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Abstract

The kinetic chemotaxis equations have long been used to model biological

processes. We will analyze a volume filling variant of the kinetic chemotaxis

equations on the torus. Since the kinetic chemotaxis systems have well known

blow-up solutions, we spend a considerable amount of time showing condi-

tions for which solutions of the volume filling kinetic chemotaxis equations

exist globally. Due to the individualist origins of the kinetic equation (velocity

jump process), the system’s interesting population dynamics occur at a much

larger space-time scale. Various approximation methods have been developed

to explore these population dynamics, like the parabolic scaling and moment

closures. In this thesis, we will explore these approximation methods in the

context of chemotaxis, and we will prove two new results for the convergence

of the scaling limits to the parabolic limit and the hyperbolic limit, respec-

tively. In addition to the approximation methods’ mathematical consequences,

we will delve into their underlying biological meaning, explain under what

conditions the methods coincide, and discuss their differences. In developing

these models, a few common features appear, such as anisotropic diffusion and

chemotactic mixing. For the above macroscopic models, we develop a sophis-

ticated numerical solver to investigate anisotropic pattern formation. To our

surprise, we found new spatial criss-cross patterns due to competing cues, one

direction given by anisotropy versus a different direction due to chemotaxis.

A full analysis of these new patterns is not part of this thesis and is left for

future work.
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Chapter 1

Introduction

This work aims to develop and analyze a set of equations describing cell move-

ment in the presence of a chemoattractant. The motivating example is vas-

cular assembly, where endothelial cells form a network of size invariant units

called capillaries. The process of forming these networks is seen to be a cell-

autonomous process that is permissive in the extracellular environment. In

Preziosi’s paper [47], it was shown that the endothelial cells’ individual trajec-

tories are highly directional towards zones of higher cell concentration. They

found that this highly directional movement was produced by a chemoattrac-

tant (VEG-F), that the endothelial cells were producing. The cells also exhibit

a particular type of motion known as ‘run and tumble,’ which has been stud-

ied extensively in E. coli [3, 4], ‘run and tumble’ motion can be described as

a cell moving at a velocity for some time (run), then the cell stops and ran-

domly chooses a new velocity (tumble). The resulting patterns created by E.

coli have been exhaustively studied [2, 55, 7, 6]. From here, we can create a

model by the assumption that cell movement can be modelled by a velocity

jump process that is influenced by a chemoattractant [47]. The velocity jump

process can be formalized by the following assumptions, the motion of each

individual is piecewise linear, a run stops at a position with a given probabil-

ity, and finally if an individual stops after a negligibly short time, it chooses

a new direction with another given probability (for a more explicit derivation

see [1]). We can arrive at a deterministic equation by integrating over suitable

test domains and making use of Gauss’ theorem [49]. After some computation,

1



we retrieve what is known as the transport equation in math biology literature

[39] or the kinetic (Boltzmann type) equation in physics [10]

Pt(x,v, t) + v · ∇xP (x,v, t) = LP (x,v, t), (1.1)

where P = P (x,v, t) denotes the density of cells, and L is the turning operator,

which represents the probability for a cell to change velocities. For simplicity,

we are considering the spatial domain to be the torus, which we will denote as

x ∈ Tn, and the space of velocities that cells can take is a compact symmetric

metric space (V, | · |2). Compact for our purposes means that V is closed and

bounded, and symmetric means that ∀ v ∈ V =⇒ −v ∈ V . For calculations

we will use the bounded sphere V = [s1, s2]× Sn−1, with 0 ≤ s1 ≤ s2 ≤ ∞.

The turning operator only involves cells changing velocity, and, therefore,

should not affect the number of cells. Assuming that the number of cells

remains the same, we gain the constraint on the turning operators∫
V

LP (x,v, t)dv = 0. (1.2)

The corresponding conservation law can be obtained by integrating (1.1) over

the velocity domain∫
V

Ptdv +∇x ·
∫
V

vPdv = ρt +∇x · Ep = 0, (1.3)

where we define the density of cells at (x, t) as

ρ(x, t) :=

∫
V

P (x,v, t)dv,

and the first “moment” of P as

Ep(x, t) :=

∫
V

vP (x,v, t)dv.

Remark 1 For positive solutions of the kinetic equation [44] we have

‖ρ0‖L1(Tn) = ‖ρ‖L1(Tn), thanks to conservation of mass.
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Next for the form of the turning operator, a common form is

LP = µ

∫
V

T (x,v,v′)P (x,v′, t)dv′ − µ
∫
V

T (x,v′,v)P (x,v, t)dv′,

the first term represents the flow of cell density from different velocities to v,

and the second term represents the flow from v to the other velocities. Fitting

with our stochastic process from earlier, the kernel T (x,v,v′) represents the

probability of a cell switching to velocity v given it is currently moving at

v′. The constant µ is the rate at which the cells decide to switch velocity.

We will assume that T does not depend on the incoming velocity. Cells tend

to maintain a particular direction; however, for our model, we assume that

the environment and chemical cues give the dominant directional cue. These

assumptions allow us to simplify the expression

LP = µT (x,v)ρ(x, t)− µP (x,v, t).

What is left to determine is the role in which a chemical signal will play on

the model. For this, we make another assumption that the turning operator

is a functional depending not only on the macroscopic cell density ρ, but also

the concentration of the chemoattractant S and its gradient. We will denote

this by T := T [ρ, S](x,v). Turning kernels of this type have been studied in

[15, 20, 5, 32, 27]. The movement of the chemical signal is traditionally defined

as a diffusion equation. However, depending on the time scale at which the

chemoattractant diffuses, one can consider that chemoattractant is at equi-

librium, then the resulting concentration is given by a Poisson type equation.

Under this fast diffusion assumption, powerful results on existence and unique-

ness have been obtained [15]. We take the traditional route and describe the

motion as a diffusion equation, where the production of the chemoattractant is

proportional to the cell density, and the chemoattractant degrades over time.

These assumptions give us the diffusion equation

St = Ds∆S + αρ− 1

τ
S. (1.4)

Here, S := S(x, t) is the concentration of the chemoattractant, Ds is the
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diffusion constant associated with how the chemoattractant moves through

the environment, α is the rate of production of the chemoattractant by the

cells, and τ is the rate of degradation of the chemoattractant.

Now recall the turning operator for our system

LP (x,v, t) = −µP (x,v, t) + µ

∫
V

T [S, ρ](x,v)P (x,v′, t)dv′, (1.5)

this is still quite general; for our purposes, we can specify the operator fur-

ther. These specifications take the form of splitting the environmental and

chemoattractant effects, assuming that the cells sense the chemoattractant in

a gradient along their velocity, and the cells are discouraged from aggregating

to a single point. Putting these assumptions together, we arrive at the turning

kernel

T [S, ρ] = q[ρ] + b[S](1− ρ)v · ∇xS. (1.6)

To fulfil the requirement that T is a probability distribution, we impose prop-

erties on b and q∫
V

q[ρ](v,x)dv = 1, odd moments of b[S](v,x) equal zero, (1.7)

where q describes the environmental effects on the change of velocity. For

example,environmental effects can include the extracellular matrix, other cells

(volume filling), and fibres in which movement is easier for the cell to move

along [29]. Hence, q depends explicitly on the location x, and the velocity v,

with a functional dependence on the cell density ρ.

Remark 2 Although it is a necessary condition for our model to make sense,

we do not assume T ≥ 0, ∀x, v, t ∈ Tn × V × R+. The reasoning behind this

is that we cannot a priori assign a sign to v · ∇S. Under some assumptions

on q and b we can show this positivity property, which an important subject of

chapter 2.

A good example of q is a fibre where movement is promoted along both direc-

tions

q(x,v) = C(x)
(
ekv·u + e−kv·u

)
(1.8)
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where k is the concentration parameter, u is the the direction of the fibre, and

C(x) is the normalization constant. It is worth noting that the normalization

constant is heavily dependent on the dimension [30]. The coefficient b in (1.6)

describes the strength of the chemoattractant on the cell’s velocity. Thus b

depends explicitly on the location x, and the velocity v, with a functional

dependence on the cell density S.

The example we will be looking at is

b(x,v) = β(x) + vTA(x)v (1.9)

where β is the general sensing strength and A(x) is a matrix that describes the

directional dependence on sensing the chemoattractant. Back to the general

theory, we can take advantage of the structure we have provided for ourselves,

(1.5) simplifies to

LP (x,v, t) = µ(q[ρ](x,v)ρ(x, t)−P (x,v, t))+µb[S](x,v)(1−ρ(x, t))v·∇xS(x, t).

(1.10)

Inputting this turning operator into (1.1), gives

Pt(x,v, t) + v · ∇xP (x,v, t) = µ(q[ρ](x,v)ρ(x, t)− P (x,v, t))

+ µb[S](x,v)ρ(x, t)(1− ρ(x, t))v · ∇xS(x, t).
(1.11)

We now have a mesoscopic set of equations; in the coming chapters, the goals

are to show that solutions exist for this system, and for how long. Next, we

examine various approximations and scaling limits and how they compare to

each other. Finally, we explore numerics to get insight into pattern formation.
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Chapter 2

Global Existence

We are now pulling together the previous equations (1.11), (1.4) and assump-

tions into a coherent formal system

Pt + (v · ∇)P = µ(q + b(1− ρ)v · ∇S)ρ− µP, ∈ Tn × V × R+ (2.1)

St −Ds∆S = αρ− 1

τ
S, ∈ Tn × R+ (2.2)

P (x,v, 0) = P0(x,v), S(x, 0) = 0. (2.3)

For kinetic chemotaxis systems of this type, it is fairly easy to establish local

in time existence and uniqueness (see the techniques in [43, 9]), but global

existence for any chemotaxis system is always challenging. For this reason

we consider a simplified model for this section where we drop the functional

dependence of ρ and S on q := q(v), and b := b(x,v) while we establish global

existence. Part of the reason why global existence for chemotaxis models is

challenging is that blow-up solutions are common. For example, the famous

chemotaxis model, the Keller Segel equations [35]

ρt = ∇(∇ρ− ρ∇S),

St = ∆S + ρ− S,
(2.4)

has well-known blow-up solutions in dimensions greater than one [33]. The

existence of blow-up solutions for reasonable parameter regimes has led to an
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outpouring of modifications to this model that intend to model chemotaxis

without infinite aggregations. A useful way to classify these new models is to

combine the equation’s classical PDE types (parabolic, hyperbolic, and ellip-

tic) [19] of the model into a name, for example, the Keller-Segel equations (2.4)

above is parabolic-parabolic type. In addition to the classical PDE classifica-

tions, we add kinetic for the kinetic equation, due to the different structure

from the velocity dependence. The main equations (2.1) - (2.3) of this work

are kinetic-parabolic.

For the kinetic - parabolic models, the goal is controlling the v · ∇S term

in the turning kernel T [ρ, S]. The v · ∇S term is the main cause of the blow-

up that occurs in chemotaxis systems. Heuristically, since S grows with the

cell density, a gradient in the cell density induces a gradient in the chemoat-

tractant, causing cells to move in that direction, making the gradient steeper.

There are a couple of common methods to control this term; a method to use

is non-local sensing of the chemoattractant to replace the local gradient [28]

∇S → ∇̊S :=
n

|Sn−1|R

∫
Sn−1

S(x+ νR)dν. (2.5)

Another method is where the chemoattractant is sensed at points in front and

behind the cell

∇S → ∇S(x + εv, t) +∇S(x− εv, t), (2.6)

These methods are quite successful at preventing blow-up [32, 5]. Last, there

are the methods where the strength of the sensing is controlled, for instance,

by encapsulating the gradient inside an arctan, thus bounding the chemotaxis

term [46]; another method is to make the sensing density dependent[11]. In

density-dependent sensing, the v · ∇S term is controlled by reducing the size

or cutting off the term in regions of high density. We went with the density-

dependent sensing, taking a volume filling form of ρ(1 − ρ), which represents

the physical reality that cells are not infinitely compressible [27]. In addition

to this choice, we explore two cases where the time scale of the chemotaxis
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degradation is on the same scale as the dynamics of the chemotactic signal

St = DS∆S + αρ− 1

τ
S, (2.7)

and the case where it is much longer τ =∞

St = DS∆S + αρ. (2.8)

It is reasonable that in the τ < ∞ case, global existence holds since the 1
τ
S

helps reduce the size of ∇S. Whereas, in the τ =∞ case, this effect is absent.

Instead, we rely on the dispersion of the Laplacian to reduce the ∇S, and

therefore reduce aggregations of P .

For the goal of establishing global existence, we will follow [11] closely. The

precise mathematical difficulty with dealing with the kinetic equation is the

lack of a priori estimates; instead, we have to make use of the properties: 1)

positivity, 2) mass conservation. Also, our only two properties are dependent

on the positivity of the turning kernel [44]. Thus, our global solution is built

on three steps. The first step is developing bounds for the kinetic equation

based on a positivity assumption on some closed set [0, t∗]. The next step

is based on using these local bounds to construct classical solutions for the

parabolic chemotaxis equation, then constructing bounds on the challenging

∇S. Finally, since we have bounded solutions on [0, t∗], the goal is to show t∗ =

∞, thereby gaining a condition for which global solutions exist, completing the

proof.

2.1 Local Existence and Uniqueness

We assume that (P0, S0) are chosen such that 0 < T [ρ, S](x,v) ≤ 1, ∀x,v,∈
Tn × V . Denoting this set of initial conditions as

G := {(P, S) ∈ L2(Tn×V )×L2(Tn) : 0 < T [P̄ , S](x,v) ≤ 1, ∀x,v ∈ Tn×V },
(2.9)
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in addition we define the following Hilbert space

F := {(P, S) ∈ L2(Tn×V )×L2(Tn) : P (·, v) ∈ H1(Tn), S ∈ H2(Tn)}. (2.10)

Defining X := F∩G as our phase space, which is a closed subspace of H1(Tn)×
H2(Tn).

Theorem 1 (Local Existence and Uniqueness) if (P0, S0) ∈ X , and T is con-

tinuous from this phase space X to R for each (x, v) ∈ Tn × V , then has a

unique mild solution (P, S) ∈ C([0, T ] : F)

Proof:

Let y := (P, S) then (2.1) - (2.3) can be written as

yt + Ay +By = g(y), (2.11)

where

A :=

(
(v · ∇) 0

0 ∆

)
, B :=

(
µ 0

0 τ−1

)
, g(y) :=

(
µT [ρ, S]ρ

αρ

)
. (2.12)

We can show that A+B generates a C0 semigroup on X . We begin by breaking

down A into its components, where v·∇ is the shift operator which iv·∇ is self

adjoint, and therefore generates a C0 semigroup on H1(Tn) via Stone’s theo-

rem. Now ∆ generates the well known heat C0 semigroup on H2(Tn) [42], and

we can analyze the components since the operators are linearly independent.

Now B is linearly bounded therefore A + B generates a semigroup[42].

Since T ≤ 1, g(y) is locally Lipschitz then by Thm (6.1.4)[42] (2.11) has a

unique mild solution and y ∈ C([0, T ] : F). as required. �

2.2 P bounds

Now that we have local existence and uniqueness the goal is to acquire bounds

on the kinetic equation, using a translational symmetry.

9



Lemma 1 If (S,P) are solutions to (2.1) - (2.3) as in Theorem 1, P0(x, v) =

q(v)ρ0(x), and T [ρ, S](x, v) ≥ 0, ∀(x, v, t) ∈ Tn × V × [0, t∗], then

P (x, v, t) ≤ q(v), ρ(x, t) ≤ 1, ∀(x, v, t) ∈ Tn × V × [0, t∗]. (2.13)

Proof:

Case 1: τ = O(1)

Consider the transformation

P̃ = q − P, ρ̃ =

∫
V

P̃ dv = 1− ρ, (2.14)

S̃ = ατ − S. (2.15)

Substituting this change of variables into the kinetic-chemotaxis system (2.1)

- (2.3)

(q − P̃ )t + v · ∇(q − P̃ ) = µ
(

(q − bρ̃v · ∇S̃)(1− ρ̃)− (q − P̃ )
)
, (2.16)

− P̃t − v · ∇P̃ = −µ
(

(qρ̃+ b(1− ρ̃)ρ̃v · ∇S̃)− P̃ )
)
, (2.17)

P̃t + v · ∇P̃ = µ
(

(qρ̃− b(1− ρ̃)ρ̃v · ∇S̃)− P̃ )
)
, (2.18)

which is the same as kinetic equation. Onto the chemoattractant equation

(ατ − S̃)t = Ds∆(ατ − S̃) + α(1− ρ̃)− 1

τ
(ατ − S̃), (2.19)

simplifying

S̃t = Ds∆S̃ + αρ̃− 1

τ
S̃. (2.20)

Since this transformation preserves the system the transformed variables (P̃ , S̃)

have the same property of positivity for T [ρ, S] ≥ 0. Therefore the new vari-

ables (P̃ , S̃) are also positive on t ∈ [0, t∗], giving the bounds

(q − P ) ≥ 0, =⇒ ρ ≤ 1. (2.21)
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The proof for the τ =∞ case

Pt + (v · ∇)P = µ(q + bρ(1− ρ)v · ∇S)ρ− µP,

St = DS∆S + αρ,
(2.22)

we instead make the transformation

P̃ = q − P, ρ̃ =

∫
V

P̃ dv = 1− ρ, (2.23)

S̃ = αt− S. (2.24)

The kinetic equation remains the same as before. Substituting the transform

into the chemotactic equation gives

(αt− S̃)t = Ds∆(αt− S̃) + α(1− ρ̃), (2.25)

evaluating the derivatives leads to

α− S̃t = −DS∆S̃ + α− αρ̃, (2.26)

and we arrive at

S̃t = DS∆S̃ + αρ̃. (2.27)

Since this transformation preserves the system, the transformed variables

(P̃ , S̃) have the same property of positivity for T [ρ, S] ≥ 0. Therefore, the

new variables (P̃ , S̃) are also positive on t ∈ [0, t∗], giving the bounds

(q − P ) ≥ 0, =⇒ ρ ≤ 1. (2.28)

�
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2.3 Classical Solutions for the Chemotaxis Equa-

tion

The next step of constructing a classical solution of the parabolic chemotaxis

equation (2.2) requires us to find the fundamental solution. Since we are

on a space with no boundary, the Fourier transform is an attractive way to

construct the fundamental solution. For this reason, we introduce the Fourier

transform on the torus, for φ sufficiently smooth

φ̂(ω) :=

∫
Tn
φ(x)e−i2πω·xdx, ω ∈ Zn, (2.29)

with the inverse

φ(x) =
∑
ω∈Zn

φ̂(ω)ei2πω·x. (2.30)

For details on Fourier transform properties, like the inversion theorem, and

the convolution theorem, we point to the resource [51]. At first glance, it is

unclear why (2.30) inverts the Fourier transform on the torus. We can gain

intuition from considering a sufficiently smooth φ

φ(x) =
∑
ω∈Zn

φ̂(ω)ei2πω·x,

=
∑
ω∈Zn

∫
Tn
φ(y)e−i2πω·ydyei2πω·x,

=
∑
ω∈Zn

∫
Tn
φ(y)ei2πω·(x−y)dy.

moving the sum into the integral

φ(x) =

∫
Tn
φ(y)

∑
ω∈Zn

ei2πω·(x−y)dy.

What is left to show is that the factor∑
ω∈Zn

ei2πω·(x−y),

12



is a representation of the Dirac delta function on the torus. For this, we define

the partial sum called the Dirichlet Kernel on T1 [38]

DN(x) :=
N∑

k=−N

ei2πkx. (2.31)

We can explicitly compute the sum by recalling the finite geometric series

formula [38]

DN(x) =
sin(2(N + 1)πx)

sin(πx)
.

In the limit as N →∞, DN happens to be one of the many representations of

the delta function [38]

lim
N→∞

sin(2(N + 1)πx)

sin(πx)
= δ(x). (2.32)

It is clear that this result translates to higher dimensions, substituting this

result into φ(x), ∫
Tn
φ(y)δ(x− y)dy = φ(x),

therefore, the inverse does invert the Fourier transform.

Using this definition, we can transform the chemoattractant equation and

solve the resulting differential equation. Then use the Poisson summation

formula to convert the resulting Fourier series into a series of Gaussians.

Lemma 2 If ρ ∈ L∞([0, t∗];L
p(Tn)) , S0 ∈ L2(Tn), 1 ≤ p ≤ ∞, then

S(x, t) =

∫
Tn
S0(y)G(x− y, t)dy+α

∫ t

0

∫
Tn
ρ(y, s)G(x− y, t− s)dyds, (2.33)

where for case τ = O(1)

G(x, t) :=

(
π

Dst

)n/2
e−t/τ

∑
ω∈Zn

e−π
2 |x+w|2

Dst (2.34)
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satisfies the equation in a classical sense for t ≤ t∗

St −Ds∆S = αρ− 1

τ
S (2.35)

and for τ =∞

G(x, t) :=

(
π

Dst

)n/2 ∑
ω∈Zn

e−π
2 |x+w|2

Dst (2.36)

satisfies the equation in a classical sense for t ≤ t∗

St −Ds∆S = αρ (2.37)

Proof:

Consider the spatial Fourier transform of the diffusion equation,

Ŝt +

(
Ds|w|2 +

1

τ

)
Ŝ = αρ̂. (2.38)

Solving this ODE yields,

Ŝ = Ŝ0e
−(Ds|w|2+1/τ)t + α

∫ t

0

e−(Ds|w|2+1/τ)(t−s)ρ̂(w, s)ds. (2.39)

Transforming back gives

S =
∑
ω∈Zn

Ŝ0(ω)e−(DS |ω|2+ 1
τ

)tei2πω·x + α
∑
ω∈Zn

∫ t

0

ρ̂(ω, s)e−(DS |ω|2+ 1
τ

)(t−s)dsei2πω·x.

(2.40)

Now to determine the convergence of the Fourier series, we consider the first

term ∣∣∣∣∣∑
ω∈Zn

Ŝ0(ω)e−(DS |ω|2+ 1
τ

)tei2πω·x

∣∣∣∣∣ ≤ ∑
ω∈Zn
|Ŝ0(ω)e−(DS |ω|2+ 1

τ
)t|

≤

(∑
ω∈Zn
|Ŝ0(ω)|2

) 1
2

(2.41)

since S0 ∈ L2(Tn). This implies Ŝ0 ∈ l2(Zn). Therefore, the first term con-
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verges. For the next term we have∣∣∣∣∣∑
ω∈Zn

∫ t

0

ρ̂(ω, s)e−(DS |ω|2+ 1
τ

)(t−s)dsei2πω·x

∣∣∣∣∣
≤ sup

s∈[0,t]

‖ρ̂(·, s)‖l∞(Zn)

∑
ω∈Zn

(
1− e−(Ds|ω|2+1/τ)t

Ds|ω|2 + 1/τ

)
.

(2.42)

Since we have that ρ ∈ L1(Tn) which through the Riemann–Lebesgue Lemma

implies ρ̂ ∈ l∞(Zn) [51], and since
∑

ω∈Zn
1

|ω|2+a
converges, this Fourier series

also converges. Now consider the summation kernel

Ĝ(ω, t) := e−(Ds|ω|2+1/τ)t. (2.43)

This function takes Ĝ : Zn × R+ → R, but we can extend the inputs from

Zn to Rn. In this sense we can use the Poisson sum formula [51], i.e. f ∈
L1(Rn) ∩ C(Rn), then

F (x) :=
∑
ω∈Zn

f(x + ω) =
∑
ω∈Zn

f̂(ω)e2πiω·x. (2.44)

Note F (x) is scalar function on the torus. To use the Poisson summation

formula, we need to know the inverse Fourier transform of the Gaussian on Rn

F−1
[
e−(Ds|ω|2t)

]
=

(
π

Dst

)n/2
e−π

2 |x|2
Dst , (2.45)

which is a well known result [56]. Substituting the above Fourier transform

into the Poisson Summation formula we get

G(x, t) :=
∑
ω∈Zn

e−(Ds|ω|2+1/τ)te2πiω·x =

(
π

Dst

)n/2
e−t/τ

∑
ω∈Zn

e−π
2 |x+w|2

Dst . (2.46)

In addition, convergence of the Fourier series in L2(Tn) gives free reign to use

the convolution theorem

S = (S0(·) ∗G(·, t))(x) + α

∫ t

0

(ρ(·, s) ∗G(·, t− s))(x)ds. (2.47)
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In the τ =∞ case we arrive at nearly the same result, except for et/τ → 1. �

2.4 ∇S Energy estimates

With a classical solution to the chemotaxis equation found, we can find esti-

mates for ∇S.

Lemma 3 If (S,P) are solutions to (2.1) - (2.3) as in Theorem 1, S0 = 0,

P0 = ρ0q, and T [ρ, S](x, v) ≥ 0, ∀(x, v, t) ∈ Tn × V × [0, t∗], then for both

τ = O(1) and τ =∞ we have the estimate

‖∇S‖∞ ≤ α
12

2
2
3

c(n)

Ds

‖ρ0‖L1(Tn) (2.48)

where

c(n) :=
(Γ(n+1

2
))

2
3

Γ(n
2
)

(
(n+ 4)

n
2

+2

2
n
2

(
3 + n

3n

)
e−

n+4
2

) 1
3

(2.49)

Proof :

Consider the gradient fundamental solution of S

∇G(x, t) =
∑
ω∈Zn

2πωie−(Ds|ω|2+1/τ)te2πiω·x. (2.50)

Now let us examine the L∞ norm of the above gradient

‖∇G(x, t)‖∞ = sup
x∈Tn
{|
∑
ω∈Zn

2πωie−(Ds|ω|2+1/τ)te2πiω·x|}

≤ 2πe−t/τ
∑
ω∈Zn
|ω|e−Ds|ω|2t.

At this point, it is clear that t = 0 is an issue for ‖∇G(·, t)‖∞, since the sum∑
ω∈Zn |ω| will not converge. The estimate we are deriving is only valid for

t ∈ (0, t∗]. For t = 0 we have that S0(x) = 0, ∀x ∈ Tn, thus ‖∇S‖∞ = 0. Now
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consider the Poisson Summation formula at x = 0 (2.46)

G(0, t) =
∑
ω∈Zn

e−Ds|ω|
2t =

(
π

Dst

)n/2 ∑
ω∈Zn

e−π
2 |ω|2
Dst ,

taking the radial derivative ∂/∂|ω| of both sides

∂

∂|ω|
G(0, t) =

∑
ω∈Zn
−2Dst|ω|e−Ds|ω|

2t =

(
π

Dst

)n/2 ∑
ω∈Zn
−2π2

Dst
|ω|e−π

2 |ω|2
Dst ,

thus we have

∑
ω∈Zn
|ω|e−Ds|ω|2t =

(
π

Dst

)n
2

+2 ∑
ω∈Zn
|ω|e−π

2 |ω|2
Dst . (2.51)

Substituting this formula into the ‖∇G‖∞ we have

‖∇G‖∞ ≤ 2πe−t/τ
(

π

Dst

)n
2

+2 ∑
ω∈Zn
|ω|e−π

2 |ω|2
Dst .

We can bound the sum by considering the radial symmetry of |ω|e−π
2 |ω|2
Dst , and

splitting the sum into increasing and decreasing parts

∑
ω∈Zn
|ω|e−π

2 |ω|2
Dst = 2n

∑
ω∈Zn+

|ω|e−π
2 |ω|2
Dst . (2.52)

At this point, we can view the above sum as Riemann sums of the integral∫
|ω|e−π

2 |ω|2
Dst dω,

as either a right point or left point rule. For positive functions, we know that

each monotonic piece of integrand can bound either the left or right point

Riemann sum. The function |ω|e−π
2 |ω|2
Dst has very clear monotone regions, for

|ω| ≤
(
Dst
2π2

) 1
2 it is increasing, and for |ω| >

(
Dst
2π2

) 1
2 it is decreasing. Then, we

can make the following bounds, using the right point rule on |ωj| ≤
(
Dst
2π2

) 1
2
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region

∑
ω∈Zn+:|ωj |≤(Dst

2π2
)
1
2

|ω|e−π
2 |ω|2
Dst ≤

∫
Rn+:|ωj |≤(Dst

2π2
)
1
2 +1

|ω|e−π
2 |ω|2
Dst dω, (2.53)

and the left point rule on the |ωj| >
(
Dst
2π2

) 1
2 region

∑
ω∈Zn+:|ωj |>(Dst

2π2
)
1
2

|ω|e−π
2 |ω|2
Dst ≤

∫
Rn+
|ω|e−π

2 |ω|2
Dst dω. (2.54)

In particular, we have

∑
ω∈Zn+

|ω|e−π
2 |ω|2
Dst ≤ 2

∫
Rn+
|ω|e−π

2 |ω|2
Dst dω. (2.55)

We convert now to spherical coordinates, which in n dimensions has the volume

element

dω = |ω|n−1sinn−2(φ1)sinn−3(φ2) · · · sin(φn−2)d|ω|dφ1dφ2 · · · dφn−1. (2.56)

Since our function has radial symmetry, we compute the angular terms [31]∫
Sn−1

sinn−2(φ1)sinn−3(φ2) · · · sin(φn−2)dφ1dφ2 · · · dφn−1 =
2π

n
2

Γ(n
2
)

(2.57)

Now, we compute the radial component

2

∫
Rn
|ω|e−π

2 |ω|2
Dst dω =

4π
n
2

Γ(n
2
)

∫ ∞
0

|ω|ne−π
2 |ω|2
Dst d|ω|, (2.58)

18



changing variables u = π2|ω|2
Dst

, we get

2

∫
Rn
|ω|e−π

2 |ω|2
Dst dω =

4π
n
2

Γ(n
2
)

(
Dst

π2

)n+1
2
∫ ∞

0

u
n+1
2
−1e−ud|ω|,

= 4π
n
2

Γ(n+1
2

)

Γ(n
2
)

(
Dst

π2

)n+1
2

.

Using this inequality to bound ‖∇G‖∞ yields

‖∇G‖∞ ≤ 8π
n
2

+1e−t/τ
(

π

Dst

)n
2

+2(
Dst

π2

)n+1
2 Γ(n+1

2
)

Γ(n
2
)
, (2.59)

≤ 8π2

(
1

Dst

) 3
2

e−t/τ
Γ(n+1

2
)

Γ(n
2
)
. (2.60)

Now, we can start moving towards the actual estimate using Holder’s inequal-

ity, for a fixed t0 ∈ (0, t∗]

‖∇S‖∞ ≤ α

∫ t0

0

‖∇G(·, s)‖∞‖ρ(·, t− s)‖1ds

+ α

∫ t

t0

‖∇G(·, s)‖∞‖ρ(·, t− s)‖1ds.

The first thing to note is that since P remains positive in the region [0, t∗], we

have ‖ρ‖1 = ‖ρ0‖1 thanks to the conservation of mass property (Remark 1),

allowing us to take ‖ρ(·, t− s)‖1 out of the integral

‖∇S‖∞ ≤ α‖ρ0‖1

∫ t0

0

‖∇G(·, s)‖∞ds

+ α‖ρ0‖1

∫ t

t0

‖∇G(·, s)‖∞ds.

The next thing to note is that our bound for ‖∇G‖∞ (2.59) is bounded in the

integral from t0 to t, but becomes unbounded near zero, therefore a different
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bound is needed for the first integral. For this reason, consider the first integral

I =

∫ t0

0

‖∇G(·, s)‖∞ds =

∫ t0

0

sup
x∈Tn
{|
∑
ω∈Zn

2πωie−(Ds|ω|2+1/τ)se2πiω·x|}ds

≤ 2π

∫ t0

0

e−s/τ
∑
ω∈Zn
|ω|e−Ds|ω|2sds.

Using the fact e−s/τ ≤ 1, and the Poisson summation formula, we have

I ≤ 2π

∫ t0

0

(
π

Dss

)n
2

+2 ∑
ω∈Zn
|ω|e−π

2 |ω|2
Dssds.

Using the fact that the summand is positive and bounded we can use Fu-

bini–Tonelli theorem to interchange the sum and integral

= 2π

(
π

Ds

)n
2

+2 ∑
ω∈Zn: |ω|6=0

|ω|
∫ t0

0

(
1

s

)n
2

+2

e−π
2 |ω|2
Dssds.

We can bound the integrand by taking its value at its maximum s = 2π|ω|2
Ds(n+4)

≤ 2π

(
π

Ds

)n
2

+2(
Ds(n+ 4)

2π2

)n
2

+2

e−
(n+4)

2

∑
ω∈Zn: |ω|6=0

1

|ω|n+3

∫ t0

0

ds

≤ 2π

(
n+ 4

2π

)n
2

+2

e−
(n+4)

2 t0
∑

ω∈Zn: |ω|6=0

1

|ω|n+3
.

With the intention of bounding this sum by an integral consider the extension

∑
ω∈Zn: |ω|6=0

1

|ω|n+3
≤
∑
ω∈Zn

f(ω),

where

f(ω) =

1 if |ω| ≤ 1,

|ω|−n−3 otherwise.
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Using a similar argument as before we can bound this sum by its integral over

Rn

∑
ω∈Zn: |ω|6=0

1

|ω|n+3
≤
∫
Rn
f(ω)dω

=
2π

n
2

Γ(n
2
)

∫ ∞
0

|ω|n−1f(ω)d|ω|

=
2π

n
2

Γ(n
2
)

(∫ 1

0

|ω|n−1d|ω|+
∫ ∞

1

1

|ω|4
d|ω|

)
=

2π
n
2

Γ(n
2
)

(
3 + n

3n

)
.

Substituting this bound back into I yields

I ≤ 2π

(
n+ 4

2π

)n
2

+2

e−
(n+4)

2
2π

n
2

Γ(n
2
)

(
3 + n

3n

)
t0 (2.61)

≤ (n+ 4)
n
2

+2

2
n
2 πΓ(n

2
)

(
3 + n

3n

)
t0. (2.62)

Putting this bound together with (2.59), we can bound ‖∇S‖∞, again using

e−s/τ ≤ 1

‖∇S‖∞ ≤ α‖ρ0‖1

(
(n+ 4)

n
2

+2

2
n
2 πΓ(n

2
)

(
3 + n

3n

)
t0 +

∫ t

t0

8π2 Γ(n+1
2

)

Γ(n
2
)

(
1

Dss

) 3
2

e−s/τds

)

≤ α‖ρ0‖1

(
(n+ 4)

n
2

+2

2
n
2 πΓ(n

2
)

(
3 + n

3n

)
t0 + 8π2 Γ(n+1

2
)

Γ(n
2
)

∫ t

t0

(
1

Dss

) 3
2

ds

)

≤ α‖ρ0‖1

(
(n+ 4)

n
2

+2

2
n
2 πΓ(n

2
)

(
3 + n

3n

)
t0 + 8π2 Γ(n+1

2
)

Γ(n
2
)
t
− 1

2
0

)
.

Now, we maximize the inequality by taking t0 at

t0 =

(
12nπ32

n
2 Γ(n+1

2
)

(3 + n)(n+ 4)
n
2

+2e−
(n+4)

2

) 2
3

, (2.63)
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inputting this value into our inequality yields

‖∇S‖∞ ≤ α
12

2
2
3

c(n)

Ds

‖ρ0‖
1
2

L1(Tn), (2.64)

where

c(n) :=
(Γ(n+1

2
))

2
3

Γ(n
2
)

(
(n+ 4)

n
2

+2

2
n
2

(
3 + n

3n

)
e−

n+4
2

) 1
3

, (2.65)

which is the required bound. Although we have only shown the proof for the

case where τ = O(1), throughout the proof we used the bound e−t/τ ≤ 1,

which is still valid if we take τ =∞ �

Remark 3 It is difficult to see how small this bound really is due to the es-

oteric nature of c(n). For dimensions n = 2, and n = 3 the constant is

approximately c(2) ≈ 1.5, and c(3) ≈ 4.

2.5 Theorem 2: Global existence

With these estimates on ∇S and ρ,

we can find a condition on the parameters such that the turning kernel is

positive for all time.

Lemma 4 If (P0 = ρ0q, S0 = 0) ∈ X , T is continuous from this phase space

X to R for each (x, v) ∈ Tn × V , and

q(v) > α
12c(n)

2
2
3Ds

b(x, v)‖v‖L∞(V )‖ρ0‖L1(Tn) ∀ (x, v) ∈ V × Tn, (2.66)

then

T (x, v, t) ≥ 0, ∀(x, v, t) ∈ Tn × V × R+. (2.67)

Proof :

First, note that for t = 0 we have T > 0, by our choice of initial conditions.

We define the time t1 := supt∈R+
{T ≥ 0, ∀(x,v) ∈ Tn×V } > 0. We proceed
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by contradiction, we assume that t1 <∞. At t1, we have that

T = q + b(1− ρ)v · ∇S,

≥ q − b|1− ρ|‖v‖L∞(V)‖∇S‖L∞(Tn).
(2.68)

Then, using the new ‖∇S‖ inequality (2.48)

T ≥ q − b|1− ρ|‖v‖L∞(V)

(
α

12

2
2
3

c(n)

Ds

‖ρ0‖L1(Tn)

)
, (2.69)

but

q(v) > α
12c(n)

2
2
3Ds

b(x,v)‖v‖L∞(V )‖ρ0‖L1(Tn) ∀ (x,v), (2.70)

thus, T > 0, which implies t1 is not the largest time for which T ≥ 0 and is

therefore a contradiction. A Similar argument can be made for τ =∞ �

Now with this Lemma, we can extend the local existence of the kinetic-

chemotaxis system to global existence.

Theorem 2 Consider the model (2.1) - (2.3), with the assumption (2.66), the

initial conditions (P0 = ρ0q, S0 = 0) ∈ X , and T is continuous from this phase

space X to R for each (x, v) ∈ Tn × V , then the mild solution (P,S) exists

globally: P ∈ C((0,∞);L2(Tn × V )), S ∈ C((0,∞);C∞(Tn))

Proof :

Consider the equations

Pt + (v · ∇)P = µ(q + b(1− ρ)v · ∇S)ρ− µP, ∈ Tn × V × R+ (2.71)

St −Ds∆S = αρ− 1

τ
S, ∈ Tn × R+, (2.72)

with initial conditions (P0 = ρ0q, S0 = 0) ∈ X , and since T is continuous from

this phase space X to R for each (x,v) ∈ Tn × V , by Theorem 1 a solution

(P, S) exists and is unique. Now, since

q(v) > α
12c(n)

2
2
3Ds

b(x,v)‖v‖L∞(V )‖ρ0‖L1(Tn) ∀ (x,v) ∈ V × Tn (2.73)

Lemma 4 implies that the turning kernel is positive i.e T [ρ, S](x,v, t) ≥ 1 for
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all (x,v, t) ∈ Tn×V ×R+. Having the turning kernel be always positive means

the Lemmas 1 through 3 apply.

Now, Lemma 1 bounds P ≤ q, which gives us

‖P‖L2(Tn×V ) =

∫
Tn

∫
V

|P |2dxdv, (2.74)

≤
∫
Tn

∫
V

|q(v)|2dxdv (2.75)

= |Tn|‖q‖L2(V ) <∞ (2.76)

by the initial conditions ρ0(x)q(v) ∈ L2(V ) × H1(Tn). Another consequence

of Lemma 1 is ρ ≤ 1 for all time which allows us to write down an explicit

solution to S by Lemma 2

S(x, t) = α

∫ t

0

∫
Tn
ρ(y, s)G(x− y, t− s)dyds. (2.77)

With the solution S taking this form, it is clear that its derivatives are bounded

since the derivatives can be moved on the Green’s function. Thus, for the

equations(2.1) - (2.3), with the initial conditions (P0 = ρ0q, S0 = 0) ∈ X ,

and assumptions on q,and T we find that, (P, S) ∈ C((0,∞);L2(Tn × V )) ×
C((0,∞);C∞(Tn)) �

Remark 4 Note that we only have a bound on P in L2(Tn × V ), thus, P

is only in C((0,∞);L2(Tn × V )), instead of C((0,∞); {φP ∈ L2(V × Tn) :

φP (·, v) ∈ H1(Tn)}).

We are in the unusual position of having a mild solution for the kinetic

equation, but a classical solution for the chemotactic equation. This situation

occurs because we cannot define ∇P in the traditional sense, where in the

solution to the chemotactic equation we can move derivatives onto the Green’s

function, which has bounded derivatives i.e. ∆S(x, t) = ∆(G ∗ ρ)(x, t) =

(ρ ∗ ∆G)(x, t). Now that our base model has global solutions, we can more

safely move on to analyzing scaling limits, knowing we are not working on an

empty set.
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Chapter 3

Scaling Limits

The kinetic equation (2.1) is based on dynamics at the cellular level, but our

goal is to examine population-level dynamics. It is reasonable to consider

approximate solutions that relate to longer timescales and larger space scales,

and while we are changing the scales, it is worth averaging out the velocity

dependence.

The standard argument is to look at the size of the parameters. Consider

the values for µ and characteristic speed, which can be enormous compared

to the time scale of population dynamics. For example E. coli µ ≈ 1/sec,

and |v| ≈ 10−2mm/sec, but experiments occur on time scale of hours, days

[40]. Switching units to U = 10000 sec ≈ 3hrs. Introducing ε := 10−2, So

µ = ε−2µ̃, and |v| = ε−1|ṽ|, then we can write (2.1)

ε2Pt(x,v, t)+εṽ·∇xP (x,v, t) = −µ̃P (x,v, t)+µ̃

∫
V

T [S, ρ](x,v)P (x,v′, t)dv′,

(3.1)

We gain the same result by rescaling space and time, namely by the parabolic

scaling. There are two common scalings:

• previously mentioned, parabolic scaling τ = ε2t, and ξ = εx,

• hyperbolic scaling τ = εt, and ξ = εx.

How do we choose between the scalings? This depends mostly on whether

the system is diffusion dominated versus advection dominated. There are
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other asymptotic scalings based on wave movement like ξ = εα(x− a0t), τ =

εα+βt, that are used for small disturbances about the equilibrium state [52].

Another property of these approximations is that the equations are in terms of

statistically significant quantities of the cell density P and the turning kernel

T , like the expectation and variance. For this reason, we define the expectation

of a scalar function φ ∈ L2(V ) to be

Eφ :=

∫
V

vφ(v)dv, (3.2)

and the variance to be

Vφ :=

∫
V

(v− Eφ)(v− Eφ)Tφ(v)dv. (3.3)

This work will go over four different ways to arrive at a macroscopic model,

the hyperbolic or hydrodynamic scaling, parabolic scaling, and two different

moment closures methods. Each of these methods relies on a different approx-

imation, meaning some methods will be more applicable to different biological

scenarios. The two scalings have to do entirely with the size of the problem

and the period the dynamics play over. The two different moment closures

methods are based on approximating higher-order moments. In analyzing the

methods, we gain generality, and it is interesting to analyze the differences

that arise from the different methods.

It is important to note that we use these approximations only on the kinetic

equation (2.1), especially in the case of the scalings. The chemoattractant

equation (2.2) is assumed to be already on the macroscopic scale; therefore, it

remains unchanged throughout the various scalings.

3.1 Parabolic Scaling

Parabolic systems’ distinguishing feature is that there is no preferred direc-

tion, making diffusion the major dynamical player. The diffusion dynamics

naturally occur at the new scaled coordinates τ = ε2t, ξ = εx, where ε << 1,

due to the scaling symmetry of parabolic equations. After transforming to the
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new coordinates, (2.1) becomes

ε2Pτ + εv · ∇ξP = µ (q[ρ] + εb[S](1− ρ)v · ∇S) ρ− µP. (3.4)

To analyse the scaled equation (3.4), we take the scaled coordinates (ξ, τ) and

make a regular expansion in ε, called a Hilbert expansion [12]

P (τ, ξ,v) = P0(τ, ξ,v) + εP1(τ, ξ,v) + ε2P2(τ, ξ,v) + . . . (3.5)

A further assumption is that all of the mass is contained in the first order

ρ = ρ0,

∫
V

Pidv = 0, ∀i ≥ 1. (3.6)

Substituting the Hilbert expansions into the rescaled transport equation (3.4),

and a comparison of terms equal order yields a countable number of equations

at different orders ε that all must vanish independently. The zeroth-order is

given by

P0(τ, ξ,v) = q[ρ](ξ,v)ρ(ξ, t). (3.7)

The next order of ε gives

v · ∇P0 − µ(v · ∇)b[S](1− ρ)ρ = µP1. (3.8)

Solving this equation in terms of P1 leads to

P1 = − 1

µ
(v · ∇P0 − µ(v · ∇)b[S](1− ρ)ρ) . (3.9)

Finally, to get a closed system for the first term in the Hilbert expansion P0,

we look at the ε2 terms

(P0)τ + v · ∇P1 = −µP2. (3.10)
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Integrating over V, the right-hand side vanishes and substituting P1 yields an

equation in terms of ρ

ρτ −
1

µ

∫
V

((v · ∇) ((v · ∇)(ρq[ρ])− (v · ∇S)b[S](1− ρ)ρ)) dv = 0, (3.11)

simplifying in component form

ρτ −
1

µ
∂i∂j

(
ρ

∫
V

vivjq[ρ]dv

)
+

1

µ
∂i

(
∂j(S)ρ(1− ρ)

∫
V

vivjb[S]dv

)
= 0,

(3.12)

repeated indices are summed from 1 to n. Using the previously defined expec-

tation (3.20) and variance tensors (3.3), we can write the above equation in a

more compact form with the identity

Vq =

∫
V

(v− Eq)(v− Eq)T qdv (3.13)

=

∫
V

vvT qdv− 2

∫
V

vETq qdv +

∫
V

EqETq qdv (3.14)

=

∫
V

vvT qdv−
∫
V

EqETq P̂ dv, (3.15)

and the accompanying chemoattractant equation

ρτ −
1

µ
∇
(
∇
(
Vq[ρ]ρ+ Eq[ρ]Eq[ρ]Tρ

)
− ρ(1− ρ)Vb[S]∇S

)
= 0,

Sτ −Ds∆S = αρ− 1

τ
S.

(3.16)

Note that this appears to be a more general system of the Keller-Segel equa-

tions [35], with the inclusion of the anisotropy of Vq + EqETq , and Vb. The

effect of the Vq, and Vb terms are nonuniform diffusion, and mixing of the

∇S into other directions. Of course the above scenarios are dependent on

the given distributions q[ρ](x,v), and b[S](x,v). For instance, if q and b are

uniform distributions in v neither nonuniform diffusion, nor mixing will occur.

To further explore the effects of anisotropy, we will bring back the example
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from Chapter one (1.8), and (1.9)

q(x,v) = c(x)
(
ekv·u + e−kv·u

)
, b = β(x) + vTA(x)v,

calculating the quantities Vq, and Vb. For Vq, in component form we have

(Vq)ij = c(x)

∫
V

(
ekv·u + e−kv·u

)
vivjdv.

In the case of two dimensions, we have the following formula [30]

Vq =
1

2

(
1− I2(k)

I0(k)

)
I +

I2(k)

I0(k)
uuT , (3.17)

and

Eq = 0. (3.18)

For example take the fibre direction to be u = ( 1√
2
, 1√

2
), then

Vq =
1

2
I +

1

2

I2(k)

I0(k)

(
0 1

1 0

)
. (3.19)

The second term causes diffusion to be increased along the directions ( 1√
2
, 1√

2
)

and (− 1√
2
,− 1√

2
). The strength of the anisotropy is based on the concentration

parameter k, where limiting cases are I2(k)
I0(k)
→ 0 as k → 0, making the diffusion

tensor isotropic, and the case I2(k)
I0(k)
→ 1 as k →∞, making the diffusion tensor

to be maximally anisotropic.

Now for Vb in component form we have

(Vb)i1 i2 =

∫
V

(β(x) + Ai3 i4vi3vi4) vi1vi2dv,

moving the constants out of the integrals, and defining mean velocity tensor

to be

v̄i1,...,ik :=

∫
V

vi1 · · · vikdv, (3.20)

we can rewrite

(Vb)i1 i2 = β(x)v̄i1 i2 + Ai3 i4 v̄
i1 i2 i3 i4 ,
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using the Lemma 2.2 from [25], we can explicitly compute the v̄’s from (3.20)

(Vb)i1 i2 =
|Sn−1|
n

2β(x)Ii1 i2 +
s3−n

n+ 2
Ai1 i2

∑
P(i1 i2 i3 i4)

δ
ij1
ij2
δ
ij3
ij4

 , (3.21)

where the set of pairs of indices out of (i1, . . . , i4) is defined as

P(i1 i2 i3 i4) := {((ij1 , iJ2)(ij3 , ij4)) : j1, j2, j3, j4 = 1, 2, 3, 4}. (3.22)

We can compute the sum explicitly since there is only 12 combinations and to

the symmetry of the Kronecker delta where there are only 3 unique terms

(Vb)i1 i2 =
|Sn−1|
n

(
2β(x)Ii1 i2 +

4s3−n

n+ 2
Ai1 i2(δ

i1
i2
δi3i4 + δi1i3δ

i2
i4

+ δi2i3δ
i1
i4

)

)
. (3.23)

Using the properties of the Kronecker delta, we can convert back to matrix

notation

Vb =
|Sn−1|
n

(
2β(x)I +

4s3−n

n+ 2
(Tr(A)I + A+ AT )

)
. (3.24)

As a result, we have anisotropic component caused by the off-diagonal pieces

of A. If A has nonzero off-diagonal components, then Vb has a mixing effect

on the chemotactic velocity

u(x, t) := Vb∇S.

To see this, consider the two dimensional case

ui(x, t) :=
(
Vi,1
b ∂xS + Vi,2

b ∂yS
)
, i = {1, 2},

the velocity in the x direction is dependent on the chemotactic gradient in the

y direction, and vice versa. In summary, the new terms create non-uniform

diffusion and mixing of influence of the chemotactic gradient. The effect of

the chemotactic mixing will be shown through numerics in Chapter 4. Next,

we will look at the rigorous parabolic limit where we take ε→ 0 in (3.4).
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3.1.1 Rigorous Parabolic Limit

Now, it is questionable whether the kinetic chemotaxis system (3.1) converges

to this Keller-Segel type equation (3.16) in the limit as ε goes to zero, and in

what sense. Again, for this section we will limit ourselves to the case where

q := q(v), and b := b(x,v). To compute the parabolic limit, we need a priori

estimates on P, S that are uniform in ε. Since the chemoattractant equation

is unchanged in the parabolic case, Lemma 3 is available. With the same idea

of using positivity to gain L∞ bounds on P .

Lemma 5 If (S,P) are solutions to (2.1) - (2.3) as in Theorem 1, P0(x, v) =

q(v)ρ0(x), and Tε[ρ, S](x, v) ≥ 0, ∀(x, v, t) ∈ Tn × V × [0, t∗], then

P (x, v, t) ≤ q(v), ρ(x, t) ≤ 1, ∀(x, v, t) ∈ Tn × V × [0, t∗]. (3.25)

Proof:

Consider the transformation

P̃ = q − P, ρ̃ =

∫
V

P̃ dv = 1− ρ, (3.26)

S̃ = ατ − S. (3.27)

Substituting this change of variables into the kinetic-chemotaxis system (3.4)

ε2(q − P̃ )t + εv · ∇(q − P̃ ) = µ
(

(q − εbρ̃v · ∇S̃)(1− ρ̃)− (q − P̃ )
)
, (3.28)

− ε2P̃t − εv · ∇P̃ = −µ
(

(qρ̃− εb(1− ρ̃)ρ̃v · ∇S̃)− P̃ )
)
, (3.29)

ε2P̃t + εv · ∇P̃ = µ
(

(qρ̃− εb(1− ρ̃)ρ̃v · ∇S̃)− P̃ )
)
, (3.30)

which is the same as the scaled kinetic equation (3.4). Now it is clear that

the kinetic equation is invariant under translation by q. Thus, the rest of the

proof follows from the arguments in Lemma 1. �

With the above Lemma, we have both of the a priori estimates on P and

S needed to establish convergence.
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Theorem 3 Consider the model (2.1) - (2.3), with the assumption (2.66), the

initial conditions (P0 = ρ0q, S0 = 0) ∈ X , and T is continuous from this phase

space X to R for each (x, v) ∈ Tn × V ,

then as ε→ 0, there is a weak limit

Pε ⇀ ρq, Sε ⇀ S, (3.31)

where (Pε, Sε) satisfy the rescaled kinetic equation

ε2(Pε)t + εv · ∇Pε = µ(Tε[ρε, Sε]ρε − Pε), (3.32a)

(Sε)t −Ds∆Sε = αρε −
1

τ
Sε, (3.32b)

Pε(x, v, 0) = P0(x, v), Sε(x, 0) = S0(x), (3.32c)

and (ρ, S) satisfy in the distributional sense

ρτ −
1

µ
∇
(
∇
(
Vqρ+ EqETq ρ

)
− ρ(1− ρ)Vb∇S

)
= 0,

St −Ds∆S = αρ− 1

τ
S,

ρ(x, 0) =

∫
V

P0dv, S(x, 0) = S0.

(3.33)

Proof

The idea for the this proof is to use the L2 bounds from the previous Lemmas,

to provide uniform in ε bounds for the sequences Pε, and Sε, such that we can

take convergent subsequences due to the weak compactness of reflexive Banach

spaces [14]. Since for every ε > 0 (Pε, Sε), satisfy (3.32a) and the Lemmas 3,

and 5, we have the bounds

‖Pε‖2
L2(Tn×V ) ≤ C(|Tn × V |)‖P0‖2

L2(Tn×V ), ‖∇Sε‖2
L2(Tn) ≤ c(n)‖ρ0‖L1(Tn).

(3.34)

Now, we have L2 bounds for both Pε and ∇Sε, all that is left to show is that

Pε ⇀ qρ and that we can choose a subsequence such that (3.33) is satisfied, at

least in a distributional sense.
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To this end, consider the L2(Tn × V × [0, T ]) inner product of the rescaled

transport equation (3.32a) and a test function ψ ∈ C∞c (Tn × V × [0, T ])

ε2〈ψ, (Pε)t〉+ ε〈ψ, (v · ∇)Pε〉 = µ〈ψ, (T [ρε, Sε]ρε − Pε)〉, (3.35)

moving the derivatives on to the test function,

− ε2〈ψt, Pε〉 − ε〈(v · ∇)ψ, Pε〉 = µ〈ψ, (T [ρε, Sε]ρε − Pε)〉. (3.36)

Due to the bounds (3.34), the inner products on the left-hand side are uni-

formly bounded in ε. Thus, when we pass the convergent subsequence through

this equation, the left-hand side vanishes, leaving

〈ψ, (qρ− P )〉 = 0. (3.37)

Using the fact C∞c (Tn × V × [0, T ]) is dense in L2(Tn × V × [0, T ]), we have

that

qρ− P = 0 a.e. Tn × V. (3.38)

We need to show that we can pick a subsequence that satisfies (3.33) in a

distributional sense. For this reason, consider the rescaled kinetic equation

integrated over the velocity space,

(ρε)t +∇ ·
∫
V

v

ε
Pεdv = 0, (3.39)

defining the flow of the population density to be

Jε :=

∫
V

v

ε
Pεdv. (3.40)

Now we want to show that for φ ∈ C∞c (Tn × [0, T ]), as εl → 0

〈∇ · Jεl , φ〉⇀ 〈∇ · J, φ〉 := 〈− 1

µ
∇∇ : (Vqρ+ EqETq ρ) +∇(∇SVbρ(1− ρ)), φ〉.

(3.41)

The first step to this goal is to rewrite Jε, to recover the terms on the right-

hand side. To do this, we solve (3.32a) in terms of Pε and substitute into
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Jε

Jε =

∫
V

v

ε
(Tε[ρε, Sε]ρε −

ε2

µ
(Pε)t −

ε

µ
(v · ∇)Pε)dv

=

∫
V

v

ε
(q + εb(1− ρε)v · ∇Sε)ρεdv−

ε2

µ
(Jε)t −

1

µ
∇ ·
∫
V

vvTPεdv

= Vb∇Sε(1− ρε)ρε −
ε2

µ
(Jε)t −

1

µ
∇ ·
∫
V

vvT qρεdv−
1

µ
∇ ·
∫
V

vvT (Pε − qρε)dv.

(3.42)

Now that we have something resembling the equation we want, we substitute

Jε back into (3.39) and considering its L2(Tn × [0, T ]) inner product with φ

〈(ρε)t, φ〉 −
1

µ
〈∇∇ : (Vqρε + EqETq ρε), φ〉+ 〈∇ · Vb(1− ρε)∇Sερε, φ〉

=
ε2

µ
〈∇ · (Jε)t, φ〉 −

1

µ
〈∇∇ :

∫
V

vvT (Pε − qρε)dv, φ〉.
(3.43)

moving the derivatives onto φ

−〈ρε, φt〉 −
1

µ
〈Vqρε,∇∇φ〉 − 〈Vb(1− ρε)∇Sερε,∇φ〉

=
ε2

µ
〈Jε,∇φt〉 −

1

µ
〈
∫
V

vvT (Pε − qρε)dv,∇∇φ〉.
(3.44)

All the terms are accounted for in the limit εl → 0, except for ε2

µ
〈Jε,∇φt〉. For

the ε2

µ
〈Jε,∇φt〉 term, we can show that it is O(ε)

ε2

µ

∫ T

0

∫
Tn
Jεφtdxds =

ε2

µ

∫ T

0

∫
Tn

∫
V

vPε
ε
dvφtdxds

≤ ε

µ

∫ T

0

‖φt‖L∞(Tn)‖
∫
V

vPεdv‖L1(Tn)dt

≤ ε

µ

∫ T

0

‖φt‖L∞(Tn)‖vPε‖L1(Tn×V )dt

≤ ε

µ
‖v‖L∞(V )‖P0‖L1(Tn×V )

∫ T

0

‖φt‖L∞(Tn)dt,

(3.45)
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Now, finally we can take the limit

− 〈ρ, φt〉 −
1

µ
〈Vqρ+ EqETq ,∇∇φ〉 − 〈Vb∇S(1− ρ)ρ,∇φ〉 = 0, (3.46)

as required. �

The parabolic scaling is the most used of the various approximating meth-

ods for the kinetic equation in biology. The choice of parabolic scaling is due

to the parameters of the kinetic equation being on the time scale of the indi-

viduals rather than the timescale of observation and this difference tends to be

many orders of magnitude. In addition, the size between the average speed and

the turning rate is huge. Through our parabolic scaling, we obtained a result

that is similar to the classical Keller-Segel equation, except for the nonuniform

diffusion and mixing of chemotactic velocities. The above Theorem (3) shows

that limit sending ε→ 0 takes solutions of the parabolic rescaled kinetic equa-

tion (3.4) to the Keller-Segel like equation (3.16) in the distributional sense.

Next, we look at a macroscopic time and space scale where the average speed

and turning rate are of the same order of magnitude.

3.2 Hyperbolic Scaling

The hyperbolic limit is a specific asymptotic expansion where the time and

space scales are the same. In this scheme, advective effects dominate over

diffusive. Thus, we introduce hyperbolic scaling τ = εt, ξ = εx, where ε << 1,

transport equation (2.1) becomes

εPτ + εv · ∇ξP = µ (ρ(q[ρ] + ε(1− ρ)b[S]v · ∇ξS)− P ) . (3.47)

To analyse the scaled equation, we take the scaled coordinates (ξ, τ) and make

a regular expansion in ε

P (τ, ξ,v) = P0(τ, ξ,v) + εP1(τ, ξ,v) + ε2P2(τ, ξ,v) + . . . (3.48)
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Again we assume that all the mass of P is contained in ρ0

ρ = ρ0,

∫
V

Pidv = 0, ∀i ≥ 1. (3.49)

We now assume that each order of ε vanishes independently, so we are left

with a countable infinite set of equations. Starting at the bottom, consider

the zeroth order of ε, which is given by the q fibre distribution

P0 = q[ρ]ρ. (3.50)

On to the next order, we have

(P0)τ + (v · ∇)P0 = −µP1 + µρ(1− ρ)b[S]v · ∇S. (3.51)

Now we can close the system by integrating v over V∫
V

(P0)τ + (v · ∇)P0dv = −µ
∫
V

P1dv + µρ(1− ρ)∇S ·
∫
V

b[S]vdv. (3.52)

Then using the previous order condition (3.50), the assumptions on ρ1 (3.49),

and the assumption that all odd moments of b vanish (1.7), we arrive at the

closed system

ρτ +∇(Eqρ) = 0. (3.53)

The above system is a closed system for the particle density ρ, and its dynamics

are determined completely by the environmental fibres q[ρ] through the mean

movement direction Eq. In a sense, this means that dispersion is, in essence,

controlled by directions given by q[ρ], but the chemotaxis term no longer arises.

Hence, to understand the role of chemotaxis, we need to consider higher-order

corrections. These corrections would dominate in cases when Eq = 0, which

occurs anywhere q[ρ] is symmetric in V .

We can derive higher-order approximations by looking at the next order in
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ε. Now consider first order in ε again (3.51), this time rearranged for P1,

P1 = − 1

µ
[(P0)τ + (v · ∇)P0 − µρ(1− ρ)b[S, ρ]v · ∇S]

= − 1

µ
[(q[ρ]ρ)τ + (v · ∇)(q[ρ]ρ)− µρ(1− ρ)b[S, ]v · ∇S] .

(3.54)

To obtain a next order correction term, we continue into second order in ε and

we see a pattern begin to emerge

P2 = − 1

µ
[(P1)τ + (v · ∇)P1]

= − 1

µ

[
(∂τ + (v · ∇))(− 1

µ
[(q[ρ]ρ)τ + (v · ∇)(q[ρ]ρ)− µρ(1− ρ)b[S]v · ∇S])

]
.

(3.55)

By defining the advection opertatorWv = ∂τ +(v ·∇), we can greatly simplify

the above expression. We then rewrite the ε2 power as

P2 =

(
− 1

µ

)2

W2
v(q[ρ]ρ)− 1

µ
Wv(ρ(1− ρ)b[S]v · ∇S). (3.56)

By looking at higher-order terms, it becomes clear that this pattern occurs at

every order. To see this consider a short induction proof. First assume the

form of Pk

Pk =

(
− 1

µ

)k−1 [
Wk−1

v (ρ(1− ρ)b[S]v · ∇S)− 1

µ
Wk

v(q[ρ]ρ)

]
, (3.57)
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now consider the expression for Pk+1, from the εk+1 power

Pk+1 = − 1

µ
[(Pk)τ + (v · ∇)Pk]

= − 1

µ
WvPk

= − 1

µ
Wv

(
− 1

µ

)k−1 [
Wk−1

v (ρ(1− ρ)b[S]v · ∇S)− 1

µ
Wk

v(q[ρ]ρ)

]
=

(
− 1

µ

)k [
Wk

v(ρ(1− ρ)b[S]v · ∇S)− 1

µ
Wk+1

v (q[ρ]ρ)

]
.

Substituting this back into the Hilbert expansion for P , we obtain an asymp-

totic solution to the hyperbolic scaled transport equation

P = q[ρ]ρ+
∞∑
k=1

(−1)k
(
ε

µ

)k [
Wk

v(q[ρ]ρ)− µWk−1
v (ρ(1− ρ)b[S]v · ∇S)

]
.

(3.58)

Now we can produce εk corrections by truncating the above sum. First, we

insert the expansion (3.48) into the transport equation (3.47) then integrating

over V

ρτ +

∫
V

(v · ∇)(P0 + εP1 + ε2P2 + . . . )dv = 0, (3.59)

substituting (3.57) into the above equation yields

ρτ +

∫
V

(v · ∇)q[ρ]ρdv

+

∫
V

(
∞∑
k=1

(−1)k
(
ε

µ

)k [
Wk

v(q[ρ]ρ)− µWk−1
v (ρ(1− ρ)b[S]v · ∇S)

])
dv = 0.

(3.60)

For example, if we take on the first term of the sum, we arrive at the first-order

correction

ρτ+∇(Eq[ρ]ρ)−
(
ε

µ

)∫
V

((v·∇)([Wv(q[ρ]ρ)− µρ(1− ρ)b[S]v · ∇S])dv+O(ε2) = 0,
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expanding Wv, we get

ρτ +∇(Eq[ρ]ρ)−
(
ε

µ

)∫
V

((v · ∇)([(∂τ + (v · ∇))(q[ρ]ρ)− µρ(1− ρ)b[S]v · ∇S])dv

+O(ε2) = 0,

carrying out the operations, we obtain

ρτ +∇(Eq[ρ]ρ)−
(
ε

µ

)[
∇∇ :

(∫
V

vvT q[ρ]dvρ

)
+ (∇(Eq[ρ]ρ))τ

]
+ ε∇∇S : (ρ(1− ρ)Vb[S]) +O(ε2) = 0.

(3.61)

Using the fact that ρτ ≈ −∇(Eqρ) up to order ε, we can write

∇(Eq[ρ]ρ))τ = ∇((Eq[ρ])τρ+Eq[ρ]ρτ ))) = −∇(((Eq[ρ])ρρ+Eq)∇(Eq[ρ]ρ))+O(ε).

(3.62)

Therefore, we can write the second-order correction as

ρτ +∇ · (Eq[ρ]ρ)−
(
ε

µ

)[
∇∇ :

(
(Vq[ρ] + Eq[ρ]Eq[ρ]T )ρ

)]
−
(
ε

µ

)
∇(((Eq[ρ])ρρ+ Eq[ρ])∇(Eq[ρ]ρ)) + ε∇∇S : (ρ(1− ρ)Vb[S]) ≈ 0.

(3.63)

From here, we can see that if q[ρ] is indeed symmetric in V , we will arrive at

an equation resembling the parabolic scaling. Like many models derived from

the kinetic equation, determining which scaling is a better approximation is

whether or not Eq = 0. Symmetry in q happens to be a case for most biological

examples of q[ρ] since q[ρ] tends to be some sort of fibre distribution movement

that is promoted along with both directions of the fibre.

Although there is an important example that breaks this paradigm, if we
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assume that b = O(ε−1), and again look at the first-order correction, we have

ρτ +∇(ET [S, ρ]ρ)

+

(
ε

µ

)[
∇∇ :

(
(Vq + EqETq )ρ

)
−∇(ET [S, ρ]∇(ET [S, ρ]ρ)) +∇((ET [S, ρ])τρ)

]
≈ 0,

(3.64)

where

ET [S, ρ] := Eq[ρ] + (1− ρ)Vb[S]∇S. (3.65)

We arrive at this equation through a nearly identical process to the previous

hyperbolic scaling; thus, it is omitted for brevity. We obtain a very similar

solution as the previous example

p =
∞∑
k=0

(−1)k
(
ε

µ

)k
Wk

vρ(q + (1− ρ)bv · ∇S). (3.66)

What is interesting about this example is while Eq = 0 may be zero, but in no

sense is Vb∇S going to be zero. Thus, there is a case for hyperbolic scaling.

3.2.1 Rigorous Hyperbolic Limit

Similar to the parabolic case, we are going to ask if and how the kinetic

chemotaxis equation (3.47) converges to (3.64), which will be answered in the

result below. Again for this section, we will limit ourselves to the case where

q[ρ](x,v) = q(v), and b[S](x,v) := b(x,v).

Theorem 4 Consider the model (2.1) - (2.3), with the assumption (2.66), the

initial conditions (P0 = ρ0q, S0 = 0) ∈ X , and T is continuous from this phase

space X to R for each (x, v) ∈ Tn × V ,

then as ε→ 0, there is a weak limit

Pε ⇀ qρ, Sε ⇀ S, (3.67)
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where (Pε, Sε) satisfy the rescaled kinetic equation

ε(Pε)t + εv · ∇Pε = µ(Tε[Sε, ρε]ρε − Pε), (3.68a)

(Sε)t −Ds∆Sε = αρε −
1

τ
Sε, (3.68b)

Pε(x, v, 0) = P0(x, v), Sε(x, 0) = S0(x), (3.68c)

and (ρ, S) satisfy in the distributional sense

ρt +∇ · (ET [S, ρ]ρ) = 0,

St −Ds∆S = αρ− 1

τ
S,

ρ(x, 0) =

∫
V

P0dv, S(x, 0) = S0.

(3.69)

Proof

Consider (3.68a), integrated over V then

(ρε)t +∇ ·
∫
V

vPεdv = 0, (3.70)

again defining Jε :=
∫
V
vPεdv. At this point, the main difficulty of the previous

proof is not present in this case, since Jε is not explicitly dependent on ε; thus,

it is clearly uniformly bounded in ε along with Pε, and Sε from the Lemmas

3, and 5. Again, using (3.68a) to rewrite Jε as

Jε =

∫
V

v

(
Tε[Sε, ρε]ρε −

ε

µ
(Pε)t + v · ∇Pε

)
dv. (3.71)

Subsituting this back into (3.70) ,

(ρε)t +∇ · (ETε [Sε, ρε]ρε) =
ε

µ
∇(Jε)t +

ε

µ
∇∇ :

∫
V

vvTPεdv. (3.72)
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It is clear we need a uniform bound on ETε , consider∫
Tn
|ETε [Sε, ρε]ρε|2dx =

∫
Tn

∣∣∣∣∫
V

vTε[Sε, ρε]ρεdv

∣∣∣∣2 dx
≤
∫
Tn
|ρε|2

∣∣∣∣‖v‖L∞(V )

∫
V

|Tε[Sε, ρε]|dv
∣∣∣∣2 dx

≤ ‖v‖2
L∞(V )‖ρε‖2

L2(Tn)

≤ ‖v‖2
L∞(V )‖ρ0‖2

L∞(Tn).

(3.73)

This gives us a L2 bound that is uniform in ε allowing us to pass subsequences

through ETε [Sε, ρε]ρε. Now we take the inner product with a smooth test

function φ ∈ C∞c (Tn × [0, T ])

〈(ρε)t, φ〉+ 〈∇ · (ETε [Sε, ρε]ρε), φ〉 =
ε

µ
〈∇ · (Jε)t, φ〉+

ε

µ
〈∇∇ :

∫
V

vvTPεdv, φ〉.

(3.74)

At this point, we move the derivatives onto the test function

〈ρε, φt〉+ 〈ETε [Sε, ρε]ρε,∇φ〉 =
ε

µ
〈Jε,∇φt〉+

ε

µ
〈
∫
V

vvTPεdv,∇∇Tφ〉. (3.75)

Now each of the terms is uniformly bounded in ε thanks to Lemmas 5, and 3

the above computation (3.73). We can then use weak compactness of reflexive

spaces to extract a subsequence of solutions of the transport equation (3.47)

such that in the limit converges in a distributional sense to solutions to the

hyperbolic system (3.69) .�

From the hyperbolic scaling, we have learned important facts about our

system; for instance, the symmetry of q plays a large role in determining if

the system is diffusion or advection dominated. If q is even, then Eq = 0 then

the hyperbolic system (3.63) only consists of higher-order terms. This even

symmetry in q is also common in biological systems at the cellular level. In

the cellular environments we are interested in, q plays the extracellular matrix

(ECM) role, which is mostly composed of collagen fibres. These fibres impart

orienteering cues onto cells, a process known as contact guidance [18, 22]. The

fibres act like roads in which movement is promoted along both directions
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creating a symmetric distribution in q. An example of a non-symmetric direc-

tional cue is environmental factors that play a role in migration, such as the

earth’s magnetic field, the sun and ocean currents[29]. The other fact is that

the size of b plays an important role in determining the proper space scaling.

It is not entirely clear whether the case of large b is contained in the assump-

tions we made showing global existence/uniqueness for the kinetic equations

(2.1) - (2.3). The conflicting assumption is (2.66), since we require that the

ratio q
b‖ρ0‖1 is sufficiently small. Now we move onto another hyperbolic system,

based on the L2 Moment closure, where instead of rescaling time and space,

we make minimization arguments based on the L2 norm.

3.3 L2 Moment Closure

With moment closures, the idea is to directly derive macroscopic equations for

statistically meaningful quantities of P , and T like the mean and expectation.

These equations are derived by multiplying by v and integrating over the

velocity space V . Although these macroscopic quantities are not technically

moments in the probabilistic sense, the form is similar enough to keep the

name. Hence, we start by integrating (1.11)(∫
V

Pdv

)
t

+∇ ·
∫
V

vPdv = 0. (3.76)

It is important to note this is the mass conservation equation (1.3) from before;

however, this time we will denote the macroscopic quantities as

m0 :=

∫
V

Pdv, m1 :=

∫
V

vPdv, m2 :=

∫
V

vvTPdv (3.77)

and so on. Now the first two moment equations are given by

m0
t +∇ ·m1 = 0,

m1
t +∇ ·m2 = µm0(Eq[ρ] + (1−m0)Vb[S]∇S)− µm1,

(3.78)
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As we can see, each moment equation will have a higher moment than the

evolved quantity. Consequently, we need a way to close the system of equa-

tions. There are a couple of ways to do this, which involve an approximation

of the highest moment. Examples of these are equilibrium approximation and

L2 minimization. The equilibrium approximation is where the highest mo-

ment is taken to be at the equilibrium. By using the L2 minimization, we

obtain a different approximation by projecting P (x,v, t) on to the subspace

span{m0(x, t), m1(x, t)} via minimizing the L2 norm with the constraint that

the first two moments are equal [26]. For this section, we are going to per-

form the L2 minimization on the second moment. It is worth noting that this

process can be done on higher moments as well [25]. We introduce the follow-

ing functional H : L2(V ) → L2(V ), and Lagrangian multipliers Λ0 ∈ R and

Λ1 ∈ Rn

H[u] :=
1

2

∫
V

u2dv − Λ0

(∫
V

udv −m0

)
− Λ1 ·

(∫
V

vudv −m1

)
. (3.79)

Computing the first variation of this functional, we have

δ

δu
H[u] = u− Λ0 − Λ1 · v.

If we look at the second variation, we have δ2H[u] > 0 trivially. Thus, there

exists a unique minimum. Then setting δH[u] = 0, we arrive at the following

minimum

u = Λ0 + Λ1 · v. (3.80)

The Lagrangian multipliers are determined by the constraints,

m0 =

∫
V

udv =

∫
V

Λ0dv +

∫
V

v · Λ1dv, (3.81)

Λ0 =
m0

|V |
, (3.82)

where |V | is the volume of the velocities

|V | =
∫
V

dv,
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and

m1 =

∫
V

vudv =

∫
V

v(Λ1 · v)dv +

∫
V

Λ0vdv, (3.83)

= Λ1

∫
V

vvTdv = Λ1 |V |
3n

(s3
2 − s3

1)I, (3.84)

Λ1 =
3n

|V |(s3
2 − s3

1)
. (3.85)

Thus, for this system, our minimizer takes the form,

umin(t,x,v) =
1

|V |
(
m0(t,x) + γ(v ·m1(t,x))

)
, (3.86)

where γ := 3n
s32−s31

. With this approximate cell density distribution, we can

approximate m2

m2(umin) =

∫
V

vvTumindv =
1

|V |

(∫
V

vvTm0dv + γm1 ·
∫
V

(vvT )vdv

)
,

(3.87)

= γm0I. (3.88)

To end this process, we replace the second moment m2(P ) in (3.78) with

m2(umin), allowing us to close (3.78). Note that since m2(p) 6= m2(umin) =⇒
(m0(p),m1(p), S) 6= (m0(umin),m1(umin), S). For this reason, we introduce

capital letters for this new system

M0
t +∇ ·M1 = 0, (3.89)

M1
t + γ∇M0 = µ

(
Eq[M0] + (1−M0)Vb[S]v · ∇S

)
M0 − µM1, (3.90)

St −Ds∆S = αM0 − 1

τ
S. (3.91)

There are many useful things to note about this system; the first is that this is

the first system that we have derived quasi-linear, a property retained from the

kinetic equation. It is also worth remarking that equations (3.89), and (3.90)

have the form of the generalized Cattaneo system [8, 34]. The Cattaneo model

was originally derived from Cattaneo’s law as a modification to Fourier’s law

45



of heat conduction, where the heat flux h(x, t) is related to the temperature

w(x, t) by the equation

τaht + h = −D∇w. (3.92)

Fourier’s law is reobtained by taking the τa constant to zero, representing

the time that material takes to adapt. Together with the conservation of

temperature, we obtain the Cattaneo system

wt +∇ · h = 0,

τaht + h = −D∇h.
(3.93)

This model has a particularly attractive trait that information propagates

at a finite speed, which the classical heat equation lacks. There are a few

cases of the Cattaneo model being used to describe biological populations,

such as Hadeler [24]. Similar to our model, Dolak and Hillen [16] created a

chemotaxis model through the kinetic L2 moment closure method, taking the

turning kernel to be

T (v,v′, S,∇S) :=
µ

|V |

(
1− n

s2
V (m0, S)v · ∇S

)
, (3.94)

where V (u, S) is of the density control type, with V (ū, S) = 0 for some ū > 0.

The above turning kernel has a lot of the same features to our turning kernel

(1.6); for instance, the constant turning rate µ, independence from v′, and

density control structure. In fact, if q(v) and b(v) are taken to be uniform

distributions, our turning kernel simplifies to the model proposed by Dolak

(3.94). The key difference between the models are the quantities Eq and Vb.

In Dolak and Hillen’s paper [16] they apply the Cattaneo model to two bi-

ological examples: the slime mold Dictyotelium discoideum and the bacterium

Salmonella typhimurium. For the slime mold, their simulations agree with

the results made in the experiments made at the Firtel Lab of the University

of California, San Diego [21]. In their experiments, they observed transitions

from many small maxima to a few large aggregations. Similarly, Dolak and

Hillen’s results for the bacterium closely matched the experimental observa-

tions of Berg and Budrene (see Woodward et al. [57]).
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Let us continue with the general theory. We can consider a further assump-

tion, that the M1
t ∼ O(ε), or the first moment changes in time on a slower

time scale than the zeroth moment. Then up to first order in ε we have

γ∇M0 = µ(Eq + (1−M0)Vbv · ∇S)M0 − µM1.

Solving for M1, we have

M1 = (Eq + (1−M0)Vbv · ∇S)M0 − γ

µ
∇M0.

Substituting this expression into the mass conservation equation (3.89),

M0
t +∇(ETM0) =

γ

µ
∆M0, (3.95)

where ET is defined in (3.65), now our equation represents a mix between

the previous hyperbolic and parabolic cases, the advection term, and isotropic

diffusion term.

3.4 Equilibrium Closure

Now we will examine the other moment closure method, the equilibrium clo-

sure. For this method, we will close the system by calculating the higher

moments using the equilibrium distribution of P (x,v, t), instead of minimiz-

ing the L2 norm. The equilibrium closure is a well-established method in [12].

Like the previous moment closure method, we begin by integrating (1.11) over

the velocity space V∫
V

Pt(v,x, t)dv +

∫
V

v · ∇xP (v,x, t)dv = 0, (3.96)

but this time we will define P (x,v, t) = P̂ (x,v, t)ρ(x, t) where this new quan-

tity P̂ has the property of being a probability distribution. With this defini-

tion, we can rewrite the above equation as

ρt +∇x(EP̂ρ) = 0. (3.97)
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Again, this is the same mass conservation equation as in the L2 moment clo-

sure, but this time it is written in terms of the cell density’s mean velocity.

Like the L2 moment closure method, we apply the process again by first mul-

tiplying (1.11) by v then integrating over V∫
V

vPt(v,x, t)dv +

∫
V

vvT∇xP (v,x, t)dv =

∫
V

vLP (v,x, t)dv. (3.98)

We use the following identity to rewrite this equation in terms of the mean,

expectation, and variance of P ,

VP̂ =

∫
V

(v− EP̂ )(v− EP̂ )T P̂ dv, (3.99)

=

∫
V

vvT P̂ dv− 2

∫
V

vET
P̂
P̂ dv +

∫
V

EP̂E
T
P̂
P̂ dv, (3.100)

=

∫
V

vvT P̂ dv−
∫
V

EP̂E
T
P̂
P̂ dv. (3.101)

We retrieve an equation in terms of ρ, Ep̂, and Vp̂

(Ep̂ρ)t +∇x(Ep̂ETp̂ ρ+ Vp̂ρ) =

∫
V

vLP (v,x, t)dv. (3.102)

Here is the conservation of population flux equation (EP̂ρ) with an acceleration

due to the turning operator. From a fluid dynamics point of view, VP̂ρ plays

the role of the pressure, directing the flow from a volume of high to low pressure

or, in this context directing flow from diffusive to directed environments. For

our turning operator (1.6), (3.102) becomes

(EP̂ρ)t +∇x(EP̂E
T
P̂
ρ+VP̂ρ) = µρ(Eq[ρ]−EP̂ ) + µρ(1− ρ)Vb[S]∇xS. (3.103)

We can repeat the process of multiplying by v and integrating to get an equa-

tion for VP̂ , but this will result in a higher moment appearing in the equation.

At this point, we need a way to close the system. We close the system by

approximating the highest moment, VP̂ at the equilibrium distribution Pe.
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Formally this occurs when

LPe(v,x, t) = 0,

which takes the form

Pe = ρ(q[ρ] + (1− ρ)b[S]v · ∇xS). (3.104)

Then the expectation of the equilibrium distribution is

EP̂eρ =

∫
V

vP̂eρv =

∫
V

vρ(q[ρ] + (1− ρ)b[S]v · ∇xS)dv,

= (Eq[ρ] + (1− ρ)Vb[S]∇xS)ρ.

(3.105)

Finally, we can compute the equilibrium variance as

VP̂e
ρ =

∫
V

(v−Eq−(1−ρ)Vb∇xS)(v−Eq−(1−ρ)Vb∇xS)Tρ(q+(1−ρ)bv·∇xS)dv.

(3.106)

Using the bilinearity of the outer product, and the various properties of the

turning kernel, we can simplify the above expression into terms of variance,

and expectation of q[ρ], and b[S, ρ]

(VP̂e
)ijρ =(Vq[ρ])ijρ− (∇S)l

(
(Eq[ρ])j(Vb[S])il + (Eq[ρ])i(Vb[S])jl

)
ρ(1− ρ)

− (∇S)l(∇S)k(Vb[S])kj(Vb[S])ilρ(1− ρ)2.

(3.107)

Now, approximating VP̂ ≈ VP̂e
in (3.103), yields the following equation,

(EP̂ρ)t +∇(EP̂E
T
P̂
ρ+ Vqρ)− µρ(Eq − EP̂ ) = µρ(1− ρ)Vb∇S

+∇
(
ρ(1− ρ)

(
Vb∇SETq + Eq(Vb∇S)T + (1− ρ)Vb(∇S)(∇S)TVT

b

))
.

(3.108)

In this form, the effects of the two environmental cues on the population

flux are distinct. The left-hand side is entirely due to the fibre distribution
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of q, whereas the right-hand side consists of the chemoattractant’s influence.

The first term on the right is the one that we have seen throughout the other

approximation methods. The term relaxes the population flux to the chemoat-

tractant concentration. The new term is the broad gradient term representing

the interaction between the fibre distributions, the chemoattract (q and b),

and the chemotaxis’s interaction with itself. These terms will influence the

population to flow in directions were b and q align.

Remark 5 By assuming the environment is isotropic for both b and q, and

that the interaction terms are small (3.108) reduces to the system proposed by

Filbet [20].

Eq[ρ] = EP̂ , Vq[ρ] = θ(ρ)I, (3.109)

Vb[S, ρ] =
1

µ
I, (3.110)

where θ(ρ) is an increasing scalar function. These assumptions yield,

(EP̂ρ)t +∇(EP̂E
T
P̂
ρ+ ρθ(ρ)) = ρ∇S

+
1

µ
∇
(
ρ
(
∇SET

P̂
+ EP̂∇S

T +
1

µ
(∇S)(∇S)T

))
.

(3.111)

Now, assuming that 1/µ << 1, the interaction terms disappear.

We can further simplify the system (3.108), by consider the case where the

flux (Ep̂ρ) quickly relaxes to its equilibrium. This assumption is done by setting

the material derivative of the flux to be zero DtEp̂ρ := (Ep̂ρ)t +∇(Ep̂ETp̂ ρ) in

(3.108)

∇(Vqρ) = µρ(Eq − EP̂ ) + µρ(1− ρ)Vb∇S

+∇
(
ρ(1− ρ)

(
Vb∇SETq + Eq(Vb∇S)T + (1− ρ)Vb(∇S)(∇S)TVT

b

))
.

Solving for EP̂ρ, and substituting into the mass conservation law equation
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(3.97) leads to

ρt +∇(ETρ)− 1

µ
∇∇ : (Vqρ)

=
1

µ
∇∇ :

(
ρ(1− ρ)

(
Vb∇SETq + Eq(Vb∇S)T + (1− ρ)Vb(∇S)(∇S)TVT

b

))
.

(3.112)

The above equation is similar to the L2 moment closure in the slow momentum

change case, with the same advection terms and a similar diffusion term. The

main difference between the two-moment closures is the presence of anisotropic

diffusion and the interaction terms.

3.5 Conclusion

Now that we have gone through the various scaling methods and moment

closure techniques, we will summarize and contrast our findings. We will look

at the form of the limiting equations and show relations between them. We

will reexamine the underlying assumptions of the approximation methods. For

this section we will ignore the chemoattractant equation, and for convenience

of comparison, we will unify the notation ρ = M0, x = ξ, and t = τ

3.5.1 Limit equations

The four approximation methods lead to these six equations:

• Parabolic Scaling (3.16),

ρt −
1

µ
∇
(
∇
(
Vqρ+ EqETq ρ

)
− ρ(1− ρ)Vb∇S

)
= 0; (PS)

• Hyperbolic Scaling (3.53),

ρt +∇ · (Eqρ) = 0; (HS)
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• Hyperbolic scaling with first order correction (3.63),

ρt +∇ · (Eqρ)−
(
ε

µ

)[
∇∇ :

(
(Vq + EqETq )ρ

)
−∇(((Eq)ρρ+ Eq)∇(Eqρ))

]
+ ε∇∇S : (ρ(1− ρ)Vb) = 0;

(HC)

• Hyperbolic Scaling for large b (3.69),

ρt +∇ · (ETρ) = 0; (HSb)

• L2 Moment Closure (3.89),

ρt +∇(ETρ) =
γ

µ
∆ρ; (L2)

• Equilibrium Closure (3.112),

ρt +∇(ETρ)− 1

µ
∇∇ : (Vqρ)

=
1

µ
∇∇ :

(
ρ(1− ρ)

(
Vb∇SETq + Eq(Vb∇S)T + (1− ρ)Vb(∇S)(∇S)TVTb

))
.

(EC)

With all the equations laid out, we can see that the scalings and moment

closures lead to quite different equations. However, there is overlap between

the various approximations. We summarize these overlaps in the following

Lemma. It is clear that (EC) only overlaps with the other equations if the

interaction terms are small. For the sake of the following Lemma, we will

assume Vb = O(ε) with µ = O(ε−1), for (EC).

Lemma 6

1. (Diffusion-dominated) In the case Eq = 0, or Eq = O(ε2) the approx-

imations (PS),(HC),(EC) lead to the parabolic limit (PS), while (HS) is

trivial.
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2. (Drift-diffusion) If Eq = O(ε), then (HC) and (EC) coincide to lead-

ing order.

3. (Drift-dominated) if Eq = O(ε), and Vq = O(ε) (or µ = O(ε−1)),

then (HC) and (HSb) coincide to leading order.

4. (Isotropic) if q(v) is the uniform distribution, then (L2), and (EC)

coincide to leading order.

Moving onto the approximation methods’ underlying assumptions, there are

two main types of the scalings, which consist of the parabolic and hyperbolic

scalings and two moment closures consisting of the L2 moment closure and

Equilibrium closure. The fact that the above scalings, closure methods lead

to very different equations is a bit disturbing. It seems to leave the researcher

hanging in the air, unable to choose the best method. However, when look-

ing at the biological situations relevant to the various methods, a distinction

becomes clear. Here, we summarize the underlying biological assumptions.

• (Parabolic) Corresponds to a time scale where particles are fast and

turn frequently, with movement close to a Brownian random movement

[29]. An example of the time scale is the example we used to moti-

vate rescaling, the bacteria E.coli, which has a turning rate of around

µ ≈ 1/sec, and average speed of |v| ≈ 10−2mm/sec. In most parabolic

scalings, there is no clear directional cue, other than the directional bias

as a result of anisotropy of the variance, covariance matrix Vq, and EqETq ,

but the addition of the chemotactic terms creates a directional cue.

• (Hyperbolic) Again, the time-space scale is where particles are fast and

turn frequently, but this time there is a clear directional cue provided

by the unperturbed environment q. An example is the migration of sea

turtles, where their movement is directed mainly by the Earth’s magnetic

field [41].

• (L2 moment closure) This approximation can be seen as minimizing

the L2 norm. An effect of this choice is that we are smoothing out the
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oscillations, consider altering the functional for a ∈ R (3.79)

Ha[u] :=
1

2

∫
V

(u− a)2dv − Λ0

(∫
V

udv −m0

)
− Λ1 ·

(∫
V

vudv −m1

)
,

(3.113)

note that this change does not affect the resulting minimizer. Thus, in

a sense, we are minimizing ‖u − a‖2, which is a measure of oscillations

around a. The qualitative effect is that the approximate solution is

smoother than the true solution [26].

• (Equilibrium Closure) For this approximation, we are essentially say-

ing that the second moment is close to the equilibrium distribution, and

we take the population flux to relax to the equilibrium rapidly.

After going through the underlying assumptions, the split between the scaling

and closure methods becomes more apparent. The scaling methods require

intimate knowledge of the turning rate and average speed of the objects in-

volved and an understanding of the scale of macroscopic dynamics. For these

reasons, the scaling methods are prevalent for cellular processes, since there

is a substantial amount of statistics for speed and turning rates, and the lab-

scale makes a natural macroscopic scale. The strength of Eq plays the most

significant role in the symmetry breaking between the parabolic scaling and

hyperbolic scaling. If Eq is large compared to the variance Vq, we are in

the advection dominated regime; therefore, the hyperbolic scaling (HC) is the

proper choice. If Eq is very small, we have entered the diffusive regime, and

the parabolic scaling (PS) is the appropriate choice. From the structure of the

equations derived by moment closures (L2) and (EC), we can see that they

play the role of the middle man between the hyperbolic and parabolic scaling

by having both advection and diffusion effects.

Unlike the scaling methods, the closure methods do not have clear indi-

cators like the magnitude of parameters, but rather are based on the higher-

order moments’ structure. Both methods assume that the first moment relaxes

quickly to the equilibrium, but the difference is how they treat the second mo-

ment. For the L2 closure, the assumption is that the second moment’s oscilla-

tions are small. The result is a system where there is no anisotropic diffusion.
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The assumption is that the second moment is close to the second moment of

the equilibrium for the equilibrium closure. The closure methods are useful

when knowledge of individual velocities are unknown or highly variable, and

there is evidence that the second moment is either free of oscillations or close

to its equilibrium.
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Chapter 4

Numerics

In this chapter, we will numerically explore the effect of anisotropy on chemo-

taxis. For this exploration, we will return to the example of the endothelial

cells randomly distributed to form a vascular network. We will describe this

motion using the parabolic limit (3.33). For the domain, we will consider the

two-dimensional square [0, L]× [0, L] with a periodic boundary condition. We

discretize this square into smaller squares with side lengths of h, and index

these squares by the indices j, k, representing the x-axis and y-axis. Both

indices run from [1, N ], where N = L
h

.

4.1 Hybrid FVFD Scheme

For the numerical scheme, we will closely follow the method proposed by Cher-

tock in [13]. Chertock derived a second-order hybrid Finite volume finite ele-

ment scheme for the classical Keller Segel model

ρt = ∇(∇ρ− ρ∇S), (4.1)

St = ∆S + ρ− S. (4.2)

They were able to show positivity preservation for this scheme based on rea-

sonable CFL conditions, making it ideal for our problem. Since our system has

added complexities, namely the anisotropic terms, we had to alter the scheme

for our model. For this reason, we will go through the scheme in detail to
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exhibit these differences. Although it is unclear if our system holds the same

positivity result as in [13], our numerical results are strictly positive. To begin,

we have to write (3.33) in the form of fluxes along the axis; for this purpose,

we write (3.33) in two dimensions

dρ

dt
−
(

1

µ

(
V1,1
q ρ
)
x

+
1

µ

(
V1,2
q ρ
)
y
− ρ(1− ρ)

(
V1,1
b Sx + V1,2

b Sy
)
)

)
x

(4.3)

−
(

1

µ

(
V2,1
q ρ
)
x

+
1

µ

(
V2,2
q ρ
)
y
− ρ(1− ρ)

(
V2,1
b Sx + V2,2

b Sy
)
)

)
y

= 0, (4.4)

St = ∆S + αρ− 1

τ
S. (4.5)

On the above mesh, the goal is to write the system as a semi-discrete hybrid

FVFD scheme, which takes the form of

dρ̄j,k
dt

= −
Fj+ 1

2
,k −Fj− 1

2
,k + Fj,k+ 1

2
−Fj,k+ 1

2

h
, (4.6)

dSj,k
dt

= ∆j,kS + αρj,k −
1

τ
Sj,k. (4.7)

Where the averaged cell density is ρ̄j,k ≈ 1
h2

∫
Ij,k

ρ(x, y, t)dxdy, Sj,k, and ρj,k

are the point values of the chemoattractant and cell density respectively. Fj,k
are the numerical fluxes in the x and y directions, and ∆j,k is the discrete

Laplacian. We can write the numerical fluxes as follows

Fj+ 1
2
,k = ρ̄j+ 1

2
,k(1− ρ̄j+ 1

2
,k)uj+ 1

2
,k −

1

µ

((
V1,1
q ρ
)
x

)
j+ 1

2
,k
− 1

µ

((
V1,2
q ρ
)
y

)
j+ 1

2
,k
,

(4.8)

Fj,k+ 1
2

= ρ̄j,k+ 1
2
(1− ρ̄j,k+ 1

2
)vj,k+ 1

2
− 1

µ

((
V2,1
q ρ
)
x

)
j,k+ 1

2

− 1

µ

((
V2,2
q ρ
)
y

)
j,k+ 1

2

,

(4.9)

where u, and v chemotactic velocity,

uj+ 1
2
,k = (V1,1

b )j+ 1
2
,k(Sx)j+ 1

2
,k + (V1,2

b )j+ 1
2
,k(Sy)j+ 1

2
,k, (4.10)

vj,k+ 1
2

= (V2,1
b )j,k+ 1

2
(Sx)j,k+ 1

2
+ (V2,2

b )j,k+ 1
2
(Sy)j,k+ 1

2
. (4.11)
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Now, the scaled cell density derivatives are computed via central differences

((
V1,1
q ρ
)
x

)
j+ 1

2
,k

=
(V1,1

q )j+1,kρ̄j+1,k − (V1,1
q )j,kρ̄j,k

h
,

((
V1,2
q ρ
)
y

)
j+ 1

2
,k

=
(V1,2

q )j+ 1
2
,k+1ρj+ 1

2
,k+1 − (V1,2

q )j+ 1
2
,k−1ρj+ 1

2
,k−1

2h
,

((
V2,1
q ρ
)
x

)
j,k+ 1

2

=
(V2,1

q )j+1,k+ 1
2
ρj+1,k+ 1

2
− (V2,1

q )j−1,k+ 1
2
ρj−1,k+ 1

2

2h
,((

V2,2
q ρ
)
x

)
j,k+ 1

2

=
(V2,2

q )j,k+1ρ̄j,k+1 − (V2,2
q )j,kρ̄j,k

h
.

The Chemotactic derivatives (Sx)j+ 1
2
,k, (Sy)j+ 1

2
,k,(Sx)j,k+ 1

2
, and (Sy)j,k+ 1

2
are

computed similarly. The point values ρj+ 1
2
,k, and ρj,k+ 1

2
are computed in a

upwind manner

ρj+ 1
2
,k =

ρEj,k, if uj+ 1
2
,k > 0,

ρWj+1,k, otherwise.
ρj,k+ 1

2
=

ρNj,k, if vj,k+ 1
2
> 0,

ρSj,k+1, otherwise.

The one sided point values at the interfaces ρEj,k, ρ
W
j+1,k, ρ

N
j,k, and ρSj,k+1, are

computed using the second order piecewise linear reconstruction

ρEj,k = ρ̄j,k +
h

2
(ρx)j,k,

ρWj+1,k = ρ̄j+1,k −
h

2
(ρx)j+1,k,

ρNj,k = ρ̄j,k +
h

2
(ρy)j,k,

ρWj,k+1 = ρ̄j,k+1 −
h

2
(ρy)j,k+1.

To ensure that the above point values are second-order and non-negative,

slopes are computed adaptively

(ρx)j,k =


ρ̄j+1,k−ρ̄j−1,k

2h
, if ρ̄j,k +

ρ̄j+1,k−ρ̄j−1,k

4
≥ 0,

minmod
(

2
ρ̄j+1,k−ρ̄j,k

h
,
ρ̄j+1,k− ¯ρj−1,k

2h
, 2

ρ̄j,k−ρ̄j−1,k

h

)
, otherwise,
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where the flux limiter minmod

minmod(x1, x2, . . . ) :=


min(x1, x2, . . . ), if xi > 0, ∀i,

max(x1, x2, . . . ), if xi < 0, ∀i,

0, otherwise.

The positivity of the reconstructed cell density point values is guaranteed by

the positivity preserving generalized minmod limiter,[53, 36, ?, 50] with the

assumption that the underlying cell averages are positive. For the discrete

Laplacian, we use the standard five-point stencil [23] to obtain a second-order

approximation

∆j,kS =
Sj+1,k + Sj−1,k − 4Sj,k + Sj,k−1 + Sj,k+1

h2
.

Thus we have derived a second-order semi-discrete method for (3.33)

dρ̄j,k
dt

= −
Fj+ 1

2
,k −Fj− 1

2
,k + Fj,k+ 1

2
−Fj,k+ 1

2

h
, (4.12)

dSj,k
dt

= ∆j,kS + αρj,k −
1

τ
Sj,k. (4.13)

To evolve this semi discrete scheme through time we chose to use a second

order adaptive Runge-Kutta scheme [17].

4.2 Parameters

The system has a couple of parameters we have to determine namely, α the

production rate of the chemoattractant, τ degradation time, µ the turning

rate, Ds diffusion rate of the chemoattractant, finally the forms of the distri-

butions ρ(x, t), q(x,v), and b(x,v). With the purpose of looking at vascular

assembly, we can find the constant parameters, τ = 3600s, α = 1 from [47],

Ds = 10−7cm/s2 from [45], and µ = 1785.71/s from [48]. We take the initial
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condition to be a linear combination of Gaussian’s

ρ0(x, y) =
1

4π2

W∑
k=1

e
(x−xl)

2+(y−yl)
2

2σ2 , (4.14)

where {(xl, yl}Wl=1 is a sequence of random numbers drawn from the uniform

distribution on [0, N ]2. This initial condition represents a random distribution

of cells on a petri dish, which have a radius of σ. From available data of

molecular radii [54, 37], we can estimate the radius of a cell to be σ = 0.003 cm.

With the general parameters defined, we can move onto experiments.

4.3 Vascular Network Formation

In this experiment, we are just interested in replicating previous models’ results

in looking at vascular network formation as in [47, 20]. In their experiments,

they took the randomly distributed cells, with b being uniformly distributed.

For the distribution q, the choice is a little more complicated. In [47, 20], they

propose a pressure term P (ρ) = ρ3 to deal with cell compression. They derived

their models through the moment closure (although they do not assume that

the flux relaxes quickly to the equilibrium) taking the form

ρt +∇(Ep̂ρ) = 0, (4.15)

(Ep̂ρ)t +∇
(
Ep̂ETp̂ ρ+ ρ3I

)
= ρ∇S, (4.16)

however, we can match the pressure term to our anisotropic diffusion tensor

Vq = ρ3, by looking at our moment closure model. One of the critical findings

these papers was that the formation of networks for these parameter values

bifurcates on the cell density per cm2 (number of Gaussians per unit area).

Their rough estimate was for the critical cell density was 100 cells/mm2
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(a) (b)

Figure 4.1: Formation of Network: a) Initial condition with cell density of
100 cells/mm2, b) Solution at 1.5s

(a) (b)

Figure 4.2: Formation of Network: a) Initial condition with cell density of
200 cells/mm2, b) Solution at 1.5s

In all cases, in figures 4.1, 4.2, and 4.3, structures are forming, but only

after hitting a density 200 cells/mm2 is there larger-scale structures like cells

forming connected rings. Interestingly, we were able to obtain qualitatively

similar results to [47, 20], despite using a different class of equations. This

result could be explained by the fact that we are looking at the system’s long

time behaviour with no clear directional cue provided by q. For our model, this

situation is precisely where the parabolic scaling coincides with equilibrium

closure (no interaction terms). Although [47, 20] do not take the fast-flux

relaxation, it seems that the flux does relax to its equilibrium, evidenced by

the similarity between our solutions.
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(a) (b)

Figure 4.3: Formation of Network: a) Initial condition with cell density of
400 cells/mm2, b) Solution at 1.5s

4.4 Anisotropic Diffusion

For this experiment, we are interested in looking at the effects of anisotropic

diffusion. We take

q(v) =
1

4πI0(k)

(
ekv·u + e−kv·u

)
, b =

1

50
. (4.17)

Which means that the variances matrices take the form

Vq =
1

2

(
1− I2(k)

I0(k)

)
I +

I2(k)

I0(k)
uuT , Vb =

1

50
I. (4.18)

Taking the fibre direction u to be along the main diagonal, i.e. u = ( 1√
2
, 1√

2
).

From the figures 4.4, and 4.5, we can see that having a fibre u = ( 1√
2
, 1√

2
),

severely changes how the system diffuses. Instead of a radial symmetric spread,

there is smearing along the main diagonal, and as we increase the concentration

parameter, there is a tighter and tighter spread along the diagonal. We can also

localize anisotropic effects to regions by taking the concentration parameter

to be a function of x, namely

k(x) = 10e
− (x−L/2)2

(8σ)2 , (4.19)

Changing the concentration parameter k to depend on x causes regions
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(a) (b)

Figure 4.4: Concentration parameter of k = 5: a) Initial condition with cell density
of 200 cells/mm2, b) Final State at 0.32s

(a) (b)

Figure 4.5: Concentration parameter of k = 10: a) Initial condition with cell
density of 200 cells/mm2, b) Final State at 0.32s

where nonuniform diffusion reigns, the cross in the center, and the corners

where the diffusion is nearly uniform.
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(a) (b)

Figure 4.6: Concentration parameter of k = k(x): a) Initial condition with cell
density of 200 cells/mm2, b) Solution at 0.32s

4.5 Chemotactic Mixing

In this experiment, we are going to explore mixing the chemotactic velocities,

for this reason, consider

Vb(x) =
1

50
I +

s

2

(
A+ AT

)
, (4.20)

where A is the matrix, and s is the max velocity

A =

(
0 1

2
1
2

0

)
, s = 1/5 cm/s.

Simulating this set of parameters

(a) (b)

Figure 4.7: Velocity mixing a) Initial condition with cell density of 200 cells/mm2,
b) Solution at 0.32s
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From this figure 4.7, we can see that the effect of the chemotaxis mixing

is comparable to the effect of non-uniform diffusion as we have seen in the

previous experiment. The difference is that the chemotactic mixing seems to

affect the diffusion along the diagonal (−1, 1), but the chemotaxis term usu-

ally acts as a deterrent, reducing movement away from high-density regions.

Therefore, we hypothesize that the chemotaxis term is not promoting move-

ment along the (−1, 1) direction, but discouraging diffusion along (1, 1), while

leaving diffusion along (−1, 1) unimpeded giving the structures in the figure

4.7.

4.6 Anisotropic Diffusion vs. Chemotactic mix-

ing

Now we wish to examine the interaction between the fibre distributions q and

the chemotactic velocity mixing. For this we consider the q in (4.17), and b in

(4.20). According to the previous experiments, these choices of distributions

should act in opposition to each other, q along (1, 1), and b along (−1, 1). We

take the same initial condition as in previous experiments.

From this time series of figures 4.8, we can see that there seem to be two

(a) (b) (c)

Figure 4.8: Anisotropic Diffusion and Velocity Mixing: a) Initial condition with
cell density of 200 cells/mm2, b) Solution at 0.0989 s c) Solution at 0.32 s

regimes. The first regime is where the anisotropic diffusion dominates, and we

see the smearing of the cells along the positive diagonal. The second regime

occurs at the end of the simulation, where the higher density regions are pulled

towards the (−1, 1) diagonal, and the lower density regions continue on their
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path. The split in dominance occurs because the chemotaxis terms’ strength

is entirely dependent on the density and time. Since the chemoattractant con-

centration starts at zero, the anisotropic diffusion initially takes control. This

state of affairs continues until the anisotropic diffusion squeezes the solution

enough to reach a cell density critical point. From this point on, the chemotaxis

terms dominate, inducing movement along the orthogonal diagonal, but only

in the high-density regions. The result is this crisscrossing knitting pattern.

We see numerically fascinating patterns. The effects of anisotropy and

chemotaxis interact in complicated ways. More research is needed to investi-

gate these observed numerical patterns.

66



Chapter 5

Conclusion

The principle goal of this thesis is to examine the various approximations of the

kinetic chemotaxis equations. In Chapter 1, we derived the kinetic chemotaxis

system based on some simple assumptions on how endothelial cells move. First,

we assume that a velocity jump process can model a cell’s movement, and

secondly, that its velocity is influenced by a chemoattractant. In addition, a

diffusion equation governs the chemoattractant, and cells cannot arbitrarily

compress. We can move from this stochastic model to the kinetic equation via

averaging procedures.

From here, we reach the topic of Chapter 2, where we asked the time tested

mathematical question of whether the derived set of equations have a solution,

and what requirements on the parameters give global solutions. We established

local existence/uniqueness using semigroup theory. The whole proof is based

on the idea that a positive turning kernel implies that the solution is positive.

We cannot guarantee that the turning kernel remains positive, due to the

functional dependence on ρ and ∇S. However, we do know that the turning

kernel remains positive for some closed set. Building off of this fact, we can use

a translational symmetry to bound ρ. The bounds in ρ allow us to construct

classical solutions to S and bound them in the small time window. The final

step is showing that if we make assumptions on the distributions of q and b,

we can extend the small time window to infinity, thus giving bounded global

solutions to (2.1) - (2.3). In addition to being an interesting mathematical

question, global existence is a significant result for the asymptotic scaling
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section since it tells us that approximations that favour long time scales are

valid.

In Chapter 3, we went through four different approximations to the sys-

tem derived (2.1) - (2.3) in Chapter 1. The first two approximations explicitly

rescaled space-time, based on the argument that most of the parameters are on

the level of individual cells, but we are interested in population-level dynamics

that play out over timescales that are orders of magnitude larger than the

cell level dynamics. First visiting the parabolic scaling, where diffusion effects

dominate, we obtained an advection-diffusion type equation (3.16), similar to

the classical Keller Segel equation (2.4). Next, is the hyperbolic scaling, where

we have a pure advection equation (3.64) caused by a clear directional cue,

induced by q, but the equation had no dependence on the chemoattractant.

To view the effect of the chemoattractant, we developed higher-order correc-

tions to the equation (3.63). We also pursued another angle, the case of large

chemoattractant sensing, and gained another pure advection equation depen-

dent on ET (3.64). For both of the scalings, we were able to show that in

the limit of the small parameter ε, the kinetic equation indeed approaches the

limiting equation (see Theorem 3 for the parabolic scaling, and Theorem 4 for

hyperbolic scaling).

After the rescalings come the moment closures, where the kinetic equation

is rewritten as an infinite set of equations for statistical quantities (moments).

To close the system, we approximate the second moment by some combination

of the lower moments, thus closing the moments. The first moment closure

we examined was the L2 moment closure, where the second moment is ap-

proximated by minimizing the L2 norm. This moment closure has the effect of

minimizing the oscillations at every level and is the only limiting equation with

no anisotropic terms (3.89)-(3.90). The limiting equation has some historical

importance, as it is the same as the Cattaneo model. Taking the L2 moment

system further by having the first moment relax quickly to its equilibrium,

gives us an advection-diffusion equation similar to the parabolic scaling case,

except for the notable absence of the anisotropic diffusion (3.95). Finally,

there is the equilibrium closure, where the second moment is calculated at

the equilibrium. The result of this process is a system of equations much like
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the L2 closure case, except the anisotropic diffusion is recovered, and there

is a multitude of additional terms that represent the interaction between the

chemoattractant and the fibre distribution, as well as chemoattractant with

itself (3.108). We also assume that the first moment relaxes quickly to the equi-

librium, and we once again gain an advection-diffusion equation (3.112), that

in the case of the interaction terms being small coincides with the parabolic

limit equation.

Chapter 4 aims to visualize these solutions for endothelial cells, forming a

vascular network. Since we were interested in the system’s long time behaviour

to see the network like structures, we examined the parabolic scaling. To nu-

merically solve (3.33), we had to be careful of the advection term, as well as the

anisotropic terms. For this reason, we went with a semidiscrete hybrid finite

element/difference method. Using this numerical scheme, we went through nu-

merous experiments; the first experiment we did was to recreate the vascular

network assembly results in [47, 20], using the parabolic scaling. We were able

to match our solutions to theirs qualitatively; our ability to do this suggests

that the flux rapidly relaxes to the equilibrium in their hyperbolic models. For

the other experiments, we explored the effects of anisotropic diffusion and the

chemotactic velocity mixing. For the anisotropic diffusion, the effect is essen-

tially smearing the cells along the fibre direction, since movement along those

directions is favoured. The chemotactic velocity had the opposite effect. The

mixing dissuaded movement along directions, but unaffected diffusion along

its complement, retrieving similar results as the anisotropic diffusion. The last

experiment we looked at was both the anisotropic diffusion and the chemo-

tactic mixing, which lead to a mixed regime set up. In regions with low cell

density, the anisotropic diffusion would dominate, but the chemotactic velocity

would govern the motion in high-density regions.

The kinetic chemotaxis system has various mathematical challenges, par-

ticularly concerning global existence. We had to make major simplifications to

our system by reducing the fibre distributions’ dependence from a functional

dependence on the density to just a dependence on the velocity. It would be

impressive to extend our global existence result to a class of functions on ρ.

The difficulty arises from how we arrive at our bound for P , which requires the

69



kinetic equation to have a certain symmetry, that is translation by q. Another

mathematical difficulty was deriving error estimates for the moment closure

methods. In [26], Hillen was able to show that the error between the kinetic

chemotaxis system and the Cattaneo system was proportional to ‖∇ρ0‖2. We

were unable to obtain such a result for closure systems due to the non-linearity

in the ET term for the L2 model, and the interaction terms for the Equilibrium

closure model.

Now, where does this article fit into the existing chemotaxis literature?

In this paper, we looked at the kinetic chemotaxis model on the torus with

volume filling term, which puts us at odds with most of the kinetic chemotaxis

literature. Most work on the kinetic chemotaxis literature focuses on the

problem in Rn on altering the chemotactic gradient to a nonlocal version or

using a cell density control on the gradient [32, 5, 11]. The closest result to ours

is the paper by Hillen and Painter [27], where they show the global existence

of Keller-Segel type equation with volume filling term on compact manifolds.

Since they were looking exclusively at the chemotaxis equation’s parabolic

scaling, the mathematical differences are quite substantial. These differences

are visible in the availability of a priori bounds of the cell density for bounded

chemotactic gradient, whereas the P can only be bounded through positivity

or mass conservation [43]. This paper also gives a novel summary of the

common approximation methods for the kinetic equations in the chemotaxis

context, and we present new proofs for their convergence. We go through the

biological implications of the four methods and where they overlap. These

overlaps occur in four regimes, the diffusion dominated regime where there is

either a little to no directional cue provided by q, a drift-diffusion regime where

both the advection and diffusion terms are close to the same magnitude, drift

dominated regime where the advection terms control the dynamics, and finally

the isotropic case where the anisotropy is minimal. The summary of these

approximations provides a useful guide for further biological models involving

chemotaxis in more complex environments or sensing scenarios.
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Perthame. Global existence for a kinetic model of chemotaxis via dis-
persion and Strichartz estimates. Communications in Partial Differential
Equations, 33(1):79–95, 2008.

[6] Elena O Budrene and Howard C Berg. Complex patterns formed by motile
cells of escherichia coli. Nature, 349(6310):630–633, 1991.

[7] Elena O Budrene and Howard C Berg. Dynamics of formation of symmet-
rical patterns by chemotactic bacteria. Nature, 376(6535):49–53, 1995.

[8] Carlo Cattaneo. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ.
Modena, 3:83–101, 1948.

[9] Carlo Cercignani. The Boltzmann equation. In The Boltzmann equation
and its applications, pages 40–103. Springer, 1988.

[10] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathemati-
cal theory of dilute gases, volume 106. Springer Science & Business Media,
2013.

71



[11] Fabio ACC Chalub, Peter A Markowich, Benôıt Perthame, and Christian
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