
University of Alberta

The Design and Implementation of TIGUKAT

User Languages

by

Anna Lipka

Technical Report TR �����

July ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

UNIVERSITY OF ALBERTA

The Design and Implementation of TIGUKAT User Languages

BY

Anna Lipka

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful�llment of the
requirements for the degree of Master of Science�

DEPARTMENT OF COMPUTING SCIENCE

Edmonton� Alberta
Fall ����

Abstract

To meet the data management requirements of new complex applications� object management sys�

tems are emerging as the most likely candidate� The general acceptance of this new technology de�

pends on the increased functionality it can provide� and one measurement is the power of its query

model� Users of these systems must have a declarative language to formulate queries on �what�

information is required without specifying �how� to e	ciently retrieve the information� Therefore�

the formal query model should de�ne a declarative calculus that can be used to formulate queries

to the objectbase and an equivalent procedural algebra to execute them e	ciently� In addition� a

user�level language should be provided which has the same expressive power as the formal languages�

This thesis presents the new TIGUKAT Language that was designed and implemented within

the framework of the TIGUKAT project� It is a high level user language which provides declarative

access to the underlying objectbase� It is divided into three parts
 TIGUKAT De�nition Language

�TDL�� TIGUKAT Query Language �TQL�� and TIGUKAT Control Language �TCL�� The syntax

of this language and the main design choices where inuenced by SQL while the semantics is de�ned

in terms of the object calculus� Queries operate on collections and they always evaluate to new

collections� thus the results of queries are queryable� Furthermore� queries can be used in the

predicates of other queries �i�e�� nested queries�� Path expressions which allow easy navigation

through the schema are supported� Finally� the language is orthogonal to persistence� meaning that

all objects are queryable regardless of whether they are persistent or transient�

Acknowledgements

I would like to take this opportunity to express my sincere thanks to those who helped me throughout

the course of this study� I am particularly grateful to my supervisor Dr� Tamer �Ozsu for his

assistance� support and personal concern for myself and the study� His expectations for maintaining

steady progress and producing quality work have been driving forces for me� I have bene�ted from

his knowledge� experience and willingness to discuss many di�erent aspects of the project�

A sincere appreciation is expressed to my co�supervisor Dr� D� Szafron for his technical assistance

and support for this study� His insight into the area of the object�oriented design was the source of

many fruitful discussions�

Special thanks to Randal Peters who have done a great job proof�reading earlier drafts of the

thesis� His comments and suggestions helped to remove some of the rough edges of this thesis� Also�

I would like to thank the whole Database Research Group for the support and valuable comments�

I am also grateful to the members of the examine committee� Dr�P� Sorensen� Dr� B� Nault for

the time they took to read and comment on this thesis�

I would like to thank my friend� Mike Carbonaro for his support and encouragement during all

my studies� Finally� I would like to thank Grzegorz Kondrak for his patience and my mom for her

love� Thank you�

Contents

� Introduction �

��� Motivation �

��� Thesis Overview �

��� Related Work �

����� Object Query Language Design Issues �

����� Object Query Languages �

� TIGUKAT Overview �

��� Object Model �

��� Query Model ��

����� The Object Calculus ��

����� The Object Algebra ��

� TIGUKAT Languages ��

��� Notation ��

��� TIGUKAT De�nition Language ��

��� TIGUKAT Query Language ��

����� Design Decisions ��

����� The Syntax of TIGUKAT Query Language ��

����� The Formal Semantics of TQL ��

��� TIGUKAT Control Language ��

� Integration with TIGUKAT Object Model ��

��� TIGUKAT Extensions ��

����� TIGUKAT Session Objects ��

����� TIGUKAT Query Objects ��

����� Sessions and Queries as Objects ��

��� TIGUKAT Objectbase Access ��

� Implementation ��

��� Design Decisions ��

����� Top�Down Parser ��

����� Symbol Table ��

����� C�� Programming Language ��

��� TDL interpreter ��

��� TQL compiler ��

��� TCL interpreter ��

� Conclusion and Future Work ��

Bibliography ��

A Language Grammar ��

B Type Speci	cations ��

List of Figures

��� Primitive type system �

��� Geographic Information System in TIGUKAT object model� � � � � � � � � � � � � � � ��

��� Type extensions to the primitive type system� ��

��� Compiler and Interpreter Architectures� ��

��� Symbol table structure and the corresponding record structure� � � � � � � � � � � � � ��

��� The TDL interpreter architecture� ��

��� The TQL compiler architecture� ��

��� The class hierarchy for the internal representation of the calculus formula� � � � � � � ��

��� Translation algorithm from the calculus to algebra� ��

���� Extended rules of gen and con that produce generators� � � � � � � � � � � � � � � � � ��

���� Transformations from object calculus to object algebra� � � � � � � � � � � � � � � � � ��

���� The TCL interpreter architecture� ��

Chapter �

Introduction

This thesis is a part of an ongoing TIGUKAT� project on the design and implementation of an

object management system� The de�nition of the formal object model �TIGUKAT object model�

that conforms to many requirements outlined in the object�oriented database manifestos �ABD����

SRL���� is the �rst result of that research �P�OS���� The main characteristics of the TIGUKAT

object model are as follows� First� it takes the uniform approach to objects which includes meta�

information as primitive objects� Second� there is a clean separation and precise formal de�nition of

many object model features� Finally� a formal speci�cation and integration of both the behavioral

and structural aspects of the object model with the necessary power for handling advanced database

functionality �object creating query languages� schema evolution� updatable views� rules� etc�� is

given�

The establishment of the formal object model has provided a theoretical foundation to investigate

other object database features� Currently� various extensions are being added to the TIGUKAT

object model in order to provide database system functionalities� These extensions include the

design and implementation of the query model with the declarative facilities �formal object calculus�

object algebra� and the user language�� object views and view management with update semantics�

dynamic schema evolution� storage management and persistence� transaction management� and the

temporal aspects�

��� Motivation

It is well recognized that a declarative query facility is an essential component of any database

management system� and the power of such a system is measured by it� Therefore� the �rst extension

provided to TIGUKAT object model is the query model de�nition� This includes the speci�cation

of the formal object calculus which de�nes a declarative base to formulate queries� the equivalent

�TIGUKAT is a term in the language of the Canadian Inuit people meaning �object��

�

�

object algebra that allows them to execute e	ciently� and the user�level language�

The main focus of this thesis is the design and the implementation of a high�level� user language

which provides a declarative interface to the underlying object model� The language is proven

equivalent to the formal languages of the query model �calculus and algebra� making it easy to

perform logical transformations and argue about safety of user speci�ed queries�

��� Thesis Overview

The thesis is divided into six chapters� A brief introduction to the problem of object�oriented

database management systems and a short summary of the current research within these systems

is given in the subsequent sections of this chapter� The discussion emphasizes the related work

on object query languages� Some of the existing languages are described� and compared with the

designed frameworks developed for object query languages� Chapter � describes the TIGUKAT

object model� The main features of this model are outlined and the unique concepts are explained�

Furthermore� the description of the query model which includes the formal de�nition of the object

calculus and equivalent object algebra is given in this chapter� Chapter � presents the TIGUKAT

language� its syntax which is given as grammar rules� and the formal semantics which is de�ned

by the object calculus� It is shown in that chapter� that there is a complete reduction from the

TIGUKAT Query Language to the object calculus� Thus� the formal semantics of the language is

well de�ned� In Chapter � the integration issues between the TIGUKAT language and the model

are discussed� Two extensions which facilitate this integration are described� Chapter � explains the

implementation details� The algorithms used to implement the language translators are outlined�

and the main data structures are described� Finally� in Chapter �� conclusions and future research

directions are discussed�

��� Related Work

The need for a technology to support the organization� control and manipulation of collections of

structured data resulted in the development of database management systems �DBMSs�� The ����s

witnessed the birth of hierarchical and network types of DBMSs which are still widely used today�

In the ����s� the relational model� which was proposed by Codd �Cod��� Cod��� in the beginning

of the ����s� became the base for new database systems� The relational model is characterized

by the simplicity� uniformity and a strong mathematical foundation� The simplicity of the model

permitted the development of powerful� non�procedural �declarative� query facilities which provided

an elegant interface to the underlying model� One of the most popular query languages in those

systems was SQL �Structured Query Language�� which eventually became an international standard

for the de�nition and management of relationally structured data �Com���� It consists of three parts

�

the Data De�nition Language� the Data Manipulation Language and the Data Control Language�

The ����s seem to require new directions in database development to ful�ll the demands of new

challenging applications� However� new technologies can compete with the previous ones only if

they provide tools that are comparable in power� In order to provide at least the functionality of

relational systems� next generation DBMSs must consistently extend the power of the relational

query model and SQL� Therefore� one of the problems facing object�oriented system designers is the

de�nition of an object query model and a language for these systems�

Di�erent approaches have been taken to design new object models which support object�oriented

features and conform to the object�oriented philosophy� Among them are those that have been heav�

ily inuenced by the advances in programming languages such as Smalltalk� C��� and CommonLisp

�CLOS�� The Gemstone �BMO���� system is a classical example of the extension of Smalltalk to

include complete database facilities� It supports multiple user access� it has the ability to ac�

commodate large volumes of objects� and it provides persistence� query facilities� and transaction

management� ORION �BCG���� KBC���� KGBW��� is another example of a system based on an

existing programming language � in this case CLOS� Similar to Gemstone� it extends the language

with database capabilities which include persistent and sharable storage� transaction management�

associated queries� and database integrity control� POSTGRES �SR��� RS���� on the other hand� is

a database management system based on the relational model that has been extended with object�

oriented features� Thus� it supports abstract data types� inheritance� de�nition of rules� as well

as de�nitions of data in form of the procedures� Finally� other models are de�ned independently

from any programming languages or database models� Such an approach was taken by the de�

signers of the EXODUS system �CDF���� CDV��� as well as by the designers of the O� system

�LRV��� Deu��� Deu���� A similar approach is followed in TIGUKAT�

With a variety of object models comes a variety of di�erent object query languages� This is a

result of the inseparability of the data model and the query language that has to provide a declarative

interface to it� Therefore� there is a tight integration between the two� Since no consensus exist

for one universally accepted object model� there is presently no universally accepted object query

language� In Section ������ the design principles of object query languages are discussed followed by

a summary� in Section ������ of various object query languages�

����� Object Query Language Design Issues

Although there is no universally accepted object model� a core set of features has been identi�ed and

presented in number of manifestos �ABD���� SRL����� Similar guidelines for the design of an object

query language have appeared recently �Kim��� BTA��� BNPS��� Str���� They are summarized

below�

�

�� An object query language should provide a high�level� declarative interface to the underlying

model� The user should not have to be aware of implementation details while specifying queries

� �OS��� Str����

�� Similar to relational query languages� its semantics should be well de�ned� In other words� an

object query language should be based on some formal object calculus �Str��� �OS����

�� It should be optimizable� The language should have an underlying object algebra de�ned

�BCD���� In addition� the object algebra should have the closure property meaning that

results of queries should be also queryable �KKS����

�� The language should allow queries to be arguments of predicates of other queries� Thus� the

concepts of nested queries �subqueries� should be supported �Bla����

�� The syntax of the language should be based on the SQL select�from�where structure� However�

this can be relaxed� as the syntactic approach is subjective and depends on the designers� taste

�Bla��� ASL����

�� Path expressions� which are also called implicit joins as well as explicit joins should be sup�

ported by the language �Kim��� BNPS����

�� The well known problem of impedance mismatch should not occur in object�oriented systems

�Bla��� BCD���� The object model of the object�oriented database and the type system of the

programming language should be compatible�

�� Queries should be orthogonal to all data model extensions meaning that all objects should be

queryable regardless of whether they are transient� persistent� distributed and so on �Bla����

�� The language should support the syntax for the application of aggregate functions in specifying

queries� These functions could be either used in target lists� as predicates� or in both �Bla����

��� Finally� the query language whether used on an ad hoc basis� or embedded in application

programs should not violate encapsulation� Data abstraction is one of the most important

concepts in object�oriented systems� therefore� it should be maintained �Bla����

����� Object Query Languages

SQL� �Gal���� which is under development as an international standard� is expected to incorporate

numerous object�oriented features� It will be a complete language for managing� creating and query�

ing persistent objects� It will provide facilities for de�ning new abstract data types �ADT�� creating

new functions and accessing objects� However� as the language does not have any underlying object

model� it contains many unnecessary and arti�cial constructs �objects are mapped to relational ta�

bles�� while on the other hand� many important features are missing �de�nition of sets� classes or

�

other container objects�� Moreover� in an e�ort to make the language computationally complete�

non�declarative language statements are introduced �while�loop� if�statement� branch statement�

which make the language unnecessarily complex� Since� SQL� is still being designed� the standard

speci�cation is not expected to be released until ����� A number of these problems may be resolved

by then�

Blakeley �Bla��� Bla��� addresses the query�programming language integration problem in the

context of an object�oriented database which uses the type system of an existing programming

language C�� �ES��� as an object model� ZQL�C��� is an object query language based on the

SQL paradigm� Query statements can be easily mixed with the programming language statements�

and the syntax of these two languages is uniform� Therefore� the query language is well integrated

with the database host language �C��� and the problem of impedance mismatch does not exists�

Queries in ZQL�C��� are orthogonal to all extensions of the language� Objects can be queried

regardless of whether they are transient� persistent� distributed� and so on� Query results can

become inputs to other queries and can be used in the from and where clauses of other queries �i�e��

nested queries�� However� the formal semantics of the language is not de�ned� which raises question

regarding the safety� completeness and optimization possibilities of the language�

A similar approach to ZQL�C��� is taken in CQL�� �DGJ���� CQL�� is a declarative front

end to Ode �AG���� It combines an SQL�like syntax with the C�� class model� CQL�� is based

on a closed object algebra which operates on sets of objects returning sets of objects as results�

CQL�� is well integrated with O�� which is the host language in Ode� Moreover� queries are

orthogonal to persistence� since the persistence is associated with objects�

In �BCD��� LR��b� LR��a� the main features of the query language for the O� �BCD��� LRV���

system are discussed� The syntax of the query language is based on the SQL select�from�where block�

while the semantics of the language is de�ned as a partial mapping from sets of objects and values

to a set objects and values� It is a functional language which is a subset of a host programming

language� Thus the problem of impedance mismatch does not exists� The additional �atten operator

is provided to enable the navigation through embedded sets and lists� However� the language violates

the encapsulation principle when used on an ad hoc basis� Also� the semantics of the language is

not based on any formal calculus�

EXCESS �CDV���� which is the query language for EXODUS �CDF����� is di�erent fromZQL�C����

CQL��� and O� languages in that it is based on QUEL syntax rather then SQL� Its main features

include the uniform treatment of sets and arrays so that queries can operate on sets as well as on

arrays� a type�oriented treatment of range variables� and support for update syntax� EXCESS allows

path expressions to simplify the task of formulating queries� Queries in EXCESS work on sets of

objects� values or tuples� and they return sets as results� Therefore� the closure property holds�

Finally� EXCESS supports aggregate functions which add computational power to the language�

OSQL �Ken��� is a database language developed for the IRIS object�oriented database system�

�

Its design has been largely inuenced by standard SQL� As a result� OSQL serves as an object

description� object manipulation and query language� Furthermore� its query part has an SQL

syntax� Queries are modeled as functions whose domains are either types �equivalent to the concept

of classes in TIGUKAT�� or bags of instances of types �collections in TIGUKAT�� They always

return bags as results� therefore they can become inputs to other queries� However� the syntax for

nested queries in the from and where clauses is not supported�

A quite di�erent design ideology is presented in the object query language for ObjectStore

�LLOW��� OHMS���� The C�� programming language is adopted as a host language in the system�

and queries are expressed using C�� extensions supported by the C�� compiler� In other words�

queries are integrated with the host language by a special query operator �
���� whose operands

are either collections or predicates� Thus� one cannot talk about the query language based on any

known language like SQL or QUEL� However� the same expressive power is achieved by the queries�

nested queries and path expressions in ObjectStore� Queries in this system operate on collections

or predicates� and they evaluate to collections� single objects or booleans�

Finally� in �ASL��� OQL is a somewhat unorthodox object query language for an object�oriented

database� The concept of a subdatabase is introduced� A subdatabase is de�ned as a portion of the

operand database �which can be either an original database or another subdatabase that has been

established by another query�� It consists of an intensional association pattern �which is a network of

classes� and the extensional association pattern �which is a network of instances that belong to those

classes�� Queries operate upon subdatabases� and they return subdatabases as results� However�

since the syntax of OQL is not based on any known structure �neither SQL� nor QUEL� it is not

very intuitive�

Chapter �

TIGUKAT Overview

In this chapter an overview of TIGUKAT is given� Section ��� outlines the main characteristics

of the TIGUKAT object model� including a description of such concepts as objects� types� classes�

behaviors� functions� and the relationships among them� Section ��� describes the TIGUKAT query

model which provides the declarative query facilities to the object model� Two formal languages are

de�ned
 an object calculus and an equivalent object algebra�

��� Object Model

The TIGUKAT object model �P�OS��� is de�ned behaviorally with a uniform semantics� The model

is behavioral in the sense that the access and manipulation of objects is restricted to the application

of behaviors �operations� upon objects� The model is uniform in that every concept within the

model has the status of a �rst�class object� An object is a fundamental concept in TIGUKAT� Every

component of information� including its semantics� is uniformly represented by objects in TIGUKAT�

This means that at the most basic level� every expressible element in the model incorporates at least

the semantics of our primitive notion for �object��

The model de�nes a number of primitive objects which include
 atomic entities �such as reals�

integers� strings� characters� etc��� types for de�ning and structuring features of common objects�

behaviors for specifying the semantics of the operations which may be performed on objects� functions

for specifying the implementation of behaviors over various types forming the support mechanism

for overloading and late binding� classes for the automatic classi�cation of objects based on type�

and collections for supporting general heterogeneous user�de�nable groupings of objects�

The primitive type system is shown in Figure ��� with the T object type as the root of the

lattice and the T null type as the base� T null binds the lattice from the bottom� It is a subtype

of every other type in the system� T null is introduced in the model to provide an object which can

be returned by behaviors that have no result�

�

�

T object

T atomic

T integer T natural

T class

T collection�class

T type�class

T class�class

T list

��������������������������

��������������������������

��������������������������
��

�������������������������������������

������������
������������

������������
���

���������
���������
���������
���������
��������

T null

���������������������������������� ��������������������������
��������

T string

T boolean

T character

T real

T collection

T type

T bag

T poset

T behavior

T method

Supertype Subtype

Figure ���
 Primitive type system

�

Objects are de�ned as �identity� state� pairs where identity represents a unique� immutable

system managed object identity� and state represents the information carried by the object� Thus�

the model supports strong object identity �KC���� meaning that every object has a unique existence

within the model and is distinguishable from every other object� On the other hand� the state of an

object encapsulates the information carried by that object� Conceptually� every object is a composite

object in TIGUKAT meaning that every object has references to other objects�

There is a separation of means for de�ning the characteristics of object �i�e�� a type� from the

mechanism for grouping of instances of a particular type �i�e�� class�� A type speci�es behaviors� It

encapsulates hidden implementation and state for all objects that are created by using the type as

a template� The set of behaviors de�ned by a type is referred to as a set of native behaviors� and

it describes the interface of the objects of that type� Types are organized into a lattice structure

using the notion of subtyping� TIGUKAT supports multiple inheritance� meaning that one type can

be an immediate subtype of several other types�

A class ties together the notion of type and object instance� A class is responsible for managing

all instances that are created by using a speci�c type as a template� Objects of a particular type

cannot exists without an associated class and every class is uniquely associated with a single type�

Object creation occurs only through a class using its associated type as a template for the creation�

A collection is another grouping construct in TIGUKAT� It is de�ned as a general user�de�nable

construct� It is similar to a class in that it also represents an extent of objects� but it di�ers in the

following respects� First� no object creation can occur through a collection� object creation occurs

only through classes� Second� an object may exist in any number of collections� but it is a member

of only one class� Third� the management of classes is implicit in that the system automatically

maintains classes based on the subtype lattice� whereas the management of collections is explicit�

meaning that the user is responsible for their extents� Finally� a class groups the entire extension of

a single type �shallow extent�� along with the extensions of all its subtypes �deep extent�� Therefore�

the elements of a class are homogeneous up to inclusion polymorphism� On the other hand� a

collection may be heterogeneous in the sense that it can contain objects which may be of di�erent

types�

The subtypes of T class namely� T class�class� T type�class and

T collection�class� are part of the meta system� Their placement within the type system itself

directly supports uniformity of the model� A full explanation of these types can be found in �P�OS����

Two other fundamental notions of TIGUKAT are behaviors and functions that implement the

behaviors� In the same way that an object�s speci�cation �types� is separated from the grouping

of its elements �classes�� the de�nition of a behavior is separated from its possible implementations

�function�methods��

The semantics of each operation on an object is speci�ed by a behavior de�ned on its type� A

function implements the semantics of each behavior� The implementation of a particular behavior

��

may vary over the types which support it� Nevertheless� the semantics of the behavior remains

constant and unique over all types supporting that behavior� There are two kinds of implementations

for behaviors� A computed function consists of runtime calls to executable code� A stored function

is a reference to an existing object in the objectbase� The uniformity of TIGUKAT considers each

behavior application as the invocation of a function� regardless of whether the function is stored or

computed�

The following example illustrates a geographic information system in the TIGUKAT object

model� This example� taken from �P�OS���� will be used as a running example throughout this

thesis�

Example �� Object�orientation is intended to serve many application areas requiring advanced

data representation and manipulation� A geographic information system �GIS� �Aro��� Tom��� has

been selected as an example to illustrate the practicality of the concepts introduced and to assist in

clarifying their semantics� A GIS was chosen because it is among the application domains which can

potentially bene�t from the advanced features o�ered by object�oriented technology� Speci�cally� a

GIS requires the following capabilities

�� management of persistent and transient data�

�� management of large quantities of diverse data types and dynamic evolution of types�

�� a seamless integration of sophisticated computer graphic images with complex structured at�

tribute data�

�� handling of large volumes of data and performing extensive numerical tabulations on data�

�� management of di�ering views of data� and

�� the ability to e	ciently answer a variety of ad hoc queries�

A type lattice for a simpli�ed GIS is given in Figure ���� The example is su	ciently complex

to illustrate the advanced functionality of the query model we present� yet simple enough to be

understandable without an elaborate discussion� The example includes the root types of the various

sub�lattices from the primitive type system in Figure ��� to illustrate their relative position in an

extended application lattice� The additional types de�ned by the GIS example include

�� Abstract types for representing information on people and their dwellings� These include the

types T person� T dwelling and T house�

�� Geographic types to store information about the locations of dwellings and their surrounding

areas� These include the type T location� the type T zone along with its subtypes which

categorize the various zones of a geographic area� and the type T map which de�nes a collection

of zones suitable for displaying in a window�

��

��

�������������������
�������������������

�������������������
������������������

�������������������
�����������������

�������������������
��� ����������������������������������

��������������
�������������

�������������
�������������

�������������
������������

���� ����������������������������������

����������
���������
���������
����������
����������
��������
��
�������������

���������������������

����������
���������
���������
����������
����������
��������
��
�������
��������
�������������������

��������������
�������������
�������������
�������������
�������������
������������
����

���������
�������������������������

�������������������
�������������������
�������������������

������������������
�������������������

�����������������
�������������������

���
����������
������������������������

T null

����������
����������
����������
�����������
�����������
����������
����������
����������
�����������
�����������
����������
����������
����������
����������
�����������
����������
����������
����������
����������
�����������
����������
����������
����������
����������
�����������
���������� ��������������
��������������������

���������������
����������������
���������������
����������������
���������������
����������������
���������������
����������������
���������������
���������������
����������������
���������������
������
����������
������������������������

�������������������������
�������������������������

��������������������������
��������������������������

�������������������������
��������������������������

��������������������������
�������������������������

��������������������������
��������������������������

�������������������������
��������������������������

����������������������
���������������������

�����������
�����������
�����������
������������
�����������
�����������
������������
�����������
�����������
�����������
������������
�����������
�����������
������������
�����������
�����������
�����������
������������
�����������
�����������
�

���������
�������������������������

�������
������
�������
��������
�������
�������
�������
�������
��������
�������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
��
��������
��������
������������������

����������������
�����������������
����������������
�����������������
������������
����������
������������������������

������
������
����������������������

����������������������������������
��� ���������

����������
���������
���������
�������
��������
��������
������������������

������������
�������������

�������������
�������������

��������� ����������������������������������

�����������
����������
�����������
�����������
��������
�������
��������
�������������������

��������������
���������������

���������������
���������������

���������� ����������������������������������

����������������
�����������������
�����������������
�����������������
������������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
������������������
�����������������
�����������������
�����������������
�����������������
�����������������
�

����������
������������������������

������
�������
���������������������

��������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

���������������������
���������������������

������� ����������������������������������

��������
��������
�������
��������
��������
��������
�������
�������
��������
�������
��������
��������
����

�������
�������
��������������������

�������
�������
��������������������

�������
�������
��������������������

�������
�������
��������
�������
�������
�������
�������
��������
�������
�������
�������
�������
��������
�������
�������
�������
�������
��������
�������
�����

�������
�������
��������������������

��������������������������������
����������������������������������

����������������������������������
����������������������������������

���������������������������������
����������������������������������

����������������������������������
����������������������������������

���������������������������������
����������������������������������

����������������������������������
���������������������������������

������������ ����������������������������������

�������
��������
�������������������

��������������������������������

�����������
�����������

�����������
������������

�����������
�����������

������������
�����������

�����������
�����������

������������
�����������

�����������
������������

�����������
�����������

�����������
������������

�����������
�����������
�
����������������������������������

����������������
�����������������

�����������������
�����������������

������������������
�����������������

�����������������
�����������������

�����������������
�����������������

�����������������
�����������������

�����������������
�����������������

������������������
�����������������

�����������������
�����������������

�����������������
�����������������

� ����������������������������������

T dwellingT person

T land

T forest

T water

T riverT pondT clear

T developed

T map

T house T zone

T object

T location

T window

T displayObject

T geometricShape

T atomic

T altitudeT transport

T road

T type
T collectionT function

T behavior

T date

Figure ���
 Geographic Information System in TIGUKAT object model�

�� Displayable types for presenting information on a graphical device� These include the types

T displayObject and T window which are application independent and the type T map which

is the only GIS application speci�c object that can be displayed�

�� A type T geometricShape that de�nes the geometric shape of the regions representing the

various zones� For our purposes we will only use this general type� but in more practical appli�

cations this type would be further specialized into subtypes representing polygons� polygons

with holes� rectangles� squares� splines and so on�

��� Query Model

A complete uniformbehavioral object model has formed basis for an object query model that includes

a complete algebra with an equivalent object calculus de�nition� An underlying characteristic of the

TIGUKAT query model is that it is a direct extension to the object model� In other words� it is

de�ned by type and behavior extensions to the primitive model�

The subsequent sections summarize the formal languages de�ned for the TIGUKAT query model�

The full speci�cation of the query model is given in �PL�OS���� The �rst section presents the object

calculus with the �rst�order semantics� The logical foundation of the calculus includes a de�nition

of atoms� well�formed formulas� and a function symbol which incorporates the behavioral nature of

��

Type Signatures

T location B latitude
 T real

B longitude
 T real

T displayObject B display
 T displayObject

T window B resize
 T window

B drag
 T window

T geometricShape

T zone B title
 T string

B origin
 T location

B region
 T geometricShape

B area
 T real

B proximity
 T zone� T real

T map B resolution
 T real

B orientation
 T real

B zones
 T collectionhT zonei
T land B value
 T real

T water B volume
 T real

T transport B e�ciency
 T real

T altitude B low
 T integer

B high
 T integer

T person B name
 T string

B birthDate
 T date

B age
 T natural

B residence
 T dwelling

B spouse
 T person

B children
 T person� T collectionhT personi
T dwelling B address
 T string

B inZone
 T land

T house B inZone
 T developeda

B mortgage
 T real

aBehavior was re�ned from supertype T dwelling�

Table ���
 Behavior signatures pertaining to example speci�c types of Figure ���

��

the object model� This allows the use of very general path expressions in the calculus� The safety

of the calculus is based on the evaluable class of queries de�ned in �GT���� The second section

presents the object algebra which is proven equivalent to the object calculus� Target�preserving and

target�creating algebraic operators are shown�

����� The Object Calculus

The alphabet of the calculus consists of object constants �a� b� c� d�� object variables �o� p� q� u� v� x� y� z��

monadic predicates �C�P�Q�� dyadic predicates ������� ���� an n�ary predicate �Eval�� a function

symbol ���� logical connectives ��� ��������� and delimiters ��� �����

Atoms are the building blocks of calculus expressions� The atoms of the calculus consist of the

following

Range Atom� C�s� is called a range atom for s where C corresponds to a unary predicate repre�

senting a collection and s denotes a term� A range atom asserts true if and only if s denotes

an object in collection C� When C de�nes a class� C��s� is true if and only if s denotes an

object in the shallow extent of class C�

Equality Atom� s � t is a built�in predicate called an equality atom where s and t are terms� The

predicate asserts true if and only if the object denoted by s is object identity equal to the

object denoted by t�

Membership Atom� s � t is a built�in predicate called a membership atom where s and t are

terms� and t denotes a collection� The predicate asserts true� if and only if the object denoted

by s is an element of the collection denoted by t�

Generating Atom� Any equality atom of the form o � t or membership atom o � t� where o is an

object variable and t is an appropriate term for the atom in which o does not appear� is called

a generating atom for o� That means that the object denotation for o can be generated from t�

The ground atom is an atom that contains only ground terms�

From atoms� well�formed formulas �WFFs� are built to construct the declarative calculus expres�

sions of the language� WFFs are de�ned recursively from atoms in the usual way �Cod��� Ull���

using the connectives ����� and the quanti�ers � and ��

A target�preserving query is an object calculus expression of the form ftj��o�g where t is a term

consisting of a single object variable or an object variable indexed by a list of behaviors� � is a

WFF� and o is exactly the variable in t and it is the only free variable referenced in �� Indexed

object variables are of the form o��� where � is a set of behaviors de�ned on the type of variable

o� The semantics of this construct is to project over the behaviors in � for o� meaning that after

the operation only the behaviors given in � will be applicable to o� A target creating query is of the

��

form ft�� ���� tnj��o�� ���� ong which is simply a generalization of the target preserving kind by allowing

multiple target terms t�� ���� tn over the multiple variables o�� ���� on� The result of such a query is a

collection of new object lists created from the cartesian product over ranges of variables o�� ���� on by

following the selection using ��o�� ���� on��

Example �� Target�preserving query
 Return all zones that are part of the same map� Project

the result over B title and B area�

fo�B title�B area�j�p�C map�p� � o � p�B zones�g

o is a free variable generated by the generating atom
 o � p�B zones� and t � o�B title�B area� is a

target variable in form of the index variable�

Target�creating query
 Return all the people and their spouses such that both of them are older then

�� years old

fp� qjC person�p� � q � p�B spouse � p�B age � �� � q�B age � ��g

Since� there are two target variables in the target list� this is an example of a target�creating query�

����� The Object Algebra

The operands and results of the object algebraic operators are typed collections of objects� The

algebra maintains the closure property since the results of any operator may be used as an operand

of another� The object algebra de�nes both target�preserving and target�creating operators� The

target preserving operators are de�ned as follows

Set Operations The typical set union� di�erence and intersection operators are de�ned�

Select �denoted P��F � � Q�� ���� Qn ��
 Select is a higher order predicate that accepts the predicate

F � and the n���ary collection P�Q�� ���� Qn as arguments� The result collection contains objects

from P corresponding to the p components of each permutation � p� q�� ���� qn � that satis�es

F �

Map �denoted Q� 	mop� Q�� ���Qn ��
 where mop is a mop function �PL�OS��� over the elements

of collections Q�� Q�� ���� Qn� meaning it expects arguments q�� q�� ���� qn and they are type

consistent with the membership types of the collections� For each permutation of objects

� q�� q�� ���� qn � form from the elements of the argument collections mop�q�� q�� ���� qn� is

applied and the resulting object is included in the result collection�

Project �denoted P ��
 where P is a collection and � is a behavioral projection set with the

restriction that it is a subset of the behaviors de�ned on the membership type of P � The �

collection is automatically unioned with the behaviors of type T object in order to ensure con�

sistency� The result collection contains objects of P � but with the membership type coinciding

with the behavior speci�cation of ��

��

The full object algebra includes target�creating operators in order to provide necessary object

formation operators� The result of these operations is a collection of new objects that are object

identity distinguishable from the ones in the argument collection� The primary target�creating

operator is product

Product �denoted P
Q�
 Product produces a collection containing product objects created from

each permutation � p� q � such that the left component is an object from P and the right

component is an object from Q� Product may initiate the creation of a new type along with a

new class to maintain the product objects�

The above collection of operators form the primitive algebra� They are fundamental in supporting

the expressive power of the calculus and other expressions can be de�ned in terms of them� The

following operators are added to the primitive algebra in order to provide functionality� and increase

the expressive power�

Join �denoted P ��F �� Q�� ���� Qn ��
 where n � �� Join produces a collection containing product

objects created from each permutation � p� q�� ���� qn � that satis�es F �

Generate Join �denoted Q��
o
�g� � Q�� ���� Qn ��
 where g is a generating atom of the form o� �

	q � �	b �where � is one of !�� or !��� over the elements of collections Q�� Q�� ���� Qn� Generate

join produces a collection of product objects created from each permutation of the qi�s and

extended by an object o in the following way� If � is !��� the result contains product objects

of the form � q�� ���� qn� � q�� ���� qn � �	b � for each permutation of the qi�s� If � is �� the

result contains product objects of the form � q�� ���� qn� o � for each permutation of the qi�s

and o �� q�� ���� qn � �	b�

Reduce �denoted P�p��o�
 where P is a collection of product objects 	p� and 	o is a list representing

symbolic reference to the component of the product� The reduce operator has the e�ect

of discarding the 	o components of the objects in P � That is� product objects of the form

� p�� ���� pi� 	o� pi��� ���� pn � are mapped to � p�� ���� pi� pi��� ���� pn ��

Collapse �denoted P �
 Collapse is a unary operator which accepts a collection of collections P

as an argument and it produces the extended union of the collections in P �

The following examples illustrate possible queries on the GIS de�ned in Example ���� Every

query is given in form of an English sentence� then it is expressed in the object calculus which is

followed by the equivalent algebraic expression� In the algebraic expressions� operand collections are

subscripted by the variable that ranges over them� If the operand consists of product objects� the

variables that make up the components of these objects are listed� The indexed variables are used

as a symbolic reference to the elements of the collection as described in this section� Furthermore�

the arithmetic notation for operations like o�greaterthan�p� and o�elementof�p� is used instead of

��

boolean Bspec equivalents� The execution of an algebraic expression is from left�to�right� except

that parenthesized expressions are executed �rst�

Example �� Return land zones valued over "������� or covering an area over ���� units�

Calculus

f o j C land�o� � �o�B value � ������� o�B area � �����g

Algebra

C lando ��o�B value������� � o�B area������

Example �� Return all zones that have people living in them �the zones are generated from person

objects��

Calculus

f o j �q�C person�q� � o � q�B residence �B inzone�g

Algebra
�
C personq �

o

o�q�B residence �B inzone

�
o�q

�q

Example �� Return the maps with areas where citizens over �� years of age live�

Calculus

f o j C map�o� � �p�C person�p� � �q�C dwelling�q�

� p�B age � �� � q � p�B residence � q�B inzone � o�B zones��g

Algebra
�
C mapo �F� hC dwellingq �

�
C personp �F�

�
p
i
�
o�q�p

�p�q

where F� is the predicate �q � p�B residence � q�B inzone � o�B zones�

and F� is the predicate �p�B age � ���

Example �� Return all maps that describe areas strictly above ���� feet�

Calculus

f o j C map�o� � �p��C altitude�p� � ��p � o�B zones�

�p�B low � �����g�

Algebra

C map�

��
C mapo �F� �C altitudep �F� �p

�
o�p

�p

�

where F� is a generating atom �p � o�B zones�

and F� is a predicate ���p�B low � ������

Example �� Return the dollar values of the zones that people live in�

Calculus

f o j �p�C person�p� � o � p�B residence �B inzone�B value�g�

��

Algebra
�
C personp �

o

o�p�B residence �B inzone�B value

�
p�o

�p

Note that this has a simpler form using the map operator as follows

C personp 	p�B residence �B inzone�B value

Example �� Return the zones that are part of some map and are within �� units from water�

Project the result over B title and B area�

Calculus

f o�B title�B area� j �p�q�C map�p� �C water�q�

�o � p�B zones � o�B proximity�q� � ���g�

Algebra
��
C mapp �

o
F�

�
p�o

�F� C waterq

�
p�o�q

�q�p B title�B name

where F� is a generating atom �o � p�B zones�

and F� is a predicate �o�B proximity�q� � ���

Example �� Return pairs consisting of a person and the title of a map such that the person�s

dwelling is in the map�

Calculus

fp� o j �q�C person�p� �C map�q�

� o � q�B title � p�B residence �B inZone � q�B zones�g

Algebra
�
C personp �F

�
C mapq �

o

o�q�B title

�
q�o

�
p�q�o

�q

where F is a predicate �p�B residence �B inZone � q�B zones�

Chapter �

TIGUKAT Languages

The main function of the TIGUKAT language is to support the de�nition� the manipulation and

the retrieval of objects in a TIGUKAT objectbase on an ad hoc basis� It is not a computationally

complete language in that ow control statements for iteration and conditional execution are not

supported� A complete objectbase programming language will be developed in the future� and it

will subsume this work� The TIGUKAT language supports the features de�ned in the TIGUKAT

object model� Thus� new types� classes� collections� behaviors and functions can be created using the

language statements� Functions can be written in the TIGUKAT language as well as in other pro�

gramming languages such as C��� The TIGUKAT language also supports the concept of composite

objects� enabling querying� retrieving� and accessing them�

The TIGUKAT language consists of three separate parts
 TIGUKAT De�nition Language

�TDL�� TIGUKATQuery Language �TQL�� and TIGUKATControl Language �TCL�� TDL supports

the de�nition of metaobjects in a TIGUKAT objectbase� Types� collections� classes� behaviors and

functions are created using TDL statements� TQL supports the retrieval of objects in a TIGUKAT

objectbase� Its syntax are based on the SQL paradigm� while the semantics of the language is

de�ned by the object calculus� Finally� TCL supports session speci�c operations like opening a

session� saving a session� and making objects persistent� The description of each of these languages

is given in the subsequent sections� while the full syntax of the TIGUKAT language is described in

Appendix A�

��� Notation

The notation used throughout this chapter is as follows� All bold words and characters correspond

to terminal symbols of the language �keywords� special characters� etc��� Nonterminal symbols are

enclosed between !�� and !��� Vertical bars !j� separate alternatives� The square brackets !��� !��

enclose optional material which consists of one or more items separated by vertical bars� Finally� all

��

��

the rules of the form � !element� list � are comma separated lists of !elements��

��� TIGUKAT De�nition Language

TDL supports the de�nition and the creation of metaobjects� All type� collection� class� behavior�

and function objects in the objectbase are considered metaobjects� TDL is logically divided into

six groups of statements
 type declarations� collection declarations� class declarations� behavior

manipulations� function declarations� and associations� Statements in the TIGUKAT language are

separated by a semicolon�

A type declaration statement is used to create new type objects in a TIGUKAT objectbase� The

general syntax of this statement is

� type declaration �

� create type � new reference �

under � type list �

� behavior specification �

The create type clause declares a reference to a new type� The under clause contains a type list which

de�nes all direct supertypes of a new type� This list cannot be empty� as every type in TIGUKAT

is at least a subtype of T Object type� The last part of a type declaration statement is the behavior

speci�cation which is made up of public and private behaviors

� behavior specification �

� �� public behaviors �� �� private behaviors ��

where public and private behaviors are de�ned as follows

� public behaviors �

� public � signature list �

� private behaviors �

� private � signature list �

Every behavior is declared either a public behavior or a private behavior� A public behavior is

visible to all authorized users of the type� while a private behavior is totally encapsulated� and it

is visible only within the de�nition of its type� All names of behaviors must be unique within a

given type� and all its supertypes� Thus� a de�nition of a behavior which is already de�ned in one

of the supertypes of a de�ned type cannot be repeated in that type� In order to rede�ne a behavior

inherited from a supertype� a new association must be done between the behavior and some new

function�

� signature �

� � behavior name � �� � type list � ��
 � type reference �

Each signature in the signature list consists of a behavior name which also becomes a behavior

reference� the optional list of type references which de�ne types of behavior parameters� and a single

type reference� speci�ed after the colon� which de�nes the type of the behavior result� The following

example illustrates the creation of a new type T person in the TIGUKAT objectbase

��

create type T person

under T Object

public� B getName
 T string�

B setName�T string�
 T string�

B getBrtday
 T date�

B setBrtday�T date�
 T date

The new type T person is de�ned as a direct subtype of T Object which is a primitive type in

TIGUKAT� The public interface of T person type consists of four behaviors
 B getName� B setName�

B getBrtday � B setBrtday � It does not have any private behaviors� Type T string is a primitive

type in TIGUKAT and we assume that T date has already been de�ned� so we can use it� It should

be noted here that all behaviors speci�ed in the type declaration statement are automatically cre�

ated and associated with a de�ned type� Thus� the type declaration statement can also become an

implicit behavior declaration statement�

Behavior manipulation statements are used to manipulate behaviors within existing types� New

behaviors can be added to existing types� or native behaviors can be removed from them� The

general syntax of these statements is as follows

� behavior manipulation �

�

add to � type reference � � behavior specification �

j remove from � type reference �

behaviors� � name list �

The �rst statement adds new behaviors to an existing type� The �rst component of this statement

is a type reference which declares the type with which new behaviors are to be associated� The

behavior speci�cation declares the behaviors which must be added to a given type� The remove

statement deletes behaviors from a given type� The type reference is a reference to an existing type

from which the behaviors are to be removed� The name list in the behavior clause speci�es behaviors

which should be removed� However� only the native behaviors can be removed from a given type�

They are automatically removed from all the subtypes of this type� In the following example� two

new public behaviors are added to T person type

add to T person

public� B age
 T natural�

B spouse�T person�
T person�

Every behavior in the TIGUKAT objectbase must be associated with a function object which pro�

vides an implementation of the behavior semantics� The semantics of the behavior and the semantics

of the corresponding functions must be the same� There are two kinds of functions in the TIGUKAT

objectbase
 stored functions and computed functions� Stored functions do not have any parameters�

��

and their result type can be inferred from the result type of the corresponding behavior� therefore

they do not have to be declared explicitly� They are created when the association statement is

invoked �see association statement in this section�� Computed functions� on the other hand� must

be explicitly declared using one of the following declaration statements

� function declaration �

� � language �function� function signature �

begin

� function code �

end

j external function � function signature �

Thus� there are two ways to declare computed functions� A user can either write a complete function�

specifying the language used and providing the code of the function� or the user can declare a

reference to an external function which has already been de�ned� and exists in the objectbase� The

language clause in the �rst statement speci�es the programming language which is to be used to

write the function code� So far� there are two languages which can be used to write function code in

TIGUKAT
 TQL and C��� However� other languages will be supported in the future� The second

statement for computed functions is used to declare references to function objects which already

exist in the objectbase� The function signature speci�es the semantics of the function� and the

function object with the same signature �semantics� is bound to the local reference� Thus� in both

function declaration statements� a function signature must be declared� A function signature has

the format

� function signature �

� � function name � ��� formal parameter list ����� type reference �

A function name in the function signature speci�es the unique name of the function and it becomes

a reference to the function object� The formal parameter list is made up of formal parameters

� formal parameter �

� � identifier �
 � type reference �

If the �rst parameter is referenced by the keyword self� then it declares the type of the receiver

object� In other words� it de�nes a type with which the function can be associated� If it is not

speci�ed� the T Object primitive type is assumed by default� All other parameters in this list de�ne

the parameters and their types� The last part of a function signature is a type reference speci�ed

after a colon� It de�nes the result type of the function� In the following example� two computed

functions f age and f spouse are declared

C�� function f age�self
T person�
 T integer

begin

T date today���

��

today�initDate��� �# initDate�� is a behavior de�ned on T Date #�

return �today � B getBrtday����

end�

external function f spouse�self
T person� p
T person�
 T person�

The �rst statement declares a new computed function which is written in C�� language� This

function can be associated with a behavior in the T person type� or a behavior in any of its subtypes�

A new function object is created� and the reference f age is bound to it� The second statement

declares a local reference f spouse and binds it to the external function object with the same

semantics� If there are more then one object with the same semantics in the objectbase� then the

system prompts the user about the ambiguity and it must be resolved�

To associate a behavior with a corresponding function� the association statement is used� The

general syntax of the association statements is

� association �

� associate in � type reference �

�� computed list ��

�� stored list ��

where the computed list is a comma�separated list of computed function associations� and the stored

list is a list of stored function associations� Each computed function association is de�ned as

� computed association �

� � behavior reference list � with � function reference �

and the stored function association is one of the following�

� get association �

� � behavior reference list � with GET

� set association �

� � behavior reference list � with SET

The type reference in the association clause speci�es the type within which the associations are to

be de�ned� Thus� one association statement can be used to de�ne associations between behaviors

and function objects only within a single type� Computed list in this statement associates computed

functions with the behaviors in a given type� Every element of this list consists of a behavior

reference list and one function reference� Behavior names together with the type reference �from the

association clause� uniquely specify behavior objects in the objectbase� Behaviors which are in the

same behavior reference list are associated with the same function object whose reference is given

after the with clause� In other words� they all have the same implementation� The stored clause in

this statement associates stored functions with the behaviors in the given type� However� there are

�The full syntax of the association statement is given in Appendix A�

��

two di�erent semantics of behaviors which can be associated with stored functions� The semantics

of behaviors can be either to retrieve the object which is stored� or to store it �set its value�� Thus�

stored function association is made up either of the get sequence� or of the set sequence� Moreover�

if there is one get �set� association� there must be at least one set �get� association and vice versa�

Furthermore� there can be one or more get�set clauses within the same association statement� they

all correspond to the same stored function� Thus� one association statement creates at most one

stored function� In order to associate behaviors in a speci�c type with di�erent stored functions�

separate association statements must be used�

In the following example� the association statement is used for two di�erent pairs of behaviors

one with the result type T string� and the other with the result type T date� It is incorrect� as the

behaviors have di�erent result type �semantics�� thus they should be associated with two di�erent

stored functions�

associate in T person

B getName with GET � B setName with SET �

B getBrtday with GET � B setBrtday with SET �

The example below illustrates associations which can be done within the T person type� Two

association statements are used to ensure that two di�erent stored function are created�

associate in T person

B getName with GET � B setName with SET �

associate in T person

B getBrtday with GET � B setBrtday with SET �

B age with f age� B spouse with f spouse�

The �rst association statement creates a pair of stored functions� The function to retrieve the

object is referenced by GET � while the function to store the object is referenced by SET � Thus�

behavior B getName is associated with GET � and behavior B setName is associated with SET in

the T person type� The second statement creates a new pair of stored functions� and associates

behaviors B getBrtday and B setBrtday with GET and SET respectively� This statement also

associates behaviors B age and B spouse with computed functions referenced by f age and f spouse

respectively�

The next TDL statement is a class declaration statement which is used to create a new class

object in a TIGUKAT objectbase and to associate it with an existing type� When a class is created�

it is assumed that the corresponding type is correctly and fully de�ned� meaning that all behaviors

are speci�ed and the associations between behaviors and functions are completed� An error condition

is raised if there exists a behavior within a given type which does not have an associated function

��

de�ned when a request to create a class for this type is posted� The general syntax of the class

declaration statement

� class declaration �

� create class � � new reference � �

on � type reference �

The class reference in this statement declares a reference to a new class object� However� this

speci�cation is optional� if not provided� the class can still be accessed through its type� The

following example illustrates two di�erent ways to create a class object for the T person type�

create class C person on T person�

or the other way to create a class object is

create class on T person�

Both of these statements create class object for the T person type� However� the �rst statement

not only creates a class object and associates it with the type object T person� but also declares a

separate reference C person to the class object� The type object and the class object� in this case�

have unique direct references� The second statement creates a class object for the T person type�

and associates it with this type� Although� there is no direct reference to the class object� it can

still be accessed through the B classof behavior de�ned on the T type type�

The last TDL statement is a collection declaration statement which creates new collection objects�

The general syntax of this statement is as follows

� collection declaration �

� create collection � new reference �

type � type reference �

�with � object list � �

The create collection clause in this statement declares a new reference to a collection object� The type

clause speci�es the member type of collection elements� while the with clause initializes the collection

with objects given in the list� The following example illustrate how to create a new collection in

TDL�

Example �� Let assume that the references
 john� paul and peter reference the objects of the

T person type� A new collection from these objects can be created by using the following statement

create collection students

type T person

with john� paul� peter

In summary� TDL is used to create type� class� behavior and function objects in a TIGUKAT

objectbase� and to de�ne relationships among them� To create a new type object� the type reference

��

and the list of immediate supertypes must be given� Behaviors of a new type can be either de�ned

during the type declaration� or later using behavior manipulation statements� There are stored and

computed functions in the TIGUKAT objectbase� Stored functions cannot be explicitly declared�

they are created during the association process� Computed functions are explicitly declared and cre�

ated using computed function declaration statements� Associations between behaviors and functions

are de�ned by association statements� Finally� class objects are created using a class declaration

statement� However� a new class can be created for an existing type only if this type is completely

de�ned� meaning that all behaviors have functions associated with them� Otherwise� an error oc�

curs� Example ��� illustrates the complete process of creating new type� class� behavior and function

objects in the GIS which is de�ned in Example ���i� and de�ning associations among them�

Example �� De�ne two types T dwelling and T house for the GIS� The type T dwelling is a

direct subtype of the T Object type� and it has two behaviors
 B address and B inZone� The type

T house is a subtype of T dwelling type that has one additional behavior
 B mortgage� B inZone

and B address in T house are inherited form the type T dwelling� Thus� the de�nition of these two

types in TDL is

create type T dwelling

under T Object

public� B setAddr�T string�
T string�

B getAddr
T string�

B inZone
 T land�

create type T house

under T dwelling

public� B setMortgage�T real�
T real�

B getMortgage
T real�

Since in type T dwelling� B address is to be associated with a stored function� two behaviors

B setAddr and B getAddr are de�ned instead of B address� Although these behaviors have di�erent

semantics� they will be associated with the same stored function� Since we would like a slightly

di�erent implementation for B inZone in T house then the one in T dwelling� we declare two

di�erent function objects for them

external function dw inZone�self
T dwelling� � T land�

external function hs inZone�self
T house� � T developed�

We assume� that functions dw inZone
 T land and hs inZone
 T developed already exist some�

where in the system and now we have local references to them� There are two stored functions for

��

the !address� behaviors in T dwelling type� and the mortgage behavior in the T house type� They

will be created during the association process� Now� the associations between behavior objects and

function objects can be speci�ed�

associate in T dwelling

B inZone with dw inZone�

B setAddr with SET �

B getAddr with GET �

associate in T house

B inZone with hs inZone�

B setMortgage with SET �

B getMortgage with GET �

Finally� as all associations are done� class objects for the newly created types can be created�

create class C dwelling on T dwelling�

create class C house on T house�

��� TIGUKAT Query Language

The main function of TQL is to retrieve and to manipulate objects in a TIGUKAT objectbase� Its

syntax is based on the SQL select�from�where structure �Dat���� while its semantics is de�ned in

terms of the object calculus� In fact� there is a complete reduction from TQL to object calculus�

thus the semantics of the language is formally speci�ed�

����� Design Decisions

TQL is based on the SQL select�from�where structure� We have decided to adopt this structure for

various reasons� First of all� SQL is the standard language for relational systems� Second� current

work on SQL� attempts to extend its syntax and its semantics to ful�ll requirements of object�

oriented systems �Gal���� Finally� any syntax of a query statement must provide a way to specify

the three basic components of the query block� Instead of designing a new structure to achieve the

same result� we have adopted the one which is already successful in other systems�

TQL extends the basic SQL structure by accepting path expressions �implicit joins �KBC�����

whenever it makes sense� Thus� path expressions can be used in the select clause to navigate trough

the schema� They can be used in the from clause if the result of the application of behaviors is a

�nite collection� They can also be used in the where clause as predicates� Since the object equality

is de�ned on the primitive type T object� explicit joins are also supported by TQL� Queries operate

��

on �nite collections and they always return new collections as results� Thus� query results are

queryable� Also� queries can appear in the from and where clauses of other queries �the concept of

nested queries is supported�� Objects can be queried regardless of whether they are persistent or

transient� Finally� TQL is built on top of the object calculus� which makes the semantics of the

language well de�ned�

It should be noted here� that the syntax for the application of aggregate functions is not explicitly

supported by TQL� However� as the underlying model is purely behavioral� these functions are

de�ned as behaviors on the T finCollection primitive type� They can be applied to any collection

including those returned as a result of a query�

����� The Syntax of TIGUKAT Query Language

There are four basic TQL operations
 select� insert� delete� and update� In addition� there are

three binary operations
 union� minus� and intersect� Each of these statements operates on a set

of input collections and returns a collection as a result� However� only the semantics of the select�

union� minus� and intersect statements are currently well de�ned� The de�nition of the semantics

for the insert� delete and update statements involves the speci�cation of the update semantics in the

TIGUKAT object model� These aspects of the object model and the associated language constructs

are currently being developed and will be presented in future reports�

The basic query statement of TQL is the select statement� It operates on a set of input collections

and it always returns a new collection as the result� The general syntax of the select statement is

� select statement �

� select � object variable list �

� into
 persistent
 all �� � collection name � �

from � range variable list �

� where � boolean formula � �

The select clause in this statement identi�es objects which are to be returned in a new collection�

There can be one or more object variables in this clause� They can be in the form of simple variables�

path expressions �which are equivalent to Bspecs de�ned in Chapter �� Section ����� index variables�

or constants� They correspond to free variables in object calculus formulas� The into clause declares

a reference to a new collection returned as a result of the query� If the into clause is not speci�ed� a

new collection is created� however� there is no reference to it� This is especially useful when a query

is embedded in some other query and the collection returned as a result does not require an explicit

reference� Also� as the TIGUKAT language supports the assignment statement� a variable reference

can be bound to the result of a query� Therefore� the into clause can be omitted� In addition� the

result collection can be made persistent by specifying it in the into clause� The persistent clause

makes only the container object persistent in the objectbase� while a persistent allmakes all elements

of the collection persistent as well� If elements of the collections are themselves collections� persistent

��

allmakes all the objects in those collections persistent in a recursive fashion� The from clause declares

ranges of object variables in the select and where clauses� Every object variable can range over either

an existing collection� or a collection returned as a result of a subquery� while a subquery can be

either given explicitly� or as a reference to a query object� It is useful to distinguish between constant

references to collections and variable references to collections� A constant reference is a reference

which does not change during the execution of a query� In particular� it can be a reference to a

collection that is a result of the evaluation of a subquery� A variable reference to a collection is a

reference which can change during the execution of a query� The range variable in the from clause

has the following syntax

� range variable �

� � variable list � in � collection reference � � � �

� collection reference �

� � term �

j � � query statement � �

The collection reference in the range variable de�nition can be followed by a plus !�� which refers to

a shallow extent of a collection or a class� If it is not speci�ed� a deep extent is assumed by default�

In case of collections� the deep and shallow extents are equivalent�

The term in the collection reference de�nition is either a constant reference to a collection� a

variable reference� or a path expression�

The where clause de�nes a boolean formula which must be satis�ed by objects returned by a

query� Boolean formulas in TQL are de�ned in a similar �recursive� fashion as the formulas of

the object calculus� In fact� there is a complete correspondence between the formulas of the query

language and the object calculus formulas� Boolean formulas of the TQL have the following syntax

� boolean formula �

� � atom �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

j � exists predicate �

j � forAll predicate �

j � boolean path expression �

An atom in the TQL boolean formula is one of the following

� atom �

� � term � � � term �

j � term list � in � collection reference � ���

where the term is a variable reference� a constant reference or a path expression� and the collection

reference is the same as in the range variable de�nition�

��

Two special predicates are added to boolean formulas of the query language in order to express

existential and universal quanti�cation� The existential quanti�er is expressed by the exists predicate

which is of the following format

� exists predicate �

� exists � collection reference �

The exists predicate is true if the collection returned by the subquery is not empty� Otherwise� the

predicate is false� The exists predicate is unnecessary in the TQL� as every query with this predicate

in the where clause can be transformed to the equivalent query without this predicate� However� we

have decided to include it in TQL� so users are not forced to write queries in prenex normal form�

The universal quanti�er is expressed by the forAll predicate which has the following structure

� forAll predicate �

� forAll � range variable list � � boolean formula �

The syntax of the range variable list is the same as in the from clause of the select statement� It

de�nes variables which range over a speci�ed collection� The boolean formula is evaluated for every

possible binding of every variable in this list� Thus� the entire forAll predicate is true� if for every

element in every collection in the range variable list� the boolean formula evaluates to true� If� on

the other hand� there exists at least one element in any collection such that the formula evaluates

to false� then the whole predicate is false�

Example ��

forAll p in P� q in Q F �p� q�

This predicate is true if for every element of the collection P � and for every element of the collection

Q� the formulaF �p� q� evaluates to true �the formal semantics of this predicate given in Section �������

It should be noted here that collections in the range variable list can be given explicitly as constant

references to collection objects� or implicitly as queries �just as it is in the from clause of the select

statement��

The last part of the de�nition of the boolean formula is the boolean path expression which is

equivalent to the following formula

� path expression � � TRUE
FALSE

However� to avoid such arti�cial constructs� we include boolean path expressions in the de�nition of

the TQL formula under two conditions� First� all invoked functions are side�e	ect�free� Second� the

result type of the whole path expression is of a boolean type�

So far� a select statement with only one simple object variable in the select clause was discussed�

There can be one or more objects of various formats in this clause� The object in the select clause

has the syntax

��

� object variable �

� �� � cast type � �� � term �

j � index variable �

where a term is either a constant reference to an object� variable reference to an object� or a path

expression� The �rst de�nition of the object variable corresponds to a standard reference to an

object� The projection type enclosed in brackets �which is optional in this clause� de�nes the type

of elements of a result collection� However� it makes sense only if this type is a supertype of the

type of an object which is after the cast type� It acts as a behavioral projector or a generalization

operator �Gal���� The interface of objects returned in the result collection is a subset �not necessarily

a proper one� of the interface of objects given in the select clause� This subset is de�ned by the

interface of the type enclosed in brackets� The construct used to project behaviors is similar to the

cast function in �Gal���� and equivalent to the cast operator in �Bla���� If it is is not given� the type

of the result collection is inferred from the types of collections de�ned as ranges� The second part

of the de�nition of an object variable is an index variable� It has the following format

� index variable �

� � identifier � � � behavior name list � �

The role of an index variable is to specify the behaviors which are applicable to objects in the result

collection� The idea is the same as in the projection type� however� all behaviors in an index variable

must be given explicitly in the behavior name list� Thus� objects in the result collection can have

di�erent types then original ones�

TQL supports three binary operations
 union� minus� and intersect� Similarly to a select

statement� they operate on the collection of objects and always return new collections as result� The

syntax of these statements is

� collection reference � union � collection reference �

� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

A collection reference in a TQL binary statement is either a constant reference to a collection object�

or it is a query�

����� The Formal Semantics of TQL

The semantics of TQL are de�ned in terms of the object calculus� It is shown in this section that

every TQL statement corresponds to an object calculus expression� thus there is a complete reduction

from TQL to the object calculus�

Throughout this section the following notation is used� Every TQL select statement of the form

select p�� p�� ��� pk

into newCollection

��

from p� in P�� ���� pk in Pk� q� in Q�� ���� qn in Qn

where F �p�� ���� pk� q�� ���� qn�

is referred to as S�p�� ���� pk�� In other words� queries can be modelled as functions S�p�� ���� pk� which

operate upon one or more collections� and return collections as results� A list which is returned as

a result collection is made up of objects referenced by p�� ���� pk� and is denoted as � p�� ���� pk ��

Furthermore� for groups of quanti�ers like �p�� ����� � pk or �p�� ����� �pk� the shorthand notation is

used
 � � p�� ���� pk � and � � p�� ���� pk � respectively� Finally� � p�� ���� pk ��� x�� ���� xk � is a

short notation for p� � x�� ���� pk � xk�

It is shown in this section� that every select statement S�p�� ���� pk� corresponds to the object

calculus expression
 f� p�� ���� pk � j ��� p�� ���� pk ��g� The select clause in S�p�� ���� pk� de�nes

the free variables of the object calculus formula� The from clause speci�es the ranges of variables

which can either be given explicitly as constant references to collections� or implicitly in the form of

subqueries� If the range variable is de�ned over a constant collection reference� then it corresponds

to a range atom �e�g� p in C person � C person�p�� in the object calculus� If it ranges over a

collection de�ned by a variable or a path expression then it corresponds to a membership atom

�p in q�kids�� � �p � q�kids��� Otherwise� in case of subqueries� the semantics of the range variable

is de�ned by a complex object calculus formula� However� as shown below� every query which has

a subquery in the from clause can be rewritten as an equivalent at query�

Theorem �� Every TQL query Sp�p�� ���� pk� with nested queries in the from clause can be rewrit�

ten as an equivalent at query�

Proof� Every query with a subquery in the from clause is expressed in TQL as�

S�p�� ���� pk� � select p�� ���� pk

from p� in $P� � ���� pi in $Pi�

pi�� in Si���qi��� � ���� pk in Sk�qk��

r in $R

where F �p�� ���� pk� r�

which is equivalent to the object formula

�p�����pk �P��p�� � ���� Pi�pi� � �����

pi�� � Si���qi��� � ���� pk � Sk�qk� � �r�R�r� � F �p�� ���� pk� r���

P�� ���� Pi in this query are constant references to collections� r represents all variables which appear

in the query� but not in the select clause� and Si���qi���� ���� Sk�qk� represent subqueries� Thus�

every Si�j �j � �� ���� k� i� is also a query� and it is represented in TQL as

�For brevity� we assume that all collection referencesP in the from clause are constants� It can be easily generalized

to include other cases� however� this does not e�ects the proof�

��

Si�j�qi�j� � select qi�j

from qi�j in $ Qi�j � ri�j in $ Ri�j

where Fi�j�qi�j � ri�j�

which is equivalent to the following object calculus formula

Si�j�qi�j� � �qi�j�Qi�j�qi�j� � �ri�j�Ri�j�ri�j� � Fi�j�qi�j� ri�j���

Furthermore� every subformula in the from clause which is in the form
 pi�j in Si�j�qi�j� is equiv�

alent to

pi�j in Si�j�qi�j� � �����

�qi�j�Qi�j�qi�j� � �ri�j�Ri�j�ri�j� � Fi�j�qi�j� ri�j�� � pi�j � qi�j�

In ���� every qi�j �j � �� ���� k� i� can be replaced by pi�j yielding an equivalent formula

pi�j in Si�j�qi�j� � Qi�j�pi�j� � �ri�j�Ri�j�ri�j� � Fi�j�pi�j � ri�j��

Thus� by replacing each pi�j in Si�j �qi�j� in ��� the following equivalent formula is obtain

�p�����pk�P��p�� � ���� Pi�pi� � �����

�Qi���pi��� � �ri���Ri���ri��� � Fi���pi��� ri���� � ����

�Qk�pk� � �rk�Rk�rk� � Fk�pk� rk��� � �r�R�r� � F �p�� ���� pk� r���

The formula ��� is in conjunctive form� therefore� changing the order of predicates results in a logi�

cally equivalent formula� Thus� in a new formula� all range atoms of the form Pi�pi�� Qi�qi�� Ri�ri�

are put together� and all well�formed formulas of the form F �p�� ���pk� r�� ���� Fi�pi� ri� are put to�

gether� The equivalent formula is as follows

�p�����pk�P��p�� � ���� Pi�pi��

Qi���pi��� � ���� �Qk�pk��

�ri���Ri���ri��� � ���� �rk�Rk�rk��

Fi���pi��� ri��� � ���� Fk�pk� rk� � F �p�� ���� pk� r���������

Thus� the original query S�p�� ���� pk� can be rewritten to the following form

S
�

�p�� ���� pk� � select p�� ���� pk

from p� in $P� � ���� pi in $Pi���

pi�� in $Qi�� � ���� pk in $Qk�

ri�� in $Ri��� ���� rk in $Rk� r in $R

where Fi���pi��� ri��� � ���� Fk�pk� rk� � F �p�� ���� pk� r�

�

��

From now on� we assume that all ranges in the from clause are de�ned by either the constant

references to a collection corresponding to the range atoms in the object calculus formulas� or

by variable references corresponding to membership atom of the object calculus� Consider the

following example

Example ��

select p

from p in $P�

q in � select v from v in $V�w in $W where F��p� v� w�� �z �
Sp

�

where F��p� q�

This query has a nested query �Sp� in the from clause which is in the format

select v��z�
a

from v in $V�w in $W� �z �
b

where F��p� v� w�� �z �
c

Variables in the select clause correspond to free variables of the calculus expression �part �a��

f v��z�
a

j V �v� � �w�W �w�� �z �
b

�F��p� v� w��� �z �
c

g

The from clause speci�es ranges of the object variables� In this case� all range variables correspond

to range atoms of the object calculus� and build the second part �b� of the calculus expression�

Finally� the where clause contains a boolean formula� which correspond to a well�formed formula of

the calculus� and makes up the third �c� part of the query expression�

In a similar fashion� a calculus expression is built for the entire query� There is one variable p

in the select clause� which corresponds to a free variable of the calculus formula� The from clause

de�nes ranges of variables used in the select and where clauses� In this case the range of the variable p

is a constant reference� while the range of q is given in the form of a subquery �Sp� which corresponds

to the calculus formula

�q in Sp� � �v �V �v� � �w�W �w� � F��p� v� w� � q � v���

The where clause adds the last part F��p� q� to the calculus expression� Thus� the �nal form of this

expression is

f p j P �p� � �q��v�V �v� � �w�W �w� �F��p� v� w� � q � v��� � F��p� q�g

This formula can be transformed to

��

�q��v �V �v� � �w�W �w� � F��p� v� w� � q � v���

� �v �V �v� � �w�W �w� � F��p� v� w����

Thus� the calculus expression for the whole query is

f p��z�
a

j �P �p� � �v�V �v� � �w�W �w�� �z �
b

�F��p� v� w� � F��p� v�� �z �
c

��g

The query can be rewritten in TQL as

select p��z�
a

from p in $P� v in $V�w in $W� �z �
b

where F��p� v� w� and F��p� v�� �z �
c

�

Next� it is shown that there is a direct correspondence between a TQL boolean formula in the where

clause and the object calculus well�formed formulas�

Theorem �� Every boolean formula in the where clause of the select statement corresponds to a

well�formed formula in the object calculus�

Proof� A boolean formula in TQL has the following syntax

� boolean formula �

� � atom �

j � exists predicate �

j � forAll predicate �

j � boolean path expression �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

a� The atom in a TQL boolean formula is one of the following

� atom �

� � term � � � term �

j � term list � in � collection reference � ���

The �rst atom is equivalent to the equality atom of the object calculus� If the term on the

left hand side of the equality atom is a variable� then it corresponds to a generating atom

of the object calculus� The semantics of the second atom depends on the collection reference�

If it is a constant reference to a collection� then it corresponds to a range atom in the object

calculus� Otherwise� it corresponds to a membership atom�

��

b� The existential quanti�er in TQL is expressed by the exists predicate

� exists predicate �

� exists � collection reference �

The exists predicate is true if the referenced collection is not empty� Otherwise� the predicate

is false� The collection reference in this predicate is either a constant reference to a collection

object� or it is a query which returns a collection as a result� In the �rst case� the exists

predicate has the format
 exists P � and it is equivalent to the object formula �x P �x�� In the

second case� when the collection reference is given implicitly by a query� the exists predicate

has the form
 exists S�p�� ���� pk�� Then� it corresponds to the following calculus formula

� � x�� ���� xk � �� � p�� ���� pk � �S�p�� ���� pk��

� � p�� ���� pk ��� x�� ���� xk ��

However� the exists predicate is unnecessary in TQL� Every query with this predicate in the

where clause can be transformed to an equivalent at query� We decided to include it in the

language� so users are not forced write queries in prenex normal form� Consider the example

Example ��

S�p� � select p

from p in $P� r in $R

where F��p� r� and exists

� select v from v in $V�w in $W where F��p� v� w�� �z �
S�v�

�

The subquery S�v� in the where clause corresponds to the object calculus formula

S�v� � �v�V �v� � �w�W �w� � F��p� v� w���

Thus� the entire query in the object calculus can be expressed by

�p �P �p� � �r�R�r� � F �p� r�� �v�V �v� � �w�W �w� �F��p� v� w�����

Applying formula preserving transformations� the above formula can be rewritten

�p�P �p� � �r�R�r� � �v�V �v� � �w�W �w� � F��p� r� � F��p� v� w�����

Thus� in TQL� S�p� can be expressed as

S
�

�p� � select p

from p in $P� r in $R� v in $V�w in $W

where F��p� r� and F��p� v� w�

�

��

c� The universal quanti�er is represented in TQL by the forAll predicate� It has the following

format

� forAll predicate �

� forAll � range variable list �

� boolean formula �

This predicate is true� if for every element in every collection in the range variable list� the

boolean formula evaluates to true� If� on the other hand� there exists at least one element in

any collection such that the formula evaluates to false� then the whole predicate is false� Again�

the collection references in the range variable list are either constant references to collection

objects� or they are given by queries� Therefore� in the general case� this predicate is

forAll p� in $P�� ���� pi in $Pi�

pi�� in Si���qi���� ���� pk in Sk�qk�

F �p�� ���� pk�

where P�� ���Pi are constant references to collections� and Si���qk�� ����

Sk�qk� are queries� The following object calculus formula is equivalent to this predicate

� p����� pk���P��p�� � ���� �Pi�pi�

���Si���qi��� � pi�� � qi��� � ���� ��Si���qi��� � pi�� � qi����

� F �p�� ���� pk��

d� The next part of the de�nition of a boolean formula is a boolean path expression� In general� path

expressions in the TIGUKAT language correspond to Bspecs de�ned in �PL�OS���� Boolean

path expressions are Bspecs which evaluate to objects of T boolean type� A boolean formula

which is given in the form of a boolean path expression is true if the path expression evaluates

to a constant object TRUE� Otherwise� it is false� Therefore� the boolean path expression in

the TQL boolean formula de�nition can be considered as a shorthand notation for an equality

atom of the form

� path expression � � TRUE
FALSE

Thus� boolean path expressions correspond to equality atoms in the object calculus�

e� The remaining de�nitions of TQL boolean formulas correspond directly to the recursive de��

nition of a well�formed formula in the object calculus� Thus� every TQL boolean formula is

equivalent to an object calculus well�formed formula� �

As shown in Section ������ the select clause is made up of one or more object terms� Each term

is either a constant reference to an object� a variable reference to an object� path expression� or an

index variable� In addition� each term can be proceeded by a cast type which extracts behaviors

��

from it� However� the object calculus allows constants� variables� Bspecs and index variable as free

variables in its formulas as well� Thus� every constant reference in TQL corresponds to a constant

in the object calculus� a variable reference is equivalent to a variable in the object calculus� and a

path expression in TQL corresponds to a Bspec� TQL index variables extract certain behaviors from

object�s types� thus they correspond to index variables of the object calculus� Finally� each term

can be preceded by a cast type which extracts �generalizes� behaviors from an object type� Thus� a

TQL cast type and the following term correspond to an index variable in the object calculus as

well�

Example ��

T person
 subtype of T object has the following behaviors

fB name� B ageg plus all behaviors inherited from T object

T student
 subtype of T person has the following native behaviors

f B stId� B department� B gpa g

Thus� the following TQL query

select �T person� p

from p in C student

where F �p�

corresponds to the following object calculus formula

�p�B name�B age� �C student�p� � F �p��

which corresponds to the following calculus expression

fp�B name�B age� j C student�p� � F �p�g

�

Theorem �� Every select statement in TQL has an equivalent object calculus expression�

Proof� It follows directly from Theorem ��� and Theorem ���� Every select statement can be

expressed as

select p�� p�� ��� pk

from p� in $P�� ���� pk in $Pk� q� in $Q�� ���� qn in $Qn

where F �p�� ���� pk� q�� ���� qn�

where p�� p�� ��� pk are free variables within the query� P�� ���� Pk� Q�� ���� Qn are constant references to

collections� and F �p�� ���� pk� q�� ���� qn� is a TQL boolean formula� Thus� the whole query corresponds

to the object calculus expression of the form

f p�� ���� pk j P��p�� � ��� � Pk�pk��

�q�� ���� �qn�Q��q�� � ��� �Qn�qn� � F �p�� ���� pk� q�� ���� qn�� g� �

��

Summarizing� the select clause of the select statement de�nes the free variables of an object

calculus formula� which correspond to variables of the target list in the object calculus expression�

The from clause declares a range of variables which correspond to range atoms of an object calculus

formula� Finally� the where clause speci�es a boolean condition that corresponds to an object calculus

well�formed formula� Therefore� the semantics of every select statement in TQL are well de�ned�

Theorem �� Every binary operation in TQL has an equivalent object calculus expression�

Proof� The binary operations in TQL have the following syntax

� collection reference � union � collection reference �

� collection reference � minus � collection reference �

� collection reference � intersect � collection reference �

Thus� in the object calculus they are expressed by simple calculus expressions
 f o j P �o� �Q�o�g�

f o j P �o� � �Q�o�g� f o j P �o� �Q�o�g� where P is a reference to the �rst collection in the binary

statement� and Q is a reference to the second collection� �

Theorem �� The reduction from TQL to the object calculus is complete�

Proof� It follows directly from Theorems ���� ���� ��� and ���� �

The following examples illustrate queries� which are formally speci�ed in Examples �������� ex�

pressed in TQL�

Example �� The query in Example ���
 Return land zones valued over �
������ or covering an

area over
��� units is expressed in TQL as

select o

from o in C land

where �o�B value�� � ������� or �o�B area�� � �����

Example �� The query in Example ���
 Return all zones that have people living in them �the

zones are generated from person objects� is expressed in TQL as

select o

from q in C person

where �o � q�B residence���B inzone���

Example �� The query in Example ���
 Return the maps with areas where citizens over the age

of �� years live is expressed in TQL as

��

select o

from o in C map

where exists � select p

from p in C person� q in C dwelling

where �p�B age�� � �� and q � p�B residence��

and q�B inzone�� � o�B zones����

Example ��� The query in Example ���
 Return all maps that describe areas strictly above ����

feet is expressed in TQL as

select o

from o in C map

where forAll p in � select q

from q in C altitude

where q � o�B zones���

p�B low�� � ����

Example ��� The query in Example ���
 Return the dollar values of the zones that people live in

is expressed in TQL as

select p�B residence���B inzone���B value��

from p in C person

Example ��� The query in Example ���
 Return the zones that are part of some map and are

within
� units from water� Project the result over B title and B area is expressed in TQL as

select o�B title�B area�

from p in C map� o in p�B zones� q in C water

where o�B proximity�q� � ��

Example ��� The query in Example ���
 Return pairs consisting of a person and the title of a

map such that the person�s dwelling is in the map is expressed in TQL as

select p� q�B title��

from p in C person� q in C map

where p�B residence���B inZone�� � q�B zones��

��

��� TIGUKAT Control Language

The last part of the TIGUKAT Language is the TIGUKAT Control Language �TCL� which consists

of operations performed on session objects� Since everything in TIGUKAT is treated as a �rst class

object� sessions are also represented by objects in the objectbase� They can be referenced� opened�

accessed and closed� Session objects are instances of the C session class which is of T session

type� T session is a direct subtype of T Object type� Among others� it has the following behaviors

B openSession� B closeSession� B saveSession� B quitObjectbase �a more complete description of

session objects and their behaviors is given in Chapter �� which correspond to the TCL session

speci�c statements�

Every TIGUKAT objectbase has at least one instance of the C session class which is referred

to as a root session� When a TIGUKAT objectbase is opened� a root session becomes the current

session in the system� All other sessions can be opened and manipulated from this session by issuing

TCL session speci�c operations� TCL consists of the following session speci�c operations
 open

session� close session� save session� make persistent� and quit�

The open session statement is used to open a session object which provides a workspace from

which a user can perform operations on the objectbase� The syntax of this statement is

� open session �

� open � session reference �

The session reference is a reference to a session object in the objectbase� If a session object referenced

by the session reference does not exists in the objectbase� a new session object is created� and it

becomes the current session in the system� Otherwise� the object which is referenced by the session

reference becomes the current session in the system�

The save session statement is used to save the session environment� and also the session object

becomes persistent� The general syntax of this statement is

� save session �

� save �� session reference ��

All transient objects are saved� meaning that their references are stored in the session symbol table

�they do not become persistent� however�� Next time that session object is opened� the environment

is restored� and the user can continue the previously closed session� Otherwise� if the session is

closed without saving� all transient objects are lost�

The close session statement is used to close a current session without leaving an objectbase� The

syntax of this statement is

� close session �

� close �� session reference ��

If the session environment has not been saved� all transient object are lost� If the session object has

not been saved nor has been made persistent before this statement was issued� it is lost as well� If�

��

on the other hand� the session environment has been saved� next time this session object is opened�

the entire environment is restored�

The make persistent statement is used to make transient objects persistent in the objectbase�

The syntax of this statement is

� make persistent �

� persistent � object reference list �

j persistent all � collection reference �

The �rst statement makes all objects speci�ed in the object references list persistent in the object�

base� Persistence in TIGUKAT is associated with individual objects� therefore� if the referenced

object is a collection or a class� only the container object is made persistent� All transient objects

which are in this container stay temporary unless they are explicitly made persistent� To make all

objects persistent within the container object� the second form of a statement must be used� If the

elements of the collection are themselves collections� it recursively makes all objects persistent�

The last session speci�c statement in TCL is the quit statement which is used to quit the session

without saving� and leave the TIGUKAT objectbase� The syntax of this statement is

� quit objectbase �

� quit�

This statement can be invoked from any session� That means it can be invoked from the root session

as well as from any other session� The request to close all sessions which are currently opened is

sent� The objects which haven�t been made persistent or saved in any opened session are lost�

The following example illustrates a sequence of the invocations of TCL statements in a typical

TIGUKAT session�

Example ��� A user is in the UNIX environment� To invoke a TIGUKAT objectbase� he types

tigukat and presses the RETURN key

� tigukat

This statement opens the TIGUKAT objectbase� The TIGUKAT language translators are invoked�

The system is ready to accept user requests �a new prompt � % is displayed�� A root session object�

which provides a workspace for user requests� is opened� A user can open new sessions �workspaces�

from the root session by issuing the following statement

% open newSession�

This statement opens a session object referenced by newSession
� If there is already a session object

referenced by newSession� in the objectbase� the B openSession behavior is applied to it� As a

result� it becomes the current session in the system� If� on the other hand� there is no session object

referenced by newSession�� the B new behavior is applied to the C session object� a new object is

created �this object is referenced by newSession��� and it becomes the current session in the system�

��

Thus� a user performs all modi�cations to the objectbase by issuing TDL and TQL statements in

the newSession� session �workspace�� If the user wants to save the current session with the entire

environment �transient objects which have been created since the opening of the session�� the TCL

save statement must be invoked

% save newSession�

The behavior B saveSession is applied to newSession
 object� All transient objects are saved as

the session environment� meaning that their references are stored in the session symbol table� Next

time this session object is opened� the entire environment is restored� and the user can continue

a previously closed session� The next step in the session sequence is to make the current session

persistent in the objectbase �if it has been just created�� This is done by the TCL make persistent

statement

% persistent newSession�

The newSession
 object becomes persistent in the TIGUKAT objectbase� Next time the objectbase

is opened� it can become a current session by simply invoking an open session statement with the

reference newSession�� Finally� to close the current session newSession
� the TCL close statement

must be invoked

% close newSession�

The B closeSession is applied to the object newSession�� and the root session becomes the current

session in the objectbase� �

In addition� TCL supports an assignment statement� Since TIGUKAT is a reference based model�

objects are accessed through their references� To bind a reference to an object that is returned as

the result of some query or execution of a behavior� the assignment statement can be used� It has

the following structure

� assignment �

� let � left side � be � right side �

where the left side is

� left side �

� � object reference �

and the right side can be one of two things

� right side �

� � TQL Statement �

j � path expression �

It should be noted here� that the current implementation of TCL is only preliminary� More state�

ments will be added in the future� and they will be presented in forthcoming papers�

Chapter �

Integration with TIGUKAT

Object Model

One of the underlying characteristics of the TIGUKAT object model is its uniform object semantics�

Everything in the model is treated as a �rst�class object� This property makes it easy to extend the

model with features that support concepts that are unique to various applications� These features

are added to the system through the creation of new types�

When the TIGUKAT primitive type system is augmented by additional behaviors de�ned on

primitive types� it is referred to as a core type system� It can then be extended further by the addition

of new types to support database functionality �transaction management� views management� query

features� etc��� The core type system with the database extensions provides a su	cient base to

build advanced OODBMs� In this chapter� two of the database functionality extensions
 T session

and T query are described� They both facilitate the integration of the TIGUKAT language with

the object model� The T session type provides the semantics to represent objectbase sessions as

objects� The instances of T query type� on the other hand� represent queries� In addition� the

process of opening� accessing and querying the objectbase is outlined�

��� TIGUKAT Extensions

Two extensions which are included in the TIGUKAT extended type system
 T session and T query

facilitate the integration of the TIGUKAT language and TIGUKAT object model� In Section �����

the T session type is described� The description includes the list of native behaviors de�ned on that

type� A complete description of this type is given in Appendix B� In Section ����� the description

of the T query type is given in a similar way� Section ����� outlines the advantages of modeling

sessions and queries as objects in the TIGUKAT objectbase�

��

��

T object

T session

T queryT function

T adhocQuery

T productionQuery

Figure ���
 Type extensions to the primitive type system�

����� TIGUKAT Session Objects

Before issuing requests to an objectbase� access to the objectbase must be established� It is done

through the session objects which are instances of T session type� There can be one or more

instances of that type in a TIGUKAT Objectbase System �TOBS�� The main role of a session

object is to provide a workspace from which a user can issue requests to the objectbase� Thus�

each session object represents a single workspace� and the entire objectbase is accessible from that

workspace� All objects created in a session are transient in that session� therefore they are not visible

in any other session �there can be more then one session opened at the same time�� However� as

soon as the transient objects are made persistent� they become visible in all other sessions�

The T session type is a subtype of the T object primitive type as illustrated in Figure ���� Each

object of this type represents a TIGUKAT objectbase session� The following behaviors provide the

control over connection to the objectbase�

� B openSession opens a new workspace and establishes a connection with the objectbase through

the receiver session object� The receiver of the message becomes the current session in the

system until the request to close it is issued� or a request to open another session is posted�

� B saveSession saves the session environment as well as the receiver object becomes persistent in

the objectbase� All transient objects are saved by storing their references in the session symbol

table �they do not become persistent however�� Next time that session object is opened� the

environment is restored� so the user can continue a previously closed session� Otherwise� if the

session is closed without saving� all transient objects are lost�

� B environment returns the session symbol table that contains the transient objects �session

environment�� This is a private behavior which is never invoked by the user�

� B closeSession closes the session �workspace�� If the session environment has not been saved�

��

all transient object are lost� If the session object has not been made persistent before this

statement was issued� it is lost as well� If� on the other hand� the session environment has been

saved� next time this session object is opened� the entire environment is restored�

� B quitObjectbase exists the TIGUKAT objectbase� The request to close all sessions which are

currently opened is sent� The objects which haven�t been made persistent or saved in any of

the opened sessions are lost�

The behaviors listed above are necessary in the T session type in order to provide the control over

the connection to an objectbase in a single�user system� A complete description of the T session

type which includes the speci�cation of full signatures and semantics of the behaviors de�ned in this

type is given in Appendix B�

����� TIGUKAT Query Objects

A user query is in the form of a text string that contains a TQL statement �select� union� minus�

intersect� etc��� It is evaluated by invoking a TQL compiler which parses the query� and if it is

syntactically and semantically correct� it creates a new instance of T query type� The TQL compiler

is invoked by the current session object�

A T query type is a subtype of the T function primitive type as illustrated in Figure ���� This

means that queries have the status of �rst�class objects and that they inherit all the behaviors and

semantics of objects� More speci�cally� a query is a specialized function that can be asked for its

source code� can be compiled and can be executed� In addition a query stores execution statistics�

is optimizable� and can be materialized meaning that the result of the execution of the query can

be accessed �a collection��

Since� the T query type is a direct subtype of the T function primitive type� it inherits all

native behaviors de�ned on this type� However� some behaviors are rede�ned in T query to reect

the semantics of queries in the objectbase

� B source returns the source code of a query in the form of a TQL statement� This behavior is

implemented by a stored function�

� B compile compiles the source code of a query� The query statement is translated into an

algebraic tree� optimized� and an execution plan is generated�

� B executable returns the execution plan generated by B compile�

� B execute executes the complied code� In general queries� this means submitting the execution

plan to the storage manager for processing�

� B inputTypes returns a list of types and the ordering of the query arguments� The types are

either of type T collection of a subtype of that type �T class� T bag� etc���

��

� B outputType returns the type of the result collection� It is either the T collection type� or

one of its subtypes�

Furthermore� queries have the following specialized �native� behaviors�

� B initialOAPT returns an initial Object Algebra Processing Tree

�OAPT� resulting from the calculus to algebra translation�

� B optimizedOAPT returns an optimized Object Algebra Processing Tree resulting from the

optimization process�

� B searchStrat returns the search strategy which is used by the optimizer to control the opti�

mization process�

� B transformations returns a list of the transformation rule objects that were used when the

query was optimized�

� B argMbrTypes returns a list of member types of the target collections�

� B resultMbrType returns the member type of the result collection�

� B optimize starts the execution of the query optimizer on the receiver object� It uses the

search strategy stored in that object�

� B genExecPlan generates the �best� Execution Plan from the optimized OAPT� This behavior

is invoked by B compile�

� B budgetOpt returns the budget for the optimization�

� B lastOpt returns the date of the last query optimization�

� B lastExec returns the date of the last query execution�

� B materialization returns a reference to the materialized query result �i�e�� the actual result

collection itself��

The full speci�cation of the T query type is given in Appendix B�

����� Sessions and Queries as Objects

Incorporating sessions and queries as specialized objects is a very natural and uniform way of ex�

tending the object model to include control capabilities as well as declarative capabilities� The major

bene�ts of this approach are

�� Sessions and queries are �rst�class objects� so they are represented by the uniform semantics

of objects�

��

�� Since they are objects� they can be queried and operated on by other behaviors� This is

especially useful in case of queries� when the generation of statistics about performance is

required to de�ne optimization techniques�

�� Since queries are specialized functions� they are uniformly integrated with the operational

semantics of the model so that queries can be used as implementations of behaviors �i�e� the

result of applying a behavior to an object can trigger the execution of a query��

�� Both T session and T query types can be further specialized by subtyping� thus new concepts

can be incorporated �multiuser system features� adhoc versus production queries etc���

In the current implementation of the TIGUKAT system� there are two subtypes of the T query

type
 T adhocQuery and T productionQuery� each having its own characteristics� The ad hoc

queries are interpreted without incurring high compile�time optimization strategies since they are

used on an ad hoc basis� The production queries� on the other hand� are usually compiled once

and then executed many times� Thus� more time is usually spent on optimizing them and more

sophisticated techniques are used� In the future� when TIGUKAT Objectbase System becomes a

multiuser system� the T session type can be further specialized to subsume additional features

required by such systems�

��� TIGUKAT Objectbase Access

When a TIGUKAT Objectbase System is opened for the �rst time by the user� the TIGUKAT

extended type system is built� It has one instance of the T session type referred to as the root

session object� The root session is automatically opened� and it becomes the current session in the

objectbase� Every session object has its own symbol table which keeps the information about the

session environment� In other words� references to transient objects which have been created and

saved in that session are stored in this symbol table�

The objectbase can be either directly modi�ed� accessed and queried from a root session� or

new sessions can be opened from a root session �as well as from any other current session� and the

connection to the objectbase can be established through them �see Example ������

The TIGUKAT Language provides an interface to the TIGUKAT Objectbase System� It is

invoked by the current session� so all user requests are processed on line� All session speci�c op�

erations like opening a new session� closing a current session� quitting� as well as displaying the

objects� making them persistent� etc� are processed by the TCL interpreter� In a similar way� all

the object de�nition statements �creating new types� classes� collections etc�� are interpreted on line

by invoking the TDL interpreter� Therefore� when a TDL statements is entered� it is parsed� and

if the statement is correct� a new object is created and is accessible at once� All query statement

are parsed� complied and executed by invoking the TQL compiler� The TQL compiler parses a

��

statement� generates an execution plan� and sends it to the object manager for execution� A new

instance of T query type is created and the information about a query is stored there�

Chapter �

Implementation

As a part of the TIGUKAT project� the TIGUKAT language has been implemented and integrated

with an existing implementation of the TIGUKAT object model� This chapter describes the language

implementation details as well as design decisions that were made during the implementation of the

�nal version of the TIGUKAT language� In Section ��� the main design choices are discussed�

The arguments for implementing the language parser by hand instead of using available generators

�LEX� YACC� BISON� are stated� In Section ��� the architecture of TDL interpreter is explained�

and the integration with the TIGUKAT object model is presented� The process of TQL compilation

is presented in Section ���� The translation from calculus to algebra is described and explained�

Finally� Section ��� contains a short description of the TCL interpreter�

��� Design Decisions

Every computer language� is de�ned by a set of rules �grammar� which describes syntactic

structures of valid language sentences �programs�� A compiler reads a program written in one

language called a source language� and translates it into an equivalent program written in another

language called a target language� An interpreter� on the other hand� reads a program� and instead

of producing a target program� it performs the operations on line� Both compilers and interpreters

are referred to as translators� The TIGUKAT language uses both kinds of translators� TDL and

TCL are supported by corresponding interpreters� while TQL has its own compiler�

The �rst phase of any translator is the syntax analysis of a program written in some source

language� This phase� referred to as parsing� checks the syntactic correctness of the program� In

practice� however� there is a number of other tasks which are conducted during parsing such as

collecting information about various tokens into the symbol table� performing type checking� and

other kinds of semantic analysis� In this chapter� the parsing phase is referred to as syntax analysis

�The term computer language is used broadly to include any language which provides an interface between a user

and the machine� That includes all programming languages� query languages etc�

��

��

Lexical

analyzer

Syntax

analyzer

Semantic

analyzer

code generator

Intermediate

optimizer

Code

���������������������
�������

���������������������
������
�

���������������������
�������

generator

Code

��������������������
�������
�

���������������������
������
�

���������������������
�������

���������������������
�������

Target Program

Source program

Parser

Compiler

Lexical

analyzer

Syntax

analyzer

Semantic

analyzer

���������������������
������
�

��������������������
�������
�

���������������������
�������

���������������������
�������

Execution

Source program

Parser

Interpreter

Figure ���
 Compiler and Interpreter Architectures�

��

with some semantic checking �Figure ����� It is implemented by a language parser that obtains

a string of tokens from a lexical analyzer and veri�es that the string can be generated from the

language grammar�

Three kinds of parsing methods can be distinguished

� Universal parsing methods which can parse any context�free grammar �Cocke�

Younger�Kasami algorithm� Earley�s algorithm �ASU������ However� they are very ine	cient

which makes them rather useless in practice�

� Top�down methods which attempt to �nd a leftmost derivation for an input string� They can

be easily implemented by hand� however they cannot handle every context�free grammar� This

method is used in the implementation of the TIGUKAT language translators�

� Bottom�up methods which attempt to �nd a rightmost derivation of the input string� One

of the advantages of this method is that almost all commonly used context�free languages

constructs can be recognized by the bottom up parsers� In addition� there are several tools

available to generate bottom up parsers automatically�

The TIGUKAT language is implemented in the C�� language� and its implementation consists of

three separate modules� each corresponding to one part of the TIGUKAT language� Recall that

TIGUKAT language is divided into three parts
 TDL� TQL� TCL� each supporting a di�erent set

of statements� The TDL module processes the object de�nition statements� It is implemented as

an interpreter which reads the statement typed by a user� and if it is syntactically and semantically

correct� it creates a new object �type� class� behavior� etc��� The TQL module processes query

statements� It is implemented as a compiler� which reads the query from the standard input� checks

the syntactic and semantic correctness and generates an execution plan� The TCL module processes

session speci�c statements on line� Thus� it is implemented as an interpreter� The top�down parsing

method described in Section ����� is used in the parsing phase of each module�

In subsequent sections� the factors which contributed to the choice of particular methods for

the language implementation are discussed� Thus� the explanation for not using available parser

generators is given in Section ������ Section ����� describes the structure of the symbol table used

by the language translators� In Section ����� the bene�ts of using the C�� programming language

are summarized�

����� Top�Down Parser

The TIGUKAT language parsing phase of each module is implemented by a recursive�descent parser

without backtracking �predictive parser�� The language grammar has been rewritten in order to make

it suitable for this kind of top�down parser� As the �rst step� the left recursion has been eliminated

from the grammar rules� Second� the grammar has been left factored� A complete description

��

of the transformations performed on the grammar is given in the technical documentation of the

program� The choice of the predictive parsing was motivated by the fact that the TIGUKAT language

grammar is simple enough to implement by hand� All non�terminal symbols in the grammar become

procedure calls� and all terminal symbols are matched against the input stream� In other words� the

parser attempts to match terminal symbols with the input stream� and makes potentially recursive

procedure calls�

The error recovery employed by the TIGUKAT parser uses a panic mode strategy to restore the

parser to a state where processing of the input stream can be continued� It is based on the the

fact that statements of the language are separated by a semicolon� On the discovering an error�

the parser discards input symbols� one at a time� until a semicolon is found� While the panic mode

strategy often skips a considerable number of input symbols without checking for additional errors�

it has the advantage of simplicity and it is guaranteed not to go into in�nite loop�

����� Symbol Table

A symbol table is a data structure which supports dictionary access� It is used to keep track of

scope and binding information of names �references�� Usually� a symbol table satis�es the following

requirements� First� a symbol table mechanism must allow the e	cient addition of new entries and

locating of existing entries� Second� it must be easy to maintain� since it is one of the most complex

and frequently used structures in the compiler� Finally� it must be accessible in many di�erent ways

and support a variety of functions� For e	ciency reasons� most symbol tables are implemented as

hash tables�

A symbol table in the TIGUKAT system supports dictionary access to objects in the objectbase�

It is implemented as a hash table such that every entry is a pointer to a linked list of symbol table

records� Each record has the structure depicted in Figure ���� Thus� the reference corresponds to

an identi�er �character string� of an object� the type is a pointer to a type object in TOBS� and the

object is a pointer to a �real� object in TOBS� A symbol table in TOBS can be considered as a handle

to the objectbase through which the access to the objectbase is done� Each session object has its

own local symbol table which keeps the information about the objects which are explicitly accessible

in this session� There is also one global symbol table in TOBS which keeps the information about

all the object references in the system� Throughout this chapter� all references which are kept in the

symbol table are referred to as explicit references to objects in TOBS� There can also be implicit

references to objects� An object is referenced by an implicit reference if it is only accessible through

other objects in the objectbase �path expressions�� In other words� there is no direct reference to

that object in the local symbol table�

��

�

�

�

�

�

�

reference

type

object

��
������

next

�

�

�

��
����

��
����

��
����

Symbol Table

Hash

Entry �

Hash

Hash

Entry n

Entry �

Record

���

���

Figure ���
 Symbol table structure and the corresponding record structure�

����� C		 Programming Language

The TIGUKAT language has been implemented in the C�� programming language� The following

factors contributed to the choice of the C�� language for TIGUKAT implementation� First� C��

is an object�oriented programming language� As a result� it supports the notion of abstract data

types� encapsulation� class hierarchies with multiple inheritance and polymorphism� Therefore� the

key concepts of the TIGUKAT language could be easily mapped into C�� class structures� Second�

being an object�oriented language� it supports good programming practices such as modularity� code

reusability� information hiding� generic programming and extensibility� Since the TIGUKAT project

involves several people implementing various parts of the system simultaneously� good modularity

and extensibility are the key factors in successful integration� Finally� C�� is one of the most

e	cient object�oriented programming languages�

��� TDL interpreter

TDL supports the creation of metaobjects that include type� class� collection� behavior and function

objects in a TOBS� Metaobjects are distinct in the system� because they require specialized behaviors

in order to be created �the B new behavior must be re�ned for them�� TDL provides the syntax to

express those specialized behaviors� TDL statements �create type� create class� etc�� are processed by

the TDL interpreter� Each statement is parsed separately� and if it is syntactically and semantically

correct� a request to create a new object is sent to the storage manager� A new object is created�

and it is accessible throughout the session� If� in addition� the object is made persistent� it stays in

the TOBS� The architecture of the TDL interpreter is given in Figure ����

The TDL interpreter accesses a local symbol table which keeps the informationabout all explicitly

��

Symbol

Table TIGUKAT
Objectbase

pp
pp
pp
p
pp
p
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
ppp
p
ppp
pp
pp
ppp
pp
ppp
pp
ppp
pppp

pp
pppp

pp
pppp

pppp
ppppp

ppp
ppppp

pppppp
pppp

ppppppp
pppppp

ppppppppp
pppppppppppppp

ppp
ppp
ppppp

pppppppppppp
ppppp
ppp
ppppp
ppp
pppp
ppp
ppppppppppppp

ppppppppppppp
ppppppppp

ppp
ppppppppppppppp

pppppppppp
ppppp
ppppppp

pppp
pppppp

ppppp
pppp
pppp
ppppp
pppp
pp
pppp
pp
ppp
pppp
pp
ppp
pp
pp
ppp
pp
pp
pp
pp
ppp
pp
pp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
p
pp
pp
p

pp
pp
pp
pp
p
pp
p
pp
pp
pp
p
pp
pp
p
pp
p
pp
pppp
ppp
ppppp
ppppppp
ppp
ppppp
pppp

ppp
pp
ppppppppppppp
pp
pppppppp
pppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
p

pp
pp
pp
pp
p
pp
p
pp
pp
pp
p
pp
pp
p
pp
p
pp
pppp
ppp
ppppp
ppppppp
ppp
ppppp
pppp

ppp
pp
ppppppppppppp
pp
pppppppp
pppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
p

pppppp
ppppppp

pppppppp
pppp
ppppppppp
ppppppp

ppppp
ppppppp

ppppp
pp

pppppp
ppppppp

pppppppp
pppp
ppppppppp
ppppppp

ppppp
ppppppp

ppppp
pp

��������������������������
����

��������������������������
����

��������������������������
����

��������������������������
����

��������������������������
����

��������������������������
����

INPUT TDL ACTIONS

TDL

Statement

TDL

Interpreter

Storage

Manager

Figure ���
 The TDL interpreter architecture�

referenced objects� Every time� a new statement is processed� the TDL interpreter must collect all

the objects which are referenced in the statement �that include all explicitly and implicitly referenced

objects�� In case of an explicit reference� the TDL interpreter looks in the local symbol table to

�nd the appropriate object� and if such reference is found� the corresponding object is returned� An

implicit references which is given in the form of a path expression must �rst be type checked� If it

is correct� the interpreter sends a request to the object manager �Ira��� to execute the behaviors for

a given object �the �rst reference in the path expression is always an explicit reference to an object�

so it can be found in the symbol table�� As a result of the execution of a path expression� the object

is returned by the object manager� When the TDL interpreter successfully collects all the objects�

it sends a request to the object manager to apply the B new behavior to an appropriate object �in

case of a create type statement it is a C type class object� in case of a create class statement� it is

a C class class object� etc�� passing collected object as parameters� A new object is created in the

objectbase� and a record with the information about this object is added to the symbol table�

Example �� The following TDL statement is a request to create a new type in the TOBS�

create type T person

under T Object

public� B getName
 T string�

B setName�T string�
 T string�

This statement is syntactically correct� thus the TDL interpreter creates a new type� It does this in

two steps� First� it collects all objects which are referenced in the statement �T object� B getName�

��

Parser Calculus To

Algebra
Optimizer

Calculus

Formula

TQL

Statement

Execution

Plan

Algebraic

Formula

��������������������������
������������

��������������������������
������������

��������������������������
������������

��������������������������
������������

Figure ���
 The TQL compiler architecture�

B setName and T string�� Two new behaviors are created as a side e�ect of this statement by

sending a request to the object manager to apply the B new behavior to the C behavior class twice

with the following parameters respectively
 �getName� fg� T string�� and �setName� fT stringg�

T string�� In addition� two entries are created in the symbol table
 B getName� and B setName�

They are associated with the new behavior objects� After the behaviors are created� all objects in this

statement are accessible through the explicit references �T object� B getName� B setName�� Thus

in the second step� the TDL interpreter requests from the object manager to apply the B newtype

behavior to the C type class object with the following parameters
 �fT objectg� fB getName�

B setNameg�� A new type object is created in the objectbase� Also a new entry is added to the

symbol table with reference T person and a new type object �returned by the object manager� is

associated with it� �

��� TQL compiler

The TQL provides the interface which supports the retrieval and the manipulation of objects in

an objectbase� The current implementation of the TQL consists of four basic statements
 select�

union� minus and intersect� The TQL compiler� which is illustrated in Figure ��� processes every

TQL statement in three steps�

In the �rst step� the query statement is parsed by the TQL parser� and if it is syntactically correct�

the object calculus expression in the form of a calculus tree is returned� The second step translates a

calculus expression into an equivalent algebraic expression and returns it in the form of an algebraic

tree� The algebraic tree is an input to the query optimizer which performs algebraic transformations

on it� and generates an execution plan� However� the optimization and the execution plan generation

is not a topic of this thesis� and therefore� it is not discussed any further� A complete speci�cation

of the optimizer and execution plan generation can be found in �Mun���� The calculus formula

generated by the parser is returned in the form of a calculus tree which has the following internal

representation in C��� There are seven kinds of nodes in this tree� Every inner node represents

a logical connective �and� or� negation� exists� forall�� while the leaves of the tree represent atomic

formulas of the calculus� The semantics of every logical connective and every atom is expressed in

the C�� implementation by a separate class� However� all these classes have one common superclass

Formula as illustrated in the Figure ����

��

Equality

Membership

Range

Atom

Negation

And

Or

Binary

Exists

ForAll

Quanti�er

Frml

Figure ���
 The class hierarchy for the internal representation of the calculus formula�

The Formula class is an abstract class in this implementation �so are atom� binary� and quanti�er

classes� which speci�es the following common interface to all its subclasses �which represent various

kinds of nodes in the calculus tree�

class Formula f

public�

gen�var� Formula�� check gen property G

con�var� Formula�� check con property G

genAll��� check if the gen holds for all free variables

conAll��� check if the con holds for all free variables

evalify��� check if the formula is safe

genify��� transform from evaluable to allowed form

ANFify��� transform to an allowed normal form

algebra��� transform to the algebraic formula

evaluate��� evaluate and return the value

pushNot��� push not

freeVar��� return free variable list

allVar��� return all variables

g

Thus� every formula knows its free variables �freeVar���� as well as all variables which appear in it

�allVar���� it knows how to evaluate itself� how to apply not �pushNot���� and so on� This repre�

sentation of a formula in C�� is a classical example of the power of the object�oriented paradigm�

��

Evalify Genify ANFify Algebra

Calculus

Formula

Evaluable

Formula

Allowed

Fromula

Algebraic

Formula

Allowed Normal

Formula

�������������������������
�����

�������������������������
�����

�������������������������
�����

�������������������������
�����

�������������������������
�����

Figure ���
 Translation algorithm from the calculus to algebra�

Formula speci�es a common interface in the form of a list of public methods� while every subclass

implements those methods di�erently� possibly adding some new ones� Thus� although� various for�

mulas react di�erently when a method is applied� that fact is hidden and a correct answer is obtained

�polymorphism��

The general form of a calculus formula� which is returned by a parser� becomes an input to

the translation algorithm which implements the second phase of the TQL compiler� In this step� a

formula is translated from the calculus to the algebra� is further optimized and an execution plan is

generated� However� the optimization and the execution plan generation is not a topic of this thesis�

and therefore� it is not discussed any further�

The translation algorithm consists of four steps as illustrated in Figure ���� The �rst step of

the algorithm checks if the formula is safe� As shown in �PL�OS���� any calculus formula is safe if

the evaluable property �de�ned below� holds for it� The following de�nitions and rules specify the

required properties of calculus formulas�

De	nition �� Evaluable A formula F is evaluable or has the evaluable property if the following

conditions are met

�� For every variable x that is free in F � gen�x� F � holds�

�� For every subformula �xA of F � con�x�A� holds�

�� For every subformula �xA of F � con�x��A� holds�

De	nition �� Allowed A formula F is allowed or has the allowed property if the following

conditions are met

�� For every variable x that is free in F � gen�x� F � holds�

�� For every subformula �xA of F � gen�x�A� holds�

�� For every subformula �xA of F � gen�x��A� holds�

where the rules for gen and con are given in Figure ����� Intuitively� gen�x�A� means that the

formula A can generate all the needed values of variable x that contribute to making A true and

that there are only a �nite number of these values� Subsequently� con�x�A� holds if the variable x

is constrained in A meaning that the following conditions

� gen�x�A�x� 	y�� holds as above� or

� A�x� 	d� is true for all bindings of x�

��

gen�x�A�A� if edb�A� and free�x�A�
gen�x�A�A� if gdb�A�

gen�x��A�G� if gen�x� pushnot��A�� G�
gen�x� �yA�G� if distinct�x� y� and gen�x�A�G�
gen�x� �yA�G� if distinct�x� y� and gen�x�A�G�
gen�x�A �B�G� �G�� if gen�x�A�G�� and gen�x�B�G��
gen�x�A �B�G� if gen�x�A�G�
gen�x�A �B�G� if gen�x�B�G�

con�x�A�A� if edb�A� and free�x�A�
con�x�A�A� if gdb�A�
con�x�A��� if notfree�x�A�

con�x��A�G� if con�x� pushnot��A�� G�
con�x� �yA�G� if distinct�x� y� and con�x�A�G�
con�x� �yA�G� if distinct�x� y� and con�x�A�G�
con�x�A�B�G� �G�� if con�x�A�G�� and con�x�B�G��
con�x�A�B�G� if gen�x�A�G�
con�x�A�B�G� if gen�x�B�G�
con�x�A�B�G� �G�� if con�x�A�G�� and con�x�B�G��

where

edb�A� holds if formula A is either a �nite range atom� or
if formula A is an equality atom of the form x � c� where c
is a ground term� or if formula A is a membership atom of
the form x � c where c is also a ground term�

gdb�x�A� holds� if variable x can be generated from A�
free�x�A� holds if variable x is bound in A or it does not

appear in the formula A at all�
notfree�x�A� holds if variable x is not free in A�
distinct�x� y� holds if x and y are di�erent variables�

Figure ����
 Extended rules of gen and con that produce generators�

��

A�	x� �B�	x� �� �A�

�x �B�

�x��x
A�	x� �B�	x� �� �A�

�x �B�

�x��x
A�	x� �B�	y� �� �A�

�x
B�

�y��x��y
A�	x� � �B�	x� �� �A�

�x �B�

�x��x
A�	x� 	y� � �B�	y� �� �A�

�x��y � �A
�

�x��y ��y��y B�

�y��x��y��x��y
A�	x� 	y� � F �	x� �� �A�

�x��y �F ��x��y
A�	x� 	y� �B�	x� 	z� �� �A�

�x��y ��x��x B�

�x��z��x��y��z
A�	x� 	y� �B�	w� 	z� � F �	y� 	z� �� �A�

�x��y �F B�

�w��z��x��y��w��z
A�	u� 	w� 	x� �B�	w� 	x� 	y� � F �	u� 	w� 	y� �� �A�

�u��w��x ��w��w��x��x�F B�

�w��x��y��u��w��x��y
A�	x� 	y� � o�mop�	x� �� �A�

�x��y �
o
o�mop ��x��y�o

A�	x� 	y� �B�	w� 	z� � o�mop�	y� 	z� �� �A�

�x��y �
o
o�mop B�

�w��z��x��y��w��z�o
�	yA�	x� 	y� �� �A�

�x��y ��y��x

Figure ����
 Transformations from object calculus to object algebra�

In other words� x is constrained in A if it is generated in every disjunct in which it appears�

Thus� the safety of the formula can be determined syntactically� and it is done by the evalify

algorithm �PL�OS���� This algorithm recursively checks if the formula has an evaluable property� if

so it returns TRUE� otherwise the formula is rejected and the appropriate message is displayed to

the user�

In the second step� the evaluable formula is transformed to the allowed form� As shown in �GT����

every evaluable formula can be transformed to the equivalent allowed form� This is an important

step of the algorithm as� some further transformations �i�e� distributed law transformation� which

are necessary to transform the calculus formula to algebra� do not preserve the evaluability property�

but as shown in �GT��� they do preserve the allowed property� Thus� the formula must have an

allowed property before any transformations leading to the allowed normal form can be performed�

This step is implemented by the genify algorithm �PL�OS����

The next step of the translation algorithm is to normalize an allowed formula by putting it into

Allowed Normal Form �ANF� which is done by the ANFify algorithm �PL�OS���� The reason for

converting a formula into ANF is to divide it into subformulas which are independent of atoms that

appear outside the quanti�er for that formula� In other words� in the �nal translation to the algebra�

every subformula can be independently translated to an algebraic formula�

The �nal step of the translation algorithm is the transformation of an ANF formula into an

equivalent series of object algebras� This is done by a simple application of transformation rules

shown in the Figure ���� which are applied from the inner to the outer formula� The output of this

step is an algebraic tree �initial object algebraic processing tree� which becomes the input to the

query optimizer �Mun����

The algebraic tree has the following representation� There are two kinds of nodes in that algebraic

tree� Every inner node represents one of the algebraic operators �union� minus� select� generate� etc���

It has two children nodes
 the target collection� and the argument collections each of which can be

��

Symbol

Table TIGUKAT
Objectbase

pp
pp
pp
pp
pp
pp
pp
p
pp
pp
p
pp
pp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp

ppp
pppp

ppp
pppp

ppppp
ppppp

ppp
pppppp

pppp
ppppppp

ppppppppp
ppppppp

ppppppppppppppp
ppp

pppp
pppp
ppp
ppppp
ppp
ppppp
ppp
ppppp
ppp
ppppppp
pppppp
ppp
ppppp
pppp
pppppppppppp

ppp
pppppppp

ppppppppp
ppppp
ppppppp

pppppp
pppp
ppppp

ppp
ppppp
pppp
pppp
ppp
ppp
pppp
pp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
p
pp
pp
p
pp
p
pp
pp
pp
pp
pp
pp
pp
pppp
pppppppp
ppp
ppppp
ppppppp
pp

pppp
ppppppppp
pp
ppppppppppppp
pppp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
p
pp
pp

pp
pp
pp
pp
p
pp
pp
p
pp
p
pp
pp
pp
pp
pp
pp
pp
pppp
pppppppp
ppp
ppppp
ppppppp
pp

pppp
ppppppppp
pp
ppppppppppppp
pppp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
p
pp
pp

ppppppp
pppppppp

ppppppp
ppppppp

pppppppp
pppppppp

ppppppp
ppppppp

p

ppppppp
pppppppp

ppppppp
ppppppp

pppppppp
pppppppp

ppppppp
ppppppp

p

�������������������������
�����

�������������������������
�����

�������������������������
�����

�������������������������
�����

�������������������������
�����

�������������������������
�����

INPUT

Statement Interpreter

Storage

Manager

TCL ACTIONS

TCL TCL

Figure ����
 The TCL interpreter architecture�

either another algebraic operator �inner node of the tree�� or a reference to a collection �a leaf node

of the tree�� In addition� every inner node has a constraint which is either a predicate �in case of the

select and join operators�� or list of behaviors and their arguments �in case of the map operator�� or

null �for all other cases�� The leaf nodes of the algebraic tree are path expressions whose execution

results in references to collections� The full speci�cation and description of the algebraic trees are

given in �Mun����

��� TCL interpreter

TCL supports session speci�c operations� It is implemented by an interpreter whose architec�

ture is given in Figure ����� Every TCL statement is parsed by the TCL interpreter� and if it is

syntactically and semantically correct� it is executed�

Five statements are currently supported by the TCL interpreter� Open and close session state�

ments operate directly on session objects� If they are encountered� the request to the object manager

is sent by the TCL interpreter� and if a speci�ed object exists it is opened or closed respectively�

If it does not exists� then in the case of the open statement� it is �rst created� a new copy of the

symbol table is initialized and associated with it� a new session object is returned and it becomes a

current session� In case of the close statement� the error message is displayed� Save� make persistent�

and assign statements perform operations mainly on the local symbol table� storing the information

about new bindings� retrieving objects and making them persistent�

Chapter �

Conclusion and Future Work

This thesis is part of the ongoing TIGUKAT project to develop a new object management system

based on a uniform� behavioral object model� The �rst extension which is being added to the model

is a query model and language� Its speci�cation includes two formal languages
 a declarative object

calculus and a procedural object algebra� a user�level language� and the equivalence proof among

the three of them�

The main goal of this thesis is the design and implementation of the user level language which

has the same expressive power as the object calculus� and which conforms to the general object

query language frameworks presented over the last years �Kim��� Bla��� BNPS��� Str��� �OS����

The TIGUKAT language is a high level user language which provides declarative access to the

TIGUKAT objectbase� The design of this language was mainly inuenced by SQL which is accepted

as a standard query language in relational systems� It is divided into three parts
 The TIGUKAT

De�nition Language� the TIGUKAT Query Language� and the TIGUKAT Control Language� The

syntax of the query language is based on the SQL select�from�where structure� while the formal

semantics are de�ned in terms of the object calculus� It is shown in this thesis that there is a

complete reduction from TQL to the calculus� which makes the semantics of the language well

de�ned and allows to specify the formal methods to check the safety of the user de�ned queries� and

to perform the algebraic transformation on them� In addition� TIGUKAT language accepts path

expression in the select� from and where clauses� thus both forms �implicit and explicit� of joins

are supported� Queries operate on collections� and they always return collections as results� The

results of queries are queryable� and they can be used as predicates or ranges in other queries �i�e��

nested queries�� Finally� TQL is orthogonal to all object model extensions� Persistence is de�ned

on the object level� thus� queries can be formulated on transient as well as on persistent objects in

a uniform way�

There are some extensions that can be added to the language presented in this thesis in order to

increase its functionality and expressive power�

��

��

� TQL must be further extended to support the statements which perform updates on the

objectbase� That includes the de�nition of the syntax and the formal semantics of insert�

update and delete statements� Moreover� the syntax for bulk updates should be provided�

� The syntactic support for the application of aggregate functions �similar to those in the rela�

tional systems� should be added to TQL� Furthermore� the constructs for grouping of objects

and de�ning the order �GROUP BY� ORDER BY� in the result collections should be also

added�

� TCL can be extended to include ow control statements like a loop statement� if statement�

case statement and others� That would make the language computationally complete and allow

the speci�cation of computed functions within the TIGUKAT language without the need to call

external functions written in other languages� Also� TCL could be enhanced by statements

supporting easy and fast browsing of the objectbase� editing query �les and displaying the

schema�

Bibliography

�AB��� S� Abiteboul and A� Bonner� Objects and Views� In Proc� ACM SIGMOD Int�l� Conf�

on Management of Data� pages ���&���� May �����

�ABD���� M� Atkinson� F� Bancilhon� D� DeWitt� K�Dittrich� D� Maier� and S� Zdonik� The

Object�Oriented Database System Manifesto� In Proc�
st Int�l� Conf� on Deductive

and Object�Oriented Databases� pages ��&��� �����

�Abi��� S� Abiteboul� Towards a Deductive Object�Oriented Database Language� Data �

Knowledge Engineering� �
���&���� �����

�AG��� R� Agrawal and N�H� Gehani� Ode
 The language and the data model� Technical report�

AT�T Bell Laboratories� �����

�Aro��� S� Arono�� Geographic Information Systems A Management Perspective� WDL Publi�

cations� �����

�ASL��� A�M� Alashqur� S�Y�W� Su� and H� Lam� OQL
 A Query Language for Manipulating

Object�Oriented Databases� In Proc�
�th Int�l Conf� on Very Large Data Bases� pages

���&���� �����

�ASU��� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers Principles� Techniques and Tools�

Addison Wesley� �����

�Ban��� F� Bancilhon� Understanding Object�Oriented Database Systems� In Proc� �rd Int�l

Conf� on Extending Database Technology� pages �&�� March �����

�BCD��� F� Bancilhon� S� Cluet� and C� Delobel� A Query Language for the O� Object�Oriented

Database System� In Proc� �nd Int�l Workshop on Database Programming Languages�

pages ���&���� June �����

�BCG���� J� Banerjee� H�T� Chou� J�F� Garza� W� Kim� D� Woelk� N� Ballou� and H�J� Kim� Data

Model Issues for Object�Oriented Applications� ACM Transactions on O�ce Informa�

tion Systems� ����
�&��� January �����

��

��

�Bee��� C� Beeri� A Formal Approach to Object�Oriented Databases� Data � Knowledge Engi�

neering� �
���&���� �����

�BK��� F� Bancilhon and W� Kim� Object�Oriented Database Systems
 In Transition� ACM

SIGMOD Record� �����
��&��� �����

�Bla��� J�A� Blakeley� DARPA Open Object�Oriented Database Preliminary Module Speci�ca�

tion
 Object Query Module� Technical report� Texas Instruments� December �����

�Bla��� J�A� Blakeley� ZQL�C���
Extending the C�� Language with an Object Query Capa�

bility� Technical report� Texas Instruments� �����

�BMO���� R� Brentl� D� Maier� A� Otis� J� Penney� B� Schuchardt� J� Stein� E�H� Williams� and

M� Williams� The GemStone Data Management System� In W� Kim and F�H� Lo�

chovsky� editors� Object�Oriented Concepts� Databases� and Applications� pages ���&����

Addison Wesley� �����

�BNPS��� E� Bertino� M� Negri� G� Pelagatti� and L� Sbattella� Object�Oriented Query Languages

The Notion and the Issues� IEEE Transactions On Knowledge and Data Engineering�

����
���&���� June �����

�BTA��� J�A� Blakeley� C�W� Thompson� and A�M� Alashqur� Strawman Reference Model for

Object Query Languages� Computer Standards � Interfaces� ��
���&���� �����

�CDF���� M� Carey� D�J� DeWitt� D� Frank� G� Graefe� M� Muralikrishna� J�E� Richardson� and

E�J� Shekita� The Architecture of the EXODUS Extensible DBMS� In M� Stonebraker�

editor� Readings in Database Systems� pages ���&���� Morgan Kaufmann Publishers�

�����

�CDV��� M� Carey� D�J� DeWitt� and S�L� Vandenberg� A Data Model and Query Language

for EXODUS� In Proc� ACM SIGMOD Int�l� Conf� on Management of Data� pages

���&���� June �����

�CM��� G� Copeland and D� Maier� Making Smalltalk a Database System� In Proc� ACM

SIGMOD Int�l� Conf� on Management of Data� pages ���&���� June �����

�Cod��� E�F� Codd� A Relational Model for Large Shared Data Banks� Communications of the

ACM� �����
���&���� �����

�Cod��� E�F� Codd� Relational Completeness of Data Base Sublanguages� In Courant Computer

Science Symposium �� pages ��&��� May �����

�Com��� X�H� �American National Standards Database Commettee�� Database Language SQL�

Technical Report ANSI X����������� American National Standards Institute� �����

��

�Dat��� C�J� Date� A Guide To SQL Standard� Addison�Wesley Publishing Company� �����

�Deu��� O� Deux� et� al� The Story of O�� IEEE Transactions on Knowledge and Data Engi�

neering� ����
��&���� March �����

�Deu��� O� Deux� et� al� The O� System� Communications of the ACM� ������
��&��� October

�����

�DGJ��� S� Dar� N�H� Gehani� and H�V� Jagadish� CQL��� A SQL for a C�� Based Object�

Oriented DBMS� Technical report� AT�T Bell Laboratories� �����

�ES��� M�A� Ellis and B� Stroustroup� The Annotated C�� Reference� Addison Wesley� �����

�FBC���� D�H� Fishman� D� Beech� H�P� Cate� E�C� Chow� T� Connors� J�W� Davis� N� Derrett�

C�G� Hoch� W� Kent� P� Lyngbaek� B� Mahbod� M�A� Neimat� T�A� Ryan� and M�C�

Iris
 An Object�Oriented Database Management System� ACM Transactions on O�ce

Information Systems� ����
��&��� January �����

�Gal��� L�J� Gallagher� Object SQL
 Language Extensions for Object Data Management� In

Proc�
st International Conference on Information and Knowledge Management� pages

��&��� November �����

�GR��� A� Goldberg and D� Robson� SMALLTALK��� The Language and its Implementation�

Addison�Wesley� �����

�GT��� A�V� Gelder and R�W� Topor� Safety and Translation of Relational Calculus Queries�

ACM Transactions on Database Systems� �����
���&���� June �����

�Ira��� B� Irani� Implementation� Design and Developmnet of the TIGUKAT Object Model�

Master�s thesis� University of Alberta� �����

�KBC���� W� Kim� N� Ballou� H�T� Chou� J�F� Garza� and D� Woelk� Features of the ORION

Object�Oriented Database System� In W� Kim and F�H� Lochovsky� editors� Object�

Oriented Concepts� Databases� and Applications� Addison Wesley� �����

�KC��� S�N� Khosha�an and G�P� Copeland� Object Identity� In Proc� of the Int�l Conf on

Object�Oriented Programming Systems� Languages� and Applications� pages ���&����

September �����

�Ken��� W� Kent� Important Features of Iris OSQL� Computer Standards � Interfaces� ��
���&

���� �����

�KGBW��� W� Kim� J�F� Garza� N� Ballou� and D� Wolek� Architecture of the ORION Next�

Generation Database System� IEEE Transactions on Knowledge and Data Engineering�

����
���&���� March �����

��

�Kim��� W� Kim� A Model of Queries for Object�Oriented Databases� In Proc�
�th Int�l Conf�

on Very Large Data Bases� pages ���&���� August �����

�Kim��� W� Kim� Research Directions in Object�Oriented Databases� In Proc� of the �th ACM

SIGACT�SIGMOD�SIGART Symposium on Principles of Database Systems� pages �&

��� April �����

�KKS��� M� Kifer� W� Kim� and Y� Sagiv� Quering Object�Oriented Databases� In Proc� ACM

SIGMOD Int�l� Conf� on Management of Data� pages ���&���� �����

�LLOW��� C� Lamb� G� Landis� J� Orenstien� and D� Weinreb� The Objectstore Database System�

Communications of the ACM� ������
��&��� October �����

�LR��a� C� L'ecluse and P� Richard� Modeling Complex Structures in Object�Oriented Databases�

In Proc� of the �th ACM SIGACT�SIGMOD�SIGART Symposium on the Principles of

Database Systems� pages ���&���� March �����

�LR��b� C� L'ecluse and P� Richard� The O� Database Programming Language� In Proc�
�th

Int�l Conf� on Very Large Data Bases� pages ���&���� August �����

�LRV��� C� Lecluse� P� Richard� and F� Velez� O�� an Object�Oriented Data Model� In Proc�

ACM SIGMOD Int�l� Conf� on Management of Data� pages ���&���� September �����

�MS��� D� Maier and J� Stein� Development and Implementation of an Object�Oriented DBMS�

In Research Directions in Object�Oriented Programming� pages ���&���� M�I�T� Press�

�����

�Mun��� A� Munoz� An Extensible Query Optimizer for TIGUKAT Object Management System�

Master�s thesis� University of Alberta� �����

�OHMS��� J� Orenstein� S� Haradhvala� B� Margulies� and D� Sakahara� Query Processing in the

ObjectStore Database System� In Proc� ACM SIGMOD Int�l� Conf� on Management of

Data� pages ���&���� June �����

� �OS��� M�T� �Ozsu and D�D� Straube� Issues in Query Model Design in Object�Oriented

Database System� Computer Standards � Interfaces� ��
���&���� �����

� �OV��� M�T� �Ozsu and P� Valduriez� Principles of Distributed Database Systems� Prentice�Hall�

�����

�PL�OS��� R�J� Peters� A� Lipka� M�T� �Ozsu� and D� Szafron� The Query Model and Query Lan�

guage of TIGUKAT� Technical Report TR������ University of Alberta� January �����

��

�P�OS��� R�J� Peters� M�T� �Ozsu� and D� Szafron� TIGUKAT
 An Object Model for Query and

View Support in Object Database Systems� Technical Report TR������ University of

Alberta� October �����

�RS��� L�A� Rowe and M�R� Stonebraker� The POSTGRES Data Model� In Proc�
�th Int�l

Conf� on Very Large Data Bases� pages ��&��� September �����

�Shi��� D�W� Shipman� The Functional Model and the Data Language DAPLEX� ACM Trans�

actions on Database Systems� ����
���&���� March �����

�SK��� M� Stonebraker and G� Kemnitz� The POSTGRES Next�Generation Database Manage�

ment System� Communications of the ACM� ������
��&��� October �����

�Sny��� A� Snyder� An Abstract Object Model for Object�Oriented Systems� Technical Report

HPL������� Hewlett Packard Labs� April �����

�S �O��� D�D� Straube and M�T� �Ozsu� Type Consistency of Queries in an Object�Oriented

Database System� In ECOOP�OOPSLA ��� Proceedings� pages ���&���� October �����

�SR��� M� Stonebraker and L�A� Rowe� The Design of POSTGRES� In Proc� ACM SIGMOD

Int�l� Conf� on Management of Data� pages ���&���� May �����

�SRH��� M� Stonebraker� L�A� Rowe� and M� Hirohama� The Implementation of POSTGRES�

IEEE Transactions on Knowledge and Data Engineering� ����
���&���� March �����

�SRL���� M� Stonebraker� L� Rowe� B� Lindsay� J� Gray� M� Carey� M� Brodie� P�Bernstein� and

D� Beech� Third�Generation Data Base System Manifesto� ACM SIGMOD Record�

�����
��&��� September �����

�Sto��� M� Stonebraker� et al� Third�Generation Data Base System Manifesto� In Proc� ACM

SIGMOD Int�l� Conf� on Management of Data� page ���� June �����

�Str��� D�D� Straube� An Introduction to Object�Oriented Databases� In ��th Simposium

Internacional de Sistemas Computacionale� March �����

�Str��� D�D� Straube� Queries and Query Processing in Object�Oriented Database Systems�

PhD thesis� University of Alberta� �����

�Tom��� C�D� Tomlin� Geographic Information Systems and Cartographic Modeling� Prentice�

Hall� �����

�Ull��� J�D� Ullman� Principles of Database Systems� Computer Science Press� ����� �nd�

Edition�

��

�Ull��� J�D� Ullman� Database Theory
 Past and Future� In Proc� of the �th ACM SIGACT�

SIGMOD�SIGART Symposium on the Principles of Database Systems� pages �&���

March �����

�Ull��� J�D� Ullman� Principles of Database and Knowledge�Base Systems� Computer Science

Press� ����� Volume ��

�Zan��� C� Zaniolo� The Database Language GEM� In M� Stonebraker� editor� Readings in

Database Systems� pages ���&���� Morgan Kaufmann Publishers� �����

�ZM��� S� Zdonik and D� Maier� Fundamentals of Object�Oriented Databases� In S� Zdonik and

D� Maier� editors� Readings in Object�Oriented Database Systems� pages �&��� Morgan

Kaufmann Publishers� �����

A

Language Grammar

� session �

� quit

j � statement list � quit

� statement list �

� � statement �

j � statement � � � statement list �

� statement �

� � tdl statement �

j � tql statement �

j � tcl statement �

� tdl statement �

� � type declaration �

j � collection declaration �

j � class declaration �

j � behavior manipulation �

j � function declaration �

j � association �

� type declaration �

� create type � new reference �

under � type list �

� behavior specification �

��

��

� collection declaration �

� create collection � new reference �

type � type reference �

� with � obejct variable list �

� class declaration �

� create class � � new reference � �

on � type reference �

� behavior manipulation �

� add to � type reference � � behavior specification �

j remove from � type reference �

behaviors� � behavior name list �

� function declaration �

� � language � function � function signature �

begin

� function code �

end

j external function � function signature �

� association �

� associate in � type reference �

�� computed list ��

�� stored list ��

� computed list �

� � comp elem �

j � computed list � � � comp elem �

� comp get list �

� � comp get elem �

j � comp get list � � � comp get elem �

� comp get set list �

� � comp get set elem �

��

j � comp get set list � � � comp get set elem �

� stored list �

� � get elem � �� copm get list �� � set elem �

�� copm get set list ��

j � get elem � �� copm set list �� � get elem �

�� copm get set list ��

� comp get elem �

� � comp elem �

j � get elem �

� comp set elem �

� � comp elem �

j � set elem �

� comp get set elem �

� � comp elem �

j � get elem �

j � set elem �

� comp elem �

� � behavior reference list � with � function reference �

� get elem �

� � behavior reference list � with GET

� set elem �

� � behavior reference list � with SET

� association reference �

� � funtion reference �

j GET

j SET

� function code �

� � TQL Statement �

��

j C�� String

� language �

� TQL

j C��

� new reference �

� identi	er

� type reference �

� � term �

� class reference �

� � term �

� function reference �

� � term �

� behavior reference �

� � term �

� collection reference �

� � term �

j � subquery �

� behavior name �

� identi	er

� function name �

� identi	er

� type list �

� � type reference �

j � type list � � � type reference �

� behavior name list �

� � behavior name �

��

j � behavior name list � � � behavior name �

� behavior specification �

� � public behaviors � � private behaviors �

� public behaviors �

� �# empty #�

j public � signature list �

� private behaviors �

� �# empty #�

j private � signature list �

� signature list �

� � behavior signature �

j � signature list � � � behavior signature �

� behavior signature �

� � behavior name � � � � type list � � �

� � type reference �

� function signature �

� � function name � � � � formal parameter list � � �

� � type reference �

� formal parameter list �

� � formal parameter list �

� formal parameter list �

� � formal parameter �

j � formal parameter list � � � formal parameter �

� formal parameter �

� identi	er � � type reference �

� TQL Statements �

� � select statement �

��

j � union statement �

j � minus statement �

j � intersect statement �

� select statement �

� select � object variable list �

� into
 persistent
 all �� � collection reference � �

from � range variable list �

� where � boolean formula � �

� union statement �

� � collection reference � union � collection reference �

� minus statement �

� � collection reference � minus � collection reference �

� intersect statement �

� � collection reference � intersect � collection reference �

� object variable list �

� � object variable �

j � object list � � � object variable �

� object variable �

� � �� cast type � � � � term �

j � index variable �

� term �

� � variable reference �

j � constant reference �

j � path expression �

� index variable �

� identi	er
 � behavior name list � �

� variable reference �

� identi	er

��

� constant reference �

� �identi	er

� path expression �

� � term � � function expression �

� function expr �

� � behavior name � � �

j � behavior name � � � term list � �

� term list �

� � term �

j � term list � � � term �

� variable list �

� � variable �

j � variable list � � � variable �

� range variable list �

� � range variable �

j � range variable list � � � range variable �

� range variable �

� � variable list � in � collection reference � � � �

� boolean formula �

� � atom �

j not � boolean formula �

j � boolean formula � and � boolean formula �

j � boolean formula � or � boolean formula �

j � � boolean formula � �

j � exists predicate �

j � forAll predicate �

j � boolean function expression �

��

� atom �

� � term � � � term �

j � term list � in � collection reference � � � �

� exists predicate �

� exists � collection reference �

� forAll predicate �

� forAll � range variable list � � boolean formula �

� subquery �

� � � query specification � �

� tcl statement �

� � open session �

j � save session �

j � close session �

j � make persistent �

j � quit objectbase �

j � assignment �

� open session �

� open � session reference �

� session reference �

� � term �

� save session �

� save �� session reference ��

� close session �

� close �� session reference ��

� make persistent �

� persistent � object reference �

j persistent all � collection reference �

� quit objectbase �

��

� quit

� assignment �

� let � right side � be � right side �

� left side �

� � object refernce �

� right side �

� � TQL Statement �

j � term �

B

Type Speci�cations

��

��

T session
Supertypes
 T object

Subtypes

Native Behaviors

openSession B openSession
 T session

Example
 B openSession�o�

Symbol

It opens a session and establishes a connection with an objectbase�

The receiver of the message is opened� and it becomes the current

session in an objectbase�

saveSession B saveSession
 T session

Example
 B saveSession�o�

Symbol

It saves the session environment� All transient objects are saved�

and their references are stored in the session symbol table� Next

time that session object is opened� the environment is restored� and

the user can continue a previously closed session� Otherwise� all

transient objects are lost�

closeSession B closeSession
 T session

Example
 B closeSession�o�

Symbol

It closes the session �workspace�� If the session environment has

not been saved� all transient object are lost� If the session object

has not been made persistent before this statement was issued� it

is lost as well� If� on the other hand� the session environment has

been saved� next time this session is opened� the entire environment

is restored�

quitObjectbase B quitObjectbase
 T null

Example
 B quitObjectbase�o�

Symbol

It exists the whole TIGUKAT objectbase� The request to closed

all sessions which are currently open is sent� The objects which

haven�t been made persistent or saved in any opened session are

lost�

environment B environment
 T object

Example
 B environment�o�

Symbol

��

It returns a session symbol table in which the transient objects are

stored �session environment�� This is a private behavior�

��

T query
Supertypes
 T function

Subtypes
 T adhocQuery� T productionQuery

Re�ned Behaviors

source B source
 T string

Example
 B source�o�

Symbol

It returns the source code for a query o which is a TIGUKAT Query

Language �TQL� statement�

executable B executable
 T object

Example
 B executable�o�

Symbol

It returns the executable code which is in form of the Execution

Plan of the optimized query object o�

execute B execute
 T listhT objecti � T object

Example
 B execute�p��o�

Symbol

It submits a list p of the execution plans of the query object o to

the Object Manager for processing�

compile B compile
 T object

Example
 B compile�o�

Symbol

It compiles the source code for a query� The compilation pro�

cess involves the following steps
 translating the query statement

o written in TQL language into an equivalent calculus expression�

translating the calculus expression into an equivalent algebra ex�

pression and checking it for type consistency� optimizing by apply�

ing equivalence preserving rewrite rules to the algebra expression�

and generating an Execution Plan by replacing each individual al�

gebra operator from the transformed object algebra query with a

�best� subtree of object manager calls�

argTypes B argTypes
 T listhT objecti

Example
 B argTypes�o�

Symbol

��

It returns a list of types and the ordering of the argument objects

of the query o� The type of each element is either T collection�

or any subtype of that type�T class�T bag� etc���

resultType B resultType
 T type

Example
 B resultType�o�

Symbol

It returns the result type of the query execution� That type is

either the T collection type� or any subtype of this type �T class�

T bag� etc��

Native Behaviors

initialOAPT B initialOAPT
 T algOp

Example
 B initialOAPT�o�

Symbol

It returns the initial Object Algebra Processing Tree �OAPT�

resulting from the calculus to algebra translation� This initial

OAPT�s� constitutes the initial state�s� of the search space used

for the algebraic optimization of the query object o�

optimizedOAPTB optimizedOAPT
 T sethT algOpi

Example
 B optimizedOAPT�o�

Symbol

It accesses the optimized OAPT �or set of optimized OAPTs� re�

sulting from the optimization process for the query object o�

searchStrat B searchStrat
 T searchStrat

Example
 B searchStrat�o�

Symbol

It accesses the search strategy which is used by the optimizer to

control the optimization of the query object o�

transformations B transformations
 T listhT algEqRulei

Example
 B transformations�o�

Symbol

It accesses the list of transformation rule objects used for the alge�

braic optimization of the query object o�

argMbrTypes B argMbrTypes
 T listhT typei

Example
 B argMbrTypes�o�

Symbol

��

It returns a list of types corresponding to the member types of

target collections of the query object o�

resultMbrType B resultMbrType
 T type

Example
 B resultMbrType�o�

Symbol

It returns the membership type of the resulting collection from

executing the query object o�

optimize B optimize
 T sethT algOpi

Example
 B optimize�o�

Symbol

It starts the execution of the algebraic query optimizer over the

query object o� using its search strategy� and taking its initial

OAPT�

genExecPlan B genExecPlan
 T algOp� T omOp

Example
 B genExecPlan�o��p�

Symbol

It generates the ��best� Execution Plan from the optimized OAPT

object p for the query object o�

budgetOpt B budgetOpt
 T integer

Example
 B budgetOpt�o�

Symbol

It accesses the optimization budget for the optimization process to

the query object o� It is an upper bound for the optimization cost

which is used by the search strategy to control the optimization�

lastOpt B lastOpt
 T date

Example
 B lastOpt�o�

Symbol

It accesses the last date in that the query object o was optimized�

lastExec B lastExec
 T date

Example
 B lastExec�o�

Symbol

It accesses the last date in that the query object o was executed� It

can be useful for consistency checks between changes in statistics

of the query and the last optimization�

materialization B materialization
 T object

Example
 B materialization�o�

Symbol

��

It is a reference to the materialized query result �i�e�� the actual

result collection itself��

