on common application level attacks and vulnerabilities that
plague web-based enterprise applications. This taxonomy not only
lists well-known attacks but also lists the reasons (causing
vulnerabilities) to each listed attack. If we used it to perform inside-
out attack analysis, the dependencies on personal experience and
knowledge will be reduce greatly.

-62-

8.2 Steps to identify attacks in VMCP

VMCP assumes that to attack an application what the attackers have to and can
only do is taking over one of the attack paths and breaking the security criteria.
With the documented attack paths and security criteria tied to them, identifying
attacks turns into checking each of these paths to see how to break the security
criteria. Actually some of the paths are very similar in nature, for example in table
7-3-1 the attack paths for JSPCart, paths P2 and P3 both get user input via
Webpager and update the user profile. From the perspective of adversaries, they
are the same and can be broken the same way. So when identifying attacks, we do
not need to analyze every attack path. We can group some similar paths together
according to certain criteria and pick one or several typical paths to do a common
attack analysis. As for each individual path in the group, we only pay attention to
the particular security requirements listed in the Rules line of the Attack Path
table. To perform attack analysis, VMCP uses the following three steps:
1. Group attack paths
2. Choose attack paths to be analyzed from a group
3. Identify Possible Attacks along chosen attack paths

Group attack paths

Attack paths with the same category of entry point and asset can be grouped
together, as they are similar in term of attack analysis. VMPC classifies entry
points into four categories: User interface, Network interface, System interface
and Component interface. Each of these categories are tied with some exclusive
common attacks, for example, buffer overflows, cross-site scripting and format
string attacks are user interface related attacks while network eavesdropping
occurs only when an application has a network interface. The same situation
applies to assets also. VMPC classifies assets into 3 categories: application data,
non-functionality, and system resource. Command insertion is a very common
attack to system resource however it does nothing to application data stored in
databases, which is suffering from SQL injection attacks. Therefore, it is possible
and efficient to perform a common analysis on a group of attack paths with entry
points and assets from the same category.

Take Table 7-3-1 as an example. Consider the paths PI, P3, P6 and P8. The entry
point of PI and P3 is EP2 (Login Page) and that of P6 and P8 is EP4 (Cart Page).
From Table 8-2-1 below we know EP2 and EP4 both belong to the user interface
category. The asset of PI, P3, and P6 is User Profile and that of P8 is Order. Both
the User Profile and the Order belong to the category of application data. As entry
points of these four paths belong to the same category and assets of them also
belong to the same category, we group these 4 paths together.

-63 -

Table 8-2-1: Entry Point Table of Jspcart

ID
EP1

EP2

EP3

EP4

EP5

EP6

EP7

EP8

Name
Web
server
listening
port
Login
Page
Signup
Page
Cart Page

ChangePa
ssword
page
ChangePr
ofile page
Shipping
page

MyOrder
Page

Description
The port on which the Web server
listens. All web pages are layered on
this entry point.

Get user credentials and passed them
to server side for authentication
Create a user profile and pass it back
to server side
Users modify quantity of items and
remove items from cart.
Authenticated users change
password

Authenticated users change profile

Authenticated users input shipping
information

Authenticated users enquiry order
details and/or cancel orders

Trust Roles
All

All

All

All

Authenticated
user

Authenticated
user
Authenticated
user

Authenticated
user

Category
Network
Interface

User
Interface
User
Interface
User
Interface
User
Interface

User
Interface
User
Interface

User
Interface

Table 8-2-2: Asset Table of Jspcart
ID
Al

A2

A3

A4

A5

A6

Name
User
credentials
User profile

Cart

Order

Product

Shopping
information

Description
Username and password

User profiles stored in back-
end database
Cart information stored in
back-end database, e.g. the
name and quantity of items in
a cart.
Orders stored in back-end
database
Products stored in back-end
database

Shopping information for
orders.

Trust Roles
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user(R)
Authenticated
user(R)
Administrator
(CRUD)
Authenticated
user (CRU)
Administrator

Category
Application
data
Application
data
Application
data

Application
data
Application
data

Application
data

- 6 4 -

A6

A7

A8

A9

A10

Catalog

Process

Physical
Machine
asset

Ability to
trace and
audit actions
occurred
Availability
of service

Catalogs stored in back-end
database
Processes running within the
same machine where the
component is running
Assets of the environment
where the component is
running, e.g. files stored in the
file system.
Ability to trace hacker's
exploit action and audit what
users have done.

Ability to keep the service
available to users during a
certain period.

(CRUD)
Administrator
(CRUD)
N/A

N/A

N/A

N/A

Application
data
System
resource

System
resource

Non-
Functionality

Non-
Functionality

C: Create, R: Retrieve, U: Update, D: Delete.

Choose attack paths to be analyzed from a group

When identifying potential attacks on a group of attack paths we only need to pick
up one or several paths as the analysis target. How the target is chosen
significantly affects the completion and efficiency of the analysis. We must
choose these that represent the group the most and the analysis result covers the
most attacks applying to this group. VMCP uses the following criteria:

Choose a collection of paths that has the least number of paths and
1. has at least one path whose passengers are in the highest privileged user

group
2. has at least one path whose passengers have the lowest access privilege

to the category of asset
3. covers all trust boundaries in the group.

Criterion 1 selects paths where most attacks regarding authentication occur. As the
passenger with the highest privilege, the authentication mechanism of this path
should have the strictest constrains and attacks on this path will cause the most
valuable loss. Therefore attacks identified on this path will possibly cover all
potential attacks regarding authentication. Criterion 2 selects paths where most
attacks regarding authorization occur. To get control of an asset, a hacker has two
options:

• one is to get a credential that is powerful enough to control the asset;
and

• the other is to get enough authorization for a normal credential that is

- 6 5 -

very easy to obtain such as a anonymous user.

Criterion 1 covers option 1 and criterion 2 is for option 2. Paths whose passengers
have the lowest access privilege must be places where hackers perform most
attacks regarding authorization. Criterion 3 is supposed to include all places
where attacks are most likely to occur.

Let us proceed with the previous example. In the group of paths PI, P3, P6 and P8,
the passenger of PI is Anonymous User and that of P3, P6, and P8 is
Authenticated User. So the final collection must include at least one of P3, P6,
and P8. Then it comes to the second criterion, PI and P6 only have Read access to
User Profile. P3 has Update access to User Profile. P8 has Create access to Order.
According to the criterion 2, we will pick up at least one of PI and P6. As for trust
boundaries this group has three trust boundaries TBI, TB2, and TB3 and any of
the four paths covers all of them. Therefore, there are many sets of paths that meet
the criteria 1 to 3, say {P3, P6, P8}, {P6, P8}, {6} or even the full set {PI, P3, P6,
P8}. What we need is the one with least number of members. That is {6}.

What is beneath the scene is that VCMP tries to choose a collection of attack
paths along which we can discover most of the potential attacks and then
vulnerabilities. Analyzing P6 can disclose more attacks than analyzing PI as the
passenger of PI is Anonymous User and anybody can take over the path, while
you have to break the authentication before take over the P6. That is why there is
criterion 1. After you have broken the authentication of P6 all that you can do is
retrieving information from the User Profile. If you want to change something in
the User Profile extra work is needed. P3 is another story; once you have broken
this authentication you can update the User Profile without any extra effort. This
is the rationale of criterion 2. The trust boundary is where the trust level changes
and the elevation of privilege occurs. Almost all attacks are done through trust
boundaries; so the final collection must cover all trust boundaries.

Identify Possible Attacks along chosen attack paths

From the attack path table, we can see security criteria consist of three sections:
passenger, action on asset and rules. We can identify possible attacks from these
three aspects:
• Can and how hackers break authentication and acting as the expected

passenger?
• Can and how hackers elevate privilege and do what is not allowed?
• Can and how hackers break rules, particular security requirement?

Basically most attacks fall into one of two categories, either authentication or
elevation of privilege. An authentication attack occurs when a passenger breaks
the authentication mechanism and does what are allowed by the application to

-66 -

another passenger. An elevation of privilege attack occurs in one of three
situations:

o when an passenger performs an action which no passenger is
intended to perform on an asset (an entirely disallowed action); or

o when an passenger performs an action on an asset despite the rules
for that action (specifically disallowed action); or

o when an passenger uses the component to perform an action on
some other component's asset.

To identify attacks, VMCP starts from the common attack patterns presented in
chapter 4 Security Attacks & Vulnerabilities Taxonomy, and then examines the
attack paths tier by tier, layer by layer, and process by process. By focusing on
attack and vulnerability categories, we focus on the areas where security mistakes
are most frequently made. The attacks identified at this stage do not necessarily
indicate vulnerabilities. Vulnerabilities are identified when VMCP tries to verify
low the component defends all these identified attacks. Next chapter will details
this.

- 6 7 -

8.3 Classify and document attacks

The high-level classification of attacks helps verification team understand what an
attack allows a hacker to do. Furthermore, it helps verification team assign
priority to attacks. In most applications, elevation of privilege attacks carry the
most risk because they allow an attacker to perform normally restricted
functionality. However, in many other applications, repudiation is also critical
(such as in financial applications where failure to properly audit actions could
have legal and monetary implications). VMCP uses the STRIDE model to classify
identified attacks. STRIDE is a classification of the effects of realizing an attack:
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege.

Spoofing
Spoofing allows an adversary to cheat a system that he is another user who has an
identity in the system. Applications that have many users but use a single
execution context at the application and database level are fragile to spoofing
attacks. Applications must implement a strong mechanism to prevent users from
acting as any other user, or becoming that user.

Tampering
Tampering refers to the malicious modification of data within the system.
Equipped with proper tools, hackers are able to change any data delivered to
client/browser such as client-side validation, GET and POST data, cookies, HTTP
headers, and so on. Sensitive data such as account information, which are
available only within the application itself should not be sent to the user.
Applications should never trust any data received from the user without careful
validation.

Repudiation
Repudiation refers to an adversary denying performing some malicious activity
because the application does not have sufficient evidence to prove otherwise.
Sufficient traceability and auditing of user activity have to be implemented to
keep users from disputing transactions. For example, if a user says, "I didn't
transfer money to this external account", and you cannot track their activities
from front to back of the application, it is extremely likely that the transaction will
have to be written off.

Information Disclosure
Information disclosure refers to the exposure of sensitive data to a user that does
not have access to that data. For example, the user's browser can leak information
if the browser does not correctly implement the no-caching policies requested by
the HTTP headers. A secure application should minimize the amount of
information stored by a browser because it might leak information and be used by
an attacker to learn more about the user or even become that user.

-68-

Denial of Service
Denial of service refers to attempts to make an application unavailable to its
intended users. It is among the most common attacks to applications regarding
availability that is all about keeping systems available for legitimate users in the
certain period. Denial of service crashes an application or ensures that it is
sufficiently overwhelmed so that other users cannot access the application. Not all
applications are aware that they could be abused by a denial of service attacks and
open expensive resources such as large files, complex calculations, heavy-duty
searches, or long queries to anonymous users.

Elevation of Privilege
Elevation of privilege refers to a process or an attack by which a malicious user
tries to become a member of the group with higher privilege than the group for
which they have been authorized. This kind of attack could enable hackers to
compromise or destroy a system, or to access unauthorized information. For
example, if an application provides user and administration roles, it is vital to
ensure that the user cannot elevate themselves to any higher privilege roles.
Applications sometimes fail to gate actions through an authorization matrix to
ensure that only the right roles can access privileged functionality.

Attacks often fit into multiple categories of the STRIDE model. Certification
teams need to understand the underlying effect an attack has on the system when
classifying threats with the STRIDE model. For example, some attacks are pure
spoofing in nature; others might enable tampering but arise because of the
elevation of privilege. Certifiers must ensure they understand the root effect of an
attack; otherwise they might not classify the attack correctly.

When compiling an application's vulnerability model, the modeling team must
gather the following information about the attacks they want to verify the
component against:

• Numerical ID A unique number assigned to the attack for reference.
• Name A short title for the attack, which should be descriptive enough to

identify the attack as well as the target asset. An example of this is, "The
adversary views another user's personal information."

• Description The description should provide additional details about the
nature of the attack.

• STRIDE classification The STRIDE model is used to help understand
the effect of realizing a specific threat.

Examples

This section contains identified attacks from appendix C: Sample III - the Credit
Card Payment Component.

-69-

ID

Description

STRIDE

Al Name Buffer overflow

Buffer overflow and Integer overflow.

T. D.E

ID

Description

STRIDE

A2 Name SQL injection

SQL injection occurs, enabling an attacker to exploit an input
validation vulnerability to execute commands in the database and
thereby access and/or modify data.

T. I. E

ID

Description

STRIDE

A3 Name Cross-Site Scripting

Cross-site scripting occurs when an attacker succeeds in injecting
script code.

T. I. D. E

ID

Description

STRIDE

A4 Name Information Disclosure

Information is disclosed and sensitive exception details are revealed
to the client.

I

ID

Description

STRIDE

A5 Name Server Attack

An attacker manages to take control of the servers, gain
unauthorized access to the database, and run commands against the
database.

T. D. E

ID A6 Name Configuration Attack

-70 -

Description

STRIDE

Retrieval of clear text configuration secrets

T.D

ID

Description

STRIDE

A7 Name Individual Accountability

Lack of individual accountability

R

ID

Description

STRIDE

A8 Name Session Attack

Session hijacking and replaying.

S. T. E

ID

Description

STRIDE

A9 Name Form Manipulation

Query string and form field manipulation

T. E

-71 -

9 Identify Vulnerabilities

Given an attack path and a set of potential attacks, we can start to look at how
those attacks may be realized. An attack is a series of threat-specific,
implementation-specific, or technology-specific steps that a malicious user takes
to realize or help to realize exploiting a system. Through thoroughly analyzing
how an identified attack may be realized and how the application defends itself,
we can evaluate the application's vulnerabilities. VMCP adopts attack tree to
analyze attacks and then identify vulnerabilities.

9.1 Analyze attacks using attack tree

Attack tree and Attack tree analysis

Attack trees were defined by Bruce Schneier [68] based on the earlier work by
Nancy Leveson [69]. An attack tree is a way of analyzing and documenting the
potential attacks on a system in a structured and hierarchical manner, which
describes how an attacker could realize a specific attack to the system. A
traditional attack tree is made up of tasks and subtasks. An attack is represented as
the root node of each tree and tasks that need to be done to realize the attack are
represented as nodes other than root node. Children of each node describe in
increasing detail how an attacker could accomplish the task in the parent node.
Children of each node are sub-goals needed for the node, and together, all the
children should specify every way that this node could occur. In addition to goal
and condition type nodes, attack graphs can contain logical connectives. Some
nodes may require all of their children to be accomplished in order to be
accomplished themselves, while others may require only a single node to be
accomplished. A node of an attack tree is decomposed either as

• a set of attack sub-goals, all of which must be achieved for the attack to
succeed, that are represented as an AND-decomposition, or

• a set of attack sub-goals, any one of which must be achieved for the attack
to succeed, that are represented as an OR-decomposition.

Attack trees can be represented graphically or textually. An AND-decomposition
is represented as follows:

Graphical:

- 7 2 -

GO

G1 G2 Gn

Textual: Goal GO
AND Gl

G2

Gn

This represents a goal GO that can be achieved if the attacker achieves each of Gl
through Gn.

An OR- decomposition is represented similarly:
Graphical:

G1 G3

Textual: Goal GO
AND Gl

G2

Gn

This represents a goal GO that can be achieved if the attacker achieves any one of
Gl through Gn.

Attack trees can consist of any combination of AND- and OR-decompositions.
Individual attack scenarios can be generated from an attack tree by traversing the
tree in a depth-first manner. In general, leaf tasks are added onto the end of
scenarios as they are generated. OR-decompositions generate new scenarios.
AND-decompositions extend existing scenarios. Intermediate nodes of an attack

-73 -

tree do not appear in the attack scenarios because they are elaborated by lower
level sub-nodes. For example, attack tree A of figure 9-1-1 generates the attack
scenarios {G3, G5, G6} and {G4, G5, G6}, and attack tree B of figure 9-1-2
generates the attack scenarios {G4}, {G8, G9}, {G2} and {G6, G7}.

Figure 9-1-1: Attack Tree A

GO

G1 G2

I
G3

TT J

I
G4

|
G5

|
G6

Figure 9-1-2: Attack Tree B

Attack trees allow the refinement of attacks to a level of detail chosen by the
analyst. Prowell [70] addressed the property of referential transparency of an

- 7 4 -

attack tree as:

"Referential transparency implies that the relevant lower level details of
an entity are abstracted rather than omitted in a particular system of
higher level description, so that the higher level description contains
everything needed to understand the entity when placed in a larger
context"

Analyst may take advantage of this property to explore certain attack paths in
more depth than others, while still generate attack scenarios that make sense. In
addition, refining the branches of the attack tree generates new branches, resulting
in attack scenarios at the new lower level of detail.

Enhancement made by VMCP

VMCP identifies vulnerabilities by checking how components defend potential
attacks identified in previous steps. To make attack analysis more efficient VMPC
introduces pre-condition branches into attack trees. Pre-condition is the specific
situation or environment without which the attack is not possible to realize. The
pre-condition is presented using an ellipse while task and subtask using a
rectangle. Figure 9-1-3 is an attack tree for obtaining authentication credentials
over the network. The pre-condition for this tree is that the credentials are passed
over the network. If the credentials are not passed over the network, it is
impossible for an attacker to obtain them over the network. Figure 9-1-4 is
another sample attack tree - SQL Injection. Its pre-condition is that the user input
is used to build the SQL executive statement. In VMPC, when it comes to
performing an attack tree analysis, we first figure out if the pre-condition is met
based on the information obtained so far. If the pre-condition is not met, we
proceed to the next attack. In this way, we can filter out some identified attacks
which are impossible to the component in question at the very beginning, and
focus on these really exist.

- 7 5 -

Figure 9-1-3 Attack tree -Network eavesdropping

Attack 1
Network eavesdrop

[Credentials passed over]
v the network /

ping

i
1.1

Get message from
the network using
monitoring tools

|
1.1.1

Read out the
credentials directly;

1
/ \

/OR'\

[

i
1.1.2

Decode the
credentials

Figure 9-1-4 Attack tree - SQL Injection

Attack 2
SQL Injection

/ ' 2.0 X
/ Input is used to \
\build executive SQL/

* ^ statement

2.1
Enter malicious

input

2.1.1
Enter input via UI

2.1.1.1
Break UI validation

2.1.2
Directly Send input

to server side

2.1.2.1
Break server side

validation

-76-

file:///build

9.2 Identify vulnerabilities by verifying attack trees along attack paths

In terms of attack tree, a vulnerability is defined as a special path through an
attack tree from one or more leaves to the root node. On this path no or
insufficient defenses are implemented, wherein all conditions for the attack are
met. This path specifies a weakness or a collection of weaknesses in the
component that allow an attacker to implement an attack. Generally, all
vulnerabilities fall into two types: architecture vulnerabilities and implementation
vulnerabilities. VMCP seeks to identify both of these two types of vulnerabilities.

Identify architecture vulnerabilities

Architecture vulnerabilities are defined as inherent vulnerabilities in the design of
the application. In other words, architecture vulnerabilities are problems that are
designed into the application, and thus are hard to identify. These vulnerabilities
cannot be identified by normal methods. For example code review is one of the
most common methods that have become prevalent in V&V and is very useful in
identifying coding problems, however even a thorough code review will not dig
out architecture-level vulnerabilities. The reasons are obviously. Code review,
conducted either by humans or by automatic scanners, focuses on a very limited
context, reviewing the source code line by line. Moreover, a code review can only
find out security problems that have been written into applications. However,
architecture vulnerabilities are security problems that have been designed into
applications. They are often caused by the technologies used and how the
component will be deployed, rather than bad code.

VMCP uses attack trees to identify vulnerabilities. It investigates every node in an
attack tree to see if and how the component mitigates the node by designs and
implementation. This makes the application security analysis process less reliant
on intuition and allows the process to more systematically enable people with less
experience in security analysis to evaluate application's security strength.

When identifying architecture vulnerabilities, VMCP emphasizes on the mid-
nodes, instead of leaves, and the pre-condition nodes of attack trees, verifying
how the component mitigates them. We have discovered that mitigation of the
mid-nodes (nodes of a tree except the leaves) and the pre-condition nodes are
always related to the architecture and design, and mitigation of the leaves is done
by implementation. Therefore, it is an efficient and feasible way to identify
architecture vulnerabilities by verifying how the component mitigates the mid-
node and the pre-condition nodes of attack trees.

On the SQL Injection attack tree (Figure 9-1-4 Attack tree - SQL Injection), there
is one pre-condition node and 3 mid-nodes:

• PC-node: 2.0 Input is used to build executive SQL statements

-77 -

• Mid-nodel: 2.1 Enter malicious input
• Mid-node2 2.1.1 Enter input via UI
• Mid-node3 2.1.2 Directly send input to server side

To verify the PC-node, we need to check the design document and information
collected in the previous steps. If the component does not use the input data to
build executive SQL statements, there will not be any SQL injection attacks; else
we have to check other mid-nodes. For sub-tasks described in the 3 mid-nodes
there are two options to defense: one is suppressing any input, the other is using
validation on both the client and server sides. Obviously, the option 1 is not
possible for web applications. Thus, what we only need to do is to verify whether
the component uses server side input data validate. If not, one of the architecture
vulnerabilities will be "User input is used to build executive SQL statements and
there is no input data validation on the server side".

Identify implementation vulnerabilities

Implementation vulnerabilities are defined as inherent vulnerabilities in the
implementation of the application. In other words, implementation vulnerabilities
are problems that are coded into the application. VMCP adopts code review as the
verification method.

Although there are tools available that can automatically identify some kinds of
implementation errors, they are currently very limited, both in number and
functionality. These tools produce a lot of output much of which can be regarded
as false positives. Moreover most of these tools are only useful in identifying
unsafe code constructions, and not adept at identifying which instances of a
construct will result in vulnerability and at finding security vulnerabilities that
occur with different signatures. For example, that a piece of code that uses a string
function that does not perform bounds checking can be easily identified. However,
a similar buffer overflow that occurs because a function is looping through some
section and copying to a fixed buffer with either user-specified or incorrect
completion criteria is very hard to find out. Though both cause overflows, the
latter type of buffer overflows still require human effort for identified. Even if
tools are strong enough to identify these buffer overflows, they would not
necessarily be able to determine whether or not the construction creates security
vulnerabilities. Another problem with using automatic tools is that it is difficult
for people to decide which potential vulnerabilities are worth further investigation,
as these tools produce "mountains" of warnings with equal priority. Usually many
of these constructions might be legitimate implementations.

Code review is a time-intensive process but VMCP creates a process that allows a
team to check places (attack paths) of highest risk within a component for
vulnerabilities. This allows the team to identify which sections of component
would be best served by a code review. VMCP also allows a team to decide which

- 78 -

bugs reported by code analysis tools are most likely to result in vulnerabilities and
enables the team to reduce the volume of investigation required.

As mentioned in the last section, mitigation of the leaves of an attack tree is
always related to implementation. VMCP identifies implementation
vulnerabilities by verifying how the component mitigates the leaves of an attack
tree. On the SQL Injection attack tree (Figure 9-1-4 Attack tree - SQL Injection),
there are 2 leaves:

• 2.1.1.1 Break UI validation
• 2.1.2.1 Break server side validation

By reviewing corresponding code blocks on the attack paths, we can tell if the
component is healthy enough to resist any SQL injection attacks.

-79-

9.3 Attack Pattern Library

Patterns exist everywhere today. When building attack trees we do not have to
start from scratch each time, as certain patterns appear repeatedly and we can use
them as sub-trees in our graphs. Creating attack trees is very time and effort
consuming, but by using attack pattern libraries this becomes easier. An attack
pattern library for VMCP includes two types of patterns, architecture and
implementation patterns, corresponding to architecture and implementation
vulnerabilities. Architecture patterns should be re-used in a concrete attack tree as
high level nodes rather than leave node. Either an implementation pattern or
system-specific nodes should extend all or some of leave nodes in an architecture
pattern. Implementation patterns only appear in the lower levels of an attack tree.
All the leave nodes of an implementation pattern should be the leave nodes of the
attack tree that uses it as a sub-tree. These nodes can be used directly as part of
the actual steps to attack a common well-known vulnerability.

Attack libraries are the most critical step to realize automatic attack analysis. With
an attack library, the high layers of an attack tree or even the whole tree can be
generated automatically by mapping between the kind of attack that is being
analyzed and the technologies and design patterns used by relevant Data Flow
Diagram elements. In many cases, it may be possible for the sub-trees from the
attack library to simply be copied into the system-specific attack graph. In other
cases, they may need to be customized for the specific system. Either way, attack
libraries make the generation of in depth attack trees much more rapid and easier.
Furthermore, the more certification an organization has completed, the better their
library of attack patterns will become.

At this stage, I only introduce the concept of attack pattern library into VMCP
methodology and have not done much concrete research on how to build and how
to use an attack library, as this topic is wide and complex enough to be separate
thesis. However, it is on the list of my further work.

- 8 0 -

10 Rate Vulnerabilities

To certify the security level of a given component, we need to know not only what
vulnerabilities it has, but also the impact and risk that each vulnerability has on
the customers if malicious users exploit it. VMCP uses a quantitative method
DREAD to rate vulnerabilities.

DREAD

The DREAD method was first introduced by Michael Howard and David LeBlanc
[67] to characterize the risk associated with a vulnerability. Later, Frank
Swiderski and Window Snyder [5] used it to rate threats. In this thesis, I adapted
it to rate vulnerabilities in VMCP by redefining the definition of each rating level,
making it more practical to operate. The term DREAD stands for Damage
potential, Reproducibility, Exploitability, Affected users and Discoverability.
When using the DREAD method, a certification team calculates security
risk/impact as an average of numeric values assigned to each of these five
categories.

• Damage potential Measures the extent of the damage that occurs if a
vulnerability is exploited.

• Reproducibility Measures how difficult it is to reproduce a successful
exploitation of a vulnerability. A race condition attack is very hard to
reproduce but a URL manipulation is easy to reproduce.

• Exploitability Measures how difficult it is to exploit a vulnerability. One
of the most common methods to mitigate an attack is to increase the
exploitability of vulnerabilities. If a user credential has to be transferred
through network, then a strong cryptography may protect the data by
increasing the exploitability.

• Affected users Measures how high is the ratio of installed instances of
the system that would be affected if an exploit became widely available.
Here we consider the ration but not the absolute amount.

• Discoverability Measures how high is the likelihood that a vulnerability
will be discovered by external security researchers and hackers.

Microsoft uses continual numbers such 1 to 10 to score vulnerabilities [67] and
threats [5]. They try to propose a completely quantitative method to measure and
analyze vulnerabilities and threats. However these things are qualitative in nature
and are impossible to be exactly measured by continual numbers. For example,
when scoring metric R (Reproducibility), we usually estimate how difficult it is to
reproduce a successful exploitation of a vulnerability, based on the personal
experience and knowledge. The problem is how you can tell the difference when
John scores a 5 to a vulnerability and Mike scores a 6 to the same one. Even if the
estimates are done by the same person, it does not make any sense to differentiate
a 5-point vulnerability from a 6-point one.

- 8 1 -

VMCP uses discrete numbers to score vulnerabilities, combining the advantages
of both the quantitative method and the qualitative method. This not only takes
into account the qualitative nature of vulnerabilities but makes it possible to
perform quantitative analyst on them. VMCP uses only 3 numbers 5, 10, and 15
for each category, which means the risk is low, moderate, or high. Then the
overall score of a vulnerability is determined by averaging the numbers (adding
the numbers and dividing by 5, in other words).

Vulnerability Score = (DAMAGE + REPRODUCABILITY +
EXPLOITABILITY + AFFECTED USERS + DISCOVERABILITY) / 5

Damage Potential
If a vulnerability is exploited how great can the damage be? Damage potential
measures the extent of actual damage possible with the vulnerability. Typically,
the worst (15) indicates that a vulnerability allows the attacker to circumvent all
security restrictions and do virtually anything. For example, elevation of privilege
vulnerabilities are usually scored 15. The following table is the definition of the
three security level.

5
Leak trivial information

10
Leak sensitive information ;
Compromise or affect
individual user data.

15
The attacker can subvert the
security system, get full
trust authorization, run as
administrator, or upload
content.

To assess the potential damage of a vulnerability, VMCP provides a easy and
straightforward way. At this stage, we already have a list of identified attacks and
assets tied to attacks (chapter 9). Each identified vulnerability is derived from one
of these attacks using attack tree analysis. Therefore it is easy to know which
attacks will be realized by exploiting the vulnerability being assessed and then to
know which assets will be impacted if the vulnerability is exploited. By assessing
the value of all of these assets, we can score the potential damage. In some cases,
a vulnerability might cause several attacks then we have to put together all the
attacks and the assets to do the assessment. For example, no server side validation
is the reason for many attacks such as SQL injection, buffer flow and so on. When
assessing the damage of this vulnerability we have to think about all assets impact
by all these attacks.

Reproducibility
Reproducibility looks at how difficult it is to reproduce an attack exploiting a
given vulnerability. A complicated race condition which requires a very specific
system state might be a five (5), if there was no straightforward way to produce
that state, while an URL manipulation would be a fifteen (15). High

-82 -

reproducibility is critical for most attackers to benefit. The following table is the
definition of the three security level.

5
The attack is very difficult
to reproduce, even with
knowledge of the security
hole.

10
The attack can be
reproduced, but only with a
timing window and a
particular race situation.

15
The attack can be
reproduced every time and
does not require a timing
window.

How a given vulnerability can be exploited is clearly described by the attack tree
where the vulnerability derives from. With all attack trees we have it is quiet easy
to determine the reproducibility of a given vulnerability.

Exploitability
Exploitability looks at how technically difficult to perform an exploit. The first
thing to consider is what degree of authentication and authorization is required to
perform an attack. For example, if an anonymous remote user can attack the
system with just a browser, it should be assigned 15, while a local user attack
requiring strong credentials is possibly a 5. In addition, expert experience and cost
needed to perform an exploit are important factors too. For example, if a junior
attacker with a home PC can start the exploit, that is a 15, but an exploit that
needs an expert group working together and an expense of $100,000,000 is only a
5. In addition, if there are automatic tools existing is also to be considered.

When assessing the exploitability, it is critical to know the security trends, as they
are changing all the time; for instance, an expert-experience-needed exploit could
change from 15 to 5 if malware is developed and becomes widely used. It is worth
being somewhat conservative here, especially when dealing with well-known
software. The following table is the definition of the three security level.

5
advanced programming and
networking skills, advanced
or custom attack tools

10
Malware exists, or easily
performed using normal
attack tools

15
Just a browser

The same as reproducibility, exploitability can also be easily determined using
attack trees.

Affected Users
Affected users looks at the number of users or the percentage of users that would
be affected if the vulnerability were exploited. VMCP prefers percentage to
absolute number. This measures approximately what percentage of users would be
impacted by an attack: 71-100 percent (15), 31-70 percent (10) and 0-30 percent
(5). An attack on a server indirectly affects a larger number of clients and

- 8 3 -

probably other networks, while a client attack impacts only a few people. Besides
the percentage, VMCP takes into account the market size and absolute numbers of
users. As you know, one percent of 100 million is still a very large number. The
following table is the definition of the three security level.

5
0-30 percentage of users,
obscure feature; affects
anonymous users

10
31-70 percentage users,
non-default configuration

15
71-100 percentage, default
configuration, key
customers

When scoring affected users, VMCP takes into account two groups of users, one
is the group that are affected as assets tied to them are attacked, for example a
user profile attacking affects all users. The other group is these who are affected
because some functionalities or modules of the system become unavailable due to
attacks. To find the number of users affected by assets, we will do the same as
what we do when determining the damage:

• Find attacks from which the vulnerability derives, and then find all assets
related to these attacks. To find the number of users affected by
unavailability of functionalities, we have to check attack paths. In VMCP
each attack is tied to one or more attack paths, from these attack paths we
can identify which modules (processes) will be affected by a certain attack.

Discoverability
Discoverability looks at how difficult it is to discover a vulnerability. This
element depends upon expertise and personal judgment. VMCP does not have
assistive tools to help determine it. Moreover, discoverability might change
dramatically from a 5-score vulnerability to a 15-score one right after the
vulnerability is publicly published. The following table is the definition of the
three security level.

5
The bug is obscure, and it is
unlikely that users will work
out damage potential.

10
The vulnerability is in a
seldom-used part of the
product, and only a few
users should come across it.
It would take some thinking
to see malicious use.

15
Published information
explains the attack. The
vulnerability is found in the
most commonly used
feature and is very
noticeable.

Examples

This section contains identified vulnerabilities from the three samples: an online
shopping cart Jspcart, Duke's Bank Application and Credit Card Payment
Component. Appendix A, Appendix B and Appendix C have the complete
information of these three samples.

-84 -

Descriptio
n

User password is stored as plain text in database

Rate

DAMAGE

15

REPRODUCABILIT
Y

10

EXPLOITABILIT
Y

5

AFFECTE
D USERS

15

DISCOVERABILIT
Y

10

OVERAL
L

11

Descriptio
n

Lack of password complexity enforcement, say password retry
logic

Rate

DAMAGE

15

REPRODUCABILIT
Y

10

EXPLOITABILIT
Y

5

AFFECTE
D USERS

15

DISCOVERABILIT
Y

15

OVERAL
L

12

Descriptio
n

Missing or weak input validation at the server

Rate

DAMAGE

15

REPRODUCABILIT
Y

15

EXPLOITABILIT
Y

15

AFFECTE
D USERS

15

DISCOVERABILIT
Y

15

OVERAL
L

15

Descriptio
n

Failure to validate cookie input

Rate

DAMAGE
REPRODUCABILIT EXPLOITABILIT AFFECTE DISCOVERABILIT OVERAL

-85-

15

Y

15

Y

15

DUSERS

15

Y

10

L

14

Descriptio
n

Failure to validate cookie input

Rate

DAMAGE

15

REPRODUCABILIT
Y

15

EXPLOITABILIT
Y

15

AFFECTE
D USERS

15

DISCOVERABILIT
Y

10

OVERAL
L

14

Descriptio
n

Failure to encode output leading to potential cross-site scripting
issues

Rate

DAMAGE

15

REPRODUCABILIT
Y

10

EXPLOITABILIT
Y

10

AFFECTE
D USERS

15

DISCOVERABILIT
Y

5

OVERAL
L

11

Descriptio
n

Exposing an administration function through the customer-facing
Web page

Rate

DAMAGE

15

REPRODUCABILIT
Y

10

EXPLOITABILIT
Y

5

AFFECTE
D USERS

15

DISCOVERABILIT
Y

15

OVERAL
L

12

Descriptio Exposing exception details to the client

-86-

n

Rate

DAMAGE

10

REPRODUCABILIT
Y

15

EXPLOITABILIT
Y

10

AFFECTE
D USERS

15

DISCOVERABILIT
Y

15

OVERAL
L

13

- 8 7 -

11 Certify the component

Based on the rated vulnerabilities, the component can be certified with a security
level that indicates the degree to which the users of the component assume risk by
using the component in their application. In addition, a certification report should
be granted to the component vender. The certification report includes:
• Security level
• Identified and rated vulnerabilities

Security Level
Security level states how secure a given component is. According to the rated
vulnerabilities, VMCP rates component into three degrees: high, moderate and
low.

• High Although there are vulnerabilities existing they are not critical and
will not cause serious problem and/or losses to the users.

• Moderate The vulnerabilities are serious and might cause serious
problems or losses to the user but the risks are still acceptable.

• Low The result is catastrophic and not acceptable once the
vulnerabilities are exploited by attackers to implement an attack
successfully.

When determining security level, VMCP looks at the weakest vulnerability
(vulnerability with the highest score) instead of the overall rating of all identified
vulnerabilities. VMCP believes a hacker might take over a system once he/she
can break the weakest point. Thus the security degree of a system is determined
by the weakest point of the system. VMCP divides the 15-ponit vulnerability
score into 3 sections respectively representing the three security levels. Table 11-1
defines the three security levels in details.

Table 11-1: Component Security Levels
Security Level

High

Moderate

Low

Description
Security problems are
moderately Serious
Security problems are serious
but still acceptable
Security problems are
catastrophic

Criteria
The highest score of all
vulnerabilities rated from 5 to 7
The highest score of all
vulnerabilities rated from 8 to 11
The highest score of all
vulnerabilities rated from 12 to 15

-88 -

12 Conclusion

The objective of this thesis is to propose a new product-based certification process
to certify the security in components used by e-commerce applications. Within
this scope, VMCP has been developed. It works on design specifications and
source code using white box technologies to identify software vulnerabilities and
to evaluate risk associated with these vulnerabilities. The security certification,
which indicates the security level of the component, is then generated based on
the identified and rated vulnerabilities.

In order to check how the whole process works on real business project, I applied
VMCP to three sample components: Jspcart(an online shopping cart), Duke's
Bank Application and Credit Card Payment Component. Detailed information can
be found in appendix A, appendix B, and appendix C. Thereinafter I will address
several significant points that have come out from the three samples.

Iteratively vs. Sequentially

VMCP is iterative rather than sequential. By iterating the modeling process, we
can gradually refine our modeling result when we become more and more familiar
with the component. Since VMCP is built upon the assumption that users of this
process know nothing about the component at the time when they start to certify
the component, the first part of this process is to understand the component and to
obtain useful information regarding identifying attacks. The second part is to
verify if and how the component in question defends itself again these identified
attacks. Vulnerabilities are supposed to be revealed in the verification procedures.
Apparently the second part and even the modeling result depend greatly on the
output of the first part, the information gathering phase. Information gathering is
always iterative. For example, when modeling attack paths, we start with the
identified entry points and assets to figure out the logical paths within the
component that connect entry points and assets. It is very possible that new entry
points and assets may be found in this procedure. The second part is also iterative,
when verifying how a component defends itself, we spend much time on code and
design review and thus get more and more familiar with the component. As a
result, we are very likely to find out new attacks.

Learning Curve

Regarding learning curve, two points were observed. The first point is that time is
reduced greatly for the same type of components. When I applied VMCP for the
first to the online shopping cart, everything seemed new to me even though it is
me who creates this process. I had to learn how to see the component from the
security perspective, how to identify entry points and assets, how to use attack
tree and so on. When I came to the second sample, Duke's Bank, the certification
time was reduced dramatically because of two reasons. First, I was used to the

-89-

process and technologies used. Second, Duke's Bank and Jspcart belong to the
same type of component. Both are web-based. They share lots of common
feathers regarding security. The third sample, Credit Card Payment Component,
took me more time than the second did, as it is totally different from the other two
samples. The Credit Card Payment Component is not web-based. It has no user
interfaces but only provides APIs. There are not too many security feathers shared
between these two types of components.

The second point is that the effect of the learning curve varies for each steps.
Steps such as gain an architecture overview, model the component from an
adversary's view and rate vulnerabilities do not depend too much on the
component-specific situation and thus time is reduced greatly once the users get
used to the process. For component-specific steps such as identifying
vulnerabilities and modeling attack paths, time changes slightly, as they totally
determined by the details of the component being certified.

Evolvement of the Taxonomy and Attack Trees

Software industry is changing very rapidly. New technologies appear almost daily.
Hackers are always able to catch up with the latest technologies, either using them
to attack existing systems or inventing even more advanced counter-technologies
and using them to attach systems built by these so-called new, secure technologies.
As a result, new attacks and vulnerabilities are publicly reported periodically. To
reflect these new attacks and vulnerabilities, the taxonomy used by VMCP should
also be refreshed periodically. Attack trees are the concrete implementation of
attacks, so whenever there are new attacks added to the taxonomy, new attack
trees should be developed. Also whenever approaches and technologies used by
hackers to perform existing attacks change, attack trees should be updated to
reflect these changes.

Expertise Required

VMCP greatly reduces the dependency on expertise knowledge and personal
experience. VMCP achieves this by introducing the security taxonomy and attack
trees. Developing a security taxonomy and attack trees are really security-
knowledge-intensive, however the Software Certificate Service Providers can hire
an external consulting company to help with these difficult tasks. Once the
security taxonomy and attack trees are built, VMCP will become straight forward.
The process itself does not need too much security knowledge and experience.

Major Advantage

VMCP performs Validation & Verification in a time- and cost- effective manner.
V & V tasks, such as code review, are usually very time-intensive. However
VMCP creates an approach to conduct these tasks effectively. VMCP uses attack
paths to help identify vulnerabilities, which allows a team to check places (attack

-90-

paths) of highest risk within a component for vulnerabilities. This enables the
team to identify which sections of component would be best served by a code
review. VMCP also allows a team to decide which bugs reported by code analysis
tools are most likely to result in vulnerabilities and enables the team to reduce the
volume of investigation required.

Weakness

VMCP depends so much on Data Flow Diagrams that the correctness of Data
Flow Diagrams affects the result of the certification process. Data Flow Diagram
is a very important element of VMCP. It is used to help model attack paths, and
identify attacks and vulnerabilities. However, not all components to be certified
will come with Data Flow Diagrams. If a component come in without Data Flow
Diagrams, the certification team has to build the Data Flow Diagrams itself,
which makes it possible that some portions of the Data Flow Diagrams might be
missed or some portions are drawn incorrectly, because the certification team is
not as familiar with the components as the development team is. If this really
happens, the accuracy of the certification will be greatly discounted.

In conclusion, VMCP is a product-based security certification process, which is
supposed to be conducted in an iterative manner. It has a positive learning curve,
especially when it is applied to the same type of components, certification time
will be reduced dramatically once the users get used to the process. The use of
security taxonomy and attack trees reduce the dependency on expertise
knowledge and personal experience, however they need periodical maintenance in
order to reflect the most recent attacks and vulnerabilities. Though VMCP
depends so much on Data Flow Diagrams that the correctness of Data Flow
Diagrams affects the result of the certification process, it has its overwhelming
advantage that V&V are performed in a time- and cost- effective manner.

- 9 1 -

References

1. "The Ten Most Critical Web Application Security Vulnerabilities",
OWASP, 2004. (at: http://www.owasp.org/documentation/topten.html)

2. Lebanidze, Eugene. "Securing Enterprise Web Applications at the source:
An Application Security Perspective", OWASP, 2005 (at:
http://www.owasp.org/docroot/owasp/misc/Securing_Enterprise_Web_Ap
plications_at_the_Source.pdf)

3. Curphey, M. "A Guide to Building Secure Web Applications", OWASP,
2005. (at: http://www.owasp.org/documentation/guide.html)

4. Vijayarahavan, Giri. "A Taxonomy of E-commerce Risks and Failures",
CSTER, 2003. (at: http://www.testingeducation.0rg/a/tecrf.pdf)

5. Frank Swiderski and Window Snyder. "Threat Modeling", Microsoft Press,
2004.

6. J.D. Meier, Alex Mackman, Blaine Wastell. "Threat Modeling Web
Applications", Microsoft Corporation, 2005. (at:
http ://msdn2.microsoft.com/en-
us/library/ms978516.aspx#tmwa_webapplicationsecurityframe)

7. Anup K. Ghosh and Gary McGraw. "An Approach for Certifying Security
in Software Components". Reliable Software Technologies, 1998 (at:
http: //www. cigital. com/papers/do wnlo ad/cert .pdf)

8. Robyn R. Lutz and Robert M. Woodhouse. "Bi-directional Analysis for
Certification of Safety-Critical Software". California Institute of
Technology Pasadena, CA 91109-8099, 1998.

9. David P. Gilliam, John C. Kelly, John D. Powell and Matt Bishop.
"Reducing Software Security Risk through an Integrated Approach". 26th
Annual NASA Goddard Volume , Issue , 2001 pp 36 - 42, 2001

10. Ramaswamy Chandramouli and Mark Blackburn. "Automated Testing of
Security Functions using a combined Model & Interface driven Approach".
Proceedings of the 37th Hawaii International Conference on System
Sciences, 2004 (at:
http://csdl2.computer.org/comp/proceedings/hicss/2004/2056/09/2056902
99b.pdf)

11. George Fink and Matt Bishop, "Property-Based Testing; A New Approach
to Testing for Assurance", ACM SIGSOFT Software Engineering Notes
22(4) pp. 74-80, 1997

12. George Fink and Karl Levitt. "Property-Based Testing of privileged
Programs". Department of Computer Science, University of California.
1994 (at: http://seclab.cs.ucdavis.edu/papers/pdfs/gf-kl-94.pdf)

13. Constance Heitmeyer. "SCR: A Practical Method For Requirements
Specification". Naval Research Laboratory, Washington, DC. 1998 (at:
http://chacs.nrl.navy.mil/publications/chacs/1998/1998heitmeyer-
DASC98.pdf)

14. James Bach, "Heuristic Risk-Based Testing", Software Testing and
Quality Engineering Magazine, November 1999, pp 96 - 98.

- 9 2 -

http://www.owasp.org/documentation/topten.html
http://www.owasp.org/docroot/owasp/misc/Securing_Enterprise_Web_Ap
http://www.owasp.org/documentation/guide.html
http://www.testingeducation.0rg/a/tecrf.pdf
http://microsoft.com/en-
http://csdl2.computer.org/comp/proceedings/hicss/2004/2056/09/2056902
http://seclab.cs.ucdavis.edu/papers/pdfs/gf-kl-94.pdf
http://chacs.nrl.navy.mil/publications/chacs/1998/1998heitmeyer-

15. K. Jiwnani and M. Zelkowitz. "Maintaining Software with a Security
Perspective", International Conference on Software Maintenance
(ICSM'02) pp 194 - 203. 2002

16. Ulf Lindqvist and Erland Jonsson. "A Map of Security Risks Associated
with Using COST". In Computer, Vol. 31, No. 6 June 1998, pp 60-66.

17. Paul Gerrard and Neil Thompson. "Risk-Based E-Business Testing".
Artech House. 2002

18. Gary McGraw and John Viega. "Building Secure Software: How To Avoid
Security Problems The Right Way". Addison Wesley, Reading, Mass.,
2001

19. Weigang Zhao, "A study of web-based application architecture and
performance measurements". School of Information Systems Curtin
University, Australia. 1999 (at:
http://ausweb.scu.edu.au/aw99/papers/zhao/paper.html)

20. J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray
Escamilla and Anandha Murukan, "Improving Web Application Security:
Threats and Countermeasures". Microsoft. 2003. (at:
http ://msdn2.microso ft.com/en-us/library/ms994921 .aspx)

21. Paul Saitta_, Brenda Larcom, and Michael Eddington. "Trike v.l
Methodology Document [Draft]". 2005. (at:
http://www.octotrike.org/Trike_vl_Methodology_Document-draft.pdf)

22. Jeffrey Voas, "An Approach to Certifying Off-the-Shelf Software
Components". IEEE Computer, 31(6):53-59 June 1998.

23. Jeffrey Voas, "Defensive Approaches to Testing Systems that Contain
COTS and Third-Party Functionality", Reliable Software Technologies
Corporation, Sterling, VA., 1998 (at:
http://www.cigital.com/papers/download/ictcs98.pdf)

24. Hangkon Kim, "A Framework for Security Assurance in Component
Based Development", Springer Berlin, 10.1007/11424826_5, 2004

25. Anup K. Ghosh, "Certifying Security of Components used in Electronic
Commerce", Reliable Software Technologies Corporation, Sterling, VA.,
1998 (at: http://www.objs.com/workshops/ws9801/papers/paper001 .html)

26. Andrew P. Moore, Robert J. Ellison and Richard C. Linger, "Attack
Modeling for Information Security and Survivability", CMU/SEI-2001-
TN-001,2001

27. Jeffrey Voas, "Software Certification Laboratories To Be or Not to Be
Liable?", Reliable Software Technologies Corporation, Sterling, VA., 1998
(at: http://www.stsc.hill.af.mil/Crosstalk/1998/04/certification.pdf)

28. Jeffrey Voas, "User Participation-Based Software Certification", Eurovav,
pp 267-276, 1999

29. Kamran Yapub, "Modeling Security Requirements of Target of Evaluation
and Vulnerabilities in UML", Lulea University of Technology, Sweden,
2006. (at: http://epubl.ltu.se/1653-0187/2006/31/LTU-PB-EX-0631-
SE.pdf)

- 9 3 -

http://ausweb.scu.edu.au/aw99/papers/zhao/paper.html
http://ft.com/en-us/library/ms99492
http://www.octotrike.org/Trike_vl_Methodology_Document-draft.pdf
http://www.cigital.com/papers/download/ictcs98.pdf
http://www.objs.com/workshops/ws9801/papers/paper001
http://www.stsc.hill.af.mil/Crosstalk/1998/04/certification.pdf
http://epubl.ltu.se/1653-0187/2006/31/LTU-PB-EX-0631-

30. Jeffrey Voas and Jeffery Payne, "Dependability certification of software
components", Journal of Systems and Software, NO. 52, pp. 165-172,
2000.

31. Krishnan Rama, "Securing Your ASP.NET Web Applications", 2004 (at:
http://www.c-
sharpcorner.com/UploadFile/krishvr/securewebapp 11262005 011914AM/s
ecurewebapp.aspx?ArticleID=la878159-02d3-4dl3-90d8-fe55d6c571f6)

32. Mitja Kolsek, "Session Fixation Vulnerability in Web-based Applications",
ACROS Security, 2002 (at:
http://www.acros.si/papers/session_fixation.pdf)

33. John Steven and Gunnar Peterson, "A Metrics Framework to Drive
Application Security Improvement", IEEE COMPUTER SOCIETY, 2007
(at: http://www.arctecgroup.net/pdf/0703-OWASPMetrics.pdf)

34. Seyit Ahmet C, amtepe and B'ulent Yener, "A Formal Method for Attack
Modeling and Detection", Computer Science Department, Rensselaer
Polytechnic Institute, Troy, NY 12180. 2006 (at:
http://www.cs.rpi.edu/research/pdf/06-01.pdf)

35. Fredrik Moberg, "Security analysis of an information system using an
attack tree-based methodology", Chalmers University Of Technology,
2000 (at: http://antareja.rvs.uni-bielefeld.de/~made/Seminar/Attack-
Tree/fredrik.moberg-thesis.pdf)

36. Yue Chen, Barry Boehm and Luke Sheppard, "Value Driven Security
Threat Modeling Based on Attack Path Analysis", University of Southern
California, Los Angeles, CA, 90089-0781, USA. 2006

37. Bruce W. Weide, Paolo Bucci, Wayne D. Heym, Murali Sitaraman and
Giorgio Rizzoni, "Issues in Performance Certification for High-Level
Automotive Control Software", Software Engineering for Automotive
Systems, Volume 30 , Issue 4 , July 2005, pp 1 - 6.

38. S.W. Smith, "Turing is from Mars, Shannon is from Venus: Computer
Science and Computer Engineering", IEEE Security & Privacy, vol. 3, no.
2, 2005, pp. 66-69

39. Paolo Donzelli, Marvin Zelkowitz, Victor Basili, Dan Allard and Kenneth
N. Meyer, "Evaluating COTS Component Dependability in Context",
IEEE Software, Volume 22, Issue 4, July 2005, pp 46 - 53.

40. Giri Vijayaraghavan and Cem Kaner,, "Bug Taxonomies: Use Them to
Generate Better Tests", STAR EAST 2003, Orlando, FL. 2003 (at:
http.7/testingeducation.org/a/bugtax.pdf)

41. Jeffrey Voas, "Certifying Software for High Assurance Environments",
IEEE Software, Volume 16, Issue 4, July 1999, pp 48 -54.

42. John D. Howard, "An Analysis of Security Incidents on the Internet",
Pittsburgh, Pennsylvania 15213 USA, 1997 (at:
http://www.cert.org/research/JHThesis/)

43. Michael Howard and James Whittaker, "Violating Assumptions with
Fuzzing", IEEE. Security & Privacy, pp 58 - 62, March/April 2005

- 9 4 -

http://ASP.NET
http://www.c-
http://sharpcorner.com/UploadFile/krishvr/securewebapp
http://www.acros.si/papers/session_fixation.pdf
http://www.arctecgroup.net/pdf/0703-OWASPMetrics.pdf
http://www.cs.rpi.edu/research/pdf/06-01.pdf
http://antareja.rvs.uni-bielefeld.de/~made/Seminar/Attack-
http://http.7/testingeducation.org/a/bugtax.pdf
http://www.cert.org/research/JHThesis/

44. Gary McGraw, "Software Assurance for Security", Reliable Software
Technologies, Sterling, VA. 1999. (at:
http://www.cigital.com/papers/download/ieee-computer-secass.pdf)

45. AUML Specification Language targeting Security Risk Assessment, 2006
(at: http://coras.sourceforge.net/)

46. M. Schiffman, "Common Vulnerability Scoring System (CVSS)". 2006 (at:
http ://www. first, org/cvss/)

47. Caleb Sima, "security at the next level: are you web application
vulnerable?", SPI Dynamics Inc. 2004 (at:
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf)

48. Kanta Jiwnani and Marvin Zelkowitz , "Security Testing using a
Susceptibility Matrix", Chillarege Press, FastAbstract ISSRE 2002. (at:
http://www.cs.umd.edu/~mvz/pub/sectest.pdf)

49. Gary McGraw, "Knowledge for Software Security", Security & Privacy
Magazine, IEEE, Volume: 3, Issue: 2, March-April 2005, pp 74 -78.

50. M.G. Graff and K.R. van Wyk, "Secure Coding—Principles & Practices".
O'Reilly, first edition 2003.

51. Yngve Espelid, Lars-Helge Netland, Khalid Mughal, and Kjell J0rgen
Hole, "Simplifying Client-Server Application Development with Secure
Reusable Components", Department of Informatics, University of Bergen.
2006 (at: http://www.nowires.org/Papers-
PDF/SimplifyingClientServerAppDev.pdf)

52. Jane Cleland-Huang, Mark Denne, Ghazy Mahjub, and Nilesh Patel, "A
Goal-Oriented Approach for Mitigating Security and Continuity Risks",
DePaul University and Symantec Corp, 10.1007/978-0-387-34831-510,
2006

53. Thuy D. Nguyen, Cynthia E. Irvine, and Douglas R. Kane Jr., "Using
Common Criteria Methodology to Express Informal Security
Requirements", Proc. International Symposium on Secure Software
Engineering, Arlington, VA, March 2006, pp. 75-85.

54. Amit Paradkar, Suzanne Mcintosh, Sam Weber, David Toll, Paul A.
Karger, and Matthew Kaplan, "Chicken & Egg: Dependencies in Security
Testing and Compliance with Common Criteria Evaluations", IEEE
International Symposium on Secure Software Engineering (ISSSE '06).
13-15 March 2006, Arlington, VAIEEE Computer Society, p. 65-74.

55. Suvda Myagmar and William Yurcik, "Why Johnny Can Hack: The
Mismatch between Vulnerabilities and Security Protection Standards",
NCSA University of Illinois at Urbana-Champaign. 2006 (at:
http://citeseer.ist.psu.edU/cache/papers/cs2/496/http:zSzzSzwww.projects.
ncassr.orgzSzthreatmodelingzSzissse06.pdf/myagmar06why.pdf)

56. Petr Hejda, "Architectural Model for User interfaces of Web-based
Applications", Rockwell Automation Research Center Prague Czech
Republic. 2000 (at: http://ui4all.ics.forth.gr/UI4ALL-
2000/files/Short_papers/Hejda.pdf)

57. G. Hoglund and G. McGraw, "Exploiting Software—How to Break Code".
Addison-Wesley, first edition 2004.

-95-

http://www.cigital.com/papers/download/ieee-computer-secass.pdf
http://coras.sourceforge.net/
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf
http://www.cs.umd.edu/~mvz/pub/sectest.pdf
http://www.nowires.org/Papers-
http://citeseer.ist.psu.edU/cache/papers/cs2/496/http:zSzzSzwww.projects
http://ncassr.orgzSzthreatmodelingzSzissse06.pdf/myagmar06why.pdf
http://ui4all.ics.forth.gr/UI4ALL-

58. K.J. Soo Hoo, "How Much is Enough? A Risk-Management Approach to
Computer Security". Ph.D. dissertation, Graduate School of Engineering,
Stanford University, 2000. (at:
http://citeseer.ist.psu.edU/cache/papers/cs/25847/http:zSzzSzcisac.stanford
.eduzSzdocszSzsoohoo.pdf/how-much-is-enough.pdf)

59. Gerard J. Holzmann, "Trends in Software Verification", JPL Laboratory
for Reliable Software California Institute of Technology Pasadena, CA.
2003 (at: http://spinroot.com/gerard/pdf/frne03.pdf)

60. T.A. Henzinger, R. Jhala, et al., "Software Verification with Blast.", Proc
10th SPIN Workshop on Model Checking Software, LNCS 2648,
Springer-Verlag, 2003. pp 235 -239.

61. Steven R. Rakitin, "Software Verification and Validation for Practitioners
and Managers", Artech House Publishers; 2nd edition. 2001

62. Mulcahy, G. "J2EE and .NET Security," CGI Security, 2002. (at:
http://www.cgisecurity.com/lib/J2EEandDotNetsecurityByGerMulcahy.pd
f)

63. Ross, R. "Guide for the Security Certification and Accreditation of Federal
Information Systems," NIST SP800-37. 2004 (at:
http://whitepapers.silicon.com/0,39024759,60116708p,00.htm)

64. Conklin, W., White, G, Cothren, C. "Principles of Computer Security."
Career Education, first edition, 2004

65. B. Schneier, "Attack trees: Modeling security threats," Dr. Dobb's Journal,
1999,12(24):21-29

66. Japzon, Eddie Manuel, Henry L. Cummings and Jr., John W. "Managing
Obsolescence in the U.S. Department of Defense Acquisition
Environment". RIAC, Department of Defense. 2000. (at:
http://quanterion.com/RIAC/Library/Library. asp? ArgVal=45 5 5 5 -049)

67. Michael Howard and David LeBlanc. "Writing Secure Code, Second
Edition". Microsoft Press. 2003

68. Schneier, Bruce. "Attack Trees." 21-29. Dr. Dobb's Journal of Software
Tools 24, 12 (December 1999): 21-29.

69. Leveson, N. O., "Safeware: System Safety and Computers", Addison-
Wesley, Reading MA, 1995

70. Prowell, S. J., Trammell, C. J., Linger, R. C , and Poore, J. H. "Cleanroom
Software Engineering: Technology and Process". Boston, MA: Addison
Wesley Longman, 1999.

- 9 6 -

http://citeseer.ist.psu.edU/cache/papers/cs/25847/http:zSzzSzcisac.stanford
http://spinroot.com/gerard/pdf/frne03.pdf
http://www.cgisecurity.com/lib/J2EEandDotNetsecurityByGerMulcahy.pd
http://whitepapers.silicon.com/0,39024759,60116708p,00.htm
http://quanterion.com/RIAC/Library/Library

Appendix A: Sample I - JSPCART

Overview

JSPCART is an open source Shopping Cart developed using JSP, running on
Tomcat and MySQL on any platform, (http://jspcart.neurospeech.com/). It
consists of two components. One is the user component by which internet users
shop (Figure A-l-1). The other is exclusively for backend administrators to
maintain the products, catalogs, orders and user accounts (Figure A-1-2).

Figure A-l-1 JSPCART User Component

My Account

Change Password

>

Change Profile

My Orders

.. >

Header

Cart

Modify

Production Sign up

Buy Item

Remove

f \
Login

"*
Login

Get Password

Checkout

Figure A-l-2 JSPCART Admin Component

Admin

w

Products

Categories

r
Orders

Users

\

Develop a common security risks and vulnerabilities taxonomy

We use the taxonomy described in chapter 4 for this sample as it covers the most

-97 -

http://jspcart.neurospeech.com/

common application level attacks and vulnerabilities that plague web-based
enterprise applications.

Gain an architecture overview from the security perspective

Here we try to understand the JSPCART from the perspective of security. Our
goal is to identify the deployment Scenarios, the key functionality, characteristics,
and roles. This will help us to identify relevant attacks later.

End-to-End Deployment Scenario

JSPCART is a web-based shopping cart with a relational database back end. Both
the user and admin components are accommodated in the web server. The user
component is available to Internet users via Internet. The admin component is
only available to the local administrators via a local intranet. Figure 13.3 shows
the deployment scenario.

Figure A-l-3 JSPCART deployment Scenario

Internet User

Web Server-

Forms
Authentication
And Roles Checks
on user identify

User Component

Presentation
Tier

Business & Data
Access Tier

Admin Component

Presentation
Tier

Business & Data
Access Tier

TCP/IP

.

Roles

Identify who can do what and cannot do what in the component.

Anonymous user:

Legal activities:

o Browse product or catalog list

Rational
Database

Database
Authentication on
application identify

-98-

o Create a cart, and browse or modify items in the cart

o Create a user account

Illegal activities:

o Checkout items in a cart created by his/her own.

o Browse, modify or checkout items in carts created by
others

o Browse or modify user profile

o Change products or catalogs information

o Browse or modify orders

Authenticated user:

Legal activities:

o Browse product or catalog list

o Create a cart, and browse, modify or checkout items in the
cart.

o Create a user account

o Browse or modify his/her own profile

o Browse or modify his/her own orders

Illegal activities:

o Browse, modify or checkout items in carts created by other
users

o Browse or modify profiles of other users

o Change products or catalogs information

o Browse or modify orders created by other users

Administrators

Legal activities:

o Full control on user accounts, carts, products, catalogs and
orders.

Illegal activities:

o None

- 9 9 -

Key Usage Scenarios

Important application scenarios are:

• Anonymous user browses the product pagers.

• Anonymous user adds and/or removes items to the shopping cart, modify
the item quantity.

• Anonymous user logs in to authenticate prior to placing an order.

• Anonymous user creates a new account prior to placing an order.

• Authenticated user places, browses and modifies an order.

• Authenticated user browses and/or modifies his/her user profile.

• Administrator manipulates user profiles, products, catalogs and orders.

Technologies

Identifying technologies helps us to focus on technology-specific attacks. The
JSPCart component uses the following technologies:

• Presentation logic: JSP

• Business logic: Java Class Libraries, JavaBean

• Data access logic: JDBC, embased SQL

Application Security Mechanisms

The major application security mechanisms are:

• Users and administrators are authenticated with Forms authentication.

• Application is authenticated at the database server by using Windows
authentication.

• Roles are used to authorize access to business logic.

Model the component from an adversary's View

VMCP looks at a component from an adversary's perspective to anticipate attack
goals. VMCP is based on the following two premises:

1. An adversary will not attack the system without assets of interest.

- 1 0 0 -

2. An adversary cannot attack a system without entry points, interfaces
the system has with the outside world

By identifying all assets of interest and entry points, adversaries gather the basic
information for undertaking attacks, what are the attack targets, and where they
can enter the system to reach the assets. Then what is left is to figure out where is
the most possible points they can break the system. These usually are the trust
boundaries, where trust levels change. We have modeled JSPCART from these
three aspects: assets of interest, entry points and trust boundaries, to get enough
information for later attack analysis.

Identified Assets

ID
Al

A2

A3

A4

A5

A6

A6

A7

A8

A9

A10

Name
User
credentials
User profile

Cart

Order

Product

Shopping
information

Catalog

Process

Physical
Machine asset

Ability to
trace and audit
actions
occurred
Availability of
service

Description
Username and password

User profiles stored in back-end
database
Cart information stored in back-
end database, e.g. the name and
quantity of items in a cart.

Orders stored in back-end
database
Products stored in back-end
database

Shopping information for orders.

Catalogs stored in back-end
database
Processes running within the
same machine where the
component is running
Assets of the environment where
the component is running, e.g.
files stored in the file system.
Ability to trace hacker's exploit
action and audit what users have
done.

Ability to keep the service
available to users during a
certain period.

Trust Roles
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user (CRUD)
Authenticated
user (CRUD)
Anonymous
user (R)
Authenticated
user(R)
Administrator
(CRUD)
Authenticated
user (CRU)
Administrator
(CRUD)
Administrator
(CRUD)
N/A

N/A

N / A

N/A

Category
Application
data
Application
data
Application
data

Application
data
Application
data

Application
data

Application
data
System
resource

System
resource

Non-
Functionality

Non-
Functionality

-101 -

Identified entry point

ID
EP1

EP2

EP3

EP4

EP5

EP6

EP7

EP8

Name
Web server
listening
port
Login Page

Signup
Page
Cart Page

ChangePas
sword page
ChangePro
file page
Shipping
page

MyOrder
Page

Description
The port on which the Web server
listens. All web pages are layered on
this entry point.
Get user credentials and passed them to
server side for authentication
Create a user profile and pass it back to
server side
Users modify quantity of items and
remove items from cart.
Authenticated users change password

Authenticated users change profile

Authenticated users input shipping
information

Authenticated users enquiry order
details and/or cancel orders

Trust Roles
All

All

All

All

Authenticated
user
Authenticated
user
Authenticated
user

Authenticated
user

Category
Network
Interface

User Interface

User Interface

User Interface

User Interface

User Interface

User Interface

User Interface

Identified Trust Boundary

ID
TBI

TB2

TB3

Name
Client
Boundary
Login
Boundary
Database
Boundary

Description
The boundary between remote clients and backend
applications in server side.
The boundary between the login model and other models

The boundary between the application and database.

Category
Network Boundary

User Interface
Boundary
System Boundary

Model attack paths and security criteria

Using the theory and method presented in chapter 7, we have modeled a partial
DFD of JSPCart, attack paths and security criteria.

-102-

Figure A-5-1 DFD of JSPCart Integrated with Trust Boundaries

A \

2. Signup
EP3

17. DAO ' ^ MeiirDmfilo
USERS '

6. Shipping
EP7

- W 13. Shipping
18. DAO -- TB2. , ^ ^ ' " 9

, T - ^ - Information
Shipper \ / w

 A 6

.Carl
EP4

\,W

\ TBI

\

B.

14

Login

.Cart

\ v 15. Checkout

\ l L H X

* 7. MyOrders

Cart
A3 (Stored in
..Memory)

"- .̂
^-

ID I /

/ V «

^ • ^

Orders

~̂

'

" ^ - ^

.-
^-Y

~~~+S \ 
19 DAO 
Orders \ 

\ 

TI12 
— r e 

order 
A4 

Attack paths and security criteria 

Path ID PI 

Description 1^8^17 

Anonymous user inputs username and password at webpage. Login 
model compares the credential passed by login pager with that got 
from data access object (DAO) users. 

-103-



Passenger 

Action on 
Asset 

Rules 

Anonymous user 

User profile (R) 

Action is only allowed to the profile of user's own. 

PathfD 

Description 

Passenger 

Action on 
Asset 

Rules 

P2 

1 ^ 8 ^ 4 ^ 1 1 ^ 1 7 

5. Authenticated users input new password on ChangePasswrod 
page 

6. ChangePasswrod page passes the new password to server side 
model ChangePassword. 

7. ChangePassword pass it to DAO users. 

8. DAO users update the user profile. 

Authenticated user 

User profile (U) 

Action is only allowed to the profile of user's own. 

Path ID 

Description 

Passenger 

P3 

1 ^ 8 ^ 5 ^ 1 2 ^ 1 7 

5. Authenticated users change profile on ChangeProfile page 

6. ChangeProfile page passes the changed profile to server side 
model ChangeProfile. 

7. ChangeProfile pass it to DAO users. 

8. DAO users update the user profile. 

Authenticated user 

- 1 0 4 -



Action on 
Asset 

User profile (U) 

Rules Action is only allowed to the profile of user's own. 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P4 

1^9^17 

Anonymous user input username. Getpassword model retrieves the 
password using the username through DAO users. 

Anonymous user 

User profile (R) 

Action is only allowed to the profile of user's own. 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P5 

2 ^ 2 0 ^ 1 7 

Anonymous user input signup information, 
profile through DAO users. 

Signup model create the 

Anonymous user 

User profile (C) 

NA 

Path ID P6 

Description 3 ^ 8 ^ 1 5 ^ 6 ^ 1 3 ^ 1 7 

Authenticated user check out the items in the shopping cart, and 
input shopping information. Shopping model retrieves some basic 

-105-



Passenger 

Action on 
Asset 

Rules 

personal information from user profile through DAO users 

Authenticated user 

User profile (R) 

Users can only retrieve their own profile. 

Path ID 

Description 

Passenger 

Action 

Rules 

P7 

3 ^ 8 - ^ 1 5 ^ 6 ^ 1 3 ^ 1 8 

Authenticated user check out the items in the shopping cart, and 
input shopping information. Shopping model stores shopping 
information to database though DAO Shipper. 

Authenticated user 

Shipping information (CRU) 

Users can only check out the cart created by themselves 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P8 

3^8^-15^19 

Authenticated user checkout the shopping cart. Checkout model 
creates an order through DAO orders. 

Authenticated user 

Orders(C) 

Users can only check out the cart created by themselves 

Path ID P9 

- 1 0 6 -



Description 

Passenger 

Action on 
Asset 

Rules 

Authenticated user updates orders. 

Authenticated user 

Orders (CRUD) 

User can only update orders under their identifier. 

Attack analysis 

In accordance with the attack analysis methodology described in chapter 8, we 
group together paths PI to P9 as they have the same category of entry point and 
assets and choose path P6 as a candidate for detailed attack analysis because: 
• its passenger is authenticated user which is has the highest privilege of the 

group. 
• it has only 'READ' access to the asset 
• it covers all three trust boundaries in the group. 

Possible attacks along path P6 

ID 

Description 

STRIDE 

Al Name Dictionary Store Attack 

Brute force attacks occur against the dictionary store 

T. I. E 

ID 

Description 

STRIDE 

A2 Name Client Credentials Attack 

Network eavesdropping occurs between the browser and Web server 
to capture client credentials. 

S 

ID A3 Name Spoof Identity in Cookies 

- 1 0 7 -



Description An attacker captures an authentication cookie to spoof identity 

STRIDE 

ID 

Description 

STRIDE 

A4 Name SQL injection 

SQL injection occurs, enabling an attacker to exploit an input 
validation vulnerability to execute commands in the database and 
thereby access and/or modify data. 

T. I. E 

ID 

Description 

STRIDE 

A5 Name Cross-Site Scripting 

Cross-site scripting occurs when an attacker succeeds in injecting 
script code. 

T. I. D. E 

ID 

Description 

STRIDE 

A6 Name Cookie Replay 

Cookie replay or capture occurs, allowing an attacker to spoof 
identity and access the application as another user. 

S 

ID 

Description 

STRIDE 

A7 Name Information Disclosure 

Information is disclosed and sensitive exception details are revealed 
to the client. 

I 

ID 

Description 

A8 Name Server Attack 

An attacker manages to take control of the servers, gain 
unauthorized access to the database, and run commands against the 
database. 

- 1 0 8 -



STRIDE T.D.E 

ID 

Description 

STRIDE 

A9 Name Individual Accountability 

Lack of individual accountability 

R 

ID 

Description 

STRIDE 

A10 Name Form Manipulation 

Query string and form field manipulation 

T.E 

Vulnerabilities identified and rates 

Use the methodologies presented in chapter 9 and chapter 10 we have identified 
and rated the flowing vulnerabilities: 

Description User password is stored as plain text in database 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

10 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

10 

OVERALL 

11 

Description Lack of password complexity enforcement, say password retry logic 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

10 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

12 

-109-



Description Missing or weak input validation at the server 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

15 

EXPLOITABILITY 

15 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

15 

Description Failure to validate cookie input 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

15 

EXPLOITABILITY 

15 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

10 

OVERALL 

14 

Description Failure to validate cookie input 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

15 

EXPLOITABILITY 

15 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

10 

OVERALL 

14 

Description Failure to encode output leading to potential cross-site scripting issues 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

10 

EXPLOITABILITY 

10 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

5 

OVERALL 

11 

-110-



Description Exposing an administration function through the customer-facing Web page 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

10 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

12 

Description Exposing exception details to the client 

Rate 

DAMAGE 

10 

REPRODUCABILITY 

15 

EXPLOITABILITY 

10 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

13 

Certification 

Based on the rated vulnerabilities, Security level of JSPCART is certified as low, 
as it has 5 vulnerabilities rated from 12 - 15. 

- I l l -



Appendix B: Sample II - Duke's Bank Application 

Overview 

Duke's Bank, an online banking application, is an example application from the 
Java EE (Java Platform, Enterprise Edition) tutorial. It is supposed to run on a 
Java EE application server. Duke's Bank has two clients: an application client 
(standalone client) used by administrators to manage customers and account, and 
a web client used by customers to access account histories and perform 
transactions. The web client is built using JavaServer Faces technology and the 
application client is built using Java Swing. The server end is built using EJB and 
servlets. Data is stored in a database accessed through EJB. 

Develop a common security risks and vulnerabilities taxonomy 

We use the taxonomy described in chapter 4 for this sample as it covers the most 
common application level attacks and vulnerabilities that plague web-based 
enterprise applications. 

Gain an architecture overview from the security perspective 

Here we try to understand the Duke's Bank application from the perspective of 
security. Our goal is to identify the deployment Scenarios, the key functionality, 
characteristics, and roles. This will help us to identify relevant attacks later. 

End-to-End Deployment Scenario 

Duke's Bank is designed using standard 3-tier architecture, user-end (client), 
back-end (server) and database. Duke's Bank has two clients, web and application. 
The supposed deployment scenario is that web client and server end programs are 
deployed on a Java EE application server, the application client on a remote (or 
local) computer, and the database on a database server(physically can be the same 
machine as the application server). In our sample, we used JBoss Application 
Server 4.0.5 and Mysql 5.0. Figure B-l-1 is the network topology. 

Figure B-l-1 Network topology of Duke's Bank 

Internet User 

Application Client 

Database Server 
(MySql 5.0) 

Application Server 
(Jboss Application Server 4.0.5) 

-112-



The network topology gives us a big picture of the environment where the 
application runs and how it interacts with the external environment. Though 
network topology uncovers some possible security issues, it is not detailed enough 
for a security certification. However, we can explore the detailed deployment 
diagram to gain more informaiton. Usually a detailed deployment diagram 
includes end-to-end deployment topology, logical layers, key components, key 
services, Communication ports and protocols, Identities and External 
dependencies. Figure B-l-2 is the detailed deployment diagram of Duke's Bank. 

Figure B-l-2 Detailed deployment diagram of Duke's Bank 

-Java EE Server-

BankCustomer 
(web olinet) 

BankAdmin 
(Aaplication Client) 

FJH Coitdiner 

TxConii oiler 
Sess.on Boan 

Account 
Controllei 

Session Bean 

Customer 
1 Cont'olter 

Session Bean 

Tx Fnt'ly 

Account 
Entity 

Custonar 
Entiry 

TCP/IP 

) Rational 
Database 

Database 
AuthenticatieiL 
on application 
identify 

JAAS 

Roles 

Identify the component's roles: that is, identify who can do what and cannot do 
what within the application. 

BankCustomer: 

Legal activities: 

o Browse account list 

o Check account details 

o Check transaction history of an account 

o Transfer funds between accounts 

o Withdraw and deposit funds 

- 1 1 3 -



Illegal activities: 

o Browse account list, account details, and transaction history 
of other customers. 

o Perform transaction on accounts of other customers 

o Perform activities exclusive to BankAdmin 

BankAdmin: 

Legal activities: 

o Add, update, view and remove customer information 

o Add, view and remove account information 

o Add a new customer to an exist account 

o Remove a customer from an existing account 

Illegal activities: 

o Perform transaction on customer's accounts 

Key Usage Scenarios 

Important application scenarios are: 

BankCustomer browse account list 

BankCustomer check account details 

BankCustomer check transaction history of an account 

BankCustomer transfer funds between accounts 

BankCustomer withdraw and deposit funds 

BankAdmin add, update, view and remove customer information 

BankAdmin add, view and remove account information 

BankAdmin add a new customer to an exist account 

BankAdmin remove a customer from an existing account 

Technologies 

Identifying technologies helps us to focus on technology-specific attacks. The 
Duke's Bankuses the following technologies: 

• Web client: JavaServer Faces 

• Applicaton client: Java Swing interface 

-114-



• Back-end: EJB , servlets 

• Data access logic: Container-Managed Entity Bean 

• Authentication and Authorization: JAAS (Java Authentication and 
Authorization Service) 

Application Security Mechanisms 

The major application security mechanisms are: 

• Users are authenticated with Forms authentication. 

• Application is authenticated at the database server by using Windows 
authentication. 

• Roles are used to authorize access to business logic. 

Model the component from an adversary's View 

VMCP looks at a component from an adversary's perspective to anticipate attack 
goals. VMCP is based on the following two premises: 

1. An adversary will not attack the system without assets of interest. 

2. An adversary cannot attack a system without entry points, interfaces the 
system has with the outside world 

By identifying all assets of interest and entry points, adversaries gather the basic 
information for undertaking attacks, what are the attack targets, and where they 
can enter the system to reach the assets. Then what is left is to figure out where is 
the most possible points they can break the system. These usually are the trust 
boundaries, where trust levels change. We have modeled Duke's Bank from these 
three aspects: assets of interest, entry points and trust boundaries, to get enough 
information for later attack analysis. 

Identified Assets 

ID 
A l 

A2 

A3 

Name 
User 
credentials 

Customer 
Data 
Account Data 

Description 
Username and password 

Customer information stored 
in back-end database 
Account information stored 
in back-end database. 

Trust Roles 
B ankCustomcr, 
BankAdmin 
(CRUD) 
BankAdmin 
(CRUD) 
BankAdmin 
(CRUD) 

Category 
Application 
data 

Application 
data 
Application 
data 

- 1 1 5 -



A4 

A5 

A6 

A7 

A8 

Transaction 
Data 
Process 

Physical 
Machine asset 

Ability to 
trace and 
audit actions 
occurred 
Availability of 
service 

Transaction information 
stored in back-end database 
Processes running within the 
same machine where the 
component is running 
Assets of the environment 
where the component is 
running, e.g. files stored in 
the file system. 
Ability to trace hacker's 
exploit action and audit 
what users have done. 

Ability to keep the service 
available to users during a 
certain period. 

BankCustome 
(RU) 
BankCustome 
(CR) 
N/A 

N/A 

N/A 

N/A 

Application 
data 
System 
resource 

System 
resource 

Non-
Functionality 

Non-
Functionality 

C: Create, R: Retrieve, U: Update, D: Delete. 

Identified entry point 

ID 
EP1 

EP2 

EP3 

EP3 

EP4 

EP5 

EP6 

EP7 

Name 
Web 
container 
listening 
port 
EJB 
container 
listening 
port 
Logon 
Page 
Account 
List Page 
Transfer 
Funds 
Page 
ATM Page 

Customer 
Info GUI 
(Applicati 
on Client) 
Account 
Info GUI 

Description 
The port on which the Web container 
listens. All web pages are layered on 
this entry point. 

The port on which the EJB container 
listens. Remote application client 
communicates with application 
server via this port. 
Get user credentials and passed them 
to server side for authentication 
List account details of a customer 
and transaction history of a account 
Transfer funds between accounts 

Withdraw and deposit funds 

Manipulate customer information 

Manipulate account information 

Trust Roles 
All 

All 

All 

BankCustom 
er 
BankCustom 
er 

BankCustom 
er 
Bank Admin 

BankAdmin 

Category 
Network 
Interface 

Network 
Interface 

User 
Interface 
User 
Interface 
User 
Interface 

User 
Interface 
User 
Interface 

User 
Interface 

-116-



(Applicati 
on Client) 

Identified Trust Boundary 

ID 
TBI 

TB2 

TB3 

TB4 

Name 
Web Clinet 
Boundary 
Application 
Clinet 
Boundary 
Database 
Boundary 
Logon 
Boundary 

Description 
The boundary between remote web client and 
backend application on the server side. 
The boundary between remote application client 
and backend application on the server side. 

The boundary between the application and 
database. 
The boundary between the logon model and other 
models 

Category 
Network 
Boundary 
Network 
Boundary 

System 
Boundary 
User Interface 
Boundary 

Model attack paths and security criteria 

Using the theory and method presented in chapter 7, we have modeled the DFD of 
Duke's Bank, attack paths and security criteria. 

Figure B-5-1 EDFD of Duke's Bank Integrated with Trust Boundaries 

12. Account List 

7. Account • 
Control 

• 
'.11. Account / 

Entity \ 

\ -

4> Account 
Information 

Authorization , 

>_ .. / '; . Transaction 
/Transaction,— U ! > |n f o r m a t i o n 

•W, Entity ) : 

33. Customer/ TB3 Customer 
Entity Information 

User -W4. User E n t i t y - ^ * ^ ^ 

- 1 1 7 -



Attack paths and security criteria 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

PI 

1-»10-»14 

Anonymous user inputs username and password at webpage. 
Authorization model compares the credential passed by logon pager 
with that stored in back-end database. 

Anonymous user 

User Information (R) 

Action is only allowed to the user's own credential. 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P2 

1 ^ 2 ^ 7 ^ 1 1 

BankCustomer retrieve account information. 

BankCustomer 

Account Information (R) 

BankCustomer can only retrieve his/her own account information. 

Path ID 

Description 

Passenger 

Action on 

P3 

1^2->7^8^12 

BankCustomer retrieve transaction history of a certain account. 

BankCustomer 

Transaction Information (R) 

- 1 1 8 -



Asset 

Rules BankCustomer can only retrieve his/her 
information.. 

own transaction 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P4 

1^-3-^8^12 

BankCustomer input instruction of transferring money from one 
account to the other and transactions are updated to database. 

BankCustomer 

Transaction Information (C) 

BankCustomer can only transfer money between his/her own 
accounts. 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P5 

1 ^ 3 ^ 8 ^ 7 ^ 1 1 

1. Retrieve account balance from database 

2. Update account balance to database 

BankCustomer 

Account Information (RU) 

BankCustomer can only retrieve/update his/her own account 
balance. 

Path ID P6 

-119-



Description 

Passenger 

Action on 
Asset 

Rules 

1-^5^7^13 

BankAdmin maintains account information. 

Bank Admin 

Account Information (CRUD) 

N/A. 

Path ID 

Description 

Passenger 

Action 

Rules 

P7 

1-^6^9^13 

BankAdmin maintains customer information. 

BankAdmin 

Customer Information (CRUD) 

N/A 

Attack analysis 

In accordance with the attack analysis methodology described in chapter 8, we 
choose path P2 and P7 as candidates for detailed attack analysis because: 
• Their passenger are BankCustomer and BankAdmin who have the highest 

privilege. 
• P2 has only 'READ' access to the asset (Account Information) 
• They cover all four trust boundaries. 

Possible attacks along path P2 and P7 

ID 

Description 

STRIDE 

Al Name Client Credentials Attack 

Network eavesdropping occurs between the browser and Web server 
to capture client credentials. 

S 

- 1 2 0 -



ID 

Description 

STRIDE 

A2 Name Spoof Identity in Cookies 

An attacker captures an authentication cookie to spoof identity 

S 

ID 

Description 

STRIDE 

A3 Name SQL injection 

SQL injection occurs, enabling an attacker to exploit an input 
validation vulnerability to execute commands in the database and 
thereby access and/or modify data. 

T. I.E 

ID 

Description 

STRIDE 

A4 Name Cross-Site Scripting 

Cross-site scripting occurs when an attacker succeeds in injecting 
script code. 

T. I. D. E 

ID 

Description 

STRIDE 

A5 Name Cookie Replay 

Cookie replay or capture occurs, allowing an attacker to spoof 
identity and access the application as another user. 

S 

ID 

Description 

STRIDE 

A6 Name Information Disclosure 

Information is disclosed and sensitive exception details are revealed 
to the client. 

I 

ID A7 Name Server Attack 

-121 -



Description 
An attacker manages to take control of the servers, gain 
unauthorized access to the database, and run commands against the 
database. 

STRIDE T.D. E 

ID 

Description 

STRIDE 

A8 Name Canonicalization Attack 

Canonicalization attacks caused by using user name for security 
decisions. 

S.T.E 

ID 

Description 

STRIDE 

A9 Name Configuration Attack 

Retrieval of clear text configuration secrets 

T.D 

ID 

Description 

STRIDE 

A10 Name Individual Accountability 

Lack of individual accountability 

R 

ID 

Description 

STRIDE 

All Name Session Attack 

Session hijacking and replaying. 

S.T.E 

ID A12 Name Encryption Attack 

Description Weak or custom encryption 

- 1 2 2 -



STRIDE S.T.E 

ID 

Description 

STRIDE 

A13 Name Form Manipulation 

Query string and form field manipulation 

T.E 

Vulnerabilities identified and rates 

Use the methodologies presented in chapter 9 and chapter 10 we have identified 
and rated the flowing vulnerabilities: 

Description Clear text configuration stored on server 

Rate 

DAMAGE 

15 

REPRODUCAB1LITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

5 

OVERALL 

7 

Description Entity bean do not validate method parameters 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

5 

OVERALL 

7 

Description Users' activities are not logged 

Rate 

DAMAGE REPRODUCABILITY EXPLOITABILITY 
AFFECTED 

DISCOVERABILITY OVERALL 

- 1 2 3 -



5 15 5 

USERS 

15 5 7 

Description Exposing exception details to the client 

Rate 

DAMAGE 

5 

REPRODUCABILITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

7 

Certification 

Based on the rated vulnerabilities, security level of DUKE'S BANK is certified as 
high, as all its vulnerabilities are rated 5-7. 

- 1 2 4 -



Appendix C: Sample III - Credit Card Payment Component 

Overview 

Credit Card Payment Component (CCPC) is an add-on component of 
osCommerce, a premiere open source e-commerce system, by osCommerce, 
currently being installed and utilized by 11,400 online stores. osCommerce is 
developed using PHP and Mysql. The main functions of CCPC are providing 
Forms to accept credit card information, doing a validation, and storing the 
information to the Order. 

Develop a common security risks and vulnerabilities taxonomy 

We use the taxonomy described in chapter 4 for this sample as it covers the most 
common application level attacks and vulnerabilities that plague web-based 
enterprise applications. 

Gain an architecture overview from the security perspective 

Here we try to understand the CCPC from the perspective of security. Our goal is 
to identify the deployment Scenarios, the key functionality, characteristics, and 
roles. This will help us to identify relevant attacks later. 

End-to-End Deployment Scenario 

The deployment scenario is relatively simple. It provides APIs for osCommerce to 
invoke its functions. osCommerce is a web-based e-commerce system, developed 
using PHP and Mysql Figure 15.1 is a basic deployment scenario of .CCPC. 

Figure C-l-1 Deployment Scenario of CCPC 

Internet User 

Administrator 

Web Server-

osCommerce 
•c 

JL. 

CCPC 

Rational 
Database 

-125-



Roles 

Identify the component's roles: that is, identify who can do what and cannot do 
what within the application. 

Invoker: 

Legal activities: 

o Invoke APIs 

Illegal activities: 

o N/A 

Key Usage Scenarios 

Important application scenarios are: 

Invoker calls API update_status() to determine if the credit card payment 
is enabled. 

Invoker calls API javascript_validation() to get a snippet of input 
validation javascript program. 

Invoker calls API selection() to get Forms to accept user's input 

Invoker calls API pre_confirmation_check() to validate the credit card 
information. 

Invoker calls API confirmation() to get masked credit card information. 

Invoker calls API process_button() to get Forms with hidden fields of 
credit card information. 

Invoker calls API before_process() to store card number to order 

Invoker calls API after_process() to email order information to customer. 

Invoker calls API install() to store configuration information to the 
configuration table. 

Invoker calls API remove() to remove configuration information from the 
configuration table. 

Technologies 

Identifying technologies helps us to focus on technology-specific attacks. CCPC 
uses the following technologies: 

• PHP 

-126-



• SQL query 

Application Security Mechanisms 

• N/A 

Model the component from an adversary's View 

VMCP looks at a component from an adversary's perspective to anticipate attack 
goals. VMCP is based on the following two premises: 

1. An adversary will not attack the system without assets of interest. 

2. An adversary cannot attack a system without entry points, interfaces the 
system has with the outside world 

By identifying all assets of interest and entry points, adversaries gather the basic 
information for undertaking attacks, what are the attack targets, and where they 
can enter the system to reach the assets. Then the next step is to figure out where 
are the most possible places they can break the system. These usually are the trust 
boundaries, where trust levels change. We have modeled Credit Card Payment 
Component from these three aspects: assets of interest, entry points and trust 
boundaries, to get enough information for later attack analysis. 

Identified Assets 

ID 
Al 

A2 

A3 

A4 

A5 

A6 

Name 
Credit Card 
Information 

Order 

Configuration 
Data 
Geographic 

Zones 
Process 

Physical 
Machine asset 

Description 
The cardholder, card 
number and expire date, 
stored in memory. 
Order information stored in 
memory. 
Configuration information 
stored in back-end database. 
Geographic Zones and 
countries. 
Processes running within 
the same machine where the 
component is running 
Assets of the environment 
where the component is 
running, e.g. files stored in 
the file system. 

Trust Roles 
Invoker(R) 

Invoker(R) 

Invoker(CRUD) 

Invoker(R) 

N/A 

N/A 

Catalogue 
Application 
data 

Application 
data 
Application 
data 
Application 
data 
System 
resource 

System 
resource 

-127-



A7 

A8 

Ability to trace 
and audit actions 
occurred 
Availability of 
service 

Ability to trace hacker's 
exploit action and audit 
what users have done. 
Ability to keep the service 
available to users during a 
certain period. 

N/A 

N/A 

Non-
Functionality 

Non-
Functionality 

C: Create, R: Retrieve, U: Update, D: Delete. 

Identified entry point 
ID 
EP1 

EP2 

EP3 

EP4 

EP5 

EP6 

EP7 

EP8 

EP9 

EP1 
0 

Name 
update_status() 

j avascriptvalida 
tion() 
selection() 

pre_confirmation 
check() 

confirmation() 

process_button() 

before_process() 

after_process() 

install() 

remove() 

Description 
Determine if the credit card 
payment is enabled. 
Return a snippet of input 
validation javascript program. 
Return Forms which accept 
user's input 
Validate the credit card 
accepted. 
Return masked credit card 
information 
Return Forms with hidden 
fields of credit card 
information. 
Store card number to order 

Email order information to 
customer. 
Store configuration 
information to the 
configuration table. 

Remove configuration 
information from the 
configuration table. 

Trust Roles 
Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Invoker 

Catalogue 
Component 
interface 
Component 
interface 
Component 
interface 
Component 
interface 
Component 
interface 
Component 
interface 

Component 
interface 
Component 
interface 
Component 
interface 
System 
interface 
Component 
interface 

Identified Trust Boundary 

ID 
TBI 

TB2 

TB3 

Name 
API 
Boundary 
Database 
Boundary 
Memory 

Data 
Boundary 

Description 
The boundary between outside invokers and the 
component. 
The boundary between the component and 
database. 
The boundary between processes and Memory 
Data 

Category 
Service Boundary 

System Boundary 

System Boundary 

- 1 2 8 -



Model attack paths and security criteria 

Using the theory and method presented in chapter 7, we have modeled the DFD of 
Credit Card Payment Component, attack paths and security criteria. 

Figure C-5-1 DFD of Credit Card Payment Component Integrated with 
Trust Boundaries 

1- I 
| update_status() [ 

2. 
javascript_valid 

ationQ 

3. selection() M 

-W 11 1 
*\ update__status j 

4javascript_validl 
y ation J 

13. selection - ^ 

— i — J l 27. Order 
TB3 ^(Memory Data) 

V" 
| pre_confirmati 
j on^checkQ 

10. removef) 

- 1 2 9 -



Attack paths and security criteria 
(Specail case: 2->12 is not a attach paths as no asset is connected to them) 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

PI 

1^11^21^26 

Invoker calls update_status() to check the status of credit card 
payment. update_status() read geographic zones information from 
database. 

Invoker 

Geographic Zones (R) 

N/A 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P2 

l-»ll->27 

Invoker calls update status() to check the status of credit card 
payment, update status() read Order information from memory. 

Invoker 

Order (R) 

No other memory data can be read out 

Path ID 

Description 

P3 

3 ^ 1 3 ^ 2 7 

Invoker calls selection() to get forms to accept user's input. 
selectionQ read Order information from memory to build forms. 

- 1 3 0 -



Passenger 

Action on 
Asset 

Rules 

Invoker 

Order(R) 

No other memory data can be read out 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P4 

Invoker calls pre_confirmation_check() to validate the credit card 
accepted. Credit card information is read from memory. 

Invoker 

Credit card information (R) 

No other memory data can be read out 

Path ID 

Description 

Passenger 

Action on 
Asset 

Rules 

P5 

Invoker calls confirmation() to get masked credit card information. 

Invoker 

Credit card information (R) 

No other memory data can be read out 

Path ID P6 

Description 6 ^ 1 6 ^ 2 8 

Invoker calls process_button() to get forms with hidden fields of 
credit card information. process_button() read credit card 
information from memory. 

-131 -



Passenger 

Action on 
Asset 

Rules 

Invoker 

Credit card information (R) 

No other memory data can be read out 

Path ID 

Description 

Passenger 

Action 

Rules 

P7 

7->17^27 

Invokers calls before_process() to store card number to Order. 
beforejprocess() writes card number to Order. 

Invoker 

Order (U) 

No other memory data can be read out 

Path ID 

Description 

Passenger 

Action 

Rules 

P8 

7^17->28 

Invokers calls beforejprocess() to store card number to Order. 
before_process() reads card number from memory. 

Invoker 

Credit Card Information (R) 

No other memory data can be read out 

Path ID 

Description 

P9 

8^18^27 

Invoker calls afterjprocessQ to email order information to 

-132-



Passenger 

Action 

Rules 

customer. 

Invoker 

Order (R) 

No other memory data can be read out 

Path ID 

Description 

Passenger 

Action 

Rules 

P10 

9 ^ 1 9 ^ 2 5 ^ 2 9 

Invokers calls install() to store configuration information to the 
configuration table. 

Invoker 

Configuration Data (U) 

Can not overwrite the configuration information of other 
components. 

Path ID 

Description 

Passenger 

Action 

Rules 

Pl l 

10^20^25-^29 

Invokers calls remove() to remove configuration information from 
the configuration table. 

Invoker 

Configuration Data (D) 

Can not remove the configuration information of other components. 

Attack analysis 

In accordance with the attack analysis methodology described in chapter 8, we 

- 1 3 3 -



choose path PI and P4 as candidates for detailed attack analysis because: 
• Their passenger is Invoker who have the highest privilege. 
• Both paths have only 'READ' access to the asset. 
• They cover all three trust boundaries. 
• They cover all two catalogues asset. 

Possible attacks along path PI and P4 

ID 

Description 

STRIDE 

Al Name Buffer overflow 

Buffer overflow and Integer overflow. 

T. D. E 

ID 

Description 

STRIDE 

A2 Name SQL injection 

SQL injection occurs, enabling an attacker to exploit an input 
validation vulnerability to execute commands in the database and 
thereby access and/or modify data. 

T. I. E 

ID 

Description 

STRIDE 

A3 Name Cross-Site Scripting 

Cross-site scripting occurs when an attacker succeeds in injecting 
script code. 

T. I. D. E 

ID 

Description 

STRIDE 

A4 Name Information Disclosure 

Information is disclosed and sensitive exception details are revealed 
to the client. 

I 

ID 

Description 

A5 Name Server Attack 

An attacker manages to take control of the servers, gain 
unauthorized access to the database, and run commands against the 
database. 

-134-



STRIDE T. D. E 

ID 

Description 

STRIDE 

A6 Name Configuration Attack 

Retrieval of clear text configuration secrets 

T.D 

ID 

Description 

STRIDE 

A7 Name Individual Accountability 

Lack of individual accountability 

R 

ID 

Description 

STRIDE 

A8 Name Session Attack 

Session hijacking and replaying. 

S.T. E 

ID 

Description 

STRIDE 

A9 Name Form Manipulation 

Query string and form field manipulation 

T. E 

Vulnerabilities identified and rates 

Use the methodologies presented in chapter 9 and chapter 10 we have identified 
and rated the flowing vulnerabilities: 

Description No maximum length check for the credit card number and cardholder 

Rate 

- 1 3 5 -



DAMAGE 

15 

REPRODUCABILITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

11 

Description Clear text configuration stored on database 

Rate 

DAMAGE 

15 

REPRODUCABILITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

5 

OVERALL 

7 

Description 
No validation on parameters passed from Order and these parameters are 
used to generate SQL query. 

Rate 

DAMAGE 

10 

REPRODUCABILITY 

15 

EXPLOITABILITY 

15 

AFFECTED 
USERS 

10 

DISCOVERABILITY 

5 

OVERALL 

11 

Description Exposing exception details to the client 

Rate 

DAMAGE 

5 

REPRODUCABILITY 

5 

EXPLOITABILITY 

5 

AFFECTED 
USERS 

15 

DISCOVERABILITY 

15 

OVERALL 

7 

Certification 

Based on the rated vulnerabilities, security level of Credit Card Payment 
Component is certified as moderate, as two of its vulnerabilities are rated 8-11. 

- 1 3 6 -



Appendix D: Security Attacks & Vulnerabilities Taxonomy 

This taxonomy is developed only for the purpose of demonstrating VMCP and the 
three sample applications, since developing a common taxonomy of security 
attacks and vulnerabilities is one of the steps of VMCP. At this stage I classified 
security attacks and vulnerabilities into nine groups. 

10. Input and data validation 
11. Authentication 
12. Authorization 
13. Session Management 
14. Insecure Data Storage 
15. Insecure Configuration Management 
16. Cryptography 
17. Parameter Manipulation 
18. Exception handling, Auditing and Logging 

Input and data validation 

Overview 
Input and data validation requires applications not to blindly trust any input or 
data before they pass the validation of the type, length, format, range or even the 
content. It is a must to validate the input or data before processing them. An 
attacker can compromise your application if any such vulnerability is identified. 
Applications that do not perform input and data validation are susceptible for 
following attacks. 

• Buffer Overflow 
• Cross-site scripting 
• SQL injection 
• Canonicalization 
• Format string attacks 

Buffer overflow 
Buffer overflow, or buffer overrun, is a programming error that data is stored 
beyond the boundaries of a fixed-length buffer. It results in the extra data 
overwriting adjacent memory locations, which may contain other buffers, 
variables and program flow data. Buffer overflows may cause a process to crash 
or produce unexpected results. Moreover, if it is triggered by inputs specifically 
designed to execute malicious code (code injection) a breach of system security is 
possible. The following piece of C code demonstrates an example: 

char small bufletTIO]; 
•'•' declare buffer thai is bigger than expecled 
char large buffer[] •• "This siring is longer than 10 characters!!!": 
strcpy(small buffer, large buffer); //overrun buffer !!! 

- 1 3 7 -



Causing Vulnerabilities: 
• Array bounds are not checked whenever an array is accessed 
• Application's use of unmanaged code 
• When unmanaged APIs are called in the application, the values passed for 

the parameters of unmanaged API are not checked. 

Cross-site scripting 
Cross-site scripting commonly referred as XSS allows code injection by malicious 
web users into the web pages viewed by other users. Attackers usually inject 
HTML code or client-side scripts into a vulnerable application to fool a user in 
order to gather data from them. The browser is not able to tell whether the code is 
legitimate or malicious since the script code is downloaded by itself from a 
trusted site. Hackers normally conduct Cross-site scripting by identifying the 
vulnerable page that outputs the invalidated input back to the browser. The 
following snippet of code shows a XSS attack. 

Excerpt from script.php: 

echo $HTTP_GET_VARS["input"]; 

HTTP request: 

http://www.xxx.com/script.php?input=%3cscript%20src=%22http%3a%2f%2fwww. 

myserver.com%2fbadscript.j s%22%3 e%3 c%2fscript%3 e 

Generated HTML: 

<script src="http://www.myserver.com/badscript.js"></script> 

Causing Vulnerabilities: 
• Thorough input validation is not performed on form fields, query strings, 

or cookies, especially for scripting tags and filters. 
• User inputs are not encoded using HTMLEncode and URLEncode 

functions. 

SQL injection 
SQL injection is an attack that exploits a security vulnerability occurring in the 
database layer of an application which constructs dynamic SQL statements based 
on the user input or executes a stored procedure with arguments based on the 
user's input. The vulnerability is caused by the string literal escape characters 
embedded in SQL statements, which should be correctly filtered by the validation 
process. The damage caused by SQL injection is based on the privilege of the 

- 1 3 8 -

http://www.xxx.com/script.php?input=%3cscript%20src=%22http%3a%2f%2fwww
http://www.myserver.com/badscript.js%22%3e%3c/script


account under which the SQL command is being executed. Following snippet of 
code shows how this attack can be exploited. 

Original database query in lookupuser.asp: 

sql = "SELECT lname, fname, phone FROM usertable WHERE lname=m & 

Request.QueryStringC'lname") &'";" 

HTTP request: 

http://www.xxx.com/lookupuser.asp?lname=buffett%27%3bupdate%20usertable%20s 

et%20passwd%3d%27null%27%3b--%00 

Executed database query: 

SELECT lname, fname, phone FROM usertable WHERE lname='buffett';update 

usertable set passwd='null'; 

• Execute stored procedures using arguments based on the user input 
• Privileges to execute the SQL commands is not set appropriately 

Canonicalization 
Canonicalization deals with the way in which applications convert data that has 
more than one possible representation into a "standard", simplest canonical 
representation. Web applications have to deal with lots of canonicalization issues 
from URL encoding to IP address translation. If an application makes security 
decisions according to canonical forms of data, it is fragile to canonicalization 
attacks. 

Directory traversal is a typical example of a canonicalization issue. For example, 
a web server may have a security rule of "only execute files under the bin 
directory (C:\myproject\root\bin)". The rule is implemented by checking that the 
path starts with "C:\myproject\root\bin\", and if it does, the file is executed. Under 
this rule "C:\myproject\root\bin\..\..\..\Windows\System32\cmd.exe" will be 
treated as a legal file and be executed. Can you image what will happen? 

Causing Vulnerabilities: 

- 1 3 9 -

http://www.xxx.com/lookupuser.asp?lname=buffett%27%3bupdate%20usertable%20s
file://C:/myproject/root/bin
file://C:/myproject/root/bin/
file://C:/myproject/root/bin/../
file:///../Windows/System32/cmd.exe


• Accept file name as input. When there is a need for accepting input to 
grant access, do not convert the name to canonical form prior providing 
security decisions 

• Do not assume well formed filenames are received and check whether 
they are within your application' directory hierarchy 

• Use input file names, URLs, or user names for security decisions 
• Do not ensure that the character encoding is set correctly to limit how 

input can be represented. 

Format string attacks 
Format string attacks, discovered around 1999, can be used to crash a program or 
to execute malicious code. The problem originates from certain C functions that 
do formatting, such as printff). The format string parameter of these routines is 
not validated. Data from the stack or possibly other locations in memory can be 
easily printed out by using the %s and %x format tokens. The %n format token 
can command printf() and other similar functions to write arbitrary data to 
arbitrary locations. 

Format string bugs are usually caused by the laziness of programmers. When a 
programmer wishes to print a string containing user inputs, they mean to write 
something like: 

printf("%s", str); 
but instead they decide to save time by writing: 

printf(str); 

The first version simply prints a string to the screen, as the programmer intended 
but the second version interprets buffer as a format string, and parses any 
formatting instructions it may contain. If a hacker feeds the program with a string 
containing special format tokens, damage will be caused. 

Causing Vulnerabilities: 
• Do not filter out format tokens in user's input 
• Use incorrect format of functions 

-140-



Authentication 

Overview 
Authentication addresses the question: who are you? It is the process of uniquely 
identifying the clients of your applications and services by validating the user 
with whom they claims to be. This is typically achieved through credentials, such 
as a user name and password. These clients may be end users, other services, 
processes, or servers. Following are the possible attacks that an attacker can 
conduct to exploit failures in an application. 

• Brute force attacks 
• Dictionary attacks 
• Cookie replay attacks 
• Credential theft 

Brute force attacks 
Brute force in computer science refers to a method of finding a solution by trying 
all permutations of a problem, in contrast to the implementation of a more 
intelligent algorithm. When performing brute force attacks hackers rely on the 
computational power such as an automated process of trial and error to figure out 
the hash string and encryption technique used for securing the sensitive 
information data like passwords. 

Causing Vulnerabilities: 
• A weak hash key strings is used 
• Using weak passwords mechanism like unlimited password retry times 

Dictionary attacks 

Dictionary attacks refer to trying "every word in the dictionary" as a possible 
password for an encrypted message. As people tend to choose poor passwords, a 
dictionary attack is more efficient than a brute force attack in general. If an 
application implements a poor authentication mechanism that does not force users 
to choose complex passwords, a dictionary attack may be possible. 

Causing Vulnerabilities: 
• Poor password mechanisms to allow the use of weak passwords that are 

not complex. Do not use mixture of uppercase, lowercase, numerals, and 
special characters in the password that makes difficult to crack. 

• Store only reversible password hashes in the user store. 

Cookie replay attacks 
When authentication information is stored in a cookie, an attacker can read 
authentication information that is submitted for the application to gain access if 
they gain access to that cookie. Then by replaying the same information to the 

-141 -



application the attacker can authenticate back to the web application. 

Causing Vulnerabilities: 
• Cookie information passed through the channel is in plain text form or 

weakly encrypted 
• Timeout property for the cookie information is set incorrectly. This will 

increase the probability of attack. 

Credential theft 
Credential theft attacks in web application refer to using the credential 
information stored by the browser to gain access to a web application. If setup 
incorrectly browser history and cache may store user login information for future 
use. In this case if someone gets access to a terminal that is logged on by others 
and hits the same page, the saved login will be available. 

Causing Vulnerabilities: 
• Use weak passwords 
• Do not store password verifiers with one way hash with added salt 
• Do not enforce account lockout for end-users after a set number of retry 

attempts 
• Do not set the expiry property for the content rendered in the browser or 

allow the browser to cache the information 

-142-



Authorization 

Overview: 
Authorization addresses the question: what can you do? It is all about granting or 
denying access to the resources and operations for which the authenticated client 
requests access. Authorization is usually accomplished based upon user identity 
and role membership. Resources include files, databases, tables, rows, and so on, 
together with system-level resources such as registry keys and memory data. 
Operations include performing transactions such as purchasing a product, 
depositing and withdrawing money from one account, or updating user profile. 
Top attacks that exploit authorization are 

• Elevation of privilege 
• Disclosure of confidential data 
• Luring attacks 

Elevation of privilege 
Elevation of privilege refers to a process or an attack by which a malicious user 
try to become a member of the group with higher privilege than that for which he 
has been authorized. This kind of attack could enable hackers to compromise or 
destroy a system, or to access unauthorized information. 

Causing Vulnerabilities: 
• Bad design in the application, not ensuring that application gains access 

only to least privileged process, services and user accounts. 

Disclosure of confidential data 
Disclosure of confidential data refers to unauthorized users gaining access to 
sensitive data. Applications should always store confidential data securely in the 
persistent store like databases, XML files and other configuration files. Particular 
attention is required when confidential data is transmitted through the network 
and displayed to users. Proper access control is needed to ensure the right person 
gets the right information. 

Causing Vulnerabilities: 
• A poor role check before providing access to sensitive data 
• A poor access control mechanism is used. 
• Persistent stores like database and configuration files do not stored the 

sensitive information in the encrypted form 

Luring attacks 
A luring attack occurs when an attacker lures a component with more privileges to 
perform something on his behalf. Luring attacks are a particular case of the 
elevation of privilege attack. It is normally performed by convincing the target to 

-143-



run the attacker's code in a more privileged security context. 

Causing Vulnerabilities: 
• Do not restrict access to trusted code with appropriate authorization. 

-144-



Session Management 

Overview: 
In order to provide a friendly environment to the users, web-based applications 
often use sessions to maintain states through user's subsequent requests. Sessions 
are stored on servers and linked to users by session IDs. Session IDs are an 
attractive target for hackers as they can act as the associated users once they get 
their session E). Moreover, sometimes applications store sensitive information in 
the session objects managed by the application layer. The attractive session ID 
and sensitive information stored in the session objects lead to potential attacks. 
They include: 

• Session hijacking 
• Session fixating 
• Session forging 
• Session replay 

Session Hijacking 
Session Hijacking refers to the exploitation of a valid session ID to gain 
unauthorized access to remote server. Many web-based application use session 
cookies to confirm users identify so that users do not have to re-enter their 
username and password on every page. If an attacker is able to steal this "magic 
cookie", an attacker can spoof the user session and gain access to the system. The 
he can perform all the operations as that of the legitimate user. 

Causing Vulnerabilities: 
• Log out method is not provided or logging out does not clear all session 

state and remove or invalidate any residual cookies. 
• Improper expiry times on persistent cookies. 
• Store session tokens in the URL or other trivially modified data entry point. 
• Store sensitive data in the session objects. 
• The authentication token stored in the cookie is transmitted in plain text. 
• Allow not only one session per user at a time. If a new session is started 

for the same user, do not implement logout functionality. 

Session fixating 
Session fixating refers to exploitation of the vulnerability that allows one person 
to fixate another person's session ID. Normally the attacker issues a session ID to 
the user's browser before the user even logs into the target server, thereby forcing 
the browser into using a fixated ID and eliminating the need to obtain the session 
ID afterwards. 

Causing Vulnerabilities: 
• Accept session identifiers from GET / POST variables. 
• Do not regenerate SID on each request. 

-145-



• Session destruction, either due to logging out or timeout, takes place just 
on the browser, not on the server too. 

• Do not bind the session ID to the user's SSL client certificate. 
• Do not verify that additional information is consistent throughout session. 

Session forging 
Session forging acts the same way as brute force attacks. Although many websites 
have implemented strategies to prohibit brute force attacks against passwords, there is 
not much done against session forging, which allows an attacker try hundreds or 
thousands of session tokens embedded in a legitimate URL or cookie. Session forging 
may result in elevated privileges and DoS. 

Causing Vulnerabilities: 
• Improper session management strategy 
• Accept session identifiers from GET / POST variables. 
• No detection mechanism is implemented to keep users from trying to 

manipulate their token to gain elevated privileges 

Session replay 
Session replay is masquerading as an authorized user on an interactive Web site. 
If an attacker steals the authentication token stored in a cookie, they gain access 
and the ability to do anything the authorized user can do on the Web site. Session 
replay attack is difficult to detect because it does not occur in real time. It may 
only be discovered when the real user learns he has been the victim of identity 
theft or some other form of fraud. 

Causing Vulnerabilities: 
• Use persistent cookies to store the session token 
• Store authentication information on the client 
• When a critical function is being called or an operation is performed, do 

not re-authenticate the user 
• No proper session token timeouts and token regeneration is setup to 

reduce the window of opportunity to replay tokens. 

- 1 4 6 -



Insecure Data Storage 

Overview: 
There is a misunderstanding that if the encryption is strong enough no sensitive 
data will be stolen. However encryption may be totally compromised by a single 
vulnerability. This answers the question why devastating thefts of sensitive data 
continue to occur even though enterprises worldwide spent approximately $20 
billion per year on IT security. Sensitive data is always at great risk as it is always 
the target of malicious attacks. Most of the security cost and effort are usually 
spent on protecting sensitive data. Common attacks regarding data storage are: 

• Unauthorized access to data in storage 
• Unauthorized access to data in memory 
• Network eavesdropping 
• Data tampering 

Unauthorized access to data in storage 
Most web applications have a need to store sensitive information in persistent data 
stores. Access control mechanisms should be utilized to prevent external attackers, 
or even internal employees, from obtaining illegal access to the data store. When 
dictionaries containing data files are not isolated from web access or the database 
does not have its own authentication and authorization protection, the possibility 
for an attack to be successful can be very high. 

Causing Vulnerabilities: 
• Do not minimize the use of encryption and only keep information that is 

absolutely necessary 
• Poor access control management to the information stored in data storage 
• Store the sensitive data in a plain text format 
• Incorrect implementation of cryptography 
• Poor choice of algorithm 
• Do not differentiate view and modify operations separately and provide 

access accordingly. 

Unauthorized access to data in memory 
One of the best practices regarding application security is only keeping 
information that is absolutely necessary. For example, rather than encrypting and 
storing credit card numbers onto persistent storage, simply ask users to re-enter 
the numbers each time. This has brought out another security issue: sensitive 
memory data. Although stealing memory data is much harder than stealing data 
stored on the persistent storage, it is still not wise to ignore protecting memory 
data. 

Causing Vulnerabilities: 
• Improper storage of secrets in memory 

-147-



• Poor sources of randomness 
• Keep sensitive date in memory for an unnecessary long period 
• Keep secret in codes. 

Network Eavesdropping 
Network eavesdropping refers to the interception of network data sent from 
browser to the server or vice versa. By using network monitoring tools, attackers 
can capture the information transferred on the network and can even modify the 
information and send it back onto the network. 

Causing Vulnerabilities: 
• Passing sensitive data over the network in plain text format. 
• Do not encrypt the communication channel by implementing SSL when 

required 

Data tampering 

Data tampering refers to unauthorized modification of data. This is another major 
concern regarding sensitive data. When talking about security we first think of 
external hackers but it is reported that 70 percent of data risks may come from 
internal users. Anti-tampering measures are critically important to safeguarding 
data against inside threats. 

Causing Vulnerabilities: 
• Use no-tamper-resistant protocols such as hashed message authentication 

codes. 
• Use poor role-based security mechanism to differentiate between users 

who can view data and users who can modify data. 

-148-



Insecure Configuration Management 

Overview: 
Today web applications frequently use services provided by the application server 
and/or web server such as data storage, directory services, mail and so on. 
However the component development group (provider) is separate from the group 
using the component (consumer). Very often a wide gap between those who write 
the component and those responsible for the operations environment (consumers) 
is created by the improper assumptions made by the writers that how consumers 
will configure their server. Web application security concerns often span this gap. 
In addition, Most of the web applications are configurable and store the 
configuration parameters in files or databases. To facility management of 
configuration, applications normally provide configuration management 
interfaces to allow users with high privileges, say administrators, to change 
configuration parameters and perform maintenance. This makes the situation even 
worse. The following are common attacks due to insecure configuration 
management. 

• Unauthorized access to configuration management interfaces 
• Unauthorized access to configuration stores 
• Retrieval of plain text configuration secrets 

Unauthorized access to configuration management interfaces 
Actually this is a specific case of authorization. The reason we discuss it here 
separately is that most of the web applications have configuration management 
interfaces and thus have some vulnerabilities in common. Generally configuration 
management interfaces should be available only to the restricted group. An 
attacker who obtains access to the configuration management interfaces can easily 
bring down the system or let it behavior unexpectedly by altering the 
configuration parameters. 

Causing Vulnerabilities: 
• Unnecessary administration interfaces are used. 
• Unnecessary services enabled, including content management and remote 

administration. 
• Misconfigured SSL certificates and encryption settings. 
• Use of self-signed certificates to achieve authentication and man-in-the-

middle protection. 
• Use of default certificates. 
• Improper authentication with external systems. 
• Easy-guessed default accounts with their default passwords 

Unauthorized access to configuration stores 
This is another particular case of authorization. An attacker who obtains access to 
the configuration stores can easily bring down the system or let it behavior 

-149-



strangely by altering the configuration data. And this will impact all users. Due to 
the sensitive nature of the data maintained in configuration stores, the stores 
should be kept secured. 

Causing Vulnerabilities: 
• Keep custom configuration files inside the directory that has web access. 
• Overly informative error messages. 
• Unnecessary default, backup, or sample files, including scripts, 

applications, configuration files, and web pages 

Retrieval of clear text configuration secrets 
Today most configure files are in plain text format such as a XML file and 
sensitive data such as database connection strings and passwords are stored also in 
plain text format in these configuration files. Attackers who gain access can see 
this sensitive information. Internal users, such as disgruntled employees and 
administrators, can misuse this sensitive information. 

Causing Vulnerabilities: 

• Storing the data in plain text format, rather than store the sensitive 
information in encrypted formats. 

• Insecure access control policies on text based configuration files. 

-150-



Cryptography 

Overview: 
Today most web-based applications use cryptography to protect sensitive 
information when transmitted and stored. Basically cryptographic systems can 
provide four services: authentication, non-repudiation, confidentiality and 
integrity. Cryptography is one of the most advanced topics of application security 
and there are many approaches to encryption, each with advantages and 
disadvantages. Very often expert experience is needed when architects and 
developers try to choose a cryptography approach and implement it correctly and 
accurately. A small mistake in configuration or coding may result in a useless 
cryptography. Typical cryptographic attacks are: 

• Cryptographic key attacks 

Cryptographic key attacks 
Cryptographic keys should be adequately protected as cryptography relies on keys 
to assure a user's identity, provide confidentiality and integrity as well as non-
repudiation. If an attacker gets access to the encryption key, they can easily 
decrypt the encrypted information. Poor management of keys or bad key 
generation algorithms usually results in this type of attack. 

Causing Vulnerabilities: 
• Do not use built-in encryption routines that include secure key 

management. 
• Keys are not in binary format 
• Keys are not protected with file system permissions. 
• Store keys in a open location 
• Do not expire keys regularly 
• Distributing keys in an insecure manner 

-151 -



Parameter Manipulation 

Overview: 
Manipulating the data sent between the browser and the web application is a 
simple but effective way to change application behaviors. Information captured 
from the browser is usually sent to the server in one of these four formats: URL 
query string, form fields, cookies and HTTP headers. In a badly designed and 
developed web application, malicious users can modify data before it is be 
transmitted so even cryptographic protection in the transport layer (SSL) is 
insufficient. Parameter tampering can often be done with: 

• URL Query String 
. HTML Form field 
• Cookie 
• HTTP header 

URL Query String manipulation 
If HTML Forms submit their results using a method GET, all form element names 
and their values will appear in the query string of the next URL the user sees. 
Tampering with query strings is very easy;, one need only look at the URL in the 
browser's address bar and change the values. If the application relies on the query 
string values to make security decisions, the application is vulnerable to security 
attacks. 

Causing Vulnerabilities: 
. Use HTTP GET rather than using HTTP POST. 
• Pass security related information through query string 
• Information passed via query string is not cryptographically protected. 
• Information passed via query string is not accompanied by a valid session 

token. 

HTML Form field manipulation 
In most web-based applications, developers use Form Fields as a convenient way 
to store data in the browser. However, attackers can easily manipulate these form 
fields no matter whether they are pre-selected (drop down, check boxes etc.), free 
form or hidden. In most cases what an attack has to do is simply save the page 
using "view source", "save", edit the HTML and re-load the page in the web 
browser. 

Causing Vulnerabilities: 
• Make security decisions according to the value of Form parameters. 
• No additional hidden field (e.g. Outgoing Form Digest) is used to protect 

the value of a critical Form Field parameter. 
• Use meaningful parameter names. 

-152-



Cookie Manipulation 
Cookie manipulation refers to altering cookie values on the client's web browser 
to exploit security issues within a web application. Cookies are usually used to 
maintain states in the stateless HTTP protocol, as well as to store user preferences 
and other data including session tokens. Many people think that non-persistent 
cookies cannot be modified but the fact is that both persistent and non-persistent 
cookies, secure or insecure can be modified by the client and sent to the server 
with URL requests. The extent of cookie manipulation depends on what the 
cookie is used for. Here is an example from a real world example on a travel web 
site. 

Cookie: lang=en-us; ADMIN=no; y=l ; time=10:30GMT ; 

The attacker can simply modify the cookie to; 
Cookie: lang=en-us; ADMIN=yes; y=l ; time=12:30GMT ; 

Causing Vulnerabilities: 
• Use multi-session token to reference properties stored in a server-side 

cache. 
• Do not encrypt the cookie to prevent tampering. 
• Depend only on cookie values to make security decisions. 
• In case of persistent cookies stored in the client computer, do not use 

encryption or hashing to protect the information. 

HTTP Header manipulation 
In web-based applications, the HTTP protocol is used to transfer data between the 
browser and the server. Most web application developers do not pay any attention 
to the HTTP headers as they often are used by the browser and the web server 
software only. However some web developers choose to make security decisions 
by inspecting incoming headers. When doing this most of the developers do not 
realize that the requested headers originate at the client side, and they may thus be 
altered by an attacker. 

Causing Vulnerabilities: 
• Use HTTP Headers to make security decisions 
• Do not cryptographically protected headers originated from the server-side. 

- 1 5 3 -



Exception handling, Auditing and Logging 

Overview: 
Exception handling, auditing and logging are three different aspects of the same topic: 
how to track events within an application. Applications should always fail safe. When 
an application fails to an unknown state, the exception information shown might 
not be making sense for the end user but might be a very interesting message for 
an attacker. Motivated attackers may be able to exploit this indeterminate state to 
access unauthorized functionality, or worse manipulate data. Well-written 
applications enable auditing and logging to easily track or identify potential fraud or 
anomalies end-to-end. This helps to identify which user is trying to exploit and 
what actions have been done. With this kind of information necessary actions can 
be taken to prevent the system from such attacks. The following attacks are 
related to this area. 

• Detailed error message attacks 
• Repudiation 
• Escape from being traced 
• Cover tracks 

Detailed error message attacks 
Detailed error messages provide attackers with lots of useful information as they 
might leak information that leads to further attacks, or may leak privacy related 
information. One of the most common situations is that database exceptions reveal 
SQL information like tables, connection strings, column names, etc. that will open 
a door for an attacker to enter into the application. 

Causing Vulnerabilities: 
• Use functional error handling instead of structured exception handler 
• Do not handle all types of exception through out the code base. 
• Show inappropriate information in the front end to the user who received 

this exception 
• Detailed error messages, such as stack traces or leaking privacy related 

information, are presented to the user. 

Repudiation 
Repudiation refers to a user denies that s/he has performed an action or initiated a 
transaction. To address the issue of repudiation, developers have to define and 
implement a good defense mechanism to ensure that all the user activity can be 
tracked and recorded. 

Causing Vulnerabilities: 
• Do not enable auditing and logging in web server, database server and 

application server. 
• Fail to identify the key events and log them. For example, login, logout 

events 

- 1 5 4 -



• Use shared accounts 

Escape from being traced 
Attackers can escape from being traced if detection mechanism is not 
implemented correctly to identify the suspicious activities that have occurred in 
the system. A good detection mechanism should be able to log both the 
occurrence of exploit and whether someone is trying to exploit. 

Causing Vulnerabilities: 
• Not all critical application level operations is logged 
• Poor detect suspicious activity. 
• Do not maintain the back up of log files 

Cover tracks 
Attackers may be able to exploit and tamper log files if they are not well protected. 
Log files are as important as other sensitive files regarding application security, so 
they needed to be well protected from external hackers and internal employees. 

Causing Vulnerabilities: 
• Keep the log files in the default location folder. 
• Do not secure log files 

- 1 5 5 -


