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Chapter 1

Introduction

1.1 Motivation

Choice: One of the chief advances in modem society is the vast number of choices people have 

in every aspect of life, be it what to make their profession, where to reside, where to travel, how 

large a family to have, what to make their priorities or even which computer operating system to 

use. Only a few decades ago our choices were severely limited and there was a constant struggle for 

more options in life. With many societal developments (feminism, affirmative action, globalization) 

and technological advances (television, internet), humans now have myriad options to choose from 

in every aspect of life. But with the gift of many choices comes the burden of making the correct 

choice, the best choice - the optimal choice. Often being given more choices comes hand in hand 

with being given better choices, but intelligence is required to be able to tell the good choices from 

the bad choices. Thus it may be sometimes better for a person to be presented with fewer choices, 

even at the cost of the optimal choice, since the person would have fewer chances of making a bad 

decision.

i ' m

•  I

Figure 1.1: A typical problematic decision faced by computer users [Bod Host 2004].

1
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Take for example a carpenter with a toolbox. The ideal toolbox for this carpenter is the one that 

maximizes his or her performance on a given task. Most carpentry tasks involve a series of steps, 

thus requiring a decision as to what tool to use at each step. The carpenter must follow a policy to 

decide which tool is the best to use, given the current state of the construction. Intuitively, we would 

think that providing this carpenter with every possible tool would be the best scenario, because the 

optimal choice for any given situation would then be in his or her toolbox. But this method of 

selection would also include countless useless tools which, if chosen, would lead to poor outcome. 

This would not matter if  the carpenter had an oracle to tell him or her which tool to use at all times. 

Unfortunately, in the real world there is no such oracle, thus we need to optimize the toolbox for a 

given carpenter and a given task. A carpenter with little experience should probably be given only a 

few general purpose tools, in order to minimize the chances of a highly suboptimal choice. On the 

other hand, a more experienced carpenter could be a given a broader set, with obscure tools good 

only for one state. His or her policy would ensure proper use of more precise tools. Also, since tools 

cost money, the carpenter’s company would be interested in supplying toolboxes that provide him 

or her tools that will allow for optimal (or near-optimal) performance while drastically reducing the 

total expense of the tools in the toolbox. A big toolbox is also hdavy and cumbersome, and if some 

less useful tools can be removed from the toolbox, it can only help the carpenter.

Psychological studies further reinforce the idea that more choice can be detrimental to “perfor­

mance”. In [Schwartz, 2004], human happiness is examined in the context of the amount of choice 

available to people. Individuals are divided into two groups: maximizers and satisficers. Maximizers 

seek to always make the optimal choice, and tend to evaluate as many choices as possible before 

ultimately making a decision. Satisficers seek to make a good decision, but do not spend too much 

time evaluating their choices, thus often settling for a sub-optimal result.

Satisficers tend to be happier people, because they do not spend much time deliberating about 

what choices they could have (or should have) made. They do not suffer from regret as do maxi­

mizers, since they do not even know about many of the options that were present at the time of the 

decision. Maximizers exert a significantly larger amount of effort in making their decision, since 

they force themselves to make so many more comparisons with other choices (and can be “weighed- 

down”, much like a carpenter). Then, if the choice they have made turns out to not be as satisfying 

as hoped, they feel worse than satisficers since they committed so much more to the decision. In 

addition to this, since they are seeking the optimal choice, they can only be satisfied by a small set of 

decisions (often just one), the correct decisions (or what they perceive to be the correct decisions). 

Maximizers also tend to continue to compare their choice with others long after the final decision 

is made, often leading to further depression. And again, like the carpenter, they may have to spend 

more resources to evaluate more choices.

2
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R E A C T I O N S  TO L O S S E S  A N D  G A I N S R E A C T I O N S  TO I N C R E A S I N G  C H O I C E
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Figure 1.2: More choice is not always better for human happiness. On the left we see that bad 
feelings about losses outweigh good feelings about gains. The two graphs on the right show how in­
creasing choice is only beneficial to a point [Schwartz, 2004], After a certain threshold, the chooser 
is overwhelmed by the number of choices both before and after the decision is made.

Further psychological research shows that while more choice is logically better, it is only em­

pirically better to a point. After so much choice is added, the negative factor of comparing options 

before and after the decision is made becomes overwhelming. Also, making a good decision is not 

as satisfying an outcome as making a bad decision is depressing. These findings are summarized in 

Figure 1.2.

One model of decision-making is the Markov Decision Process (MDP) [Sutton and Barto, 1998], 

MDPs describe any situation where an agent is made to choose an action based on its current state. 

The decision is made by the agent’s policy, that maps states to actions. The action leads the agent 

to another state, and the cycle continues with actions being chosen until a final state is reached. 

The agent rarely if ever has an oracle telling it which action to choose next. Instead, the agent 

uses its control policy to select its actions. Thus a convoluted action set can lead to poor and slow 

performance. Conversely, an undersized action set can often lack the proper actions for optimal 

performance. Performance of an MDP and optimality of an action set will be formally defined in 

Chapter 2.

It is due to this phenomenon that a need for a method to choose an optimal action set for a given 

MDP arose. This optimal action set is dependent upon the agent, as differing agents will require 

different actions to optimize their performance. Some agents will be led astray by certain states, 

thus if we can eliminate actions which lead to these states, we increase the performance of the agent. 

The optimal action set is also dependent upon the task at hand or the environment in which the agent 

is placed.

A most common approach is to have a human domain expert handpick an action set for a given 

domain [Draper et al., 2000]. This is not desirable, since it involves much human expert time,

3
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and also is a deterrent in the automation of intelligent systems. In addition to this, it is difficult 

to manually construct an optimal action set for an agent and if  we tweak the agent even a little, a 

whole new action set would need to be designed by the domain expert. In the end, one would need 

a domain expert on hand at all times to choose a new action set if any changes are ever to be made 

to the system.

In order to eliminate the need for a domain expert, we propose automating the action set selection 

for Markov Decision Processes. We then test our automated method on two vastly different domains 

and evaluate the results.

1.2 MDP Applications

An agent in a maze domain provides a simplistic example of a Markov Decision Process. This agent 

moves about a maze with a given set of actions, which transport it from one state to another. The 

agent’s task is to discover the goal state of the maze. A convoluted action set could lead to the agent 

wasting time trying similar actions. Too few actions could prevent the agent from ever reaching its 

goal. Optimizing this action set leads to better performance by the maze agent. Performance is based 

on the state of the agent when it decides to quit (goal state or non-goal state), how many moves the 

agent makes before it quits (the fewer moves, the better) and how much the agent deliberates before 

making a move.

While the maze domain is a toy problem, there exist real-world Markov Decision Process prob­

lems whose current solutions could greatly be enhanced by optimizing the action set involved. One 

modem day computer vision system called MR ADORE (Multi-Resolution ADaptive Object Recog­

nition) [Levner et al., 2003; Levner and Bulitko, 2004] models vision as a partially observable 

Markov decision process (POMDP), with states being images (or parts of images), and actions be­

ing vision processing operators that manipulate these images. Interpreting an image can be done by 

applying successive operators, making object recognition a decision-making process. Having more 

operators in the system’s set provides for more flexibility in interpretations, and strictly equal or 

better final labelings (if one tries all possible combinations of operators). A larger operator set also 

lengthens learning and execution time, since having more operators in a set leads to more possible 

combinations of operators, and to more useless labelings. If the agent’s policy is sub-optimal, this 

would increase its chances of choosing a bad labeling for a given image.

In psychology tenns, MR ADORE is a maximizer. It always seeks to make the optimal choice, 

and considers all possible options when it is making its decision. If we allow it to try all possible 

combinations of vision operators (which we do in practice), then the number of choices increases 

exponentially with the number of action applications we allow, as seen in Table 3,1. While this 

cannot possibly diminish the optimal choice, it does present the policy with many more choices,

4
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Table 1.1: offline state space exploration in MR ADORE. All action sequences up to a fixed length 
are applied to an image. The number of nodes (intermediate images) and sequences, explored state 
space physical size (GBytes), and the expansion time on a dual Athlon MP 1600+ shown were 
averaged over 10 images. The operator set used is a greatly downsized version of the full operator 
set

Sequence Length #  of Nodes #  of Sequences Size (GBytes) Time
4 269 119 0.038 30 sec
5 7,382 3,298 1 10 min
6 192,490 86,037 26 8 hrs

with most of them being nowhere near optimal. And much as bad decisions are more detrimental 

to performance (happiness) in humans than good decisions are beneficial, in MR ADORE a bad 

labeling is much more unsatisfying to return to the user than a good labeling is satisfying.

While we could statically use a good sequence (as determined from our training runs), this 

would eliminate the adaptability of the system. We also run the risk of choosing a static sequence 

that simply fits the training data, and is not good on new images. Thus the best method to prevent bad 

decisions is to eliminate bad choices from possibility. A reduced domain and agent specific action 

set would accomplish this, all the while preserving enough actions to ensure good performance.

In the real world, the best set of choices is dependent upon the person being given the choices, 

and the person’s task. In an MDP, the best set of actions is dependent upon the agent being made to 

act, and the domain in which it is acting.

The most straightforward way to find the best possible action set for a given domain and agent 

is to test every possible set of actions. Unfortunately, evaluating all possible action sets involves 

searching the powerset of the N  actions (2N). For any large N , this number practically infinite.

Since exhaustive search through all practically encountered action sets is often impossible, we 

turn to heuristic search methods to sample and search through the space of action sets intelligently. 

Any search method requires an evaluation function to determine the quality of searched instances. 

In some cases (such as in MR ADORE), the evaluation of just one action set (or vision operator set) 

can take hours, thus making a thorough search impossible in a reasonable amount of time, even with 

a heuristic search. To this end, we use a machine-learned evaluation function to score and rank the 

currently searched action sets. These meta-models ( [Jin et al., 2001]) are generalized over training 

data to provide our heuristic search with a quick and accurate ranking for any given action set.

1.3 Contributions

In this thesis we make three contributions to the field of Artificial Intelligence:

5
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• We investigate the issue of ‘How much choice is enough?’ both implicitly (in our experiments 

to reduce action set size) and explicitly. We test whether increasing choice for MR ADORE 

aids or hurts its performance by starting with a small, but well-performing operator set. Re­

sults show that adding various operators helps performance with an oracle telling us which 

interpretation to choose (which is necessarily true), but with any more than 10% randomness 

added to the decisions, only serves to slow down the operation of the system, without changing 

the interpretation quality.

• We automate the selection of the action set for a Markov Decision Process(MDP) agent. This 

process is traditionally done by hand, which deters from the full automation of MDP-based 

systems. Our method combines the strength of wrapper [Kohavi and John, 1997] and filter ap­

proaches [Kira andRendell, 1992; Pudil etal., 1994; Bins and Draper, 2001] (formally defined 

in Section 4.1), providing a fast yet thorough search through possible action sets. We use both 

genetic algorithms [Holland, 1962; Goldberg, 1989] and simulated annealing [Metropolis et 

al., 1953] as heuristic search methods, and artificial neural nets (and perceptrons) [Haykin, 

1994], naive Bayes classifiers [Jensen, 1996], decision trees [Quinlan, 1993], and decision 

lists [Rivest, 1987] as objective functions inside these search methods. We test our method 

against pure filter and random methods, as well as action sets chosen by a domain expert. Our 

method outperforms the filter and random approaches and matches the performance of the 

domain expert.

• We empirically evaluate the novel automated action set selection method in both the maze do­

main and the vision domain. We reduce the action set for a maze domain agent, improving its 

fitness (defined in Section 3) by increasing its likelihood of solving the maze, while reducing 

the number of moves it takes to reach the goal state and the number of moves considered at 

each state. This domain is an example of a domain where no expert is available. In these 

situations, our method can be especially helpful, since it outperforms other automatic selec­

tion methods. In a state of the art adaptive objection recognition system (MR ADORE), we 

first determine the best search methods, machine learners for evaluation functions, as well as 

parameters for both of these key elements in the method. We then reduce the vision operator 

set improving the image interpretation accuracy on novel images while reducing the learning 

and execution cost of the system twenty-five-fold.

As in psychology, adding more choice in an MDP is beneficial, but only to a point. Our novel 

method of action set selection learns to provide the agent at hand with an adequate, but not super­

fluous, number of actions for a given domain, so as to improve performance over hand-engineered 

implementations of such systems.

6
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1.4 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2 we formally define Markov De­

cision Process framework, as well as the applications used in the thesis. In Chapter 3, the action 

selection task is described. Chapter 4 outlines related work in the similar field of feature selection, 

heuristic search and machine-learned evaluation functions. Chapter 5 describes our four step method 

for choosing action sets. Our empirical evaluation is given in Chapter 6, with discussion following 

in Chapter 6.5. Concluding remarks are given in Chapter 7.

7
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Chapter 2

Markov Decision Processes

A Markov Decision Process involves an agent that can be in a set S  of distinct states, and who can 

perform a set A of distinct actions to move between these states [Sutton and Barto, 1998]. In this 

thesis, we concern ourselves with finite-horizon Markov Decision Processes, where S  and A  are 

finite. At each time step t, the agent perceives its current state st £ S  and selects an action at £ A 

to perform. Each action is given a reward rt based on the current state and action performed.

Definition 2.1 For any state and action, the probability o f reaching each possible next state s ‘ is:

~  P r i st+ 1  =  s'-\st = s ,a t = a}

In a similar fashion, we can predict the value of the reward for any given state and action:

Definition 2.2 For any state and action, the expected value o f the next reward rt + 1  is:

T “s, =  E { r t+i\s t = s, at — a, st+i = s‘}

where E  denotes the expected value

In this thesis, we experiment with applications where the rewards are deterministic and undiscounted 

(i.e. later rewards are as important as immediate rewards):

Definition 2.3 The return o f a finite-horizon undiscounted MDP from time t is defined as

N  

t=o

where N  is the finite-horizon.

The solution to an MDP is the agent’s policy that tells the agent which action to take in each state. 

Definition 2.4 A deterministic policy it S  A  mapping states to actions is defined as:

ir(st ) =  at

8
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The optimal solution to an MDP is thus the optimal policy M {s t ) =  at , which maximizes R. The 

value of a state is dependent upon tt:

Definition 2.5 The value o f a state V  under policy tt is:

V T(s) = E^[lZt (s)}

where E^ is the expected value i f  the agent follows policy n.

Actions are also given values, dependent upon the state:

Definition 2.6 The value o f an action a under policy n  in a finite-horizon Markov Decision Process 

is:

Qv (s, a) =  E^{lZt \st -  s ,at -  a}

where E n is the expected value i f  the agentfollows policy i t . The term Q comes from Q-learning [ Watkins, 

1989].

With these quantities defined, we can now describe the domains used in our experiments. We 

use two significantly different MDP-based systems in our research to test the ability of our method 

to effectively choose an action set for a broad array of MDP problems.

2.1 Maze Domain

Maze domains have been used in many different studies including general reinforcement learning 

[Sutton and Barto, 1998], lookahead pathologies [Madani et al., 2002], the study of partially ob­

servable Markov decision processes [Miyazaki and Kobayashi, 1995], studies in neural information 

processing [Dayan and Hinton, 1993], geometric navigation [Blum et a l, 1991], genetic program­

ming [Soule et al., 1996], and overcoming incomplete perceptions [McCallum, 1993].

In the maze domain used in our experiments [Madani et al., 2002], an agent is allowed to roam 

within the boundaries of a square maze with a randomly defined goal state. Figure 2.1 shows a 

typical maze. The MDP state of the agent is its current position within the maze. The agent has 

perfect information regarding its current state. The agent’s percept at any given time is described 

by the tuple {x, y, so....sm, g} where x  and y  are the agent’s coordinates, SQ....sm are the agents m  

sensor readings for the blocks it can reach from its current state (one of {em pty, wall, goal}) and g 

is a binary sensor telling the agent whether or not it is in the goal state.

The agent moves between states with the MDP actions. These actions are defined in terms of 

a radius 5. The agent can move to any state on the border of the defined S. The agent thus has 

8 * 5 + 1  possible actions (+1 for the “quit” action) in its action set A,  and increasing the radius

9
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Figure 2.1: A 20x20 maze with walls shown as unlabeled squares, the agent’s position shown by the 
red A square, and the goal state shown in green G square.

\ l /
« -* -* -

Figure 2.2: Actions available to a maze agent with radius size 1. The agent is in the magenta square, 
its path is described by the diagonal blue line of squares and the goal is in the red square .

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



causes a linear increase in the number of possible actions available to the agent. Figure 2.2 shows 

the available moves to an agent with actions of radius size 1.

The agent is capable of “jumping” over walls, but cannot “land” on a wall. Thus, as long as there 

is no wall in the state mapped to by an action (and as long as this move doesn’t leave the boundaries 

of the maze), it is a legal action. Note that the agent cannot move in distances smaller than (or 

greater than) 5.

The agent is given a maximum number of action applications with which to find the goal state. 

A non-discounted reward function is used such that every reward incurred is of equal importance. 

Every move incurs a negative reward equivalent to the floor of the Manhattan distance (the distance 

between two points measured along axes at right angles) between the current state and the destination 

state. If the agent quits in the goal state, it receives a large positive reward, if it quits in any other 

state it receives a large negative reward.

We use this domain as a testbed for our action selection methods as it is a “traditional” MDP 

problem (as all the related research would attest to), so it is interesting to see if  our methods can find 

an action set that is less convoluted than the full action set.

2.2 M R ADORE

Image interpretation is an important and highly challenging problem with numerous practical ap­

plications. Hand-crafted image interpretation systems suffer from expensive design cycle, a high 

demand for expertise in both subject matter and computer vision, and the difficulties with portabil­

ity and maintenance. Over the last three decades, various automated ways of constructing image 

interpretation systems have been explored. The following brief account is based on [Draper, 2003],

One of the promising approaches to automatic acquisition of image interpretation systems lies 

with treating computer vision as a control problem over a space of image processing operators. 

Early attempts used the schema theory [Arbib, 1972; 1978], While presenting a systemic way of 

designing image interpretation systems, the approach was still ad-hoc in its nature and required 

extensive manual design efforts [Draper et a l, 1996].

In the 1990’s the second generation of control policy based image interpretation systems came 

into existence. More than a systematic design methodology, such systems used theoretically well- 

founded machine learning frameworks for automatic acquisition of control strategies over a space 

of image processing operators. The two well-known pioneering examples are a Bayes net system 

[Rimey and Brown, 1994] and a Markov decision process (MDP) based system [Draper et a l, 2000].

The latter system (called ADORE for ADaptive Object REcognition) learned dynamic image 

interpretation strategies for finding buildings in aerial images. As with many vision systems, it iden­

tified objects (in this case, buildings) in a multi-step process. The input data were raw images, and

11
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the output was an interpretation which identified buildings in the image; in between, the data could 

be represented as intensity images, probability images, edges, lines, or curves. ADORE modeled 

image interpretation process as a Markov decision process, where the intermediate representations 

were continuous state spaces, and the vision procedures were actions. The goal was to learn a dy­

namic control policy that selects the next action (i.e., image processing operator) at each step so as 

to maximize the quality of the final interpretation.

ADORE, which was a pioneering system, left several exciting directions for future work and 

improvement. These directions are investigated in a project titled MR ADORE (Multi Resolution 

ADORE) [Levner et al., 2003; Levner and Bulitko, 2004]. Multi Resolution means it is possible to 

change the resolution of the images during the interpretation process.

MR ADORE begins with the Markov decision process (MDP) as the basic mathematical model 

by casting Image Processing Library (IPL) operators as the MDP actions and the results of their 

applications as the MDP states (Figure 2.3). An example of an IPL operator would be a procedure 

for converting a colour image to a greyscale image. The system operates in two modes as follows.

During the offline training stage (Figure 2.4), available subject matter expertise is encoded as 

a collection of training images with the corresponding desired interpretation (the so-called ground 

truth). Figure 2.6 demonstrates an example of such a pair (input image, ground truth label). Of­

fline training continues by invoking an off-policy reinforcement learning algorithm that uses deep 

backups without bootstrapping ([Sutton and Barto, 1998])to acquire its value function [Sutton and 

Barto, 1998]. Specifically, at first, all feasible length-limited sequences of IPL operators are applied 

to each training image. The resulting interpretations are evaluated against the ground truth provided 

by the user. MR ADORE uses a pixel-level similarity scoring metric defined as the ratio of the 

number of pixels labeled as the target class (e.g., spruce) by both the system and the expert to the 

total number of pixels labeled as the target class by either one of them. According to such a metric, 

an interpretation identical to the user-supplied label scores 1 while a totally disjoint interpretation 

will get a score of 0.

The interpretation scores are then “backed up” along the IPL operator sequences using dynamic 

programming. As a result, the value function Q : S  x A  —> R is computed for the expanded states 

S' C S  and applied actions A! C A. The value of Q(s, a) corresponds to the best interpretation 

score the system can expect by applying operator a in state s and acting optimally thereafter. In 

reinforcement learning terms, MR ADORE represents the task as a finite horizon non-discounted 

problem wherein all intermediate rewards are zero except these collected by outputting an image 

interpretation. The latter is a positive reward proportional to the quality of the interpretation.

The collected training set of Q-values {[s, a, Q(s,  o)j} samples a tiny fraction of the 5 x 4  space. 

Correspondingly, function approximation methods are used to extrapolate the value function onto

12
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Figure 2.3: A fragment of the state-action graph used in our experiments. States are labeled with 
their vision data types and have forest samples shown next to them. Image processing operators are 
shown as the arcs.

the entire space. To make approximation tractable, raw multimegabyte states are currently distilled 

down to a 192 features and are presented to Artificial Neural Networks, which in turn act as function 

approximators.

During the online interpretation stage, the system receives a novel image and proceeds to inter­

pret it, as depicted in Figure 2.5. The value function, that was learned offline, now guides the control 

policy to apply vision operators from the IPL library.

In MR ADORE a “least-commitment” [Levner et al., 2003; Levner and Bulitko, 2004] control 

policy is used which first applies all limited feasible sequences of operators to the input image so- 

Once the set of possible image interpretations {s i , . . . ,  sjv} is computed, the policy uses the label of 

each interpretation s* to extract features from the original input image so- The resulting composite 

feature vectors f Si (,sq  ) are used with the machine-learned value function to select the most promising 

interpretation Sj* as follows: i* =  argm ax, Q ( f Si(so), submit). In other words, the policy selects 

the interpretation Si- that is expected to bring the highest reward when submitted (i.e., output as the 

system’s interpretation of the input image).
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Figure 2.4: offline training stage: all limited-length operator sequences are applied to each training 
image. The resulting image interpretations are evaluated against the desired label. Action-state 
rewards are then computed.

This technique eliminates ADORE’s need to design high-quality features for every processing 

level as they are now required for the initial colour image and the final binary interpretation only. 

Additionally, extracting features from the initial image provides a context for the features extracted 

from a candidate interpretation thereby addressing ADORE’s loss of performance due to history-free 

Markov features.

Finally, before interpreting a novel image, it is partitioned into regular rectangular tiles. Each 

tile is processed independently by the control policy. The resulting interpretations (one per tile) are 

then assembled into a single interpretation of the original image. This technique greatly increases 

flexibility of the system by allowing it to use different operators on different parts of a non-uniform 

image. The size of tiles is determined arbitrarily.

Vision operators within MR ADORE often take parameters (such as a threshold operator, for 

what intensity at which to perform the thresholding). We consider different instantiations of an 

operator as different operators, since they perform different tasks, and thus the operator set selection 

process amounts to selecting not only which operators, but which instantiations of these operators 

to include in the set.

In this thesis, MR ADORE is used for the task of recognizing spruce trees within forestiy images. 

The task is to label only the pixels that belong to spruce trees. Scoring is done at the pixel level. 

Foresters are interested in counting the number of trees in an image (and learning the details for each 

tree), which is not provided by MR ADORE. It is the responsibility of another module to interpret 

the labels provided by MR ADORE.

14
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Figure 2.5: online operation: the control policy uses an approximate value function to select the best 
sequence of operators from the IPL library. As the result, an image interpretation label is produced.

Figure 2.6: Original aerial forestry image (left) and its labeling (right) superimposed over the origi­
nal image, provided by the user as a part of the training set.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Problem Formulation

The task at hand in the thesis research is to automatically select a subset of actions from a presumably 

oversized full action set for use in an MDP. This subset should be the optimal action set for a given 

task, be it object recognition (vision operators), maze navigation (movement operators), or some 

other MDP domain.

We consider three factors with respect to the optimality of an action set A  used by agent executing 

policy it. First comes the learning cost incurred by the agent while learning a policy for the task.

Definition 3.1 The learning cost is defined as the time in CPU cycles taken to learn the policy it 

used on novel data:

Ci (A) — ci (it)

where ci is the number o f CPU cycles used in the learning process.

Another penalty is the run-time cost incurred by the agent while perfonning the task.

Definition 3.2 The run-time cost is defined as the number o f CPU cycles taken to accomplish the 

task:
n

Crt(A) = E sa['^2time(Tt(si))}
2—0

where E So is over the distribution o f  starting states and time(it(si)) is the deliberation time o f 

policy it in stateSi.

Combining these two, we have the full cost C  (A) of an action set A

Definition 3.3 The cost is defined as the total number o f  CPU cycles spent learning the policy and 

then executing the policy:

C(A)  = Cl(A) + Crt(A)

The third factor is the reward value of the final state where the agent ceases to act.
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Definition 3.4 The reward in an undiscountedfinite-horizon MDP (with M  action applications) is 

defined as the sum o f the scores given to the agent upon completion o f  its task:

M

R (A ) =  E So[n(s0)) =  E , 0[E„ £ > ] ]
%=1

where M  is the finite-horizon and E 1r is the expected value if the agent follows policy it.

The fitness F  of an action set A  is a combination of this cost and reward, typically defined in a 

linear equation:

Definition 3.5 The fitness o f  an action set A is a linear combination o f reward and cost:

F(A) = a R ( A ) - f 3 C ( A )  + cr (3.1)

where a+/3 = 1 and <j  is a constant. The values for a  and /3 are provided by the user, depending 

upon how the importance o f accuracy relative to cost. The value o f  o simply determines the scale o f  

the fitness values.

Thus, the optimal action set (A) is the set that maximizes F(A):

Definition 3.6 The optimal action set A* maximizes the fitness measure F(A):

A* — argm axf7'(A)

The optimal set varies, depending upon how much the user values reward over cost, or vice- 

versa.

For instance, in the maze domain, the reward is based upon whether or not the agent terminates 

in the goal state, and upon how many moves the agent makes before it terminates. If the agent 

terminates in a non-goal state, a negative reward is incurred for failing to solve the maze.

Ideally, one would like to search through all possible subsets of the given action set, and choose 

the optimal set (A*) based on the predefined balance of reward and cost. This is, however, not 

possible for two reasons. Firstly, since the set of subsets of an action set of size AT is the powerset of 

N,  even a modest-sized set of 100 actions generates a number of subsets that is practically infinite.

Secondly, even if one could search through all the possible subsets, there is still a need for a 

means of evaluating each subset of actions. The most accurate method is to evaluate each action 

set’s performance on the actual system, which in the case of MR ADORE means to learn the policy 

7r, execute it on all training images and rank it based on its average performance. Unfortunately, 

performing such a task for just one action set at depth four (applying at most four actions in all 

sequences) can take multiple hours, making searching through thousands of action sets infeasible.
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Figure 3.1: Longer operator sequences lead to better labeling. From left to right: the original image, 
desired user-provided labeling, the best labelings with an operator sequence of length 4, 5, and 6.

3.1 Desired Attributes of Ideal Solution

The desired end result is to have a completely portable system for choosing an optimal subset A* of 

a provided action set in any MDP, based on the evaluation metric (F (A )) provided by the user.

We want the mechanism to match human experts in speed and reward. If the system takes years 

to choose an operator set, then it is likely not of much use, and if the chosen operator set does 

not perform well enough, it is again quite useless. We would also like to outperform more “naive” 

methods, such as choosing an operator set based on highest ranked individual operators.

The selected operator set should hopefully be much smaller (number of actions in the set) when 

compared to the full set (of course this depends upon how many redundant operators are present in 

the full set), and thus reduce the total cost of the set C. Despite its smaller Cis,  the selected set 

should share comparable final rewards R  to the full operator set, and hopefully, equal final rewards. 

Having fewer operators should provide the system with fewer choices at each decision point, thus 

reducing the likelihood of error.

3.2 Example: Library Selection in MR ADORE

During the offline phase, MR ADORE explores the state space by expanding the training data pro­

vided by the user. In doing so it applies all operator sequences up to a certain, length (Figure 2.4). 

Longer sequences are preferred for better image interpretation since more operators can be applied 

for more precise transformations of the input image into the desired labeling. Even the modest 

increase from 4 to 6 operators, shown in Figure 3.1, is clearly beneficial.

On the other hand, the size of the state space being explored increases exponentially with depth 

and therefore quickly becomes prohibitively expensive. Currently in MR ADORE, a greatly down­

sized (expert-selected) operator set is used, to ensure that the learning and run-time costs of the 

system are reasonable. With this downsized operator set used by MR ADORE for the tree canopy 

recognition task, the effective branching factor is approximately 26.5 which results in the sizes and 

timings shown in Table 3.1 (as seen in Chapter 1).
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Table 3.1: offline state space exploration. All operator sequences up to a fixed length are applied to 
an image. The number of nodes and sequences, explored state space physical size (GBytes), and the 
expansion time on a dual Athlon MP 1600+ shown were averaged over 10 images.

Sequence Length #  of Nodes # of Sequences Size (GBytes) Time
4 269 119 0.038 30 sec
5 7,382 3,298 1 10 min
6 192,490 86,037 26 8 hrs

There are three conflicting factors at work: (i) large off-the-shelf image processing operator 

libraries are required to make MR ADORE cross-domain portable, (ii) long operator sequences are 

needed to achieve high interpretation quality, and (iii) combinatorial explosion during the learning 

phase can impose prohibitive requirements on the storage and processing power. Fortunately, most 

domain-independent operator libraries almost invariably contain numerous redundant or ineffective 

operators when a specific domain is considered. Thus, the feasibility of the policy learning phase 

as well as subsequent online performance critically depends on the selection of an efficient operator 

subset for the domain of interest.

Previous systems such as [Draper et al., 2000] relied on manual selection of highly relevant non- 

redundant operators thereby keeping the resulting IPL small and the offline state space exploration 

feasible. Unfortunately, such solutions defeat the main objective of MR ADORE-like systems: their 

automatic construction for a given domain. Note that the source of the original library is irrelevant. 

In particular, one may engage genetic programming to create such a library first [Teller and Veloso, 

1996] and then run automatic operator set selection on it.
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Chapter 4

Existing Methods

Action selection in Markov Decision Processes is done by the agent’s policy 7r. Action set selec­

tion has been a human-expert task in the past, and automation of this task has not been seen in the 

literature. Feature selection is a closely-related field, thus we review various feature selection meth­

ods. A feature is a significant aspect or property of a state that can be used to compare different 

states. More importantly features can be measured, whereas many states (such as an image) cannot. 

[Gilmore and Hillston, ]. Features give us a compact way of describing a complex state, which 

allows for comparisons between and operations on these complex states

4.1 Feature Selection

Selecting an action set is similar to selecting an optimal set of features in as much as the individual 

actions/features are interdependent, possibly redundant, and their performance can be fully evaluated 

only within the target system. Thus, we will first briefly review representative feature selection 

literature and then discuss the differences.

There are two important dimensions to consider: the type of search in the space of feature sets 

and the optimization criteria. Two primary approaches have been studied. Wrapper approaches 

[Kohavi and John, 1997] measure the actual performance of the target system with a candidate 

feature set. This means that whenever the search mechanism wants to evaluate a feature set, the 

actual system is invoked in order to evaluate how well the feature set performs. While being accurate, 

such optimization criteria can be prohibitively expensive in practice. For instance, in the context of 

MR ADORE measuring the fitness of a typical operator set on a test suite of 35 images takes around 

12 hours on a dual AMD Athlon MP+ 2400 Linux server, since both the learning cost C) and the 

execution cost Crt are significantly large due to full expansions done in labeling novel images (with 

the “least-commitment” policy). Filter feature selection methods [Kira and Rendell, 1992; Pudil 

et al., 1994; Bins and Draper, 2001] use system-independent criteria such as feature redundancy,
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Algorithm 1 The RELIEF algorithm ([Kononenko, 1994]). Input: m  training data. Output Opti-
mized feature set. _____________________________________ _______________________ ___________

1: set all weights W[A}: = 0.0;
2: for i =  1 to m do 
3: randomly select an instance R;
4: find nearest hit H  and nearest miss M ;
5: for A  =  1 to alLattributes do
6: W[A]  =  W[A]  -  +  ‘M ILA &M 1-

relevance, and other similar metrics. While such criteria are frequently less expensive to compute, 

they are decoupled from the actual target performance function and may not always account for the 

influence of domain specifics on the performance of a feature set.

The number of feature sets is usually exponential in the number of features and therefore in­

complete heuristically guided search methods are typically preferred. For feature selection, greedy 

algorithms have been used. In [Pudil et al., 1994] a Floating Search Algorithm is used to select 

features. This algorithm is from the family of sequential search procedures involving backtracking. 

The Floating Search Algorithm is shown to be effective in selecting features from both monotonic 

and nonmonotonic feature sets. A monotonic feature set is one where if a feature from that set is 

added to the current set, the performance of the system cannot be degraded.

In [Kira and Rendell, 1992] the RELIEF algorithm was introduced. RELIEF uses how well 

attributes distinguish among instances that are near each other to estimate the attributes’ values 

[Kononenko, 1994], The full algorithm is given in Algorithm 1. RELIEF takes each instance and 

searches for its nearest hit (its nearest neighbour in the same class), and its nearest miss (its nearest 

neighbour in a different class). In this way, attributes are ranked highly if they successfully dif­

ferentiate between instances from different classes and give instances of the same class the same 

values.

Another filter method involves ranking features based on the average performance (defined by 

the user) of feature sets containing them, on a given system. This is similar to the + / — statistic in 

hockey, where a player is given a +  if  his team scores while he is on the ice, and is given a — if 

the opposing team scores while he is on the ice. These + s and —s accumulate, and a player with a 

highly positive + / — is considered a valuable asset to his team. In a similar fashion, a feature with 

a high rank would be considered an asset to a feature set. The algorithm for computing the optimal 

feature set with this method is given in Algorithm 2.

Once features are selected, all of them are applied to the data token at hand simultaneously. This 

is in contrast to image processing operators which are applied to the initial image sequentially with 

one operator’s output being the next operator’s input. Furthermore, operator application is guided 

by a dynamic control policy (e.g., best-first ANN-guided policy in [Draper et al., 2000]) and can
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Algorithm  2 “Top” , a method for selecting feature sets. Input: Training data, desired number o f  
features d in set Output: Domain specific feature set(s)

1: for Each feature a in the full set do 
2: for Each training datum {attributes,fitness} do
3: if o is present in the training datum then
4: Add this fitness to a ’s total
5: Increment count
6: Calculate a’s fitness by dividing total by count
7: Sort features by their fitness 
8: Output top d features

involve loops, back-tracking, and early termination. These additions complicate the mapping from 

operator sets to the resulting target system performance thereby possibly limiting the applicability 

of filter methods, a phenomenon that we explore in our experiments.

4.1.1 Genetic Algorithms (GAs) in Feature Selection

In [Vafaie and Jong, 1993], GAs were shown to be more robust than traditional greedy methods 

for selecting features to be used by the AQ15 incremental learning system to determine texture 

classification rules in images. A sequential backwards search (SBS) algorithm is used as the greedy 

method comparison to the GA. SBS starts with the full feature set and discards one feature at a time 

until the desired number of features are present in the set. Features to be discarded are determined by 

evaluating the feature set in each feature’s absence, and removing the feature with the least use. In 

situations where there are many interdependencies between features, GAs are shown to outperform 

the SBS algorithm. When there are fewer interdependencies, GAs are shown to be less efficient. 

Since vision operators are known to be substantially interdependent (each operator depends upon 

the output of another operator), GAs should be suitable for the vision operator selection task. In our 

MDP domains, it is quite often not known how many actions are desired in the set, thus it would be 

difficult to apply SBS.

Multi-criterion optimization (e.g., minimize the feature set size and maximize the overall recog­

nition accuracy) is possible with GAs as well. In [Sun et al., 2002], a GA balancing accuracy and 

the number of features is used, by applying a linear weighting formula for the two criteria, shown in 

Equation 4.1.

f i tn e s s  = 104/  +  0.4 x Z  (4.1)

where I  is the interpretation accuracy of the system, and Z  is the number of features present in the 

current set. The task at hand is to determine the gender of people in images based on an eigenvector 

describing the image. In this task, having fewer features (i.e. only those features which encode gen­

der information) actually increases the accuracy of the system. Comparing this to vision operators 

in MR ADORE, having more vision operators in offline training always increases accuracy, since
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this only gives more possible operator combinations, and we know which image interpretation is 

the best. In contrast to this, in the online operation of MR ADORE, having fewer operators can 

be beneficial, since the machine-learned decision making system is then given fewer poor image 

interpretations.

[Sun e ta l, 2002] first use Principal Component Analysis (PCA) to store each image as a feature 

vector of low dimension. The multi-criteria GA is then used to choose features to be used by a neural 

net to detennine the gender of the person in each image. With the reduced feature set provided by 

the GAs, the interpretation accuracy of the neural net is improved from 82.3% to 88.2%.

In [Vafaie and Jong, 1992] a weighted multi-criteria GA is again used. The authors use genetic 

algorithms as a tool to select features for a rule induction system, again for the AQ15 system. The 

fitness function for the GA is a weighted sum of the number of testing examples identified correctly 

and the number of testing examples identified incorrectly (with the GA selected features).

A similar weighted approach is used in [Oliveira et al., 2001] to help select features for recog­

nizing handwritten digits. Two types of GA are used: a standard GA (SGA), which, as its name 

describes, is simply a GA with the standard crossover, mutation and selection process, and an it­

erative GA (IGA) which is known to converge faster than SGAs [K.F.Man et al., 1999] by simply 

restricting the search space at each iteration. The best solution found at each iteration is used as a 

guideline for the next generation. In this task, the SGA outperforms the IGA.

In [Oliveira et a l, 2002], a Non-Dominated Sorting GA (NSGA) with elitism is used [N.Srinivas 

and K.Deb, 1995]. A ranking selection method is used to make good solutions more prominent, 

while a niche method is used keep the subpopulations of good solutions stable. The NSGA outper­

forms traditional GAs on the task of handwritten digit recognition.

4.1.2 Pareto-optimal Genetic Algorithms in Feature Selection

Pareto-optimal GAs present an alternative method for producing solutions that must balance between 

objectives. A pareto-optimal solution is one that dominates all other possible solutions in each 

criterion of the problem. In [Emmanouilidis e ta l, 1999] a niched Pareto GA with random sampling 

tournament selection is used. It is described in Algorithm 3. The authors use the Pareto GA to select 

features for neurofuzzy modeling of cancer data and vibration analysis data. In the former, nine 

features are used, while in the latter 56 features are used. In both cases Pareto GAs are able to 

produce reasonable solutions for different situations - where different criteria are given different 

weights.
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Algorithm 3 Niched Pareto-Optimal GA ([Emmanouilidis et a l, 1999]). Inputs: Evaluation func­
tion, Number of bits in chromosome. Output: Fit population of solutions.

1: Randomly select Individuals from the population to create a dominance tournament group
2: Form a dominance tournament sampling set by again selecting individuals from the population.
3: Check each individual in the tournament group for domination by the dominance sampling set 

(to see it is dominated by at least one individual).
4: If only one individual in the tournament group is non-dominated, this individual is copied into 

the mating pool.
5: If more than one individual is non-dominated, or all the individuals are dominated, the individual 

copied to the mating pool is the that which will be maintain diversity, which is the individual 
with the smallest niche count, which is based on the Hamming distance between the individual 
in question and all the individuals alreadypresent in the mating pool.

6: Iterate until mating pool is full. When this is true, start the genetic algorithm with the created 
mating pool.

4.2 Meta-Models: A Crossover between Filter and Wrapper Ap­
proaches

Evaluating possible solutions to a problem on the system at hand can be prohibitively expensive. 

In [Dahm and Ziegler, 2002], genetic algorithms are used to select walking patterns and speeds for 

robots commonly used in robot soccer. Clearly, evaluating thousands of possible combinations is 

not feasible on these machines due to time and power restrictions, as well as wear and tear on the 

robots. Thus, alternate evaluation methods must be considered.

One common approach is to use a simulation of the actual system. In [Robert H. Kewley and 

Embrechts, 2000] the authors perform fuzzy genetic decision optimization (FGDO) on a complex 

stochastic system. They use a stochastic simulation model to estimate the results of parameter set­

tings for the system, and a fuzzy ordinal preference model to aggregate the results of the simulation 

model into a fitness value for the parameter set. Genetic algorithms are then used with these fitness 

evaluations to search for high performance parameter sets for the actual system. The task the authors 

use to test their model is a tactical military attack route planner. They test the FGDO method against 

human expert attack planners, and outperform them. It took seven hours to compute 40 iterations of 

their GA, which they deem unacceptable, and which makes this method seem too costly in terms of 

Crt to implement for our purposes.

Unfortunately, building a simulation model involves domain-expert knowledge and may not even 

be possible in certain domains. With robots for instance, it may be impossible to mathematically 

model the conditions of all the joints in the robots. With MR ADORE, it is impossible to model 

the effects of executing a vision operator on a given image (except in trivial cases) without actually 

executing the vision operator.

There is thus a need to replace costly evaluation via running the actual system with a surro-
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gate evaluation function. These surrogate functions are commonly known as meta-models in the 

literature, and are used in many different applications. The idea of meta-models as evaluation func­

tions has been evaluated in [Jin et al., 2001], The authors discuss the convergence of GAs with 

approximate fitness models, and use a covariance matrix method (CVA). CVAs converge quickly 

and are capable of self-adaptation. New data points that lie along the direction in which the GA is 

proceeding are given larger weight in online learning.

The authors use a generation-based evolution control method, meaning certain generations 

within the GA have their fitness evaluated by the actual mechanism (rather than by the meta-model). 

These generations can then be used to train the meta-models further. Another form of controlled 

evolution discussed in the paper is individual based, where certain individuals from each generation 

are evaluated with the true fitness function. Using the best strategy, the top to ranked individuals 

are evaluated on the actual system. Using the random strategy m  random individuals are evaluated 

on the actual system. Both methods of controlled evolution can be inapplicable, depending upon the 

application (i.e. when the fitness evaluation is extremely expensive). Control Frequency determines 

how many generations use the true fitness function for evaluation, and is determined by how accu­

rate the meta-model is deemed to be. The authors evaluate the methods on two benchmark data sets 

(Ackley Function and Rosenbrock function) as well as an aerodynamics problem. Results show that 

properly estimating the control frequency leads to improved results over simply employing the true 

evaluation function.

Periodically using the actual system to calculate fitness values within our heuristic search meth­

ods could greatly slow down the process of selecting action sets for MDP domains and agents. In 

MR ADORE, if a costly action set is to be evaluated on the actual system, the process could be 

delayed by several hours.

In [Yan and Minsker, 2003], genetic algorithms are used with artificial neural nets (ANNs) the 

meta-models. The authors use the early iterations of the genetic algorithm to train the ANN fitness 

function, by periodically retraining the ANN with data obtained from recent runs of the GA. This 

makes the entire process dynamic, rather than static. Empirically their method achieves satisfactory 

performance on the task of the risk-based remediation design model for groundwater management. 

Traditionally, linear programming has been used for this task, but new combinations of different sub­

models in groundwater management cause such an approach to yield suboptimal results. Simulated 

annealing has also been used for this task [Dougherty and Marryott, 1991], and has shown similar 

performance to GAs. The dynamic GA has adaptability as its advantage, but the meta-models must 

be retrained in order to adapt, which can be expensive with ANNs.

Another type of meta-model used is the kriging method [Willmes et al., 2003]. The kriging 

method models a system as a localized, stochastic Gaussian process with a covariance matrix (]T])
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and an expected value (p). The kriging method is most often used in geostatics, where data is 

spatially correlated [Journel and Huijbregts, 1978]. In experiments, neither neural nets nor the 

kriging model emerged as the best method to use for a meta-model.

It is important to remember that in order for a meta-model to be effective, it is not necessary 

for it to be completely accurate. Its main purpose is to select the correct individuals, no matter 

what fitness it gives these individuals. This is why traditional methods for evaluating methods do 

not generally work for evaluating meta-models [Jin et al., 2003], Evaluating meta-models based on 

their mean squared error:
i "j ^ m s e  _  ±  ^ " ^ ( m o d e t )  _  ^ { o r ig )y .

71 J=1
(for n examples and <j)j is the score given to solution j ) often leads to poorly ranking the best meta­

model, since lowering MSE does not necessarily lead to choosing better solution. Here the error is 

calculated by comparing the fitness value given to an individual by the meta-model and the fitness 

value given by the true fitness function. A more effective method of evaluating meta-models is to 

evaluate how often the meta-model correctly selects individuals. The authors suggest several metrics 

for measuring how often a meta-model selects the correct individuals, but these are dependent upon 

being able to determine what are the correct individuals to select, a task that is not possible within 

either the maze domain (except when exhaustive search is possible) or MR ADORE

4.3 Genetic Algorithms versus Simulated Annealing

Since we use genetic algorithms and simulated annealing in our experiments, we reviewed their 

comparison in the literature.

The performance of genetic algorithms and simulated annealing has been compared in mapping 

processes in parallel programming [Talbi and Muntean, 1993]. The authors also use hill-climbing 

as a third method to solve the problem. Mapping processes involves determining the optimal static 

placement of communicating processes on the processors of a distributed memory parallel machine, 

an NP-complete problem [Garey and Johnson, 1979], Simulated Annealing and Genetic Algorithms 

show similar performance, with GAs having a search time comparable to hill-climbing (faster than 

simulated annealing). The intrinsic parallelization of genetic algorithms is shown to give them an 

advantage over simulated annealing.
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Chapter 5

Heuristic Search with Meta-Models 
Method

5.1 Novel Approach

We now describe in detail our novel approach to solving the action set selection problem in Markov 

Decision Processes.

As mentioned in the Existing Methods section, wrapper approaches use the correct optimization 

criteria but can be prohibitively expensive. This is because the actual system is invoked in order to 

evaluate all potential solutions encountered during the search. Filter approaches are computationally 

feasible but do not necessarily deal well with complex interdependencies among operators since 

they have no access to performance of the actual system. We combine the best of wrapper and filter 

approaches by using a wrapper-like search in the space of action sets. Unlike traditional wrapper 

methods, we guide the search with afastbut at the same time domain-specific fitness function (meta­

model). Similar approaches have been used in [Jarmulak and Craw, 1999]

We call our method Heuristic Search with Meta-Models. We will refer to this method as HSMM 

for the remainder of the thesis. HSMM involves four major steps which operate as follows:

Step I: we evaluate a small collection of selected action sets via running each of them on the 

actual MDP system as shown in Figure 5.1. Each action set A, is assigned a reward and a cost, based 

on the average reward and cost over several runs of the system using it. The action set’s fitness F (A )  

is then F (A )  =  aR (A ) — PC{A) +  <r (as defined in Definition 3.5). The number of random action 

sets evaluated depends upon the amount of time available for the training process and the number of 

actions in the set.

Step 2: step one results in a collection of action sets and their fitness values {A, F (A )}. In the 

second step, we generalize this collection using machine learning (ML) techniques (Figure 5.1). As 

a result, an approximate fitness function Ful is acquired.
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Figure 5.1: Steps 1 and 2 of the proposed methodology. Supervised machine learning methods 
are used to generalize fitness of sampled operator sets into an approximation to the actual fitness 
function.

Generalized 
action set 

fitness 
function

Figure 5.2: Step 3 of the proposed methodology. Our approach for automated operator selection: 
heuristic search is conducted in the space of operator sets. It is guided by a machine-learned approx­
imation to the performance function of the actual system learned in steps 1 and 2.

Step 3: once machine learning is over, we use the approximate fitness function as the optimiza­

tion criteria in a heuristic search (e.g., genetic algorithms and simulated annealing (SA)) in the space 

of action sets (Figure 5.2). Numerical classifiers provide the search mechanism with actual fitness 

values. Symbolic classifiers label an action set with a class, which can be used in the same way 

as a fitness value by the search mechanisms, by simply choosing action sets labeled with the high­

est class, since these classes are defined as buckets for fitnesses (i.e class 12 could be for fitnesses 

between 0.2 and 0.25, class 13 could be for fitnesses of between 0.25 and 0.3, and so on...).

Step 4: the action sets found by the search are then evaluated against a set of validation images. 

The best m  action sets are output to the user to be used in the domain of interest.

In all experiments, we compare the performance of the MDP agents with the action sets chosen 

by the proposed method to the performance of the MDP agents with action sets chosen by the
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following standard techniques.

First, we use the Top method (detailed in Algorithm 2 in Chapter 4) to choose action sets to test 

whether a wrapper/filter approach is necessary. We use the same training data as is used to train 

HSMM, but use it instead to rank actions. An action’s score oj is defined as the average fitness 

(Definition 3.5) of the action sets in which it was present. This treats operators as individuals, 

abolishing the assumption that operators must be considered as a team, and that certain operators 

are useless in the absence of other operators (such as operators that work with grayscale images in 

the absence of an operator that converts colour images to grayscale images). The method lacks the 

knowledge of how many actions to put in its chosen sets.

Second, we compare against randomly generated operator sets and third, we compare against a 

set chosen by a domain expert. In the vision domain, this expert has three years of expertise using 

the MR ADORE system on forestry data. Since there is no domain expert in the maze domain, we 

compare against an action set with one half of the actions removed, but all the general movement 

directions still present.

It is important to note that if the full action set is the best set for a given agent and domain, then 

the HSMM method is capable of choosing this set. That is, HSMM does not necessarily reduce the 

action set, it only does so if a reduced set has a better fitness than the full set.

It should also be noted that our heuristic search methods are not required to perfonn multi­

objective optimization, since the reward R{A) and the cost C (A) (Ci+Crt ) are already incorporated 

into the fitness F{A) before the meta-models are trained. Thus the search methods are required to 

optimize one objective, the fitness of an action set.

5.2 Algorithms

We will now present the search algorithms used in step 2.

5.2.1 Heuristic Search Methods

Recall that the number of subsets of an action set of size N  \s2 N , an intractable number for exhaus­

tive search, even for modest values of N . In order to intelligently explore the space of action sets we 

turn to well-known heuristic search methods. Heuristic search is known to have a loose requirement 

on gradient information and better global searching ability [Yan and Minsker, 2003].

Genetic Algorithms

Genetic Algorithms (GAs) are a vital part of our HSMM method. As such, we present an brief 

overview of GAs, specific to the type of GA we use in our experiments.
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Introduced in the 1960s by John Holland of the University of Michigan [Holland, 1962], and 

greatly furthered by David Goldberg in the 1980s [Goldberg, 1989], genetic algorithms are a method 

for parallel search which use biological abstractions to represent data. Data is encoded into a bit- 

string called a chromosome. A position in the chromosome can be either active (represented by a 

’1’) or inactive (represented by a ’0’)- An initial population of random chromosomes is generated 

and ranked according to each chromosome’s fitness. The fitness function is the most important part 

of any genetic algorithm in that it must accurately rate the chromosomes according to some given 

criteria.

Once the initial chromosomes are ranked, evolution begins. In simple GAs, to create the next 

generation of chromosomes, two parents are chosen from the present pool. A flip  function selects 

the parents in such a way that it is more likely to pick higher ranking parents, but will sometimes 

pick lower ranking parents.

Once parents are selected, they are mated to form children. Two parents form two children, with 

the children being formed as opposites. This is done by giving childl parentl’s qualities half the 

time (and giving child2 parent2,s qualities) and the opposite the other half o f time (giving childl 

parent2’s qualities,etc ...) . This is called uniform crossover, and is used when the order of the bits 

in the bitstring is not important. Giving qualities of a parent is implemented by assigning the bit in 

the child active if it is active in the parent, or inactive if it is inactive in the parent.

Once the children are formed, they are mutated by flipping random bits. This is done to prevent 

a population from having individuals that are too similar, which could lead to convergence to a 

local maximum. This is also the reason why it is not always the case that the top-ranked parents 

are selected for mating. This is much the same as allowing exploration in maze-type applications; 

we may find a better solution by taking seemingly sub-optimal steps in the present because they 

may lead to improvements in the future. The probability with which the children’s’ bits are flipped 

during mutation is determined by the similarity of the parents that produced these children. The 

more similar the parents, the greater the chance any bit is flipped.

The children chromosomes replace two other chromosomes in the population, which are selected 

in the same way as parents were, except that it is more likely that poorer ranking solutions will be 

chosen and replaced. Thus in every evolutionary step two new chromosomes are created and two 

are replaced. The population size is kept constant. It is an arbitrary matter to decide how many 

evolutionary steps to take (how many generations to produce), but generally after a few thousand 

iterations convergence to a maximum will occur.

For our specific application, chromosomes represent action sets. Each bit in a chromosome 

represents an action that can be either present or absent from any given set. Obligatory actions (such 

as the quit action in the maze domain) are included in every set and are not part of the chromosome,
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since we do not want to risk them not being in the set. The length of the chromosome is thus 

determined by the number of actions that we allow to either be present or absent in an action set. An 

action is present if  the bit at its position is set to ’1’. Otherwise (if the bit is set to ’O’), the action 

is not included in particular set. For instance, bitstring ’100101’ represents an action set containing 

actions number one, four and six.

Simulated Annealing

Simulated Annealing is used as an alternative heuristic search in some of our earlier experiments 

and is described in this section.

Annealing is a process in which a solid is heated, and then allowed to cool. In order to maintain 

a satisfactory molecular arrangement throughout the process and guarantee a “good” end-state, the 

cooling must be slow, as this allows the arrangement to propagate through the solid.

Simulated annealing is the simulation of this thermodynamic system by a computer [Metropolis 

et a l, 1953]. Given a fitness function, which returns the suitability, the fitness of the system is 

calculated at every state. Given a current optimal solution Si and a candidate optimum solution Si, 

simulated annealing chooses to accept the candidate (i.e. replace Siwith S i, given the probability 

in Equation 5.1:

P  (accept) = m i n ^ l , e  J (5.1)

where T  is the system temperature and k is a constant. It should be clear then that if the candidate 

solution performs better than the current optimal solution it is always accepted. Otherwise, it is 

conditionally accepted, based on the current temperature of the system, and how much “worse” the 

candidate is than the current optimal solution. Thus, the probability of acceptance can be substantial, 

if the temperature is high. As the number of iterations increases, the temperature decreases, accord­

ing to a manually-selected annealing schedule. The initial temperature is also selected manually.

There are numerous stop criteria for the simulation. The simulation may stop when a set number 

of iterations is reached, the temperature has become too low, there has been an “adequately long” 

time without finding a candidate that is better than the current optimum, etc. We used a pre-defined 

number of iterations as the terminating criterion.

This method is primarily an improvement on the hill-climbing algorithm, in which better solu­

tions are always selected, and worse solutions are never selected. The simple hill-climber can fail 

when there are multiple maxima in the system; it may get trapped at a local maxima. Simulated 

annealing addresses this problem by allowing the system to back out, based on how much worse the 

candidate solution is, and the current temperature, as described above. The current best solution is 

always stored.
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This is the general process of simulated annealing, which has been successfully applied to nu­

merous combinatorial problems as a heuristic method [Kirkpatrick et a l, 1983], We have now 

applied this technique to the problem of action selection. For this case, the function that is to be 

maximized is to find the action set (represented by a bitstring) that returns the maximum fitness, as 

determined by any one of the machine learning techniques described in Section 5.2.2.

At each iteration, a new candidate solution is created by taking the current optimal solution 

and randomly flipping a few bits in the string. This solution is then compared with the current 

optimal, and optionally accepted, as described above. The search terminates after the preset number 

of iterations. As a result, the best found bitstring is output to the user.

Both higher and lower probabilities of flipping bits have advantages. A higher probability allows 

the system to abandon less-than-optimal solutions more quickly. Lower probabilities mean that the 

candidate has more in common with the current optimal; more is learned from one iteration to the 

next. Clearly, if  a probability of 0.5 is used, then nothing is learned from one iteration to the next, 

and the system is no more than a simple random search. Also, probabilities o f 0.0 and 1.0 ensure 

that no real learning is possible, since either nothing changes, or everything learned changes at each 

iteration. Selecting the annealing schedule is a complicated task, often done by trial-and-error.

5.2.2 Machine Learning Algorithms

Any informed search mechanism requires an evaluation function in order to be able to score and 

rank individuals in the search. In order to obtain the true score for a candidate, invocation of the 

full system is required. If this invocation is too costly, the search can become intractable for a large 

search space. For this reason we turn to machine learning to approximate the true evaluation function 

within our heuristic search methods. These meta-models ([Jin et a l, 2001]) enable us to effectively 

search through the space of action sets. Different types of machine learning were used including 

symbolic and numeric learners, in an attempt to discover the best meta-model for each task.

Naive Bayes Classifiers

As the name implies naive Bayes is based primarily on Bayes theorem, which gives us a way of 

relating conditional probabilities to each other:

where D  is the training data and h is the hypothesis [Jensen, 1996; Mitchell, 1997].

In our case the attribute values are whether a given bit in the bitstring is on or off (1 or 0), and 

our target value is one of the discrete bucketed accuracy values. When a new instance is provided 

as input to the naive Bayes classifier, it assigns the most probable target value to it, based on the
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attribute values describing the instance:

V M A P  =  a r g m a x P ( v j \ a i ,  a 2 , . . . a n )
Vj 6 V

where v m a p  is the most probable target value and a i , a2, . . .  a n are the attribute values of the 

instance.

Using Bayes theorem, we rewrite this equation as:

v m a p  =  a r g m a x P ( a i , a , 2 , . . .  a n \ v j ) P ( v j )
Vj € V

With this equation we have two values to estimate. P ( v j )  is calculated simply by counting how 

often each target value occurs in the training data. Estimating P ( a i , a , 2 ,  ■ ■ ■ a n \ v j )  would require 

seeing the entire instance space, in order to obtain a reliable probability for how often these attributes 

appear together. The naive Bayes classifier makes the simplifying assumption that each attribute a* 

is independent of all other attributes, reducing the approach to:

Vjyb  =  a r g m a x P ( v j )  n P ( a i \ v j )
V j €  V  i

where v n b  is the target value output by the naive Bayes classifier.

All the probabilities were trained using the same training data as the other methods. The differ­

ence is that no search is performed, instead we need only frequency counts from within the training 

data.

Artificial Neural Nets and Perceptrons

Artificial neural networks (ANNs) are a neurologically inspired function approximators. ANNs are 

built with many simple units, called neurons, that can accept many real-valued inputs, and output 

a single real-valued number. Layers are composed of one or more neurons. ANNs are composed 

of an input layer, optional hidden layer(s), and an output layer, as can be seen in Figure 5.3. Each 

neuron in a layer employs a squashing function, that maps a very large input domain to a small 

range of outputs. One common squashing function is the sigmoid unit that first computes a linear 

combination of its inputs, then applies a threshold to the result. The output o is computed as:

o — a(aj.x)

where

°{y) -

uJ is the weight vector, and x  is the input vector
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Figure 5.3: A basic artificial neural network [[University, 2004]].

A commonly used algorithm for training an ANN is the backpropagation algorithm [Haykin, 

1994; Mitchell, 1997], which learns the weights for a multilayer network (input, hidden, and output 

nodes), provided that network has a fixed set of units and interconnections. All neurons are initially 

given a small random weight. In the forward pass, an instance is fed through the network, and the 

output is compared against the target output (provided in the training data).

A commonly used mathematical tool, gradient descent, is used to adjust the weights after er­

rors are calculated. Errors are the difference between the predicted output produced by the neural 

network, and the actual output given in the training data:

e <?) =  2 53 53 ~  ° k d ) 2

d£D kSoutputs

where tkd and Okd are the target and actual output values associated with training example d and 

the fcth output unit. The full backpropagation algorithm is given in Algorithm 4

ANNs accept real-valued inputs and output real-valued numbers as well. Scores and rewards in 

our experiments are (and generally will be) real-valued numbers, and thus not having to discretize 

these values should give the ANNs an advantage over other machine learners (such as decision 

trees), since discretizing may cause a loss of information when two different values are placed in the
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Algorithm 4 Backpropagation algorithm. Inputs: (training-examples, rj,riin, n out, nhidden) 
([Haykin, 1994; Mitchell, 1997]). Outputs: New weights for neurons 

1: Create a feed-forward network with nj„ inputs, nhidden hidden units and n 0u t output units.
2: Initialize all network weights to small random numbers (e.g. between -.05 and .05).
3: w hile Not Termination Criteria do 
4: for each {x, t}  in tra iningexamples do
5: Input the instance x  to the network and compute the output ou of every unit u in the network

(Propagate the input forward through the network).
6: For each network output unit k, calculate its error term 5k

5k * 0^(1 Ok)itk Ofc)

7: For each hidden unit h, calculate its error term 5n

5h * - o h ( l ~ o h ) ^  UkhSk
k€outputs

8: Update each network weight ojji

idji 10ji -r A,0Jji

where
A uj =  rjSjXji

(Propagate the errors backward through the network) 

same bucket.

Perceptions are a special type of ANN that are composed of an input layer and an output layer, 

with no hidden layer(s). They are thus the equivalent of a linear separator, and are often too simple 

to properly partition the complicated space of action sets.

Decision Trees

A decision tree approximates discrete-valued target functions in a tree representation [Mitchell, 

1997; Quinlan, 1993] At each node in the tree, a decision is made by testing a condition on a single 

input attribute, and the corresponding decision branch is followed to the next node in the tree, with 

the process continuing at the next sub-tree. This continues until we reach a leaf node, which contains 

a constant value returned by the decision tree. Decision trees can be represented as a set of if-then 

rules, for human readability. They can also be represented as a disjunction of conjunctions of the 

form:

(X  = a A Y  = b) V {Z = b A W  = c)

Decision trees are considered appropriate for problems where instances are represented by attribute- 

value pairs, which is the case in our task. Each action is represented in a bitstring, taking on values 

{0,1}. Even if the number of disjoint possible values for an attribute is not two, decision trees work
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Algorithm  5 Generate decision Jree. Generate a decision tree from the given training data ([Quin­
lan, 1993; Han and Kamber, 2001]). Inputs: samples, attribute-list. Output: decision tree.

1: create a node TV
2: if samples are all o f  the same class C  then 
3: return TV as a leaf node labeled with class C
4: if attribute-list is empty then then
5: return TV as a leaf node labeled with the most common class in samples
6: select test-attribute, the attribute among attribute-list with the highest information gain
7: label node TV with test-attribute
8: for each known value o* o f  test-attribute do
9: grow a branch from node TV for the condition test-attribute = a,

10: let Si be the set o f  samples in samples for which test-attribute = a*
11: if Si is empty then then
12: attach a leaf labeled with the most common class in samples
13: else
14: attach the node returned by Genemte-decisionJxee(si,attribute-list — test-attribute)

well as long as this number is not excessively large. Even real-valued attributes can be handled, with 

slight modifications to the algorithm (i.e. discretizing). In our work, the output values are fitnesses 

that take on real values. We thus discretize the data into buckets, limiting the number of possible 

output values.

A well-known decision tree induction algorithm is ID3 (and subsequently C4.5 and C5.0) that 

uses information gain to decide which attribute to test at each node. Information gain depends 

greatly upon a measure called entropy.
C

E ntropy (S) = - Pilog2Pi
i= 1

where S is a collection of examples, andp, is the proportion of the examples belonging to class i. 

The information gain of an attribute A  relative to S  is defined as:

G ain{S ,A ) = E ntropy(S) — Entropy (Sv)
v€.Values(A)

where Values(A) is the set of all possible values for A  and S v is the subset of A  that has value v. 

The ID3 algorithm ([Quinlan, 1993]) is given in Algorithm 5

Decision Lists

A decision list is an ordered set of rules where each rule has a conjunction of possibly negated 

literals as the precedent and a Boolean class value as the antecedent. The term fc-DL is used to refer 

to decision lists that contain a maximum of k literals per conjunction. Compared to decision trees, 

decision lists have more complex tests in their nodes, but a simpler overall structure. For any given 

k, a fc-DL is more expressive than a decision tree of depth k [Rivest, 1987]. Decision lists are known 

to be polynomially efficient, both in terms of examples required, and computation time .
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It is possible to construct decision lists which return a Boolean value - true if the instance re­

turned the maximum accuracy (bucketed), otherwise false. This results in a much shorter decision 

list than if we were using a decision list that returned an integer value. It is possible to interpret this 

shorter list and manually design a few decision list test sets which are optimal in terms of number of 

operators, and return the maximum accuracy.
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Chapter 6

Empirical Evaluation

In this section, we first describe experiments and results on the maze domain, then do the same for 

the vision domain. A map of the empirical work is given in Table 6.4 to aid the reader in navigating 

this section.

6.1 Maze Domain Experimental Setup

We use the maze domain in our experiments for several reasons. It is scalable and can be solved 

by brute force, which is part of the reason it is seen often in reinforcement learning literature (see 

Chapter 2). Also, since the experiments on the maze domain can be executed quickly (with respect 

to the vision domain experiments), changing properties of the mazes, policies, rewards and costs 

during experiments is not costly.

In the maze domain, we employ the four step process to search for the best action set as follows. 

Step 1: We generate a small number of random subsets of navigation actions and evaluate them 

on randomly generated mazes. Each action set (A)’s fitness (F (A )) is defined as the average fitness

Maze Domain Vision Domain

Description 6.1 6.3
Experiments 6.2 6.4
Exhaustive Search 6.2.1 -
Simulated Online Experiments - 6.3.1, 6.4.4
Operator Set Size Experiments - 6.3.1, 6.4.5
Comparing Sequences and Sets - 6.3.1, 6.4.6
Offline Policy vs. Online Policy - 6.3.1, 6.4.7
Training with Online Data - 6.3.1, 6.4.8

Table 6.1: Organization of Empirical Evaluation
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Maze Domain Definitions

Q(A)
Crt(A)
R(A):

0 (no learning is done by the agent) 
Number of Moves Performed by the Agent 
Final State of the Agent (goal or non-goal)

Table 6.2: Mapping our definitions to the maze domain

obtained by the agent with this action set over all the training mazes. This will produce a set of 

tuples {A, F (A )} . The cost C(A) and reward R(A ) of an action set are given in Table 6.2

Step 2: We generalize the tuples gained in step 1 by employing machine learning techniques, 

thus producing an approximate fitness function (or meta-model).

Step 3: We run a heuristic search over the space of action sets, using the meta-model produced 

in step 2 as the evaluation function.

Step 4: We validate the action sets produced by the heuristic search on a random set o f validation 

mazes, different from those used in training. The best action sets are output to the user.

While evaluating each action set within the heuristic search is actually possible within this do­

main, we want HSMM to be portable to any markov decision process, and as such need to keep the 

method evaluation constant.

6.2 Maze Domain

To test HSMM on a non-vision domain, we chose a previously implemented and tested maze domain 

([Bulitko et al., 2003]).

In this MDP domain, an agent is placed in a typical maze setting, with a starting state, a goal 

state and walls (blocked states). A state in this MDP is the current location of the agent within the 

maze. An action is a transition from one location to another in the maze, with the exception of the 

quit action, with which the agent ceases to move.

The task at hand was to generate the optimal action set for an intelligent agent in the maze 

domain. With many actions available, the agent can take longer to find the goal, since many actions 

can be very similar, leading it to explore many similar routes, thus taking longer to solve the maze. 

We are interested in determining the optimal action set (A*)for a given intelligent agent. The optimal 

action set is one which maximizes an agent’s fitness (F (A )) over many mazes. The cost Crt(A) is 

based upon how many moves the agent takes, and the reward R  is based upon whether the agent 

quits, solves the maze, or runs out of moves. There is no learning involved, thus Ci (A) =  0 and 

C(A) =  Crt- Table 6.2 summarizes these definitions.

The agent policy chosen for our initial maze experiments was an explore-exploit agent that nearly
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doubled the performance of a depth first search in a tournament of mazes. The agent follows a greedy 

approach which forces it to follow a complete path to the goal once one is known from the current 

location. Otherwise, the agent performs exploration with the goal of uncovering the maximum 

number of unknown locations. Further details are available in [Kovarsky, 2001].

The mazes generated in the experiments were all of size 200 x 200, with a density of 0.2 (meaning 

20% of the maze cells occupied by walls). The goal and start states were randomly chosen, and the 

agent was given 1000 moves in order to solve the maze. Each move was given a reward of —1 for 

each unit traversed. Initially, we gave the agent a reward of 1000 when it reached the goal state and 

penalized it by 500 if it quit. In later experiments, solving the maze generated a reward of 100000, 

while quitting voluntarily resulted in a —50000 reward. This change was necessary to make solving 

the maze a much more desirable result than quitting quickly. Nevertheless, we include these results 

since the methods can still learn to quit if that is the best option.

In order to make the task of action selection non-trivial, we implemented an action set that allows 

the agent to move in a radius of size X. This creates a library of actions of size 8 * X ,  in addition 

to the quit action. We chose a radius of size 5, giving the library 41 operators. This allows for 241 

possible subsets of actions for HSMM to search through.

Figure 6.1 shows the results of seven different methods using the initial reward scheme, all of 

which have been incremented by 5000 in order to make all the scores positive. The sets chosen by 

genetic algorithms (GAs) clearly outperform all other methods, but this is because they chose sets 

with very few actions (often just one), which forced the agent to quit early, thus gaining a small 

negative reward. The other methods chose sets with more actions (because they were forced to), 

which allowed the agent to explore further, but often not finding the goal, and thus gaining a high 

negative result. While this can be seen as a victory for the GAs (and thus HSMM), the domain itself 

was rather uninteresting.

In a more interesting schema, Figure 6.2 shows the results when we change the reward for 

solving the maze to 100000, and increase the penalty for quitting in a non-goal state to -50000. The 

hand-chosen set simply contains every second action in the full set. HSMM again outperforms other 

action selection methods here. The sets chosen by GAs generally contain more than 75% of the 

operators in the full set, so the full set does not seem to contain many redundant actions

6.2.1 Deliberation Cost Experiments

Penalizing a maze agent only for the moves it takes can be seen as too soft, since the agent’s activities 

are not limited to actual movement actions. The agent must also evaluate potential actions, and this 

can be just as costly as making moves (much like in psychology where evaluating all possible choices 

can be more costly than making and executing the actual decision (Chapter 1). For this reason we
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Figure 6.1: Average reward (incremented by 5000) for seven methods with a reward of 1,000 for 
solving the maze and -500 for quitting.
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Figure 6.2: Average reward (incremented by 100000) for seven methods with a reward of 100000 
for solving the maze and -50000 for quitting.
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Revised Maze Domain Definitions

0 (no learning is done by the agent) 
Deliberation Cost of the Agent 
Final State of the Agent (goal or non-goal) - 
number of moves taken by the agent

Table 6.3: Revised definition mappings in the maze domain
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Figure 6.3: Average fitness of sets found by six different selection methods.

add a new cost to the fitness of an action set, being the deliberation cost which penalizes the agent 

for generating the potential state when applying a given action, and for searching to see if this state 

has been visited. For a depth-first search agent, the agent may not revisit states, since this would 

lead to infinite looping. The new mapping to costs and rewards is shown in Table 6.3

Our new reward measure R{A)  now takes into account the number of moves taken by the agent 

in reaching its final state, combining this cost with the reward given for the agent’s final state. The 

cost C( A)  is the number of state evaluations done by the agent, whether or not it actually travels to 

the evaluated state. The fitness F( A)  is again defined according to Definition 3.5.

Using this new fitness metric, we again employed our HSMM method to choose action sets, and 

compared against the same methods as in previous experiments. When the agent finished in the goal 

state it was given a 10000 positive reward, if it quit in any other state it was given a negative -500 

reward. Results are shown in Figure 6.3.
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Figure 6.4: Results of an exhaustive search done over all possible action sets with radius set to 2. 
Note that the fall set is not the optimal set.

Exhaustive Search

If we reduce the radius in which the agent can move from five to two, its action set is reduced to 16 

actions. This gives us 216 possible subsets, which is a number of sets we can exhaustively search 

through. Figure 6.4 shows the scores for the best action set of each size (1-16) averaged over 100 

mazes.

6.3 Action Set Selection for Image Interpretation

Before describing the experiments in the vision domain, we briefly refresh the reader on the princi­

ples of MR ADORE.

MR ADORE has two modules, offline and online. In the offline module, fall expansions of the 

vision operator set are performed on training images in order to train the control policy n, which 

is used in the online module. All legal operator sequences up to a limited length are applied to a 

given image. The resulting image interpretations are evaluated against the desired label, provided 

as part of the training data . Action-state rewards are then computed and used to obtain a value (Q) 

function.

In the online module, the learned control policy exploits the value function to interpret novel 

images. A “least-commitment” policy is used, first applying a full expansion of the vision operators
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to the novel image, then using the policy to decide which label to return to the user.

We performed several experiments within the MR ADORE framework. First we performed a 

pilot study on offline MR ADORE. Genetic algorithms and simulated annealing depend on several 

different parameters, and the pilot study was performed to determine what were the best range 

of values for each parameter. Next we tested our four-step HSMM method on MR ADORE and 

followed this with two sets of cross-validation experiments. We then performed several auxiliary 

experiments to test different theories with respect to operator set selection in MR ADORE.

In all our experiments, the full operator set contained 295 operators, of which three were nec­

essary to ensure the proper operation of MR ADORE. This left a collection of 292 operators from 

which to choose our optimal operator set, which in turn provided us with a search space of 2292 op­

erator subsets -  a practically infinite number. The operators inserted in every set were Grablmage 

(a loading operator), Subm itlm ageG reen, a submission operator that labels target pixels in green, 

and R G B  S e g m e n t, an operator that ensures a path to a labeling is present in every set. The op­

tional operators include morphological filtering, histogram equalization, and thresholding. A more 

detailed description of these operators is found in Appendix A

Operator sets were represented as 292-bit long bit strings. As usual, bit number n  set to 1 indi­

cated presence of operator n  in the operator set, for both genetic algorithms and simulated annealing. 

In the genetic algorithms we used uniform crossover, since the operators are stored in a set and not 

a sequence, making their order unimportant.

All experiments were conducted on 72 images of young spruce plots maintained by the Alberta 

Research Council in Vegreville, AB. The images were captured in 24-bit colour at 256x256 pixels 

per image. A fragment of a typical image can be found in Figure 2.3

The HSMM method approach was applied to selecting a high-quality compact vision operator 

library as follows:

Step 1: we evaluate a small random collection of selected operator sets via running each of 

them with the actual system (MR ADORE) on a set of training images as shown in Figure 6.5. For 

each operator set o, all limited-length sequences of operators from o are applied to each training 

image. Each sequence is assigned an image interpretation accuracy for the image label it produces. 

The maximum image interpretation accuracy for all sequences from operator set o averaged over all 

training images is stored as R(o). Each operator set also incurs a cost C(o), which is a measure of 

the total time taken for the average full expansion with this set. This cost is the same for learning 

(Ci) as it is for execution (Crt), since both of these activities perform full expansions. The operator 

set’s fitness F (o) is then F(o) = aR(o) — fiC(o) +  a  (as seen in Definition 3.5). These variables 

enable the user to control the trade-offs in a domain specific fashion. We define MaxAccuracy and 

MaxCost to be the accuracy and cost achieved by the full set of operators, averaged over the training
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MR ADORE Definitions

Q (A ) : 
Crt(A) : 
R(A):

Full Expansions done in training the online policy 
Full Expansions done in executing the online policy 
Image Interpretation Accuracy

Table 6.4: Mapping our definitions to the MR ADORE

Training Set

L arge off-the-shelf 
d o m ain -in d e p e n d e n t 
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o p e ra to r  library (IPL)
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o p e ra to r  s e t  i
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f itn e ss
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Figure 6.5: Supervised machine learning methods are used to generalize fitness of sampled operator 
sets into an approximation to the fitness criteria.

Step 2: step one results in a collection of operator sets and their fitness values {o, F(o)}. In the 

second step, we generalize this collection using machine learning (ML) techniques (Figure 6.5). As 

a result, an approximate fitness function Fm l’s acquired.

Step 3: we then use the approximate fitness function as the optimization criteria in a heuristic 

search (e.g., genetic algorithms and simulated annealing (SA)) in the space of operator sets (Figure 

6.6).

Step 4: the operator sets found by the search are then evaluated against a set of validation images. 

The best m operator sets are output to the user to be used in the domain of interest.

6.3.1 Refining the Approach

After our first extensive experiments, we performed several further experiments in order to test the 

effect several phenomena noticed in our experiments with MR ADORE. These experiments are 

described here.

Simulated Online Experiments

Any policy tt other than the optimal policy 7r will commit errors in its selection of actions in an 

MDR We devised a set of experiments to simulate the amount of error in an online policy. We did 

this in an attempt to understand why, how and when the online module of MR ADORE chooses

images.
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Figure 6.6: Proposed approach for automated operator selection: heuristic search is conducted in the 
space of operator sets. It is guided by a machine-learned approximation to the performance function 
of the actual offline system.

sub-optimal final labelings, given an operator set. We invoked the offline (oracle) module to test 

the operator sets chosen by each method, but introduced random choices of image interpretations to 

mimic how the online policy sometimes chooses the incorrect optimal image interpretation.

First, we ran the offline module (in the same way as before) with an e chance of randomly 

choosing an image interpretation from the choices generated by an operator set, and thus a 1 — e 

chance of choosing the optimal image interpretation (since this is known offline). Henceforth we 

will refer to this model as e-perfect.

Operator Set Size Experiments

The online module in MR ADORE is governed by a machine-learned control policy, which is trained 

by analyzing the data obtained from offline expansions. Having larger operator sets gives the control 

policy more possible operator sequences from which to leam in the offline module, but also more 

possible operator sequences to choose from in the online module. We investigated the effect of 

adding more operators to a set on the online performance of MR ADORE by incrementally adding 

operators to the domain-expert selected operator set, and running offline and online MR ADORE. 

The operators added were those ranked worst according to our filter selection method used in our 

experiments, using the same training data as in our cross-validation experiments. We added the 

worst operator not already present in the set 35 times (until no significant change was seen) and 

noted the online perfonnance of MR ADORE. Adding the “worst” operator each time was our 

strategy to attempt to divert the online control policy from the path chosen using just the domain 

expert hand-picked set.
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Comparing Sequences and Sets

The goal in our experiments is to discover operator sets which have high image interpretation ac­

curacies (R{o)) and low cost (C(o)). Thus, an ideal way of evaluating such operator sets would 

be to compare their cost to the lowest cost necessary to produce equal average image interpretation 

accuracies. Since an exhaustive search of all operator sets is not possible, we determine the average 

cost of the static sequence leading to the best average results by observing how well each static se­

quence does within the full expansions available. This quantity tells us the minimum cost necessary 

to reach a given accuracy, as far as the best static sequences are concerned. We know this cost is 

the minimum since each sequence produces only one interpretation, so the online control policy has 

only one choice for which interpretation to return to the user.

Note that our methods are capable of choosing one of these operator sequences as an operator 

set, which would amount to picking one static sequence of operators to use at all times, eliminat­

ing all adaptability. As has been shown in [Levner et al., 2003; Levner and Bulitko, 2004], MR 

ADORE’s online module outperforms the best static sequence of operators available in the set in all 

experiments. Conversely, choosing a static sequence with a reasonably high average interpretation 

accuracy would likely maximize the fitness of a method, since the cost of a single sequence is negli­

gible in comparison with the cost of a set of approximately 50 operators, since such a set would have 

many possible sequences of operators, greatly increasing the execution cost. Eliminating adaptabil­

ity can be detrimental on further test images. A set that returns just one interpretation cannot recover 

if this interpretation is bad on a novel image. A set that returns several interpretations (and that ex­

hibits good average image interpretation) has as an advantage that if one of its interpretations is not 

a good one, there are still more possible interpretations to return.

Offline (Perfect) Policy versus Online Policy

If operator set A  outperforms operator set B  offline, there is no certainty that A  will outperform B  

online. This is because there is no guarantee that the machine-learned control policy will choose the 

best interpretation produced with set A. We attempt to determine which methods suffer the most loss 

in fitness/accuracy when switching from offline (perfect) policy to online (machine-learned) policy. 

Since the offline and online costs are the same, the change in fitness/accuracy is also the same.

Training with Online Data

Generalizing the fitness function sampled from offline performance may lead to an incorrect action 

set optimization criteria. We are interested in vision operator sets that will optimize the online MR 

ADORE module, and we thus should be generalizing the fitness functions with training data obtained 

from online MR ADORE activity (see Figure 6.7). Unfortunately, online training data takes much
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Figure 6.7: Proposed approach for automated operator selection: heuristic search is conducted in the 
space of operator sets. It is guided by a machine-learned approximation to the performance function 
of the actual online system.

longer to obtain than offline training data. Indeed, a single offline training datum can be obtained 

in a matter of seconds, whereas obtaining one online datum can take upwards of one hour due to 

the extensive control policy learning process. Nevertheless, we gathered limited training data by 

running the MR ADORE online module with randomly generated operator sets. We then followed 

the same procedure as was used with the training data obtained offline, and tested the same methods.

6.4 MR ADORE Experimental Results

6.4.1 Pilot Study in the Image Interpretation Domain

Genetic algorithms and simulated annealing are known to be sensitive to parameter settings [Harik 

and Lobo, 1999], In order to help choose a suitable set of parameter settings, a fitness function 

and a search method for our cross-validation experiments, we first generated 6986 sample operator 

sets (which took about two weeks), evaluated their fitnesses on a pool of 37 images (step 1), and 

used them to train our machine-learned fitness approximators (step 2). The learning was done with 

decision trees (DT), artificial neural networks (ANN), and naive Bayes (NB). Note that in order to 

make decision trees and naive Bayes applicable we had to discretize the real-valued operator set 

fitness values into buckets [Lee ei al., 2003]. We used decision lists in some experiments, but found 

the results of the search with decision trees and decision lists similar enough to eliminate the latter, 

thus speeding up our experiments.

We then ran GAs/SA with every combination of five population sizes (for the GAs) {30, 50, 100, 

200, 500}, four iteration numbers {100, 500, 1000, 10000}, three mutation rates {0.05, 0.1, 0.2} 

and three fitness functions {NB, NN, DT} on the 37 images, and computed true fitness values for 

each set (steps 3-4). In total, GAs produced 900 operator sets, since we performed five runs at each
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Methods and Data Used

Number of training data: 6986
Number of mages 37
Selection methods used: Genetic Algorithms and Simulated Annealing
Fitness functions (meta-models) used: Decision Trees, Artificial Neural Networks, Naive Bayes

Search Method Parameters
Populations (GAs only) 30, 50, 100, 200, 500

Iterations 100, 500, 1000, 10000
Mutation (Flip) Rates 0.05, 0.1, 0.2;
Experimental time 30 days

Table 6.5: Pilot study methods and parameters

parameter setting. The SA produced 180 operator sets. The entire process took about one month. 

These results are summarized in Table 6.5

Genetic algorithms outperformed simulated annealing in this task for all tested parameter com­

binations. Figure 6.8 shows a typical comparison of performance between GAs and SA.

Decision trees proved to be the most reliable operator set fitness approximator (holding all other 

parameters in the GAs/SA constant), as Figure 6.9 demonstrates. The decision tree fitness function 

was not always the best (at any given parameter settings), but there was no case where either the 

naive Bayes or the neural net fitness function was statistically significantly better than the decision 

tree fitness function.

It should be noted that GAs/SA demonstrated a great robustness to changes in their control pa­

rameters. When the naive Bayes fitness function was used, however, with a population size of 500, 

the fitness of the produced operator sets was decreased four-fold as compared to using a population 

size of 30. Seemingly, it took the search mechanisms too long to converge with larger populations, 

meaning the diversity of the population may have caused convergence to slow down. Other than 

this notable exception, it was generally true that more iterations, larger population sizes and smaller 

mutation rates made the GAs perform slightly better, so we trimmed our parameter settings accord­

ingly. Despite simulated annealing’s inferior performance, it was kept as a control, since genetic 

algorithms have been known to overfit data. Since there was no significant difference in perfor­

mance with different fitness functions, we employed all three in the next set of experiments.

Initial Cross-Validation Study

The algorithm for our cross validation experiments is presented in Algorithm 6. Line numbers from 

this figure are used throughout the remainder o f this section. All methods and parameter values are 

summarized in Table 6.6.
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We first split our 72 images into three sets: training, validation, and testing (line 1). We then 

produced 10000 operator sets by choosing 50% randomly, and then including the complement of 

each set as well, to ensure all operators are present in half of the sets (lines 2-3). In step 1, we drew 

1165 sample operator sets from this pool of 10000 operator sets. The sample operator sets were 

then evaluated on the 24 training images. All possible sequences up to length four were run on the 

24 images for each sample operator set, which were then each assigned a fitness based upon their 

average fitness (F (x)) (line 4). This produced 1165 training pairs : (operator set, its fitness). This 

process took approximately 2.5 days.

For our fitness functions within the search methods, we again used decision trees, artificial neural 

networks, and naive Bayes classifiers to generalize the fitness function sample set (step 2) (line 5). 

A pruning confidence factor of 65% was used for the decision tree, which was also boosted over 10 

trials. The neural net had 100 hidden units and was trained for 10 folds of 750 epochs each, with 

its learning momentum set to 0.2. These parameter settings maximized the decision tree and neural 

net’s accuracy on the training data. A standard naive Bayes algorithm was used.

We used two search methods in step 3: simulated annealing and genetic algorithms. In genetic 

algorithms all 36 combinations of three population sizes {100, 200, 500}, two iteration numbers 

{1000, 10000} three mutation rates {0.05, 0.1}, and three fitness functions {NB, ANN, DT} were 

ran. The simulated annealing was carried out in the same manner, but since there is no population 

in this method, there were only eight possible combinations of parameters (line 6). Due to the 

stochasticity of genetic algorithms and simulated annealing the search methods were run five times

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30 50 100 200 500
Population Size

■  Naive Bayes s  Neural Net ■  Decision Tree

Figure 6.9: Decision tree fitness function proves to be the most robust to parameter variations. Error 
bars correspond to the standard deviation over the fitness over different sets produced during 5 runs 
of GAs with each set of parameters. Here we used a mutation rate of 0.05 and 1000 iterations.

with each set of parameters, producing different operator sets on different runs. We evaluated the 

top five ranked operator sets produced by each combination of parameter settings on 24 validation 

images (line 7).

We then evaluated the best operator set found in each of the possible {GAs, SA) x {NB,NN,DT} 

combinations by computing their true fitness values on the 24 test images (step 4, lines 8-9). Two 

additional operator sets were used: (i) randomly selected and (ii) manually designed by a domain 

expert. The cross validation process was executed over three folds, rotating the subsets of 24 images 

between training, validation and testing sets.

In our experiments image interpretation accuracy and execution cost were given equal weight. 

Thus, in our fitness equation (6.1):

f(o )  = ar(o) — (3c(o) + a  (6.1)

a  was set to j i ^ f curacy, P was set to and a  was set to 0.5 (to normalize the results to a

range of [0,1]). These values for a, p  and a are used in all of the vision experiments.

Evaluating the 3495 (1165*3) selected operator sets took approximately one week and training 

the neural net three times took approximately two days. Running the genetic algorithms and simu­

lated annealing and evaluating the operator sets produced took approximately one week as well. All 

experiments were conducted on a dual Athlon 2600 processor with 2 GB of RAM.

Figure 6.10 shows the resulting fitness of the best operator sets found by each of the {GAs, SA} 

x {NB,NN,DT} combinations on the testing data. Genetic algorithms and simulated annealing show
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Algorithm 6 An algorithm for heuristic search method of selecting operator. Input: Full domain in­
dependent operator set ops, Image/Labeling Pairs il, Heuristic Search methods hs, Machine Learn­
ing methods ml, (Empty) Sample Set (ss). Output: Domain specific operator set(s)

1: Split il into three sets: training(fr), validation^),testing(te)
2: Randomly select operator subsets of ops, add these to (ss)
3: Select complement of each randomly selected set, add these to SS 
4: Evaluate fitness (F (x)) of each operator set (o) in ss on tr  
5: Train ML with obtained o, F(o) pairs
6: Search for best performing subset of ops with hs, using m l for fitness functions 
7: Evaluate fitnesses of hs selected subsets of ops on v
8: Choose best subsets of ops based on fitness on v (bv) chosen with each combination of hs and 

m l
9: Evaluate bv on te

10: Output best operator sets in bv based on fitness on te

Methods and Data Used
Number of training data: 1165
Number of training images 24
Number of validation images 24
Number of testing images 24
Selection methods used: Genetic Algorithms and Simulated Annealing
Fitness functions (meta-models) used: Decision Trees, Artificial Neural Networks, Nave Ba'iyes

Search Method Parameters

Populations (GAs only) 30, 50, 100, 200, 500
Iterations 100, 500, 1000, 10000
Mutation (Flip) Rates 0.05, 0.1, 0.2;
Experimental time 15 days

Table 6.6: Initial cross-validation experiment methods and parameters

almost identical behaviour, and both generally outperform a hand-picked set. The top combination 

of genetic algorithms and neural net produces on average an operator set that retains 93.3% of the 

image interpretation accuracy (reward) of the full operator set, while only incurring 5.5% of the cost.

6.4.2 Full Cross Validation study

After testing our cross validation method for three folds with the full {GAs, SA} x {NB,NN,DT} set 

of combinations, we needed to narrow our search in order to run enough folds to gain a further insight 

into the operator selection problem in MR ADORE. We thus eliminated simulated annealing from 

our experiments, since both SA and GAs exhibited very similar behaviour in the cross validation 

study, and GAs outperformed simulated annealing in some of our prior experiments (Section 6.4.1). 

We also eliminated decision trees, since they exemplified no dominance over any other machine-
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Figure 6.10: Comparison of the fitness of various action set selection techniques, on three folds of 
cross validation runs. The hand-picked set is constant over all folds.

Algorithm 7 An filter method, called “Top” modified to select operator sets. Input: Training data, 
desired number of operators d, in set Output: Domain specific operator set(s)

1: for Each action a in the full set do 
2: for Each training datum {attributes,fitness} do
3: if a is present in the training datum then
4: Add this fitness to o’s total
5: Increment count
6: Calculate a ’s fitness b y  dividing total b y  count
7: Sort actions b y  their fitness 
8: Output top d. operators

learner, and were more difficult to train due to an interface with an external software module within 

our system. We reduced the set of possible population sizes to {100,500} and the set of mutation 

rates was decreased to {0.5, 0.2}. The iteration set was also reduced to be {100,1000}. These values 

are summarized in Table 6.7.

We used the Top filter method of selecting operators to compare against HSMM (see Algo­

rithm 7. We also compared against a set chosen by a domain-expert, a randomly selected set and 

the full set of operators. Both our filter method and the random method of selecting operators chose 

variably sized operator sets (changing with each fold), between 1 and 292 operators.

We ran 81 cross-validation folds with our new {GAs} x {NB,NN} set of combinations within 

our HSMM method. Figure 6.11 shows the offline image interpretation accuracy of each set selected 

in each of our six selection methods. Figure 6.12 shows the cost incurred by the sets chosen by these 

methods on offline MR ADORE. Using our predefined fitness evaluation function for operator sets, 

we combined the cost and image interpretation accuracy of each method. Results of this combination
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Methods and Data Used

Number of training data: 1165
Number of training images 24
Number of validation images 24
Number of testing images 24
Selection methods used: Genetic Algorithms, Random Selection,

Filter Selection, Full Operator Set,
Domain Expert Selection

Fitness functions (meta-models) used (within GAs): Artificial Neural Networks, Naive Bayes

Search Method Parameters

Populations 100, 500
Iterations 1000, 10000
Mutation (Flip) Rates 0.05, 0.2
Experimental time 90 days

Table 6.7: Full cross-validation experiment methods and parameters.

are shown in Figure 6.13. Note that the GA methods outperform all other methods.

6.4.3 Online Results

In the object recognition domain, we are most interested in the performance of a system on novel 

images, where the labeling is not yet known. In MR ADORE, the online module uses a machine- 

learned control policy to select a labeling for novel images.

We tested the online performance of the best performing GA with NN and GA with NB sets 

(according to testing on the validation data) on the test data for each fold. We also tested the 

performance of the set of Top (0-292) ranked operators as a comparison to a filter approach. In 

addition to these sets, we tested an operator set handpicked by a domain-expert, a set of (0-292) 

random operators (differing at each fold), and the full set of operators. In Figure 6.14 we see 

the online image interpretation accuracy of the six different methods of operator set selection. 

Since we are currently using the least-commitment policy in MR ADORE [Levner et al,, 2003; 

Levner and Bulitko, 2004], the online costs of any operator set is the same as the offline cost (which 

was shown in Figure 6.12). Using our predefined fitness function for an operator set, we show 

the fitness of each operator set selection method in Figure 6.15. Note that there is no statistically 

significant difference between the GA selected sets and the domain-expert selected sets.

The full operator set with 295 instantiated operators contained the following types operators: 

Load Image, Submit Image, RGB Segmentation, Convert Colour to Gray, FilterMedian, Gaus­

sian Filter, Elliptical Erosion, Elliptical Dilation, Elliptical Closing, Elliptical Opening, Grayscale
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Figure 6.11: MR ADORE’s offline image interpretation accuracy with six different operator set 
selection methods.
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Figure 6.12: MR ADORE’s offline (and online) cost with six different operator set selection meth­
ods.
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Figure 6.13: MR ADORE’s offline fitness with six different operator set selection methods.

Thresholding, Binned Grayscale Thresholding, Probabilistic Thresholding, Colour Histogram Equal­

ization, Probabilistic Histogram Equalization, Colour Stretching by Contrast, Coarse 3D Histogram 

Intersection, Pyramid Segmentation, Flood Filling, Peak Filling.

The best operator set (with respect to online fitness) found by HSMM contained the following 

types operators: Load Image, Submit Image, RGB Segmentation, Convert Colour to Gray, Gaussian 

Filter, Elliptical Erosion, Elliptical Dilation, Elliptical Closing, Grayscale Thresholding, Binned 

Grayscale Thresholding, Coarse 3D Histogram Intersection, Flood Filling, Peak Filling.

The domain-expert operator set contained: Load Image, Submit Image, RGB Segmentation, 

Convert Colour to Gray, FilterMedian, Gaussian Filter, Elliptical Erosion, Elliptical Dilation, Ellip­

tical Closing, Elliptical Opening, Grayscale Thresholding, Binned Grayscale Thresholding, Proba­

bilistic Thresholding, Colour Histogram Equalization, Probabilistic Histogram Equalization, Colour 

Stretching by Contrast, Coarse 3D Histogram Intersection, Flood Filling, Peak Filling.

While all these sets may appear to be similar, it is important to remember that they are instanti­

ated differently. Thus each set can contain different (and multiple) versions of an operator. The full 

operator set, for instance, contains 93 different thresholding operators. The three sets listed contain 

295, 52 and 29 total operators respectively.
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Figure 6.14: MR ADORE’s online interpretation accuracy with sets chosen by GA/NN, GA/NB, 
domain expert, top (0-292) of operators, random(0-292) operators, and the full set o f292 operators.
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Figure 6.15: MR ADORE’s online fitness with sets chosen by GA/NN, GA/NB, domain expert, top 
(0-292) of operators, random(0-292) operators, and the full set of 292 operators
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Standard Deviation Plot

In order too visualize the decline in standard deviation over folds, we plot the change in standard 

deviation in Figure 6.4.3. As can be seen, the standard deviation falls steeply at first (as expected), 

but does not change greatly of the later folds. This trend suggests a higher validity of the reported 

results.

6.4.4 Simulated Online Experiments

We evaluated seven methods of choosing operator sets with MR ADORE running with the optimal 

offline policy, online policy and e-optimal policy with e = {0.1, 0.3, 0.5, 0.7,0.9 and 1} (recall that e 

represents the amount of randomness in the policy, as detailed in Section 6.3.1) . Results are shown 

in Figure 6.17. Note that with the perfect offline policy, the GA/NN and GA/NB sets are the best for 

image interpretation accuracy, but that these methods experience a greater drop once randomness 

is introduced than the Top method with 50 operators. We fixed operator set sizes for the Top and 

random methods (50 and 100), in order to see if larger operator sets suffered more loss when the 

chance for a random choice was increased, and because HSMM typically chose operator sets with 

between 50 and 100 operators. As can be seen on the graph, operator sets with more operators tend 

to lose more image interpretation accuracy when random choice is added than do smaller operator 

sets. This finding seems to support the thesis that more choice can be detrimental with imperfect 

selection.
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Figure 6.17: Seven different methods of operator set selection evaluated on different control policies. 
The numbers after the methods are the average (in parentheses) or fixed (not in parentheses) number 
of operators in the selected sets.

6.4.5 Operator Set Size Experiments

We plotted the online performance of MR ADORE with each of the 35 sets (generated by incre­

mentally adding the “worst” ranked operators to the hand picked operator se t) with the performance 

of MR ADORE with the e-perfect policy, again with the 35 sets. Recall that we added the “worst” 

operators in an attempt to divert the control policy from choosing the optimal labeling (maximizing 

image interpretation accuracy), by giving it more sub-optimal labelings to choose from. The e- 

perfect policy was run for 10 folds, while the online module was run for 9 folds. Results are shown 

in Figure 6.18. The online policy exhibits essentially unchanging behaviour with added operators. 

Additionally, we can see that MR ADORE’s machine-learned control policy operates at about the 

same image interpretation accuracy as the 0.3-perfect policy.

6.4.6 Comparing Sequences and Sets

In order to determine the average cost of the sequence leading to the best average results, we ob­

tained each sequence’s fitness from the 72 full expansions (2278 sequences), and plotted them in 

Figure 6.19

Our methods are capable of choosing one of these operator sequences as an operator set, and 

the best set of this type would have generated an average online fitness higher than the mean of
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Figure 6.19: Minimum cost required to reach various accuracies with static sequences of four oper­
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any of the methods. In Figure 6.20 we compare our methods for selecting operator sets with static 

sequences of operators.

As can be seen, the operator sets average costs are much higher than the costs o f the static 

sequences, while their average image interpretation accuracy is also higher. The square points rep­

resent the average online interpretation accuracy of selected operator sets, while the triangular points 

represent the average offline interpretation accuracy of the selected operator sets. Note that the of­

fline and online costs are the same, due to the currently used least-commitment policy in the online 

module. It can also be seen in Figure 6.20 that the best static sequence of operators can easily be 

outperformed in accuracy, since the sets chosen by the methods have a higher average accuracy. 

This suggests that adaptability is necessary to produce higher quality image interpretations.

6.4.7 Offline (Perfect) Policy vs. Online Policy

In an effort to understand why some operator sets produce great results offline, but online experience 

a severe drop in reward, we graphed the change in accuracy and fitness when moving from the offline 

(perfect) policy to the online (machine-learned) policy.

Since cost remains the same, Figures 6.21 and 6.22 are essentially the same. One can see that 

the drop in accuracy and fitness is not uniform over all methods, and, perhaps more importantly,
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Figure 6.21: Drop in online accuracy (for all methods) over 81 folds

not uniform over different operator set sizes. Figure 6.23 shows how the average size of operator 

sets o f a method corresponds to how much the operator sets generated by this method suffer online, 

on average. Perhaps more importantly, Figure 6.24 shows how the online policy degenerates in 

accuracy/fitness with an increase in possible image interpretations. Note, this is the average drop 

in accuracy/fitness versus the average number of possible image interpretations. These graphs seem 

to indicate that the online policy has difficulty when presented with more choices of interpretations, 

despite the fact that it is generated from more training data.

6.4.8 Training with Online Data

Recall that training the fitness approximators with data obtained from offline MR ADORE runs may 

lead to approximating the incorrect function - a function that optimizes the action set for use on 

the offline module of MR ADORE, where an oracle tells it which image interpretation is the best. 

Training with data obtained from online MR ADORE runs should help to approximate the correct 

function, but this data is much more costly to obtain than data obtained offline.

In Figure 6.25, we see the results after 16 folds with online training data used in our experiments. 

The Domain Expert set is independent of the training data, and performs the best out of the seven 

set selection methods. The GA/NN and GA/NB methods clearly outperform the filter and random 

methods trained with online data, but do not outperform the GA methods trained on offline data).
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Figure 6.22: Drop in online fitness (for all methods) over 46 folds
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Figure 6.25: Average online fitness of five methods using online training data
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6.5 Discussion

From the empirical results several observations can be made:

• HSMM succeeds in discovering action subsets that are smaller in size than the full action set 

and that when used by the agent allow it to achieve comparable reward R (A )  to the reward 

the agent receives when using the full action set. The cost C(A) incurred by the agent was 

diminished by as much as 95% in our experiments.

• The Top method is less successful than HSMM on its own because they contain no information 

as to how many actions to put in a set. Setting the number of actions N  to be included in a set 

as a constant only adds to the human engineering of the system, which is the opposite of one of 

our goals, which is to eliminate the last vestiges of human engineering. Still, having a ranked 

list of the operators can be beneficial for slight changes in the final system and action set, and 

since the method is quite fast, it can be invoked later on in the process without significantly 

adding to the running time.

• The full operator set used in forestry has numerous operators that are interchangeable without 

much change in rewards or cost, as can be seen by the fitness of the randomly generated sets. 

Two different random sets of 150 operators generally have the same approximate fitness. This 

is because the tabulation of operators is quite close. With the addition of more operators into 

the full set, this phenomenon should become less likely, since the choice of operators will be 

increased.

•  As expected, MR ADORE’s online module does not always return the optimal image labeling 

available with a given operator set. It errs about 30% of the time and is thus prone to being 

misled by bad choices. Again, if we keep the number of bad choices small (by supplying the 

policy with a compact high-quality operator set), we can help keep the online module from 

being led astray, and increase image interpretation accuracy, as was shown in the experiments.

• In the maze domain, with moves of radius 2, an exhaustive search reveals that the full action 

set is not the optimal set for the explore-exploit maze agent . An action set with just over 

half the actions of the full set increases fitness by providing fewer choices to the agent as it 

attempts to discover the goal state in the maze. When we move to radius 5 moves, it seems the 

full set is the best action set to provide to the explore-exploit agent. This is not proven, since 

an exhaustive search is not possible. HSMM succeeds in finding action sets with comparable 

results to the full action set, and better results than other methods action set selection that 

were tried in our experiments. For radius 2, none of the methods we tried succeeded in finding
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action sets with good results. This is surprising, since the search space is much smaller than 

with radius 5, but an investigation into the exhaustive search results reveals that very few 

of the candidate action sets have performance even close the optimal set, thus it seems our 

methods simply missed the best sets in their search. With a depth-first search maze agent, and 

a fitness taking into account deliberation cost, HSMM find an action set that outperforms all 

other methods, including the full set.

• Using data obtained from the online module of MR ADORE seems like the best approach to 

training our machine learners to approximate what is a good online operator set. The downfall 

of this approach is that obtaining one online training datum can take as long as a day with our 

setup, and generally takes at least a few hours, whereas obtaining one offline training datum 

can take no longer than a few hours and generally takes only a few minutes.
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Chapter 7

Future Work and Conclusions

7.1 Future Work

In the future, we would like to introduce a Theory o f Redundancy, in order to better understand 

when our Heuristic Search with Meta-Modelling is applicable. If there is no redundancy in the 

given action set for a given Markov decision process, than it is less likely that the HSMM method is 

applicable. One possible similarity measure would be:

sim ilarity(ai, a f  =  1 — [[.F(A/{ai})] — [F(A /{a 2 })]]

where A  is the set of n  actions {oj, a<i. . . ,  a„} and F(A)  is our fitness equation for an action set 

given in Definition 3.5. There are many other possible ways to define sim ilarity , such as measuring 

how close the functions of two actions are. In the maze domain for instance, two actions could be 

considered very similar if they move the agent in almost the same direction, and very different if 

they move the agent in an opposite direction from each other. In the vision domain, similar vision 

operators could be operators with the same function, but different parameterizations.

We would also like to use a more intelligent manner to choose the training data for the meta­

models within the HSMM method. In [Gilardi and Faraj, 2004] an active learning approach is be 

taken to select training data for neural networks and is shown to be effective.

Another research avenue worth investigating is using the HSMM method to determine a range 

for the number of actions to include in an action set. We performed some preliminary tests of this 

method on MR ADORE.

In our experiments we noted that operator sets with more operators and better potential image 

interpretation accuracy often perform worse when used in online MR ADORE. We hypothesized that 

the online policy of MR ADORE is led astray by all the choices of image interpretations provided by 

larger operator sets. In contrast to this, the online MR ADORE module was better able to capture the 

potential of smaller operator sets, meaning it more often returned the user an image interpretation
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Figure 7.1: Comparing fixed size operator sets to variable size operator sets.

closer to the optimal interpretation provided by a smaller operator set. We thus decided to limit the 

size of the sets chosen by each method, to decrease the number of choices (and most importantly 

limit the number of bad choices) available to MR ADORE’s online module. The values 50 and 100 

were chosen because in our earlier experiments (Section 6.4) GAs chose sets with sizes in this range. 

Results are shown in Figure 7.1.

Limiting the size of operator sets chosen to the range defined by HSMM enables Top method to 

choose better operator sets for the online module of MR ADORE. GAs performance is not changed 

significantly, since the bulk of the sets chosen by this method are in the range of 50 to 100 operators 

anyway. Further investigation is necessary to determine if using the GAs to select an operator set 

size range then rerunning the experiments is a viable method for choosing operator sets (and action 

sets in the general MDP case).

We would also like to apply the HSMM method to the feature selection problem to see if it 

can be useful for more problems besides action set selection in Markov Decision Processes, and to 

investigate the similarity between feature selection and action set selection.

Currently, in MR ADORE, we work with depth four expansions, meaning at most four operators 

applications are allowed along any path in the full expansion. Applying more than four operators to
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an image is possible, and allows for strictly non-decreasing rewards. The problem is that trying all 

possible combinations of more than four operators becomes intractable with very large operator sets. 

One idea is to reduce the size of the operator set by performing HSMM on depth four expansions, 

then executing the depth five expansions with this reduced set, and reducing the set further with 

another application of HSMM. This process could continue, making it an iterative application of 

HSMM.

7.2 Conclusions

In this thesis we propose a novel method entitled Heuristic Search with Meta-Modelling (HSMM) 

for automatically selecting action sets in Markov decision processes. We combine the strength of 

wrapper and filter approaches to perform this task that is historically done by human experts, thus 

reducing the amount of human intervention in otherwise automatic problem solving strategies and 

reducing the time needed to be spent by humans hand-engineering action and domain specific action 

sets.

In a broader scope, we investigate the problem of choice, namely, ’’How much choice is enough?”. 

This problem has been investigated in psychological circles ([Schwartz, 2004]) and many parallels 

can be drawn between this work and the investigation into how many actions are enough actions in 

an MDP. This is an action dependent and domain dependent question, thus there is no final answer 

applicable to all MDPs.

We test our action selection method on two different MDP domains. In the maze domain, we 

improve the navigation action set for a depth-first search agent by reducing it in size and thereby 

improving the agent’s fitness, by lowering the deliberation cost of the agent. At the same time we 

keep a comparable reward with regards to solving many different randomly generated mazes.

In the vision domain, we improve the performance of a state of the art adaptive object recogni­

tion system (MR ADORE) on novel images by providing it with a compact, domain-specific vision 

operator set. This set is much less costly in terms of learning and execution cost than is the full op­

erator set, and allows the control policy to match its image interpretation accuracy that was possible 

with the full operator set.
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Appendix A

Vision Operator Selection Software

In order to facilitate building large vision operators sets, we implemented a java program to easily 

tabulate different versions of certain operators. Figure A. 1 shows a typical screenshot o f the GUI. 

The input to the system is any operator set compatible with MR ADORE [Levner et al., 2003]. The 

GUI appears with some default (broad) ranges of parameters for those operators that take parameters. 

The user is asked to specify the minimum and maximum values for parameters, as well as the 

increment for the parameter in some cases. Operators can be included in the set by clicking the 

checkbox next to their names (by default all operators are selected to be in the set). The user also has 

the option to change the names of the operators, which amounts to appending the parameter values 

to the operator’s name. This ensures that we can differentiate between different parameterizations 

of the same operator. The set is created by clicking the “Build Set” and the output of the system is 

the set specified by the user, with parameterized operators.
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Figure A.l: A GUI used to select which operators to include in a set, which instantiations of these 
operators to include, and whether to rename the operators within the set.
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Appendix B

Vision Operator Examples

We here give a few visual examples of changes made to images by some of the operators used within 

MR ADORE.

B.l Template Matching

A logical manner in which to recognize objects is to try to match a template o f the object for which 

we are looking with the image in which we are looking for them. Figure B.l shows an image with a 

spruce tree matched with a spruce tree template. Brighter areas represent areas that are more likely 

to be a spruce tree, while darker areas represent areas which are most likely not spruce trees.

B.2 Thresholding

Thresholding an image at value V changes it to a binary image, with all pixels whose average bright­

ness is equal to or higher than V changed to white, and all other pixels changed to black. An example 

of a thresheld image is shown in Figure B.2.

B.3 Morphological Filtering

Morphological filtering can be done by many methods, a few of which we describe and illustrate in 

this section.

B.3.1 Gaussian Filtering

Gaussian Filtering works by replacing each pixel by the average pixel with respect to its surrounding 

neighbours. The operator has as its effect to smooth out an image, as seen in Figure B.3.
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Figure B.l: An image matched with a spruce tree template, producing a likelihood image.

Figure B.2: An image produced by template matching is thresheld to produce a binary image.
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Figure B.3: An image morphed by a gaussian filter.

B.3.2 Minimum Filtering

Another form of filtering, minimum filtering, replaces each pixel with the lowest percentile intensity 

value within a given neighbourhood. The image is thus darkened as a whole. Figure B.4 shows an 

example of minimum filtering performed on an image.

B.3.3 Maximum Filtering

Maximum filtering is effectively the opposite of minimum filtering. Each pixel is replaced by the 

highest percentile intensity value within a given neighbourhood. The image is thus brightened as a 

whole. Figure B.5 shows an example of maximum filtering performed on an image.

B.4 Histogram Equalization

Histogram equalization is a vision operator that takes three steps. First the histogram of the image is 

computed. Next the normalized sum of the histogram is calculated, and used to transform the input 

image by equalizing the image intensities, creating broadening peak intensities. Figure B.6 shows 

an example of colour histogram equalization performed on an image.
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Figure B.4: An image morphed by a minimum filter.

Figure B.5: An image morphed by a maximum filter.
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Figure B.6: An image before and after colour histogram equalization has been performed.
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