
University of Alberta

A u t o m a t e d A c t io n S e t S e l e c t io n in M a r k o v D e c i s i o n P r o c e s s e s

by

Greg Lee

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of M aster of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95792-6
Our file Notre reference
ISBN: 0-612-95792-6

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“If I have been able to see further, it was only because I stood on the shoulders of giants.”
Isaac Newton

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Vadim Bulitko for being incredibly involved and
helpful as a supervisor. Our weekly meetings not only helped guide my research, but also led to my
introduction to many different facets of Computing Science, and other sciences.

Thanks to Ilya Levner for extensive assistance with one of the testbed domains, as well as his
contributions during general discussions in our meetings. Thanks to Lihong Li for his interest and
input, as well as his courtesy in sharing resources.

I would also like to thank Calvin Thomas for extensive remote discussion about my work, his
work and science in general, which helped make the less exciting days of research seem more
meaningful. Thanks to Rene Malenfant, Wes Mackay, Jonathan Newton and Dave O’Connell for
their coding contributions during preliminary experiments.

To my family, thanks for never pushing me an in any direction academically and allowing me to
find my own way. Thanks to Melissa for her love and support during both the easy and hard times
of research, and for helping in any way she could with work not at all in her area of expertise.

Lastly, I would like to thank NSERC, iCORE and the University of Alberta, without whom none
of this research would have been possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 M o tivation ... 1
1.2 MDP A pplications.. 4
1.3 Contributions ... 5
1.4 Thesis O rg an iza tio n .. 7

2 Markov Decision Processes 8
2.1 Maze D o m a in .. 9
2.2 MR A D O R E ... 11

3 Problem Formulation 16
3.1 Desired Attributes o f Ideal S o lu tio n .. 18
3.2 Example: Library Selection in M R ADORE ... 18

4 Existing M ethods 20
4.1 Feature Selection .. 20

4.1.1 Genetic Algorithms (GAs) in Feature Selection .. 22
4.1.2 Pareto-optimal Genetic Algorithms in Feature S e le c t io n ... 23

4.2 Meta-Models: A Crossover between Filter and Wrapper A pproaches... 24
4.3 Genetic Algorithms versus Simulated A n n e a lin g .. 26

5 Heuristic Search with Meta-Models Method 27
5.1 Novel A p p ro a c h ... 27
5.2 A lgorithm s... 29

5.2.1 Heuristic Search M eth o d s .. 29
Genetic A lg o rith m s ... 29
Simulated A n n e a l in g ... 31

5.2.2 Machine Learning Algorithms ... 32
Na'ive Bayes C lassifie rs.. 32
Artificial Neural Nets and P e rc e p tro n s .. 33
Decision Trees ... 35
Decision L i s t s ... 36

6 Empirical Evaluation 38
6.1 Maze Domain Experimental Setup .. 38
6.2 Maze D o m a in .. 39

6.2.1 Deliberation Cost E x p e rim en ts ... 40
Exhaustive S e a rch .. 43

6.3 Action Set Selection for Image In terp re ta tion ... 43
6.3.1 Refining the Approach .. 45

Simulated Online E x p e rim e n ts .. 45
Operator Set Size E x p e rim en ts .. 46
Comparing Sequences and S e t s .. 47
Offline (Perfect) Policy versus Online P o l ic y ... 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Training with Online D a ta .. 47
6.4 M R ADORE Experimental R e s u l t s .. 48

6.4.1 Pilot Study in the Image Interpretation D o m ain .. 48
Initial Cross-Validation S tu d y ... 49

6.4.2 Full Cross Validation s t u d y ... 52
6.4.3 Online R esu lts ... 54

Standard Deviation P l o t ... 58
6.4.4 Simulated Online E x p e rim e n ts .. 58
6.4.5 Operator Set Size E x p e rim e n ts 59
6.4.6 Comparing Sequences and S e t s .. 59
6.4.7 Offline (Perfect) Policy vs. Online P o lic y .. 61
6.4.8 Training with Online D a ta .. 62

6.5 D isc u ss io n ... 65

7 Future Work and Conclusions 67
7.1 Future W o r k ... 67
7.2 C o n c lu s io n s ... 69

Bibliography 70

A Vision Operator Selection Software ■ 73

B Vision Operator Examples 75
B .l Template M a tc h in g ... 75
B.2 T hresholding... 75
B.3 Morphological F ilte r in g .. 75

B.3.1 Gaussian F ilte rin g .. 75
B.3.2 Minimum F i l te r in g .. 77
B.3.3 Maximum F il te r in g .. 77

B.4 Histogram E q u a liza tio n .. 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A typical problematic decision faced by computer users [Bod Host 2004].................. 1
1.2 More choice is not always better for human happiness. On the left we see that

bad feelings about losses outweigh good feelings about gains. The two graphs on
the right show how increasing choice is only beneficial to a point [Schwartz, 2004],
After a certain threshold, the chooser is overwhelmed by the number of choices both
before and after the decision is made... 3

2.1 A 20x20 maze with walls shown as unlabeled squares, the agent’s position shown
by the red A square, and the goal state shown in green G square................................ 10

2.2 Actions available to a maze agent with radius size 1. The agent is in the magenta
square, its path is described by the diagonal blue line of squares and the goal is in
the red square.. 10

2.3 A fragment of the state-action graph used in our experiments. States are labeled
with their vision data types and have forest samples shown next to them. Image
processing operators are shown as the arcs.. 13

2.4 offline training stage: all limited-length operator sequences are applied to each train
ing image. The resulting image interpretations are evaluated against the desired
label. Action-state rewards are then computed.. 14

2.5 online operation: the control policy uses an approximate value function to select the
best sequence of operators from the IPL library. As the result, an image interpreta
tion label is produced... 15

2.6 Original aerial forestry image (left) and its labeling (right) superimposed over the
original image, provided by the user as a part of the training set................................. 15

3.1 Longer operator sequences lead to better labeling. From left to right: the original
image, desired user-provided labeling, the best labelings with an operator sequence
of length 4, 5, and 6... 18

5.1 Steps 1 and 2 of the proposed methodology. Supervised machine learning methods
are used to generalize fitness of sampled operator sets into an approximation to the
actual fitness function.. 28

5.2 Step 3 of the proposed methodology. Our approach for automated operator selection:
heuristic search is conducted in the space of operator sets. It is guided by a machine-
learned approximation to the performance function of the actual system learned in
steps 1 and 2... 28

5.3 A basic artificial neural network [[University, 2004]].. 34

6.1 Average reward (incremented by 5000) for seven methods with a reward of 1,000
for solving the maze and -500 for quitting... 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Average reward (incremented by 100000) for seven methods with a reward oflOOOOO
for solving the maze and -50000 for quitting... 41

6.3 Average fitness of sets found by six different selection methods................................. 42
6.4 Results of an exhaustive search done over all possible action sets with radius set to

2. Note that the full set is not the optimal set... 43
6.5 Supervised machine learning methods are used to generalize fitness of sampled op

erator sets into an approximation to the fitness criteria... 45
6.6 Proposed approach for automated operator selection: heuristic search is conducted

in the space of operator sets. It is guided by a machine-learned approximation to the
performance function of the actual offline system... 46

6.7 Proposed approach for automated operator selection: heuristic search is conducted
in the space of operator sets. It is guided by a machine-learned approximation to the
performance function of the actual online system... 48

6.8 Holding the number of iterations and the mutation rate constant, genetic algorithms
outperform simulated annealing with every GA population size. Standard deviation
is shown as the error bars.. 50

6.9 Decision tree fitness function proves to be the most robust to parameter variations.
Error bars correspond to the standard deviation over the fitness over different sets
produced during 5 runs of GAs with each set of parameters. Here we used a mutation
rate of 0.05 and 1000 iterations... 51

6.10 Comparison of the fitness of various action set selection techniques, on three folds
of cross validation runs. The hand-picked set is constant over all folds...................... 53

6.11 MR ADORE’s offline image interpretation accuracy with six different operator set
selection methods... 55

6.12 MR ADORE’s offline (and online) cost with six different operator set selection
methods.. 55

6.13 MR ADORE’s offline fitness with six different operator set selection methods. . . . 56
6.14 MR ADORE’s online interpretation accuracy with sets chosen by GA/NN, GA/NB,

domain expert, top (0-292) of operators, random(0-292) operators, and the full set
of 292 operators... 57

6.15 MR ADORE’s online fitness with sets chosen by GA/NN, GA/NB, domain expert,
top (0-292) of operators, random(0-292) operators, and the full set of 292 operators 57

6.16 Change in standard deviation in online accuracy (for all methods) over 81 folds . . 58
6.17 Seven different methods of operator set selection evaluated on different control poli

cies. The numbers after the methods are the average (in parentheses) or fixed (not in
parentheses) number of operators in the selected sets... 59

6.18 Performance of MR ADORE with 35 operator sets with the e-perfect policy (for
several es), as well as with the machine-learned control p o lic y 60

6.19 Minimum cost required to reach various accuracies with static sequences of four
operators ... 60

6.20 Average cost versus average image interpretation accuracy for all sequences of length
4 and our 7 methods, both offline and online. The squares are our methods with the
online policy, the triangles are our methods with the offline policy and the filled di
amonds represent the minimum cost required to reach a certain image interpretation
accuracy. ... 61

6.21 Drop in online accuracy (for all methods) over 81 f o ld s ... 62
6.22 Drop in online fitness (for all methods) over 46 f o l d s .. 63
6.23 Drop in online accuracy/fitness vs average operator set size. The points left to right

represent Domain-Expert, Filter50,GA/NN, GA/NB, FilterlOO.................................. 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.24 Drop in online accuracy/fitness vs average number of possible image interpreta
tions. The points left to right represent Domain-Expert, Filter50,GA/NB, GA/NN,
FilterlOO. Note the change in order, as the GA/NN combination averages more op
erators per set than GA/NB, but fewer image interpreations (due to the nature of the
operators this method chooses)... 64

6.25 Average online fitness of five methods using online training d a t a 64

7.1 Comparing fixed size operator sets to variable size operator sets...................... 68

A. 1 A GUI used to select which operators to include in a set, which instantiations of
these operators to include, and whether to rename the operators within the set. . . . 74

B.l An image matched with a spruce tree template, producing a likelihood image. . . . 76
B.2 An image produced by template matching is thresheld to produce a binary image. . 76
B.3 An image morphed by a gaussian filter... 77
B.4 An image morphed by a minimum filte r .. 78
B.5 An image morphed by a maximum filter.. 78
B.6 An image before and after colour histogram equalization has been performed. . . . 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 offline state space exploration in MR ADORE. All action sequences up to a fixed
length are applied to an image. The number of nodes (intermediate images) and
sequences, explored state space physical size (GBytes), and the expansion time on a
dual Athlon MP 1600+ shown were averaged over 10 images. The operator set used
is a greatly downsized version of the full operator s e t ... 5

3.1 offline state space exploration. All operator sequences up to a fixed length are ap
plied to an image. The number of nodes and sequences, explored state space physi
cal size (GBytes), and the expansion time on a dual Athlon MP 1600+ shown were
averaged over 10 images... 19

6.1 Organization of Empirical Evaluation ... 38
6.2 Mapping our definitions to the maze dom ain... 39
6.3 Revised definition mappings in the maze domain .. 42
6.4 Mapping our definitions to the MR A D O R E ... 45
6.5 Pilot study methods and parameters .. 49
6.6 Initial cross-validation experiment methods and param eters....................................... 52
6.7 Full cross-validation experiment methods and parameters.. 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Motivation

Choice: One of the chief advances in modem society is the vast number of choices people have

in every aspect of life, be it what to make their profession, where to reside, where to travel, how

large a family to have, what to make their priorities or even which computer operating system to

use. Only a few decades ago our choices were severely limited and there was a constant struggle for

more options in life. With many societal developments (feminism, affirmative action, globalization)

and technological advances (television, internet), humans now have myriad options to choose from

in every aspect of life. But with the gift of many choices comes the burden of making the correct

choice, the best choice - the optimal choice. Often being given more choices comes hand in hand

with being given better choices, but intelligence is required to be able to tell the good choices from

the bad choices. Thus it may be sometimes better for a person to be presented with fewer choices,

even at the cost of the optimal choice, since the person would have fewer chances of making a bad

decision.

i ' m

• I

Figure 1.1: A typical problematic decision faced by computer users [Bod Host 2004].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Take for example a carpenter with a toolbox. The ideal toolbox for this carpenter is the one that

maximizes his or her performance on a given task. Most carpentry tasks involve a series of steps,

thus requiring a decision as to what tool to use at each step. The carpenter must follow a policy to

decide which tool is the best to use, given the current state of the construction. Intuitively, we would

think that providing this carpenter with every possible tool would be the best scenario, because the

optimal choice for any given situation would then be in his or her toolbox. But this method of

selection would also include countless useless tools which, if chosen, would lead to poor outcome.

This would not matter if the carpenter had an oracle to tell him or her which tool to use at all times.

Unfortunately, in the real world there is no such oracle, thus we need to optimize the toolbox for a

given carpenter and a given task. A carpenter with little experience should probably be given only a

few general purpose tools, in order to minimize the chances of a highly suboptimal choice. On the

other hand, a more experienced carpenter could be a given a broader set, with obscure tools good

only for one state. His or her policy would ensure proper use of more precise tools. Also, since tools

cost money, the carpenter’s company would be interested in supplying toolboxes that provide him

or her tools that will allow for optimal (or near-optimal) performance while drastically reducing the

total expense of the tools in the toolbox. A big toolbox is also hdavy and cumbersome, and if some

less useful tools can be removed from the toolbox, it can only help the carpenter.

Psychological studies further reinforce the idea that more choice can be detrimental to “perfor

mance”. In [Schwartz, 2004], human happiness is examined in the context of the amount of choice

available to people. Individuals are divided into two groups: maximizers and satisficers. Maximizers

seek to always make the optimal choice, and tend to evaluate as many choices as possible before

ultimately making a decision. Satisficers seek to make a good decision, but do not spend too much

time evaluating their choices, thus often settling for a sub-optimal result.

Satisficers tend to be happier people, because they do not spend much time deliberating about

what choices they could have (or should have) made. They do not suffer from regret as do maxi

mizers, since they do not even know about many of the options that were present at the time of the

decision. Maximizers exert a significantly larger amount of effort in making their decision, since

they force themselves to make so many more comparisons with other choices (and can be “weighed-

down”, much like a carpenter). Then, if the choice they have made turns out to not be as satisfying

as hoped, they feel worse than satisficers since they committed so much more to the decision. In

addition to this, since they are seeking the optimal choice, they can only be satisfied by a small set of

decisions (often just one), the correct decisions (or what they perceive to be the correct decisions).

Maximizers also tend to continue to compare their choice with others long after the final decision

is made, often leading to further depression. And again, like the carpenter, they may have to spend

more resources to evaluate more choices.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R E A C T I O N S TO L O S S E S A N D G A I N S R E A C T I O N S TO I N C R E A S I N G C H O I C E

I S #

EMOisiiMS

1 f'^ ^ rI ""X
X

%

Figure 1.2: More choice is not always better for human happiness. On the left we see that bad
feelings about losses outweigh good feelings about gains. The two graphs on the right show how in
creasing choice is only beneficial to a point [Schwartz, 2004], After a certain threshold, the chooser
is overwhelmed by the number of choices both before and after the decision is made.

Further psychological research shows that while more choice is logically better, it is only em

pirically better to a point. After so much choice is added, the negative factor of comparing options

before and after the decision is made becomes overwhelming. Also, making a good decision is not

as satisfying an outcome as making a bad decision is depressing. These findings are summarized in

Figure 1.2.

One model of decision-making is the Markov Decision Process (MDP) [Sutton and Barto, 1998],

MDPs describe any situation where an agent is made to choose an action based on its current state.

The decision is made by the agent’s policy, that maps states to actions. The action leads the agent

to another state, and the cycle continues with actions being chosen until a final state is reached.

The agent rarely if ever has an oracle telling it which action to choose next. Instead, the agent

uses its control policy to select its actions. Thus a convoluted action set can lead to poor and slow

performance. Conversely, an undersized action set can often lack the proper actions for optimal

performance. Performance of an MDP and optimality of an action set will be formally defined in

Chapter 2.

It is due to this phenomenon that a need for a method to choose an optimal action set for a given

MDP arose. This optimal action set is dependent upon the agent, as differing agents will require

different actions to optimize their performance. Some agents will be led astray by certain states,

thus if we can eliminate actions which lead to these states, we increase the performance of the agent.

The optimal action set is also dependent upon the task at hand or the environment in which the agent

is placed.

A most common approach is to have a human domain expert handpick an action set for a given

domain [Draper et al., 2000]. This is not desirable, since it involves much human expert time,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and also is a deterrent in the automation of intelligent systems. In addition to this, it is difficult

to manually construct an optimal action set for an agent and if we tweak the agent even a little, a

whole new action set would need to be designed by the domain expert. In the end, one would need

a domain expert on hand at all times to choose a new action set if any changes are ever to be made

to the system.

In order to eliminate the need for a domain expert, we propose automating the action set selection

for Markov Decision Processes. We then test our automated method on two vastly different domains

and evaluate the results.

1.2 MDP Applications

An agent in a maze domain provides a simplistic example of a Markov Decision Process. This agent

moves about a maze with a given set of actions, which transport it from one state to another. The

agent’s task is to discover the goal state of the maze. A convoluted action set could lead to the agent

wasting time trying similar actions. Too few actions could prevent the agent from ever reaching its

goal. Optimizing this action set leads to better performance by the maze agent. Performance is based

on the state of the agent when it decides to quit (goal state or non-goal state), how many moves the

agent makes before it quits (the fewer moves, the better) and how much the agent deliberates before

making a move.

While the maze domain is a toy problem, there exist real-world Markov Decision Process prob

lems whose current solutions could greatly be enhanced by optimizing the action set involved. One

modem day computer vision system called MR ADORE (Multi-Resolution ADaptive Object Recog

nition) [Levner et al., 2003; Levner and Bulitko, 2004] models vision as a partially observable

Markov decision process (POMDP), with states being images (or parts of images), and actions be

ing vision processing operators that manipulate these images. Interpreting an image can be done by

applying successive operators, making object recognition a decision-making process. Having more

operators in the system’s set provides for more flexibility in interpretations, and strictly equal or

better final labelings (if one tries all possible combinations of operators). A larger operator set also

lengthens learning and execution time, since having more operators in a set leads to more possible

combinations of operators, and to more useless labelings. If the agent’s policy is sub-optimal, this

would increase its chances of choosing a bad labeling for a given image.

In psychology tenns, MR ADORE is a maximizer. It always seeks to make the optimal choice,

and considers all possible options when it is making its decision. If we allow it to try all possible

combinations of vision operators (which we do in practice), then the number of choices increases

exponentially with the number of action applications we allow, as seen in Table 3,1. While this

cannot possibly diminish the optimal choice, it does present the policy with many more choices,

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1.1: offline state space exploration in MR ADORE. All action sequences up to a fixed length
are applied to an image. The number of nodes (intermediate images) and sequences, explored state
space physical size (GBytes), and the expansion time on a dual Athlon MP 1600+ shown were
averaged over 10 images. The operator set used is a greatly downsized version of the full operator
set

Sequence Length # of Nodes # of Sequences Size (GBytes) Time
4 269 119 0.038 30 sec
5 7,382 3,298 1 10 min
6 192,490 86,037 26 8 hrs

with most of them being nowhere near optimal. And much as bad decisions are more detrimental

to performance (happiness) in humans than good decisions are beneficial, in MR ADORE a bad

labeling is much more unsatisfying to return to the user than a good labeling is satisfying.

While we could statically use a good sequence (as determined from our training runs), this

would eliminate the adaptability of the system. We also run the risk of choosing a static sequence

that simply fits the training data, and is not good on new images. Thus the best method to prevent bad

decisions is to eliminate bad choices from possibility. A reduced domain and agent specific action

set would accomplish this, all the while preserving enough actions to ensure good performance.

In the real world, the best set of choices is dependent upon the person being given the choices,

and the person’s task. In an MDP, the best set of actions is dependent upon the agent being made to

act, and the domain in which it is acting.

The most straightforward way to find the best possible action set for a given domain and agent

is to test every possible set of actions. Unfortunately, evaluating all possible action sets involves

searching the powerset of the N actions (2N). For any large N , this number practically infinite.

Since exhaustive search through all practically encountered action sets is often impossible, we

turn to heuristic search methods to sample and search through the space of action sets intelligently.

Any search method requires an evaluation function to determine the quality of searched instances.

In some cases (such as in MR ADORE), the evaluation of just one action set (or vision operator set)

can take hours, thus making a thorough search impossible in a reasonable amount of time, even with

a heuristic search. To this end, we use a machine-learned evaluation function to score and rank the

currently searched action sets. These meta-models ([Jin et al., 2001]) are generalized over training

data to provide our heuristic search with a quick and accurate ranking for any given action set.

1.3 Contributions

In this thesis we make three contributions to the field of Artificial Intelligence:

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• We investigate the issue of ‘How much choice is enough?’ both implicitly (in our experiments

to reduce action set size) and explicitly. We test whether increasing choice for MR ADORE

aids or hurts its performance by starting with a small, but well-performing operator set. Re

sults show that adding various operators helps performance with an oracle telling us which

interpretation to choose (which is necessarily true), but with any more than 10% randomness

added to the decisions, only serves to slow down the operation of the system, without changing

the interpretation quality.

• We automate the selection of the action set for a Markov Decision Process(MDP) agent. This

process is traditionally done by hand, which deters from the full automation of MDP-based

systems. Our method combines the strength of wrapper [Kohavi and John, 1997] and filter ap

proaches [Kira andRendell, 1992; Pudil etal., 1994; Bins and Draper, 2001] (formally defined

in Section 4.1), providing a fast yet thorough search through possible action sets. We use both

genetic algorithms [Holland, 1962; Goldberg, 1989] and simulated annealing [Metropolis et

al., 1953] as heuristic search methods, and artificial neural nets (and perceptrons) [Haykin,

1994], naive Bayes classifiers [Jensen, 1996], decision trees [Quinlan, 1993], and decision

lists [Rivest, 1987] as objective functions inside these search methods. We test our method

against pure filter and random methods, as well as action sets chosen by a domain expert. Our

method outperforms the filter and random approaches and matches the performance of the

domain expert.

• We empirically evaluate the novel automated action set selection method in both the maze do

main and the vision domain. We reduce the action set for a maze domain agent, improving its

fitness (defined in Section 3) by increasing its likelihood of solving the maze, while reducing

the number of moves it takes to reach the goal state and the number of moves considered at

each state. This domain is an example of a domain where no expert is available. In these

situations, our method can be especially helpful, since it outperforms other automatic selec

tion methods. In a state of the art adaptive objection recognition system (MR ADORE), we

first determine the best search methods, machine learners for evaluation functions, as well as

parameters for both of these key elements in the method. We then reduce the vision operator

set improving the image interpretation accuracy on novel images while reducing the learning

and execution cost of the system twenty-five-fold.

As in psychology, adding more choice in an MDP is beneficial, but only to a point. Our novel

method of action set selection learns to provide the agent at hand with an adequate, but not super

fluous, number of actions for a given domain, so as to improve performance over hand-engineered

implementations of such systems.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2 we formally define Markov De

cision Process framework, as well as the applications used in the thesis. In Chapter 3, the action

selection task is described. Chapter 4 outlines related work in the similar field of feature selection,

heuristic search and machine-learned evaluation functions. Chapter 5 describes our four step method

for choosing action sets. Our empirical evaluation is given in Chapter 6, with discussion following

in Chapter 6.5. Concluding remarks are given in Chapter 7.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Markov Decision Processes

A Markov Decision Process involves an agent that can be in a set S of distinct states, and who can

perform a set A of distinct actions to move between these states [Sutton and Barto, 1998]. In this

thesis, we concern ourselves with finite-horizon Markov Decision Processes, where S and A are

finite. At each time step t, the agent perceives its current state st £ S and selects an action at £ A

to perform. Each action is given a reward rt based on the current state and action performed.

Definition 2.1 For any state and action, the probability o f reaching each possible next state s ‘ is:

~ P r i st+ 1 = s'-\st = s ,a t = a}

In a similar fashion, we can predict the value of the reward for any given state and action:

Definition 2.2 For any state and action, the expected value o f the next reward rt + 1 is:

T “s, = E { r t+i\s t = s, at — a, st+i = s‘}

where E denotes the expected value

In this thesis, we experiment with applications where the rewards are deterministic and undiscounted

(i.e. later rewards are as important as immediate rewards):

Definition 2.3 The return o f a finite-horizon undiscounted MDP from time t is defined as

N

t=o

where N is the finite-horizon.

The solution to an MDP is the agent’s policy that tells the agent which action to take in each state.

Definition 2.4 A deterministic policy it S A mapping states to actions is defined as:

ir(st) = at

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The optimal solution to an MDP is thus the optimal policy M {s t) = at , which maximizes R. The

value of a state is dependent upon tt:

Definition 2.5 The value o f a state V under policy tt is:

V T(s) = E^[lZt (s)}

where E^ is the expected value i f the agent follows policy n.

Actions are also given values, dependent upon the state:

Definition 2.6 The value o f an action a under policy n in a finite-horizon Markov Decision Process

is:

Qv (s, a) = E^{lZt \st - s ,at - a}

where E n is the expected value i f the agentfollows policy i t . The term Q comes from Q-learning [Watkins,

1989].

With these quantities defined, we can now describe the domains used in our experiments. We

use two significantly different MDP-based systems in our research to test the ability of our method

to effectively choose an action set for a broad array of MDP problems.

2.1 Maze Domain

Maze domains have been used in many different studies including general reinforcement learning

[Sutton and Barto, 1998], lookahead pathologies [Madani et al., 2002], the study of partially ob

servable Markov decision processes [Miyazaki and Kobayashi, 1995], studies in neural information

processing [Dayan and Hinton, 1993], geometric navigation [Blum et a l, 1991], genetic program

ming [Soule et al., 1996], and overcoming incomplete perceptions [McCallum, 1993].

In the maze domain used in our experiments [Madani et al., 2002], an agent is allowed to roam

within the boundaries of a square maze with a randomly defined goal state. Figure 2.1 shows a

typical maze. The MDP state of the agent is its current position within the maze. The agent has

perfect information regarding its current state. The agent’s percept at any given time is described

by the tuple {x, y, so....sm, g} where x and y are the agent’s coordinates, SQ....sm are the agents m

sensor readings for the blocks it can reach from its current state (one of {em pty, wall, goal}) and g

is a binary sensor telling the agent whether or not it is in the goal state.

The agent moves between states with the MDP actions. These actions are defined in terms of

a radius 5. The agent can move to any state on the border of the defined S. The agent thus has

8 * 5 + 1 possible actions (+1 for the “quit” action) in its action set A, and increasing the radius

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: A 20x20 maze with walls shown as unlabeled squares, the agent’s position shown by the
red A square, and the goal state shown in green G square.

\ l /
« -* -* -

Figure 2.2: Actions available to a maze agent with radius size 1. The agent is in the magenta square,
its path is described by the diagonal blue line of squares and the goal is in the red square .

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

causes a linear increase in the number of possible actions available to the agent. Figure 2.2 shows

the available moves to an agent with actions of radius size 1.

The agent is capable of “jumping” over walls, but cannot “land” on a wall. Thus, as long as there

is no wall in the state mapped to by an action (and as long as this move doesn’t leave the boundaries

of the maze), it is a legal action. Note that the agent cannot move in distances smaller than (or

greater than) 5.

The agent is given a maximum number of action applications with which to find the goal state.

A non-discounted reward function is used such that every reward incurred is of equal importance.

Every move incurs a negative reward equivalent to the floor of the Manhattan distance (the distance

between two points measured along axes at right angles) between the current state and the destination

state. If the agent quits in the goal state, it receives a large positive reward, if it quits in any other

state it receives a large negative reward.

We use this domain as a testbed for our action selection methods as it is a “traditional” MDP

problem (as all the related research would attest to), so it is interesting to see if our methods can find

an action set that is less convoluted than the full action set.

2.2 M R ADORE

Image interpretation is an important and highly challenging problem with numerous practical ap

plications. Hand-crafted image interpretation systems suffer from expensive design cycle, a high

demand for expertise in both subject matter and computer vision, and the difficulties with portabil

ity and maintenance. Over the last three decades, various automated ways of constructing image

interpretation systems have been explored. The following brief account is based on [Draper, 2003],

One of the promising approaches to automatic acquisition of image interpretation systems lies

with treating computer vision as a control problem over a space of image processing operators.

Early attempts used the schema theory [Arbib, 1972; 1978], While presenting a systemic way of

designing image interpretation systems, the approach was still ad-hoc in its nature and required

extensive manual design efforts [Draper et a l, 1996].

In the 1990’s the second generation of control policy based image interpretation systems came

into existence. More than a systematic design methodology, such systems used theoretically well-

founded machine learning frameworks for automatic acquisition of control strategies over a space

of image processing operators. The two well-known pioneering examples are a Bayes net system

[Rimey and Brown, 1994] and a Markov decision process (MDP) based system [Draper et a l, 2000].

The latter system (called ADORE for ADaptive Object REcognition) learned dynamic image

interpretation strategies for finding buildings in aerial images. As with many vision systems, it iden

tified objects (in this case, buildings) in a multi-step process. The input data were raw images, and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the output was an interpretation which identified buildings in the image; in between, the data could

be represented as intensity images, probability images, edges, lines, or curves. ADORE modeled

image interpretation process as a Markov decision process, where the intermediate representations

were continuous state spaces, and the vision procedures were actions. The goal was to learn a dy

namic control policy that selects the next action (i.e., image processing operator) at each step so as

to maximize the quality of the final interpretation.

ADORE, which was a pioneering system, left several exciting directions for future work and

improvement. These directions are investigated in a project titled MR ADORE (Multi Resolution

ADORE) [Levner et al., 2003; Levner and Bulitko, 2004]. Multi Resolution means it is possible to

change the resolution of the images during the interpretation process.

MR ADORE begins with the Markov decision process (MDP) as the basic mathematical model

by casting Image Processing Library (IPL) operators as the MDP actions and the results of their

applications as the MDP states (Figure 2.3). An example of an IPL operator would be a procedure

for converting a colour image to a greyscale image. The system operates in two modes as follows.

During the offline training stage (Figure 2.4), available subject matter expertise is encoded as

a collection of training images with the corresponding desired interpretation (the so-called ground

truth). Figure 2.6 demonstrates an example of such a pair (input image, ground truth label). Of

fline training continues by invoking an off-policy reinforcement learning algorithm that uses deep

backups without bootstrapping ([Sutton and Barto, 1998])to acquire its value function [Sutton and

Barto, 1998]. Specifically, at first, all feasible length-limited sequences of IPL operators are applied

to each training image. The resulting interpretations are evaluated against the ground truth provided

by the user. MR ADORE uses a pixel-level similarity scoring metric defined as the ratio of the

number of pixels labeled as the target class (e.g., spruce) by both the system and the expert to the

total number of pixels labeled as the target class by either one of them. According to such a metric,

an interpretation identical to the user-supplied label scores 1 while a totally disjoint interpretation

will get a score of 0.

The interpretation scores are then “backed up” along the IPL operator sequences using dynamic

programming. As a result, the value function Q : S x A —> R is computed for the expanded states

S' C S and applied actions A! C A. The value of Q(s, a) corresponds to the best interpretation

score the system can expect by applying operator a in state s and acting optimally thereafter. In

reinforcement learning terms, MR ADORE represents the task as a finite horizon non-discounted

problem wherein all intermediate rewards are zero except these collected by outputting an image

interpretation. The latter is a positive reward proportional to the quality of the interpretation.

The collected training set of Q-values {[s, a, Q(s, o)j} samples a tiny fraction of the 5 x 4 space.

Correspondingly, function approximation methods are used to extrapolate the value function onto

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Color Im age G aussian S m o o th) Median filter

Histogram Intersection
Color

Raw I mi

Grab Image (No Op)

Convert (No Op)

RGB Segm entation

Gray im age

Histogram Intersection

Threshold Binary Probability map
image

Thrash Flood F I

Segm ented im age

Submit La

Final
In te rp re ta tio n

Figure 2.3: A fragment of the state-action graph used in our experiments. States are labeled with
their vision data types and have forest samples shown next to them. Image processing operators are
shown as the arcs.

the entire space. To make approximation tractable, raw multimegabyte states are currently distilled

down to a 192 features and are presented to Artificial Neural Networks, which in turn act as function

approximators.

During the online interpretation stage, the system receives a novel image and proceeds to inter

pret it, as depicted in Figure 2.5. The value function, that was learned offline, now guides the control

policy to apply vision operators from the IPL library.

In MR ADORE a “least-commitment” [Levner et al., 2003; Levner and Bulitko, 2004] control

policy is used which first applies all limited feasible sequences of operators to the input image so-

Once the set of possible image interpretations {s i , . . . , sjv} is computed, the policy uses the label of

each interpretation s* to extract features from the original input image so- The resulting composite

feature vectors f Si (,sq) are used with the machine-learned value function to select the most promising

interpretation Sj* as follows: i* = argm ax, Q (f Si(so), submit). In other words, the policy selects

the interpretation Si- that is expected to bring the highest reward when submitted (i.e., output as the

system’s interpretation of the input image).

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application of
all limited

operator
sequences

Reward '
calculation

(state,action,Q)

Possible Labels

Figure 2.4: offline training stage: all limited-length operator sequences are applied to each training
image. The resulting image interpretations are evaluated against the desired label. Action-state
rewards are then computed.

This technique eliminates ADORE’s need to design high-quality features for every processing

level as they are now required for the initial colour image and the final binary interpretation only.

Additionally, extracting features from the initial image provides a context for the features extracted

from a candidate interpretation thereby addressing ADORE’s loss of performance due to history-free

Markov features.

Finally, before interpreting a novel image, it is partitioned into regular rectangular tiles. Each

tile is processed independently by the control policy. The resulting interpretations (one per tile) are

then assembled into a single interpretation of the original image. This technique greatly increases

flexibility of the system by allowing it to use different operators on different parts of a non-uniform

image. The size of tiles is determined arbitrarily.

Vision operators within MR ADORE often take parameters (such as a threshold operator, for

what intensity at which to perform the thresholding). We consider different instantiations of an

operator as different operators, since they perform different tasks, and thus the operator set selection

process amounts to selecting not only which operators, but which instantiations of these operators

to include in the set.

In this thesis, MR ADORE is used for the task of recognizing spruce trees within forestiy images.

The task is to label only the pixels that belong to spruce trees. Scoring is done at the pixel level.

Foresters are interested in counting the number of trees in an image (and learning the details for each

tree), which is not provided by MR ADORE. It is the responsibility of another module to interpret

the labels provided by MR ADORE.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

abstracted
approxim ated
value function output labelnovel input

imanp»

Figure 2.5: online operation: the control policy uses an approximate value function to select the best
sequence of operators from the IPL library. As the result, an image interpretation label is produced.

Figure 2.6: Original aerial forestry image (left) and its labeling (right) superimposed over the origi
nal image, provided by the user as a part of the training set.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Problem Formulation

The task at hand in the thesis research is to automatically select a subset of actions from a presumably

oversized full action set for use in an MDP. This subset should be the optimal action set for a given

task, be it object recognition (vision operators), maze navigation (movement operators), or some

other MDP domain.

We consider three factors with respect to the optimality of an action set A used by agent executing

policy it. First comes the learning cost incurred by the agent while learning a policy for the task.

Definition 3.1 The learning cost is defined as the time in CPU cycles taken to learn the policy it

used on novel data:

Ci (A) — ci (it)

where ci is the number o f CPU cycles used in the learning process.

Another penalty is the run-time cost incurred by the agent while perfonning the task.

Definition 3.2 The run-time cost is defined as the number o f CPU cycles taken to accomplish the

task:
n

Crt(A) = E sa['^2time(Tt(si))}
2—0

where E So is over the distribution o f starting states and time(it(si)) is the deliberation time o f

policy it in stateSi.

Combining these two, we have the full cost C (A) of an action set A

Definition 3.3 The cost is defined as the total number o f CPU cycles spent learning the policy and

then executing the policy:

C(A) = Cl(A) + Crt(A)

The third factor is the reward value of the final state where the agent ceases to act.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 3.4 The reward in an undiscountedfinite-horizon MDP (with M action applications) is

defined as the sum o f the scores given to the agent upon completion o f its task:

M

R (A) = E So[n(s0)) = E , 0[E„ £ >]]
%=1

where M is the finite-horizon and E 1r is the expected value if the agent follows policy it.

The fitness F of an action set A is a combination of this cost and reward, typically defined in a

linear equation:

Definition 3.5 The fitness o f an action set A is a linear combination o f reward and cost:

F(A) = a R (A) - f 3 C (A) + cr (3.1)

where a+/3 = 1 and <j is a constant. The values for a and /3 are provided by the user, depending

upon how the importance o f accuracy relative to cost. The value o f o simply determines the scale o f

the fitness values.

Thus, the optimal action set (A) is the set that maximizes F(A):

Definition 3.6 The optimal action set A* maximizes the fitness measure F(A):

A* — argm axf7'(A)

The optimal set varies, depending upon how much the user values reward over cost, or vice-

versa.

For instance, in the maze domain, the reward is based upon whether or not the agent terminates

in the goal state, and upon how many moves the agent makes before it terminates. If the agent

terminates in a non-goal state, a negative reward is incurred for failing to solve the maze.

Ideally, one would like to search through all possible subsets of the given action set, and choose

the optimal set (A*) based on the predefined balance of reward and cost. This is, however, not

possible for two reasons. Firstly, since the set of subsets of an action set of size AT is the powerset of

N, even a modest-sized set of 100 actions generates a number of subsets that is practically infinite.

Secondly, even if one could search through all the possible subsets, there is still a need for a

means of evaluating each subset of actions. The most accurate method is to evaluate each action

set’s performance on the actual system, which in the case of MR ADORE means to learn the policy

7r, execute it on all training images and rank it based on its average performance. Unfortunately,

performing such a task for just one action set at depth four (applying at most four actions in all

sequences) can take multiple hours, making searching through thousands of action sets infeasible.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1: Longer operator sequences lead to better labeling. From left to right: the original image,
desired user-provided labeling, the best labelings with an operator sequence of length 4, 5, and 6.

3.1 Desired Attributes of Ideal Solution

The desired end result is to have a completely portable system for choosing an optimal subset A* of

a provided action set in any MDP, based on the evaluation metric (F (A)) provided by the user.

We want the mechanism to match human experts in speed and reward. If the system takes years

to choose an operator set, then it is likely not of much use, and if the chosen operator set does

not perform well enough, it is again quite useless. We would also like to outperform more “naive”

methods, such as choosing an operator set based on highest ranked individual operators.

The selected operator set should hopefully be much smaller (number of actions in the set) when

compared to the full set (of course this depends upon how many redundant operators are present in

the full set), and thus reduce the total cost of the set C. Despite its smaller Cis, the selected set

should share comparable final rewards R to the full operator set, and hopefully, equal final rewards.

Having fewer operators should provide the system with fewer choices at each decision point, thus

reducing the likelihood of error.

3.2 Example: Library Selection in MR ADORE

During the offline phase, MR ADORE explores the state space by expanding the training data pro

vided by the user. In doing so it applies all operator sequences up to a certain, length (Figure 2.4).

Longer sequences are preferred for better image interpretation since more operators can be applied

for more precise transformations of the input image into the desired labeling. Even the modest

increase from 4 to 6 operators, shown in Figure 3.1, is clearly beneficial.

On the other hand, the size of the state space being explored increases exponentially with depth

and therefore quickly becomes prohibitively expensive. Currently in MR ADORE, a greatly down

sized (expert-selected) operator set is used, to ensure that the learning and run-time costs of the

system are reasonable. With this downsized operator set used by MR ADORE for the tree canopy

recognition task, the effective branching factor is approximately 26.5 which results in the sizes and

timings shown in Table 3.1 (as seen in Chapter 1).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: offline state space exploration. All operator sequences up to a fixed length are applied to
an image. The number of nodes and sequences, explored state space physical size (GBytes), and the
expansion time on a dual Athlon MP 1600+ shown were averaged over 10 images.

Sequence Length # of Nodes # of Sequences Size (GBytes) Time
4 269 119 0.038 30 sec
5 7,382 3,298 1 10 min
6 192,490 86,037 26 8 hrs

There are three conflicting factors at work: (i) large off-the-shelf image processing operator

libraries are required to make MR ADORE cross-domain portable, (ii) long operator sequences are

needed to achieve high interpretation quality, and (iii) combinatorial explosion during the learning

phase can impose prohibitive requirements on the storage and processing power. Fortunately, most

domain-independent operator libraries almost invariably contain numerous redundant or ineffective

operators when a specific domain is considered. Thus, the feasibility of the policy learning phase

as well as subsequent online performance critically depends on the selection of an efficient operator

subset for the domain of interest.

Previous systems such as [Draper et al., 2000] relied on manual selection of highly relevant non-

redundant operators thereby keeping the resulting IPL small and the offline state space exploration

feasible. Unfortunately, such solutions defeat the main objective of MR ADORE-like systems: their

automatic construction for a given domain. Note that the source of the original library is irrelevant.

In particular, one may engage genetic programming to create such a library first [Teller and Veloso,

1996] and then run automatic operator set selection on it.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Existing Methods

Action selection in Markov Decision Processes is done by the agent’s policy 7r. Action set selec

tion has been a human-expert task in the past, and automation of this task has not been seen in the

literature. Feature selection is a closely-related field, thus we review various feature selection meth

ods. A feature is a significant aspect or property of a state that can be used to compare different

states. More importantly features can be measured, whereas many states (such as an image) cannot.

[Gilmore and Hillston,]. Features give us a compact way of describing a complex state, which

allows for comparisons between and operations on these complex states

4.1 Feature Selection

Selecting an action set is similar to selecting an optimal set of features in as much as the individual

actions/features are interdependent, possibly redundant, and their performance can be fully evaluated

only within the target system. Thus, we will first briefly review representative feature selection

literature and then discuss the differences.

There are two important dimensions to consider: the type of search in the space of feature sets

and the optimization criteria. Two primary approaches have been studied. Wrapper approaches

[Kohavi and John, 1997] measure the actual performance of the target system with a candidate

feature set. This means that whenever the search mechanism wants to evaluate a feature set, the

actual system is invoked in order to evaluate how well the feature set performs. While being accurate,

such optimization criteria can be prohibitively expensive in practice. For instance, in the context of

MR ADORE measuring the fitness of a typical operator set on a test suite of 35 images takes around

12 hours on a dual AMD Athlon MP+ 2400 Linux server, since both the learning cost C) and the

execution cost Crt are significantly large due to full expansions done in labeling novel images (with

the “least-commitment” policy). Filter feature selection methods [Kira and Rendell, 1992; Pudil

et al., 1994; Bins and Draper, 2001] use system-independent criteria such as feature redundancy,

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 The RELIEF algorithm ([Kononenko, 1994]). Input: m training data. Output Opti-
mized feature set. _____________________________________ _______________________ ___________

1: set all weights W[A}: = 0.0;
2: for i = 1 to m do
3: randomly select an instance R;
4: find nearest hit H and nearest miss M ;
5: for A = 1 to alLattributes do
6: W[A] = W[A] - + ‘M ILA &M 1-

relevance, and other similar metrics. While such criteria are frequently less expensive to compute,

they are decoupled from the actual target performance function and may not always account for the

influence of domain specifics on the performance of a feature set.

The number of feature sets is usually exponential in the number of features and therefore in

complete heuristically guided search methods are typically preferred. For feature selection, greedy

algorithms have been used. In [Pudil et al., 1994] a Floating Search Algorithm is used to select

features. This algorithm is from the family of sequential search procedures involving backtracking.

The Floating Search Algorithm is shown to be effective in selecting features from both monotonic

and nonmonotonic feature sets. A monotonic feature set is one where if a feature from that set is

added to the current set, the performance of the system cannot be degraded.

In [Kira and Rendell, 1992] the RELIEF algorithm was introduced. RELIEF uses how well

attributes distinguish among instances that are near each other to estimate the attributes’ values

[Kononenko, 1994], The full algorithm is given in Algorithm 1. RELIEF takes each instance and

searches for its nearest hit (its nearest neighbour in the same class), and its nearest miss (its nearest

neighbour in a different class). In this way, attributes are ranked highly if they successfully dif

ferentiate between instances from different classes and give instances of the same class the same

values.

Another filter method involves ranking features based on the average performance (defined by

the user) of feature sets containing them, on a given system. This is similar to the + / — statistic in

hockey, where a player is given a + if his team scores while he is on the ice, and is given a — if

the opposing team scores while he is on the ice. These + s and —s accumulate, and a player with a

highly positive + / — is considered a valuable asset to his team. In a similar fashion, a feature with

a high rank would be considered an asset to a feature set. The algorithm for computing the optimal

feature set with this method is given in Algorithm 2.

Once features are selected, all of them are applied to the data token at hand simultaneously. This

is in contrast to image processing operators which are applied to the initial image sequentially with

one operator’s output being the next operator’s input. Furthermore, operator application is guided

by a dynamic control policy (e.g., best-first ANN-guided policy in [Draper et al., 2000]) and can

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2 “Top” , a method for selecting feature sets. Input: Training data, desired number o f
features d in set Output: Domain specific feature set(s)

1: for Each feature a in the full set do
2: for Each training datum {attributes,fitness} do
3: if o is present in the training datum then
4: Add this fitness to a ’s total
5: Increment count
6: Calculate a’s fitness by dividing total by count
7: Sort features by their fitness
8: Output top d features

involve loops, back-tracking, and early termination. These additions complicate the mapping from

operator sets to the resulting target system performance thereby possibly limiting the applicability

of filter methods, a phenomenon that we explore in our experiments.

4.1.1 Genetic Algorithms (GAs) in Feature Selection

In [Vafaie and Jong, 1993], GAs were shown to be more robust than traditional greedy methods

for selecting features to be used by the AQ15 incremental learning system to determine texture

classification rules in images. A sequential backwards search (SBS) algorithm is used as the greedy

method comparison to the GA. SBS starts with the full feature set and discards one feature at a time

until the desired number of features are present in the set. Features to be discarded are determined by

evaluating the feature set in each feature’s absence, and removing the feature with the least use. In

situations where there are many interdependencies between features, GAs are shown to outperform

the SBS algorithm. When there are fewer interdependencies, GAs are shown to be less efficient.

Since vision operators are known to be substantially interdependent (each operator depends upon

the output of another operator), GAs should be suitable for the vision operator selection task. In our

MDP domains, it is quite often not known how many actions are desired in the set, thus it would be

difficult to apply SBS.

Multi-criterion optimization (e.g., minimize the feature set size and maximize the overall recog

nition accuracy) is possible with GAs as well. In [Sun et al., 2002], a GA balancing accuracy and

the number of features is used, by applying a linear weighting formula for the two criteria, shown in

Equation 4.1.

f i tn e s s = 104/ + 0.4 x Z (4.1)

where I is the interpretation accuracy of the system, and Z is the number of features present in the

current set. The task at hand is to determine the gender of people in images based on an eigenvector

describing the image. In this task, having fewer features (i.e. only those features which encode gen

der information) actually increases the accuracy of the system. Comparing this to vision operators

in MR ADORE, having more vision operators in offline training always increases accuracy, since

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this only gives more possible operator combinations, and we know which image interpretation is

the best. In contrast to this, in the online operation of MR ADORE, having fewer operators can

be beneficial, since the machine-learned decision making system is then given fewer poor image

interpretations.

[Sun e ta l, 2002] first use Principal Component Analysis (PCA) to store each image as a feature

vector of low dimension. The multi-criteria GA is then used to choose features to be used by a neural

net to detennine the gender of the person in each image. With the reduced feature set provided by

the GAs, the interpretation accuracy of the neural net is improved from 82.3% to 88.2%.

In [Vafaie and Jong, 1992] a weighted multi-criteria GA is again used. The authors use genetic

algorithms as a tool to select features for a rule induction system, again for the AQ15 system. The

fitness function for the GA is a weighted sum of the number of testing examples identified correctly

and the number of testing examples identified incorrectly (with the GA selected features).

A similar weighted approach is used in [Oliveira et al., 2001] to help select features for recog

nizing handwritten digits. Two types of GA are used: a standard GA (SGA), which, as its name

describes, is simply a GA with the standard crossover, mutation and selection process, and an it

erative GA (IGA) which is known to converge faster than SGAs [K.F.Man et al., 1999] by simply

restricting the search space at each iteration. The best solution found at each iteration is used as a

guideline for the next generation. In this task, the SGA outperforms the IGA.

In [Oliveira et a l, 2002], a Non-Dominated Sorting GA (NSGA) with elitism is used [N.Srinivas

and K.Deb, 1995]. A ranking selection method is used to make good solutions more prominent,

while a niche method is used keep the subpopulations of good solutions stable. The NSGA outper

forms traditional GAs on the task of handwritten digit recognition.

4.1.2 Pareto-optimal Genetic Algorithms in Feature Selection

Pareto-optimal GAs present an alternative method for producing solutions that must balance between

objectives. A pareto-optimal solution is one that dominates all other possible solutions in each

criterion of the problem. In [Emmanouilidis e ta l, 1999] a niched Pareto GA with random sampling

tournament selection is used. It is described in Algorithm 3. The authors use the Pareto GA to select

features for neurofuzzy modeling of cancer data and vibration analysis data. In the former, nine

features are used, while in the latter 56 features are used. In both cases Pareto GAs are able to

produce reasonable solutions for different situations - where different criteria are given different

weights.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 3 Niched Pareto-Optimal GA ([Emmanouilidis et a l, 1999]). Inputs: Evaluation func
tion, Number of bits in chromosome. Output: Fit population of solutions.

1: Randomly select Individuals from the population to create a dominance tournament group
2: Form a dominance tournament sampling set by again selecting individuals from the population.
3: Check each individual in the tournament group for domination by the dominance sampling set

(to see it is dominated by at least one individual).
4: If only one individual in the tournament group is non-dominated, this individual is copied into

the mating pool.
5: If more than one individual is non-dominated, or all the individuals are dominated, the individual

copied to the mating pool is the that which will be maintain diversity, which is the individual
with the smallest niche count, which is based on the Hamming distance between the individual
in question and all the individuals alreadypresent in the mating pool.

6: Iterate until mating pool is full. When this is true, start the genetic algorithm with the created
mating pool.

4.2 Meta-Models: A Crossover between Filter and Wrapper Ap
proaches

Evaluating possible solutions to a problem on the system at hand can be prohibitively expensive.

In [Dahm and Ziegler, 2002], genetic algorithms are used to select walking patterns and speeds for

robots commonly used in robot soccer. Clearly, evaluating thousands of possible combinations is

not feasible on these machines due to time and power restrictions, as well as wear and tear on the

robots. Thus, alternate evaluation methods must be considered.

One common approach is to use a simulation of the actual system. In [Robert H. Kewley and

Embrechts, 2000] the authors perform fuzzy genetic decision optimization (FGDO) on a complex

stochastic system. They use a stochastic simulation model to estimate the results of parameter set

tings for the system, and a fuzzy ordinal preference model to aggregate the results of the simulation

model into a fitness value for the parameter set. Genetic algorithms are then used with these fitness

evaluations to search for high performance parameter sets for the actual system. The task the authors

use to test their model is a tactical military attack route planner. They test the FGDO method against

human expert attack planners, and outperform them. It took seven hours to compute 40 iterations of

their GA, which they deem unacceptable, and which makes this method seem too costly in terms of

Crt to implement for our purposes.

Unfortunately, building a simulation model involves domain-expert knowledge and may not even

be possible in certain domains. With robots for instance, it may be impossible to mathematically

model the conditions of all the joints in the robots. With MR ADORE, it is impossible to model

the effects of executing a vision operator on a given image (except in trivial cases) without actually

executing the vision operator.

There is thus a need to replace costly evaluation via running the actual system with a surro-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate evaluation function. These surrogate functions are commonly known as meta-models in the

literature, and are used in many different applications. The idea of meta-models as evaluation func

tions has been evaluated in [Jin et al., 2001], The authors discuss the convergence of GAs with

approximate fitness models, and use a covariance matrix method (CVA). CVAs converge quickly

and are capable of self-adaptation. New data points that lie along the direction in which the GA is

proceeding are given larger weight in online learning.

The authors use a generation-based evolution control method, meaning certain generations

within the GA have their fitness evaluated by the actual mechanism (rather than by the meta-model).

These generations can then be used to train the meta-models further. Another form of controlled

evolution discussed in the paper is individual based, where certain individuals from each generation

are evaluated with the true fitness function. Using the best strategy, the top to ranked individuals

are evaluated on the actual system. Using the random strategy m random individuals are evaluated

on the actual system. Both methods of controlled evolution can be inapplicable, depending upon the

application (i.e. when the fitness evaluation is extremely expensive). Control Frequency determines

how many generations use the true fitness function for evaluation, and is determined by how accu

rate the meta-model is deemed to be. The authors evaluate the methods on two benchmark data sets

(Ackley Function and Rosenbrock function) as well as an aerodynamics problem. Results show that

properly estimating the control frequency leads to improved results over simply employing the true

evaluation function.

Periodically using the actual system to calculate fitness values within our heuristic search meth

ods could greatly slow down the process of selecting action sets for MDP domains and agents. In

MR ADORE, if a costly action set is to be evaluated on the actual system, the process could be

delayed by several hours.

In [Yan and Minsker, 2003], genetic algorithms are used with artificial neural nets (ANNs) the

meta-models. The authors use the early iterations of the genetic algorithm to train the ANN fitness

function, by periodically retraining the ANN with data obtained from recent runs of the GA. This

makes the entire process dynamic, rather than static. Empirically their method achieves satisfactory

performance on the task of the risk-based remediation design model for groundwater management.

Traditionally, linear programming has been used for this task, but new combinations of different sub

models in groundwater management cause such an approach to yield suboptimal results. Simulated

annealing has also been used for this task [Dougherty and Marryott, 1991], and has shown similar

performance to GAs. The dynamic GA has adaptability as its advantage, but the meta-models must

be retrained in order to adapt, which can be expensive with ANNs.

Another type of meta-model used is the kriging method [Willmes et al., 2003]. The kriging

method models a system as a localized, stochastic Gaussian process with a covariance matrix (]T])

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and an expected value (p). The kriging method is most often used in geostatics, where data is

spatially correlated [Journel and Huijbregts, 1978]. In experiments, neither neural nets nor the

kriging model emerged as the best method to use for a meta-model.

It is important to remember that in order for a meta-model to be effective, it is not necessary

for it to be completely accurate. Its main purpose is to select the correct individuals, no matter

what fitness it gives these individuals. This is why traditional methods for evaluating methods do

not generally work for evaluating meta-models [Jin et al., 2003], Evaluating meta-models based on

their mean squared error:
i "j ^ m s e _ ± ^ " ^ (m o d e t) _ ^ { o r ig)y .

71 J=1
(for n examples and <j)j is the score given to solution j) often leads to poorly ranking the best meta

model, since lowering MSE does not necessarily lead to choosing better solution. Here the error is

calculated by comparing the fitness value given to an individual by the meta-model and the fitness

value given by the true fitness function. A more effective method of evaluating meta-models is to

evaluate how often the meta-model correctly selects individuals. The authors suggest several metrics

for measuring how often a meta-model selects the correct individuals, but these are dependent upon

being able to determine what are the correct individuals to select, a task that is not possible within

either the maze domain (except when exhaustive search is possible) or MR ADORE

4.3 Genetic Algorithms versus Simulated Annealing

Since we use genetic algorithms and simulated annealing in our experiments, we reviewed their

comparison in the literature.

The performance of genetic algorithms and simulated annealing has been compared in mapping

processes in parallel programming [Talbi and Muntean, 1993]. The authors also use hill-climbing

as a third method to solve the problem. Mapping processes involves determining the optimal static

placement of communicating processes on the processors of a distributed memory parallel machine,

an NP-complete problem [Garey and Johnson, 1979], Simulated Annealing and Genetic Algorithms

show similar performance, with GAs having a search time comparable to hill-climbing (faster than

simulated annealing). The intrinsic parallelization of genetic algorithms is shown to give them an

advantage over simulated annealing.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Heuristic Search with Meta-Models
Method

5.1 Novel Approach

We now describe in detail our novel approach to solving the action set selection problem in Markov

Decision Processes.

As mentioned in the Existing Methods section, wrapper approaches use the correct optimization

criteria but can be prohibitively expensive. This is because the actual system is invoked in order to

evaluate all potential solutions encountered during the search. Filter approaches are computationally

feasible but do not necessarily deal well with complex interdependencies among operators since

they have no access to performance of the actual system. We combine the best of wrapper and filter

approaches by using a wrapper-like search in the space of action sets. Unlike traditional wrapper

methods, we guide the search with afastbut at the same time domain-specific fitness function (meta

model). Similar approaches have been used in [Jarmulak and Craw, 1999]

We call our method Heuristic Search with Meta-Models. We will refer to this method as HSMM

for the remainder of the thesis. HSMM involves four major steps which operate as follows:

Step I: we evaluate a small collection of selected action sets via running each of them on the

actual MDP system as shown in Figure 5.1. Each action set A, is assigned a reward and a cost, based

on the average reward and cost over several runs of the system using it. The action set’s fitness F (A)

is then F (A) = aR (A) — PC{A) + <r (as defined in Definition 3.5). The number of random action

sets evaluated depends upon the amount of time available for the training process and the number of

actions in the set.

Step 2: step one results in a collection of action sets and their fitness values {A, F (A)}. In the

second step, we generalize this collection using machine learning (ML) techniques (Figure 5.1). As

a result, an approximate fitness function Ful is acquired.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T rain ing S e t

Full Action set

R an d o m
ac tio n s e t 1

R an d o m
action s e t N

Action se t
f itn ess

A ction s e t 1
f itn ess

G e n e ra lize d
ac tio n se t

f itn ess
function

Figure 5.1: Steps 1 and 2 of the proposed methodology. Supervised machine learning methods
are used to generalize fitness of sampled operator sets into an approximation to the actual fitness
function.

Generalized
action set

fitness
function

Figure 5.2: Step 3 of the proposed methodology. Our approach for automated operator selection:
heuristic search is conducted in the space of operator sets. It is guided by a machine-learned approx
imation to the performance function of the actual system learned in steps 1 and 2.

Step 3: once machine learning is over, we use the approximate fitness function as the optimiza

tion criteria in a heuristic search (e.g., genetic algorithms and simulated annealing (SA)) in the space

of action sets (Figure 5.2). Numerical classifiers provide the search mechanism with actual fitness

values. Symbolic classifiers label an action set with a class, which can be used in the same way

as a fitness value by the search mechanisms, by simply choosing action sets labeled with the high

est class, since these classes are defined as buckets for fitnesses (i.e class 12 could be for fitnesses

between 0.2 and 0.25, class 13 could be for fitnesses of between 0.25 and 0.3, and so on...).

Step 4: the action sets found by the search are then evaluated against a set of validation images.

The best m action sets are output to the user to be used in the domain of interest.

In all experiments, we compare the performance of the MDP agents with the action sets chosen

by the proposed method to the performance of the MDP agents with action sets chosen by the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following standard techniques.

First, we use the Top method (detailed in Algorithm 2 in Chapter 4) to choose action sets to test

whether a wrapper/filter approach is necessary. We use the same training data as is used to train

HSMM, but use it instead to rank actions. An action’s score oj is defined as the average fitness

(Definition 3.5) of the action sets in which it was present. This treats operators as individuals,

abolishing the assumption that operators must be considered as a team, and that certain operators

are useless in the absence of other operators (such as operators that work with grayscale images in

the absence of an operator that converts colour images to grayscale images). The method lacks the

knowledge of how many actions to put in its chosen sets.

Second, we compare against randomly generated operator sets and third, we compare against a

set chosen by a domain expert. In the vision domain, this expert has three years of expertise using

the MR ADORE system on forestry data. Since there is no domain expert in the maze domain, we

compare against an action set with one half of the actions removed, but all the general movement

directions still present.

It is important to note that if the full action set is the best set for a given agent and domain, then

the HSMM method is capable of choosing this set. That is, HSMM does not necessarily reduce the

action set, it only does so if a reduced set has a better fitness than the full set.

It should also be noted that our heuristic search methods are not required to perfonn multi

objective optimization, since the reward R{A) and the cost C (A) (Ci+Crt) are already incorporated

into the fitness F{A) before the meta-models are trained. Thus the search methods are required to

optimize one objective, the fitness of an action set.

5.2 Algorithms

We will now present the search algorithms used in step 2.

5.2.1 Heuristic Search Methods

Recall that the number of subsets of an action set of size N \s2 N , an intractable number for exhaus

tive search, even for modest values of N . In order to intelligently explore the space of action sets we

turn to well-known heuristic search methods. Heuristic search is known to have a loose requirement

on gradient information and better global searching ability [Yan and Minsker, 2003].

Genetic Algorithms

Genetic Algorithms (GAs) are a vital part of our HSMM method. As such, we present an brief

overview of GAs, specific to the type of GA we use in our experiments.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduced in the 1960s by John Holland of the University of Michigan [Holland, 1962], and

greatly furthered by David Goldberg in the 1980s [Goldberg, 1989], genetic algorithms are a method

for parallel search which use biological abstractions to represent data. Data is encoded into a bit-

string called a chromosome. A position in the chromosome can be either active (represented by a

’1’) or inactive (represented by a ’0’)- An initial population of random chromosomes is generated

and ranked according to each chromosome’s fitness. The fitness function is the most important part

of any genetic algorithm in that it must accurately rate the chromosomes according to some given

criteria.

Once the initial chromosomes are ranked, evolution begins. In simple GAs, to create the next

generation of chromosomes, two parents are chosen from the present pool. A flip function selects

the parents in such a way that it is more likely to pick higher ranking parents, but will sometimes

pick lower ranking parents.

Once parents are selected, they are mated to form children. Two parents form two children, with

the children being formed as opposites. This is done by giving childl parentl’s qualities half the

time (and giving child2 parent2,s qualities) and the opposite the other half o f time (giving childl

parent2’s qualities,etc ...) . This is called uniform crossover, and is used when the order of the bits

in the bitstring is not important. Giving qualities of a parent is implemented by assigning the bit in

the child active if it is active in the parent, or inactive if it is inactive in the parent.

Once the children are formed, they are mutated by flipping random bits. This is done to prevent

a population from having individuals that are too similar, which could lead to convergence to a

local maximum. This is also the reason why it is not always the case that the top-ranked parents

are selected for mating. This is much the same as allowing exploration in maze-type applications;

we may find a better solution by taking seemingly sub-optimal steps in the present because they

may lead to improvements in the future. The probability with which the children’s’ bits are flipped

during mutation is determined by the similarity of the parents that produced these children. The

more similar the parents, the greater the chance any bit is flipped.

The children chromosomes replace two other chromosomes in the population, which are selected

in the same way as parents were, except that it is more likely that poorer ranking solutions will be

chosen and replaced. Thus in every evolutionary step two new chromosomes are created and two

are replaced. The population size is kept constant. It is an arbitrary matter to decide how many

evolutionary steps to take (how many generations to produce), but generally after a few thousand

iterations convergence to a maximum will occur.

For our specific application, chromosomes represent action sets. Each bit in a chromosome

represents an action that can be either present or absent from any given set. Obligatory actions (such

as the quit action in the maze domain) are included in every set and are not part of the chromosome,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

since we do not want to risk them not being in the set. The length of the chromosome is thus

determined by the number of actions that we allow to either be present or absent in an action set. An

action is present if the bit at its position is set to ’1’. Otherwise (if the bit is set to ’O’), the action

is not included in particular set. For instance, bitstring ’100101’ represents an action set containing

actions number one, four and six.

Simulated Annealing

Simulated Annealing is used as an alternative heuristic search in some of our earlier experiments

and is described in this section.

Annealing is a process in which a solid is heated, and then allowed to cool. In order to maintain

a satisfactory molecular arrangement throughout the process and guarantee a “good” end-state, the

cooling must be slow, as this allows the arrangement to propagate through the solid.

Simulated annealing is the simulation of this thermodynamic system by a computer [Metropolis

et a l, 1953]. Given a fitness function, which returns the suitability, the fitness of the system is

calculated at every state. Given a current optimal solution Si and a candidate optimum solution Si,

simulated annealing chooses to accept the candidate (i.e. replace Siwith S i, given the probability

in Equation 5.1:

P (accept) = m i n ^ l , e J (5.1)

where T is the system temperature and k is a constant. It should be clear then that if the candidate

solution performs better than the current optimal solution it is always accepted. Otherwise, it is

conditionally accepted, based on the current temperature of the system, and how much “worse” the

candidate is than the current optimal solution. Thus, the probability of acceptance can be substantial,

if the temperature is high. As the number of iterations increases, the temperature decreases, accord

ing to a manually-selected annealing schedule. The initial temperature is also selected manually.

There are numerous stop criteria for the simulation. The simulation may stop when a set number

of iterations is reached, the temperature has become too low, there has been an “adequately long”

time without finding a candidate that is better than the current optimum, etc. We used a pre-defined

number of iterations as the terminating criterion.

This method is primarily an improvement on the hill-climbing algorithm, in which better solu

tions are always selected, and worse solutions are never selected. The simple hill-climber can fail

when there are multiple maxima in the system; it may get trapped at a local maxima. Simulated

annealing addresses this problem by allowing the system to back out, based on how much worse the

candidate solution is, and the current temperature, as described above. The current best solution is

always stored.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is the general process of simulated annealing, which has been successfully applied to nu

merous combinatorial problems as a heuristic method [Kirkpatrick et a l, 1983], We have now

applied this technique to the problem of action selection. For this case, the function that is to be

maximized is to find the action set (represented by a bitstring) that returns the maximum fitness, as

determined by any one of the machine learning techniques described in Section 5.2.2.

At each iteration, a new candidate solution is created by taking the current optimal solution

and randomly flipping a few bits in the string. This solution is then compared with the current

optimal, and optionally accepted, as described above. The search terminates after the preset number

of iterations. As a result, the best found bitstring is output to the user.

Both higher and lower probabilities of flipping bits have advantages. A higher probability allows

the system to abandon less-than-optimal solutions more quickly. Lower probabilities mean that the

candidate has more in common with the current optimal; more is learned from one iteration to the

next. Clearly, if a probability of 0.5 is used, then nothing is learned from one iteration to the next,

and the system is no more than a simple random search. Also, probabilities o f 0.0 and 1.0 ensure

that no real learning is possible, since either nothing changes, or everything learned changes at each

iteration. Selecting the annealing schedule is a complicated task, often done by trial-and-error.

5.2.2 Machine Learning Algorithms

Any informed search mechanism requires an evaluation function in order to be able to score and

rank individuals in the search. In order to obtain the true score for a candidate, invocation of the

full system is required. If this invocation is too costly, the search can become intractable for a large

search space. For this reason we turn to machine learning to approximate the true evaluation function

within our heuristic search methods. These meta-models ([Jin et a l, 2001]) enable us to effectively

search through the space of action sets. Different types of machine learning were used including

symbolic and numeric learners, in an attempt to discover the best meta-model for each task.

Naive Bayes Classifiers

As the name implies naive Bayes is based primarily on Bayes theorem, which gives us a way of

relating conditional probabilities to each other:

where D is the training data and h is the hypothesis [Jensen, 1996; Mitchell, 1997].

In our case the attribute values are whether a given bit in the bitstring is on or off (1 or 0), and

our target value is one of the discrete bucketed accuracy values. When a new instance is provided

as input to the naive Bayes classifier, it assigns the most probable target value to it, based on the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attribute values describing the instance:

V M A P = a r g m a x P (v j \ a i , a 2 , . . . a n)
Vj 6 V

where v m a p is the most probable target value and a i , a2, . . . a n are the attribute values of the

instance.

Using Bayes theorem, we rewrite this equation as:

v m a p = a r g m a x P (a i , a , 2 , . . . a n \ v j) P (v j)
Vj € V

With this equation we have two values to estimate. P (v j) is calculated simply by counting how

often each target value occurs in the training data. Estimating P (a i , a , 2 , ■ ■ ■ a n \ v j) would require

seeing the entire instance space, in order to obtain a reliable probability for how often these attributes

appear together. The naive Bayes classifier makes the simplifying assumption that each attribute a*

is independent of all other attributes, reducing the approach to:

Vjyb = a r g m a x P (v j) n P (a i \ v j)
V j € V i

where v n b is the target value output by the naive Bayes classifier.

All the probabilities were trained using the same training data as the other methods. The differ

ence is that no search is performed, instead we need only frequency counts from within the training

data.

Artificial Neural Nets and Perceptrons

Artificial neural networks (ANNs) are a neurologically inspired function approximators. ANNs are

built with many simple units, called neurons, that can accept many real-valued inputs, and output

a single real-valued number. Layers are composed of one or more neurons. ANNs are composed

of an input layer, optional hidden layer(s), and an output layer, as can be seen in Figure 5.3. Each

neuron in a layer employs a squashing function, that maps a very large input domain to a small

range of outputs. One common squashing function is the sigmoid unit that first computes a linear

combination of its inputs, then applies a threshold to the result. The output o is computed as:

o — a(aj.x)

where

°{y) -

uJ is the weight vector, and x is the input vector

33

1
1 + e~v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT
LAYER

HIDDEN
LAYER
(there may be several

hidden layers)

OUTPUT
LAYER

Figure 5.3: A basic artificial neural network [[University, 2004]].

A commonly used algorithm for training an ANN is the backpropagation algorithm [Haykin,

1994; Mitchell, 1997], which learns the weights for a multilayer network (input, hidden, and output

nodes), provided that network has a fixed set of units and interconnections. All neurons are initially

given a small random weight. In the forward pass, an instance is fed through the network, and the

output is compared against the target output (provided in the training data).

A commonly used mathematical tool, gradient descent, is used to adjust the weights after er

rors are calculated. Errors are the difference between the predicted output produced by the neural

network, and the actual output given in the training data:

e <?) = 2 53 53 ~ ° k d) 2

d£D kSoutputs

where tkd and Okd are the target and actual output values associated with training example d and

the fcth output unit. The full backpropagation algorithm is given in Algorithm 4

ANNs accept real-valued inputs and output real-valued numbers as well. Scores and rewards in

our experiments are (and generally will be) real-valued numbers, and thus not having to discretize

these values should give the ANNs an advantage over other machine learners (such as decision

trees), since discretizing may cause a loss of information when two different values are placed in the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4 Backpropagation algorithm. Inputs: (training-examples, rj,riin, n out, nhidden)
([Haykin, 1994; Mitchell, 1997]). Outputs: New weights for neurons

1: Create a feed-forward network with nj„ inputs, nhidden hidden units and n 0u t output units.
2: Initialize all network weights to small random numbers (e.g. between -.05 and .05).
3: w hile Not Termination Criteria do
4: for each {x, t} in tra iningexamples do
5: Input the instance x to the network and compute the output ou of every unit u in the network

(Propagate the input forward through the network).
6: For each network output unit k, calculate its error term 5k

5k * 0^(1 Ok)itk Ofc)

7: For each hidden unit h, calculate its error term 5n

5h * - o h (l ~ o h) ^ UkhSk
k€outputs

8: Update each network weight ojji

idji 10ji -r A,0Jji

where
A uj = rjSjXji

(Propagate the errors backward through the network)

same bucket.

Perceptions are a special type of ANN that are composed of an input layer and an output layer,

with no hidden layer(s). They are thus the equivalent of a linear separator, and are often too simple

to properly partition the complicated space of action sets.

Decision Trees

A decision tree approximates discrete-valued target functions in a tree representation [Mitchell,

1997; Quinlan, 1993] At each node in the tree, a decision is made by testing a condition on a single

input attribute, and the corresponding decision branch is followed to the next node in the tree, with

the process continuing at the next sub-tree. This continues until we reach a leaf node, which contains

a constant value returned by the decision tree. Decision trees can be represented as a set of if-then

rules, for human readability. They can also be represented as a disjunction of conjunctions of the

form:

(X = a A Y = b) V {Z = b A W = c)

Decision trees are considered appropriate for problems where instances are represented by attribute-

value pairs, which is the case in our task. Each action is represented in a bitstring, taking on values

{0,1}. Even if the number of disjoint possible values for an attribute is not two, decision trees work

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5 Generate decision Jree. Generate a decision tree from the given training data ([Quin
lan, 1993; Han and Kamber, 2001]). Inputs: samples, attribute-list. Output: decision tree.

1: create a node TV
2: if samples are all o f the same class C then
3: return TV as a leaf node labeled with class C
4: if attribute-list is empty then then
5: return TV as a leaf node labeled with the most common class in samples
6: select test-attribute, the attribute among attribute-list with the highest information gain
7: label node TV with test-attribute
8: for each known value o* o f test-attribute do
9: grow a branch from node TV for the condition test-attribute = a,

10: let Si be the set o f samples in samples for which test-attribute = a*
11: if Si is empty then then
12: attach a leaf labeled with the most common class in samples
13: else
14: attach the node returned by Genemte-decisionJxee(si,attribute-list — test-attribute)

well as long as this number is not excessively large. Even real-valued attributes can be handled, with

slight modifications to the algorithm (i.e. discretizing). In our work, the output values are fitnesses

that take on real values. We thus discretize the data into buckets, limiting the number of possible

output values.

A well-known decision tree induction algorithm is ID3 (and subsequently C4.5 and C5.0) that

uses information gain to decide which attribute to test at each node. Information gain depends

greatly upon a measure called entropy.
C

E ntropy (S) = - Pilog2Pi
i= 1

where S is a collection of examples, andp, is the proportion of the examples belonging to class i.

The information gain of an attribute A relative to S is defined as:

G ain{S ,A) = E ntropy(S) — Entropy (Sv)
v€.Values(A)

where Values(A) is the set of all possible values for A and S v is the subset of A that has value v.

The ID3 algorithm ([Quinlan, 1993]) is given in Algorithm 5

Decision Lists

A decision list is an ordered set of rules where each rule has a conjunction of possibly negated

literals as the precedent and a Boolean class value as the antecedent. The term fc-DL is used to refer

to decision lists that contain a maximum of k literals per conjunction. Compared to decision trees,

decision lists have more complex tests in their nodes, but a simpler overall structure. For any given

k, a fc-DL is more expressive than a decision tree of depth k [Rivest, 1987]. Decision lists are known

to be polynomially efficient, both in terms of examples required, and computation time .

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is possible to construct decision lists which return a Boolean value - true if the instance re

turned the maximum accuracy (bucketed), otherwise false. This results in a much shorter decision

list than if we were using a decision list that returned an integer value. It is possible to interpret this

shorter list and manually design a few decision list test sets which are optimal in terms of number of

operators, and return the maximum accuracy.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Empirical Evaluation

In this section, we first describe experiments and results on the maze domain, then do the same for

the vision domain. A map of the empirical work is given in Table 6.4 to aid the reader in navigating

this section.

6.1 Maze Domain Experimental Setup

We use the maze domain in our experiments for several reasons. It is scalable and can be solved

by brute force, which is part of the reason it is seen often in reinforcement learning literature (see

Chapter 2). Also, since the experiments on the maze domain can be executed quickly (with respect

to the vision domain experiments), changing properties of the mazes, policies, rewards and costs

during experiments is not costly.

In the maze domain, we employ the four step process to search for the best action set as follows.

Step 1: We generate a small number of random subsets of navigation actions and evaluate them

on randomly generated mazes. Each action set (A)’s fitness (F (A)) is defined as the average fitness

Maze Domain Vision Domain

Description 6.1 6.3
Experiments 6.2 6.4
Exhaustive Search 6.2.1 -
Simulated Online Experiments - 6.3.1, 6.4.4
Operator Set Size Experiments - 6.3.1, 6.4.5
Comparing Sequences and Sets - 6.3.1, 6.4.6
Offline Policy vs. Online Policy - 6.3.1, 6.4.7
Training with Online Data - 6.3.1, 6.4.8

Table 6.1: Organization of Empirical Evaluation

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Maze Domain Definitions

Q(A)
Crt(A)
R(A):

0 (no learning is done by the agent)
Number of Moves Performed by the Agent
Final State of the Agent (goal or non-goal)

Table 6.2: Mapping our definitions to the maze domain

obtained by the agent with this action set over all the training mazes. This will produce a set of

tuples {A, F (A)} . The cost C(A) and reward R(A) of an action set are given in Table 6.2

Step 2: We generalize the tuples gained in step 1 by employing machine learning techniques,

thus producing an approximate fitness function (or meta-model).

Step 3: We run a heuristic search over the space of action sets, using the meta-model produced

in step 2 as the evaluation function.

Step 4: We validate the action sets produced by the heuristic search on a random set o f validation

mazes, different from those used in training. The best action sets are output to the user.

While evaluating each action set within the heuristic search is actually possible within this do

main, we want HSMM to be portable to any markov decision process, and as such need to keep the

method evaluation constant.

6.2 Maze Domain

To test HSMM on a non-vision domain, we chose a previously implemented and tested maze domain

([Bulitko et al., 2003]).

In this MDP domain, an agent is placed in a typical maze setting, with a starting state, a goal

state and walls (blocked states). A state in this MDP is the current location of the agent within the

maze. An action is a transition from one location to another in the maze, with the exception of the

quit action, with which the agent ceases to move.

The task at hand was to generate the optimal action set for an intelligent agent in the maze

domain. With many actions available, the agent can take longer to find the goal, since many actions

can be very similar, leading it to explore many similar routes, thus taking longer to solve the maze.

We are interested in determining the optimal action set (A*)for a given intelligent agent. The optimal

action set is one which maximizes an agent’s fitness (F (A)) over many mazes. The cost Crt(A) is

based upon how many moves the agent takes, and the reward R is based upon whether the agent

quits, solves the maze, or runs out of moves. There is no learning involved, thus Ci (A) = 0 and

C(A) = Crt- Table 6.2 summarizes these definitions.

The agent policy chosen for our initial maze experiments was an explore-exploit agent that nearly

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

doubled the performance of a depth first search in a tournament of mazes. The agent follows a greedy

approach which forces it to follow a complete path to the goal once one is known from the current

location. Otherwise, the agent performs exploration with the goal of uncovering the maximum

number of unknown locations. Further details are available in [Kovarsky, 2001].

The mazes generated in the experiments were all of size 200 x 200, with a density of 0.2 (meaning

20% of the maze cells occupied by walls). The goal and start states were randomly chosen, and the

agent was given 1000 moves in order to solve the maze. Each move was given a reward of —1 for

each unit traversed. Initially, we gave the agent a reward of 1000 when it reached the goal state and

penalized it by 500 if it quit. In later experiments, solving the maze generated a reward of 100000,

while quitting voluntarily resulted in a —50000 reward. This change was necessary to make solving

the maze a much more desirable result than quitting quickly. Nevertheless, we include these results

since the methods can still learn to quit if that is the best option.

In order to make the task of action selection non-trivial, we implemented an action set that allows

the agent to move in a radius of size X. This creates a library of actions of size 8 * X , in addition

to the quit action. We chose a radius of size 5, giving the library 41 operators. This allows for 241

possible subsets of actions for HSMM to search through.

Figure 6.1 shows the results of seven different methods using the initial reward scheme, all of

which have been incremented by 5000 in order to make all the scores positive. The sets chosen by

genetic algorithms (GAs) clearly outperform all other methods, but this is because they chose sets

with very few actions (often just one), which forced the agent to quit early, thus gaining a small

negative reward. The other methods chose sets with more actions (because they were forced to),

which allowed the agent to explore further, but often not finding the goal, and thus gaining a high

negative result. While this can be seen as a victory for the GAs (and thus HSMM), the domain itself

was rather uninteresting.

In a more interesting schema, Figure 6.2 shows the results when we change the reward for

solving the maze to 100000, and increase the penalty for quitting in a non-goal state to -50000. The

hand-chosen set simply contains every second action in the full set. HSMM again outperforms other

action selection methods here. The sets chosen by GAs generally contain more than 75% of the

operators in the full set, so the full set does not seem to contain many redundant actions

6.2.1 Deliberation Cost Experiments

Penalizing a maze agent only for the moves it takes can be seen as too soft, since the agent’s activities

are not limited to actual movement actions. The agent must also evaluate potential actions, and this

can be just as costly as making moves (much like in psychology where evaluating all possible choices

can be more costly than making and executing the actual decision (Chapter 1). For this reason we

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m

c
Q)

0)
Nra
2

5000
4500
4000
3500
3000
2500
2000
1500
1000
500

0
oo in

CNJ
Q.

• i -cm
o.

Action Set Selection Methods

Figure 6.1: Average reward (incremented by 5000) for seven methods with a reward of 1,000 for
solving the maze and -500 for quitting.

2 0 0000

180000

160000

§ 140000
oo
5 120000

M? 100000 (A
$
in 80000 in
.3
■§ 60000 a:

40000

20000

0

fill
'%

1PP

ttlff
Rip
m

>

§§jj

GA/NN GA/NB Hand T op(V ar) R and(V ar) Fufl S e t
C hosen

Action Set Selection Method

Figure 6.2: Average reward (incremented by 100000) for seven methods with a reward of 100000
for solving the maze and -50000 for quitting.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Revised Maze Domain Definitions

0 (no learning is done by the agent)
Deliberation Cost of the Agent
Final State of the Agent (goal or non-goal) -
number of moves taken by the agent

Table 6.3: Revised definition mappings in the maze domain

0 .1 2

o .i

0.08

c 0.06

0.04

0.02

0-----
GA/NN GA/NB Hand-

Chosen
Action S et S election M ethods

Top(Var) Rand(Var) Full Set

Figure 6.3: Average fitness of sets found by six different selection methods.

add a new cost to the fitness of an action set, being the deliberation cost which penalizes the agent

for generating the potential state when applying a given action, and for searching to see if this state

has been visited. For a depth-first search agent, the agent may not revisit states, since this would

lead to infinite looping. The new mapping to costs and rewards is shown in Table 6.3

Our new reward measure R{A) now takes into account the number of moves taken by the agent

in reaching its final state, combining this cost with the reward given for the agent’s final state. The

cost C(A) is the number of state evaluations done by the agent, whether or not it actually travels to

the evaluated state. The fitness F(A) is again defined according to Definition 3.5.

Using this new fitness metric, we again employed our HSMM method to choose action sets, and

compared against the same methods as in previous experiments. When the agent finished in the goal

state it was given a 10000 positive reward, if it quit in any other state it was given a negative -500

reward. Results are shown in Figure 6.3.

42

Q (A)
Crt(A)
R(A):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40000

30000

20000

I
10000

12

> -10000

W -20000

-30000

-40000

-50000

-60000
Number of Actions in Set

Figure 6.4: Results of an exhaustive search done over all possible action sets with radius set to 2.
Note that the fall set is not the optimal set.

Exhaustive Search

If we reduce the radius in which the agent can move from five to two, its action set is reduced to 16

actions. This gives us 216 possible subsets, which is a number of sets we can exhaustively search

through. Figure 6.4 shows the scores for the best action set of each size (1-16) averaged over 100

mazes.

6.3 Action Set Selection for Image Interpretation

Before describing the experiments in the vision domain, we briefly refresh the reader on the princi

ples of MR ADORE.

MR ADORE has two modules, offline and online. In the offline module, fall expansions of the

vision operator set are performed on training images in order to train the control policy n, which

is used in the online module. All legal operator sequences up to a limited length are applied to a

given image. The resulting image interpretations are evaluated against the desired label, provided

as part of the training data . Action-state rewards are then computed and used to obtain a value (Q)

function.

In the online module, the learned control policy exploits the value function to interpret novel

images. A “least-commitment” policy is used, first applying a full expansion of the vision operators

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the novel image, then using the policy to decide which label to return to the user.

We performed several experiments within the MR ADORE framework. First we performed a

pilot study on offline MR ADORE. Genetic algorithms and simulated annealing depend on several

different parameters, and the pilot study was performed to determine what were the best range

of values for each parameter. Next we tested our four-step HSMM method on MR ADORE and

followed this with two sets of cross-validation experiments. We then performed several auxiliary

experiments to test different theories with respect to operator set selection in MR ADORE.

In all our experiments, the full operator set contained 295 operators, of which three were nec

essary to ensure the proper operation of MR ADORE. This left a collection of 292 operators from

which to choose our optimal operator set, which in turn provided us with a search space of 2292 op

erator subsets - a practically infinite number. The operators inserted in every set were Grablmage

(a loading operator), Subm itlm ageG reen, a submission operator that labels target pixels in green,

and R G B S e g m e n t, an operator that ensures a path to a labeling is present in every set. The op

tional operators include morphological filtering, histogram equalization, and thresholding. A more

detailed description of these operators is found in Appendix A

Operator sets were represented as 292-bit long bit strings. As usual, bit number n set to 1 indi

cated presence of operator n in the operator set, for both genetic algorithms and simulated annealing.

In the genetic algorithms we used uniform crossover, since the operators are stored in a set and not

a sequence, making their order unimportant.

All experiments were conducted on 72 images of young spruce plots maintained by the Alberta

Research Council in Vegreville, AB. The images were captured in 24-bit colour at 256x256 pixels

per image. A fragment of a typical image can be found in Figure 2.3

The HSMM method approach was applied to selecting a high-quality compact vision operator

library as follows:

Step 1: we evaluate a small random collection of selected operator sets via running each of

them with the actual system (MR ADORE) on a set of training images as shown in Figure 6.5. For

each operator set o, all limited-length sequences of operators from o are applied to each training

image. Each sequence is assigned an image interpretation accuracy for the image label it produces.

The maximum image interpretation accuracy for all sequences from operator set o averaged over all

training images is stored as R(o). Each operator set also incurs a cost C(o), which is a measure of

the total time taken for the average full expansion with this set. This cost is the same for learning

(Ci) as it is for execution (Crt), since both of these activities perform full expansions. The operator

set’s fitness F (o) is then F(o) = aR(o) — fiC(o) + a (as seen in Definition 3.5). These variables

enable the user to control the trade-offs in a domain specific fashion. We define MaxAccuracy and

MaxCost to be the accuracy and cost achieved by the full set of operators, averaged over the training

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MR ADORE Definitions

Q (A) :
Crt(A) :
R(A):

Full Expansions done in training the online policy
Full Expansions done in executing the online policy
Image Interpretation Accuracy

Table 6.4: Mapping our definitions to the MR ADORE

Training Set

L arge off-the-shelf
d o m ain -in d e p e n d e n t

im ag e p ro ce ss in g
o p e ra to r library (IPL)

R an d o m
o p e ra to r s e t i

l O p e ra to r s e t 1
, f itn ess

O p e ra to r s e t N j •
f itn e ss | l

R an d o m
o p e ra to r s e t N

G e n e ra lize d
o p e r a to r s t

f itn e ss
function

Figure 6.5: Supervised machine learning methods are used to generalize fitness of sampled operator
sets into an approximation to the fitness criteria.

Step 2: step one results in a collection of operator sets and their fitness values {o, F(o)}. In the

second step, we generalize this collection using machine learning (ML) techniques (Figure 6.5). As

a result, an approximate fitness function Fm l’s acquired.

Step 3: we then use the approximate fitness function as the optimization criteria in a heuristic

search (e.g., genetic algorithms and simulated annealing (SA)) in the space of operator sets (Figure

6.6).

Step 4: the operator sets found by the search are then evaluated against a set of validation images.

The best m operator sets are output to the user to be used in the domain of interest.

6.3.1 Refining the Approach

After our first extensive experiments, we performed several further experiments in order to test the

effect several phenomena noticed in our experiments with MR ADORE. These experiments are

described here.

Simulated Online Experiments

Any policy tt other than the optimal policy 7r will commit errors in its selection of actions in an

MDR We devised a set of experiments to simulate the amount of error in an online policy. We did

this in an attempt to understand why, how and when the online module of MR ADORE chooses

images.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generalized
operator set

fitness
function

Large off-the-shelf
domain-independent

image processing
operator library (I PL)

Compact domain-
specific image

processing operator set

Figure 6.6: Proposed approach for automated operator selection: heuristic search is conducted in the
space of operator sets. It is guided by a machine-learned approximation to the performance function
of the actual offline system.

sub-optimal final labelings, given an operator set. We invoked the offline (oracle) module to test

the operator sets chosen by each method, but introduced random choices of image interpretations to

mimic how the online policy sometimes chooses the incorrect optimal image interpretation.

First, we ran the offline module (in the same way as before) with an e chance of randomly

choosing an image interpretation from the choices generated by an operator set, and thus a 1 — e

chance of choosing the optimal image interpretation (since this is known offline). Henceforth we

will refer to this model as e-perfect.

Operator Set Size Experiments

The online module in MR ADORE is governed by a machine-learned control policy, which is trained

by analyzing the data obtained from offline expansions. Having larger operator sets gives the control

policy more possible operator sequences from which to leam in the offline module, but also more

possible operator sequences to choose from in the online module. We investigated the effect of

adding more operators to a set on the online performance of MR ADORE by incrementally adding

operators to the domain-expert selected operator set, and running offline and online MR ADORE.

The operators added were those ranked worst according to our filter selection method used in our

experiments, using the same training data as in our cross-validation experiments. We added the

worst operator not already present in the set 35 times (until no significant change was seen) and

noted the online perfonnance of MR ADORE. Adding the “worst” operator each time was our

strategy to attempt to divert the online control policy from the path chosen using just the domain

expert hand-picked set.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparing Sequences and Sets

The goal in our experiments is to discover operator sets which have high image interpretation ac

curacies (R{o)) and low cost (C(o)). Thus, an ideal way of evaluating such operator sets would

be to compare their cost to the lowest cost necessary to produce equal average image interpretation

accuracies. Since an exhaustive search of all operator sets is not possible, we determine the average

cost of the static sequence leading to the best average results by observing how well each static se

quence does within the full expansions available. This quantity tells us the minimum cost necessary

to reach a given accuracy, as far as the best static sequences are concerned. We know this cost is

the minimum since each sequence produces only one interpretation, so the online control policy has

only one choice for which interpretation to return to the user.

Note that our methods are capable of choosing one of these operator sequences as an operator

set, which would amount to picking one static sequence of operators to use at all times, eliminat

ing all adaptability. As has been shown in [Levner et al., 2003; Levner and Bulitko, 2004], MR

ADORE’s online module outperforms the best static sequence of operators available in the set in all

experiments. Conversely, choosing a static sequence with a reasonably high average interpretation

accuracy would likely maximize the fitness of a method, since the cost of a single sequence is negli

gible in comparison with the cost of a set of approximately 50 operators, since such a set would have

many possible sequences of operators, greatly increasing the execution cost. Eliminating adaptabil

ity can be detrimental on further test images. A set that returns just one interpretation cannot recover

if this interpretation is bad on a novel image. A set that returns several interpretations (and that ex

hibits good average image interpretation) has as an advantage that if one of its interpretations is not

a good one, there are still more possible interpretations to return.

Offline (Perfect) Policy versus Online Policy

If operator set A outperforms operator set B offline, there is no certainty that A will outperform B

online. This is because there is no guarantee that the machine-learned control policy will choose the

best interpretation produced with set A. We attempt to determine which methods suffer the most loss

in fitness/accuracy when switching from offline (perfect) policy to online (machine-learned) policy.

Since the offline and online costs are the same, the change in fitness/accuracy is also the same.

Training with Online Data

Generalizing the fitness function sampled from offline performance may lead to an incorrect action

set optimization criteria. We are interested in vision operator sets that will optimize the online MR

ADORE module, and we thus should be generalizing the fitness functions with training data obtained

from online MR ADORE activity (see Figure 6.7). Unfortunately, online training data takes much

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T ra in in g S e t

L a rg e off-the-she lf
d o m ain -in d ep en c

im a g e p ro c e s s in g
o p e ra to r library (IPL)

O p e ra to r s e t N
f itn e ss

R andom
o p e ra to r s e t

R an d o m
o p e ra to r s e t 1

O p e ra to r s e t 1
f itn e ss

G e n e ra lize d
o p e ra to r s e t

f itn ess
function

Figure 6.7: Proposed approach for automated operator selection: heuristic search is conducted in the
space of operator sets. It is guided by a machine-learned approximation to the performance function
of the actual online system.

longer to obtain than offline training data. Indeed, a single offline training datum can be obtained

in a matter of seconds, whereas obtaining one online datum can take upwards of one hour due to

the extensive control policy learning process. Nevertheless, we gathered limited training data by

running the MR ADORE online module with randomly generated operator sets. We then followed

the same procedure as was used with the training data obtained offline, and tested the same methods.

6.4 MR ADORE Experimental Results

6.4.1 Pilot Study in the Image Interpretation Domain

Genetic algorithms and simulated annealing are known to be sensitive to parameter settings [Harik

and Lobo, 1999], In order to help choose a suitable set of parameter settings, a fitness function

and a search method for our cross-validation experiments, we first generated 6986 sample operator

sets (which took about two weeks), evaluated their fitnesses on a pool of 37 images (step 1), and

used them to train our machine-learned fitness approximators (step 2). The learning was done with

decision trees (DT), artificial neural networks (ANN), and naive Bayes (NB). Note that in order to

make decision trees and naive Bayes applicable we had to discretize the real-valued operator set

fitness values into buckets [Lee ei al., 2003]. We used decision lists in some experiments, but found

the results of the search with decision trees and decision lists similar enough to eliminate the latter,

thus speeding up our experiments.

We then ran GAs/SA with every combination of five population sizes (for the GAs) {30, 50, 100,

200, 500}, four iteration numbers {100, 500, 1000, 10000}, three mutation rates {0.05, 0.1, 0.2}

and three fitness functions {NB, NN, DT} on the 37 images, and computed true fitness values for

each set (steps 3-4). In total, GAs produced 900 operator sets, since we performed five runs at each

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Methods and Data Used

Number of training data: 6986
Number of mages 37
Selection methods used: Genetic Algorithms and Simulated Annealing
Fitness functions (meta-models) used: Decision Trees, Artificial Neural Networks, Naive Bayes

Search Method Parameters
Populations (GAs only) 30, 50, 100, 200, 500

Iterations 100, 500, 1000, 10000
Mutation (Flip) Rates 0.05, 0.1, 0.2;
Experimental time 30 days

Table 6.5: Pilot study methods and parameters

parameter setting. The SA produced 180 operator sets. The entire process took about one month.

These results are summarized in Table 6.5

Genetic algorithms outperformed simulated annealing in this task for all tested parameter com

binations. Figure 6.8 shows a typical comparison of performance between GAs and SA.

Decision trees proved to be the most reliable operator set fitness approximator (holding all other

parameters in the GAs/SA constant), as Figure 6.9 demonstrates. The decision tree fitness function

was not always the best (at any given parameter settings), but there was no case where either the

naive Bayes or the neural net fitness function was statistically significantly better than the decision

tree fitness function.

It should be noted that GAs/SA demonstrated a great robustness to changes in their control pa

rameters. When the naive Bayes fitness function was used, however, with a population size of 500,

the fitness of the produced operator sets was decreased four-fold as compared to using a population

size of 30. Seemingly, it took the search mechanisms too long to converge with larger populations,

meaning the diversity of the population may have caused convergence to slow down. Other than

this notable exception, it was generally true that more iterations, larger population sizes and smaller

mutation rates made the GAs perform slightly better, so we trimmed our parameter settings accord

ingly. Despite simulated annealing’s inferior performance, it was kept as a control, since genetic

algorithms have been known to overfit data. Since there was no significant difference in perfor

mance with different fitness functions, we employed all three in the next set of experiments.

Initial Cross-Validation Study

The algorithm for our cross validation experiments is presented in Algorithm 6. Line numbers from

this figure are used throughout the remainder o f this section. All methods and parameter values are

summarized in Table 6.6.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0)
0)s
01>
<

1
0.98

0 .96

0.94 ■
0.92

0.9

0.88 ■

0 .8 6 ■

0 .8 4 -

0 .8 2 -

0 .3 -

0 100 200 300 400 500
Population Size

Genetic A lg o r i th m Simulated Annealing

Figure 6.8: Holding the number of iterations and the mutation rate constant, genetic algorithms
outperform simulated annealing with every GA population size. Standard deviation is shown as the
error bars.

We first split our 72 images into three sets: training, validation, and testing (line 1). We then

produced 10000 operator sets by choosing 50% randomly, and then including the complement of

each set as well, to ensure all operators are present in half of the sets (lines 2-3). In step 1, we drew

1165 sample operator sets from this pool of 10000 operator sets. The sample operator sets were

then evaluated on the 24 training images. All possible sequences up to length four were run on the

24 images for each sample operator set, which were then each assigned a fitness based upon their

average fitness (F (x)) (line 4). This produced 1165 training pairs : (operator set, its fitness). This

process took approximately 2.5 days.

For our fitness functions within the search methods, we again used decision trees, artificial neural

networks, and naive Bayes classifiers to generalize the fitness function sample set (step 2) (line 5).

A pruning confidence factor of 65% was used for the decision tree, which was also boosted over 10

trials. The neural net had 100 hidden units and was trained for 10 folds of 750 epochs each, with

its learning momentum set to 0.2. These parameter settings maximized the decision tree and neural

net’s accuracy on the training data. A standard naive Bayes algorithm was used.

We used two search methods in step 3: simulated annealing and genetic algorithms. In genetic

algorithms all 36 combinations of three population sizes {100, 200, 500}, two iteration numbers

{1000, 10000} three mutation rates {0.05, 0.1}, and three fitness functions {NB, ANN, DT} were

ran. The simulated annealing was carried out in the same manner, but since there is no population

in this method, there were only eight possible combinations of parameters (line 6). Due to the

stochasticity of genetic algorithms and simulated annealing the search methods were run five times

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 50 100 200 500
Population Size

■ Naive Bayes s Neural Net ■ Decision Tree

Figure 6.9: Decision tree fitness function proves to be the most robust to parameter variations. Error
bars correspond to the standard deviation over the fitness over different sets produced during 5 runs
of GAs with each set of parameters. Here we used a mutation rate of 0.05 and 1000 iterations.

with each set of parameters, producing different operator sets on different runs. We evaluated the

top five ranked operator sets produced by each combination of parameter settings on 24 validation

images (line 7).

We then evaluated the best operator set found in each of the possible {GAs, SA) x {NB,NN,DT}

combinations by computing their true fitness values on the 24 test images (step 4, lines 8-9). Two

additional operator sets were used: (i) randomly selected and (ii) manually designed by a domain

expert. The cross validation process was executed over three folds, rotating the subsets of 24 images

between training, validation and testing sets.

In our experiments image interpretation accuracy and execution cost were given equal weight.

Thus, in our fitness equation (6.1):

f(o) = ar(o) — (3c(o) + a (6.1)

a was set to j i ^ f curacy, P was set to and a was set to 0.5 (to normalize the results to a

range of [0,1]). These values for a, p and a are used in all of the vision experiments.

Evaluating the 3495 (1165*3) selected operator sets took approximately one week and training

the neural net three times took approximately two days. Running the genetic algorithms and simu

lated annealing and evaluating the operator sets produced took approximately one week as well. All

experiments were conducted on a dual Athlon 2600 processor with 2 GB of RAM.

Figure 6.10 shows the resulting fitness of the best operator sets found by each of the {GAs, SA}

x {NB,NN,DT} combinations on the testing data. Genetic algorithms and simulated annealing show

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6 An algorithm for heuristic search method of selecting operator. Input: Full domain in
dependent operator set ops, Image/Labeling Pairs il, Heuristic Search methods hs, Machine Learn
ing methods ml, (Empty) Sample Set (ss). Output: Domain specific operator set(s)

1: Split il into three sets: training(fr), validation^),testing(te)
2: Randomly select operator subsets of ops, add these to (ss)
3: Select complement of each randomly selected set, add these to SS
4: Evaluate fitness (F (x)) of each operator set (o) in ss on tr
5: Train ML with obtained o, F(o) pairs
6: Search for best performing subset of ops with hs, using m l for fitness functions
7: Evaluate fitnesses of hs selected subsets of ops on v
8: Choose best subsets of ops based on fitness on v (bv) chosen with each combination of hs and

m l
9: Evaluate bv on te

10: Output best operator sets in bv based on fitness on te

Methods and Data Used
Number of training data: 1165
Number of training images 24
Number of validation images 24
Number of testing images 24
Selection methods used: Genetic Algorithms and Simulated Annealing
Fitness functions (meta-models) used: Decision Trees, Artificial Neural Networks, Nave Ba'iyes

Search Method Parameters

Populations (GAs only) 30, 50, 100, 200, 500
Iterations 100, 500, 1000, 10000
Mutation (Flip) Rates 0.05, 0.1, 0.2;
Experimental time 15 days

Table 6.6: Initial cross-validation experiment methods and parameters

almost identical behaviour, and both generally outperform a hand-picked set. The top combination

of genetic algorithms and neural net produces on average an operator set that retains 93.3% of the

image interpretation accuracy (reward) of the full operator set, while only incurring 5.5% of the cost.

6.4.2 Full Cross Validation study

After testing our cross validation method for three folds with the full {GAs, SA} x {NB,NN,DT} set

of combinations, we needed to narrow our search in order to run enough folds to gain a further insight

into the operator selection problem in MR ADORE. We thus eliminated simulated annealing from

our experiments, since both SA and GAs exhibited very similar behaviour in the cross validation

study, and GAs outperformed simulated annealing in some of our prior experiments (Section 6.4.1).

We also eliminated decision trees, since they exemplified no dominance over any other machine-

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.9

0.8

<2 0.7 a c
iT
9 0 .6 a
«
5 0.5

0.4

0.3

0.2
R andom H an d - GA/DT GA/NB GA/NN SA /D T SA /N B ; SA/NN

se le c te d

Action Set Selection: search m ethod/m eta-m odel

Figure 6.10: Comparison of the fitness of various action set selection techniques, on three folds of
cross validation runs. The hand-picked set is constant over all folds.

Algorithm 7 An filter method, called “Top” modified to select operator sets. Input: Training data,
desired number of operators d, in set Output: Domain specific operator set(s)

1: for Each action a in the full set do
2: for Each training datum {attributes,fitness} do
3: if a is present in the training datum then
4: Add this fitness to o’s total
5: Increment count
6: Calculate a ’s fitness b y dividing total b y count
7: Sort actions b y their fitness
8: Output top d. operators

learner, and were more difficult to train due to an interface with an external software module within

our system. We reduced the set of possible population sizes to {100,500} and the set of mutation

rates was decreased to {0.5, 0.2}. The iteration set was also reduced to be {100,1000}. These values

are summarized in Table 6.7.

We used the Top filter method of selecting operators to compare against HSMM (see Algo

rithm 7. We also compared against a set chosen by a domain-expert, a randomly selected set and

the full set of operators. Both our filter method and the random method of selecting operators chose

variably sized operator sets (changing with each fold), between 1 and 292 operators.

We ran 81 cross-validation folds with our new {GAs} x {NB,NN} set of combinations within

our HSMM method. Figure 6.11 shows the offline image interpretation accuracy of each set selected

in each of our six selection methods. Figure 6.12 shows the cost incurred by the sets chosen by these

methods on offline MR ADORE. Using our predefined fitness evaluation function for operator sets,

we combined the cost and image interpretation accuracy of each method. Results of this combination

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Methods and Data Used

Number of training data: 1165
Number of training images 24
Number of validation images 24
Number of testing images 24
Selection methods used: Genetic Algorithms, Random Selection,

Filter Selection, Full Operator Set,
Domain Expert Selection

Fitness functions (meta-models) used (within GAs): Artificial Neural Networks, Naive Bayes

Search Method Parameters

Populations 100, 500
Iterations 1000, 10000
Mutation (Flip) Rates 0.05, 0.2
Experimental time 90 days

Table 6.7: Full cross-validation experiment methods and parameters.

are shown in Figure 6.13. Note that the GA methods outperform all other methods.

6.4.3 Online Results

In the object recognition domain, we are most interested in the performance of a system on novel

images, where the labeling is not yet known. In MR ADORE, the online module uses a machine-

learned control policy to select a labeling for novel images.

We tested the online performance of the best performing GA with NN and GA with NB sets

(according to testing on the validation data) on the test data for each fold. We also tested the

performance of the set of Top (0-292) ranked operators as a comparison to a filter approach. In

addition to these sets, we tested an operator set handpicked by a domain-expert, a set of (0-292)

random operators (differing at each fold), and the full set of operators. In Figure 6.14 we see

the online image interpretation accuracy of the six different methods of operator set selection.

Since we are currently using the least-commitment policy in MR ADORE [Levner et al,, 2003;

Levner and Bulitko, 2004], the online costs of any operator set is the same as the offline cost (which

was shown in Figure 6.12). Using our predefined fitness function for an operator set, we show

the fitness of each operator set selection method in Figure 6.15. Note that there is no statistically

significant difference between the GA selected sets and the domain-expert selected sets.

The full operator set with 295 instantiated operators contained the following types operators:

Load Image, Submit Image, RGB Segmentation, Convert Colour to Gray, FilterMedian, Gaus

sian Filter, Elliptical Erosion, Elliptical Dilation, Elliptical Closing, Elliptical Opening, Grayscale

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7

0.6

•q 0.5

0.4

0.3

0.2

0.1

Domain Rand(Var) Top(Var)
Expert

Action Set Selection Method

Full SetGA/IMN GA/NB

Figure 6.11: MR ADORE’s offline image interpretation accuracy with six different operator set
selection methods.

35000

30000

U 25000

fi 2 0 000

I15000

GA/NN GA/NB Domain Rand(Var) Top(Var) Full Set
Expert

Action Set Seiection Method

Figure 6.12: MR ADORE’s offline (and online) cost with six different operator set selection meth
ods.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9 -

0.8 -

0)
(A
® 0.7 •

i£
©

lo,-

0.5 -

0.4 -

0.3 -

GA/NN GA/NB D om ain R and(V ar) T op(V ar) Full S e t
Expert

Action Set Selection Method

Figure 6.13: MR ADORE’s offline fitness with six different operator set selection methods.

Thresholding, Binned Grayscale Thresholding, Probabilistic Thresholding, Colour Histogram Equal

ization, Probabilistic Histogram Equalization, Colour Stretching by Contrast, Coarse 3D Histogram

Intersection, Pyramid Segmentation, Flood Filling, Peak Filling.

The best operator set (with respect to online fitness) found by HSMM contained the following

types operators: Load Image, Submit Image, RGB Segmentation, Convert Colour to Gray, Gaussian

Filter, Elliptical Erosion, Elliptical Dilation, Elliptical Closing, Grayscale Thresholding, Binned

Grayscale Thresholding, Coarse 3D Histogram Intersection, Flood Filling, Peak Filling.

The domain-expert operator set contained: Load Image, Submit Image, RGB Segmentation,

Convert Colour to Gray, FilterMedian, Gaussian Filter, Elliptical Erosion, Elliptical Dilation, Ellip

tical Closing, Elliptical Opening, Grayscale Thresholding, Binned Grayscale Thresholding, Proba

bilistic Thresholding, Colour Histogram Equalization, Probabilistic Histogram Equalization, Colour

Stretching by Contrast, Coarse 3D Histogram Intersection, Flood Filling, Peak Filling.

While all these sets may appear to be similar, it is important to remember that they are instanti

ated differently. Thus each set can contain different (and multiple) versions of an operator. The full

operator set, for instance, contains 93 different thresholding operators. The three sets listed contain

295, 52 and 29 total operators respectively.

56

-i

iiMi
iti|f

i.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6

[.

= 0.3
O

K il l

GA/NN GA/NB D om ain R and(V ar) T op(V ar) Full S e t
E xpert

Action Set Selection Method

Figure 6.14: MR ADORE’s online interpretation accuracy with sets chosen by GA/NN, GA/NB,
domain expert, top (0-292) of operators, random(0-292) operators, and the full set o f292 operators.

GA/NN GA/NB Domain Rand(Var) Top(Var)
Expert

Action Set Selection Method

Full Set

Figure 6.15: MR ADORE’s online fitness with sets chosen by GA/NN, GA/NB, domain expert, top
(0-292) of operators, random(0-292) operators, and the full set of 292 operators

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.03
c

o -2 0.025
2 .2
3 >
o a>
o o
^ TJ

■§
E so &to

0.02

0.015

0.01

0.005

0

20 40 60

Number of Folds

80 100

Figure 6.16: Change in standard deviation in online accuracy (for all methods) over 81 folds

Standard Deviation Plot

In order too visualize the decline in standard deviation over folds, we plot the change in standard

deviation in Figure 6.4.3. As can be seen, the standard deviation falls steeply at first (as expected),

but does not change greatly of the later folds. This trend suggests a higher validity of the reported

results.

6.4.4 Simulated Online Experiments

We evaluated seven methods of choosing operator sets with MR ADORE running with the optimal

offline policy, online policy and e-optimal policy with e = {0.1, 0.3, 0.5, 0.7,0.9 and 1} (recall that e

represents the amount of randomness in the policy, as detailed in Section 6.3.1) . Results are shown

in Figure 6.17. Note that with the perfect offline policy, the GA/NN and GA/NB sets are the best for

image interpretation accuracy, but that these methods experience a greater drop once randomness

is introduced than the Top method with 50 operators. We fixed operator set sizes for the Top and

random methods (50 and 100), in order to see if larger operator sets suffered more loss when the

chance for a random choice was increased, and because HSMM typically chose operator sets with

between 50 and 100 operators. As can be seen on the graph, operator sets with more operators tend

to lose more image interpretation accuracy when random choice is added than do smaller operator

sets. This finding seems to support the thesis that more choice can be detrimental with imperfect

selection.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ G ty N N (7 0)

□ GA/NB(96)

□ Domain
Expert(25)

□Top 50

SlTop 100

□ Random 50

□ Random 100

10% 30% 50% 70% 90%
Percentage of Randomness Added to Perfect Policy

Figure 6.17: Seven different methods of operator set selection evaluated on different control policies.
The numbers after the methods are the average (in parentheses) or fixed (not in parentheses) number
of operators in the selected sets.

6.4.5 Operator Set Size Experiments

We plotted the online performance of MR ADORE with each of the 35 sets (generated by incre

mentally adding the “worst” ranked operators to the hand picked operator se t) with the performance

of MR ADORE with the e-perfect policy, again with the 35 sets. Recall that we added the “worst”

operators in an attempt to divert the control policy from choosing the optimal labeling (maximizing

image interpretation accuracy), by giving it more sub-optimal labelings to choose from. The e-

perfect policy was run for 10 folds, while the online module was run for 9 folds. Results are shown

in Figure 6.18. The online policy exhibits essentially unchanging behaviour with added operators.

Additionally, we can see that MR ADORE’s machine-learned control policy operates at about the

same image interpretation accuracy as the 0.3-perfect policy.

6.4.6 Comparing Sequences and Sets

In order to determine the average cost of the sequence leading to the best average results, we ob

tained each sequence’s fitness from the 72 full expansions (2278 sequences), and plotted them in

Figure 6.19

Our methods are capable of choosing one of these operator sequences as an operator set, and

the best set of this type would have generated an average online fitness higher than the mean of

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .6 5
f — Epsilon = 0

0 .6 / ■ % ^ !

0 .5 5
............... - - I ' - ' * | - 8 - Online MR

ADORE

0 .5 - - v 1
*«: ■ Epsilon = 0.1

E 0 .4 5 -

(2 0 .4 -

- ! * “ Epsilon = 0.3

Epsilon = 0.5

0 .3 5 - Epsilon = 0.7

0 .3 - —t” Epsilon = 0.9

0 .2 5 -
-— ■ Random

0.2 -

0 50 100 150 20 0

N um ber o f Final Interpretations

Figure 6.18: Performance of MR ADORE with 35 operator sets with the e-perfect policy (for several
es), as well as with the machine-learned control policy.

Wo
E
3
£
'E

250

200

150

100

50

0

0 0.2 0.4 0.6
Average Reward

Figure 6.19: Minimum cost required to reach various accuracies with static sequences of four oper
ators

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10000

<0
o
o
E
3
E

1000

100

10

0 0.2 0.4 0.6
A v erag e R ew ard

♦ Static S eq u en ces

* Selection M ethods Online

a Selection M ethods Offline

Figure 6.20: Average cost versus average image interpretation accuracy for all sequences of length
4 and our 7 methods, both offline and online. The squares are our methods with the online policy,
the triangles are our methods with the offline policy and the filled diamonds represent the minimum
cost required to reach a certain image interpretation accuracy.

any of the methods. In Figure 6.20 we compare our methods for selecting operator sets with static

sequences of operators.

As can be seen, the operator sets average costs are much higher than the costs o f the static

sequences, while their average image interpretation accuracy is also higher. The square points rep

resent the average online interpretation accuracy of selected operator sets, while the triangular points

represent the average offline interpretation accuracy of the selected operator sets. Note that the of

fline and online costs are the same, due to the currently used least-commitment policy in the online

module. It can also be seen in Figure 6.20 that the best static sequence of operators can easily be

outperformed in accuracy, since the sets chosen by the methods have a higher average accuracy.

This suggests that adaptability is necessary to produce higher quality image interpretations.

6.4.7 Offline (Perfect) Policy vs. Online Policy

In an effort to understand why some operator sets produce great results offline, but online experience

a severe drop in reward, we graphed the change in accuracy and fitness when moving from the offline

(perfect) policy to the online (machine-learned) policy.

Since cost remains the same, Figures 6.21 and 6.22 are essentially the same. One can see that

the drop in accuracy and fitness is not uniform over all methods, and, perhaps more importantly,

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0)
.£
5=o
£o

o O
Q
TJs_
(0
5
o

CL

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

......i—
■ ■ ■ raps

flM

ill
m

IjSf
.......i l l
......m
......iiii

....
.... S i 'i..-

z o

CD

CD
05,
QQ
Z
2?
CD

c
'cO
£o
Q

ID
CM
t f
05
CL
X
llj

O o o oID o ID o
CL ■*” T5 T—
O CL C TJh- o CD C

h- CL CD
CL

Action Set Selection Method

Figure 6.21: Drop in online accuracy (for all methods) over 81 folds

not uniform over different operator set sizes. Figure 6.23 shows how the average size of operator

sets o f a method corresponds to how much the operator sets generated by this method suffer online,

on average. Perhaps more importantly, Figure 6.24 shows how the online policy degenerates in

accuracy/fitness with an increase in possible image interpretations. Note, this is the average drop

in accuracy/fitness versus the average number of possible image interpretations. These graphs seem

to indicate that the online policy has difficulty when presented with more choices of interpretations,

despite the fact that it is generated from more training data.

6.4.8 Training with Online Data

Recall that training the fitness approximators with data obtained from offline MR ADORE runs may

lead to approximating the incorrect function - a function that optimizes the action set for use on

the offline module of MR ADORE, where an oracle tells it which image interpretation is the best.

Training with data obtained from online MR ADORE runs should help to approximate the correct

function, but this data is much more costly to obtain than data obtained offline.

In Figure 6.25, we see the results after 16 folds with online training data used in our experiments.

The Domain Expert set is independent of the training data, and performs the best out of the seven

set selection methods. The GA/NN and GA/NB methods clearly outperform the filter and random

methods trained with online data, but do not outperform the GA methods trained on offline data).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
O
©

£
§ima
u»tn
®
£

0.14
0.12

0.1
0.08
0.06
0.04
0.02

0
co' r— in'
0, L . eg
ST 'CD

E
o
Q

r
z

o

©Q.
XLXJ

oin
o.
o
h-

oo
V "

Q.
O

Oin
T3c
CD
□i.

oo
TJ
C
CD
Cd

Action Set Selection Method

Figure 6.22: Drop in online fitness (for all methods) over 46 folds

O. 0.18
O $
5 = 0.16
« o 0.14
c 5 0.12
sz ©
u. c
> .E o g re O

o E
X -

50 100 150

Number of Operators in Set

Figure 6.23: Drop in online accuracy/fitness vs average operator set size. The points left to right
represent Domain-Expert, Filter50,GA/NN, GA/NB, Filter 100.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ft o 0.14

100 200 300 400 500
Number of Possible Interpretations

Figure 6.24: Drop in online accuracy/fitness vs average number of possible image interpretations.
The points left to right represent Domain-Expert, Filter50,GA/NB, GA/NN, FilterlOO. Note the
change in order, as the GA/NN combination averages more operators per set than GA/NB, but fewer
image interpreations (due to the nature of the operators this method chooses).

0>
C
c
O

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 iHi-

<
o

CD
Z
*
o

■s rto Q)
£ Q-
o x
Q W

CO
>
Q.
O

CO
>
T3
SZ
CO
01

Action Set Selection Method

Figure 6.25: Average online fitness of five methods using online training data

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Discussion

From the empirical results several observations can be made:

• HSMM succeeds in discovering action subsets that are smaller in size than the full action set

and that when used by the agent allow it to achieve comparable reward R (A) to the reward

the agent receives when using the full action set. The cost C(A) incurred by the agent was

diminished by as much as 95% in our experiments.

• The Top method is less successful than HSMM on its own because they contain no information

as to how many actions to put in a set. Setting the number of actions N to be included in a set

as a constant only adds to the human engineering of the system, which is the opposite of one of

our goals, which is to eliminate the last vestiges of human engineering. Still, having a ranked

list of the operators can be beneficial for slight changes in the final system and action set, and

since the method is quite fast, it can be invoked later on in the process without significantly

adding to the running time.

• The full operator set used in forestry has numerous operators that are interchangeable without

much change in rewards or cost, as can be seen by the fitness of the randomly generated sets.

Two different random sets of 150 operators generally have the same approximate fitness. This

is because the tabulation of operators is quite close. With the addition of more operators into

the full set, this phenomenon should become less likely, since the choice of operators will be

increased.

• As expected, MR ADORE’s online module does not always return the optimal image labeling

available with a given operator set. It errs about 30% of the time and is thus prone to being

misled by bad choices. Again, if we keep the number of bad choices small (by supplying the

policy with a compact high-quality operator set), we can help keep the online module from

being led astray, and increase image interpretation accuracy, as was shown in the experiments.

• In the maze domain, with moves of radius 2, an exhaustive search reveals that the full action

set is not the optimal set for the explore-exploit maze agent . An action set with just over

half the actions of the full set increases fitness by providing fewer choices to the agent as it

attempts to discover the goal state in the maze. When we move to radius 5 moves, it seems the

full set is the best action set to provide to the explore-exploit agent. This is not proven, since

an exhaustive search is not possible. HSMM succeeds in finding action sets with comparable

results to the full action set, and better results than other methods action set selection that

were tried in our experiments. For radius 2, none of the methods we tried succeeded in finding

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

action sets with good results. This is surprising, since the search space is much smaller than

with radius 5, but an investigation into the exhaustive search results reveals that very few

of the candidate action sets have performance even close the optimal set, thus it seems our

methods simply missed the best sets in their search. With a depth-first search maze agent, and

a fitness taking into account deliberation cost, HSMM find an action set that outperforms all

other methods, including the full set.

• Using data obtained from the online module of MR ADORE seems like the best approach to

training our machine learners to approximate what is a good online operator set. The downfall

of this approach is that obtaining one online training datum can take as long as a day with our

setup, and generally takes at least a few hours, whereas obtaining one offline training datum

can take no longer than a few hours and generally takes only a few minutes.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Future Work and Conclusions

7.1 Future Work

In the future, we would like to introduce a Theory o f Redundancy, in order to better understand

when our Heuristic Search with Meta-Modelling is applicable. If there is no redundancy in the

given action set for a given Markov decision process, than it is less likely that the HSMM method is

applicable. One possible similarity measure would be:

sim ilarity(ai, a f = 1 — [[.F(A/{ai})] — [F(A /{a 2 })]]

where A is the set of n actions {oj, a<i. . . , a„} and F(A) is our fitness equation for an action set

given in Definition 3.5. There are many other possible ways to define sim ilarity , such as measuring

how close the functions of two actions are. In the maze domain for instance, two actions could be

considered very similar if they move the agent in almost the same direction, and very different if

they move the agent in an opposite direction from each other. In the vision domain, similar vision

operators could be operators with the same function, but different parameterizations.

We would also like to use a more intelligent manner to choose the training data for the meta

models within the HSMM method. In [Gilardi and Faraj, 2004] an active learning approach is be

taken to select training data for neural networks and is shown to be effective.

Another research avenue worth investigating is using the HSMM method to determine a range

for the number of actions to include in an action set. We performed some preliminary tests of this

method on MR ADORE.

In our experiments we noted that operator sets with more operators and better potential image

interpretation accuracy often perform worse when used in online MR ADORE. We hypothesized that

the online policy of MR ADORE is led astray by all the choices of image interpretations provided by

larger operator sets. In contrast to this, the online MR ADORE module was better able to capture the

potential of smaller operator sets, meaning it more often returned the user an image interpretation

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

oo ooolO
Q.

oo oo Q.
O. Q.

•o

Figure 7.1: Comparing fixed size operator sets to variable size operator sets.

closer to the optimal interpretation provided by a smaller operator set. We thus decided to limit the

size of the sets chosen by each method, to decrease the number of choices (and most importantly

limit the number of bad choices) available to MR ADORE’s online module. The values 50 and 100

were chosen because in our earlier experiments (Section 6.4) GAs chose sets with sizes in this range.

Results are shown in Figure 7.1.

Limiting the size of operator sets chosen to the range defined by HSMM enables Top method to

choose better operator sets for the online module of MR ADORE. GAs performance is not changed

significantly, since the bulk of the sets chosen by this method are in the range of 50 to 100 operators

anyway. Further investigation is necessary to determine if using the GAs to select an operator set

size range then rerunning the experiments is a viable method for choosing operator sets (and action

sets in the general MDP case).

We would also like to apply the HSMM method to the feature selection problem to see if it

can be useful for more problems besides action set selection in Markov Decision Processes, and to

investigate the similarity between feature selection and action set selection.

Currently, in MR ADORE, we work with depth four expansions, meaning at most four operators

applications are allowed along any path in the full expansion. Applying more than four operators to

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an image is possible, and allows for strictly non-decreasing rewards. The problem is that trying all

possible combinations of more than four operators becomes intractable with very large operator sets.

One idea is to reduce the size of the operator set by performing HSMM on depth four expansions,

then executing the depth five expansions with this reduced set, and reducing the set further with

another application of HSMM. This process could continue, making it an iterative application of

HSMM.

7.2 Conclusions

In this thesis we propose a novel method entitled Heuristic Search with Meta-Modelling (HSMM)

for automatically selecting action sets in Markov decision processes. We combine the strength of

wrapper and filter approaches to perform this task that is historically done by human experts, thus

reducing the amount of human intervention in otherwise automatic problem solving strategies and

reducing the time needed to be spent by humans hand-engineering action and domain specific action

sets.

In a broader scope, we investigate the problem of choice, namely, ’’How much choice is enough?”.

This problem has been investigated in psychological circles ([Schwartz, 2004]) and many parallels

can be drawn between this work and the investigation into how many actions are enough actions in

an MDP. This is an action dependent and domain dependent question, thus there is no final answer

applicable to all MDPs.

We test our action selection method on two different MDP domains. In the maze domain, we

improve the navigation action set for a depth-first search agent by reducing it in size and thereby

improving the agent’s fitness, by lowering the deliberation cost of the agent. At the same time we

keep a comparable reward with regards to solving many different randomly generated mazes.

In the vision domain, we improve the performance of a state of the art adaptive object recogni

tion system (MR ADORE) on novel images by providing it with a compact, domain-specific vision

operator set. This set is much less costly in terms of learning and execution cost than is the full op

erator set, and allows the control policy to match its image interpretation accuracy that was possible

with the full operator set.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Arbib, 1972] M.A. Arbib. The Metaphorical Brain: An Introduction to Cybernetics as Artificial Intelligence
and Brain Theory. Wiley-Interscience, New York, 1972.

[Arbib, 1978] M.A. Arbib. Segmentation, schemas, and cooperative computation, 1978.

[Bins and Draper, 2001] J. Bins and B. Draper. Feature selection from huge feature sets. In Proceedings o f
International Conference on Computer Vision, volume 2, pages 159-165, 2001.

[Blum e ta l , 1991] Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geo
metric terrain, 1991.

[Bulitko e ta l., 2003] V. Bulitko, L. Li, R. Greiner, and I. Levner. Lookahead pathologies for single agent
search. In International Joint Conference on Artificial Intelligence, 2003.

[Dahm and Ziegler, 2002] Ingo Dahm and Jens Ziegler. Using artificial neural networks to construct a meta
model for the evolution o f gait patterns o f four-legged walking robots. In 5th International Conference on
Climbing and Walking Robots (CLAWAR), 2002.

[Dayan and Hinton, 1993] P. Dayan and G. E. Hinton. Feudal reinforcement learning. In C. L. Giles, S. J.
Hanson, and J. D. Cowan, editors, Advances in Neural Information Processing Systems 5, Proceedings o f
the IEEE Conference in Denver (to appear), San Mateo, CA, 1993. Morgan Kaufmann.

[Dougherty and Marryott, 1991] David E. Dougherty and Robert A. Marryott. Optimal groundwater manage
ment 1. simulated annealing. In Water Resources Research, volume 27, pages 2493-2508, 1991.

[Draper e ta l., 1996] B. Draper, A. Hanson, and E. Riseman. Knowledge-directed vision: Control, learning
and integration. Proceedings o f the IEEE, 84(11): 1625-1637, 1996,

[Draper e ta l., 2000] B. Draper, J. Bins, and K. Baek. ADORE: adaptive object recognition. Videre, 1(4):86—
99, 2000.

[Draper, 2003] Bruce A. Draper. From knowledge bases to Markov models to PCA. In Proceedings o f Work
shop on Computer Vision System Control Architectures, Graz, Austria, 2003.

[Emmanouilidis e ta l., 1999] C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. Multiple Criteria Ge
netic Algorithms for Feature Selection in Neurofuzzy Modeling. In In Proceedings o f International Joint
Conference on Neural Networks, Washington, D.C., 1999.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
o f NP-completeness. Freeman, 1979.

[Gilardi and Faraj, 2004] Nicolas Gilardi and Abdelaziz Faraj. Design of experiments by committee o f neural
networks. In Proceedings o f the International Joint Conference on Neural Networks (IJCNN), 2004.

[Gilmore and Hillston,] S. Gilmore and J. Hillston. Feature interaction in pepa.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[Han and Kamber, 2001] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2001 .

[Harik and Lobo, 1999] Georges R. Harik and Fernando G. Lobo. A parameter-less genetic algorithm. In
Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, M ark Jakiela, and
Robert E. Smith, editors, Proceedings o f the Genetic and Evolutionary Computation Conference, volume 1,
pages 258-265, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Haykin, 1994] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillian College Pub. Co.,
1994.

[Holland, 1962] J.H. Holland. Outline for a logical theory o f adaptive systems. Journal o f the Association fo r
Computing Machinery, 3:297-314, 1962.

[Host, Bod Host 2004] Bod Host, http://www.bodhosting.com/html/windowshosting.htm, Bod Host, 2004.

[Jarmulak and Craw, 1999] Jacek Jarmulak and Susan Craw. Genetic algorithms for feature selection and
weighting. In In Proceedings o f the IJCAl’99 workshop on Automating the Construction o f Case Based
Reasoners, pages 28-33, 1999.

[Jensen, 1996] F.V. Jensen. An Introduction to Bayesian Networks. Springer-Verlag, New York, 1996.

[Jin e ta l., 2001] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. Managing approximate models in
evolutionary aerodynamic design optimization. In Proceedings o f the 2001 Congress on Evolutionary Com
putation CEC2001, pages 592-599, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul,
Korea, 27-30 May 2001. IEEE Press.

[Jin e ta l., 2003] Y. Jin, M. Huesken, and B. Sendhoff. Quality measures for approximate models in evo
lutionary computation. In Proceedings o f GECCO Workshops: Workshop on Adaptation, Learning and
Approximation in Evolutionary Computation, pages 170-174, 2003.

[Joumel and Huijbregts, 1978] A.G. Joumel and Ch. J. Huijbregts. Mining Geostatics. Academic Press, Lon
don, 1978.

[K.F.Man e ta l , 1999] K.F.Man, K.S.Tang, and S.Kwong. Genetic Algorithms: Concepts and Designs.
Springer-Verlag, London-UK, 1999.

[Kira and Rendell, 1992] K. Kira and L. Rendell. The feature selection problem: Traditional methods and a
new algorithm. In Proceedings o f the Tenth National Conference on Artificial Intelligence (AAAI-92), pages
129-134, 1992.

[Kirkpatrick et a l , 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671-680, 1983.

[Kohavi and John, 1997] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(l-2):273-324, 1997.

[Kononenko, 1994] Igor Kononenko. Estimating attributes: Analysis and extensions o f RELIEF. In European
Conference on Machine Learning, pages 171-182, 1994.

[Kovarsky, 2001] Alexander Kovarsky. Cmput 650: Final report. Technical report, University of Alberta,
2001 .

[Lee et al., 2003] Greg Lee, Vadim Bulitko, Michael Chung, Wesley Mackay, Rene Malenfant, and Jonathan
Newton. Automated operator selection with genetic algorithms and simulated annealing. Technical report,
University o f Alberta - www.ircl.cs.ualberta.ca, 2003.

[Levner and Bulitko, 2004] I. Levner and V Bulitko. Machine learning for adaptive image interpretation. In
Proceedings o f the 16th Innovative Applications o f Artificial Intelligence '04 conference, 2004.

[Levner et al., 2003] I. Levner, V. Bulitko, L. Li, G. Lee, and R Greiner. Towards automated creation o f image
interpretation systems. In Proceedings o f the Australian Joint Artificial Intelligence Conference, 2003.

[Madani et al., 2002] O. Madani, V Bulitko, I. Levner, and R. Greiner. Performance o f lookahead control
policies in the face o f abstractions and approximations. In Proceedings o f the Symposium on Abstraction,
Reformulation and Approximation, 2002.

[McCallum, 1993] Andrew McCallum. Overcoming incomplete perception with util distinction memory. In
International Conference on Machine Learning, pages 190-196, 1993.

[Metropolis e ta l., 1953] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Simulated
annealing. Journal o f Chemical Physics, 21:1087-1092, 1953.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning. W CB/McGraw Hill, Boston, 1997.

[Miyazaki and Kobayashi, 1995] Kazuteru Miyazaki and Shigenobu Kobayashi. Learning deterministic poli
cies in partially observable markov decision processes, 1995.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bodhosting.com/html/windowshosting.htm
http://www.ircl.cs.ualberta.ca

[N.Srinivas and K.Deb, 1995] N.Srinivas and K.Deb. Multiobjective optimization using nondominated sorting
in genetic algorithms, la Evolutionary Computation, volume 2(3), pages 221-248, 1995.

[Oliveira et al., 2001] L. S. Oliveira, N. Benahmed, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Feature subset
selection using genetic algorithms for handwritten digit recognition. In In Proceedings o f the 14th Brazilian
Symposium on Computer Graphics and Image Processing, pages 362-369, Florianopolis-Brazil, 2001. IEEE
Computer Society.

[Oliveira et al., 2002] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Feature selection using multi
objective genetic algorithms for handwritten digit recognition. In In Proceedings o f the 16th IAPR Inter
national Conference on Pattern Recognition, pages 568-571, Quebec City-Canada, 2002. IEEE Computer
Society.

[Pudil et al., 1994] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature-selection. PRL,
15(11): 1119-1125, November 1994.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs fo r Machine Learning. Kauffman, 1993.

[Rimey and Brown, 1994] R. Rimey and C. Brown. Control o f selective perception using bayes nets and
decision theory. International Journal o f Computer Vision, 12:173-207, 1994.

[Rivest, 1987] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

[Robert H. Kewley and Embrechts, 2000] Jr. Robert H. Kewley and M ark J. Embrechts. Fuzzy-genetic deci
sion optimization for optimization o f complex stochastic systems. In Proceedings 5th Online World Confer
ence on Soft Computing in Industrial Applications, 2000.

[Schwartz, 2004] Barry Schwartz. The tyranny o f choice. Scientific American, pages 70-75, April 2004.

[Soule e ta l., 1996] Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic program
ming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Program
ming 1996: Proceedings o f the First Annual Conference, pages 215-223, Stanford University, CA, USA,
28-31 1996. MIT Press.

[Sun e ta l., 2002] Z. Sun, X. Yuan, G. Bebis, and S. Louis. Neural-network-based gender classification us
ing genetic eigen-feature extraction. In In Proceedings o f IEEE International Joint Conference on Neural
Networks, Honoloulu, Hawaii, 2002.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[Talbi and M untean, 1993] E-G Talbi and T. Muntean. General heuristics for the mapping problem, 1993.

[Teller and Veloso, 1996] Astro Teller and Manuela Veloso. PADO: A new learning architecture for object
recognition. In Katsushi Ikeuchi and Manuela Veloso, editors, Symbolic Visual Learning, pages 81-116.
Oxford University Press, 1996.

[University, 2004] Saint Louis University, http://hem.hj.se/ de96klda/neuralnetworks.htm, 2004.

[Vafaie and Jong, 1992] H. Vafaie and K. De Jong. Genetic algorithms as a tool for feature selection in machine
learning. In In Proceeding o f the 4th International Conference on Tools with Artificial Intelligence, pages
200-204, Arlington, VA, 1992.

[Vafaie and Jong, 1993] H. Vafaie and K. De Jong. Robust feature selection algorithms. In In Proceedings o f
the Fifth Conference on Tools fo r Artificial Intelligence, pages 356-363, Boston, MA, 1993. IEEE Computer
Society Press.

[Watkins, 1989] Chris Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, University of
Cambridge, UK, 1989.

[Willmes et al., 2003] L. Willmes, T. Baeck, Y. Jin, and B. Sendhoff. Comparing neural networks and kriging
for fitness approximation in evolutionary computation. In Proceedings o f IEEE Congress on Evolutionary
Computation, pages 663-670, 2003.

[Yan and Minsker, 2003] Shengquan Yan and Barbara Minsker. A dynamic meta-model approach to genetic
algorithm solution o f a risk-based groundwater remediation design model. In World Water and Environmen
tal Resources Congress 2003 and Related Symposia, 2003.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://hem.hj.se/

Appendix A

Vision Operator Selection Software

In order to facilitate building large vision operators sets, we implemented a java program to easily

tabulate different versions of certain operators. Figure A. 1 shows a typical screenshot o f the GUI.

The input to the system is any operator set compatible with MR ADORE [Levner et al., 2003]. The

GUI appears with some default (broad) ranges of parameters for those operators that take parameters.

The user is asked to specify the minimum and maximum values for parameters, as well as the

increment for the parameter in some cases. Operators can be included in the set by clicking the

checkbox next to their names (by default all operators are selected to be in the set). The user also has

the option to change the names of the operators, which amounts to appending the parameter values

to the operator’s name. This ensures that we can differentiate between different parameterizations

of the same operator. The set is created by clicking the “Build Set” and the output of the system is

the set specified by the user, with parameterized operators.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j' CosiVfcttC.ilo; !.'.h! ^ ✓ <o * Fiitui Median i ! M a x - ' . j .

v1 FiRPrG<iii*sian£ (.->{/> ' M a x i; ? ; ' ■* F'ado t noise M in(>0> 1 _M ax(«?; 1

IMit'b. Lth|)&c Miii (■» U i i Max { - t ; ‘ Ciiise ! Ifipbi* M,:i O i i ; 1 Max I < ? j 5 open i iiijivi

Mmi,5-1)) ' Max(*-"'j / Iliri'sh JUi Cory .Inr.t I f n M m « > R) ■ ■ MireshMax (<■ 25is i

ir.cienicn! (> :)) 1 3 MaxVaiut- i < 253 ■ ?!'■ v lhiubii.Dinlirw_Gray_lnc! ThrcshMin (s 0 ; ' l

InrnshMax (< ?£>6 j -’i.ii increment t > U) MaxValuu t < 2')6) 235 ✓ Thresh _Din I’loli.liu.:

ihresnMin (» 0 i KU T h m sh M a x I266) :55 Increment (» 0) c MaxValue (<■ 256 > 7 ~

HistogramEqjColor ~Vj HistogramEq_Prol) T ContrastStretchjCelor

✓ 3D_Histo0ramJrrtersection_coarse M in (> 0) 1: M a x (< ?) 10. PyrSegm Min{ > 0) 11 M a x (< ?) 3

V RGB_Segment < FIoodFiliMult) ThreshMin (> 0) 0! ThreshM ax(<?) AO. DimensionMin(> 0) 5

Dim ensionM ax(<256) ,255 PeakFillMulti Min < > 0) 0 Max {< ? > 40 . RelativeResize

XMinresize(> 0) C X M axresize(< 1 > D 2b VT.linresize{ > 0) ff YM axresize(< 1> 0 25 MinSize 10D.0

v Change nam es Build Set •

Figure A.l: A GUI used to select which operators to include in a set, which instantiations of these
operators to include, and whether to rename the operators within the set.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Vision Operator Examples

We here give a few visual examples of changes made to images by some of the operators used within

MR ADORE.

B.l Template Matching

A logical manner in which to recognize objects is to try to match a template o f the object for which

we are looking with the image in which we are looking for them. Figure B.l shows an image with a

spruce tree matched with a spruce tree template. Brighter areas represent areas that are more likely

to be a spruce tree, while darker areas represent areas which are most likely not spruce trees.

B.2 Thresholding

Thresholding an image at value V changes it to a binary image, with all pixels whose average bright

ness is equal to or higher than V changed to white, and all other pixels changed to black. An example

of a thresheld image is shown in Figure B.2.

B.3 Morphological Filtering

Morphological filtering can be done by many methods, a few of which we describe and illustrate in

this section.

B.3.1 Gaussian Filtering

Gaussian Filtering works by replacing each pixel by the average pixel with respect to its surrounding

neighbours. The operator has as its effect to smooth out an image, as seen in Figure B.3.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.l: An image matched with a spruce tree template, producing a likelihood image.

Figure B.2: An image produced by template matching is thresheld to produce a binary image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.3: An image morphed by a gaussian filter.

B.3.2 Minimum Filtering

Another form of filtering, minimum filtering, replaces each pixel with the lowest percentile intensity

value within a given neighbourhood. The image is thus darkened as a whole. Figure B.4 shows an

example of minimum filtering performed on an image.

B.3.3 Maximum Filtering

Maximum filtering is effectively the opposite of minimum filtering. Each pixel is replaced by the

highest percentile intensity value within a given neighbourhood. The image is thus brightened as a

whole. Figure B.5 shows an example of maximum filtering performed on an image.

B.4 Histogram Equalization

Histogram equalization is a vision operator that takes three steps. First the histogram of the image is

computed. Next the normalized sum of the histogram is calculated, and used to transform the input

image by equalizing the image intensities, creating broadening peak intensities. Figure B.6 shows

an example of colour histogram equalization performed on an image.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.4: An image morphed by a minimum filter.

Figure B.5: An image morphed by a maximum filter.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.6: An image before and after colour histogram equalization has been performed.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

