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Table S1. Acquisition parameters used in Mg NMR experiments at By =21.1 T.

compound pulse sequence no. of spikelet recycle number of  total expt.
echoes  separation/kHz delay /s transients time / hrs
kotoite quad echo - - 30 1792 15
suanite quad echo - - 30 2176 18
grandidierite quad echo - - 10 6144 17
MgB,0O; WURST-QCPMG 128 4 60 1024 17
hungchaoite Bloch pulse - - 10 296 0.8
szaibelyite quad echo - - 5 10 240 14
fluoborite quad echo - - 30 2048 17
Mg;B,0,;Br quad echo - - 4 98304 108
WURST-QCPMG 96 4 4 4096 5
boracite quad echo - - 2 27648 15
WURST-QCPMG 64 5 1 3072 0.9




Table S2. DFT calculated *>Mg NMR magnetic shielding parameters.

Calculated Magnetic Shielding Parameters

Formula Mineral Name Oiso / PPM Q/ppm K
Mg;B,04 kotoite 551.9 2391 —-0.187
561.7 5.68 0912
Mg,B,0s5 suanite 558.8 13.42 —0.072
559.0 14.89 —0.403
MgAIBO4 sinhalite 557.1 9.43 —0.784
MgAlL;BSiOg grandidierite 543.8 40.36 —0.560
MgB,4O; 548.7 25.03 0.128
MgBO,(OH) szaibelyite 557.7 20.99 0.282
552.1 12.18 0.131
MgB,4Os(OH)43H,0 hungchaoite 563.1 4.27 0.093
MgB;0;(0OH)s 5H,0 indierite 562.0 12.55 —-0.233
MgB;0;(0OH)s 5H,0 kurnakovite 558.4 12.21 0.592
Mg;(BOs)(OH); hydroxylborite 546.6 17.03 0.572
Mg;(BOs)F; fluoborite 560.7 10.79 0314
Mg;B;0,;Cl1 boracite 555.7 20.20 -0.143
555.9 20.00 —0.557
5543 21.29 —0.492
Mg;B,0,3Br 554.8 27.95 —1.000
MgO periclase 534.9 0.00 1.000
Mg(OH), brucite 550.8 14.69 —0.948
MgAl,04 spinel 509.3 0.00 1.00




Table S3. Mg coordination number (CN) and longitudinal strain (LS) parameters

C.N. Compound Mgoy To LS
6 MgO4Br;, 2.347 0.442
brucite Mg(OH)s 2.099 0.002
fluoborite MgO;F; 2.051 0.053
hungchaoite Mg(OH)(H,0)s 2.080 0.014
hydroxylborite MgO5(OH); 2.064 0.042
indierite® MgO,(H,0)4 2.086 0.034
kotoite MgOq 2.084 0.008
2.110 0.050
kurnakovite® MgO(H,0)s 2.074 0.039
sinhalite MgOg 2.092 0.055
suanite Mg(1)Og 2.106 0.089
Mg(2)Og 2.090 0.023
szaibelyite Mg(1)(OsOH) 2.090 0.042
Mg(2)(O4(OH),) 2.121 0.037
5 boracite Mg(1)04C1 2.160 0.332
Mg(2)04Cl 2.158 0.408
Mg(3)04Cl 2.150 0.422
grandidierite MgOs 2.028 0.004
MgB,4O; MgOs 2.090 0.084
MgOq 2.210 0.220
4 spinel MgO, 1.926 0.000

¢: denoting the nearest neighbors such as O, OH, H,0, F, Cl or Br.

Io = Average bond distance
LS: modified longitudinal strain



Table S4: Calculated results for >’Al "B and *’Si in grandidierite using WIEN2k

Sites Giso, PPM Q, ppm K Co,MHz n
Al(1) 544.84 10.98 0.185 3.35 0.66
Al(2) 544.48 23.67 0.395 7.57 0.89
Al(3) 511.80 32.72 0.993 -9.30 0.50
B 82.97 14.29 0.002 2.47 0.17

Si 425.67 17.73 -0.458 - -




2580

~Mg3B206
-002_pow.x_y

1290 2

er ; | |

[ [ (R | i (I N I I AR WA
T T T T T T T T T T T
15 20 25 30 35 40 45 50 55 60 65 70

09

°
11
ﬁé
b}
e
CE
on

Figure S1. Experimental (black) and simulated (red) powder X-ray diffractograms for synthetic
kotoite. Peaks unaccounted for in the simulation are due to the presence of MgO.
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Figure S2. Experimental (black) and simulated (red) powder X-ray diffractograms for synthetic
suanite.
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Figure S3. Experimental (black) and simulated (red) powder X-ray diffractograms for
grandidierite sourced from Andrahomana, southern Madagascar.
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Figure S4. Experimental (black) and simulated (red) powder X-ray diffractograms for synthetic
MgB,4O7. Peaks unaccounted for in the simulation are due to the presence of MgO.



Intensity (a.u.)

ﬂ%

L .|I

40
26 (°)

50 60 7

10 20 0

Figure S5. Experimental (black) powder X-ray diffractogram for hungchaoite. Red vertical bars
are a simulated powder X-ray diffractogram generated from the crystal structure of hungchaoite
(reference code: 98-000-6247, ICSD collection code: 10423; Ghose and Wan (1977) American

Mineralogist, 62, 1135-1143).
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Figure S6. Experimental powder X-ray diffractogram for szaibelyite. Red vertical bars are a
simulated powder X-ray diffractogram generated from the crystal structure of szaibelyite
(reference code: 98-011-4075, ICSD code: 161275; Grice (2008) Canadian Mineralogist, 46,

671-677).
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Figure S7. Experimental (black) and simulated (red) powder X-ray diffractograms for fluoborite
sourced from Bodar Quarry, New Jersey, USA.

10



Sites 1-3

Site 1

Site 2

Site 3

o —

l Hhm

EXpt. — n A l_ W

T |
100 0 -100 kHz

Figure S8. Experimental (lower trace: black) and simulated (upper traces: blue, red, green and

black) Mg NMR spectrum of boracite-Cl. Experimental NMR spectra acquired at By =21.1 T.

Simulations were generated with WSolids using the NMR parameters listed in Table 1.
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Figure S9. Plots of calculated Mg Cq or dis values vs modified longitudinal strain (LS) or average
bond distance between magnesium and its nearest neighbours. Values used are listed in Table 1.

12



560

E 550

S

&

o 540

&

- 530

Qo

©

s 520

o

©

O 510
500

y =-1.1483x + 564.54
R?=0.99983

20 40 60
Experimental ,., (ppm)

Figure S10. Relationship of experimental (8;s,) and calculated (ois,) values of three reference
compounds: brucite (Mg(OH),), periclase (MgO), and spinel (MgAlL,O4). A linear regression analysis of

these data reveal the following relationship 6 .= —( 0 5, — 564.5 ppm).

13



Quantum Chemical Calculations Background

In the case of insulator materials the effect of external magnetic field on the electron spin is usually small
however not negligible.! The effect in this case is strictly related to the slight contraction and expansion
of majority and minority spin wave functions under the external magnetic field. As a result nonzero spin
density appears at the nucleus leading to in principle nonzero contact contribution for the NMR screening,
known in metals. However, for studied here minerals such contribution to the shielding is constant and of
only 10 ppm. Therefore considering NMR shift the essential contribution comes from the orbital motion
of electrons, and the resulting induced current density (jing) in most extend is the source of the screening.
Therefore, following the Biot-Savart Law, the corresponding NMR shielding can be calculated
theoretically on the basis of the following equations:z'5

R—r

— 1

where B is the external magnetic field, r and R are distance vectors, Bj,q is the magnetic shielding field
induced by the induced current (jinq) defined as:

fina(r") = Xo(wC"

JO (1 |q,(go>> 4 <q,(go) | JO (1 |w§1)> " <q,(go) | JO )

IP(EO)H

with y, and y, representing the ground and excited states, respectively, of the wavefunctions. The
perturbed wavefunction is given by:

w0y np(0)

Dy _ | e >< e | (o)
= -

#6) Ee )

1
H® = —rxp-B
Zcr P

with H" as first-order perturbed Hamiltonian. After solving the wavefunctions, the magnetic shielding
field and thus the magnetic shielding tensor at the nucleus can be calculated.
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