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Abstract

The work in this thesis is devoted to modelling two effects. The first effect we
studied is that of the focussing and defocussing of seismic energy after reflection or
transmission from a boundary due to seismic velocity inhomogeneity in the vicinity
of the boundary. This work was done to characterize how velocity gradients would
affect the amplitudes of a seismic signal and to emphasize that inhomogeneity cannot
be ignored in seismology. The second effeet studied is that of energy partitioning at
a boundary defined by a change in seismic velocity gradient rather than that of a
discrete change in material properties. We wanted to show that this effect does exist
and we desired o know the behaviour of these types of reflections and transmissions

in contrast with reflections and transmissions from a discrete boundary.
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CHAPTER 1

Introduction

Forward modelling of a wavefield response is one of the most important
tools in seismology. The simulated seismic response of an appropriate model of
the Earth is calculated and then compared to the actual observations. This is a
powerful way to help confirm whether a hypothesized structure truly exists. Tradi-
tionally. only the traveltimes are modelled but accurate value amplitudes on these
svathetic wavefronts are increasingly desired. Determining how a wave may behave
dyvnamically (i.e. as it propagates) is becoming as important a tool as knowing the
kinematic properties of the wave (i.e.where and when in propagates). This is critical

today as we seek to determine increasing finer details about the Earth's structure.

Usually. many models of the Earth consider it to be laminated consisting
of layers of constant seismic velocity. This fiction is not entirely realistic. In many
circumstances. the velocity may change gradually. Some examples of this are the
progressive increase in speed in thick shale sequences due to overburden pressure
and diagenesis. the gradual increase in velocity between the 400 and 660 km discon-
tinuities. and the inferred gradual change over a finite distance of the discontinuities
themselves as solid state phase transforms to higher pressure forms. As such. many
geological models of the Earth contain vertical gradients in the propagation velocity.
One strategy of handling these gradients is to divide a given medium into homo-

geneous horizontal thin slices with incrementally varving material properties. This



method gives reasonable results for the traveltime of the wave but it is deficient for
predicting accurate amplitudes. Therefore. an investigation into how gradients in
material properties affect the observed seismic amplitudes is the primary contribu-

tion of this thesis.

If a wave has sufficiently high frequency. we can say that the energyv of
a wavefront is carried by a ray (i.e. a curve in space). This ray is oriented per-
pendicular to the wavefront in an isotropic medium. The particle displacement
amplitude for the ray may then be expressed as an asvmptotically convergent series
nsing Asvmptotic Ray Theory (ART). Analyvtic formulae for approximaring these
amplitudes are obtained by truncaring this series. ART. which will be reviewed in
Chapter 2 of this thesis. has been successful in predicting various phenomena not
found with the conventional plane wave approximations. These phenomena include
head waves [6]. transverse motion propagating from an explosive source near a sur-
face {18]. and longitudinal or transverse wavefronts not carrving pure longitudinal or
pure transverse motions [19]. While [ will only be summarizing the development of
the theory for isotropic elastic media. it has been extended to visco-elastic media (23]

and anisotropic media [33]. [31].

There are complications when a wave travels in a generally inhomogeneous
medium with curved boundaries. One of these complications is that the wavefronts
do not have the simple geometries that would be observed in homogeneous media
separated by plane boundaries. For such a case. a complete evaluation of the leading
term in the ray series has to be facilitated using dvnamic ray tracing. Dynamic ray
tracing allow for the curvature of a wavefront to be evaluated evervwhere along a

ray. This theory. reviewed in Chapter 3. accounts for the fact that the amplitude



along a ray depends on changes in the wavefront shape. In the same chapter. we
will also prove that two methods employed for describing the change in shape of
a wavefront as it encounters a boundary. one derived from dvnamic ray tracing
by Cerveny and Hron [5] and the other derived using the principles of differential

geometry by Gel'chinskiy [14]. are equivalent.

The results are then used in Chapter 4 to show how seismic energy is
focussed or defocussed by the local velocity gradients in the vicinity of a boundary.
Dynamic ray tracing predicts thar the shape of a partitioned wavefront depends on
these local velocity gradients. Our analytical results will be compared against a well

established approximation in order to assess their validity.

Chapter 5 is devoted to showing that a discrete change in material prop-
erties is not necessary in order to partition seismic energyv. The theory so developed
suggests that a simple change in the velocity gradient with depth will scatter seis-
mic energy. Such a change is called a first order discontinuitv because there is a
discontinuity in the first order derivative of a material property. in this case velocity.
Some examples of this are given to show that many factors influence this special

case of reflectivity.

The new work in this thesis is primarily devoted to exploring how veloc-
ity gradients influence the amplitudes we observe. It is well known that within
the Earth. velocity gradients are commonplace so their exact effect on the seismic
signals is a very necessary piece of information. In some Earth models changes in
the velocity gradient do exist. For example, in the mantle transition zone and at

the lower mantle-D” discontinuity in PREM [27]. such discontinuities exist. The



nature of the partitioned rays would be of interest in any potential study of these

discontinuities.



CHAPTER 2

Asymptotic Ray Theory in Three Dimensionally

Inhomogeneous Isotropic Media

2.1 Introduction to Asymptotic Ray Theory

Asvmptotic Ray Theory (ART) applied to the elastodynamic equation was
first developed by Soviet scientists such as Babich and Alekseev [2] and later. though
probably independently. by Karal and Keller [22] in the USA. A rigorous discussion
of ART is contained in Cerveny and Ravindra's [6] classic book and in papers such
as Hron and Kanasewich [17] and Cerveny and Hron [5]. Essentially. ART is used
to predict the amplitude variations along a ray. being the orthogonal trajectory of
a wavefront. in a more accurare manner than simple geometrical arguments. In the

high frequency limir. the ART solution converges to the solution predicted from

geometrical ray theory.

As ART is a high frequency approximation. it may not be used for certain
tvpes of media where scale lengths are much less than a seismic wavelength. Also.
in the vicinity of a caustic. on the boundary of a shadow zone. or in the interference
zone between a head wave and a reflected wave. other techniques must be emploved
to approximate the wavefield. However. the advantage that ART has over full

wave solution (i.e. finite-difference) is speed of computation and analytic solutions



which provide phyical insight into seismic wave propagation. ART is also a better
approximation than geometrical ray solutions as certain ‘non-geometrical” effects are
detected by ART. These effects include head waves. tunnelling waves through higher
velocity medium. S* waves propagating from an explosive source near an interface
with transverse polarization. and depolarization of seismic waves. A summary of

these effects is found in the paper by Babich and Kiselev [3]

Suppose we have an isotropic medium described by elastic parameters \.
jt (the Lamé parameters). and p (the mass density) belonging to the C™ family of
functions. C™ indicates the set of functions which are not onlv continuous. but are
continuous in all spatial derivatives. In such a medium. the elastodvnamic equation
has the form:

O
)——
Pror

where 117 is the particle displacement and t is the time. We shall seek solutions to

equation 2.1 in the form of an asvmptotic expansion

[
o
~

0= ST fult = 7) (
k=0

that is convergent for high frequency signals. The function r is the traveltime to a
wavefront. fi is a function with the property

dflt—71)

S = felt=7) (k2 (2.3)

and If'k is referred to as the kth order amplitude term. Equation 2.2 can be thought

of as an extension of a plane wave approximation with higher order perturbations



and incorporating the slow variation of the wavefield in the 11, terms . Another
important feature of equation 2.2 is that the time dependence is contained only in

the fi terms. Both the amplitude and phase terms are only functions of space.

The fi functions are easily determined when we consider that f, is simply
the shape of the source wavelet. Integration of this source wavelet will determine
all of the other fi's. Frequently. the time dependence of the source is assumed to

't

be harmonic so that f, = ¢*' where = is the frequency. [n this case. the expansion

will have the form

= et S (i) 1T (2.4)
k=0

However. the source wavelet. f,(#). may. in general. contain any arbitrary degree of

discontinuity at + = 0.

2.2 The Kinematic and Dynamic Properties of a

Ray

Upon application of the ray series expansion 2.2 to the inhomogeneous

elastodynamic equation 2.1 we obtain the following recurrence relation:

—

N(Whra) = M(Wio) + LOT) =0 (k> —2)

—_
o
(1]

-

where we define I1_, = 11"_; = 0 to remain consistent. The vector operators .V. M.

and L are defined as:



- d7
+(Z-VT)VA+ (V- i)+ (V- V7). and (2.7)
L@ = A+p)V(V @)+ pV2T+ VMYV - @)+ Ve x (V x i0)
+2(Vu V)i (2.8)

2.2.1 The Eikonal Equations

We may glean the various kinematic and dynamic properties of the ray.

in the high frequency limit from equation 2.5. Specifically. if we examine the case

where & = =2 and keeping in mind that If'_-_, = I1"_, = 0 then we obtain the eikonal
equation:
N(T,) = 0. (2.9)

We may rewrite this equation as an ecigenvalue problem by defining a matrix N with

components:

- 1\ ':'_ -
Ny =Ly, —d,% (2.10
I I

=

where p, are the components of the slowness vector. o = Vr. and d;; is the Ixronecker
D p L¥)

delta. Equation 2.9 then becomes:
NI, = =|V7*W,. (2.11)

Due to the Hermiticity of the N matrix. equation 2.11 gives rise to three real. mu-

tually orthogonal eigenvectors. ;. associated with three eigenvalues. —.\; = |V 7|2



Each eigenvector will be associated with a particular particle motion which propa-
gates at a speed determined by the eigenvalue. We may solve for these eigenvalues
by finding the roots of the equation

(e + pJP[(N + 20) \ + p
“:l

det(N - AI) = — = 0. (2.12)

Equation 2.12 has a double root indicating

IVr| = ﬁ =1, (2.13)

and a single root that indicates

= A+2
S =) (2.14)
1%

Equations 2.13 and 2.14 are known as the eikonal equations and we may utilize
them to determine the path of propagation of the wave. the rayvpath. via variational
calculus or some sort of finite difference method. These equations also serve to
determine the speed of propagation of a rav. given as ¢, or v, for each mode of
propagation. Thus. we can see that the eikonal equation serves to specify all of the

kinematic properties of a ray.

The double root of equation 2.12 indicates that the associated eigenvectors
for this eigenvalue cannot be uniquely determined. These vectors exist in a plane
perpendicular to the raypath and are called shear waves (S-waves) due to the trans-
verse particle motion. This result is a consequence of equation 2.9 which requires the
zeroth order particle displacement vector. If’,f"'). to be perpendicular to V7. which
is aligned in the direction of propagation. The other tvpe of motion. longitudinal

waves (P-waves) are characterized by a particle motion vector. If’é”). along the ray.



2.2.2 Zeroth Order Amplitudes for P-waves

In the previous section. we have seen how all the kinematic properties of
a ray may be determined when we examine equation 2.5 for the case of k& = 0.
Next. we will look at this equation for P-waves (V7 = L';")) at & =1 in order to
glean some information about the dynamic properties (i.e. the amplitudes) of a ray.

Therefore.
NOTPY = ATy, (2.15)

The component of equation 2.15 parallel to the propagation direction must be zero

for P-waves. Thus. we mayv detine a new operator. M. such that:

M) = ¢,V1,  M(iD) and (2.16)
LTy = 2 (” )i{ (p‘l,',../)”'fp)} ~0 (2.17)
o ) a7 '

where 1P is the projection of If’{ﬂ”’ in the direction of propagation and .J is the
Jacobian of the transformation from Cartesian coordinates to rayv coordinates and
it will be discussed in more detail in the next chapter. The .J function enters the
equation as evaluation of 1/, involves taking the Laplacian of the function 7 and

= I d ¢r.J
T=——1—]. 2.
v Judr (1> (2.18)

The basis of the ray coordinates is given as (s. %,. 32) such that s specifies an
arclength on the ray and ~, and ~, are the take off angles of a given ray as shown
in Figure 2.1. This function .J is also a measure of the geometrical divergence of a
ray tube. an infinitesimally narrow pencil of rays around a central ray. and it will

be examined in more detail in the next chapter.

10



Figure 2.1: The ray coordinates (s. ~;. 3,) for a point on a ray in relation to the
Cartesian coordinates. The source is at the origin.

The solution to equation 2.17 is immediately apparent as

(Mg

lt’,;!'):(”"""") £ (2.19)
Py ) (J]J,)2

where the quantities p, = p(7,). 14 = vp(Ta). Jy = J(7). and P, = WP(7,) are

measured at a reference traveltime. r,. along the ray. In the equation. there exists
i . . . . .

a term (.J/.J,)7 which is frequently called the geometrical spreading. L. Hron [16]

noted that equation 2.19 may be obtained by considering that the seismic energy in

a ray tube is conserved.

11



2.2.3 Zeroth Order Amplitudes for S-waves

The same basic analyvsis as used in the previous section may be used for
the problem of zeroth order amplitudes for S-waves. A complication arises. how-
ever. as the direction of particle displacement is only confined to a plane and the
displacement vector is free to rotate around the ray in this plane. The derivation of
the magnitude of displacement. however. may be solved in a somewhat analogous

technique to the solution for zeroth order P-waves.

We know from equation 2.5 that

- ~

TR S ad bl -(s) YD
N = e (2.20)
and from equation 2.6 that a component of the .V operator perpendicular to the

ray is zero for shear waves. The amplitude for the zeroth order shear term may be

written as:
=10 e, (2.21)

where ¢_ is the unit vector aligned along the direction of particle displacement.

-

This unit vector may then be used to define a new operator. M = M -¢. and. in

conjunction with equation 2.20. we obtain:

M) =2 (—p—)i [ (p'vs-l)”',i”] =0. (2.22)
vy /) dr
This equation may be solved like equation 2.17 to obtain
”.‘;-") = (pouso) ? So . (2.23)
pUs (J]J,):



—

The terms vy, = v,(7,) and S, = II}’")(TO) are measured. similar to analogous terms

in equation 2.19. at a traveltime 7, on the rav.

The problem of the magnitude of zeroth order shear wave amplitude being
solved. we may examine the more complex case of determining the direction of the
particle displacement. To do this. we need to nse the three basis vectors for a curve
from differential geometry. These are f. the tangent vector. n. the normal vector.
and b. the binormal vector. These vectors are related through a set of three formulae

known as the Frenet formulae {11]:

It ..
i = Kn.
In . .
L Th. and (2.24)
s
b .
I = —Tll.

[n these equations 2.24. A" is the curvature of the ray. T is the torsion of the ray.

and s is a measure of arclength. In this orthonormal basis.

W = w2 + 11 band (2.25)
£ = coson +sinob (2.26)

where o is the angle between the normal vector and IV!*). The use of this basis

allows us to define two new vector operators:

MLOTEY = MOTP)Y .7 =0and (2.27)
M(WY = M(ITE)-b=0 (2.28)

13



Using equation 2.25 and the Frenet formulae. 2.24. equations 2.27 and 2.28 become:

- -, () ! ()
M (W) = ﬁ- e, WG ) ——d”‘"‘ — e, T —+——”"" ilﬁ and(2.29)
¢ 2 o dr ob poodt
o R ,”['(-\') (s}
ALOTSY = L 10 S TIE +Uig‘—‘ (2.30)
3 dr poodt

. . e (4] ] (s5) . . .
Knowing that 1175 = 117 cos o and 1V, = 1" sino. the two coupled equations

above. 2.29 and 2.30 may be reduced to a single first order differential equation in

o

do

o=

-, T (2.31)
giving the orientation of the shear polarization vector as:

olr) = — /-r v Tdr +o(r,). (2.32)

2]

What this result tells us is that the polarization vector of a zeroth order shear
wave rotates about the ray according to the amount of torsion exhibited by the ray.
For the case of inhomogeneity existing in only one direction. such as the case of a
spherically svmmetric earth. the rayvs are plane curves and therefore have no torsion.
In these cases. the shear wave polarization does not change along the ray and it is
said to be preserved.

Comparison of equation 2.32 and the third Frenet formula. % = -Th.
reveals that the shear wave polarization rotates about the ray with the same speed
as the normal and binormal vectors. Thus. these vectors provide a basis in which

the orientation of the I{*) vector is constant.

14



2.2.4 Higher Order Amplitudes for P-Waves

[t now remains to examine the case where & > 0 in equation 2.5. We will
discover that there is no guarantee that the higher order P-wave amplitude vector.
If'ﬁ.p). is aligned along the ray. [t makes sense then. to define the principal component
of amplitude. If',f.i’f) as the component of If’,{.") aligned along the ray. Also. we must

define 1T, the additional component. as 117 = 17" — e

The projection of equation 2.5 in the plane of propagation must be used in
order to obtain useful formulae for the higher order amplitudes. [t is useful. then.

to define the operators

Nyi@) = (N -0, V),V (2.33)
.\7:( 7)) = (.\7(17) . l',,V-."r)z'pV-f"r and (2.34)
L (@) = (L) 1',,67')(,,\?7‘ (2.35)

NOTPY = (('—"‘—P)> e, (2.36)

Therefore. it is possible to solve for the additional component. II’,{.’:’. with the aid of
equation 2.5 as

v
p

If(p) =
= op(ef )

(V1T = LT (2.37)

The principal component may be solved for if we realize that

Ny(H ) =0 (2.38)



This allows the component parallel to the ray of equation 2.5 to be written as
T TP 7o 5 -
MLOTPY = Ly (TP) = 0. (2.39)
As M is a linear operator. and recalling equation 2.17. we may write

MLOTE)

(2.40)

Equation 2.40 mayv be solved as a first order linear ordinarv differential equation
| A A {

with solution:

)

P l Ty ')'/ Y A IR = g
e = — / %("7) (L0780 = AL0TE) - Sdr

(prp.

+ (/)ul'po'[u)?ﬁk} (2.41)

where Py is equal to H'k(,é’;') measured at a rime 7, and the integration is carried out

along the ray.

2.2.5 Higher Order Amplitudes for S-Waves

We may employ analogous techniques to those used in the previous section
to obtain equations describing the higher order amplitudes of P-waves. The higher

‘f’) in the

order amplitude vector. [f'k(.‘”. can be split into a principal component. 1§ o
normal plane of the ray. and an additional component. If’éi) aligned along the ray.
As in the previous section. we shall first devote ourselves to deriving an expression
for the additional component of If’k(."'). Knowing that

2
s

22\ L
VT =p <——(LP Ls)) e, (2.42)
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we may use equation 2.5 to obtain the following expression for the additional com-
ponent of the S-wave:
2
ppep——y 74 (IR Tt 0 2.43
e = o |MOZ) = LU, (2.43)
p(l'l) - l")

The derivation of the principal component for the higher order S-wave
amplitude is more complicated than the corresponding term for higher order P-
waves. This is due to the orientation of the vector only being confined to a plane.

B . s . .
We will need to decompose the [Ik’_) vector into components aligned along the
normal. n. and binormal. b. directions of the ray. To help us with this derivation.

we shall need to define the operators

Vo) = (N an (2.-44)
V(D) = (M) - A)id (2.45)
Loty = (L(d)-n)n (2.46)
No(d) = (N(a@)-b)b (2.47)
My(i@) = (M()-b)b. and (2.48)
Loty = (L(T)-b)b. (2.49)
For any shear wave. N, (I{7) = Ny(iTy) = 0. Therefore. taking the normal

and binormal components of equation 2.5 and exploiting the fact that the vector

operators are linear results in:

) -

MLOT) = LT = 3LOTE) and (2.

(8]
(]
o

[A%]
(S]]
P

LUV = LT - MLOTE. (2.

With the aid of equations 2.29 and 2.30 we have a set of two coupled equations for

the normal and binormal components of U (W = W(” -n and W, (s) W(’ -b

17



respectively) given as:

0T = I% eI 49 (deTkn__l T ‘»)) . IIN ((j[l;

= [':”(;f',i"_)l) - .\7,1(If,f,:’i)) and - (2.52)
T = %Frx”'k‘.Z";"’-"*?((”,;};) +"~'T”1(~3)) * ”;(b ((lzltlj

- i (I_T'L'i’l) B '\7[)”;.;:,)_ (2.53)

We may simplify these two formulae by adopting the use of complex notation in
. orp el -(s) . .. . .
order to keep track of 112" and 117} simultaneously. This is done by introducing a

complex scalar. Ti.. such that
Te =100 i), (2.54)

Equations 2.52 and 2.53 are then reduced to a single complex equation:

l

(.:177% + ,[(_l— [l n (e pr,S) )] L=

ot
A |
—_—

[c( TSRV TR (IR (2.

where o(7) is defined in equation 2.32 and £ and .M are complex operators given

by

L(T) = Lu(@)-n+iLy()-band (2.56)
M(@) = M) n+iMy(d) - b. (2.57)

The solution to equation 2.55 is then given by

etol7)  pmio(r) ; .
T, = : I (LW Yy = M) dr!
) (pr,J)* [/ 5, (s lP) (Low) — M)
+ (paL'soJo)%Tko} (2.38)
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where Ty, = Ty(7,) and we integrate along the ray. Taking the real and complex

parts of T will give the values of 113" and 117} respectively.

2.3 Boundary Conditions

2.3.1 The Concept of an Interface

The previous section was devoted to describing the behaviour of waves in
a medium that was described by elastic parameters belonging to the C* family
of functions (i.e. the Lamé coefficients and the density were not onlv continuous.
but all of their spatial derivatives were also continuous). When a ray encounters a
discontinuity in the kth derivative of A. y. or p. the coefficients in the ray series.
IT% also become discontinuous. As certain conditions must hold at this discontinu-
ity. like continuity of displacement and of normal stress components. reflected and
transmitted waves must exist in order for these conditions to be satisfied. Following
the notation of Cerveny and Ravindra [6]. a surface which exhibits a discontinuity of
the nth derivative of elastic parameters will be called an interface of (n+1)th order.
A surface where the elastic parameters themselves are discontinuous is an inter-
face of first order. Higher order interfaces are also referred to as weak interfaces in
the literature. In reality. many interfaces are gradational in nature as one material
gradually incorporates another material until the other material is all that remains.
Such gradational interfaces consist of a pair of first order interfaces complimenting
one another and their reflective properties have been studied by Gupta [13] and
Richards [29] with low frequency approximations. The reflectivity of a single first

order interface will be discussed in chapter 5 of this thesis using ART.
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Plane of Incidence

Figure 2.2: The point of incidence of a ray on a boundary. €. The plane of incidence
is also shown.

2.3.2 Kinematic Boundary Conditions

Suppose the incident ray strikes the interface at the point O. The plane of
incidence can then be defined as the plane that contains both the normal vector to
the interface. . and the tangent vector to the ray. f at the point . The point. O.
lies at the origin of a Cartesian coordinate system with a basis (dy. . ns) where ny
is normal to the interface pointing into the first medium. d,-f > 0. and d; x dy = ns.

Figure 2.2 shows the relationship between these unit vectors.

When examining the problem of reflection and transmission from a bound-
ary. five waves are usually considered in the most general case — one incident. two
reflected. and two transmitted. Therefore. we should adopt new notation in order
to describe these waves. First. we will consider that locally. the interface divides
the media into a first and a second medium. The elastic parameters in the first

medium will be described by \,. p;. and p; whereas \;. py. and ps will describe



these parameters in the second medium. The subscript. v. will be emploved to de-
scribe the type of wave — v = 0 will describe the incident wave (which can be either
a P- or an S-wave in the following discussion). v = 1 and 2 will refer to the P- and
S-waves in the first medium. and v = 3 and 4 will refer to the P- and S-waves in the
second medium respectively. In addition. the S-waves have some degeneracy as thev
are only confined to a plane. In the following discussions. we may speak of S-waves
polarized in the plane of incidence as S\-waves and S-waves polarized perpendicular
to S\™-waves parallel to the tangent plane of the boundary as SH-waves. We will

write the ray expansion for the incident wave as

i = Z” W filt = 7) (2.59)

k=0

and the reflected or transmitted wave's expansion will be

Z WY felt = 7). (2.60)

In equations 2.39 and 2.60. rhe functions 7, and 7, are the phase functions of the
incident and resultant wavefronts. respectively. given as solutions to the eikonal

equation. 2.13 or 2.14. At the interface.

In accordance with our new notation. we should designate the speed with

. . . ‘)
which P-waves travel in the first medium. v, = o, = ﬂ%ﬂ: the speed of S-
waves in the first medium will be v, = 3, = ‘;—:: and v3 = ay =




vy = G = p& will denote P- and S- waves in the second medium respectively.

Also. we can define

Naturally. the speed of the incident wave is given as ¢,. In the following discussion.
no restrictions will be placed on the tvpe of incident wavefront or on the medium

from which it originates.

We may use the eikonal equation. either 2.13 or 2.14. to determine the

spatial derivatives of the phase function at the point. O. as

sin f
Tvel & Tyl = : - = (2.63)
Ty = (2.64)
Tyen = = (2.63)

where .. .. and ., refer to directional derivatives in the . d,. and n directions
respectively. f, is the acute angle between the tangent of the vth ray and n at
point . and v = 1.2.3.4. The directional derivative normal to the boundary. 7.,
contains some ambiguity which may be resolved by considering which medium the

ray is propagating in. Therefore

cos,
Tyon = (—1)‘"*‘6—‘)}— (2.66)
where
l.v=1.2 )
¢, = (2.67)
2. v=3.4

[§N]
[2V]



and

cosf,

(2.68)

Toon = (_]-)E

Uy

where €, is equal to 1 if the incident wave is propagating in the first medium and is

equal to 2 if the wave is in the second medium.

[n addition. for the case of supercritical refraction. 7., > 1/v,.sosiné, > 1
and cos#, = £i\/sin"#, — 1. To resolve this sign ambiguity. we turn to the radiation
condition stating that amplitude decays exponentially away from a boundary. Thus.

the correct choice of sign vields

cosfl, = —i\/sin*g, = 1. v=123.1 (-

o
o
Ne)

Equations 2.61. 2.63. 2.64. 2.66. and 2.69 together with the eikonal equa-
tion (2.14 for P-waves and 2.13 for S-waves) are enough to specify the kinematic
properties of the ravs diverging from the boundary. These equations uniquely de-

termine the raypaths of all reflected and transmitted phases.

2.3.3 Dynamic Boundary Conditions

In order to specify the amplitudes of the various divergent waves from
a boundary at the point. O. we must use the appropriate boundary conditions.
These conditions consist of the normal stresses and the particle displacements being

matched across a boundary. Formally. these conditions are:

4
D_ (=L IE) = (=17, (2.70)

v=1



4

Yo (=D)Irs, = (=0T, . (2.71)
v=1

4

Y (=D, = (=0T, (2.72)
v=1

M-

(—1)% [,\,U(ﬁ-IT'")+2;1,UH'("M.,1] = (=1)~- [,\,_‘,(ﬁ‘lf"’) (2.73)

T
1

. - 1
-r.);l,”{ (’:H'”J

t
€y ;"‘l . > s
Z oy (W #1000 ] = (=10, [0 #1000 ] - and(274)
i
v —_ o1 ) TR
}: (=1 e, [V #1000 ] = (=), [0 #1170 ] 2)
[n equations 2.70-2.75. we have used a decomposition of the rav amplitudes in the

boundary coordinates as

W= W0 d, = Wy + 1V i (2.76)

Terms in the ray series of the form W7, W, o and WY may be defined in a

similar manner.

We may also decompose cach term in the ray series in such a way so that
decomposition into principal and additional components may be facilitated. To
perform this task. we need a set of basis vectors aligned along these component
directions. Therefore. we can define the following: n% is aligned parallel to the
tangent vector of the vth ray (v = 0.1.2.3.4): n%,- is a unit vector in the plane of
incidence. normal to i%. and its positive direction is such that % - d; > 0: and.
% is equivalent to the unit vector dy. If each term in the ray series expansion is

written as

13
=
i

WY = Wepnt + Wee ik + Whyihy (2.

24



then identification of the principal and additional component for each ray is simple.
Of the twelve components associated with the four rays divergent from the boundary.
the six principal components are 11!, W2y T2, Wi, 11 and Wik, while
the six additional components are 11}, TVl . T2 WA T, and 1}, for
each value of k. We have dropped the vector notation from these components as the

direction of displacement is implied by their subscripts.

[nsertion of the ray series. 2.59 and 2.60. into the displacement boundary

conditions. 2.70-2.75 vields the following six equations:

M«
M)«

g s =

[IVdpsinfy + 10 cosy + 1125, cos By

k=0 k=10
+WEpsinfy — 135 sinfy — 1%, cos 8y
1k cosOy = 11 sinf ] fe. (2.78)
S [=0ees] fe = > (Wden + Wi = Wiy = W] fo (279)
k=0 k=t
S (=0, ] £ = Z [1Vdp costh = kg sing) — W sin by
k=0 k=0
”LP(OS())'{"‘[[,‘.P(OHH; [‘-l;.‘b"'h'in().‘;
—1hgy-sin 6 + 105 cos 4] fi. (2.80)
= . e, + 24, co82 0, ., sin 26,
Z(—l)‘“l{—[( - )Iikp—u nm]
k=0 Uy Uy
(A, ¥ - T2+ 200, - ,]}sz
x [ Ae, + 24t cos® b, sin 26, ]
2 (Z(—l)‘" {— [( —— )n = te, —— W | +
k=0 \w=l1 v Uy p
MV T2+ 200, 1Ty 2] }) fi (2.81)
sin 26, ., C€0s20, ] -0 -0 ]
Z He, [” kP + U L?SV v - (—1) ? (”‘k-[(l)-n +1¥ k—l(n)'l) fk =
k=0 a J

(]
(S]]



It

x (& sin 26, 08 26,
(S [ g, 2

k=0 Lu=1 Yy v
(=10 (I + Tyt ] } fe. and (2.82)
= -0 COS()O ¢ /] T0
Z/‘lfu [[‘kb'f[ ; - (—l.) Y (I‘k—l(f)'" +”k—l(n)'2 )} fk =
k=0 Lo
< [ ., cosf, ) " ,
Z {Zu,b [—Ilk"sn - -+ (- 1) (H,f.’_”._,).,,—Hlk_”,”.-_» )J}jk. (2.83)
k=0 \r=1 v

Each of the above equations. 2.78 to 2.83 involve a summation over all values of
k (0 <& < x) in which a term of the form f; is always present. For each value
of k. we can equate corresponding terms in the summation over both sides of the
equation. This property allows us to reduce a problem involving infinite unknowns to
an infinite set of systems of equations each involving six equations and six unknowns

the principle components of the generated waves. This syvstem is given as:

Fi = sind 0, + cosB 12 — sindy117}, — cos 617 (2.84)
Fy = cost e —sin®112, + cos B30 0 — sin 17, (2.85)
Fy = praycos 20,0005 — p1 3 sin 20,8005 — pocva cos 20,117,

+pacey sin 26,117, (2.86)
Fy = pre3sin20000 + prdy cos 20,15, + padanasin 2051170,

+ .32 cos 20,11 - (2.87)
F5 = Wiy - Wy and (2.88)
Fs = prdicos20,0172., + pady cos 20,”',:5,, (2.89)

where F; is given as the sum of four terms



and the F;’s are

Fiy = (=1)%Ug,,. (2.91)
Fiy = Fp=Fn=0. (2.92)
Fiy = —cost TV —sinll s + cos 6311 + sin 6,117, (2.93)
Fiy = Fy=Fy=0. (2.94)
Foy = (=117, (2.93)
Fyg = sin® 1k — cos 6Tl +sin 6112 — cos 6,117, (2.96)
Fy = (=1) <,\,‘,¥ufm + (=1 (N, + 2}[,”)[",:.’("’¥> . (2.97)
Froo = (=0 (ALY T8 =2 100 ) (2.98)
Fis = s sin 20,10, - %(a‘;’-z.ifsin'-’e._,)ufp

—prdana sin 20410 + %%m:;: — 242s5in? 0,)11. (2.99)
Fy = ﬁj(—n'u*‘ (AN T+ 200, 10 n ) - (2.100)

v=1
Fn = ., (It';.{,.‘."‘”fw” + It'kpsm:'w”> . (2.101)
Fooo= (=1, (W0 +08et ) - (2.102)
Fis = —pidivicos20, 1V — pyJdrsin 20,002,

= padara cos 2048 0 — pody sin 20,11, (2.103)
Fu = :(—1)“*1u(u (W syn + T s1 ) - (2.104)
Fi = (=17, (2.103)
Fsy = =Wy +12,. (2.106)
Fsi = uﬁ,ﬁ’;ﬁn};fs”. (2.107)
Foo = (=1)*"'p,, (Wi?—l('z)-n +I"'L‘-J—l(n)"l) . (2.108)
Fos = —pdivicos8 Wilsy — padavacos 302, and (2.109)

(3]
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4
Foo = Y (=0 e, (W yayon + W0y y2 ) (2.110)

v=l

First. we solve the problem of the zeroth order terms of the reflected and
transmitted waves knowing only the properties of the zeroth order term of the
incident ray. The derivative rerms in equations 2.81-2.83 are zero as If"_’l = 0 and
there are no additional components present. In fact. the boundary conditions for the
zeroth order waves are identical to Zoeppritz equations which describe plane wave
reflection and transmission and can be found in many textbooks such as Fowler [13]
and Telford et al. [30]. When we solve for the kth order rerms (k # 0). additional
components are present but they may be expressed in terms of the next lowest order

term. which we will have already solved.



CHAPTER 3

Dynamic Ray Tracing

3.1 Geometrical Spreading

The previous chapter was devored to deriving the kinematic and dyvnamic
properties of seismic waves. Approximate forms for the amplitudes of rhese phases
were derived using ART. but a function J was introduced through equation 2.18 in
order to describe amplitude variation due to the divergence of ravs. In this chap-
ter. we will devote our discussion to deriving this function in continuously varving
media as well as establishing boundary conditions to track how it changes across
discontinuities. Most of the discussion parallels work already published. mainly by
Cerveny and Hron [3]. so the finer details may be examined in that work. However.
the last section of the chapter. devoted to discussing the equivalency of two methods
of calculating the change in shape of a wavefront at an interface. is not found in any

other work.

The zeroth order amplitude for P and S waves have the form

. Polo o Pol'o Ao
Wo =/ = - (3.1)
pr 1), pr L

where p is the density. v is the wave speed. A, is the amplitude at some reference

point. and the subscript o refers to quantities measured at this reference point. The



function L is called the geometrical spreading. L is more commonly discussed in
the literature than .J as it is conceptually clearer to understand. relating how the
amplitudes along a wavefront change due to changes in the wavefront's surface area
rather than the Jacobian of a transformation from Cartesian coordinates to ray
centered coordinates. In spite of this reason. the discussion will be focussed on the
derivation of .J rather than L. but realizing that the two functions are rather simply

related to one another.

3.2 [Evaluation of Geometrical Spreading in a con-

tinuously varying medium

In order to develop analytical formulae to track geometrical spreading
along a ray. we can look at how the local wavefront curvature. K. is changing.
K is a 2 x 2 matrix involving the two principle radii of curvature of the surface —
the radius of curvature along the direction of greatest curvature and the radius of
curvature along the direction of least curvature. The explicit form of a curvature
matrix is shown later in equations 3.32 and 3.33. However. some preliminary work
needs to be done before we can express the curvature of a wavefront in terms of

material properties and then to establish a relationship between K and .J.

Our first task is to develop a set of coordinates along the ray that will
facilitate our analysis. When dealing with curves in three dimensions it is natural
that one of these coordinates should be the arclength. s. It is also natural to
select the other two coordinates. q; and ¢,. such that they are perpendicular to

the arclength. Furthermore. as these coordinates are perpendicular to the rav. the
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principle components of the S-wave will be coplanar with them. It would be useful
to define these coordinates such that this principle component does not rotate wichin

this plane. If the unit vectors of these coordinates. ¢, and é, are selected such that

é = ncoso(s) — bhsino(s) (3.2)
€y = nsino(s) + bcos o(s) and (3.3)
ofs) = /h T(s")ds' + o(s,). (3.4)

this condition is satisfied. In cur definitions. we have used the normal and binormal
vectors of the ray. 1 and b. the torsion of the ray. T. the reference arclength along the
ray. s,. and an arbitrary angle o(s,). An infinitesimal distance. «r mayv be described

in this svstem as:

drt = hids? + dyi + dg3 (3.5)
where £ is given as

h=1=R(qg coso+q¢scoso0) (3.6)
and A is the line curvature of the ray.

Cerveny and Hron [5] showed that the eikonal equation in these ray-

centered coordinates may be written as

Vir = 5= T+ +T (3.7)

with the comma denoting partial differentiation in the s. ¢;. or ¢, direction as

indicated. Theyv also showed that the Taylor expansion of 7 away from the ray is
1 pors
(8. q1.q2) = 7(5.0.0) + 54 Mg (3.8)
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where

(‘)_3:_ T /
3G g =g — Aq0q2 |y, =g, =0 - q1
M = o n=e=0 1=a: and 4 =
J=7 ’ ﬁ (1‘)
dq1dqa qu=g2=0) 943 g =q2=0 h

Using the above two results. they were able to show that the matrix M varies along

the ray according to a Riccatti equation:

M ) l
M= =V (3.9)
(s -
where
(AN U
v=| "R (3.10)
oo U

Deschamps [10]. Lee [25]. and James [21] showed that M = K making it possible

to express equation 3.9 in terms of the curvature matrix of the wavefront as

'(IK

ds

0 v K+ rK* =-V. (3.11)

The function .J entered our analysis last chapter through equation 2.18. By noting

that 7.2 = %, we may write:

B

L9 1 Ld /]
- (-) My M = = (—) (3.12)
ds \rv

Jds \ v
on the central ray (i.e. where q; = ¢» = 0) so that .J can be solved for as

T

J(7) = J(r,) exp ( / u%r(M)dr') (3.13)

0

or in terms of the wavefront curvature as

T

J(r) = J(r,)exp (/T

0

utr(K)dr’) . (3.14)



3.3 Boundary Conditions on the Curvature of a

Wavefront

We have seen how the curvature of a wavefront may be calculated through
a continuously varving medium. It remains to show how a boundarv will affect this
matrix. Following the procedure of Cerveny and Hron [5]. we shall start by Tavlor
expanding the phase function 7 at a point on the ray defined by an arclength s, to

a point near the ray at coordinates (s.qp.¢2). This gives us:

l N S -
1 (8 = 5,)7 + ;q".\/[q (3.13)

T(.ﬁ'.({l.([;)) = T(.s‘,,. 0()) - ‘—(5 - 50) T
Uy 25

where v, = ¢(s,). However. as we wish to express these coordinates in the local
Cartesian coordinates of the boundary. we need to express equation 3.13 in a Carte-
sian coordinate svstem. By simply replacing the coordinate s with a coordinate {
aligned along the tangent vector of the ray. f this transformation is possible as the
element dl = hds. Figure 3.1 shows a plot of these coordinate svstems. I[n the new

coordinates. equation 3.15 becomes

{ ‘. YA Ty 4 l_‘» -
rlq.p)xr+—-— q—ll—lﬂ—'l - o I+ = Mg (3.16)

r 2 22 72

where 7,. v. v, to. vy and M are evaluated at (0.0.0) and all terms greater than

second order are neglected.

Now that the Taylor expansion is expressed in terms of a Cartesian coor-
dinate system. we can transform this expansion into another Cartesian frame. this
one defined in terms of the local coordinates of the boundary. Thus. we have a basis

(dy.ds. n) where d; is in the intersection of the tangent plane of the boundary and
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Figure 3.1: A diagram of the (l.q;.q2) coordinate system as compared to the
(5.q1.¢2) coordinate system. The point 7(s.q). ) mayv be found from 7(s.0.0)
by equation 3.15.

the plane of incidence. ¢, is in the tangent plane of the boundary perpendicular to
dy. and n is in the normal direction of the boundary. Their respective unit vectors.
d,. {[3. and n are aligned such that dyx £>0.n points into the medium where the
ray is coming from. and d, x dy = n. In our coordinate transformation. we shall
simplify the situation by assuming that é, = dy. If only one interface exists along
the ray. this assumption amounts to an appropriate choice for o, but. otherwise. it

just serves to simplify the formulae we will derive.

At the boundary. in general. we have five types of waves interacting as
discussed in the previous chapter. Physical properties pertinent to the incident
ray. such as velocity v and wavefront curvature K. are denoted with the subscript.

o while properties pertaining to the reflected or transmitted rays will be given a
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subscript. v. The acute angle between the tangent vector of the ray and n is . The

relationship between the two coordinate syvstems may then be expressed as:

q1 T COS 9,’ 0 —sin l‘),‘ d[
¢ | = 0 I 0 .y (3.17)
! sinf, 0 =Zcos8, In

where the subscript / can be either o or v and the upper sign corresponds with the

reflected waves while the lower sign pertains to the incident and reflected waves.

Expressed in these coordinates. the expansion 3.15 becomes

sin#, |
(i dy) =1, + 2 o, + 3(Z7F(l (3.18)
v 2
where
+cosf () +cosf () ‘08
F o= oS M Cos ;‘-(UbHD
0 1 0 1 v
-Si[l(f 2. cosf ' B \[[1': gl v, 0O (3.19)
= 1" 0 e 0 0

The expansion is only in two coordinates now as we are considering that the ray

is impinging on the surface. The normal vector coordinate was eliminated through

the relation

n= —éd”f Dd (3.20)

which holds locally up to second order accuracy in d, and dy. The vector d =
[dl.dg]T.



Expansions like 3.19 hold for reflected and transmitted waves in the vicinity
of the boundary as well as to the incident wave. If we have an expansion for 7 for

the incident wave and for 7, for the reflected or transmitted wave. we have

-
(l
=
—_
=
b
™
ot
=

Equation 3.21 leads to two conditions. The first is that

sinfl, siné,

= (3.22)
U 'y
which is simply a statement of Snell’s Law. The second condition is that
F,=F, (3.23)
which may he rearranged in rerms of curvature matrices to read
" Uy - BN
K, = 2SK,S + ,uGDG + —sin§,GLEG (3.24)
l'" ,."
where S. G. E. and u are defined as follows:
i cosd, |
S _ q:C(')S()u 0
0 l
- , -
G = icosl).,
0 1
i 3 (o . [ - sin 4, \ . Uoe Uy .0
2 (L4 cos b, + Bt cosh, ) — Ml (p,, —p,, ) -y fea
E = . and
— Lo 4 tve2 0
L ) Uy

0sf, o0s 8,
Cos iCb .

Vo vy
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Now. we can see that the curvature of the outgoing wavefront is the summation of
three terms: one involving the curvature of the incident wavefront: the next involving
the curvature of the boundary: and finally a term related to velocity gradients near

the boundary.

Finally. we can derive the formula for the change in wavefront curvature
at a boundary neglecting the assumption that ¢, - #5 = | but instead proceeding
to the most general case where the two unit vectors are separated by an angle
Q= cos~ (g - 14). The curvature of the outgoing wavefront is then given as

K, = “SW'K,WS + 1,uGDG + - sin§,GEG (3.25)

t '(J { '1')

where W is a rotation matrix equal to

cos ) sinQ
W = (3.20)
—sin ) cos

and E is equal to the matrix E replacing ¢.; with (¢, cosQ + rosinQ) and r. by

(. sin€) — e cos Q).

3.4 Gel’chinskiy’s Equations

Another method exists to define the change in wavefront curvature. De-
rived by Gel'chinskiy {14] from differential geometry. this svstem gives the rela-
tionship in terms of principle radii of curvature in contrast to equation 3.24 which
gives the solution in terms of the 2 x 2 curvature matrix as the summation of three
matrix terms. However. by starting with equation 3.24 and deriving Gel chinskiy's

equations. we will show that these two systems are equivalent.
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Figure 3.2: The unit vectors for the ray centered coordinate svstem and
Gel'chinskiv's equations for an incident and a reflecred rayv near a boundarv T in
the plane of incidence.

Gel'chinskiv's formulae use coordinates aligned in the tangent planes of
the wavefront. (. and the boundary. ryand r_. The vectors with the || subscript
are aligned parallel to the plane of incidence while r| is perpendicular to this plane.
[n addition. the positive direction of 7 is such that the compounent of the incident

ray parallel to i is positive. r - £, is positive. and &y x £_ = n.

Gelchinskiy's [14] equations to describe the radii of curvature of an outgo-
ing wavefront. r(l") and 1'-(3"’. as a function of the radii of curvature of the incoming
wavefront. r([") and r.f,") . the radii of curvature of the boundary. R; and R,. and the

velocity distribution along the boundary have the form:

V(4 = B)2cos? 6, + 4C? _
A+B=+£ and (3.27)
cosf,

1 1
I'Y/) ) r‘_(ZU)

N o—
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Oy = lt'm‘l 2C 3.28
v T (4 — B)cosb, (3.28)
where
1 dv é ! 'y 200 O,
4 = —sinf, v o sin(),,,i (Eﬁj _ Ly3in2f, &
cosf, 0(‘1‘” ar. \r, ry 2, gt
. ‘l) i('()s") fa, N (v,/r,) cosl, £ cosb, (3.29)
cos? ()D I ,.(:n) R‘l
| wte) costl, = cosd,
B - 1__ . (rp/,) cos Cos and (3.30)
vy R_
C = —L(OHH,;M (-L,- - L) +siné —2— (1—">
'y 2 I'(l" I'-(_;()’ 0
sin2e /1 1 v
-7‘-5“2 : (—R—I_E_:) (:—”(()59,,:(059 ) (3.31)

[n the above equations. o,. 0,. and v are the angles at which the the first prin-
ciple normal section of the scattered wavefront. incident wavefront. and boundary.
respectively. are rotated with respect to the plane of incidence. Also. the || and L
subscripts refer to the radii of curvature measured in the plane parallel (in the former
case) and perpendicular (in the latter case) to the plane of incidence and may be
determined from known quantities. as shown later in equations 3.34 and 3.35. The
radii of curvature of the boundary are positive if the boundary is seen as convex
from the medium containing the incident wave. It must be noted that. with the
exception of equation 3.27 and later equation 3.48. the upper sign in all formulae in

this section refers to upgoing waves while the lower sign refers to downgoing waves.

In general. the curvature matrix. K'. of a regular surface may be described
in terms of its principle radii of curvature. p, and p». In a reference frame aligned

such that these radii of curvature are along the axes of the frame. K’ has the following
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form:

K = . (3.32)
0 j23]

When this reference frame is rotated by an angle o from these principle radii. K'

becomes
r . .
K cosa  sinn m 0 Ccosa —sin
—sina  cosa 0 sina cosa
ws a | osinca COS (¥ Sin o ( L L)
— » FLad " 22 ( .3 .3.3)

COS (¥ Sin (_l_ _ _l_) sin“ | costa

L a1 2] ”, P2

[t is important to note that the Gaussian curvature. »' = det(K'). and the mean
curvature, H' = 1/2tr(K') are invariant under this rotation. For the sake of brevity
the plane curvature measured along the axes of the rotation plane. from now on
referred to as the parallel curvature. py. and perpendicular curvature. p_. are defined

as follows:

. . *)
cos*a sin*a

po= p + p . and (3.34)
1 )
sin“av cos?a
0. = ‘p e ; . (3.35)
l 2

To compare the two systems. it is useful to compose each matrix component
of equation 3.24 in terms of the radii of curvature of the scattered wavefront. This
procedure may be accomplished with the aid of equations 3.33 to 3.35. The diagonal
terms in equation 3.24 are:
= ——2— +2-2sin4,

r[(l”) to cos? 8, rI(IO) Uo

1 v, cosd, 1 v Uo.1 COSH, ty.p 1
5
v, cos*é, v, cosé,
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| U, 1 ', sin’ 6,
( ) (Cous —y.y ) and  (3.36)

—— | —cosf, £ cosb,
cos? b,

Uy y vy sind,
1 v, 1 Uy 1
= ——+{—cosf, tcosh )— 3.37
) N (z,',, ° “J R, (3.37)

As curvature matrices are symmetric. the off-diagonal components of K, in equa-

tion 3.24 are identical and equal to

sin’.’@,,( 1 1 )
2] ,,(lu) ,,.(.’u)

. G Y
i—[ : (Lﬁcos(),, i('()sf)u) < ! - L) il

cosf, \ v, R R 2
r, cosf, l L \sin20, ¢,sinf, /v, vy o
T (o) - 0) 9 * — - . (-}38)
I, cosf, r 4 2 rocosf, \ 1, Uy

[t is evident from equation 3.37 that

= B. (3.39)

Equations 3.36 and 3.38 may also be related to the 4 and C terms in Gel'chinskiv's
equations. However. since these equations contain directional derivatives in different

coordinate systems. these need to be related to one another. Thus:

L 3.40)
rg = t—. 3.
: 57 (
ey = e and 3.41)
g = o ‘ (3.
-~ . = 1 . cosf
U,y = Ve-s=Vre. (Sinel” - Singé‘[)
L 9v cosf O 3.49)
~ sinf 9z, sind 96 (342
Substitution of these terms into equations 3.36 and 3.37 vields:
1 -
'm = dand (343)
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sin?ou( 1 1 ) +=C (3.44)
2 r cos b, )
Therefore. the curvature matrix of the outgoing wavefront has the form:
N
K, = i (3.45)
=( B

costy,

The mean curvature. H. and the Gaussian curvature. » of this surface are expressed

as follows:

A4
H = %tr(K,,) = —:—B and (3.46)
v = det(K,) = AAB - —C,—-—- (3.47)
cos=f,

Knowing these two quantities. the principle radii of curvature may be determined

as the inverses of the roots of a quadratic equation:

V(A = Bi2eost 6, + 4C?

cos 8,

A+B=x (3.48)

I

I
H-
e
|

>
1

Wl r—

To get the value of o, one first has to use the result of equation 3.48 to substitute

the values of the principle radii of curvature into equation 3.44 to obtain:

sin2o, (1 1\ _sin2o, [(4=B)Pcos?f, +4C2]  1C 3.9
2 T cosf, T ocosl,
1 2
which may solved for o, as
.)Cv
— tan-! - -
®, = tan {(:l By cos HV} . (3.50)

Clearly. the matrix system of equations developed by Cerveny and Hron may be
reduced to Gel'chinskiy’s result and the two methods for evaluating the shape of

transmitted and reflected wavefronts are equivalent.
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CHAPTER 4

Modelling the Effect of Velocity Gradients in the
Change in Geometrical Spreading Across a

Boundary

4.1 Introduction

Traditional views of the focussing of seismic energyv at a boundary only
stress the influence of boundary curvature. For example. several authors. such as
Deschamps [10]. Lee [25]. and James [21]. detail the effect of boundary curvature on
the curvature of electromagneric wavefronts. No attention was paid to the effect of
velocity gradients near the boundaries. However. as we have seen in the previous
chapter. the Dynamic Ray Tracing system. as developed in Cerveny and Hron [3].
predicts that the curvature of reflected or transmitted wavefronts must also depend
on the magnitude and direction of local velocity gradients in the vicinity of the
boundary. As wavefront curvature and geometrical spreading are intimately related.
local velocity gradients can act to focus and defocus seismic energy. Knowledge of
this effect is very important to the study of the Earth as much of the Earth’s material
contains velocity gradients with depth as shown in the Preliminary Reference Earth

Model (PREM) of Dziewonski and Anderson [12] in Figure 4.1.
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P— and S—Wave Velocities from PREM
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Figure 4.1: Velocities from PREM of Dziewonski and Anderson [12]. The velocity
profile for P- and S- waves contain discontinuities with gradients on either side.
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4.2 Ray Tracing in a Constant Gradient Medium

As we will be considering the special case of a wave propagating through
media with constant velocity gradients. we can arrive at analvtical expressions to
describe both the ray path and the geometrical spreading term anvwhere on the
ray. This problem. with respect to arc length along the ray. was first considered by
Hubral [20] but we will be following a derivation describing the results with respect

to traveltime instead.

4.2.1 Ray Paths

The velocity in a medium can be described by three parameters if the
gradient is constant: we need the value of velocity at one point. r,: the magnitude
of the velocity gradient. |V o). is required: and the direction of the velocity gradient.
0. is also needed. Nettleton [28] showed that a ray path in such a medium follows
the arc of a circle whose center and radius are functions of these parameters together

with the take-off angle relative to the direction of the velocity gradient. 4,,.

We shall assume that a two dimensional reference coordinate svstem (r. ).
as shown in figure 4.2. is used to describe a point in a medium. At the origin (which
corresponds to the point at which a ray enters the medium via. either a source. a
reflection. or a transmission) the velocity is given as v,. There also exists a velocity
gradient. V. parallel to a coordinate axis. ='. which is rotated from the z-axis bv an
angle. o such that —5 < o < 7. In this way. the projection of Ve on the ~'-axis may
be given a scalar value. g. which can be either positive or negative. If we define a

r'-axis. perpendicular to the z'-axis. we can define the rotation of coordinates from



— - - 4)
r
\
\
\6,
\
!
-
\—
O\ ravpath
vV

Figure 4.2: The coordinate svstems used for a ray propagating in a medium with a
constant gradient.

the reference (.. 2) svstem as

I CosO  sino r

= . (4.1)

z —sino coso ot

In figure 4.2, the positive direction of o is given in the counter-clockwise direction.

The coordinate rotation is necessary so that we can compare our model

with the scenario considered by Nettleton [28] of a velocity field described by

e() = v, + g2 (4.2)
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The ray path is contained in the (1. ') plane and follows an arc of the circle de-
scribed by

, Upcoth, ! o ' : Uy : 13)
r— — A=) = —] . .
g g gsind, (

To glean more information about the rav. we must use the characteristic equations

of the ray

L’

el () sinB(7). (4.4)
dr

d:! ,

= v{zYeosB(7). and (4.5)
dr

b dr

— = —sinf(r) (+.6)
dr dz!

where 7 is the traveltime along the rav. v is the velocity of the ray. and 6(7) is the
acute angle between the ray and the '-axis. Integration of these equations. 4.4-4.6.

vields the following equations as given by Marks [26]:

.l(___) _ Uy t: ()u (2”137 - 1 1 ..)
r(r)y = J an > [ = qemar (4.7
o [(1+ A)ed=7 ,
) = 2|l 0——m-1]. 4.8
(7) g | 1+ Ae2>r ] (4.8)
-1 TN (}"
f(7) = 2tan™ [e?"" tan 511 (4.9)
o (1 4+ A)es=7 _
L(/ ) = l',,m. and (410)
1 24
A = r—1,=—cosh™ [”f[—J”—)H] (4.11)
9l 20(7) 1,

26

where 7, is the traveltime at the origin and A = tan®%.

We now have all the tools necessarv to find the path of a ray through a

constant gradient medium. For the case that we will be examining, we can determine
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the incident point of a ray on a plane boundary by finding the intersection of a circle
and a line in the (1'.:") plane with the use of equation 4.3. Though this gives us
two roots in general. the root closest to the source is the point of incidence. If no
real solution exists. the ray is a diving ray and it turns before encountering the

boundary.

4.2.2 Geometrical Spreading

We can now turn our attention to how amplitude varies along the ray
in a constant gradient medium. For the zeroth order amplitude rerms in ART.
the amplitudes are controlled by two factors if the source is isotropic: the ratio
of acoustic impedances between the source and the observation point can be well
determined as we know the elastic parameters evervwhere in the medium: on the
other hand. derivation of the relative geometrical spreading term in such a medium.
L,. requires that we examine the Riceati equation in M. 3.9. the matrix of spatial
phase derivatives from DRT. In this type of medium. the equation is simplified
appreciably as the matrix of the second derivatives of the velocity field. V = 0. and
we have the freedom to align the ray centered coordinates such that

My 0

M = : (4.12)
0 M

Abandoning the matrix notation we have

%& + 2 MY = Oand (4.13)
T
.‘ 29 53 B3
dAn + M5, = 0. (4.14)
dr -
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The Jacobian of the transformation from Cartesian coordinates to ray co-
ordinates. .J. may be expressed in terms of the matrix components of M by equa-
tion 3.13. We can define the relative geometrical spreading through the medium.
L,’. b}'

o J(T) reorr

_ . T , n -
Lir) = \J/—('_) = oxp b/ (Mg + Mon)dr|. (4.15)

where 7, is the traveltime to the sth interface along the ray and the ray does not
encounter any other interfaces from 7, up to the travetime 7. We will find it con-
!

venient to express L, as the product of a geometrical spreading rerm in the (17, 3')

plane.

L A ] () :
Lm = exp l:} ‘/;l { .\[ll(ll ] = <——_l'(‘rl)l"§(7',)> (‘116)

and a similar term in the rectifving plane of the ray (defined to contain the ray’s

tangent vector and binormal vector):

NIV L GIAGAY i
L,_ = eXp [‘j Ll 4 .\[22/[1 ] = (m) (41()

where r. and r_ are the radii of curvature of the wavefront in the (1. ') and the

rectifving planes respectively. The only unknowns in equations 4.16 and 4.17 are
ri(7) and r (7). We need to return to equations 4.13 and 4.14 in order to deter-
mine these quantities. Due to the symmetries in equations 4.13 and 4.14. we will
examine only equation 4.13 as the development of equation 4.14 will be redundant.

Integration of equation 4.13 vields:

1 l T LA |
Mot M) / e(r)dr. (4.18)
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By noting that M, (7) = # equation 4.18 may he solved for r;. Thus.

(7

"\Ti 1 Ty
ry(t) = i.'((:)),.l(ﬂ) + l—(—r—)/— e=(7)dr. (4.19)

Using equation 4.10. the integral in equation 4.19 mayv be evaluated to give

- '

/ 1'2(7,)(114 _ L'(IILI (7) sinh(g A7) = (1) Ar (4.20)

r(

where Ar = T” sinh(gAr7) describes the amount of change in the radii of curvature
of the wavefront. The geometrical spreading term. L,. may be expressed as the
product of a contribntion from the change in curvarure in the (2. ') plane. L. and

a similar contribution perpendicular to this plane. L _. The L., and L _ terms are

ini(r) = M__A_,_ and (4.21)
' nin)
L ro{n)+Ar N
L,_(7) —\—737—. (4.22)

The quantity. L, = L,;L, .. which we have called geometrical spreading in
this derivation. is only the measure of how the total geometrical spreading. L. varies
along the ith segment of the ray. [f there exist anv boundaries between the source
and the observation point along the ray. then these quantities are unequal. The

geometrical spreading of a ray travelling though n lavers is given as
n
L=]]L. (4.23)
i=1

The radii of curvature of the wavefront at the entry point of a ray into a medium may
be determined through the properties of the incident wavefront by equation 3.24.

The only problem remains in dealing with the first segment of the ray travelling form
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the source. A wavefront from a point source has infinite curvature at traveltime.
7o = 0. Substitution of 7, = 0 into equations 4.21 and 4.22 vields infinite geometrical
spreading. In order to circumvent this singularity. the geometrical spreading will

only begin to be tracked a finite distance away from the source to a point O, at

a traveltime 7, 7

) = | in arbitrary units of length. Thus. the

‘o

where r (7)) = r_(

geometrical spreading of this first ray segment bevond O, may be expressed as

Li(r)=1+ L'(;) sinh{g(7 — 77)] (4.24)
4
where
l
7 = —sinh ™! (l) . (4.25)
q Uy

4.3 The Effect of a Boundary

4.3.1 Amplitude Versus Offset Curves for Constant Gradi-
ent Media

We will display how velocity gradients may act to focus or defocus seismic
rays by running a Gedanken experiment where a point source is exploded isotropi-
cally on the surface of a layer over a half space. The two lavers are both inhomo-
geneous. with constant gradients in P-wave and S-wave velocity and a receiver may
be buried in the lower medium or on the surface of the upper medium to record
the transmitted and reflected wave amplitudes respectively. The boundary between
the two media will be a plane so that the curvature of the generated wavefront is a
function of only the curvature of the incident wavefront and the velocity gradients.

By contrasting the amplitudes derived from inclusion or exclusion of the third term

al



in equation 3.24. used to describe the change in wavefront curvature at the bound-
ary. we can display how velocity gradients affect the obhserved amplitudes of these
arrivals. The amplitudes we derive will only be the zeroth order term of the rav

series expansion.

We have used the following scheme to label the arrivals in the figures
in the section. PLP1. PISL. PIP2. and P1S2 refer to the reflected P-wave. the
reflected S-wave. rhe transmitted P-wave. and the transmitted S-wave respectively.
Figure 4.3 shows all of these arrivals. The reflected wave amplitudes are recorded
at the surface and therefore surface conversion coefficients are applied while the
transmitted waves are recorded at the deepest noint in each model by a receiver

buried within rhe underlving medium.

The tirst model we will consider has two layers after the Mississippi model
as found in Choi [8]. The properties of this laver are displaved in figure 4.4. There
exists a positive gradient for v,. . and p in the top layer. For the source at zero
depth. this gradient produces concave ray paths when viewed from the surface.
Figure 4.5 shows the ray paths for a non-phase converted reflection in this model.
The gradient also affects the change in geometrical spreading across a boundary.
much like the effect of boundary curvature. However. unlike the effect of curvature.
the magnitude of the velocity gradient effect is proportional to ray parameter so
that large effects will be observed at far offsets and no effect will be seen at zero

offset.
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Figure 4.3: A plot of the arrivals examined in this section. The dashed rayvs denote
shear waves and the solid ravs denote P-waves.
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Figure 4.5: Rays for the primary non-phase converted reflection in the Mississippi
Model.
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Figure 4.6: The calculated vertical component amplitudes of reflected and transmit-
ted arrivals from an isotropic point source located on the surface of the Mississippi
Model recorded at a receiver on the surface. The difference in amplitude of the two
curves in each plot is due to inclusion or exclusion of the effects of velocity gradients
on the jump in geometrical spreading across the boundary at 800 m.
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When the effect of velocity gradients on the jump in geometrical spreading
is ignored by exclusion of the third term in equation 3.24. the amplitude of the pri-
mary reflection is greatly increased compared to the real case. where this amplitude
is included. This is shown in figures 4.6 and 4.7. The discrepancy between the two
curves is greatest at farthest offset which is expected as the velocity gradient term
in Cerveny and Hron's formula. equation 3.24. is dependent on ray parameter. This
is the term referred to as the 3rd term in the legend of figure 4.6. For the primary
reflection. PIPL. the effect of the velocity gradients is most noticeable though it has
inflitence in all of the other arrivals. The effect is least noticeable in the transmitted
arrivals as the 3rd term involves the velocity gradients. which are zero in the lower
taver. The positive gradient in the first laver defocusses the seismic energy of a

reflected wave. That is. there is less amplitude in the arrivals.

[t is important to note. the absolute amplitude of the wave is plotted versus
offset in figures 4.6 and 4.7. All of the reflected arrival curves display cusps which
are artifacts of plotting the absolute value. These cusps are due to the reflection

coefficients at the boundary changing sign.

We have seen how a positive gradient can act ro defocus seismic energy
from a boundary. Now. we must consider what happens when a negative gradient
is considered. Though velocity profiles that smoothly decrease with depth are rare.
investigation of this case is useful when the wavefield is moving up towards a bound-
ary in a material with a positive gradient. This is exactly what happens with the
PP phase of seismic body waves in the Earth. The second phase is reflected within
the earth so that geometrical spreading is decreased discontinuously at the point of

reflection. The reflected ray tube focuses and we can observe a 7/2 phase shift due
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to the presence of a caustic (Dahlen and Tromp [9]). With that being said. we will
consider how seismic energy reflects in a material with a negative gradient. We will
introduce the Negative Gradient Model. figure 4.8. which is comprised of a material
with a strong negative velocity gradient above a homogeneous laver. The density
throughout this model is constant. Figure 4.9 shows the P1PL arrivals at very high
take off angles in this model. The rays appear convex from the surface and it is

apparent that some focussing is occurring when the rays return to the surface.

Again. we will consider the primary reflection recorded on the surface from
an isotropic point source also located on the surface. The vertical amplitndes for
this arrival are plotted in figure 1.10 and the horizontal amplitudes are plotted in
figure 4.11. There are large differences observed in the far offset P1P1 cases for
both horizontal and vertical components of amplitude.  As was observed for the
Mississippi Model. the cusps in PLSL are due to a change of sign in the reflection
coefficients. The large horizontal amplitude increase in P1S1 at far offset is not very
mich due to focussing etfects as there exists little difference between the 3rd term
excluded curve and the 3rd term included curve. Further inspection revealed that
surface conversion coefficients were responsible for this increase (surface conversion
coefficients account for the fact the at a free surface. the recorded amplitude consists

of reflected waves as well as the incident ray).
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Figure 4.10: The calculated vertical component amplitudes of reflected and trans-
mitted arrivals from an isotropic point source located on the surface of the Negative
Gradient Model recorded at a receiver on the surface. The difference in amplitude
of the two curves is due to inclusion or exclusion of the effects of velocity gradients
on the jump in geometrical spreading across the boundary at 100 m.
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Figure 4.11: The calculated horizontal component amplitudes of reflected and trans-
mitted arrivals from an isotropic point source located on the surface of the Negative
Gradient Model recorded at a receiver on the surface. The difference in amplitude
of the two curves is due to inclusion or exclusion of the effects of velocity gradients
on the jump in geometrical spreading across the boundary at 100 m.
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4.3.2 Comparison of Analytical Calculations with the Ray
Shooting Method to Determine Geometrical Spread-

ing

We have presented various amplitude versus offset curves for various mod-
els but we have not verified our results against an independent method. However.
knowing the ray paths of the waves. we can approximately evaluate the geometrical
spreading term. L. through the ray shooting method. This method involves shooting
two adjacent rays to estimate a derivative in a formula for geometrical spreading.
For a medium which is only varving vertically. the geometrical spreading at any

point specified by horizontal distance. r. and take off angle. 4,. is given as

[ = | reosd (I.I'j J(()sf)' 1 (4.26)
_\J sinf, |db, | sm() P, o

where 4 is the angle between the ray’s tangent vector and vertical. In practice. the

derivative term. %f— needs to be numerically evaluated so that the resulting value of

L is only approximare. Though the equations for this method are presented in Lay

and Wallace [2

*

4] and Aki and Richards [1] for a spherically symmetric Earth. by
taking the limit as the radius of the Earth goes to infinity. we arrive at equation 4.26
valid on flat models. At the surface. for the primarv P reflection recorded at the
horizontal surface. 8 = 6, and - can be determined easily by simply shooting rays.
Two rays are shot separated by an incremental takeoff angle. A,. and are observed

at the surface separated by a distance. Ar.

Figure 4.12 shows the ratio of analytic geometrical spreading (i.e. L cal-
culated using the techniques of the previous section) with the geometrical spreading

calculated using the ray shooting method for a wave which is reflected from the
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Figure 4.12: A comparison of different calculations of geometrical spreading in the
Negative Gradient Model for the P1P1 arrival as recorded at the surface. The two
curves represent the numerator of the ratio being equal to the analytic geometrical
spreading evaluated by either including or excluding the 3rd term in equation 3.24.
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Figure 4.13: A comparison of the complete analvtical geometrical spreading with
the ray-shooting geometrical spreading in the Negative Gradient Model for the P1P1
arrival as recorded at the surface.
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boundary and arrives at the surface. As in previous figures. we have displaved two
curves: one curve represents the complete solution as determined by using the 3rd
term in equation 3.24: the other curve represents a calculation made by excluding
this term. We see that the complete solution is very nearly equal to the approx-
imate (ray-shooting) solution over all values of offset whereas the incomplete (3rd
term excluded) solution diverges rapidly until it is almost ten times greater than
the ray-shooting solution at the farthest offset. Figure 4.13 shows exactly how little
difference there is between the complete solution and the independent approximate
solution derived using the rav shooting method. Whatever difference that exists

resides with the fact that the ray shooting method is an approximation.

Figure 4.13 also demonstrates interesting properties of how the wave be-
haves when reflected into a medinm wirh a negative velocity gradient. The geomet-
rical spreading term increases only to a point. This point corresponds to where the
wavefront. in the plane of incidence. changes concavity due to the discontinuity in
geometrical spreading at the boundary. The geometrical spreading decreases rapidly
until the last ray. which in the figures above corresponds to a take off angle of 89.8°.
is shot. Further investigation of the ray at a take off angle of 89.9999° revealed
that the geometrical spreading of the rav as it returned to the surface had a value
of ~ 2.95. We also know that for a negative gradient. the primary reflection has a
shadow zone whose edge on the surface may be calculated by evaluating the offset
of a ray whose take off angle is 90°. It would appear that this edge represents a
caustic in the ray. Thus. we can show that the 7/2 phase shift observed in the PP
and SS reflection for a seismic body wave is due to a caustic [9] which. in turn. is
due to the velocity gradients at the bounce point causing a change in concavity of

the wavefront in the plane of incidence.
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CHAPTER 5

Reflections from a Second Order Discontinuity

5.1 Introduction

[t was noted by Cerveny and Ravindra [6] in their discussions of seismic
boundary conditions in the Asymptotic Ray Theorv approximation that a discrete
change in the nth derivative of a material properties also causes a reflection to ap-
pear in the nth order term of ART. Most boundaries in a seismological sense are
assumed to represent a discrete change in material properties. But. anv material
which encounters gradual changes in composition or phase after a certain depth
should contain discrete discontinuities in the derivatives of these material proper-
ties. Such gradational boundaries are believed to be present in the transition zone
of the mantle. most notably at the 410 km and 660 km discontinuities and between
them. These types of weak boundaries feature two changes in gradient where the
central region is where a phase transition or a gradual change in chemical com-
position is taking place as well as the pressure and temperature effects which exist
independently of the former processes. [nvestigations into these types of transitions.
conducted by Gupta [13] and Richards [29]. consider the gradational boundary be-
ing responsible for one reflection. Gupta obtained theoretical relations for the effect
of a transition layer on the observed amplitude and Richards used these relations to
constrain the width of the 660 kmn discontinuity by examining the precursors to the

PP arrival. Benz and Vidale [4] later conducted similar studies of PP precursors.
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[n contrast. ART predicts that a wave whose wavelenth is appreciably less than the
extent of the phase transition zone should have two primary reflections. one for each
change in gradient. Though current estimates of the thickness of these transition
zones are less than a typical seismic wavelength for an earthquake source. these
tvpes of transitions can exist in thick sedimentary sequences as well. particularly
with materials whose properties are very dependent on the pressure and temperature
conditions. such as certain clays. Also. as presented by Wysession et al. [34]. some
models of the D discontinuity at the base of the mantle contain changes in seismic
velocity gradient with depth. As reflected energy from rhese tvpes of boundaries
scales inversely with frequency relative to the zeroth order amplitude term. such ar-
rivals are likely obscured and difficult ro deteet. However. scattering of wave energy
at discontinuities in velocity gradient should exist and their variations with angle of

incidence should be understood.

5.2 Boundary Conditions

For a second order boundary (i.e. a change in gradient). there will exist
reflected and transmitted terms in the first order approximation of ART. The first
order reflection and transmission coefficient may be analyvtically determined as. for
the & = 1 case in equations 2.84 to 2.89. all of the F; terms (i = 1.2..... 6) may
be determined provided we use a simple model. For an isotropic explosive point
source in a homogeneous medium. the wavefield is exactly described by the first
order expansion of ART (Vavryéuk and Yamogida [32]) where the amplitude terms

for P-waves have the expressions:

e = A} and (5.1)
:
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Figure 5.1: The Cerveny Model.
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2
where r is the distance rravelled along the ray. Because these terms are well known.
we will use a simple model. here called the Cerveny model. first used by Cerveny
and Zahradnik [7] in investigating caustics. This model consists of a homogeneous
laver over a lower layer with a constant velocity gradient. This model is shown in
figure 5.1. The P-wave velocity is given as a function of depth only and the material

is a perfectly elastic Poisson solid (v, = V3u,) with a constant density.

As the amplitude of the zeroth order term is continuous though the bound-
arv. no zeroth order reflected or transmitted waves in the zeroth order approximation
will exist. However. a ray with a non-zero angle of incidence will begin to bend ac-

cording to the gradient past the boundary. Focussing and defocussing of this zeroth



order term. due to the change in gradient. must also be accounted for as it is required
that an exact analytical formula exists for this term. Recalling equations 3.24. 4.19.

and 4.21 we have

-~ 4.
W=t (5.3)

[} ,,‘

where

(r'+ Ar)(r, + Ar) :

’.I ,.”

r = "1)

Fotp cos 6

rpeost = gurosint g’
vy + gl —z,) . -
Ap o= 2T )smh(y,,_\r). (5.6)
Yp

<t
-1
S

z is the depth coordinate (: = z, at the boundary). g, is the projection of Ve, on
the z-axis (we can similarly define g, as the z-axis projection of Vr). # is the angle
of incidence. and A7 is the traveltime from the boundary. and r, is the distance

from the source to the boundary.

Explicit knowledge of the zeroth order amplitudes is necessarv as we need
to differentiate these terms to account for the stresses on both sides of the bound-
ary. For the first order stresses associated with the incident wave knowledge of the

following derivatives are necessary:

Q”" = —‘—i sin §f and (5.8)
()l' re

e A

0,‘ 2 = —cosbt. (5.9)
dz r?
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For the first order stress terms due to the presence of a zeroth order transmitted

wave. we can calculate

o3 A [2e,c086 — gorosin? @) .
o) o 2 (2080 =gl ;  AGy g (5.10)
or 272 cost Iy
Ar=0

and using
o oWE b : 5.00)
o - - 1 . an (.
oWr o s 5.02)
J= o7 Uy 9L

we may determine the necessary partial derivatives.

From the zeroth order term. we may also determine the first order principle
component of the associated ray. Vavryéuk and Yamogida [32] determined that
for an isotropic point source in a homogeneons medium. there are no principle
components.  This result applies to the upper medium. Below the boundary. we
need to modify equation 2.37 in order to obtain the solution. Noting that the
perpendicular projection of M may be written as:

P Wop

MOTM e = A (=22 ) e+

P tp

V_},\'Q —+—2/LI[';:,’D)V~' (—) -€,(5.13)

we can determine the value of the additional component of U'l(‘,‘,) through equa-

tion 2.37. With this method. we obtain:

4 N ' "i e . -
W = g sing + 295t 1y ) sin 6 and (5.14)
151 oP Jp ( 2 L)) a
v -l
Wiy, = o (5.13)

=~}
(3]
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Figure 5.2: Amplitude versus angle curves for first order reflections from the second

order discontinuity in the Cerveny model where r, = 150m.

5.3 First Order Reflected and Transmitted Waves

We have all the formulae necessary to calculate the first order amplitudes
of all reflected and transmitted waves at the boundary. Using the Cerveny model.
figure 5.1. we may calculate the amplitudes of all of the reflected and transmitted
phases at the boundary. These curves are plotted in figure 5.2 where the source is
explosive and it is moved in such a way as to keep the distance from the source to

the point of incidence constant (i.e. r, is constant).



In figure 5.2. we see that at zero incidence all of the first order energy is
transmitted and the boundary is transparent. However. as the angle of incidence
is increased. more energy is transferred to the first order P and S reflections and
the S transmission. These curves do not vanish at high angles of incidence either.
This is due to a term in the derivative of the seroth order transmitted wave (i.e.
the leading order term in the ray series) being proportional to %;1 However. the
effects are very small compared with the zeroth order terms especially since the
first order terms are proportional to the inverse of frequency. The first order terms
may be differentiated from the other terms as rhey are accompanied by a /2 phase
shift. This phase shift. at far offsets. might result in these terms being interpreted
as zeroth order diving waves that have passed through a caustic in the lower half of

the model.

Another interesting feature of the gradient rerms in the derivative is that
thev. along with the additional componenr terms. are proportional to ;[- as opposed
to } as are every other term in the boundary conditions. A consequence of this
dependence is that the reflection and transmission coefficients depend on the dis-
tance from the source to the point of incidence. We may calculate the reflection and
transmission coefficients for differing values of r, in the Cerveny model to examine
this effect. Figures 5.3 and 5.4 show that the reflection and transmission coefficients
for r, = 1500m and r, = 15000m have ditfering values for varyving angles of incidence

though the shape of the curves are similar.

It is apparent that there is a dependence on scale for the reflected ampli-
tudes shown in Figures 5.2 to 5.3. This dependence may be examined more closely

by plotting the first order reflection/transmission coefficients against the distance



P Retlection

N -
o o o (=)

|
[A)
o

log(Absolute Amplitude)

N
o

20 40 60

P Transmission

80

n

—
v

o

i |
n -

|
w

log(Absolute Amplitude)

|
ES

o

20 40 60
Angle of Incidence

80

-10

-15

S Reflection

S Transmission

0 20 40 60 80

Angle of Incidence

Figure 5.3: Amplitude versus angle curves for first order reflections from the second
order discontinuity in the Cerveny model where r, = 1500m.



P Reflection

10
N
Z o
Z-10
z
= -20
"ﬁ
<
§§-30
-
-40*
0 20 40 60 80
P Transmission
4
2 2
X |
<
n-2
3
<
B-6}
-8
0 20 40 60 80

Angle of Incidence

S Retlection

-5

-10

-15
40 60 80

o
n
o

S Transmission

20 40 60 80
Angle of Incidence

o

Figure 5.4: Amplitude versus angle curves for first order reflections from the second
order discontinuity in the Cerveny model where r, = 15000m.



to the source from the point of incidence. r,. The coefficient is simply given as the
first order reflected or transmitted amplitude over the first order amplitude of the
incident wave. Figure 5.5 is an example of such a plot keeping the angle of inci-
dence constant at 43°. These curves show a linear variation with increasing r,. This
feature arises through the term in the boundary conditions related to the spatial
derivatives of zeroth order transmitted P-wave. As shown in equation 3.10 there
are terms proportional to ri in this derivative but in all of the other terms in the
boundary conditions. the dependence on r, is inverse square. Therefore. r, cannot
simply be divided out of the houndary conditions and we are left with terms varyving
linearly with this quantity. Another important note to make is that though reflec-
tion and phase converted transmission coefficients diverge linearly from zero at small
source to point of incidence distances. the amplitude of the ravs actually decrease

with r, as the incident amplitude is proportional to r—l- Therefore. amplitudes are

T
o

bounded with increasing scale as is physically reasonable.
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CHAPTER 6

Conclusions

We have shown that seismic velocity gradients induce effects on the for-
ward modelling of seismic data that do not occur when the models in question only
contain constant velocity layers. As velocity gradients oceur naturally in most ge-
ological layers. it is important to know how thev will affect observed seismic data.
Specifically. a change in velocity gradiert causes energy partitioning at this weak
interface as described in chapter 5. This partitioning relies on rthe focussing and
defocussing effecrs described in chapter 4 as the nature of the leading order ART
term away from the boundary influences the boundaryv conditions as described in
chapter 2. The focussing and defocussing effects are a consequence of the dynamic
ray tracing system applied over a boundary which was developed in chapter 3 to
determine the amplitudes of the leading term in the ray series. Gel'chinskiv's equa-
tions also describe these focussing effects and they were proven to be equivalent to

the svstem developed in this chapter.

The techniques described in this thesis to evaluate seismic amplitudes fol-
low a ray approach to modelling as opposed to a full wavefield approach. The
difference in these two techniques is that. in general. the former is computation-
ally faster as no cumbersome integrals need to be evaluated over all space as is the
case in the latter method. However. ray methods are only valid as high frequency

approximations and though they can vield analytical formulae for the wavefield. a



full wave solution is valid over all frequencies and gives a more accurate solution.
ART has an advantage over the traditional geometrical ray theory in that some
interesting effects of the wavefield (i.e. head waves or reflections from a change in
gradient as described in this thesis) can be detected by only going through the effort
of evaluating the first two terms in the ray series. Though more accuracy mayv be
obtained initially by evaluating more terms. it is important to realize that the ray
series is asvmptotically convergent and after a certain number of terms. the series
will begin to diverge. Thus. it is not desirable to evaluate an infinite number of

terms.
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