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Abstract

To meet the data management requirements of new complex applications� object management sys�

tems are emerging as the most likely candidate� The general acceptance of this new technology de�

pends on the increased functionality it can provide� and one measurement is the power of its query

model� Users of these systems must have a declarative language to formulate queries on �what�

information is required without specifying �how� to e	ciently retrieve the information� Therefore�

the formal query model should de�ne a declarative calculus that can be used to formulate queries

to the objectbase and an equivalent procedural algebra to execute them e	ciently� In addition� a

user�level language should be provided which has the same expressive power as the formal languages�

This thesis presents the new TIGUKAT Language that was designed and implemented within

the framework of the TIGUKAT project� It is a high level user language which provides declarative

access to the underlying objectbase� It is divided into three parts
 TIGUKAT De�nition Language

�TDL�� TIGUKAT Query Language �TQL�� and TIGUKAT Control Language �TCL�� The syntax

of this language and the main design choices where inuenced by SQL while the semantics is de�ned

in terms of the object calculus� Queries operate on collections and they always evaluate to new

collections� thus the results of queries are queryable� Furthermore� queries can be used in the

predicates of other queries �i�e�� nested queries�� Path expressions which allow easy navigation

through the schema are supported� Finally� the language is orthogonal to persistence� meaning that

all objects are queryable regardless of whether they are persistent or transient�
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Chapter �

Introduction

This thesis is a part of an ongoing TIGUKAT� project on the design and implementation of an

object management system� The de�nition of the formal object model �TIGUKAT object model�

that conforms to many requirements outlined in the object�oriented database manifestos �ABD����

SRL���� is the �rst result of that research �P�OS���� The main characteristics of the TIGUKAT

object model are as follows� First� it takes the uniform approach to objects which includes meta�

information as primitive objects� Second� there is a clean separation and precise formal de�nition of

many object model features� Finally� a formal speci�cation and integration of both the behavioral

and structural aspects of the object model with the necessary power for handling advanced database

functionality �object creating query languages� schema evolution� updatable views� rules� etc�� is

given�

The establishment of the formal object model has provided a theoretical foundation to investigate

other object database features� Currently� various extensions are being added to the TIGUKAT

object model in order to provide database system functionalities� These extensions include the

design and implementation of the query model with the declarative facilities �formal object calculus�

object algebra� and the user language�� object views and view management with update semantics�

dynamic schema evolution� storage management and persistence� transaction management� and the

temporal aspects�

��� Motivation

It is well recognized that a declarative query facility is an essential component of any database

management system� and the power of such a system is measured by it� Therefore� the �rst extension

provided to TIGUKAT object model is the query model de�nition� This includes the speci�cation

of the formal object calculus which de�nes a declarative base to formulate queries� the equivalent

�TIGUKAT is a term in the language of the Canadian Inuit people meaning �object��

�



�

object algebra that allows them to execute e	ciently� and the user�level language�

The main focus of this thesis is the design and the implementation of a high�level� user language

which provides a declarative interface to the underlying object model� The language is proven

equivalent to the formal languages of the query model �calculus and algebra� making it easy to

perform logical transformations and argue about safety of user speci�ed queries�

��� Thesis Overview

The thesis is divided into six chapters� A brief introduction to the problem of object�oriented

database management systems and a short summary of the current research within these systems

is given in the subsequent sections of this chapter� The discussion emphasizes the related work

on object query languages� Some of the existing languages are described� and compared with the

designed frameworks developed for object query languages� Chapter � describes the TIGUKAT

object model� The main features of this model are outlined and the unique concepts are explained�

Furthermore� the description of the query model which includes the formal de�nition of the object

calculus and equivalent object algebra is given in this chapter� Chapter � presents the TIGUKAT

language� its syntax which is given as grammar rules� and the formal semantics which is de�ned

by the object calculus� It is shown in that chapter� that there is a complete reduction from the

TIGUKAT Query Language to the object calculus� Thus� the formal semantics of the language is

well de�ned� In Chapter � the integration issues between the TIGUKAT language and the model

are discussed� Two extensions which facilitate this integration are described� Chapter � explains the

implementation details� The algorithms used to implement the language translators are outlined�

and the main data structures are described� Finally� in Chapter �� conclusions and future research

directions are discussed�

��� Related Work

The need for a technology to support the organization� control and manipulation of collections of

structured data resulted in the development of database management systems �DBMSs�� The ����s

witnessed the birth of hierarchical and network types of DBMSs which are still widely used today�

In the ����s� the relational model� which was proposed by Codd �Cod��� Cod��� in the beginning

of the ����s� became the base for new database systems� The relational model is characterized

by the simplicity� uniformity and a strong mathematical foundation� The simplicity of the model

permitted the development of powerful� non�procedural �declarative� query facilities which provided

an elegant interface to the underlying model� One of the most popular query languages in those

systems was SQL �Structured Query Language�� which eventually became an international standard

for the de�nition and management of relationally structured data �Com���� It consists of three parts
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the Data De�nition Language� the Data Manipulation Language and the Data Control Language�

The ����s seem to require new directions in database development to ful�ll the demands of new

challenging applications� However� new technologies can compete with the previous ones only if

they provide tools that are comparable in power� In order to provide at least the functionality of

relational systems� next generation DBMSs must consistently extend the power of the relational

query model and SQL� Therefore� one of the problems facing object�oriented system designers is the

de�nition of an object query model and a language for these systems�

Di�erent approaches have been taken to design new object models which support object�oriented

features and conform to the object�oriented philosophy� Among them are those that have been heav�

ily inuenced by the advances in programming languages such as Smalltalk� C��� and CommonLisp

�CLOS�� The Gemstone �BMO���� system is a classical example of the extension of Smalltalk to

include complete database facilities� It supports multiple user access� it has the ability to ac�

commodate large volumes of objects� and it provides persistence� query facilities� and transaction

management� ORION �BCG���� KBC���� KGBW��� is another example of a system based on an

existing programming language � in this case CLOS� Similar to Gemstone� it extends the language

with database capabilities which include persistent and sharable storage� transaction management�

associated queries� and database integrity control� POSTGRES �SR��� RS���� on the other hand� is

a database management system based on the relational model that has been extended with object�

oriented features� Thus� it supports abstract data types� inheritance� de�nition of rules� as well

as de�nitions of data in form of the procedures� Finally� other models are de�ned independently

from any programming languages or database models� Such an approach was taken by the de�

signers of the EXODUS system �CDF���� CDV��� as well as by the designers of the O� system

�LRV��� Deu��� Deu���� A similar approach is followed in TIGUKAT�

With a variety of object models comes a variety of di�erent object query languages� This is a

result of the inseparability of the data model and the query language that has to provide a declarative

interface to it� Therefore� there is a tight integration between the two� Since no consensus exist

for one universally accepted object model� there is presently no universally accepted object query

language� In Section ������ the design principles of object query languages are discussed followed by

a summary� in Section ������ of various object query languages�

����� Object Query Language Design Issues

Although there is no universally accepted object model� a core set of features has been identi�ed and

presented in number of manifestos �ABD���� SRL����� Similar guidelines for the design of an object

query language have appeared recently �Kim��� BTA��� BNPS��� Str���� They are summarized

below�
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�� An object query language should provide a high�level� declarative interface to the underlying

model� The user should not have to be aware of implementation details while specifying queries

� �OS��� Str����

�� Similar to relational query languages� its semantics should be well de�ned� In other words� an

object query language should be based on some formal object calculus �Str��� �OS����

�� It should be optimizable� The language should have an underlying object algebra de�ned

�BCD���� In addition� the object algebra should have the closure property meaning that

results of queries should be also queryable �KKS����

�� The language should allow queries to be arguments of predicates of other queries� Thus� the

concepts of nested queries �subqueries� should be supported �Bla����

�� The syntax of the language should be based on the SQL select�from�where structure� However�

this can be relaxed� as the syntactic approach is subjective and depends on the designers� taste

�Bla��� ASL����

�� Path expressions� which are also called implicit joins as well as explicit joins should be sup�

ported by the language �Kim��� BNPS����

�� The well known problem of impedance mismatch should not occur in object�oriented systems

�Bla��� BCD���� The object model of the object�oriented database and the type system of the

programming language should be compatible�

�� Queries should be orthogonal to all data model extensions meaning that all objects should be

queryable regardless of whether they are transient� persistent� distributed and so on �Bla����

�� The language should support the syntax for the application of aggregate functions in specifying

queries� These functions could be either used in target lists� as predicates� or in both �Bla����

��� Finally� the query language whether used on an ad hoc basis� or embedded in application

programs should not violate encapsulation� Data abstraction is one of the most important

concepts in object�oriented systems� therefore� it should be maintained �Bla����

����� Object Query Languages

SQL� �Gal���� which is under development as an international standard� is expected to incorporate

numerous object�oriented features� It will be a complete language for managing� creating and query�

ing persistent objects� It will provide facilities for de�ning new abstract data types �ADT�� creating

new functions and accessing objects� However� as the language does not have any underlying object

model� it contains many unnecessary and arti�cial constructs �objects are mapped to relational ta�

bles�� while on the other hand� many important features are missing �de�nition of sets� classes or
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other container objects�� Moreover� in an e�ort to make the language computationally complete�

non�declarative language statements are introduced �while�loop� if�statement� branch statement�

which make the language unnecessarily complex� Since� SQL� is still being designed� the standard

speci�cation is not expected to be released until ����� A number of these problems may be resolved

by then�

Blakeley �Bla��� Bla��� addresses the query�programming language integration problem in the

context of an object�oriented database which uses the type system of an existing programming

language C�� �ES��� as an object model� ZQL�C��� is an object query language based on the

SQL paradigm� Query statements can be easily mixed with the programming language statements�

and the syntax of these two languages is uniform� Therefore� the query language is well integrated

with the database host language �C��� and the problem of impedance mismatch does not exists�

Queries in ZQL�C��� are orthogonal to all extensions of the language� Objects can be queried

regardless of whether they are transient� persistent� distributed� and so on� Query results can

become inputs to other queries and can be used in the from and where clauses of other queries �i�e��

nested queries�� However� the formal semantics of the language is not de�ned� which raises question

regarding the safety� completeness and optimization possibilities of the language�

A similar approach to ZQL�C��� is taken in CQL�� �DGJ���� CQL�� is a declarative front

end to Ode �AG���� It combines an SQL�like syntax with the C�� class model� CQL�� is based

on a closed object algebra which operates on sets of objects returning sets of objects as results�

CQL�� is well integrated with O�� which is the host language in Ode� Moreover� queries are

orthogonal to persistence� since the persistence is associated with objects�

In �BCD��� LR��b� LR��a� the main features of the query language for the O� �BCD��� LRV���

system are discussed� The syntax of the query language is based on the SQL select�from�where block�

while the semantics of the language is de�ned as a partial mapping from sets of objects and values

to a set objects and values� It is a functional language which is a subset of a host programming

language� Thus the problem of impedance mismatch does not exists� The additional �atten operator

is provided to enable the navigation through embedded sets and lists� However� the language violates

the encapsulation principle when used on an ad hoc basis� Also� the semantics of the language is

not based on any formal calculus�

EXCESS �CDV���� which is the query language for EXODUS �CDF����� is di�erent fromZQL�C����

CQL��� and O� languages in that it is based on QUEL syntax rather then SQL� Its main features

include the uniform treatment of sets and arrays so that queries can operate on sets as well as on

arrays� a type�oriented treatment of range variables� and support for update syntax� EXCESS allows

path expressions to simplify the task of formulating queries� Queries in EXCESS work on sets of

objects� values or tuples� and they return sets as results� Therefore� the closure property holds�

Finally� EXCESS supports aggregate functions which add computational power to the language�

OSQL �Ken��� is a database language developed for the IRIS object�oriented database system�
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Its design has been largely inuenced by standard SQL� As a result� OSQL serves as an object

description� object manipulation and query language� Furthermore� its query part has an SQL

syntax� Queries are modeled as functions whose domains are either types �equivalent to the concept

of classes in TIGUKAT�� or bags of instances of types �collections in TIGUKAT�� They always

return bags as results� therefore they can become inputs to other queries� However� the syntax for

nested queries in the from and where clauses is not supported�

A quite di�erent design ideology is presented in the object query language for ObjectStore

�LLOW��� OHMS���� The C�� programming language is adopted as a host language in the system�

and queries are expressed using C�� extensions supported by the C�� compiler� In other words�

queries are integrated with the host language by a special query operator �
���� whose operands

are either collections or predicates� Thus� one cannot talk about the query language based on any

known language like SQL or QUEL� However� the same expressive power is achieved by the queries�

nested queries and path expressions in ObjectStore� Queries in this system operate on collections

or predicates� and they evaluate to collections� single objects or booleans�

Finally� in �ASL��� OQL is a somewhat unorthodox object query language for an object�oriented

database� The concept of a subdatabase is introduced� A subdatabase is de�ned as a portion of the

operand database �which can be either an original database or another subdatabase that has been

established by another query�� It consists of an intensional association pattern �which is a network of

classes� and the extensional association pattern �which is a network of instances that belong to those

classes�� Queries operate upon subdatabases� and they return subdatabases as results� However�

since the syntax of OQL is not based on any known structure �neither SQL� nor QUEL� it is not

very intuitive�



Chapter �

TIGUKAT Overview

In this chapter an overview of TIGUKAT is given� Section ��� outlines the main characteristics

of the TIGUKAT object model� including a description of such concepts as objects� types� classes�

behaviors� functions� and the relationships among them� Section ��� describes the TIGUKAT query

model which provides the declarative query facilities to the object model� Two formal languages are

de�ned
 an object calculus and an equivalent object algebra�

��� Object Model

The TIGUKAT object model �P�OS��� is de�ned behaviorally with a uniform semantics� The model

is behavioral in the sense that the access and manipulation of objects is restricted to the application

of behaviors �operations� upon objects� The model is uniform in that every concept within the

model has the status of a �rst�class object� An object is a fundamental concept in TIGUKAT� Every

component of information� including its semantics� is uniformly represented by objects in TIGUKAT�

This means that at the most basic level� every expressible element in the model incorporates at least

the semantics of our primitive notion for �object��

The model de�nes a number of primitive objects which include
 atomic entities �such as reals�

integers� strings� characters� etc��� types for de�ning and structuring features of common objects�

behaviors for specifying the semantics of the operations which may be performed on objects� functions

for specifying the implementation of behaviors over various types forming the support mechanism

for overloading and late binding� classes for the automatic classi�cation of objects based on type�

and collections for supporting general heterogeneous user�de�nable groupings of objects�

The primitive type system is shown in Figure ��� with the T object type as the root of the

lattice and the T null type as the base� T null binds the lattice from the bottom� It is a subtype

of every other type in the system� T null is introduced in the model to provide an object which can

be returned by behaviors that have no result�

�
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Figure ���
 Primitive type system
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Objects are de�ned as �identity� state� pairs where identity represents a unique� immutable

system managed object identity� and state represents the information carried by the object� Thus�

the model supports strong object identity �KC���� meaning that every object has a unique existence

within the model and is distinguishable from every other object� On the other hand� the state of an

object encapsulates the information carried by that object� Conceptually� every object is a composite

object in TIGUKAT meaning that every object has references to other objects�

There is a separation of means for de�ning the characteristics of object �i�e�� a type� from the

mechanism for grouping of instances of a particular type �i�e�� class�� A type speci�es behaviors� It

encapsulates hidden implementation and state for all objects that are created by using the type as

a template� The set of behaviors de�ned by a type is referred to as a set of native behaviors� and

it describes the interface of the objects of that type� Types are organized into a lattice structure

using the notion of subtyping� TIGUKAT supports multiple inheritance� meaning that one type can

be an immediate subtype of several other types�

A class ties together the notion of type and object instance� A class is responsible for managing

all instances that are created by using a speci�c type as a template� Objects of a particular type

cannot exists without an associated class and every class is uniquely associated with a single type�

Object creation occurs only through a class using its associated type as a template for the creation�

A collection is another grouping construct in TIGUKAT� It is de�ned as a general user�de�nable

construct� It is similar to a class in that it also represents an extent of objects� but it di�ers in the

following respects� First� no object creation can occur through a collection� object creation occurs

only through classes� Second� an object may exist in any number of collections� but it is a member

of only one class� Third� the management of classes is implicit in that the system automatically

maintains classes based on the subtype lattice� whereas the management of collections is explicit�

meaning that the user is responsible for their extents� Finally� a class groups the entire extension of

a single type �shallow extent�� along with the extensions of all its subtypes �deep extent�� Therefore�

the elements of a class are homogeneous up to inclusion polymorphism� On the other hand� a

collection may be heterogeneous in the sense that it can contain objects which may be of di�erent

types�

The subtypes of T class namely� T class�class� T type�class and

T collection�class� are part of the meta system� Their placement within the type system itself

directly supports uniformity of the model� A full explanation of these types can be found in �P�OS����

Two other fundamental notions of TIGUKAT are behaviors and functions that implement the

behaviors� In the same way that an object�s speci�cation �types� is separated from the grouping

of its elements �classes�� the de�nition of a behavior is separated from its possible implementations

�function�methods��

The semantics of each operation on an object is speci�ed by a behavior de�ned on its type� A

function implements the semantics of each behavior� The implementation of a particular behavior
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may vary over the types which support it� Nevertheless� the semantics of the behavior remains

constant and unique over all types supporting that behavior� There are two kinds of implementations

for behaviors� A computed function consists of runtime calls to executable code� A stored function

is a reference to an existing object in the objectbase� The uniformity of TIGUKAT considers each

behavior application as the invocation of a function� regardless of whether the function is stored or

computed�

The following example illustrates a geographic information system in the TIGUKAT object

model� This example� taken from �P�OS���� will be used as a running example throughout this

thesis�

Example �� Object�orientation is intended to serve many application areas requiring advanced

data representation and manipulation� A geographic information system �GIS� �Aro��� Tom��� has

been selected as an example to illustrate the practicality of the concepts introduced and to assist in

clarifying their semantics� A GIS was chosen because it is among the application domains which can

potentially bene�t from the advanced features o�ered by object�oriented technology� Speci�cally� a

GIS requires the following capabilities


�� management of persistent and transient data�

�� management of large quantities of diverse data types and dynamic evolution of types�

�� a seamless integration of sophisticated computer graphic images with complex structured at�

tribute data�

�� handling of large volumes of data and performing extensive numerical tabulations on data�

�� management of di�ering views of data� and

�� the ability to e	ciently answer a variety of ad hoc queries�

A type lattice for a simpli�ed GIS is given in Figure ���� The example is su	ciently complex

to illustrate the advanced functionality of the query model we present� yet simple enough to be

understandable without an elaborate discussion� The example includes the root types of the various

sub�lattices from the primitive type system in Figure ��� to illustrate their relative position in an

extended application lattice� The additional types de�ned by the GIS example include


�� Abstract types for representing information on people and their dwellings� These include the

types T person� T dwelling and T house�

�� Geographic types to store information about the locations of dwellings and their surrounding

areas� These include the type T location� the type T zone along with its subtypes which

categorize the various zones of a geographic area� and the type T map which de�nes a collection

of zones suitable for displaying in a window�
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T dwellingT person

T land

T forest

T water

T riverT pondT clear

T developed

T map

T house T zone

T object

T location

T window

T displayObject

T geometricShape

T atomic

T altitudeT transport

T road

T type
T collectionT function

T behavior

T date

Figure ���
 Geographic Information System in TIGUKAT object model�

�� Displayable types for presenting information on a graphical device� These include the types

T displayObject and T window which are application independent and the type T map which

is the only GIS application speci�c object that can be displayed�

�� A type T geometricShape that de�nes the geometric shape of the regions representing the

various zones� For our purposes we will only use this general type� but in more practical appli�

cations this type would be further specialized into subtypes representing polygons� polygons

with holes� rectangles� squares� splines and so on�

��� Query Model

A complete uniformbehavioral object model has formed basis for an object query model that includes

a complete algebra with an equivalent object calculus de�nition� An underlying characteristic of the

TIGUKAT query model is that it is a direct extension to the object model� In other words� it is

de�ned by type and behavior extensions to the primitive model�

The subsequent sections summarize the formal languages de�ned for the TIGUKAT query model�

The full speci�cation of the query model is given in �PL�OS���� The �rst section presents the object

calculus with the �rst�order semantics� The logical foundation of the calculus includes a de�nition

of atoms� well�formed formulas� and a function symbol which incorporates the behavioral nature of
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Type Signatures

T location B latitude
 T real

B longitude
 T real

T displayObject B display 
 T displayObject

T window B resize
 T window

B drag 
 T window

T geometricShape

T zone B title
 T string

B origin
 T location

B region
 T geometricShape

B area
 T real

B proximity 
 T zone� T real

T map B resolution
 T real

B orientation
 T real

B zones
 T collectionhT zonei
T land B value
 T real

T water B volume
 T real

T transport B e�ciency 
 T real

T altitude B low 
 T integer

B high
 T integer

T person B name
 T string

B birthDate
 T date

B age
 T natural

B residence
 T dwelling

B spouse
 T person

B children
 T person� T collectionhT personi
T dwelling B address
 T string

B inZone
 T land

T house B inZone
 T developeda

B mortgage
 T real

aBehavior was re�ned from supertype T dwelling�

Table ���
 Behavior signatures pertaining to example speci�c types of Figure ���
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the object model� This allows the use of very general path expressions in the calculus� The safety

of the calculus is based on the evaluable class of queries de�ned in �GT���� The second section

presents the object algebra which is proven equivalent to the object calculus� Target�preserving and

target�creating algebraic operators are shown�

����� The Object Calculus

The alphabet of the calculus consists of object constants �a� b� c� d�� object variables �o� p� q� u� v� x� y� z��

monadic predicates �C�P�Q�� dyadic predicates ������� ���� an n�ary predicate �Eval�� a function

symbol ���� logical connectives ��� ��������� and delimiters ��� �����

Atoms are the building blocks of calculus expressions� The atoms of the calculus consist of the

following


Range Atom� C�s� is called a range atom for s where C corresponds to a unary predicate repre�

senting a collection and s denotes a term� A range atom asserts true if and only if s denotes

an object in collection C� When C de�nes a class� C��s� is true if and only if s denotes an

object in the shallow extent of class C�

Equality Atom� s � t is a built�in predicate called an equality atom where s and t are terms� The

predicate asserts true if and only if the object denoted by s is object identity equal to the

object denoted by t�

Membership Atom� s � t is a built�in predicate called a membership atom where s and t are

terms� and t denotes a collection� The predicate asserts true� if and only if the object denoted

by s is an element of the collection denoted by t�

Generating Atom� Any equality atom of the form o � t or membership atom o � t� where o is an

object variable and t is an appropriate term for the atom in which o does not appear� is called

a generating atom for o� That means that the object denotation for o can be generated from t�

The ground atom is an atom that contains only ground terms�

From atoms� well�formed formulas �WFFs� are built to construct the declarative calculus expres�

sions of the language� WFFs are de�ned recursively from atoms in the usual way �Cod��� Ull���

using the connectives ����� and the quanti�ers � and ��

A target�preserving query is an object calculus expression of the form ftj��o�g where t is a term

consisting of a single object variable or an object variable indexed by a list of behaviors� � is a

WFF� and o is exactly the variable in t and it is the only free variable referenced in �� Indexed

object variables are of the form o��� where � is a set of behaviors de�ned on the type of variable

o� The semantics of this construct is to project over the behaviors in � for o� meaning that after

the operation only the behaviors given in � will be applicable to o� A target creating query is of the
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form ft�� ���� tnj��o�� ���� ong which is simply a generalization of the target preserving kind by allowing

multiple target terms t�� ���� tn over the multiple variables o�� ���� on� The result of such a query is a

collection of new object lists created from the cartesian product over ranges of variables o�� ���� on by

following the selection using ��o�� ���� on��

Example �� Target�preserving query
 Return all zones that are part of the same map� Project

the result over B title and B area�

fo�B title�B area�j�p�C map�p� � o � p�B zones�g

o is a free variable generated by the generating atom
 o � p�B zones� and t � o�B title�B area� is a

target variable in form of the index variable�

Target�creating query
 Return all the people and their spouses such that both of them are older then

�� years old

fp� qjC person�p� � q � p�B spouse � p�B age � �� � q�B age � ��g

Since� there are two target variables in the target list� this is an example of a target�creating query�

����� The Object Algebra

The operands and results of the object algebraic operators are typed collections of objects� The

algebra maintains the closure property since the results of any operator may be used as an operand

of another� The object algebra de�nes both target�preserving and target�creating operators� The

target preserving operators are de�ned as follows


Set Operations The typical set union� di�erence and intersection operators are de�ned�

Select �denoted P��F � � Q�� ���� Qn ��
 Select is a higher order predicate that accepts the predicate

F � and the n���ary collection P�Q�� ���� Qn as arguments� The result collection contains objects

from P corresponding to the p components of each permutation � p� q�� ���� qn � that satis�es

F �

Map �denoted Q� 	mop� Q�� ���Qn ��
 where mop is a mop function �PL�OS��� over the elements

of collections Q�� Q�� ���� Qn� meaning it expects arguments q�� q�� ���� qn and they are type

consistent with the membership types of the collections� For each permutation of objects

� q�� q�� ���� qn � form from the elements of the argument collections mop�q�� q�� ���� qn� is

applied and the resulting object is included in the result collection�

Project �denoted P ��
 where P is a collection and � is a behavioral projection set with the

restriction that it is a subset of the behaviors de�ned on the membership type of P � The �

collection is automatically unioned with the behaviors of type T object in order to ensure con�

sistency� The result collection contains objects of P � but with the membership type coinciding

with the behavior speci�cation of ��
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The full object algebra includes target�creating operators in order to provide necessary object

formation operators� The result of these operations is a collection of new objects that are object

identity distinguishable from the ones in the argument collection� The primary target�creating

operator is product


Product �denoted P 
Q�
 Product produces a collection containing product objects created from

each permutation � p� q � such that the left component is an object from P and the right

component is an object from Q� Product may initiate the creation of a new type along with a

new class to maintain the product objects�

The above collection of operators form the primitive algebra� They are fundamental in supporting

the expressive power of the calculus and other expressions can be de�ned in terms of them� The

following operators are added to the primitive algebra in order to provide functionality� and increase

the expressive power�

Join �denoted P ��F �� Q�� ���� Qn ��
 where n � �� Join produces a collection containing product

objects created from each permutation � p� q�� ���� qn � that satis�es F �

Generate Join �denoted Q��
o
�g� � Q�� ���� Qn ��
 where g is a generating atom of the form o� �

	q � �	b �where � is one of !�� or !��� over the elements of collections Q�� Q�� ���� Qn� Generate

join produces a collection of product objects created from each permutation of the qi�s and

extended by an object o in the following way� If � is !��� the result contains product objects

of the form � q�� ���� qn� � q�� ���� qn � �	b � for each permutation of the qi�s� If � is �� the

result contains product objects of the form � q�� ���� qn� o � for each permutation of the qi�s

and o �� q�� ���� qn � �	b�

Reduce �denoted P�p��o�
 where P is a collection of product objects 	p� and 	o is a list representing

symbolic reference to the component of the product� The reduce operator has the e�ect

of discarding the 	o components of the objects in P � That is� product objects of the form

� p�� ���� pi� 	o� pi��� ���� pn � are mapped to � p�� ���� pi� pi��� ���� pn ��

Collapse �denoted P �
 Collapse is a unary operator which accepts a collection of collections P

as an argument and it produces the extended union of the collections in P �

The following examples illustrate possible queries on the GIS de�ned in Example ���� Every

query is given in form of an English sentence� then it is expressed in the object calculus which is

followed by the equivalent algebraic expression� In the algebraic expressions� operand collections are

subscripted by the variable that ranges over them� If the operand consists of product objects� the

variables that make up the components of these objects are listed� The indexed variables are used

as a symbolic reference to the elements of the collection as described in this section� Furthermore�

the arithmetic notation for operations like o�greaterthan�p� and o�elementof�p� is used instead of
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boolean Bspec equivalents� The execution of an algebraic expression is from left�to�right� except

that parenthesized expressions are executed �rst�

Example �� Return land zones valued over "������� or covering an area over ���� units�

Calculus


f o j C land�o� � �o�B value � ������� o�B area � �����g

Algebra


C lando ��o�B value������� � o�B area������

Example �� Return all zones that have people living in them �the zones are generated from person

objects��

Calculus


f o j �q�C person�q� � o � q�B residence �B inzone�g

Algebra
�
C personq �

o

o�q�B residence �B inzone

�
o�q

�q

Example �� Return the maps with areas where citizens over �� years of age live�

Calculus


f o j C map�o� � �p�C person�p� � �q�C dwelling�q�

� p�B age � �� � q � p�B residence � q�B inzone � o�B zones��g

Algebra
�
C mapo �F� hC dwellingq �

�
C personp �F�

�
p
i
�
o�q�p

�p�q

where F� is the predicate �q � p�B residence � q�B inzone � o�B zones�

and F� is the predicate �p�B age � ���

Example �� Return all maps that describe areas strictly above ���� feet�

Calculus


f o j C map�o� � �p��C altitude�p� � ��p � o�B zones�

�p�B low � �����g�

Algebra


C map�

��
C mapo �F� �C altitudep �F� �p

�
o�p

�p

�

where F� is a generating atom �p � o�B zones�

and F� is a predicate ���p�B low � ������

Example �� Return the dollar values of the zones that people live in�

Calculus


f o j �p�C person�p� � o � p�B residence �B inzone�B value�g�



��

Algebra
�
C personp �

o

o�p�B residence �B inzone�B value

�
p�o

�p

Note that this has a simpler form using the map operator as follows


C personp 	p�B residence �B inzone�B value

Example �� Return the zones that are part of some map and are within �� units from water�

Project the result over B title and B area�

Calculus


f o�B title�B area� j �p�q�C map�p� �C water�q�

�o � p�B zones � o�B proximity�q� � ���g�

Algebra
��
C mapp �

o
F�

�
p�o

�F� C waterq

�
p�o�q

�q�p  B title�B name

where F� is a generating atom �o � p�B zones�

and F� is a predicate �o�B proximity�q� � ���

Example �� Return pairs consisting of a person and the title of a map such that the person�s

dwelling is in the map�

Calculus


fp� o j �q�C person�p� �C map�q�

� o � q�B title � p�B residence �B inZone � q�B zones�g

Algebra
�
C personp �F

�
C mapq �

o

o�q�B title

�
q�o

�
p�q�o

�q

where F is a predicate �p�B residence �B inZone � q�B zones�



Chapter �

TIGUKAT Languages

The main function of the TIGUKAT language is to support the de�nition� the manipulation and

the retrieval of objects in a TIGUKAT objectbase on an ad hoc basis� It is not a computationally

complete language in that ow control statements for iteration and conditional execution are not

supported� A complete objectbase programming language will be developed in the future� and it

will subsume this work� The TIGUKAT language supports the features de�ned in the TIGUKAT

object model� Thus� new types� classes� collections� behaviors and functions can be created using the

language statements� Functions can be written in the TIGUKAT language as well as in other pro�

gramming languages such as C��� The TIGUKAT language also supports the concept of composite

objects� enabling querying� retrieving� and accessing them�

The TIGUKAT language consists of three separate parts
 TIGUKAT De�nition Language

�TDL�� TIGUKATQuery Language �TQL�� and TIGUKATControl Language �TCL�� TDL supports

the de�nition of metaobjects in a TIGUKAT objectbase� Types� collections� classes� behaviors and

functions are created using TDL statements� TQL supports the retrieval of objects in a TIGUKAT

objectbase� Its syntax are based on the SQL paradigm� while the semantics of the language is

de�ned by the object calculus� Finally� TCL supports session speci�c operations like opening a

session� saving a session� and making objects persistent� The description of each of these languages

is given in the subsequent sections� while the full syntax of the TIGUKAT language is described in

Appendix A�

��� Notation

The notation used throughout this chapter is as follows� All bold words and characters correspond

to terminal symbols of the language �keywords� special characters� etc��� Nonterminal symbols are

enclosed between !�� and !��� Vertical bars !j� separate alternatives� The square brackets !��� !��

enclose optional material which consists of one or more items separated by vertical bars� Finally� all

��



��

the rules of the form � !element� list � are comma separated lists of !elements��

��� TIGUKAT De�nition Language

TDL supports the de�nition and the creation of metaobjects� All type� collection� class� behavior�

and function objects in the objectbase are considered metaobjects� TDL is logically divided into

six groups of statements
 type declarations� collection declarations� class declarations� behavior

manipulations� function declarations� and associations� Statements in the TIGUKAT language are

separated by a semicolon�

A type declaration statement is used to create new type objects in a TIGUKAT objectbase� The

general syntax of this statement is


� type declaration � 

� create type � new reference �

under � type list �

� behavior specification �

The create type clause declares a reference to a new type� The under clause contains a type list which

de�nes all direct supertypes of a new type� This list cannot be empty� as every type in TIGUKAT

is at least a subtype of T Object type� The last part of a type declaration statement is the behavior

speci�cation which is made up of public and private behaviors


� behavior specification � 

� �� public behaviors �� �� private behaviors ��

where public and private behaviors are de�ned as follows


� public behaviors � 

� public � signature list �

� private behaviors � 

� private � signature list �

Every behavior is declared either a public behavior or a private behavior� A public behavior is

visible to all authorized users of the type� while a private behavior is totally encapsulated� and it

is visible only within the de�nition of its type� All names of behaviors must be unique within a

given type� and all its supertypes� Thus� a de�nition of a behavior which is already de�ned in one

of the supertypes of a de�ned type cannot be repeated in that type� In order to rede�ne a behavior

inherited from a supertype� a new association must be done between the behavior and some new

function�

� signature � 

� � behavior name � �� � type list � ��
 � type reference �

Each signature in the signature list consists of a behavior name which also becomes a behavior

reference� the optional list of type references which de�ne types of behavior parameters� and a single

type reference� speci�ed after the colon� which de�nes the type of the behavior result� The following

example illustrates the creation of a new type T person in the TIGUKAT objectbase




��

create type T person

under T Object

public� B getName
 T string�

B setName�T string�
 T string�

B getBrtday 
 T date�

B setBrtday�T date�
 T date

The new type T person is de�ned as a direct subtype of T Object which is a primitive type in

TIGUKAT� The public interface of T person type consists of four behaviors
 B getName� B setName�

B getBrtday � B setBrtday � It does not have any private behaviors� Type T string is a primitive

type in TIGUKAT and we assume that T date has already been de�ned� so we can use it� It should

be noted here that all behaviors speci�ed in the type declaration statement are automatically cre�

ated and associated with a de�ned type� Thus� the type declaration statement can also become an

implicit behavior declaration statement�

Behavior manipulation statements are used to manipulate behaviors within existing types� New

behaviors can be added to existing types� or native behaviors can be removed from them� The

general syntax of these statements is as follows


� behavior manipulation � 

�

add to � type reference � � behavior specification �

j remove from � type reference �

behaviors� � name list �

The �rst statement adds new behaviors to an existing type� The �rst component of this statement

is a type reference which declares the type with which new behaviors are to be associated� The

behavior speci�cation declares the behaviors which must be added to a given type� The remove

statement deletes behaviors from a given type� The type reference is a reference to an existing type

from which the behaviors are to be removed� The name list in the behavior clause speci�es behaviors

which should be removed� However� only the native behaviors can be removed from a given type�

They are automatically removed from all the subtypes of this type� In the following example� two

new public behaviors are added to T person type


add to T person

public� B age
 T natural�

B spouse�T person�
T person�

Every behavior in the TIGUKAT objectbase must be associated with a function object which pro�

vides an implementation of the behavior semantics� The semantics of the behavior and the semantics

of the corresponding functions must be the same� There are two kinds of functions in the TIGUKAT

objectbase
 stored functions and computed functions� Stored functions do not have any parameters�
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and their result type can be inferred from the result type of the corresponding behavior� therefore

they do not have to be declared explicitly� They are created when the association statement is

invoked �see association statement in this section�� Computed functions� on the other hand� must

be explicitly declared using one of the following declaration statements


� function declaration � 

� � language �function� function signature �

begin

� function code �

end

j external function � function signature �

Thus� there are two ways to declare computed functions� A user can either write a complete function�

specifying the language used and providing the code of the function� or the user can declare a

reference to an external function which has already been de�ned� and exists in the objectbase� The

language clause in the �rst statement speci�es the programming language which is to be used to

write the function code� So far� there are two languages which can be used to write function code in

TIGUKAT
 TQL and C��� However� other languages will be supported in the future� The second

statement for computed functions is used to declare references to function objects which already

exist in the objectbase� The function signature speci�es the semantics of the function� and the

function object with the same signature �semantics� is bound to the local reference� Thus� in both

function declaration statements� a function signature must be declared� A function signature has

the format


� function signature �



� � function name � ��� formal parameter list ����� type reference �

A function name in the function signature speci�es the unique name of the function and it becomes

a reference to the function object� The formal parameter list is made up of formal parameters


� formal parameter � 

� � identifier � 
 � type reference �

If the �rst parameter is referenced by the keyword self� then it declares the type of the receiver

object� In other words� it de�nes a type with which the function can be associated� If it is not

speci�ed� the T Object primitive type is assumed by default� All other parameters in this list de�ne

the parameters and their types� The last part of a function signature is a type reference speci�ed

after a colon� It de�nes the result type of the function� In the following example� two computed

functions f age and f spouse are declared


C�� function f age�self
T person�
 T integer

begin

T date today���
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today�initDate��� �# initDate�� is a behavior de�ned on T Date #�

return �today � B getBrtday����

end�

external function f spouse�self
T person� p
T person�
 T person�

The �rst statement declares a new computed function which is written in C�� language� This

function can be associated with a behavior in the T person type� or a behavior in any of its subtypes�

A new function object is created� and the reference f age is bound to it� The second statement

declares a local reference f spouse and binds it to the external function object with the same

semantics� If there are more then one object with the same semantics in the objectbase� then the

system prompts the user about the ambiguity and it must be resolved�

To associate a behavior with a corresponding function� the association statement is used� The

general syntax of the association statements is


� association � 

� associate in � type reference �

�� computed list ��

�� stored list ��

where the computed list is a comma�separated list of computed function associations� and the stored

list is a list of stored function associations� Each computed function association is de�ned as


� computed association �



� � behavior reference list � with � function reference �

and the stored function association is one of the following�


� get association � 

� � behavior reference list � with GET

� set association � 

� � behavior reference list � with SET

The type reference in the association clause speci�es the type within which the associations are to

be de�ned� Thus� one association statement can be used to de�ne associations between behaviors

and function objects only within a single type� Computed list in this statement associates computed

functions with the behaviors in a given type� Every element of this list consists of a behavior

reference list and one function reference� Behavior names together with the type reference �from the

association clause� uniquely specify behavior objects in the objectbase� Behaviors which are in the

same behavior reference list are associated with the same function object whose reference is given

after the with clause� In other words� they all have the same implementation� The stored clause in

this statement associates stored functions with the behaviors in the given type� However� there are

�The full syntax of the association statement is given in Appendix A�



��

two di�erent semantics of behaviors which can be associated with stored functions� The semantics

of behaviors can be either to retrieve the object which is stored� or to store it �set its value�� Thus�

stored function association is made up either of the get sequence� or of the set sequence� Moreover�

if there is one get �set� association� there must be at least one set �get� association and vice versa�

Furthermore� there can be one or more get�set clauses within the same association statement� they

all correspond to the same stored function� Thus� one association statement creates at most one

stored function� In order to associate behaviors in a speci�c type with di�erent stored functions�

separate association statements must be used�

In the following example� the association statement is used for two di�erent pairs of behaviors


one with the result type T string� and the other with the result type T date� It is incorrect� as the

behaviors have di�erent result type �semantics�� thus they should be associated with two di�erent

stored functions�

associate in T person

B getName with GET � B setName with SET �

B getBrtday with GET � B setBrtday with SET �

The example below illustrates associations which can be done within the T person type� Two

association statements are used to ensure that two di�erent stored function are created�

associate in T person

B getName with GET � B setName with SET �

associate in T person

B getBrtday with GET � B setBrtday with SET �

B age with f age� B spouse with f spouse�

The �rst association statement creates a pair of stored functions� The function to retrieve the

object is referenced by GET � while the function to store the object is referenced by SET � Thus�

behavior B getName is associated with GET � and behavior B setName is associated with SET in

the T person type� The second statement creates a new pair of stored functions� and associates

behaviors B getBrtday and B setBrtday with GET and SET respectively� This statement also

associates behaviors B age and B spouse with computed functions referenced by f age and f spouse

respectively�

The next TDL statement is a class declaration statement which is used to create a new class

object in a TIGUKAT objectbase and to associate it with an existing type� When a class is created�

it is assumed that the corresponding type is correctly and fully de�ned� meaning that all behaviors

are speci�ed and the associations between behaviors and functions are completed� An error condition

is raised if there exists a behavior within a given type which does not have an associated function



��

de�ned when a request to create a class for this type is posted� The general syntax of the class

declaration statement


� class declaration � 

� create class � � new reference � �

on � type reference �

The class reference in this statement declares a reference to a new class object� However� this

speci�cation is optional� if not provided� the class can still be accessed through its type� The

following example illustrates two di�erent ways to create a class object for the T person type�

create class C person on T person�

or the other way to create a class object is


create class on T person�

Both of these statements create class object for the T person type� However� the �rst statement

not only creates a class object and associates it with the type object T person� but also declares a

separate reference C person to the class object� The type object and the class object� in this case�

have unique direct references� The second statement creates a class object for the T person type�

and associates it with this type� Although� there is no direct reference to the class object� it can

still be accessed through the B classof behavior de�ned on the T type type�

The last TDL statement is a collection declaration statement which creates new collection objects�

The general syntax of this statement is as follows


� collection declaration � 

� create collection � new reference �

type � type reference �

�with � object list � �

The create collection clause in this statement declares a new reference to a collection object� The type

clause speci�es the member type of collection elements� while the with clause initializes the collection

with objects given in the list� The following example illustrate how to create a new collection in

TDL�

Example �� Let assume that the references
 john� paul and peter reference the objects of the

T person type� A new collection from these objects can be created by using the following statement


create collection students

type T person

with john� paul� peter

In summary� TDL is used to create type� class� behavior and function objects in a TIGUKAT

objectbase� and to de�ne relationships among them� To create a new type object� the type reference
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and the list of immediate supertypes must be given� Behaviors of a new type can be either de�ned

during the type declaration� or later using behavior manipulation statements� There are stored and

computed functions in the TIGUKAT objectbase� Stored functions cannot be explicitly declared�

they are created during the association process� Computed functions are explicitly declared and cre�

ated using computed function declaration statements� Associations between behaviors and functions

are de�ned by association statements� Finally� class objects are created using a class declaration

statement� However� a new class can be created for an existing type only if this type is completely

de�ned� meaning that all behaviors have functions associated with them� Otherwise� an error oc�

curs� Example ��� illustrates the complete process of creating new type� class� behavior and function

objects in the GIS which is de�ned in Example ���i� and de�ning associations among them�

Example �� De�ne two types T dwelling and T house for the GIS� The type T dwelling is a

direct subtype of the T Object type� and it has two behaviors
 B address and B inZone� The type

T house is a subtype of T dwelling type that has one additional behavior
 B mortgage� B inZone

and B address in T house are inherited form the type T dwelling� Thus� the de�nition of these two

types in TDL is


create type T dwelling

under T Object

public� B setAddr�T string�
T string�

B getAddr
T string�

B inZone
 T land�

create type T house

under T dwelling

public� B setMortgage�T real�
T real�

B getMortgage
T real�

Since in type T dwelling� B address is to be associated with a stored function� two behaviors


B setAddr and B getAddr are de�ned instead of B address� Although these behaviors have di�erent

semantics� they will be associated with the same stored function� Since we would like a slightly

di�erent implementation for B inZone in T house then the one in T dwelling� we declare two

di�erent function objects for them


external function dw inZone�self
T dwelling� � T land�

external function hs inZone�self
T house� � T developed�

We assume� that functions dw inZone 
 T land and hs inZone 
 T developed already exist some�

where in the system and now we have local references to them� There are two stored functions for
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the !address� behaviors in T dwelling type� and the mortgage behavior in the T house type� They

will be created during the association process� Now� the associations between behavior objects and

function objects can be speci�ed�

associate in T dwelling

B inZone with dw inZone�

B setAddr with SET �

B getAddr with GET �

associate in T house

B inZone with hs inZone�

B setMortgage with SET �

B getMortgage with GET �

Finally� as all associations are done� class objects for the newly created types can be created�

create class C dwelling on T dwelling�

create class C house on T house�

��� TIGUKAT Query Language

The main function of TQL is to retrieve and to manipulate objects in a TIGUKAT objectbase� Its

syntax is based on the SQL select�from�where structure �Dat���� while its semantics is de�ned in

terms of the object calculus� In fact� there is a complete reduction from TQL to object calculus�

thus the semantics of the language is formally speci�ed�

����� Design Decisions

TQL is based on the SQL select�from�where structure� We have decided to adopt this structure for

various reasons� First of all� SQL is the standard language for relational systems� Second� current

work on SQL� attempts to extend its syntax and its semantics to ful�ll requirements of object�

oriented systems �Gal���� Finally� any syntax of a query statement must provide a way to specify

the three basic components of the query block� Instead of designing a new structure to achieve the

same result� we have adopted the one which is already successful in other systems�

TQL extends the basic SQL structure by accepting path expressions �implicit joins �KBC�����

whenever it makes sense� Thus� path expressions can be used in the select clause to navigate trough

the schema� They can be used in the from clause if the result of the application of behaviors is a

�nite collection� They can also be used in the where clause as predicates� Since the object equality

is de�ned on the primitive type T object� explicit joins are also supported by TQL� Queries operate
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on �nite collections and they always return new collections as results� Thus� query results are

queryable� Also� queries can appear in the from and where clauses of other queries �the concept of

nested queries is supported�� Objects can be queried regardless of whether they are persistent or

transient� Finally� TQL is built on top of the object calculus� which makes the semantics of the

language well de�ned�

It should be noted here� that the syntax for the application of aggregate functions is not explicitly

supported by TQL� However� as the underlying model is purely behavioral� these functions are

de�ned as behaviors on the T finCollection primitive type� They can be applied to any collection

including those returned as a result of a query�

����� The Syntax of TIGUKAT Query Language

There are four basic TQL operations
 select� insert� delete� and update� In addition� there are

three binary operations
 union� minus� and intersect� Each of these statements operates on a set

of input collections and returns a collection as a result� However� only the semantics of the select�

union� minus� and intersect statements are currently well de�ned� The de�nition of the semantics

for the insert� delete and update statements involves the speci�cation of the update semantics in the

TIGUKAT object model� These aspects of the object model and the associated language constructs

are currently being developed and will be presented in future reports�

The basic query statement of TQL is the select statement� It operates on a set of input collections

and it always returns a new collection as the result� The general syntax of the select statement is


� select statement � 

� select � object variable list �

� into 
 persistent 
 all �� � collection name � �

from � range variable list �

� where � boolean formula � �

The select clause in this statement identi�es objects which are to be returned in a new collection�

There can be one or more object variables in this clause� They can be in the form of simple variables�

path expressions �which are equivalent to Bspecs de�ned in Chapter �� Section ����� index variables�

or constants� They correspond to free variables in object calculus formulas� The into clause declares

a reference to a new collection returned as a result of the query� If the into clause is not speci�ed� a

new collection is created� however� there is no reference to it� This is especially useful when a query

is embedded in some other query and the collection returned as a result does not require an explicit

reference� Also� as the TIGUKAT language supports the assignment statement� a variable reference

can be bound to the result of a query� Therefore� the into clause can be omitted� In addition� the

result collection can be made persistent by specifying it in the into clause� The persistent clause

makes only the container object persistent in the objectbase� while a persistent allmakes all elements

of the collection persistent as well� If elements of the collections are themselves collections� persistent
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allmakes all the objects in those collections persistent in a recursive fashion� The from clause declares

ranges of object variables in the select and where clauses� Every object variable can range over either

an existing collection� or a collection returned as a result of a subquery� while a subquery can be

either given explicitly� or as a reference to a query object� It is useful to distinguish between constant

references to collections and variable references to collections� A constant reference is a reference

which does not change during the execution of a query� In particular� it can be a reference to a

collection that is a result of the evaluation of a subquery� A variable reference to a collection is a

reference which can change during the execution of a query� The range variable in the from clause

has the following syntax


� range variable � 

� � variable list � in � collection reference � � � �

� collection reference � 

� � term �

j � � query statement � �

The collection reference in the range variable de�nition can be followed by a plus !�� which refers to

a shallow extent of a collection or a class� If it is not speci�ed� a deep extent is assumed by default�

In case of collections� the deep and shallow extents are equivalent�

The term in the collection reference de�nition is either a constant reference to a collection� a

variable reference� or a path expression�

The where clause de�nes a boolean formula which must be satis�ed by objects returned by a

query� Boolean formulas in TQL are de�ned in a similar �recursive� fashion as the formulas of

the object calculus� In fact� there is a complete correspondence between the formulas of the query

language and the object calculus formulas� Boolean formulas of the TQL have the following syntax


� boolean formula � 

� � atom �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

j � exists predicate �

j � forAll predicate �

j � boolean path expression �

An atom in the TQL boolean formula is one of the following


� atom � 

� � term � � � term �

j � term list � in � collection reference � ���

where the term is a variable reference� a constant reference or a path expression� and the collection

reference is the same as in the range variable de�nition�
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Two special predicates are added to boolean formulas of the query language in order to express

existential and universal quanti�cation� The existential quanti�er is expressed by the exists predicate

which is of the following format


� exists predicate � 

� exists � collection reference �

The exists predicate is true if the collection returned by the subquery is not empty� Otherwise� the

predicate is false� The exists predicate is unnecessary in the TQL� as every query with this predicate

in the where clause can be transformed to the equivalent query without this predicate� However� we

have decided to include it in TQL� so users are not forced to write queries in prenex normal form�

The universal quanti�er is expressed by the forAll predicate which has the following structure


� forAll predicate � 

� forAll � range variable list � � boolean formula �

The syntax of the range variable list is the same as in the from clause of the select statement� It

de�nes variables which range over a speci�ed collection� The boolean formula is evaluated for every

possible binding of every variable in this list� Thus� the entire forAll predicate is true� if for every

element in every collection in the range variable list� the boolean formula evaluates to true� If� on

the other hand� there exists at least one element in any collection such that the formula evaluates

to false� then the whole predicate is false�

Example ��

forAll p in P� q in Q F �p� q�

This predicate is true if for every element of the collection P � and for every element of the collection

Q� the formulaF �p� q� evaluates to true �the formal semantics of this predicate given in Section �������

It should be noted here that collections in the range variable list can be given explicitly as constant

references to collection objects� or implicitly as queries �just as it is in the from clause of the select

statement��

The last part of the de�nition of the boolean formula is the boolean path expression which is

equivalent to the following formula


� path expression � � TRUE
FALSE

However� to avoid such arti�cial constructs� we include boolean path expressions in the de�nition of

the TQL formula under two conditions� First� all invoked functions are side�e	ect�free� Second� the

result type of the whole path expression is of a boolean type�

So far� a select statement with only one simple object variable in the select clause was discussed�

There can be one or more objects of various formats in this clause� The object in the select clause

has the syntax
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� object variable � 

� �� � cast type � �� � term �

j � index variable �

where a term is either a constant reference to an object� variable reference to an object� or a path

expression� The �rst de�nition of the object variable corresponds to a standard reference to an

object� The projection type enclosed in brackets �which is optional in this clause� de�nes the type

of elements of a result collection� However� it makes sense only if this type is a supertype of the

type of an object which is after the cast type� It acts as a behavioral projector or a generalization

operator �Gal���� The interface of objects returned in the result collection is a subset �not necessarily

a proper one� of the interface of objects given in the select clause� This subset is de�ned by the

interface of the type enclosed in brackets� The construct used to project behaviors is similar to the

cast function in �Gal���� and equivalent to the cast operator in �Bla���� If it is is not given� the type

of the result collection is inferred from the types of collections de�ned as ranges� The second part

of the de�nition of an object variable is an index variable� It has the following format


� index variable � 

� � identifier � � � behavior name list � �

The role of an index variable is to specify the behaviors which are applicable to objects in the result

collection� The idea is the same as in the projection type� however� all behaviors in an index variable

must be given explicitly in the behavior name list� Thus� objects in the result collection can have

di�erent types then original ones�

TQL supports three binary operations
 union� minus� and intersect� Similarly to a select

statement� they operate on the collection of objects and always return new collections as result� The

syntax of these statements is


� collection reference � union � collection reference �

� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

A collection reference in a TQL binary statement is either a constant reference to a collection object�

or it is a query�

����� The Formal Semantics of TQL

The semantics of TQL are de�ned in terms of the object calculus� It is shown in this section that

every TQL statement corresponds to an object calculus expression� thus there is a complete reduction

from TQL to the object calculus�

Throughout this section the following notation is used� Every TQL select statement of the form


select p�� p�� ��� pk

into newCollection
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from p� in P�� ���� pk in Pk� q� in Q�� ���� qn in Qn

where F �p�� ���� pk� q�� ���� qn�

is referred to as S�p�� ���� pk�� In other words� queries can be modelled as functions S�p�� ���� pk� which

operate upon one or more collections� and return collections as results� A list which is returned as

a result collection is made up of objects referenced by p�� ���� pk� and is denoted as � p�� ���� pk ��

Furthermore� for groups of quanti�ers like �p�� ����� � pk or �p�� ����� �pk� the shorthand notation is

used
 � � p�� ���� pk � and � � p�� ���� pk � respectively� Finally� � p�� ���� pk ��� x�� ���� xk � is a

short notation for p� � x�� ���� pk � xk�

It is shown in this section� that every select statement S�p�� ���� pk� corresponds to the object

calculus expression
 f� p�� ���� pk � j ��� p�� ���� pk ��g� The select clause in S�p�� ���� pk� de�nes

the free variables of the object calculus formula� The from clause speci�es the ranges of variables

which can either be given explicitly as constant references to collections� or implicitly in the form of

subqueries� If the range variable is de�ned over a constant collection reference� then it corresponds

to a range atom �e�g� p in C person � C person�p�� in the object calculus� If it ranges over a

collection de�ned by a variable or a path expression then it corresponds to a membership atom

�p in q�kids�� � �p � q�kids��� Otherwise� in case of subqueries� the semantics of the range variable

is de�ned by a complex object calculus formula� However� as shown below� every query which has

a subquery in the from clause can be rewritten as an equivalent at query�

Theorem �� Every TQL query Sp�p�� ���� pk� with nested queries in the from clause can be rewrit�

ten as an equivalent at query�

Proof� Every query with a subquery in the from clause is expressed in TQL as�


S�p�� ���� pk� � select p�� ���� pk

from p� in $P� � ���� pi in $Pi�

pi�� in Si���qi��� � ���� pk in Sk�qk��

r in $R

where F �p�� ���� pk� r�

which is equivalent to the object formula


�p�����pk �P��p�� � ���� Pi�pi� � �����

pi�� � Si���qi��� � ���� pk � Sk�qk� � �r�R�r� � F �p�� ���� pk� r���

P�� ���� Pi in this query are constant references to collections� r represents all variables which appear

in the query� but not in the select clause� and Si���qi���� ���� Sk�qk� represent subqueries� Thus�

every Si�j �j � �� ���� k� i� is also a query� and it is represented in TQL as


�For brevity� we assume that all collection referencesP in the from clause are constants� It can be easily generalized

to include other cases� however� this does not e�ects the proof�
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Si�j�qi�j� � select qi�j

from qi�j in $ Qi�j � ri�j in $ Ri�j

where Fi�j�qi�j � ri�j�

which is equivalent to the following object calculus formula


Si�j�qi�j� � �qi�j�Qi�j�qi�j� � �ri�j�Ri�j�ri�j� � Fi�j�qi�j� ri�j���

Furthermore� every subformula in the from clause which is in the form
 pi�j in Si�j�qi�j� is equiv�

alent to


pi�j in Si�j�qi�j� � �����

�qi�j�Qi�j�qi�j� � �ri�j�Ri�j�ri�j� � Fi�j�qi�j� ri�j�� � pi�j � qi�j�

In ���� every qi�j �j � �� ���� k� i� can be replaced by pi�j yielding an equivalent formula


pi�j in Si�j�qi�j� � Qi�j�pi�j� � �ri�j�Ri�j�ri�j� � Fi�j�pi�j � ri�j��

Thus� by replacing each pi�j in Si�j �qi�j� in ��� the following equivalent formula is obtain


�p�����pk�P��p�� � ���� Pi�pi� � �����

�Qi���pi��� � �ri���Ri���ri��� � Fi���pi��� ri���� � ����

�Qk�pk� � �rk�Rk�rk� � Fk�pk� rk��� � �r�R�r� � F �p�� ���� pk� r���

The formula ��� is in conjunctive form� therefore� changing the order of predicates results in a logi�

cally equivalent formula� Thus� in a new formula� all range atoms of the form Pi�pi�� Qi�qi�� Ri�ri�

are put together� and all well�formed formulas of the form F �p�� ���pk� r�� ���� Fi�pi� ri� are put to�

gether� The equivalent formula is as follows


�p�����pk�P��p�� � ���� Pi�pi��

Qi���pi��� � ���� �Qk�pk��

�ri���Ri���ri��� � ���� �rk�Rk�rk��

Fi���pi��� ri��� � ���� Fk�pk� rk� � F �p�� ���� pk� r���������

Thus� the original query S�p�� ���� pk� can be rewritten to the following form


S
�

�p�� ���� pk� � select p�� ���� pk

from p� in $P� � ���� pi in $Pi���

pi�� in $Qi�� � ���� pk in $Qk�

ri�� in $Ri��� ���� rk in $Rk� r in $R

where Fi���pi��� ri��� � ���� Fk�pk� rk� � F �p�� ���� pk� r�

�
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From now on� we assume that all ranges in the from clause are de�ned by either the constant

references to a collection corresponding to the range atoms in the object calculus formulas� or

by variable references corresponding to membership atom of the object calculus� Consider the

following example


Example ��

select p

from p in $P�

q in � select v from v in $V�w in $W where F��p� v� w�� �z �
Sp

�

where F��p� q�

This query has a nested query �Sp� in the from clause which is in the format


select v��z�
a

from v in $V�w in $W� �z �
b

where F��p� v� w�� �z �
c

Variables in the select clause correspond to free variables of the calculus expression �part �a��


f v��z�
a

j V �v� � �w�W �w�� �z �
b

�F��p� v� w��� �z �
c

g

The from clause speci�es ranges of the object variables� In this case� all range variables correspond

to range atoms of the object calculus� and build the second part �b� of the calculus expression�

Finally� the where clause contains a boolean formula� which correspond to a well�formed formula of

the calculus� and makes up the third �c� part of the query expression�

In a similar fashion� a calculus expression is built for the entire query� There is one variable p

in the select clause� which corresponds to a free variable of the calculus formula� The from clause

de�nes ranges of variables used in the select and where clauses� In this case the range of the variable p

is a constant reference� while the range of q is given in the form of a subquery �Sp� which corresponds

to the calculus formula


�q in Sp� � �v �V �v� � �w�W �w� � F��p� v� w� � q � v���

The where clause adds the last part F��p� q� to the calculus expression� Thus� the �nal form of this

expression is


f p j P �p� � �q��v�V �v� � �w�W �w� �F��p� v� w� � q � v��� � F��p� q�g

This formula can be transformed to
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�q��v �V �v� � �w�W �w� � F��p� v� w� � q � v���

� �v �V �v� � �w�W �w� � F��p� v� w����

Thus� the calculus expression for the whole query is


f p��z�
a

j �P �p� � �v�V �v� � �w�W �w�� �z �
b

�F��p� v� w� � F��p� v�� �z �
c

��g

The query can be rewritten in TQL as


select p��z�
a

from p in $P� v in $V�w in $W� �z �
b

where F��p� v� w� and F��p� v�� �z �
c

�

Next� it is shown that there is a direct correspondence between a TQL boolean formula in the where

clause and the object calculus well�formed formulas�

Theorem �� Every boolean formula in the where clause of the select statement corresponds to a

well�formed formula in the object calculus�

Proof� A boolean formula in TQL has the following syntax


� boolean formula � 

� � atom �

j � exists predicate �

j � forAll predicate �

j � boolean path expression �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

a� The atom in a TQL boolean formula is one of the following


� atom � 

� � term � � � term �

j � term list � in � collection reference � ���

The �rst atom is equivalent to the equality atom of the object calculus� If the term on the

left hand side of the equality atom is a variable� then it corresponds to a generating atom

of the object calculus� The semantics of the second atom depends on the collection reference�

If it is a constant reference to a collection� then it corresponds to a range atom in the object

calculus� Otherwise� it corresponds to a membership atom�
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b� The existential quanti�er in TQL is expressed by the exists predicate


� exists predicate � 

� exists � collection reference �

The exists predicate is true if the referenced collection is not empty� Otherwise� the predicate

is false� The collection reference in this predicate is either a constant reference to a collection

object� or it is a query which returns a collection as a result� In the �rst case� the exists

predicate has the format
 exists P � and it is equivalent to the object formula �x P �x�� In the

second case� when the collection reference is given implicitly by a query� the exists predicate

has the form
 exists S�p�� ���� pk�� Then� it corresponds to the following calculus formula


� � x�� ���� xk � �� � p�� ���� pk � �S�p�� ���� pk��

� � p�� ���� pk ��� x�� ���� xk ��

However� the exists predicate is unnecessary in TQL� Every query with this predicate in the

where clause can be transformed to an equivalent at query� We decided to include it in the

language� so users are not forced write queries in prenex normal form� Consider the example


Example ��

S�p� � select p

from p in $P� r in $R

where F��p� r� and exists

� select v from v in $V�w in $W where F��p� v� w�� �z �
S�v�

�

The subquery S�v� in the where clause corresponds to the object calculus formula


S�v� � �v�V �v� � �w�W �w� � F��p� v� w���

Thus� the entire query in the object calculus can be expressed by


�p �P �p� � �r�R�r� � F �p� r�� �v�V �v� � �w�W �w� �F��p� v� w�����

Applying formula preserving transformations� the above formula can be rewritten


�p�P �p� � �r�R�r� � �v�V �v� � �w�W �w� � F��p� r� � F��p� v� w�����

Thus� in TQL� S�p� can be expressed as


S
�

�p� � select p

from p in $P� r in $R� v in $V�w in $W

where F��p� r� and F��p� v� w�

�
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c� The universal quanti�er is represented in TQL by the forAll predicate� It has the following

format


� forAll predicate � 

� forAll � range variable list �

� boolean formula �

This predicate is true� if for every element in every collection in the range variable list� the

boolean formula evaluates to true� If� on the other hand� there exists at least one element in

any collection such that the formula evaluates to false� then the whole predicate is false� Again�

the collection references in the range variable list are either constant references to collection

objects� or they are given by queries� Therefore� in the general case� this predicate is


forAll p� in $P�� ���� pi in $Pi�

pi�� in Si���qi���� ���� pk in Sk�qk�

F �p�� ���� pk�

where P�� ���Pi are constant references to collections� and Si���qk�� ����

Sk�qk� are queries� The following object calculus formula is equivalent to this predicate


� p����� pk���P��p�� � ���� �Pi�pi�

���Si���qi��� � pi�� � qi��� � ���� ��Si���qi��� � pi�� � qi����

� F �p�� ���� pk��

d� The next part of the de�nition of a boolean formula is a boolean path expression� In general� path

expressions in the TIGUKAT language correspond to Bspecs de�ned in �PL�OS���� Boolean

path expressions are Bspecs which evaluate to objects of T boolean type� A boolean formula

which is given in the form of a boolean path expression is true if the path expression evaluates

to a constant object TRUE� Otherwise� it is false� Therefore� the boolean path expression in

the TQL boolean formula de�nition can be considered as a shorthand notation for an equality

atom of the form


� path expression � � TRUE
FALSE

Thus� boolean path expressions correspond to equality atoms in the object calculus�

e� The remaining de�nitions of TQL boolean formulas correspond directly to the recursive de��

nition of a well�formed formula in the object calculus� Thus� every TQL boolean formula is

equivalent to an object calculus well�formed formula� �

As shown in Section ������ the select clause is made up of one or more object terms� Each term

is either a constant reference to an object� a variable reference to an object� path expression� or an

index variable� In addition� each term can be proceeded by a cast type which extracts behaviors
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from it� However� the object calculus allows constants� variables� Bspecs and index variable as free

variables in its formulas as well� Thus� every constant reference in TQL corresponds to a constant

in the object calculus� a variable reference is equivalent to a variable in the object calculus� and a

path expression in TQL corresponds to a Bspec� TQL index variables extract certain behaviors from

object�s types� thus they correspond to index variables of the object calculus� Finally� each term

can be preceded by a cast type which extracts �generalizes� behaviors from an object type� Thus� a

TQL cast type and the following term correspond to an index variable in the object calculus as

well�

Example ��

T person
 subtype of T object has the following behaviors


fB name� B ageg plus all behaviors inherited from T object

T student
 subtype of T person has the following native behaviors


f B stId� B department� B gpa g

Thus� the following TQL query


select �T person� p

from p in C student

where F �p�

corresponds to the following object calculus formula


�p�B name�B age� �C student�p� � F �p��

which corresponds to the following calculus expression


fp�B name�B age� j C student�p� � F �p�g

�

Theorem �� Every select statement in TQL has an equivalent object calculus expression�

Proof� It follows directly from Theorem ��� and Theorem ���� Every select statement can be

expressed as


select p�� p�� ��� pk

from p� in $P�� ���� pk in $Pk� q� in $Q�� ���� qn in $Qn

where F �p�� ���� pk� q�� ���� qn�

where p�� p�� ��� pk are free variables within the query� P�� ���� Pk� Q�� ���� Qn are constant references to

collections� and F �p�� ���� pk� q�� ���� qn� is a TQL boolean formula� Thus� the whole query corresponds

to the object calculus expression of the form


f p�� ���� pk j P��p�� � ��� � Pk�pk��

�q�� ���� �qn�Q��q�� � ��� �Qn�qn� � F �p�� ���� pk� q�� ���� qn�� g� �
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Summarizing� the select clause of the select statement de�nes the free variables of an object

calculus formula� which correspond to variables of the target list in the object calculus expression�

The from clause declares a range of variables which correspond to range atoms of an object calculus

formula� Finally� the where clause speci�es a boolean condition that corresponds to an object calculus

well�formed formula� Therefore� the semantics of every select statement in TQL are well de�ned�

Theorem �� Every binary operation in TQL has an equivalent object calculus expression�

Proof� The binary operations in TQL have the following syntax


� collection reference � union � collection reference �

� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

Thus� in the object calculus they are expressed by simple calculus expressions
 f o j P �o� �Q�o�g�

f o j P �o� � �Q�o�g� f o j P �o� �Q�o�g� where P is a reference to the �rst collection in the binary

statement� and Q is a reference to the second collection� �

Theorem �� The reduction from TQL to the object calculus is complete�

Proof� It follows directly from Theorems ���� ���� ��� and ���� �

The following examples illustrate queries� which are formally speci�ed in Examples �������� ex�

pressed in TQL�

Example �� The query in Example ���
 Return land zones valued over �
������ or covering an

area over 
��� units is expressed in TQL as


select o

from o in C land

where �o�B value�� � ������� or �o�B area�� � �����

Example �� The query in Example ���
 Return all zones that have people living in them �the

zones are generated from person objects� is expressed in TQL as


select o

from q in C person

where �o � q�B residence���B inzone���

Example �� The query in Example ���
 Return the maps with areas where citizens over the age

of �� years live is expressed in TQL as
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select o

from o in C map

where exists � select p

from p in C person� q in C dwelling

where �p�B age�� � �� and q � p�B residence��

and q�B inzone�� � o�B zones����

Example ��� The query in Example ���
 Return all maps that describe areas strictly above ����

feet is expressed in TQL as


select o

from o in C map

where forAll p in � select q

from q in C altitude

where q � o�B zones���

p�B low�� � ����

Example ��� The query in Example ���
 Return the dollar values of the zones that people live in

is expressed in TQL as


select p�B residence���B inzone���B value��

from p in C person

Example ��� The query in Example ���
 Return the zones that are part of some map and are

within 
� units from water� Project the result over B title and B area is expressed in TQL as


select o�B title�B area�

from p in C map� o in p�B zones� q in C water

where o�B proximity�q� � ��

Example ��� The query in Example ���
 Return pairs consisting of a person and the title of a

map such that the person�s dwelling is in the map is expressed in TQL as


select p� q�B title��

from p in C person� q in C map

where p�B residence���B inZone�� � q�B zones��
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��� TIGUKAT Control Language

The last part of the TIGUKAT Language is the TIGUKAT Control Language �TCL� which consists

of operations performed on session objects� Since everything in TIGUKAT is treated as a �rst class

object� sessions are also represented by objects in the objectbase� They can be referenced� opened�

accessed and closed� Session objects are instances of the C session class which is of T session

type� T session is a direct subtype of T Object type� Among others� it has the following behaviors


B openSession� B closeSession� B saveSession� B quitObjectbase �a more complete description of

session objects and their behaviors is given in Chapter �� which correspond to the TCL session

speci�c statements�

Every TIGUKAT objectbase has at least one instance of the C session class which is referred

to as a root session� When a TIGUKAT objectbase is opened� a root session becomes the current

session in the system� All other sessions can be opened and manipulated from this session by issuing

TCL session speci�c operations� TCL consists of the following session speci�c operations
 open

session� close session� save session� make persistent� and quit�

The open session statement is used to open a session object which provides a workspace from

which a user can perform operations on the objectbase� The syntax of this statement is


� open session � 

� open � session reference �

The session reference is a reference to a session object in the objectbase� If a session object referenced

by the session reference does not exists in the objectbase� a new session object is created� and it

becomes the current session in the system� Otherwise� the object which is referenced by the session

reference becomes the current session in the system�

The save session statement is used to save the session environment� and also the session object

becomes persistent� The general syntax of this statement is


� save session � 

� save �� session reference ��

All transient objects are saved� meaning that their references are stored in the session symbol table

�they do not become persistent� however�� Next time that session object is opened� the environment

is restored� and the user can continue the previously closed session� Otherwise� if the session is

closed without saving� all transient objects are lost�

The close session statement is used to close a current session without leaving an objectbase� The

syntax of this statement is


� close session � 

� close �� session reference ��

If the session environment has not been saved� all transient object are lost� If the session object has

not been saved nor has been made persistent before this statement was issued� it is lost as well� If�
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on the other hand� the session environment has been saved� next time this session object is opened�

the entire environment is restored�

The make persistent statement is used to make transient objects persistent in the objectbase�

The syntax of this statement is


� make persistent � 

� persistent � object reference list �

j persistent all � collection reference �

The �rst statement makes all objects speci�ed in the object references list persistent in the object�

base� Persistence in TIGUKAT is associated with individual objects� therefore� if the referenced

object is a collection or a class� only the container object is made persistent� All transient objects

which are in this container stay temporary unless they are explicitly made persistent� To make all

objects persistent within the container object� the second form of a statement must be used� If the

elements of the collection are themselves collections� it recursively makes all objects persistent�

The last session speci�c statement in TCL is the quit statement which is used to quit the session

without saving� and leave the TIGUKAT objectbase� The syntax of this statement is


� quit objectbase � 

� quit�

This statement can be invoked from any session� That means it can be invoked from the root session

as well as from any other session� The request to close all sessions which are currently opened is

sent� The objects which haven�t been made persistent or saved in any opened session are lost�

The following example illustrates a sequence of the invocations of TCL statements in a typical

TIGUKAT session�

Example ��� A user is in the UNIX environment� To invoke a TIGUKAT objectbase� he types

tigukat and presses the RETURN key


� tigukat

This statement opens the TIGUKAT objectbase� The TIGUKAT language translators are invoked�

The system is ready to accept user requests �a new prompt � % is displayed�� A root session object�

which provides a workspace for user requests� is opened� A user can open new sessions �workspaces�

from the root session by issuing the following statement


% open newSession�

This statement opens a session object referenced by newSession
� If there is already a session object

referenced by newSession� in the objectbase� the B openSession behavior is applied to it� As a

result� it becomes the current session in the system� If� on the other hand� there is no session object

referenced by newSession�� the B new behavior is applied to the C session object� a new object is

created �this object is referenced by newSession��� and it becomes the current session in the system�
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Thus� a user performs all modi�cations to the objectbase by issuing TDL and TQL statements in

the newSession� session �workspace�� If the user wants to save the current session with the entire

environment �transient objects which have been created since the opening of the session�� the TCL

save statement must be invoked


% save newSession�

The behavior B saveSession is applied to newSession
 object� All transient objects are saved as

the session environment� meaning that their references are stored in the session symbol table� Next

time this session object is opened� the entire environment is restored� and the user can continue

a previously closed session� The next step in the session sequence is to make the current session

persistent in the objectbase �if it has been just created�� This is done by the TCL make persistent

statement


% persistent newSession�

The newSession
 object becomes persistent in the TIGUKAT objectbase� Next time the objectbase

is opened� it can become a current session by simply invoking an open session statement with the

reference newSession�� Finally� to close the current session newSession
� the TCL close statement

must be invoked


% close newSession�

The B closeSession is applied to the object newSession�� and the root session becomes the current

session in the objectbase� �

In addition� TCL supports an assignment statement� Since TIGUKAT is a reference based model�

objects are accessed through their references� To bind a reference to an object that is returned as

the result of some query or execution of a behavior� the assignment statement can be used� It has

the following structure


� assignment � 

� let � left side � be � right side �

where the left side is


� left side � 

� � object reference �

and the right side can be one of two things


� right side � 

� � TQL Statement �

j � path expression �

It should be noted here� that the current implementation of TCL is only preliminary� More state�

ments will be added in the future� and they will be presented in forthcoming papers�



Chapter �

Integration with TIGUKAT

Object Model

One of the underlying characteristics of the TIGUKAT object model is its uniform object semantics�

Everything in the model is treated as a �rst�class object� This property makes it easy to extend the

model with features that support concepts that are unique to various applications� These features

are added to the system through the creation of new types�

When the TIGUKAT primitive type system is augmented by additional behaviors de�ned on

primitive types� it is referred to as a core type system� It can then be extended further by the addition

of new types to support database functionality �transaction management� views management� query

features� etc��� The core type system with the database extensions provides a su	cient base to

build advanced OODBMs� In this chapter� two of the database functionality extensions
 T session

and T query are described� They both facilitate the integration of the TIGUKAT language with

the object model� The T session type provides the semantics to represent objectbase sessions as

objects� The instances of T query type� on the other hand� represent queries� In addition� the

process of opening� accessing and querying the objectbase is outlined�

��� TIGUKAT Extensions

Two extensions which are included in the TIGUKAT extended type system
 T session and T query

facilitate the integration of the TIGUKAT language and TIGUKAT object model� In Section �����

the T session type is described� The description includes the list of native behaviors de�ned on that

type� A complete description of this type is given in Appendix B� In Section ����� the description

of the T query type is given in a similar way� Section ����� outlines the advantages of modeling

sessions and queries as objects in the TIGUKAT objectbase�

��
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Figure ���
 Type extensions to the primitive type system�

����� TIGUKAT Session Objects

Before issuing requests to an objectbase� access to the objectbase must be established� It is done

through the session objects which are instances of T session type� There can be one or more

instances of that type in a TIGUKAT Objectbase System �TOBS�� The main role of a session

object is to provide a workspace from which a user can issue requests to the objectbase� Thus�

each session object represents a single workspace� and the entire objectbase is accessible from that

workspace� All objects created in a session are transient in that session� therefore they are not visible

in any other session �there can be more then one session opened at the same time�� However� as

soon as the transient objects are made persistent� they become visible in all other sessions�

The T session type is a subtype of the T object primitive type as illustrated in Figure ���� Each

object of this type represents a TIGUKAT objectbase session� The following behaviors provide the

control over connection to the objectbase�

� B openSession opens a new workspace and establishes a connection with the objectbase through

the receiver session object� The receiver of the message becomes the current session in the

system until the request to close it is issued� or a request to open another session is posted�

� B saveSession saves the session environment as well as the receiver object becomes persistent in

the objectbase� All transient objects are saved by storing their references in the session symbol

table �they do not become persistent however�� Next time that session object is opened� the

environment is restored� so the user can continue a previously closed session� Otherwise� if the

session is closed without saving� all transient objects are lost�

� B environment returns the session symbol table that contains the transient objects �session

environment�� This is a private behavior which is never invoked by the user�

� B closeSession closes the session �workspace�� If the session environment has not been saved�



��

all transient object are lost� If the session object has not been made persistent before this

statement was issued� it is lost as well� If� on the other hand� the session environment has been

saved� next time this session object is opened� the entire environment is restored�

� B quitObjectbase exists the TIGUKAT objectbase� The request to close all sessions which are

currently opened is sent� The objects which haven�t been made persistent or saved in any of

the opened sessions are lost�

The behaviors listed above are necessary in the T session type in order to provide the control over

the connection to an objectbase in a single�user system� A complete description of the T session

type which includes the speci�cation of full signatures and semantics of the behaviors de�ned in this

type is given in Appendix B�

����� TIGUKAT Query Objects

A user query is in the form of a text string that contains a TQL statement �select� union� minus�

intersect� etc��� It is evaluated by invoking a TQL compiler which parses the query� and if it is

syntactically and semantically correct� it creates a new instance of T query type� The TQL compiler

is invoked by the current session object�

A T query type is a subtype of the T function primitive type as illustrated in Figure ���� This

means that queries have the status of �rst�class objects and that they inherit all the behaviors and

semantics of objects� More speci�cally� a query is a specialized function that can be asked for its

source code� can be compiled and can be executed� In addition a query stores execution statistics�

is optimizable� and can be materialized meaning that the result of the execution of the query can

be accessed �a collection��

Since� the T query type is a direct subtype of the T function primitive type� it inherits all

native behaviors de�ned on this type� However� some behaviors are rede�ned in T query to reect

the semantics of queries in the objectbase


� B source returns the source code of a query in the form of a TQL statement� This behavior is

implemented by a stored function�

� B compile compiles the source code of a query� The query statement is translated into an

algebraic tree� optimized� and an execution plan is generated�

� B executable returns the execution plan generated by B compile�

� B execute executes the complied code� In general queries� this means submitting the execution

plan to the storage manager for processing�

� B inputTypes returns a list of types and the ordering of the query arguments� The types are

either of type T collection of a subtype of that type �T class� T bag� etc���
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� B outputType returns the type of the result collection� It is either the T collection type� or

one of its subtypes�

Furthermore� queries have the following specialized �native� behaviors�

� B initialOAPT returns an initial Object Algebra Processing Tree

�OAPT� resulting from the calculus to algebra translation�

� B optimizedOAPT returns an optimized Object Algebra Processing Tree resulting from the

optimization process�

� B searchStrat returns the search strategy which is used by the optimizer to control the opti�

mization process�

� B transformations returns a list of the transformation rule objects that were used when the

query was optimized�

� B argMbrTypes returns a list of member types of the target collections�

� B resultMbrType returns the member type of the result collection�

� B optimize starts the execution of the query optimizer on the receiver object� It uses the

search strategy stored in that object�

� B genExecPlan generates the �best� Execution Plan from the optimized OAPT� This behavior

is invoked by B compile�

� B budgetOpt returns the budget for the optimization�

� B lastOpt returns the date of the last query optimization�

� B lastExec returns the date of the last query execution�

� B materialization returns a reference to the materialized query result �i�e�� the actual result

collection itself��

The full speci�cation of the T query type is given in Appendix B�

����� Sessions and Queries as Objects

Incorporating sessions and queries as specialized objects is a very natural and uniform way of ex�

tending the object model to include control capabilities as well as declarative capabilities� The major

bene�ts of this approach are


�� Sessions and queries are �rst�class objects� so they are represented by the uniform semantics

of objects�
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�� Since they are objects� they can be queried and operated on by other behaviors� This is

especially useful in case of queries� when the generation of statistics about performance is

required to de�ne optimization techniques�

�� Since queries are specialized functions� they are uniformly integrated with the operational

semantics of the model so that queries can be used as implementations of behaviors �i�e� the

result of applying a behavior to an object can trigger the execution of a query��

�� Both T session and T query types can be further specialized by subtyping� thus new concepts

can be incorporated �multiuser system features� adhoc versus production queries etc���

In the current implementation of the TIGUKAT system� there are two subtypes of the T query

type
 T adhocQuery and T productionQuery� each having its own characteristics� The ad hoc

queries are interpreted without incurring high compile�time optimization strategies since they are

used on an ad hoc basis� The production queries� on the other hand� are usually compiled once

and then executed many times� Thus� more time is usually spent on optimizing them and more

sophisticated techniques are used� In the future� when TIGUKAT Objectbase System becomes a

multiuser system� the T session type can be further specialized to subsume additional features

required by such systems�

��� TIGUKAT Objectbase Access

When a TIGUKAT Objectbase System is opened for the �rst time by the user� the TIGUKAT

extended type system is built� It has one instance of the T session type referred to as the root

session object� The root session is automatically opened� and it becomes the current session in the

objectbase� Every session object has its own symbol table which keeps the information about the

session environment� In other words� references to transient objects which have been created and

saved in that session are stored in this symbol table�

The objectbase can be either directly modi�ed� accessed and queried from a root session� or

new sessions can be opened from a root session �as well as from any other current session� and the

connection to the objectbase can be established through them �see Example ������

The TIGUKAT Language provides an interface to the TIGUKAT Objectbase System� It is

invoked by the current session� so all user requests are processed on line� All session speci�c op�

erations like opening a new session� closing a current session� quitting� as well as displaying the

objects� making them persistent� etc� are processed by the TCL interpreter� In a similar way� all

the object de�nition statements �creating new types� classes� collections etc�� are interpreted on line

by invoking the TDL interpreter� Therefore� when a TDL statements is entered� it is parsed� and

if the statement is correct� a new object is created and is accessible at once� All query statement

are parsed� complied and executed by invoking the TQL compiler� The TQL compiler parses a
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statement� generates an execution plan� and sends it to the object manager for execution� A new

instance of T query type is created and the information about a query is stored there�



Chapter �

Implementation

As a part of the TIGUKAT project� the TIGUKAT language has been implemented and integrated

with an existing implementation of the TIGUKAT object model� This chapter describes the language

implementation details as well as design decisions that were made during the implementation of the

�nal version of the TIGUKAT language� In Section ��� the main design choices are discussed�

The arguments for implementing the language parser by hand instead of using available generators

�LEX� YACC� BISON� are stated� In Section ��� the architecture of TDL interpreter is explained�

and the integration with the TIGUKAT object model is presented� The process of TQL compilation

is presented in Section ���� The translation from calculus to algebra is described and explained�

Finally� Section ��� contains a short description of the TCL interpreter�

��� Design Decisions

Every computer language� is de�ned by a set of rules �grammar� which describes syntactic

structures of valid language sentences �programs�� A compiler reads a program written in one

language called a source language� and translates it into an equivalent program written in another

language called a target language� An interpreter� on the other hand� reads a program� and instead

of producing a target program� it performs the operations on line� Both compilers and interpreters

are referred to as translators� The TIGUKAT language uses both kinds of translators� TDL and

TCL are supported by corresponding interpreters� while TQL has its own compiler�

The �rst phase of any translator is the syntax analysis of a program written in some source

language� This phase� referred to as parsing� checks the syntactic correctness of the program� In

practice� however� there is a number of other tasks which are conducted during parsing such as

collecting information about various tokens into the symbol table� performing type checking� and

other kinds of semantic analysis� In this chapter� the parsing phase is referred to as syntax analysis

�The term computer language is used broadly to include any language which provides an interface between a user

and the machine� That includes all programming languages� query languages etc�

��
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with some semantic checking �Figure ����� It is implemented by a language parser that obtains

a string of tokens from a lexical analyzer and veri�es that the string can be generated from the

language grammar�

Three kinds of parsing methods can be distinguished


� Universal parsing methods which can parse any context�free grammar �Cocke�

Younger�Kasami algorithm� Earley�s algorithm �ASU������ However� they are very ine	cient

which makes them rather useless in practice�

� Top�down methods which attempt to �nd a leftmost derivation for an input string� They can

be easily implemented by hand� however they cannot handle every context�free grammar� This

method is used in the implementation of the TIGUKAT language translators�

� Bottom�up methods which attempt to �nd a rightmost derivation of the input string� One

of the advantages of this method is that almost all commonly used context�free languages

constructs can be recognized by the bottom up parsers� In addition� there are several tools

available to generate bottom up parsers automatically�

The TIGUKAT language is implemented in the C�� language� and its implementation consists of

three separate modules� each corresponding to one part of the TIGUKAT language� Recall that

TIGUKAT language is divided into three parts
 TDL� TQL� TCL� each supporting a di�erent set

of statements� The TDL module processes the object de�nition statements� It is implemented as

an interpreter which reads the statement typed by a user� and if it is syntactically and semantically

correct� it creates a new object �type� class� behavior� etc��� The TQL module processes query

statements� It is implemented as a compiler� which reads the query from the standard input� checks

the syntactic and semantic correctness and generates an execution plan� The TCL module processes

session speci�c statements on line� Thus� it is implemented as an interpreter� The top�down parsing

method described in Section ����� is used in the parsing phase of each module�

In subsequent sections� the factors which contributed to the choice of particular methods for

the language implementation are discussed� Thus� the explanation for not using available parser

generators is given in Section ������ Section ����� describes the structure of the symbol table used

by the language translators� In Section ����� the bene�ts of using the C�� programming language

are summarized�

����� Top�Down Parser

The TIGUKAT language parsing phase of each module is implemented by a recursive�descent parser

without backtracking �predictive parser�� The language grammar has been rewritten in order to make

it suitable for this kind of top�down parser� As the �rst step� the left recursion has been eliminated

from the grammar rules� Second� the grammar has been left factored� A complete description
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of the transformations performed on the grammar is given in the technical documentation of the

program� The choice of the predictive parsing was motivated by the fact that the TIGUKAT language

grammar is simple enough to implement by hand� All non�terminal symbols in the grammar become

procedure calls� and all terminal symbols are matched against the input stream� In other words� the

parser attempts to match terminal symbols with the input stream� and makes potentially recursive

procedure calls�

The error recovery employed by the TIGUKAT parser uses a panic mode strategy to restore the

parser to a state where processing of the input stream can be continued� It is based on the the

fact that statements of the language are separated by a semicolon� On the discovering an error�

the parser discards input symbols� one at a time� until a semicolon is found� While the panic mode

strategy often skips a considerable number of input symbols without checking for additional errors�

it has the advantage of simplicity and it is guaranteed not to go into in�nite loop�

����� Symbol Table

A symbol table is a data structure which supports dictionary access� It is used to keep track of

scope and binding information of names �references�� Usually� a symbol table satis�es the following

requirements� First� a symbol table mechanism must allow the e	cient addition of new entries and

locating of existing entries� Second� it must be easy to maintain� since it is one of the most complex

and frequently used structures in the compiler� Finally� it must be accessible in many di�erent ways

and support a variety of functions� For e	ciency reasons� most symbol tables are implemented as

hash tables�

A symbol table in the TIGUKAT system supports dictionary access to objects in the objectbase�

It is implemented as a hash table such that every entry is a pointer to a linked list of symbol table

records� Each record has the structure depicted in Figure ���� Thus� the reference corresponds to

an identi�er �character string� of an object� the type is a pointer to a type object in TOBS� and the

object is a pointer to a �real� object in TOBS� A symbol table in TOBS can be considered as a handle

to the objectbase through which the access to the objectbase is done� Each session object has its

own local symbol table which keeps the information about the objects which are explicitly accessible

in this session� There is also one global symbol table in TOBS which keeps the information about

all the object references in the system� Throughout this chapter� all references which are kept in the

symbol table are referred to as explicit references to objects in TOBS� There can also be implicit

references to objects� An object is referenced by an implicit reference if it is only accessible through

other objects in the objectbase �path expressions�� In other words� there is no direct reference to

that object in the local symbol table�
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����� C		 Programming Language

The TIGUKAT language has been implemented in the C�� programming language� The following

factors contributed to the choice of the C�� language for TIGUKAT implementation� First� C��

is an object�oriented programming language� As a result� it supports the notion of abstract data

types� encapsulation� class hierarchies with multiple inheritance and polymorphism� Therefore� the

key concepts of the TIGUKAT language could be easily mapped into C�� class structures� Second�

being an object�oriented language� it supports good programming practices such as modularity� code

reusability� information hiding� generic programming and extensibility� Since the TIGUKAT project

involves several people implementing various parts of the system simultaneously� good modularity

and extensibility are the key factors in successful integration� Finally� C�� is one of the most

e	cient object�oriented programming languages�

��� TDL interpreter

TDL supports the creation of metaobjects that include type� class� collection� behavior and function

objects in a TOBS� Metaobjects are distinct in the system� because they require specialized behaviors

in order to be created �the B new behavior must be re�ned for them�� TDL provides the syntax to

express those specialized behaviors� TDL statements �create type� create class� etc�� are processed by

the TDL interpreter� Each statement is parsed separately� and if it is syntactically and semantically

correct� a request to create a new object is sent to the storage manager� A new object is created�

and it is accessible throughout the session� If� in addition� the object is made persistent� it stays in

the TOBS� The architecture of the TDL interpreter is given in Figure ����

The TDL interpreter accesses a local symbol table which keeps the informationabout all explicitly
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referenced objects� Every time� a new statement is processed� the TDL interpreter must collect all

the objects which are referenced in the statement �that include all explicitly and implicitly referenced

objects�� In case of an explicit reference� the TDL interpreter looks in the local symbol table to

�nd the appropriate object� and if such reference is found� the corresponding object is returned� An

implicit references which is given in the form of a path expression must �rst be type checked� If it

is correct� the interpreter sends a request to the object manager �Ira��� to execute the behaviors for

a given object �the �rst reference in the path expression is always an explicit reference to an object�

so it can be found in the symbol table�� As a result of the execution of a path expression� the object

is returned by the object manager� When the TDL interpreter successfully collects all the objects�

it sends a request to the object manager to apply the B new behavior to an appropriate object �in

case of a create type statement it is a C type class object� in case of a create class statement� it is

a C class class object� etc�� passing collected object as parameters� A new object is created in the

objectbase� and a record with the information about this object is added to the symbol table�

Example �� The following TDL statement is a request to create a new type in the TOBS�

create type T person

under T Object

public� B getName
 T string�

B setName�T string�
 T string�

This statement is syntactically correct� thus the TDL interpreter creates a new type� It does this in

two steps� First� it collects all objects which are referenced in the statement �T object� B getName�
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Figure ���
 The TQL compiler architecture�

B setName and T string�� Two new behaviors are created as a side e�ect of this statement by

sending a request to the object manager to apply the B new behavior to the C behavior class twice

with the following parameters respectively
 �getName� fg� T string�� and �setName� fT stringg�

T string�� In addition� two entries are created in the symbol table
 B getName� and B setName�

They are associated with the new behavior objects� After the behaviors are created� all objects in this

statement are accessible through the explicit references �T object� B getName� B setName�� Thus

in the second step� the TDL interpreter requests from the object manager to apply the B newtype

behavior to the C type class object with the following parameters
 �fT objectg� fB getName�

B setNameg�� A new type object is created in the objectbase� Also a new entry is added to the

symbol table with reference T person and a new type object �returned by the object manager� is

associated with it� �

��� TQL compiler

The TQL provides the interface which supports the retrieval and the manipulation of objects in

an objectbase� The current implementation of the TQL consists of four basic statements
 select�

union� minus and intersect� The TQL compiler� which is illustrated in Figure ��� processes every

TQL statement in three steps�

In the �rst step� the query statement is parsed by the TQL parser� and if it is syntactically correct�

the object calculus expression in the form of a calculus tree is returned� The second step translates a

calculus expression into an equivalent algebraic expression and returns it in the form of an algebraic

tree� The algebraic tree is an input to the query optimizer which performs algebraic transformations

on it� and generates an execution plan� However� the optimization and the execution plan generation

is not a topic of this thesis� and therefore� it is not discussed any further� A complete speci�cation

of the optimizer and execution plan generation can be found in �Mun���� The calculus formula

generated by the parser is returned in the form of a calculus tree which has the following internal

representation in C��� There are seven kinds of nodes in this tree� Every inner node represents

a logical connective �and� or� negation� exists� forall�� while the leaves of the tree represent atomic

formulas of the calculus� The semantics of every logical connective and every atom is expressed in

the C�� implementation by a separate class� However� all these classes have one common superclass

Formula as illustrated in the Figure ����
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Figure ���
 The class hierarchy for the internal representation of the calculus formula�

The Formula class is an abstract class in this implementation �so are atom� binary� and quanti�er

classes� which speci�es the following common interface to all its subclasses �which represent various

kinds of nodes in the calculus tree�


class Formula f

public�

gen�var� Formula�� check gen property G

con�var� Formula�� check con property G

genAll��� check if the gen holds for all free variables

conAll��� check if the con holds for all free variables

evalify��� check if the formula is safe

genify��� transform from evaluable to allowed form

ANFify��� transform to an allowed normal form

algebra��� transform to the algebraic formula

evaluate��� evaluate and return the value

pushNot��� push not

freeVar��� return free variable list

allVar��� return all variables

g

Thus� every formula knows its free variables �freeVar���� as well as all variables which appear in it

�allVar���� it knows how to evaluate itself� how to apply not �pushNot���� and so on� This repre�

sentation of a formula in C�� is a classical example of the power of the object�oriented paradigm�
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Figure ���
 Translation algorithm from the calculus to algebra�

Formula speci�es a common interface in the form of a list of public methods� while every subclass

implements those methods di�erently� possibly adding some new ones� Thus� although� various for�

mulas react di�erently when a method is applied� that fact is hidden and a correct answer is obtained

�polymorphism��

The general form of a calculus formula� which is returned by a parser� becomes an input to

the translation algorithm which implements the second phase of the TQL compiler� In this step� a

formula is translated from the calculus to the algebra� is further optimized and an execution plan is

generated� However� the optimization and the execution plan generation is not a topic of this thesis�

and therefore� it is not discussed any further�

The translation algorithm consists of four steps as illustrated in Figure ���� The �rst step of

the algorithm checks if the formula is safe� As shown in �PL�OS���� any calculus formula is safe if

the evaluable property �de�ned below� holds for it� The following de�nitions and rules specify the

required properties of calculus formulas�

De	nition �� Evaluable A formula F is evaluable or has the evaluable property if the following

conditions are met


�� For every variable x that is free in F � gen�x� F � holds�

�� For every subformula �xA of F � con�x�A� holds�

�� For every subformula �xA of F � con�x��A� holds�

De	nition �� Allowed A formula F is allowed or has the allowed property if the following

conditions are met


�� For every variable x that is free in F � gen�x� F � holds�

�� For every subformula �xA of F � gen�x�A� holds�

�� For every subformula �xA of F � gen�x��A� holds�

where the rules for gen and con are given in Figure ����� Intuitively� gen�x�A� means that the

formula A can generate all the needed values of variable x that contribute to making A true and

that there are only a �nite number of these values� Subsequently� con�x�A� holds if the variable x

is constrained in A meaning that the following conditions


� gen�x�A�x� 	y�� holds as above� or

� A�x� 	d� is true for all bindings of x�
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gen�x�A�A� if edb�A� and free�x�A�
gen�x�A�A� if gdb�A�

gen�x��A�G� if gen�x� pushnot��A�� G�
gen�x� �yA�G� if distinct�x� y� and gen�x�A�G�
gen�x� �yA�G� if distinct�x� y� and gen�x�A�G�
gen�x�A �B�G� �G�� if gen�x�A�G�� and gen�x�B�G��
gen�x�A �B�G� if gen�x�A�G�
gen�x�A �B�G� if gen�x�B�G�

con�x�A�A� if edb�A� and free�x�A�
con�x�A�A� if gdb�A�
con�x�A��� if notfree�x�A�

con�x��A�G� if con�x� pushnot��A�� G�
con�x� �yA�G� if distinct�x� y� and con�x�A�G�
con�x� �yA�G� if distinct�x� y� and con�x�A�G�
con�x�A�B�G� �G�� if con�x�A�G�� and con�x�B�G��
con�x�A�B�G� if gen�x�A�G�
con�x�A�B�G� if gen�x�B�G�
con�x�A�B�G� �G�� if con�x�A�G�� and con�x�B�G��

where


edb�A� holds if formula A is either a �nite range atom� or
if formula A is an equality atom of the form x � c� where c
is a ground term� or if formula A is a membership atom of
the form x � c where c is also a ground term�

gdb�x�A� holds� if variable x can be generated from A�
free�x�A� holds if variable x is bound in A or it does not

appear in the formula A at all�
notfree�x�A� holds if variable x is not free in A�
distinct�x� y� holds if x and y are di�erent variables�

Figure ����
 Extended rules of gen and con that produce generators�
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Figure ����
 Transformations from object calculus to object algebra�

In other words� x is constrained in A if it is generated in every disjunct in which it appears�

Thus� the safety of the formula can be determined syntactically� and it is done by the evalify

algorithm �PL�OS���� This algorithm recursively checks if the formula has an evaluable property� if

so it returns TRUE� otherwise the formula is rejected and the appropriate message is displayed to

the user�

In the second step� the evaluable formula is transformed to the allowed form� As shown in �GT����

every evaluable formula can be transformed to the equivalent allowed form� This is an important

step of the algorithm as� some further transformations �i�e� distributed law transformation� which

are necessary to transform the calculus formula to algebra� do not preserve the evaluability property�

but as shown in �GT��� they do preserve the allowed property� Thus� the formula must have an

allowed property before any transformations leading to the allowed normal form can be performed�

This step is implemented by the genify algorithm �PL�OS����

The next step of the translation algorithm is to normalize an allowed formula by putting it into

Allowed Normal Form �ANF� which is done by the ANFify algorithm �PL�OS���� The reason for

converting a formula into ANF is to divide it into subformulas which are independent of atoms that

appear outside the quanti�er for that formula� In other words� in the �nal translation to the algebra�

every subformula can be independently translated to an algebraic formula�

The �nal step of the translation algorithm is the transformation of an ANF formula into an

equivalent series of object algebras� This is done by a simple application of transformation rules

shown in the Figure ���� which are applied from the inner to the outer formula� The output of this

step is an algebraic tree �initial object algebraic processing tree� which becomes the input to the

query optimizer �Mun����

The algebraic tree has the following representation� There are two kinds of nodes in that algebraic

tree� Every inner node represents one of the algebraic operators �union� minus� select� generate� etc���

It has two children nodes
 the target collection� and the argument collections each of which can be
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Figure ����
 The TCL interpreter architecture�

either another algebraic operator �inner node of the tree�� or a reference to a collection �a leaf node

of the tree�� In addition� every inner node has a constraint which is either a predicate �in case of the

select and join operators�� or list of behaviors and their arguments �in case of the map operator�� or

null �for all other cases�� The leaf nodes of the algebraic tree are path expressions whose execution

results in references to collections� The full speci�cation and description of the algebraic trees are

given in �Mun����

��� TCL interpreter

TCL supports session speci�c operations� It is implemented by an interpreter whose architec�

ture is given in Figure ����� Every TCL statement is parsed by the TCL interpreter� and if it is

syntactically and semantically correct� it is executed�

Five statements are currently supported by the TCL interpreter� Open and close session state�

ments operate directly on session objects� If they are encountered� the request to the object manager

is sent by the TCL interpreter� and if a speci�ed object exists it is opened or closed respectively�

If it does not exists� then in the case of the open statement� it is �rst created� a new copy of the

symbol table is initialized and associated with it� a new session object is returned and it becomes a

current session� In case of the close statement� the error message is displayed� Save� make persistent�

and assign statements perform operations mainly on the local symbol table� storing the information

about new bindings� retrieving objects and making them persistent�



Chapter �

Conclusion and Future Work

This thesis is part of the ongoing TIGUKAT project to develop a new object management system

based on a uniform� behavioral object model� The �rst extension which is being added to the model

is a query model and language� Its speci�cation includes two formal languages
 a declarative object

calculus and a procedural object algebra� a user�level language� and the equivalence proof among

the three of them�

The main goal of this thesis is the design and implementation of the user level language which

has the same expressive power as the object calculus� and which conforms to the general object

query language frameworks presented over the last years �Kim��� Bla��� BNPS��� Str��� �OS����

The TIGUKAT language is a high level user language which provides declarative access to the

TIGUKAT objectbase� The design of this language was mainly inuenced by SQL which is accepted

as a standard query language in relational systems� It is divided into three parts
 The TIGUKAT

De�nition Language� the TIGUKAT Query Language� and the TIGUKAT Control Language� The

syntax of the query language is based on the SQL select�from�where structure� while the formal

semantics are de�ned in terms of the object calculus� It is shown in this thesis that there is a

complete reduction from TQL to the calculus� which makes the semantics of the language well

de�ned and allows to specify the formal methods to check the safety of the user de�ned queries� and

to perform the algebraic transformation on them� In addition� TIGUKAT language accepts path

expression in the select� from and where clauses� thus both forms �implicit and explicit� of joins

are supported� Queries operate on collections� and they always return collections as results� The

results of queries are queryable� and they can be used as predicates or ranges in other queries �i�e��

nested queries�� Finally� TQL is orthogonal to all object model extensions� Persistence is de�ned

on the object level� thus� queries can be formulated on transient as well as on persistent objects in

a uniform way�

There are some extensions that can be added to the language presented in this thesis in order to

increase its functionality and expressive power�

��
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� TQL must be further extended to support the statements which perform updates on the

objectbase� That includes the de�nition of the syntax and the formal semantics of insert�

update and delete statements� Moreover� the syntax for bulk updates should be provided�

� The syntactic support for the application of aggregate functions �similar to those in the rela�

tional systems� should be added to TQL� Furthermore� the constructs for grouping of objects

and de�ning the order �GROUP BY� ORDER BY� in the result collections should be also

added�

� TCL can be extended to include ow control statements like a loop statement� if statement�

case statement and others� That would make the language computationally complete and allow

the speci�cation of computed functions within the TIGUKAT language without the need to call

external functions written in other languages� Also� TCL could be enhanced by statements

supporting easy and fast browsing of the objectbase� editing query �les and displaying the

schema�
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A

Language Grammar

� session �



� quit

j � statement list � quit

� statement list �



� � statement �

j � statement � � � statement list �

� statement �



� � tdl statement �

j � tql statement �

j � tcl statement �

� tdl statement �



� � type declaration �

j � collection declaration �

j � class declaration �

j � behavior manipulation �

j � function declaration �

j � association �

� type declaration �



� create type � new reference �

under � type list �

� behavior specification �

��



��

� collection declaration �



� create collection � new reference �

type � type reference �

� with � obejct variable list �

� class declaration �



� create class � � new reference � �

on � type reference �

� behavior manipulation �



� add to � type reference � � behavior specification �

j remove from � type reference �

behaviors� � behavior name list �

� function declaration �



� � language � function � function signature �

begin

� function code �

end

j external function � function signature �

� association �



� associate in � type reference �

�� computed list ��

�� stored list ��

� computed list �



� � comp elem �

j � computed list � � � comp elem �

� comp get list �



� � comp get elem �

j � comp get list � � � comp get elem �

� comp get set list �



� � comp get set elem �



��

j � comp get set list � � � comp get set elem �

� stored list �



� � get elem � �� copm get list �� � set elem �

�� copm get set list ��

j � get elem � �� copm set list �� � get elem �

�� copm get set list ��

� comp get elem �



� � comp elem �

j � get elem �

� comp set elem �



� � comp elem �

j � set elem �

� comp get set elem �



� � comp elem �

j � get elem �

j � set elem �

� comp elem �



� � behavior reference list � with � function reference �

� get elem �



� � behavior reference list � with GET

� set elem �



� � behavior reference list � with SET

� association reference �



� � funtion reference �

j GET

j SET

� function code �



� � TQL Statement �



��

j C�� String

� language �



� TQL

j C��

� new reference �



� identi	er

� type reference �



� � term �

� class reference �



� � term �

� function reference �



� � term �

� behavior reference �



� � term �

� collection reference �



� � term �

j � subquery �

� behavior name �



� identi	er

� function name �



� identi	er

� type list �



� � type reference �

j � type list � � � type reference �

� behavior name list �



� � behavior name �



��

j � behavior name list � � � behavior name �

� behavior specification �



� � public behaviors � � private behaviors �

� public behaviors �



� �# empty #�

j public � signature list �

� private behaviors �



� �# empty #�

j private � signature list �

� signature list �



� � behavior signature �

j � signature list � � � behavior signature �

� behavior signature �



� � behavior name � � � � type list � � �

� � type reference �

� function signature �



� � function name � � � � formal parameter list � � �

� � type reference �

� formal parameter list �



� � formal parameter list �

� formal parameter list �



� � formal parameter �

j � formal parameter list � � � formal parameter �

� formal parameter �



� identi	er � � type reference �

� TQL Statements �



� � select statement �



��

j � union statement �

j � minus statement �

j � intersect statement �

� select statement �



� select � object variable list �

� into 
 persistent 
 all �� � collection reference � �

from � range variable list �

� where � boolean formula � �

� union statement �



� � collection reference � union � collection reference �

� minus statement �



� � collection reference � minus � collection reference �

� intersect statement �



� � collection reference � intersect � collection reference �

� object variable list �



� � object variable �

j � object list � � � object variable �

� object variable �



� � �� cast type � � � � term �

j � index variable �

� term �



� � variable reference �

j � constant reference �

j � path expression �

� index variable �



� identi	er 
 � behavior name list � �

� variable reference �



� identi	er



��

� constant reference �



� �identi	er

� path expression �



� � term �  � function expression �

� function expr �



� � behavior name � � �

j � behavior name � � � term list � �

� term list �



� � term �

j � term list � � � term �

� variable list �



� � variable �

j � variable list � � � variable �

� range variable list �



� � range variable �

j � range variable list � � � range variable �

� range variable �



� � variable list � in � collection reference � � � �

� boolean formula �



� � atom �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

j � exists predicate �

j � forAll predicate �

j � boolean function expression �



��

� atom �



� � term � � � term �

j � term list � in � collection reference � � � �

� exists predicate �



� exists � collection reference �

� forAll predicate �



� forAll � range variable list � � boolean formula �

� subquery �



� � � query specification � �

� tcl statement �



� � open session �

j � save session �

j � close session �

j � make persistent �

j � quit objectbase �

j � assignment �

� open session �



� open � session reference �

� session reference �



� � term �

� save session �



� save �� session reference ��

� close session �



� close �� session reference ��

� make persistent �



� persistent � object reference �

j persistent all � collection reference �

� quit objectbase �



��



� quit

� assignment �



� let � right side � be � right side �

� left side �



� � object refernce �

� right side �



� � TQL Statement �

j � term �



B

Type Speci�cations

��



��

T session
Supertypes
 T object

Subtypes


Native Behaviors


openSession B openSession 
 T session

Example
 B openSession�o�

Symbol


It opens a session and establishes a connection with an objectbase�

The receiver of the message is opened� and it becomes the current

session in an objectbase�

saveSession B saveSession 
 T session

Example
 B saveSession�o�

Symbol


It saves the session environment� All transient objects are saved�

and their references are stored in the session symbol table� Next

time that session object is opened� the environment is restored� and

the user can continue a previously closed session� Otherwise� all

transient objects are lost�

closeSession B closeSession 
 T session

Example
 B closeSession�o�

Symbol


It closes the session �workspace�� If the session environment has

not been saved� all transient object are lost� If the session object

has not been made persistent before this statement was issued� it

is lost as well� If� on the other hand� the session environment has

been saved� next time this session is opened� the entire environment

is restored�

quitObjectbase B quitObjectbase 
 T null

Example
 B quitObjectbase�o�

Symbol


It exists the whole TIGUKAT objectbase� The request to closed

all sessions which are currently open is sent� The objects which

haven�t been made persistent or saved in any opened session are

lost�

environment B environment 
 T object

Example
 B environment�o�

Symbol




��

It returns a session symbol table in which the transient objects are

stored �session environment�� This is a private behavior�



��

T query
Supertypes
 T function

Subtypes
 T adhocQuery� T productionQuery

Re�ned Behaviors


source B source 
 T string

Example
 B source�o�

Symbol


It returns the source code for a query o which is a TIGUKAT Query

Language �TQL� statement�

executable B executable 
 T object

Example
 B executable�o�

Symbol


It returns the executable code which is in form of the Execution

Plan of the optimized query object o�

execute B execute 
 T listhT objecti � T object

Example
 B execute�p��o�

Symbol


It submits a list p of the execution plans of the query object o to

the Object Manager for processing�

compile B compile 
 T object

Example
 B compile�o�

Symbol


It compiles the source code for a query� The compilation pro�

cess involves the following steps
 translating the query statement

o written in TQL language into an equivalent calculus expression�

translating the calculus expression into an equivalent algebra ex�

pression and checking it for type consistency� optimizing by apply�

ing equivalence preserving rewrite rules to the algebra expression�

and generating an Execution Plan by replacing each individual al�

gebra operator from the transformed object algebra query with a

�best� subtree of object manager calls�

argTypes B argTypes 
 T listhT objecti

Example
 B argTypes�o�

Symbol




��

It returns a list of types and the ordering of the argument objects

of the query o� The type of each element is either T collection�

or any subtype of that type�T class�T bag� etc���

resultType B resultType 
 T type

Example
 B resultType�o�

Symbol


It returns the result type of the query execution� That type is

either the T collection type� or any subtype of this type �T class�

T bag� etc��

Native Behaviors


initialOAPT B initialOAPT 
 T algOp

Example
 B initialOAPT�o�

Symbol


It returns the initial Object Algebra Processing Tree �OAPT�

resulting from the calculus to algebra translation� This initial

OAPT�s� constitutes the initial state�s� of the search space used

for the algebraic optimization of the query object o�

optimizedOAPTB optimizedOAPT 
 T sethT algOpi

Example
 B optimizedOAPT�o�

Symbol


It accesses the optimized OAPT �or set of optimized OAPTs� re�

sulting from the optimization process for the query object o�

searchStrat B searchStrat 
 T searchStrat

Example
 B searchStrat�o�

Symbol


It accesses the search strategy which is used by the optimizer to

control the optimization of the query object o�

transformations B transformations 
 T listhT algEqRulei

Example
 B transformations�o�

Symbol


It accesses the list of transformation rule objects used for the alge�

braic optimization of the query object o�

argMbrTypes B argMbrTypes 
 T listhT typei

Example
 B argMbrTypes�o�

Symbol




��

It returns a list of types corresponding to the member types of

target collections of the query object o�

resultMbrType B resultMbrType 
 T type

Example
 B resultMbrType�o�

Symbol


It returns the membership type of the resulting collection from

executing the query object o�

optimize B optimize 
 T sethT algOpi

Example
 B optimize�o�

Symbol


It starts the execution of the algebraic query optimizer over the

query object o� using its search strategy� and taking its initial

OAPT�

genExecPlan B genExecPlan 
 T algOp� T omOp

Example
 B genExecPlan�o��p�

Symbol


It generates the ��best� Execution Plan from the optimized OAPT

object p for the query object o�

budgetOpt B budgetOpt 
 T integer

Example
 B budgetOpt�o�

Symbol


It accesses the optimization budget for the optimization process to

the query object o� It is an upper bound for the optimization cost

which is used by the search strategy to control the optimization�

lastOpt B lastOpt 
 T date

Example
 B lastOpt�o�

Symbol


It accesses the last date in that the query object o was optimized�

lastExec B lastExec 
 T date

Example
 B lastExec�o�

Symbol


It accesses the last date in that the query object o was executed� It

can be useful for consistency checks between changes in statistics

of the query and the last optimization�

materialization B materialization 
 T object

Example
 B materialization�o�

Symbol




��

It is a reference to the materialized query result �i�e�� the actual

result collection itself��


