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Abstract 

Prominent research has shown that increasing data dimensionality results 

in the loss of contrast in distances between data points. Thus, clustering 

algorithms measuring the similarity between data points based on all fea

tures/attributes of a data set tend to break down in high dimensional spaces. 

In addition, not all attributes of a data set may be relevant for the clustering 

analysis. 

Motivated by these observations, it has been hypothesized that data points 

may form clusters only when a subset of the attributes, i.e., a subspace, is con

sidered. Furthermore, data points may belong to different clusters in different 

subspaces. 

Subspace and projected clustering techniques search for clusters of points 

in subsets of attributes. Subspace clustering enumerates clusters of points 

in all subsets of attributes, typically producing many overlapping clusters. 

Projected clustering computes several disjoint clusters, plus outliers, so that 

each cluster exists in its own subset of attributes. 

In this thesis, we propose three novel techniques that advance the state-of-

the-art in the subspace and projected clustering field. First, we propose a pro

jected clustering technique P3C that 1) depends on parameters that can be set 

without prior knowledge about the data; 2) can effectively discover low dimen

sional clusters embedded in high dimensional spaces; 3) can compute disjoint 

or overlapping clusters. Second, we propose two extensions that make P3C 

the first projected clustering technique that can be applied on both numeri-



cal and categorical data sets. Third, we propose a novel problem formulation 

for subspace and projected clustering that aims at extracting non-redundant, 

axis-parallel, statistically significant regions from the data. The problem for

mulation is given as an optimization problem, for which exhaustive search is 

not a viable solution because of computational infeasibility. Therefore, we pro

pose an approximation algorithm, STATPC, that has the same advantageous 

features as P3C, but, in addition, guarantees that its solution stands out in 

the data in a statistical sense, and it is not just an artefact of the method. 
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Chapter 1 

Introduction 

Cluster analysis is defined as the process of organizing a set of data objects 
into groups or clusters so that objects within a group are more similar to each 
other than to objects from other groups. Typically, the objects to be clustered 
are represented by points in a multi-dimensional feature space, and a distance 
function is used to measure the dissimilarity between the corresponding multi
dimensional points. 

Cluster analysis has been extensively studied in many areas, including the 
database, machine learning and statistics communities. It is often used as a 
stand-alone tool to gain insight into the data distribution, or as a preliminary 
step for subsequent analyzes. Clustering has been applied to a large number of 
practical problems, such as market segmentation, spatial data analysis, gene 
expression data analysis, etc. 

Numerous clustering algorithms have been proposed in the literature. They 
are often classified into partitional (e.g., KMeans [49], PAM [45]), hierarchi
cal (e.g., AGNES, DIANA [45]), density-based (e.g., DBSCAN [27], OPTICS 
[10], DENCLUE [41]), grid-based (e.g., STING [70], WaveCluster [64]), spec
tral (e.g., [59]), and model-based (e.g., EM [25]) techniques. Comprehensive 
surveys of these clustering techniques and concepts can be found in [42], [40], 
[16], [75]. 

Significant progress has been made during the last decade towards mak
ing clustering algorithms 1) scalable to large data sets (e.g., CLARA [45], 
CLARANS [56], BIRCH [85], Data Bubbles [20]), 2) robust to noise and ca
pable of discovering clusters of various shapes and densities (e.g., DBSCAN 
[27], OPTICS [10], CURE [38], CHAMELEON [44]), 3) non-parametric or at 
least robust to the parameters required (e.g., TURN [29], WaveCluster [64]), 
4) suitable for spatial data (e.g. [83], [71], [72]), or 5) incorporate available 
domain knowledge (e.g., [13], [73]). 

Traditionally, clustering algorithms measure the similarity between data 
points by considering all features/attributes of a data set. These approaches 
are successful for low dimensional data sets. However, in high dimensional data 
sets, these clustering algorithms tend to break down both in terms of accuracy, 
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as well as efficiency, due to a lack of contrast in distances between data points. 
Seminal research [17] has shown that, as the dimensionality increases, the 
farthest neighbor of a data point is expected to be almost as close as its 
nearest neighbor for a wide range of data distributions and distance functions. 
Due to this effect, the concept of proximity, and subsequently the concept of 
a "cluster", are seriously challenged in high dimensional spaces. 

At the same time, automatic data collection facilities have become increas
ingly available, and thus, an increasing number of features/attributes can be 
automatically measured. However, not all of these attributes may be relevant 
for the clustering analysis. The irrelevant attributes may in fact "hide" the 
clusters by making two data points that belong to the same cluster look as 
dissimilar as an arbitrary pair of data points. 

Motivated by these observations, it has been hypothesized [7] that data 
points may form clusters only when a subset of the attributes, i.e., a subspace, 
is considered. Furthermore, data points may belong to different clusters in 
different subspaces. 

As a motivating example, let us consider a gene expression data set that 
measures the expression level of human genes in several human tissues. When 
clustering tissues, we deal with a clustering problem in a very high dimensional 
space, because the number of genes, typically in the thousands, is several orders 
of magnitude larger than the number of tissues, usually in the tens. Because 
of the sparse nature of the data, it is unlikely that data points, representing 
tissues, form clusters in full dimensional space. Instead, data points may form 
clusters only when a small number of "relevant" attributes are considered. As 
noted in the bio-medical literature, only a relatively small number of genes 
out of the total number of genes may be relevant for distinguishing between 
normal and cancerous tissues. Furthermore, data points may form different 
clusters in different subsets of attributes, depending on the different pheno-
types represented by these attributes. For example, the cancerous tissues may 
form a cluster when a certain subset of attributes is selected, whereas the nor
mal tissues may form a cluster when a different subset of attributes is selected. 
The selected attributes are potential indicators for the presence, respectively 
absence, of cancer. 

The subspace clustering problem is the task of automatically determining 
clusters of points in different, possibly overlapping, subspaces of a data set. 

Global dimensionality reduction techniques such as feature selection and 
feature transformation (e.g., Principal Component Analysis (PCA)) are not 
effective for the subspace clustering problem. These techniques cluster data 
only in a particular subspace, in which it may not be possible to recover 
all clusters, and information concerning points clustered differently in other 
subspaces is lost [57]. 
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1.1 Overview of Related Work 

In this thesis, we focus on the problem formulation in which a subspace is 
denned as a subset of the original attributes of a data set. In this case, the 
discovered subspace clusters are easily interpretable by the user because the 
original attributes have meaning in real-life applications. A related problem 
formulation is one in which a subspace is defined as an arbitrary set of orthog
onal vectors [6]. 

Techniques for discovering clusters of points in subsets of attributes have 
been classified into two categories [57]: subspace clustering techniques, and 
projected clustering techniques. Both types of techniques are similar in the 
sense that they discover clusters of points that exist in subspaces of a data set. 
Prom this point of view, both types of techniques are "subspace clustering" 
techniques 1. However, they differ in their problem definition, and in their 
strengths and weaknesses. 

Subspace clustering techniques search for all clusters of points in all sub-
spaces of a data set according to their respective cluster definition. Existing 
subspace clustering techniques start with one-dimensional clusters, which are 
subsequently merged bottom-up, similarly to the Apriori algorithm for finding 
frequent itemsets [8], in order to compute clusters of higher dimensionality. To 
avoid an exhaustive search through all possible subspaces, the cluster definition 
is based on a global density threshold that ensures anti-monotonic properties 
necessary for an Apriori style search. However, the cluster definition ignores 
the fact that density decreases with dimensionality. Large values for the global 
density threshold will result in only low dimensional clusters, whereas small 
values for the global density threshold will result in a large number of low di
mensional clusters (many of which are meaningless), in addition to the higher 
dimensional clusters. Some subspace clustering techniques use an axis-aligned 
grid for estimating the density of a region in the data space. These techniques 
are sensitive to the resolution of the grid used, and they may miss clusters 
that are inadequately oriented or shaped with respect to the grid positioning. 

Projected clustering techniques define a projected cluster as a pair (X, Y), 
where X is a subset of data points, and Y is a subset of data attributes, called 
the "relevant" attributes, so that the points in X are "close" when projected 
on each of the attributes in Y, but they are "not close" when projected on 
each of the remaining attributes, called the "irrelevant" attributes. Projected 
clustering techniques have an explicit or implicit measure of "closeness" on 
relevant attributes (e.g., small range/variance), and a "non-closeness" measure 
on irrelevant attributes (e.g., uniform distribution/large variance). A search 
method will report all projected clusters in the particular search space that 

1We believe that density-based subspace clustering would be a more appropriate name 
than subspace clustering for the techniques in this category. However, in order to preserve 
the terminology used in literature, we will use in this thesis the term of subspace clustering 
techniques. 

3 



a technique considers. If only k projected clusters are desired, the techniques 
typically use an objective function to define what the optimal set of k projected 
clusters is. 

Existing projected clustering techniques are either based on the computa
tion of k initial clusters in full dimensional space, or leverage the idea that 
clusters with as many relevant attributes as possible are preferable. Conse
quently, these techniques are likely to be less effective in the practically most 
interesting case of projected clusters with very few relevant attributes, be
cause the members of such clusters are likely to have low similarity in full 
dimensional space. 

In addition, a re-occurring weakness of both these types of techniques is 
that their performance depends greatly on a series of parameters whose ap
propriate values are difficult to anticipate by the users (e.g., the number of 
projected clusters or the average dimensionality of subspaces where clusters 
exist). 

From an algorithmic point of view, all subspace clustering techniques are 
based on an Apriori-like, bottom-up discovery of clusters based on some global 
density thresholds. They typically report a large number of overlapping clus
ters. There is much more diversity in the existing projected clustering tech
niques that can be classified, just like the full-dimensional algorithms, into 
partitional, hierarchical and density-based techniques. The majority of pro
jected clustering techniques compute disjoint clusters; others have the option 
to assign data points to more than one cluster. 

The majority of existing subspace and projected clustering techniques are 
designed for numerical data sets, i.e., data sets where the domain of every 
attribute is inherently ordered. However, many real data sets are categorical, 
i.e., the attribute domains are discrete and not ordered. 

Subspace and projected clustering techniques designed for numerical data 
are not readily applicable to categorical data sets. Some of these techniques 
use distance functions that exploit the geometric properties of the data space, 
which cannot be effectively captured by categorical distance functions, such 
as the matching coefficient. Other techniques require numerical computations 
that are not well-defined for categorical attributes (e.g., mean, variance, eigen
values) . Finally, some techniques are based on the discretization of individual 
data attributes into bins, and the notion of "neighboring" bins is used to 
manage the search through all possible subspaces. Categorical attributes lack 
order, and thus this notion is not directly applicable. 

A significantly smaller body of work has been dedicated to the subspace 
clustering problem on categorical data than to the same problem on numerical 
data. Existing subspace and projected clustering techniques for categorical 
data exhibit the same weaknesses as their numerical counterparts. 
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1.2 Contributions 

In this thesis, we propose three novel techniques that advance the state-of-the-
art in the subspace and projected clustering field. 

First, we propose a projected clustering technique, called P 3 C (Projected 
Clustering via Cluster Cores) with the following properties: 

1. P3C can effectively discover projected clusters in the data while requiring 
parameters that represent the error probability that the user is willing to 
accept. Therefore, setting these parameters requires no prior knowledge 
about the data, and, in contrast to most previous approaches, there is 
no need to provide the target number of clusters as input. 

2. P3C can effectively discover low dimensional clusters embedded in high 
dimensional spaces. 

3. P3C may assign a data point to more than one cluster if the data point 
satisfies the description of more than one cluster. 

4. P3C is robust with respect to noise. 

P3C is comprised of several steps. First, regions corresponding to projec
tions of clusters on individual attributes are computed. Second, cluster cores 
are identified by spatial areas that 1) correspond to a combination of the de
tected regions, and 2) contain an unexpectedly large number of points. Third, 
cluster cores are refined into projected clusters, outliers are identified, and 
relevant attributes for each cluster are refined. 

Second, we propose to extend P3C for categorical data. We propose two 
adaptations that need to be performed in order to make P3C applicable on 
categorical data: 

1. We adapt the computation of cluster projections on individual attributes 
for categorical attributes. 

2. We adapt the refinement of cluster cores into projected clusters and the 
computation of outliers for categorical data. 

P3C is the first projected clustering technique that can be applied on both 
numerical and categorical data sets. P3C for categorical data exhibits the 
same properties as P3C for numerical data. 

Third, we observe that one problem common to many existing subspace 
and projected clustering techniques is that their objectives are stated in a way 
that is not independent of the particular algorithm that is proposed to detect 
such clusters in the data. A second problem is the definition of cluster density 
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based on user-defined parameters, which makes it hard to assess whether the 
reported clusters are an artefact of the algorithm or whether they actually 
stand out in the data in a statistical sense. 

Motivated by these observations, we propose a novel problem formulation 
that aims at extracting axis-parallel regions that stand out in the data in a 
statistical sense. The set R of all axis-parallel, statistically significant regions 
that exist in a data set is typically highly redundant. Therefore, we propose 
to represent the set R through a reduced set of axis-parallel, statistically sig
nificant regions that in a statistically meaningful sense explains the existence 
of all the regions in R. We formalize these notions and we formulate the 
task of representing R through a reduced set of "explaining" regions as an 
optimization problem. 

Exhaustive search is not a viable solution for solving the optimization prob
lem because of computational infeasibility. Therefore, we propose an approx
imation algorithm, called STATPC, with the following properties: 

1. The solution computed by STATPC stands out in the data in a statistical 
sense, and it is not just an artefact of the method. 

2. The parameters required by STATPC are error probabilities that the 
user is willing to accept, and thus, setting these parameters does not 
require prior knowledge about the data. 

3. STATPC can effectively discover clusters in the data, even when these 
clusters have low dimensionality with respect to the total dimensionality 
of the data set. 

4. STATPC can assign a data point to more than one cluster. 

5. In a comprehensive experimental evaluation, we study the performance 
of STATPC over a variety of parameters involved in the data genera
tion model. We show that STATPC significantly outperforms existing 
subspace and projected clustering techniques in terms of accuracy. In 
addition, we discuss the strengths and weaknesses of the compared tech
niques. Our results can be used as a guide for the data mining practi
tioner to select which techniques are preferable in certain scenarios. 

The results of our research have been published in [52], [53], and [51]. 

1.3 Outline 

The rest of the thesis is organized as follows. Chapter 2 surveys the work rele
vant for this thesis. Chapter 3 describes the technique P3C for numerical data. 
Chapter 4 describes P3C for categorical data. The novel problem formulation 
for subspace and projected clustering that we propose is presented in chapter 
5. The approximation algorithm STATPC for the novel problem definition is 
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described in chapter 6. Conclusions and directions for future work are given in 
chapter 7. Appendix A summarizes the methodology of statistical hypothesis 
testing. 
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Chapter 2 

Related Work 

This chapter surveys the work relevant for this thesis. Sections 2.1 and 2.2 
discuss existing projected and subspace clustering techniques. Projected and 
subspace clustering techniques for categorical data are surveyed in Section 2.3. 
An overview of related problem formulations is given in Section 2.4. 

2.1 Projected Clustering Techniques 

Projected clustering techniques define a projected cluster as a pair (X,Y), 
where X is a subset of data points and Y is a subset of attributes so that 1) 
the data points in X project along each attribute a G Y on a range of values 
that is "small" compared to the range of values on which the whole data set 
projects on a, and 2) the data points in X project along each attribute a' not in 
Y on a range of values that is "comparable" to the range of values on which the 
whole data set projects on a'. For a projected cluster (X, Y), the attributes in 
Y are called the "relevant" attributes for X, whereas the remaining attributes 
are called "irrelevant" for X. Projected clustering techniques have, implicitly 
or explicitly, some notions of "small" and "comparable" in the definition of a 
projected cluster. 

The data model in projected clustering assumes that a data set D consists 
of K projected clusters, {(X, Y^)},^^...^}, and a set of outliers, O, where 
{X\,..., XK, 0} form a partition of D. The subsets of attributes {^^{I,...,#•} 
may not be disjoint and they may have different cardinalities. The outliers 
O are assumed to be uniformly distributed throughout the data space. The 
projected clustering problem is to detect K projected clusters in the data, plus 
possibly a set of outliers. 

Projected clustering techniques proposed in the literature can be classified 
into partitional (Section 2.1.1), hierarchical (Section 2.1.2), and density-based 
(Section 2.1.3) techniques. 

Partitional projected clustering techniques use an objective function to de
fine what is the optimal set of K projected clusters. These techniques address 
the optimization problem in an iterative manner: first, K "tentative" clusters 
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are computed in full dimensional space; second, sets of relevant attributes for 
each tentative cluster are computed; and, finally, the tentative clusters are 
refined based on the relevant attributes just computed. This iterative process 
is repeated several times, and the solution corresponding to the best objective 
function value is kept. These techniques report disjoint clusters, and they use 
some heuristics to identify outliers. 

Hierarchical projected clustering techniques are guided in their computa
tion of clusters by the idea that clusters with many relevant attributes are 
preferable to clusters with few relevant attributes. Like the partitional pro
jected clustering techniques, these techniques require the desired number of 
clusters K as a parameter, compute disjoint clusters, and use some heuristics 
to identify outliers. 

Density-based projected clustering techniques assume that projected clus
ters have a certain density. There are several flavors of techniques in this 
category, as discussed in Section 2.1.3. These techniques do not require the 
desired number of clusters as a parameter, and some of them are able to com
pute overlapping clusters, i.e., clusters that share data points. However, these 
techniques require various other parameters. 

Typically, projected clustering techniques require parameters that are dif
ficult to set by users (e.g., the number of projected clusters or the average 
number of relevant attributes of projected clusters), and they are sensitive to 
the values of these parameters. 

Moreover, projected clustering techniques are less effective for discovering 
projected clusters with few relevant attributes embedded in high dimensional 
spaces, because these techniques are either based on the computation of ten
tative clusters in full dimensional space - which often do not represent well the 
low dimensional projected clusters in the data - or they tend to prefer clusters 
with many relevant attributes. 

Finally, many projected clustering techniques restrict the membership of 
a data point to at most one projected cluster. Although this effect may be 
desirable in some applications, it is preferable to have techniques that leave to 
the user the decision whether the computed clusters should be disjoint or not. 

In the following subsections, we summarize projected clustering techniques 
proposed in the literature, and we discuss their potential drawbacks. 

2.1.1 Partitional Approaches 

PROCLUS [5] represents each cluster by one of its points, called a "medoid", 
together with its set of relevant attributes. PROCLUS minimizes the aver
age within-cluster dispersion, which is defined as the average Manhattan seg
mental distance l between the members of a cluster and the cluster medoid. 

lrThe Manhattan segmental distance between a data point and a medoid is their Man
hattan distance computed in the relevant subspace of the medoid, and normalized by the 
dimensionality of this subspace. 
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PROCLUS requires two critical input parameters: K, the desired number of 
clusters, and I, the average cluster dimensionality. It consists of three phases: 
an initialization, an iterative and a refinement phase. 

In the initialization phase, the technique randomly samples A * K data 
points, and from this sample, it greedily selects a set M of B * K scattered 
medoids, with the goal of selecting at least one medoid from each cluster. A 
and B are user-defined parameters. 

In the iterative phase, PROCLUS first selects K arbitrary medoids from the 
set M. Second, for each of the K medoids, it computes a cluster, as explained 
shortly. The average within-cluster dispersion of the current clustering solution 
is computed, and the clustering solution is recorded if it is the solution with the 
minimum dispersion obtained so far. PROCLUS tries to improve iteratively 
the current solution by detecting a "bad" medoid, replacing it with a random 
medoid from M, and re-computing clusters around the medoids. A medoid is 
"bad" if its cluster has few points. If the current solution cannot be improved 
after a certain number of replacements have been tried, then the technique 
terminates, and this solution is fed into the refinement phase. 

Given a medoid, PROCLUS computes its cluster in three steps, as follows. 
First, it computes a tentative cluster around the medoid by selecting the data 
points that are within a certain distance from the medoid in full dimensional 
space. Second, for each tentative cluster, its relevant attributes are determined 
as attributes where the average distance between the points in the tentative 
cluster and the medoid is "small" compared with the same average distance 
computed for the other attributes. Note that the objective function of PRO
CLUS cannot be directly minimized for determining the relevant attributes, 
because the less relevant attributes a cluster has, the lower the average-within 
cluster dispersion. Therefore, a user-specified average dimensionality I is intro
duced in order to decide how many attributes with "small" average distances 
should be selected for a cluster. Third, data points are assigned to the closest 
medoid in terms of Manhattan segmental distance. 

In the refinement phase, the clustering solution obtained at the end of 
the iterative phase is used to re-compute relevant attributes for each cluster. 
Subsequently, a data point is assigned to the closest medoid, unless there is 
another medoid closer to this medoid than the data point, in which case the 
point is declared an outlier (closeness is measured by Manhattan segmental 
distances). 

PROCLUS tends to compute clusters that are hyper-spherical in shape, 
and which exist in subspaces of approximately equal dimensionality. Due to 
the sampling step, PROCLUS may miss clusters with a small number of points. 
The performance of PROCLUS crucially depends on the two required input 
parameters K and I, whose appropriate values are difficult to guess. Another 
weakness is the strong dependency on the initial clustering which is hard to 
determine since it is performed in the full-dimensional space where the "true" 
distances will be distorted by noisy attributes. 
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FINDIT [74] starts by selecting randomly two sets: S, a reduced version of 
the data set, and M, a set of medoids. The sizes of S and M are determined 
using Chernoff bounds so that any cluster with more than Cminsize points has, 
with high probability, at least a certain number of points in S, and at least 1 
point in M. Cminsize is a user-defined parameter. 

For each medoid in M, a tentative cluster is computed by selecting its 
V nearest neighbors from S. FINDIT measures the distance between two 
data points with the "dimension-oriented-distance" (dod), which represents 
the number of attributes in which the points are farther than a given e. The 
members of a tentative cluster are points that are within distance e from the 
medoid on as many attributes as possible. V is a user-defined parameter that 
should be larger than CminSize. 

Tentative clusters are used to determine relevant attributes for the clusters. 
An attribute is considered relevant for a cluster if, on this attribute, a certain 
percentage of the tentative cluster's members are within e distance from the 
cluster's medoid. 

Since there is a set of relevant attributes for each medoid in M, the tentative 
clusters can be refined. A data point is assigned to a medoid if the data point 
is within e distance from the medoid on all medoid's relevant attributes. 

Finally, the clusters formed around medoids in M are clustered using ag-
glomerative hierarchical clustering. The distance used is the dod distance 
between two medoid clusters. The hierarchical algorithm ends when the dis
tance between pairs of medoid clusters is greater than a user-specified parame
ter Dmindist- The resulting medoid clusters are refined by removing those that 
are too small or by merging some of them. 

The e parameter controls the "resolution" at which clustering is performed; 
thus several values for e are tried, and the best solution according to a quality 
measure based on size and dimensionality of clusters is reported. 

FINDIT is sensitive to the numerous parameters used, and it has difficulties 
in finding low dimensional clusters. In addition, FINDIT has a large running 
time due to the multiple values for e tried. 

SSPC [80] is similar in structure to PROCLUS, and it uses an objective 
function based on the relevance score of HARP [79] (described below in Section 
2.1.2). An attribute a is relevant for a set of data points X if the variance of 
the projections of the points in X along attribute a i s m times smaller than 
the variance of the projections of all data points along attribute a. m is a 
user-defined parameter. 

SSPC starts by determining, for each cluster, a set of representative points 
and relevant attributes. If available, domain knowledge in the form of labeled 
data points and/or attributes is used to improve the quality of the represen
tative points and their relevant attributes. 

When no domain knowledge is available, the first representative point of 
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the first cluster is selected at random. Attributes with high density around this 
representative point are considered relevant, and three-dimensional (3D) grids 
are built with these relevant attributes. The set of representative points for the 
first cluster consists of points that are located in cells with high density in the 
3D grids that are neighbors of the cell where the first representative point is 
located. Subsequently, for each of the following clusters, the first representative 
point is selected such that its minimum distance to representative points of 
other clusters is maximized. The same procedure based on 3D grids is repeated 
to determine a set of representative points and relevant attributes for each of 
the subsequent clusters. 

If some points of a cluster are known, these points can be used as repre
sentative points for the cluster, and also, can be used for identifying relevant 
attributes for the cluster, which are subsequently used in the 3D grids. If some 
relevant attributes of a cluster are known, these attributes can be included in 
the set of attributes that are used in the 3D grids. 

In each clustering round, for each cluster, a representative point from the 
associated set of representative points is chosen, and each data point is as
signed to the representative point that gives the greatest improvement in the 
objective function. If a data point does not improve the quality score of any 
cluster, it is put in the outlier list. Subsequently, the relevant attributes for 
each cluster are determined so that the objective function is maximized. The 
quality of the current clustering solution is recorded if it is the best solution 
obtained so far. The best solution is restored, a "bad" representative point 
(i.e., a representative point from a small cluster) is identified and replaced with 
another representative point, and the process is repeated until the current best 
solution has not changed for a user-defined number of consecutive iterations. 

SSPC requires the number of clusters K as a parameter, and its perfor
mance depends on the selection threshold m used to determine relevance scores 
of attributes. 

ORCLUS [6] is a technique designed for the more general problem of de
tecting clusters of points in arbitrary sets of orthogonal vectors, but it can be 
applied for the case when the sets of orthogonal vectors are the original data 
attributes. 

ORCLUS partitions a data set into K clusters, plus possibly a set of out
liers, where each cluster has the same number I of principal directions with 
low variance. K and I are user-defined parameters. 

ORCLUS starts by randomly selecting k0 data points as seeds. Initially, 
the dimensionality / equals the data dimensionality, d. ORCLUS progressively 
reduces the number of clusters from ko to K by a factor a, and, accordingly, 
the cluster dimensionality from d to /, by a factor /3. At each step, ORCLUS 
computes kc clusters of dimensionality lc, by performing an Assignment step, 
a Find Vectors step, and a Merge step. In the Assignment step, data is par
titioned into kc current clusters by assigning each data point to the nearest 
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seed, using the projected Euclidean distance in the subspace associated with 
the seed. Also, each seed is replaced by the centroid of the cluster. In the 
Find Vectors step, ORCLUS finds the subspace e* of dimensionality lc for each 
current cluster C\ by (a) computing the covariance matrix of the cluster C*, 
(b) selecting e* as being the lc eigenvectors corresponding to the smallest lc 

eigenvalues, and (c) reducing lc by a factor /3 to lnew. In the Merge step, clus
ters with similar orientations, i.e., clusters having the least spread directions 
similar, should be merged. If C* and Cj have similar least spread directions, 
then the projected energy 2 of their union Cj U Cj on the subspace given by 
the lnew smallest eigenvectors of d U Cj should be small. Clusters with the 
smallest energy are being merged until the number of clusters kc is reduced by 
a factor a. 

ORCLUS detects outliers similarly to PROCLUS. In addition, it discards 
a certain percentage of seeds srr in each iteration, for which the corresponding 
clusters contain few points. 

ORCLUS inherits the weaknesses of PROCLUS as discussed above. 

2.1.2 Hierarchical Approaches 

HARP [79] measures the quality of a cluster as the sum of the relevance scores 
of its relevant attributes. This measure captures the intuition that clusters 
with as many attributes as possible that are highly relevant are preferable. 
The relevance score of an attribute a with respect to a set of data points 
X is computed by comparing the variance of the projections of points in X 
along attribute a with the variance of the projections of all data points along 
attribute a. 

HARP is an agglomerative, hierarchical clustering technique that starts 
by placing each data point in a cluster. Two clusters are allowed to merge 
if the resulting cluster has dmin or more relevant attributes, and an attribute 
is selected as relevant for the merged cluster if its relevance score is greater 
than Rmin- dmin and Rmin a r e two internal thresholds that start at some 
harsh values so that only points belonging to the same real cluster are likely 
to be merged. Subsequently, as the clusters increase in size, and the relevant 
attributes are more reliably determined, the two thresholds are progressively 
decreased, until they reach some base values or a certain number of clusters 
has been obtained. 

HARP detects outliers by removing small clusters in two stages, as in 
CURE [38]: first, when the number of clusters reaches a certain fraction of the 
data set size, and second, near the end of the clustering. 

In comparison to partitional approaches to projected clustering, HARP 
avoids the computation of tentative clusters that may not be reasonable ap
proximations of real clusters. However, HARP is still less effective in the case 

2The energy of a cluster is defined as the sum of squared Euclidean distances between 
cluster members and the centroid of the cluster. 
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of low dimensional clusters because of its quality measure. HARP also has the 
drawback that decisions regarding the clustering of points cannot be undone 
at a later stage in the algorithm. 

2.1.3 Dens i ty -based Approaches 

Density-based approaches to projected clustering can be classified into 1) 
DBSCAN-like techniques [27]: PreDeCon [18]; 2) hyper-cube-based techniques: 
DOC/FASTDOC [61], MINECLUS [82], PRIM [30]; and 3) techniques based 
on the assumption that clusters stand out in low dimensional projections: 
EPCH [55], FIRES [46]. 

DBSCAN-like Techniques 

PreDeCon [18] computes, given a data point p, a special ^-neighborhood of p, 
as follows. 

First, an e-neighborhood N£(p) of p using the Euclidean distance in full 
dimensional space is computed. 

Second, p is associated with a subspace preference vector wp so that wp[Attrj} = 
k, k 3> 1, if the variance of the data points in Ne(p) when projected on at
tribute AttTj is smaller than a threshold 5; and wp[Attrj] — 1, in the opposite 
case. Attributes Attrj for which wp[Attrj] = k are considered relevant at
tributes for p. The intrinsic dimensionality of p is defined as the number of 
relevant attributes for p. 

Third, PreDeCon defines distp(p, q) as the Euclidean distance between data 
points p and q weighted with the subspace preference vector wp of p. The 
intuition behind this distance measure is that data points that are not close 
to p on the relevant attributes for p are heavily penalized. Since this distance 
measure is not symmetric, PreDeCon, defines distpref(p, q) as the maximum 
between distp(p,q) and distq(q,p). 

Finally, the special e-neighborhood of p consists of all data points that are 
within e distance from p, where the distance used is distpref(p, q). 

Subsequently, a core data point is a point with intrinsic dimensionality at 
most A, and whose special e-neighborhood contains at least fi data points. 
Based on core data points, clusters are defined and found as in the DBSCAN 
algorithm [27]. The differences from the full dimensional DBSCAN algorithm 
are that the e-neighborhood of a data point is modified as described above, 
and that PreDeCon requires data points that are put in the same cluster to 
have their intrinsic dimensionality at most A. 

Because of the parameter A, PreDeCon tends to discover clusters with 
approximately same dimensionality, and it is sensitive to the numerous pa
rameters required. The computation of relevant attributes is done in full di
mensional space, and thus, it is less effective for low dimensional clusters. 

14 



Hyper-cube-based Techniques 

DOC [61] defines a projected cluster as a pair (X,Y), where X is a subset of 
data points, and Y is a subset of attributes, such that X contains at least a 
fraction a of the total number of points, and Y consists of all the attributes 
on which the projection of X is contained within a segment of length w. 
DOC uses the function n(\X\, \Y\) = \X\ * (l//?)'y ' to measure the quality of a 
projected cluster, where f3 is a user-specified parameter that controls the trade
off between the number of data points and the number of relevant attributes 
in a projected cluster. 

DOC computes one projected cluster at a time. It starts by selecting an ar
bitrary pivot point p, and subsequently, it randomly selects some data points, 
different from p, to form a tentative cluster for p. An attribute is considered 
relevant if the projections of all the tentative cluster's members on this at
tribute are within distance w from the projection of p on this attribute. The 
members of the projected cluster are all data points that fall within distance 
w from p on all attributes deemed as relevant. The process is repeated for 2/OJ 
pivot points, and for each pivot point, m tentative clusters are tried. Finally, 
the projected cluster with the highest quality is reported. Then, the technique 
will be repeated for the next projected cluster. DOC can compute disjoint 
or overlapping clusters, depending on whether, once a cluster has been found, 
its points are discarded from the data set or not. Outliers are defined as the 
points that remain un-clustered. DOC computes values for m and for the size 
of a tentative cluster so that the method proposed can recover with some high 
probability projected clusters in the data. 

The number of pivot points and tentative clusters that need to be tried can 
be large. In order to reduce the time complexity of DOC, its authors introduce 
a variant, called FASTDOC, which uses three heuristics to reduce the search 
time, but the clustering accuracy is no longer guaranteed. The first heuristic 
of FASTDOC is to bound the number of tentative clusters tried for a pivot 
point. The second heuristic is to compute only the relevant attributes for a 
tentative cluster around a pivot point, and to keep just the largest number 
of relevant attributes for a tentative cluster that has been observed. Finally, 
FASTDOC stops when the largest number of relevant attributes for a tentative 
cluster observed so far is larger than a user-defined d0. 

The performance of DOC is sensitive to the choice of the input parameters, 
whose values are difficult to determine for real-life data sets. In addition, the 
assumption that a projected cluster is a hyper-cube of same side length in all 
attributes may not be appropriate in real applications. 

MINECLUS [81] improves upon DOC, by proposing a deterministic method 
to find the optimal projected cluster centered around a given pivot point p. 
Each data point is modeled as an itemset that includes the attributes in which 
the point is within distance w from the pivot point. The problem of finding 
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the projected cluster centered around p with maximum fi value becomes the 
problem of mining the frequent itemset with the maximum fi value. The 
paper proposes a technique that modifies a known frequent pattern tree growth 
method used for mining frequent itemsets. Yet the accuracy of MINECLUS 
still depends on the three parameters a, /?, and w. 

To compensate for the effect of these parameters, several heuristic refine
ment strategies are proposed. 

The first heuristic is to add attributes to the set of relevant attributes 
of a projected cluster. This heuristic covers the case when some relevant 
attributes have been missed. For this purpose, given a projected cluster (X, Y), 
MINECLUS computes, for each relevant attribute in Y, a skew ratio, which 
divides the variance of all data points on this attribute by the variance of the 
cluster members X on this attribute. Attributes which have the skew ratio 
larger than the minimum skew ratio of all relevant attributes in Y are added 

toy. 
The second heuristic is to add points to the set of points of a projected 

cluster. This heuristic covers the case when some cluster points have been 
missed. For this purpose, given a projected cluster (X,Y), MINECLUS com
putes, for each point o e X, the Manhattan segmental distance between o and 
the centroid of X. Points with Manhattan segmental distances to the centroid 
of X smaller than the maximum Manhattan segmental distances of the points 
in X are added to X. 

The third heuristic removes projected clusters with small /J, values, and 
the final heuristic merge projected clusters that are located closely in similar 
subspaces until K clusters remain. 

PRIM [30] shares some similarities with DOC and its variants because it 
computes one dense axis-aligned box at a time. Each such box is constructed 
in a top-down "peeling" phase, which is followed by a bottom-up "pasting" 
phase. The peeling phase starts with a box B that covers all the data, and at 
each step, a box b* is removed from B so that B\b* contains the largest number 
of points over all boxes b* that could have been removed. The peeling phase 
stops when the current box has less points that a user-defined massjmin. A 
parameter ajpeeling controls which boxes b* are candidates for removal. The 
pasting phase takes the box obtained at the end of the peeling phase, and 
attempts to extend it with small boxes b as long as the number of points in 
the current box does not decrease. A parameter ajpasting controls which 
boxes b are candidates for extension. 

Similarly to DOC, the accuracy of PRIM is influenced by the critical pa
rameters massjmin, ajpeeling and ajpasting. 
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Techniques based on low dimensional projections 

EPCH [55] computes one or two-dimensional histograms, and "dense" regions 
are identified in each histogram, as follows. For each histogram, the mean JJ, 
and the standard deviation o of the supports of the cells in the histogram are 
computed. The cells with support larger than u + c * a are declared "dense". 
Then, dense cells are removed, and the whole process is repeated with the 
mean and standard deviation of the remaining cells, until there are no more 
dense cells left or at most maxjno-cluster times, c and max-.no-duster are 
user-defined parameters. Finally, adjacent dense cells are merged into dense 
regions. 

Projected clusters are computed based on the dense regions. For each data 
point, a "signature" is derived, which consists of the identifiers of the dense 
regions the data point belongs to. The similarity between two data points is 
measured by the matching coefficient of their signatures in which zero entries 
in both signatures are ignored. Data points are grouped in decreasing order 
of similarity until at most max jno-duster number of clusters is obtained. 

In our experiments, EPCH proved to be very sensitive to the values of its 
parameters. 

FIRES [46] starts with one-dimensional (ID) clusters, called base clusters, 
which can be obtained using any clustering algorithm of choice. To ensure that 
the base clusters are indeed projections of higher dimensional clusters, base 
clusters with less points than 25% of the average base cluster size are elimi
nated. In addition, FIRES uses some heuristics to identify base clusters that 
contain the projections of more than one higher dimensional cluster. However, 
these heuristics are less effective in the case of higher dimensional clusters that 
have more than one ID projection in common. 

FIRES measures the similarity between base clusters as the number of 
shared points. The base clusters are used to construct a shared A>nearest 
neighbor graph: vertices correspond to base clusters, and an edge connects two 
vertices if each vertex is among the A>nearest neighbors of the other vertex. 
A modified DBSCAN algorithm [26] is applied to this graph. This algorithm 
takes two user-defined parameters, e and MinPts, and produces several sets 
of base clusters. 

Each set of base clusters is used to compute a higher dimensional cluster, 
as follows: 1) In a "pruning" step, base clusters that produce low quality 
higher dimensional clusters are removed. The quality of a higher dimensional 
cluster is a function of its size and dimensionality; 2) DBSCAN is applied on 
the union of the remaining base clusters. 

FIRES computes overlapping clusters. The performance of FIRES is very 
sensitive to its multiple parameters, namely k for the construction of the shared 
^-nearest neighbor graph, and e, and MinPts for multiple calls of DBSCAN. 
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2.2 Subspace Clustering Techniques 

Subspace clustering techniques define a subspace cluster as a region in some 
subspace with density larger than a given density threshold that is surrounded 
by regions of lower density. The subspace clustering problem is to find all 
clusters in all subspaces of a data set. 

One way of estimating the density of a region in a high dimensional space 
is to build an axis-aligned grid that partitions the data space into disjoint 
hyper-rectangular regions, called units. A unit is called dense if it contains at 
least some fraction of the points. 

In this setting, a subspace cluster is defined as a maximal set of connected 
dense units in a subset of attributes. Subsequently, the subspace clustering 
problem is equivalent to the task of automatically identifying subspaces of the 
original feature space that contain dense units. 

Grid-based techniques for subspace clustering suffer from a number of prob
lems. Their performance is typically very sensitive to the resolution of the grid 
and the density threshold used. Their runtime is exponential in the size of the 
largest subspace in which clusters exist. They may miss some clusters in cases 
when heuristic pruning strategies are used. They may miss clusters inade
quately oriented or shaped relative to the positioning of the grid. 

Another way of estimating the density of a region in a high dimensional 
space is to generalize the definition of a density-connected cluster underlying 
the full dimensional clustering algorithm DBS CAN [27] for the problem of 
subspace clustering. SUBCLU [43] follows this approach, and produces for 
each subspace the same clusters DBSCAN would have produced, when applied 
to this subspace. SUBCLU can detect subspace clusters with more general 
orientation and shape than the grid-based approaches. 

A fundamental problem that affects all subspace clustering techniques is the 
use of global density thresholds for detecting subspace clusters in subspaces 
of increasing dimensionality. The global density thresholds guarantee some 
anti-monotonic properties that are used to avoid an exhaustive search through 
all possible subspaces. However, no meaningful values for these parameters 
is likely to exist: large values will result in only low dimensional subspace 
clusters, and small values will results in numerous, spurious low dimensional 
subspace clusters in addition to higher dimensional subspace clusters. 

In the following, we summarize subspace clustering techniques proposed in 
the literature, and discuss their weaknesses. 

CLIQUE [7] overlays an axis-aligned grid over the data space by partition
ing each attribute into £ equi-width units. A unit is dense if it contains more 
than a fraction r of the points. Both £ and r are input parameters. 

First, CLIQUE identifies subspaces of the original feature space that con
tain dense units. Second, for each of the identified subspaces, clusters are 
computed as disjoint sets of connected dense units. Finally, a description 
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is generated for each cluster by computing its cover with maximal, possibly 
overlapping, axis-parallel hyper-rectangles. 

CLIQUE uses a bottom-up, Apriori-like approach [8] to enumerate dense 
units in subspaces. 1-dimensional dense units are generated first. Candidate 
A;-dimensional units are determined by self-joining (k — l)-dimensional dense 
units that have the first (k — 2) attributes in common. The density of a unit 
can be used to effectively prune the search space, since it is an anti-monotonic 
property, i.e., a fc-dimensional dense unit implies that all its (k—l)-dimensional 
projections are dense. Therefore, candidate fc-dimensional units that have 
(k — l)-dimensional projections that are not dense are eliminated. One pass 
over the data is necessary to determine which of the remaining candidate k-
dimensional units are actually dense. The technique terminates when no more 
candidate units are generated. 

The complexity of the dense units generation is exponential in the highest 
dimensionality of a dense unit. For efficiency reasons, dense units that lie in 
less "interesting" subspaces are pruned. The interestingness of a subspace is 
measured by its "coverage", i.e., the fraction of the data points covered by its 
dense units. 

The performance of CLIQUE is very sensitive to the resolution of the grid 
used, £, and the density threshold, r . The global density threshold, r, is 
needed to avoid an exhaustive search through all subspaces. However, it is 
questionable that a global density threshold is applicable to clusters of increas
ing dimensionalities, since density decreases as the dimensionality increases. 
CLIQUE may miss some clusters due to the pruning strategy used, or if the 
clusters are inadequately oriented or shaped with respect to the positioning of 
the grid. 

nCluster [47] differs from CLIQUE in that the ID units are overlapping 
windows of length 5. It suffers from the same problems as CLIQUE. 

ENCLUS [21] is a grid-based subspace clustering technique that differs 
from CLIQUE in the criterion used for subspace selection. ENCLUS is based 
on the observation that the entropy of a subspace is higher when the points are 
uniformly distributed in the subspace than when the points are closely located 
in the subspace. A subspace having its entropy below a certain threshold u 
is considered "good" for clustering. The entropy of a subspace decreases as 
the dimensionality of the subspace decreases. Thus, if a fc-dimensional sub-
space has its entropy smaller than u, then all (k — l)-dimensional subspaces 
obtained by removing one attribute from the A;-dimensional subspace have 
entropy smaller than u>. This anti-monotonic property of entropy is used to 
generate in a bottom-up, Apriori-like style subspaces that are good for clus
tering. 

ENCLUS suffers essentially from the same problems as CLIQUE. In addi
tion, setting the parameter ui is not very intuitive. 
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MAFIA [54] is a grid-based subspace clustering technique that addresses 
some of the drawbacks of CLIQUE. MAFIA partitions each attribute into 
adaptive units that capture the data distribution on that attribute, as follows. 
Each attribute is divided into a large number of bins. For each bin, the bin 
count, i.e., the number of data points that belong to a bin on an attribute, 
is computed. Adjacent bins whose bin counts differ by less than a threshold 
percentage (3 are merged into units. A single unit on an attribute implies an 
attribute with uniform distribution. The domain of an attribute with uniform 
distribution is divided into a fixed number of equi-sized units. A unit on an 
attribute is dense if it contains a times more points than the expected number 
of points if the data were uniformly distributed on that attribute. 

The number of ID dense units generated by MAFIA is much smaller than 
those generated by CLIQUE, which results in a smaller search space than in 
CLIQUE. In addition, a cluster is represented by a cross-product of dense units, 
and, thus, MAFIA avoids computing cluster descriptions as in CLIQUE. The 
dense unit enumeration is similar to CLIQUE, except that no pruning based 
on "interestingness" is performed. A fc-dimensional candidate unit is "dense" 
if it contains a times more points than the expected number of points in any 
of the ID units that form the fc-dimensional unit, where this expected number 
is computed under the uniform distribution assumption. This definition of 
density is anti-monotonic, and thus it can be used to efficiently prune the 
search space. MAFIA only reports "maximal" clusters with respect to this 
definition of density. 

MAFIA still suffers from problems similar to CLIQUE, namely sensitivity 
to the input parameters and the usage of a global density threshold. 

SUBCLU [43] extends the formal definition of a density-connected cluster 
underlying the DBSCAN algorithm [27] for the problem of subspace cluster
ing. It is shown that the density-connectivity property is anti-monotonic, i.e., 
if two data points are density-connected in a fc-dimensional subspace (with 
respect to the two input parameters, e and MinPts), then the two points 
are density-connected in any (k — l)-dimensional subspace. This property is 
used to effectively prune the search space in the process of detecting density-
connected clusters in all subspaces of a data set. 

SUBCLU is able to detect subspace clusters with arbitrary shape and 
orientation. However, in order to preserve the anti-monotonicity of density-
connectivity, it uses global density thresholds (e and MinPts), which ignores 
the fact that data is more sparse as the dimensionality increases. 

SCHISM [63] overlays an axis-aligned grid over the data set by partitioning 
each attribute into £ intervals of equal width. It defines a "subspace" as an 
axis-parallel hyper-rectangle formed with cells of the constructed grid. The pa
per introduces the notion of "interestingness" of a subspace, i.e., a subspace is 
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"interesting" if it contains significantly more points than expected under uni
form distribution. This notion of interestingness is materialized in the paper, 
as follows. If a subspace has dimensionality greater than a certain threshold 
v, which depends on £ and the total number of points n, then the subspace is 
interesting if it contains more points than a constant density threshold, which 
also depends on £ and n. Thus, interesting subspaces with dimensionality 
larger than v can be computed using an Apriori-like search. If a subspace has 
dimensionality smaller than v, then the subspace is interesting if it contains 
more points than a variable threshold, which is the minimum between a global 
density threshold u and another threshold that depends on the dimensionality 
of the subspace, the total number of points n, and a user-specified significance 
level r. Interesting subspaces in the latter category cannot be detected with 
an Apriori-like algorithm because the variable threshold does not guarantee 
the anti-monotonic property necessary for an Apriori-like search. The paper 
proposes a depth-first search heuristic with backtracking that starts from one-
dimensional interesting subspaces. However, the method is not guaranteed to 
recover all interesting subspaces with dimensionality smaller than v. In addi
tion, it is observed that the interesting subspaces are redundant, and thus, the 
paper proposes to merge similar interesting subspaces, where the similarity is 
controlled by a user-defined threshold p. 

The notion of interestingness of a subspace based on statistical principles 
is valuable. However, for the largest part of the search space, the actual 
density threshold is a global density threshold, and for the remaining search 
space, interesting subspace clusters may not be found due to the heuristic 
search. Also, the interesting subspace clusters found depend on the grid-based 
discretization of individual attributes. 

DUSC [11] uses a density definition based on statistical foundations. DUSC 
defines a subspace cluster similarly to SUBCLU, except that a point is asso
ciated with a density measure, and a point is considered a core point if its 
density measure is F times larger than the expected value of the density mea
sure under uniform distribution. The definition of a subspace cluster used 
by DUSC has no anti-monotonic properties, and thus, it cannot be used for 
pruning the search space. DUSC modifies the definition of a core point so that 
it has anti-monotonic properties, which, however, introduces a global density 
threshold. 

DiSH [1] is based on the observation that subspace clusters may form hier
archies in which multiple inheritance is possible, i.e., a subspace cluster may be 
embedded in more than one other subspace cluster. DiSH computes for each 
point p the highest dimensional subspace in which p fits best. This is achieved 
by analyzing the eneighborhood of the point p in each attribute, and keep 
as "relevant" the attributes where this e-neighborhood contains more than fj, 
points. The relevant attributes are combined bottom-up, in the Apriori style, 
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in order to determine a set of relevant attributes where the e-neighborhood of 
p contains at least \i points. For efficiency reasons, a best-first search heuristic 
can be used instead of Apriori. 

Subsequently, a distance measure between data points is defined that as
signs 1, if both points share a common one-dimensional subspace cluster, 2, 
if both points share a common two-dimensional subspace cluster, etc. This 
distance measure is fed into the OPTICS algorithm [10] in order to compute 
clusters of points. The reachability plot of OPTICS is not suitable for illus
trating hierarchies with multiple inclusions; thus, DiSH includes a method and 
a visualization tool for this task. 

Similarly to the other techniques in this category, DiSH uses a bottom-up 
strategy and relies on a global density threshold to determine the subspace 
associated with a data point. 

2.3 Categorical Subspace and Projected Clus
tering 

Existing techniques for subspace and projected clustering discussed in the 
previous sections are designed for numerical data sets, i.e., data sets where 
the domain of every attribute is inherently ordered. However, many real data 
sets are categorical, i.e., the attribute domains are discrete and not ordered. 

Categorical subspace and projected clustering is the task of subspace, re
spectively, projected clustering applied to categorical data sets. 

Subspace and projected clustering techniques designed for numerical data 
are not readily applicable to categorical data sets. Some of these techniques 
(e.g., PROCLUS) use distance functions that exploit the geometric properties 
of the data space, which cannot be effectively captured by categorical distance 
functions, such as the simple matching coefficient. Other techniques (e.g., 
HARP) require numerical computations that are not well-defined for categori
cal attributes (e.g., mean, variance). Finally, some techniques (e.g., CLIQUE) 
are based on the discretization of individual data attributes into bins, and the 
notion of "neighboring" bins is used to manage the search through all possi
ble subspaces. Categorical attributes lack order, and thus this notion is not 
directly applicable. 

A significantly smaller body of work has been dedicated to the subspace 
and projected clustering problems on categorical data than to the same prob
lems on numerical data. To the best of our knowledge, the only techniques 
proposed for subspace and projected clustering of categorical data are SUB-
CAD [32], CLICKS [84], and to some extent STIRR [35] and CACTUS [33]. 
STIRR does not specify how to aggregate clusters based on their projections 
on individual attributes. CACTUS can mine only a limited class of subspace 
clusters. Common weaknesses of SUBCAD and CLICKS are that their ac
curacy depends heavily on parameters that are difficult to set appropriately 
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and/or on initialization strategies in full dimensional space. 

STIRR [35] models a categorical data set using a graph structure in which 
vertices correspond to individual attribute values, and an edge exists between 
two vertices if they co-occur in some data point. A basin represents a set of 
weights assigned to the vertices in this graph. STIRR iterates multiple basins 
of this graph by propagating weights via co-occurrence until the basins even
tually converge to a fixed point. The authors argue that, once the fixed point 
is reached, the weights in the basins can be used to separate cluster projec
tions on attributes. However, the separation of attribute values based on their 
weights is not intuitive, and it was shown to produce unsatisfactory results 
in the case of clusters with overlapping projections [33]. More importantly, 
even if the cluster projections on individual attributes have been identified 
correctly, the technique does not specify how to aggregate the projections into 
clusters. 

Zhang et al [86] notice that there are cases in which STIRR does not 
converge, and introduce a similar technique that is guaranteed to converge. 
However, this technique suffers from the same problems as STIRR. 

SUBCAD [32] is a projected clustering technique for categorical data that 
aims at partitioning a data set into a user-specified K number of projected 
clusters such that a certain objective function is minimized. SUBCAD is 
initialized by selecting K scattered seeds and assigning each data point to the 
closest seed, where distance is measured using the simple matching coefficient 
in full dimensional space. Cluster membership and relevant attribute selection 
are guided by minimization of the objective function. The performance of 
SUBCAD is very sensitive to its initialization. In addition, SUBCAD has no 
mechanism for detecting outliers. 

CACTUS [33] models a categorical data set as a graph, in which vertices 
correspond to individual attribute values, and an edge exists between a pair 
of attribute values from different attributes if their support is a times larger 
than their expected support. Expected supports, both in CACTUS and later, 
in CLICKS, are computed based on the uniform distribution assumption. At
tribute values on the same attribute are connected if they are linked to a 
common attribute value, on a different attribute, in the graph representation. 

First, CACTUS computes, for each attribute, all cluster projections on it, 
as it will be explained shortly. Second, cluster projections on individual at
tributes are used to generate cluster candidates of higher dimensionality. Due 
to the level-wise cluster candidates generation technique, CACTUS discovers 
only a limited class of subspace clusters, i.e., clusters in the subspaces (Attri), 
(Attri, Attr2), (Attri, Attr2, Attr3), .. .,(Attri,... Attra). Cluster candidates 
with support a times larger than their expected support are reported as clus
ters. 
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CACTUS computes cluster projections on individual attributes, in two 
steps: 1) each attribute Attri is clustered with respect to every other at
tribute Attrj, i 7̂  j , to find all cluster projections on Attri of clusters over 
(Attri, Attrj), and 2) cluster projections on Attri of clusters over (Attri,..., Attrd) 
are computed by intersecting the projections found in step 1). Step 1) is per
formed by computing, on each attribute, "distinguishing" sets of size at most 
k. A distinguishing set is a set of attribute values that uniquely occur within 
only one cluster. Distinguishing sets of size at most k are computed as cliques 
of size at most k. 

The distinguishing sets are based on the assumption that clusters are 
uniquely identified by a core of attribute values that do not occur in other 
clusters. This assumption is not necessarily true in all data sets. Further
more, k should be chosen as small as possible in order to detect all clusters. 
However, a small k produces a large number of cluster projections on individ
ual attributes, which in turn causes a very large number of candidate clusters 
to be generated. The accuracy of CACTUS highly depends on its parameters, 
k and a. 

CLICKS [84] is based on the same graph representation of a data set as 
CACTUS. In order to detect clusters whose projections on attributes consist 
of more than one attribute value, all values of an attribute are considered to be 
implicitly connected. Subspace clusters correspond to dense, maximal cliques 
in the associated graph. A clique is considered dense if its support is a times 
larger than its expected support. 

In a preprocessing step, CLICK computes the graph representation for a 
categorical data set. Subsequently, all maximal cliques are detected on this 
graph using a recursive algorithm. Two additional post-processing steps are 
performed: 1) dense maximal cliques and dense maximal sub-cliques of a non-
dense maximal clique are computed, and 2) the cliques computed in step 1) are 
merged if they share more than a points. Merges are performed in a certain 
order, determined by the coverage of cliques being merged. 

The accuracy of CLICKS is highly dependent on the values of its parame
ters, a and a. 

2.4 Related Problem Formulations 

In this thesis, we consider the problem formulation in which a subspace is 
defined as a subset of the original attributes of a data set. For this reason, 
the techniques in this category are sometimes called axis-parallel subspace 
clustering techniques. 

A related problem formulation is one in which a subspace is defined as an 
arbitrary set of orthogonal vectors [6]. 

A (linear) correlation (subspace) cluster is defined as a subset of points that 
form a A-dimensional hyper-plane, where A is smaller than the data dimension-
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ality d [19]. The key property of a correlation cluster is that Principal Compo
nent Analysis (PCA) on the cluster points will reveal several eigenvalues that 
are "smaller" than the rest. Equivalently, the points of a correlation cluster 
are closely located in the subspace given by the eigenvectors corresponding to 
the "small" eigenvalues, and this subspace is orthogonal to the A-dimensional 
hyper-plane where cluster points reside. For this reason, a correlation cluster 
is sometimes called a generalized projected cluster. The difference between a 
projected cluster and a linear correlation cluster is that the "small" eigenvec
tors of a projected cluster are axis-parallel, whereas the "small" eigenvectors 
of a correlation cluster can have arbitrary orientation. 

Projected clustering techniques cannot in general recover correlation clus
ters because the points of a correlation cluster are not necessarily closely lo
cated in their relevant subspace. For the same reason, correlation clustering 
techniques cannot in general recover projected clusters, except ORCLUS, due 
to its similarity to PROCLUS. Existing subspace clustering techniques are 
based on detecting dense low dimensional projections of clusters and aggregat
ing them bottom-up; thus, these techniques cannot recover correlation clusters 
unless the correlation clusters have dense low dimensional projections, which 
may not be a realistic assumption. 

Representative correlation clustering techniques are ORCLUS [6], 4C [19] 
and COPAC [2]. These techniques have several drawbacks. First, they are 
based on the "locality assumption", i.e., that a full dimensional neighborhood 
of a cluster point reflects the hyper-plane on which this point resides. The 
locality assumption means that, in order for these techniques to work, a full 
dimensional neighborhood of a cluster point should be dominated by cluster 
points. However, in this case, the full dimensional clustering algorithms are 
likely to perform well. Second, these algorithms often require parameters that 
are hard to set, such as the number of clusters, or the cluster dimensionality A. 
Finally, some of these techniques are restrictive in the sense that they require 
all clusters to have the same dimensionality. 

A generalization of (linear) correlation clustering is non-linear correlation 
clustering. A non-linear correlation (subspace) cluster is a subset of points 
non-linearly correlated in a subspace. PCA is not effective for detecting non
linear correlations, and thus other techniques, such as the fractal dimension, 
are needed to compute the intrinsic dimensionality of a subset of points. Rep
resentative techniques are CURLER [66] and DIC [36]. Detecting non-linear 
correlations is more difficult than detecting linear correlations because of var
ious non-linear relationships that could exist in the data. Existing techniques 
suffer from the same problems as the correlation clustering techniques. 

COSA [31] can be seen as a problem formulation related to the projected 
clustering problem: whereas, in projected clustering, each cluster exists in 
a certain subspace, in COSA, each cluster exists in all attributes, but each 
attribute has a certain weight with respect to each cluster, which reflects the 
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"relevance" of an attribute with respect to a cluster. The task of the clustering 
algorithm is to compute a partition of the data points into several clusters, as 
well as the attribute weights associated with a cluster. This task can be cast 
as the problem of optimizing a certain objective function, which in this case 
is a complicated non-convex function with numerous local minima. Since no 
direct method for optimizing this objective function has been found, COSA 
proposes an approximate method for determining simultaneously the clusters 
and the attribute weights associated with each cluster. 

Another related problem formulation that has emerged within the bioin-
formatics community is biclustering [50]. A bicluster is a pair (X,Y), where 
X is a subset of data points, and Y is a subset of data attributes, so that a 
certain homogeneity criterion is satisfied. The homogeneity criterion is usually 
symmetric in terms of rows and columns, and from here the term ^'clustering. 
Biclustering algorithms usually find maximal (X, Y) that satisfy the homo
geneity criterion, and often require that \X\ > min0, and | y | > mina, where 
min0, mina are user-defined parameters. 

Several homogeneity criteria have been proposed in the literature: 

• Biclusters with constant values. They correspond to axis-parallel pro-
jected/subspace clusters. 

• Biclusters with constant values on columns. They correspond to axis-
parallel projected/subspace clusters. 

• Biclusters with constant values on rows. The points of such a bicluster 
reside on the bisecting line in its relevant subspace. 

• Biclusters with coherent values. The points of such a bicluster reside on 
a line with positive slope in its relevant subspace. This bicluster model 
subsumes the aforementioned three models. Representative algorithms 
are delta-clusters [22], FLOC [77], CoClus [24], pCluster [69], [58], [68], 
[87]. 

• Biclusters with coherent evolution. In such a bicluster, every data point 
induces the same linear ordering of its attributes based on the values 
that the data point takes in these attributes. This problem is equivalent 
to sequential pattern mining. Representative algorithms are [14], [48], 
[23], [34]. 

• Reg-clusters are biclusters that combine the characteristics of biclusters 
with coherent evolution with the characteristic of biclusters with coher
ent values [76]. 

For a comprehensive survey on biclustering, the reader is referred to [50]. 
We note that correlation clustering is a more general problem formulation than 
biclustering, because biclustering is limited to a special form of correlation 
where the attributes are positively correlated. 
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Co-clustering models a data matrix as a weighted bipartite graph, where 
vertices correspond to data points and data attributes, and edges between them 
are weighted by the corresponding entries in the data matrix. Co-clustering 
applies spectral clustering techniques to this bipartite graph, and derives a 
partition of data points and data attributes into K groups so that the weight 
of the within-groups edges is maximized and the weight of the between-groups 
edges is minimized. Co-clustering is a restricted version of subspace clustering 
because an attribute can belong to at most one group, i.e., co-clustering cannot 
produce clusters of points that exist in overlapping subspaces. 

Related to our work is also the work on Scan Statistics [4], in which the 
goal is to detect spatial regions for which their z-score (i.e., the number of 
standard deviations by which the observed count of some variable of interest 
is higher than the expected count of the variable of interest in a spatial region) 
is significantly high, given the distribution of the maximum z-score of all the 
regions under the null hypothesis of no clusters. The methods in Scan Statistics 
are applicable to full dimensional data, whereas our work will be concerned 
with statistically significant regions in any/all subspaces of a data set. 
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Chapter 3 

P3C: Projected Clustering via 
Cluster Cores 

We have identified in our literature survey several drawbacks of existing sub-
space and projected clustering techniques. Concerning subspace clustering 
techniques, we have observed that: 1) they are based on global density thresh
olds for which no meaningful value is likely to exist; 2) they report a large 
number of overlapping clusters; and 3) the grid-based techniques are sensitive 
to the grid resolution. Concerning projected clustering techniques, we have 
observed that: 1) they rely greatly on parameters whose appropriate values 
are difficult to anticipate by the users; 2) they are unable to identify clusters 
with few relevant attributes; and 3) most of them restrict the membership of 
a data point to at most one cluster. 

In this work, we assume the following definition of a projected cluster, 
which is also used by recent projected clustering work (e.g., SSPC [80], HARP 
[79], EPCH [55] and FIRES [46]). 

Definition 3.1 A projected cluster is a pair (X, Y), where X is a subset of 
data points and Y is a subset of attributes so that 1) the points in X project 
along each attribute a € Y on a "small" range of values, compared to the 
range of values on which the whole data set projects on a, and 2) the points 
in X are uniformly distributed along each attribute a' not in Y. 

The notion of "small" range is defined implicitly in our work, as described 
below in Section 3.3. 

We design a new technique for projected clustering with the following goals 
in mind: 

• The technique should effectively discover clusters in the data while re
quiring as few parameters as possible. Moreover, setting these param
eters should require minimal prior knowledge about the data, and the 
technique should be robust with respect to these parameters. 

• The technique should be able to discover low dimensional clusters em
bedded in high dimensional spaces. 
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Attri 

Figure 3.1: Two 2D projected clusters 

• The technique should be able to compute overlapping clusters, i.e., clus
ters that share data points. 

• The technique should be robust to noise. 

In the following, we present the technique P3C (Projected Clustering via 
Cluster Cores) that satisfies the goals outlined above. To present our tech
nique, we introduce some definitions and notation in Section 3.1. 

3.1 Preliminary Definitions 

Let D = {(xn,... ,Xid)\l < i < n} be a data set of n d-dimensional data 
points. Let A — {Attri,..., Attr^} be the set of the d attributes of the points 
in D so that xy- E dom(Attrj), where dom(Attrj) denotes the domain of the 
attribute Attrj, 1 < j < d. Without restricting the generality, we assume 
that all attributes have normalized domains, i.e., dom(Attrj) — [0,1], and 
we also refer to projections of a point Xj 6 D using dot-notation, i.e., if 
Xj, —- (Xji,..., x^fij tjnen X^.JWXTj ==i x^j. 

An interval I — [vi,vu] on an attribute a E A is defined as all real values 
x G dom(a) so that vi < x < vu. The width of interval / is defined as 
width(I) := vu — vi. The associated attribute of an interval / is denoted by 
attr(I). 

Figure 3.1 illustrates a data set with two projected clusters, C\, and C2, 
both having Attri and Attr2 as the only relevant attributes. Equivalently, the 
points in C\ and C2 are uniformly distributed on all other attributes that the 
data set may have. /1 ; I2, and I3 are intervals on attribute Attri; I4, I5 and 
IQ are intervals on attribute Attri'-, attr(I\) — attr(l2) = attr(I3) — Attri, and 
attr{Ii) — attr(Is) = attr(Ie) = Attr2-

A subspace S is a non-empty subset of attributes, S C A. The dimen
sionality of S, dim(S), is the cardinality of S. 

Attr 
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A hyper-rectangle H is an axis-aligned box of intervals on different at
tributes in A, H = h x . . . x IV) 1 < p < d, and attr(Ii) ^ attr(Ij) for i ^ j . 
S = {attr(Ii),..., attr(Ip)} is the subspace of H, denoted by subspace(H). 
Ij is also called the projection of H on attribute attr(Ij), 1 < j < p. The 
intervals of H are denoted by intervals(H) := {I\,..., Ip}. 

For example, in Figure 3.1, H = I3 x I4 is a hyper-rectangle in subspace 
S = {Attri, Attr2}, where I3 is the projection of H on attribute Attr\, and 
I4 is the projection of H on attribute Attr2. h x ii is not a hyper-rectangle, 
because I3 and h are intervals on the same attribute Attr\. 

Let H = /1 x . . . x Ip be a hyper-rectangle, 1 < p < d. The volume 
of # , denoted by vol(H), is defined as the hyper-volume occupied by H in 
subspace(H), which is computed as vol(H) = f lL i width(Ii). The support 
set of if, denoted by SuppSet(H), represents the set of database points 
whose coordinate values fall within the intervals of H for the corresponding 
attributes in subspace(H), i.e., SuppSet(H) := {x E D\x.attr(Ii) 6 ii,Vi : 
1 < i < p}. The actual support of H, denoted by AS(H), represents the 
cardinality of its support set, i.e., AS(H) :— \SuppSet(H)\. 

A characteristic hyper-rectangle H of a projected cluster (X, Y), X C 
D, Y C A, \Y\ = p, is a hyper-rectangle H = Ii x ... x Ip, where 7, is the 
smallest interval on attribute attr(Ij) that contains the projections on attr(Ij) 
of all the points in X, 1 < j < p. 

In Figure 3.1, the characteristic hyper-rectangle of projected cluster C\ is 
the hyper-rectangle H\ = Ii x 76, and the characteristic hyper-rectangle of 
projected cluster C2 is the hyper-rectangle H2 = I2 x h-

Since an attribute may be relevant to more than one projected cluster, 
characteristic hyper-rectangles may contain overlapping intervals. In Figure 
3.1, intervals Ii and I2 overlap on attribute Attr\. We assume that character
istic hyper-rectangles can contain overlapping intervals as long as they are not 
completely nested within each other. Characteristic hyper-rectangles H and 
L are nested if for every interval Ii in H, there is an interval Ij in L so that 
Ii C Ij. 

3.2 Overview of P3C 

P3C is based on the idea that if the characteristic hyper-rectangles of projected 
clusters were known, then clusters can be immediately computed as the sup
port sets of the characteristic hyper-rectangles. Since the characteristic hyper-
rectangles are not known, P3C computes in two steps a set of hyper-rectangles 
that match or approximate well the characteristic hyper-rectangles of projected 
clusters in the data. First, on every attribute, intervals that match or approx
imate well projections of characteristic hyper-rectangles on that attribute are 
computed (Section 3.3). Second, the challenge is to determine which intervals 
actually represent the same characteristic hyper-rectangle. P3C addresses this 
challenge by aggregating the computed intervals into cluster cores. Roughly 
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Input: Data set D — {{xn, • • •, £jd)|l < i < w}, parameter otBinom-
Output: Several disjoint or overlapping clusters, their relevant at
tributes, and outliers. 
Method: 

1. For each attribute, compute one-dimensional intervals that ap
proximate projections of characteristic hyper-rectangles on that 
attribute (Section 3.3). 

2. Aggregate intervals computed in step 1 into cluster cores (Section 
3.4). 

3. Refine cluster cores into clusters (either disjoint or overlapping), 
compute outliers, and refine relevant attributes of clusters (Sec
tion 3.5). 

Figure 3.2: Pseudo-code of P3C 

speaking, a cluster core is a hyper-rectangle H that approximates well a char
acteristic hyper-rectangle H of a projected cluster C in the sense that a large 
fraction of the points in SuppSet(H) belongs to C (Section 3.4). 

For the example in Figure 3.1, P3C first computes the interval /3 on at
tribute Attrx that approximates the projections of the characteristic hyper-
rectangles Hi = Ii x I6 and H2 = I2 x J4 on attribute Attri, and intervals 
1$ and I4 that approximate/match the projections of the same characteristic 
hyper-rectangles on attribute Attr2. Second, P3C aggregates these intervals 
into two cluster cores, i.e., Hi = Is x I4 and H2 — h x h, which can be 
regarded as approximations of the two projected clusters in the data. 

Cluster cores may include in their support sets additional points that do not 
belong to the projected clusters that they approximate. This happens when the 
intervals are wider than the projections of characteristic hyper-rectangles that 
they approximate. In Figure 3.1, interval I3 is wider than interval I2, and thus, 
the support set of cluster core H2 = I3 x I4 includes points that do not belong 
to cluster C2- On the other hand, cluster cores may not include completely 
in their support sets the projected clusters that they approximate. This is 
the case when the intervals are tighter than the projections of characteristic 
hyper-rectangles that they approximate. In Figure 3.1, interval I5 is tighter 
than interval I6, and thus the support set of cluster core Hi = 73 x I5 does 
not include all points of cluster C\. Thus, in order to compute the projected 
clusters, the supports sets of cluster cores are refined, outliers are detected, 
and relevant attributes for each cluster are refined (Section 3.5). 

The pseudo-code of P3C is given in Figure 3.2. 
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3.3 Approximating Projections of Character
istic Hyper-rectangles 

By Definition 3.1 of a projected cluster, an attribute that is irrelevant for 
all projected clusters exhibits uniform distribution. In contrast, an attribute 
that is relevant for at least one projected cluster will exhibit in general a non
uniform distribution, because it contains one or more intervals with unusual 
high support corresponding to projections of clusters on that attribute. 

Consequently, we need to identify attributes with uniform distribution, 
and, for the non-uniform attributes, to identify intervals with unusual high 
support. For this task, the Chi-square goodness-of-fit test [65] is employed. 

The Chi-square test uses the methodology of statistical hypothesis testing, 
which is summarized in appendix A. The null hypothesis is that the n data 
points are uniformly distributed on an attribute. In order to compute the 
test statistic of the Chi-square test, each attribute is divided into the same 
number of equi-width bins. Sturge's rule [65] suggests that the number of 
bins should be equal to [1 + log2(n)\. For every bin in each attribute, its 
support is computed. The Chi-square test statistic sums, over all bins in an 
attribute, the squared difference between the bin support and the average bin 
support, normalized by the average bin support. The distribution of the Chi-
square test statistic under the null hypothesis is a Chi-square distribution with 
(nojbins — 2) degrees of freedom [65], where no-bins is the number of bins on 
an attribute, and noJbins = [1 + log2(n)\. 

Let ctchi be a significance level, and let 9 unij be the right critical value of 
the Chi-square distribution with [noMns—2) degrees of freedom at significance 
level aCM . Qavn%f can be found in pre-computed tables or, if needed, can be 
approximated numerically. Attributes for which the Chi-square test statistic 
is less than 9 Unif 8X6 reported as uniform, whereas attributes for which the 

aChi 

Chi-square test statistic is greater than 9Qunif are reported as non-uniform. 
Equivalently, the probability of declaring an attribute non-uniform when in 
fact the attribute is uniform is very small, i.e., less than a^ftl • 

On the attributes deemed non-uniform, the bin with the largest support 
is marked. The remaining un-marked bins are tested again using the Chi-
square test for uniform distribution. If the Chi-square test indicates that the 
un-marked bins "look" uniform, then we stop. Otherwise, the bin with the 
second-largest support is marked. Then, we repeat testing the remaining un
marked bins for the uniform distribution and marking bins in decreasing order 
of support, until either the current set of un-marked bins satisfies the Chi-
square test for uniform distribution or there are two un-marked bins left. The 
Chi-square test can be applied as long as the current number of un-marked 
bins on an attribute is at least 3, because the distribution of the test statistic 
is a Chi-square distribution with (noJrins — 2) degrees of freedom. If the Chi-
square test has been applied repeatedly on an attribute until two un-marked 
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bins are left on that attribute, then the bin with larger support is marked. 
At this point, intervals on each attribute are computed by merging adjacent 

marked bins. These intervals approximate the projections of characteristic 
hyper-rectangles on their attributes. Let X be the set of all intervals computed 
in this manner on all attributes. 

Because adjacent marked bins are merged into intervals, the resulting in
tervals capture implicitly the fact that the points of a projected cluster are 
located relatively closely when projected on relevant attributes of the pro
jected cluster. 

The computed intervals may be wider or tighter than the projections of 
characteristic hyper-rectangles that they approximate. Characteristic hyper-
rectangles that contain overlapping intervals may lead to the former case (e.g., 
in Figure 3.1, intervals I\ and I2 are approximated by interval I3). An ex
ample of the latter case is an interval that approximates the projection of a 
characteristic hyper-rectangle on an attribute where the cluster is Gaussian 
distributed. In this case, the interval may only capture the most dense region 
of the projection (e.g., in Figure 3.1, interval 1$ on attribute Attr2). 

3.4 Cluster Cores Computation 

In Figure 3.1, the computed intervals form only two possible hyper-rectangles, 
H\ = I3 x I5 and iJ2 = h x h, which actually represent the two projected 
clusters C\ and C2. However, in practical applications, the number of possible 
hyper-rectangles that can be constructed from the set of computed intervals 
X is large. The challenge is to determine which hyper-rectangles do in fact 
represent projected clusters. This section describes how P3C addresses this 
challenge. 

Let T = I\ X . . . X Ip x Ip+i x . . . x It, 1 < p < t < d, be a characteristic 
hyper-rectangle of some projected cluster. Let H = J\ x . . . x Jv be a hyper-
rectangle so that each J; approximates /;, 1 < i < p. Let / ' be an interval so 
that attr(I') does not belong to subspace(H). Let H' = J\ x . . . x Jp x / ' . 

We would like to determine if/' approximates one of the intervals Ip+i,..., It. 
Let us consider the case when interval V does not approximate one of the in
tervals Ip+i, •• • ,It- In this case, we want to compute how many points are 
expected to be in H', i.e., we want to compute the expected value of AS(H'). 
Clearly, the actual support AS(H') of H' is equal to the number of points in 
SuppSet(H) that also belong to / ' . 

Because Jj approximates h, 1 < i < p, the points in SuppSet(H) are 
mainly points of a projected cluster with characteristic hyper-rectangle T. 
When interval / ' does not approximate one of the intervals Ip+i, • • •, It> we can 
assume, by the definition of a projected cluster, that the points in SuppSet(H) 
are uniformly distributed on the attribute attr(I') of interval / ' . 

The null hypothesis is that the points in SuppSet(H) are uniformly dis-
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tributed on the attribute attr(I') of interval / ' . The test statistic is AS(H') 
or, equivalently, the number of points in SuppSet(H) that also belong to / ' . 
We need to determine the distribution of the test statistic AS(H') under the 
null hypothesis. 

The Binomial distribution with parameters x and prob is the discrete prob
ability distribution of the number of successes in a sequence of x independent 
"yes/no" experiments, each of which yields success with probability prob. In 
our case, an experiment consists of assigning to a data point from SuppSet(H) 
an attribute value on attr(I') that is uniformly distributed on attr(I'). The 
outcome of each experiment is either "yes", when the data point belongs to 
I', or "no", in the opposite case. There are AS(H) "yes/no" experiments, be
cause there are AS(H) data points in SuppSet(H), and the experiments are 
mutually independent. The probability of success in each experiment, i.e., the 
probability that the data point belongs to / ' , is ^ f f f f ^ = wiZt(attZ>))- S i n c e 

we assume normalized data to [0,1], the probability of success in each exper
iment is width(I') 1. Therefore, the distribution of the test statistic AS(H') 
under the null hypothesis is the Binomial distribution with parameters AS(H) 
and width(I'). 

The mean of the Binomial distribution with parameters AS(H) and width(I') 
is AS(H) * width(I'), and represents the expected value of AS(H') or, equiv
alently, the expected number of points in SuppSet(H) that also belong to 
/ ' , under the null hypothesis that the points in SuppSet(H) are uniformly 
distributed on attribute attr(I') of interval I'. 

Let OiBinom be a significance level, and let 0aBinom be the right critical value 
of the Binomial distribution with parameters AS(H) and width(I') at signifi
cance level asinom- daBinom can be computed exactly numerically, because the 
Binomial distribution is a discrete distribution. 

Under the null hypothesis that the points in SuppSet(H) are uniformly dis
tributed on the attribute attr(I') of interval I', the probability that AS(H') > 
0aBinom is very small, i.e., less than Q.Binam. Thus, we consider that if AS(H') > 
0aBinom, then this is evidence that the null hypothesis can be rejected. There
fore, we consider that if AS(H') > daBinom, then this is evidence that in fact 
/ ' approximates one of the intervals Ip+\, •.., It-

To summarize, given a hyper-rectangle H = Jx x . . . x Jp formed with 
intervals computed in Section 3.3 (i.e., intervals(H) C T), and an interval / ' € 
I so that attr(I') does not belong to subspace(H), we add / ' to H and obtain 
the hyper-rectangle H' = Jx x . . . x Jp x / ' only if AS(H') > 0aBinom, where 
dasinom is * n e right critical value of the Binomial distribution with parameters 
AS(H) and width(I') at a significance level of a.Bmom- In this case, we say 
that there is evidence that / ' approximates the same projected cluster as H. 

xWe note that assuming normalized data to [0,1] is not a restriction of the method; for 
non-normalized data, the probability of success in each experiment shall be computed as 

width(I') 
width(attr(I')) ' 
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A hyper-rectangle H approximates the characteristic hyper-rectangle of a 
projected cluster if H consists of 1) only and 2) all intervals that approximate 
the projections of the cluster on its relevant attributes. The first condition 
is equivalent to requesting that for any hyper-rectangle Q — IQ1 X . . . X IQQ , 
where q > 1 and intervals(Q) C intervals(H), and for any interval I' € 
intervals(H) \ intervals(Q), there is evidence that / ' approximates the same 
projected cluster as Q. The second condition is equivalent to requesting that 
H is maximal, i.e., for any interval / ' G I so that attr(I') does not belong to 
subspace(H), there is no evidence that / ' approximates the same projected 
cluster as H. Formally, a cluster core can be defined as following. 

Definition 3.2 Let aBinom be a significance level. A cluster core is a 
hyper-rectangle H with the following properties: 

1. For any hyper-rectangle Q = IQ1 X . . . XIqq , where q > 1 and intervals{Q) C 
intervals(H), and for any interval / ' £ intervals(H) \ intervals(Q), it 
holds that: 
AS{Q x I') > 6aBinom 

where 0aBinom is the right critical value of the Binomial distribution with 
parameters AS(Q) and width(I') at significance level aBinom-

2. For any interval I1 El so that attr(I') does not belong to subspace(H), 
it holds that: 
AS{H x / ' ) < 0aBinom 

where 0aBinom is the right critical value of the Binomial distribution with 
parameters AS(H) and width(I') at significance level aBinom-

Condition 1 in Definition 3.2 is anti-monotonic in the sense that, given 
a hyper-rectangle H that satisfies Condition 1, any hyper-rectangle formed 
with a subset of the intervals in H will also satisfy Condition 1. This fact 
motivates an Apriori-like generation of hyper-rectangles that satisfy Condition 
1: a hyper-rectangle that consists of (q + 1) intervals will not be generated 
unless all hyper-rectangles that can be obtained with q intervals out of these 
(q + 1) intervals have been already generated. Hyper-rectangles that satisfy 
Condition 1 are generated and the ones that are "maximal" in the sense of 
Condition 2 are reported as cluster cores. 

3.5 Cluster Cores Refinement, Outlier Detec
tion, Relevant Attributes Refinement 

Let K be the number of cluster cores constructed according to Section 3.4. A 
cluster core is a hyper-rectangle that approximates a projected cluster in the 
data in the sense that it contains a large fraction of the points of the projected 
cluster. However, the support set of a cluster core may not necessarily contain 
all and only the points of the projected cluster approximated by the cluster 
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core. In addition, the support sets of the K cluster cores are not necessarily 
disjoint, because data points may belong to more than one cluster core. Also, 
some data points may not belong to any cluster core. 

We want to refine the computed cluster cores into clusters, to determine 
outliers, and to refine the relevant attributes of each cluster. The first two tasks 
are performed in a subspace of (reduced) dimensionality d! < d, containing all 
attributes that were deemed non-uniform according to the analysis presented 
in Section 3.3. 

Let a projected cluster be represented by its mean fi and its covariance 
matrix E. By Definition 3.1 of a projected cluster, the points of the cluster 
project within a "small" range on the relevant attributes, and are uniformly 
distributed on the irrelevant attributes. Therefore, given the eigenvectors and 
the eigenvalues of the covariance matrix E, some of these eigenvalues will be 
"small" in comparison with the remaining eigenvalues, and the eigenvectors 
corresponding to the "small" eigenvalues correspond to the relevant attributes 
of the cluster. Moreover, cluster members project closely to the cluster mean 
on the eigenvectors corresponding to the "small" eigenvalues. 

The Mahalanobis distance between a data point x and a cluster mean \i is 
defined as Mahalanobis Dist(x, /j,) := ((x — /j,)T*1E~1*(x — fj,))1/2. Equivalently, 

Mahalanobis Dist(x,fi) = (J2j=i 'y)1^2' where Â  is the j t h eigenvalue of E, 
and Zj is the projection of (x — JJ) on the j t h eigenvector ej. The distances 
between x and /i on the "small" eigenvectors dominate the computation of 
the Mahalanobis distance, because these distances are down-weighted by a 
small factor Xj, whereas the distances between x and fi on the remaining 
eigenvectors count less in the computation of the Mahalanobis distance, since 
they are down-weighted by a large factor Xj. 

Thus, cluster members have shorter Mahalanobis distances to cluster means 
than non-cluster members. Based on these considerations, we assign data 
points that do not belong to any cluster core to the cluster core with the 
"closest" mean in terms of Mahalanobis distances. At this point, the K cluster 
cores correspond to a fuzzy partitioning of the data set into K clusters, which 
is used to initialize the Expectation Maximization (EM) algorithm [25]. 

The EM algorithm iteratively repeats two steps: an E-step, in which the 
current clusters are refined, by computing the membership probabilities of 
data points to clusters, based on Mahalanobis distances between data points 
and cluster means, and a M-step, in which means and covariance matrices of 
the current clusters are computed. EM stops when the means of the computed 
clusters remain unchanged between two consecutive iterations. When starting 
with cluster cores, it typically takes only 5 to 10 iterations until convergence, 
since the cluster cores typically approximate well projected clusters in the 
data. 

The output of EM is a matrix of probabilities that gives for each data point 
its probability of belonging to each cluster. If disjoint clusters are desired, each 
data point is assigned to the most probable cluster. If overlapping clusters are 
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needed, a data point is assigned to a cluster if the probability of belonging to 
it is larger than 1/K. 

Clustering and outlier detection are closely related. We use a standard 
technique for multi-variate outlier detection [65]. The Mahalanobis distances 
between data points and the means of the clusters to which they belong are 
compared to the right critical value 0aouti of the Chi-square distribution with 
d' degrees of freedom at a significance level of a ^ f • The critical value 9aouu 
can be found in pre-computed tables or approximated numerically, if needed. 
Data points with Mahalanobis distances to cluster means larger than 9aouti 

Chi 

are declared outliers. The probability of declaring a point as an outlier when 
in fact it is not, is less than a^lf. 

The relevant attributes of a cluster include the attributes of the intervals 
that make up the cluster core based on which this cluster has been computed. 
However, some attributes may be considered uniform, even if they are relevant 
for several clusters. This is the case when clusters exist in such a way that 
their projections on a specific attribute have equal support, and thus these 
projections form a uniform histogram. In such cases, it may still be possible 
to recover incomplete cluster cores of the involved clusters, which can be later 
refined, unless clusters exist in such a way that all their relevant attributes 
look uniform. To cover these rare cases too, we test, for each cluster, using 
the Chi-square test, as in Section 3.3, whether its members are uniformly 
distributed in the attributes initially deemed uniform. When the test indicates 
a non-uniform distribution, then those attributes are included in the attributes 
considered relevant for the cluster. 

If desired, the projections of clusters on their relevant attributes can be 
refined as the smallest interval that the cluster members project onto. 

3.6 A Note on Parameters 

The performance of P3C depends on three parameters: ac^\ , O-Binom a n d 
acl&1- All these parameters represent significance levels used in statistical 
tests. These parameters are different from typical parameters used by previous 
work (such as the number of clusters) in that they require no prior knowledge 
about the data. These parameters represent the error probability that the user 
is willing to accept. 

Given a certain value for a significance level a, the rate of false positives 
reported by the statistical test is a; however, the actual number of false posi
tives reported by the statistical test is a times the number of statistical tests 
that are conducted. If many statistical tests are conducted, the value of a 
should be adjusted in such a way that the number of false positives reported 
by the statistical test is acceptable by the user. 

In our case, we conduct at most d * (noJrins — 2) statistical tests at signif
icance level ac2l, n statistical tests at significance level a^f; and, for each 
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projected cluster of dimensionality p, 2 * choose(p, 2) + 3 * choose(p, 3) + . . . + 
p*choose{p,p) + NIp statistical tests at significance level otBinomi where NIP is 
the number of intervals in Z that exist on different attributes than the relevant 
attributes of the projected cluster, and choose(p, k) is the binomial coefficient: 
choose(p, k) = kltg_k)r 

Parameters ac^ and a ^ f are not as critical as aBinom, and their effect 
can be easily understood. A false positive caused by parameter acJ™ is an 
interval on an attribute that has in fact uniform distribution. Such an interval 
is unlikely to combine with other intervals and participate in a cluster core. 
A false positive caused by parameter a^f is a data point that is incorrectly 
reported as an outlier. On the other hand, parameter otBinom 

controls the 
aggregation of ID intervals into cluster cores, and we cannot easily predict the 
effect of a false positive with respect to this parameter in the aggregation of 
the cluster cores. 

Consequently, we fix the values of ac™/ and « ^ f to 0.001 - a standard 
value in statistical hypothesis testing, and let aBinom be the only parameter of 
P3C. The robustness of P3C to aBinom is studied empirically in Section 3.8. 

3.7 Theoretical Complexity 

Computing bins and their support on all attributes has 0(n * d) complex
ity. Marking bins on an attribute has complexity 0(noJbins). Computing 
intervals on an attribute has complexity 0{noJbins). The cluster cores com
putation has complexity 0(2P), where p is the largest dimensionality of a 
projected cluster. Given a cluster (core), the complexity of computing its co-
variance matrix is 0(d'2), where d! is the reduced dimensionality in which 
the refinement is performed, and the complexity of computing the Maha-
lanobis distance between a data point and a cluster mean is 0(d13), due 
to the factorization of the covariance matrix into eigenvectors and eigenval
ues. Assigning nojunassignedjpoints data points that do not belong to any 
cluster core to cluster cores based on Mahalanobis distances has complexity 
0(nojwnassignedjpoints * K * d'3). The complexity of the EM algorithm is 
driven by the number of iterations until convergence; typically, this number 
is small. The complexity of the E-step is 0(n * K * d'3) and the complexity 
of the M-step is 0(K * d'2). Outlier detection has complexity 0(ri). The 
refinement of relevant attributes for a cluster with nc points has complexity 
0(nc * (d - d1) + (d - d') * [1 + log2(nc)\). 

3.8 Experimental Evaluation 

The experiments reported in this section were conducted on a Linux machine 
with 3 GHz CPU and 2 GB RAM. 

38 



In the following, we use "P3C_hard" to refer to the variant of P3C that 
computes disjoint clusters, and "P3C_soft" to refer to the variant of P3C that 
computes overlapping clusters. We use the term P3C when we refer collectively 
to both variants. 

3.8.1 Compared Techniques 

We compare P3C against several state-of-the-art projected and subspace clus
tering techniques. 

As techniques representative for the family of projected clustering, we select 
the partitional techniques PROCLUS, SSPC, and ORCLUS, the hierarchical 
technique HARP, and the density-based approach MINECLUS. 

FINDIT is not selected because it uses similar principles to PROCLUS, 
but it is based on numerous parameters and it has a large execution time. 
PreDeCon is not selected because our preliminary experiments indicated that 
PreDeCon is very sensitive to the numerous parameters required, and often 
it is not able to detect any clusters. DOC and FASTDOC are not selected 
because we select MINECLUS which is the latest improvement over DOC 
and FASTDOC. We intended to select PRIM, but its scalability with respect 
to the number of data points makes it infeasible on our synthetic data sets. 
We intended to compare with EPCH, but after consulting with its authors, 
and using the original implementation, we could not find a parameter setting 
that produces results with reasonable accuracy on our synthetic data sets. 
We experimented with FIRES, but its original implementation had a storage 
complexity problem. 

For subspace clustering, we select MAFIA that was shown to outperform 
CLIQUE [54] and it is representative for techniques that are based on an 
Apriori-like scheme (i.e., nCluster, ENCLUS, SCHISM, DUSC, DiSH). SUB-
CLU is not included because its original implementation had infeasible scala
bility with respect to the number of data points and attributes. 

The list of compared techniques is therefore as follows: P3C_hard, P3C_soft, 
PROCLUS, SSPC, HARP, MINECLUS, MAFIA, and ORCLUS. 

3.8.2 Synthetic Data 

Synthetic data sets were generated as described in [5], [79]. We study the 
performance of the compared techniques according to the following criteria: 

1. The distribution of cluster points in the relevant subspace: 1) uniform 
or 2) Gaussian. 

2. The number of relevant attr ibutes that clusters can have: 1) an equal or 
2) a different number of relevant attributes. 

3. The average number of relevant attributes. 
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By combining the first 2 criteria, we obtain 4 categories of synthetic data 
sets: Uniform-Equal, Uniform-Different, Gaussian-Equal, and Gaussian-Different. 
A data set in the category Uniform-Equal is a data set where the cluster points 
are uniformly distributed in their relevant subspace, and clusters have an equal 
number of relevant attributes. For each category, we study the effect of the 3 r d 

criterion in data generation over the performance of the compared techniques. 
For this purpose, in each category, we generate data sets with n = 10000 data 
points, d = 100 attributes, K = 5 clusters (clusters sizes are 2000, 2000, 2000, 
2000, and 1500 points), 5% * n = 500 uniformly distributed noise points, and 
the average number of relevant attributes in {2,4, 6, 8,10,15, 20}. The clusters 
have axis-parallel orientation, i.e., when the cluster points are Gaussian dis
tributed in their relevant subspace, the Gaussian distributions have diagonal 
covariance matrices, and when the cluster points are uniform distributed in 
their relevant subspace, the clusters are axis-parallel hyper-rectangles. Clus
ter points are uniformly distributed in [0,1] on the irrelevant attributes. The 
extent of clusters in their relevant attributes is between 1% and 10% of the 
attribute range. Various amounts of overlap were introduced among the pro
jections of projected clusters. 

3.8.3 Real Data 

We tested the compared techniques on the following data sets from the UCI 
machine learning repository [67]: the E.coli data set that measures 7 predictive 
attributes for 336 proteins classified into 8 classes; and the Glass data set that 
measures 9 predictive attributes for 214 types of glass classified into 6 classes. 

3.8.4 Experimental Setup 

MINECLUS, HARP and SSPC are all tested with the original implementa
tions. PROCLUS and ORCLUS are provided by the Biosphere project [78]. 
We implemented MAFIA ourselves. 

On synthetic data, we set the target number of clusters to the number of 
implanted clusters for PROCLUS, SSPC, HARP, MINECLUS, and ORCLUS. 
PROCLUS and ORCLUS require the average cluster dimensionality, which is 
set to the known average cluster dimensionality. HARP requires the maximum 
percentage of outliers, which is set to the known percentage of outliers. For 
techniques that require other parameter settings, we set these parameters as 
recommended by their authors: for PROCLUS: A = 20, B = 5; for SSPC: 
m = 0.5; for MINECLUS: w = 0.3, a = 0.1, (3 = 0.25, maxout = 20; for 
MAFIA: a = 1.5, /? = 0.35; no-tiny-bins = 50, no-inter v al s-uni f jdistrib •= 5; 
for ORCLUS: a = 0.5, k0 = 30, srr == 10. 

SSPC is run without the supervision option. Except HARP, MAFIA, and 
P3C, all techniques are non-deterministic; thus, each of them is run 5 times, 
and the results are averaged. PSCsoft and MAFIA allow data points to 
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belong to more than one cluster; the other techniques compute disjoint clusters. 
For P3C, we set oiBinom = 1-0-E1 — 20. As shown in Figure 3.11, P3C is 

robust with respect to the value of this parameter. 
On real data, we use class labels as cluster labels. We set the target number 

of clusters to the number of classes. For parameters such as the average cluster 
dimensionality, whose values are hard to determine, several values are tried and 
the results with best accuracy are reported. 

The real data sets used were collected for classification purposes. We use 
such real data sets because a systematic evaluation of the compared techniques 
on unlabeled data is cumbersome. However, in such real data sets, most of 
the attributes were selected in the first place because they were considered po
tentially relevant for the classification problems. Consequently, the real data 
sets may contain only full dimensional subspace clusters or very high dimen
sional subspace clusters. To actually verify the capability of the competing 
techniques to find subspace clusters, we add 5, 10, 20, and 50 attributes, re
spectively, to each real data set where the data points are uniformly distributed 
in [0,1]. Subspace clusters that may exist in the data sets, full dimensional or 
not, will be subspace clusters of increasingly lower dimensionality as we add 
more uniform attributes to the data sets. 

The real data sets do not contain missing values. If missing values were 
present, we would have to either estimate them based on the existing data or 
remove some data points or some attributes that contain the missing values 
from the data before the clustering analysis takes place. 

3.8.5 Performance Measures 

We use an F value to measure the clustering accuracy. We refer to implanted 
clusters as input clusters, and to found clusters as output clusters. For each 
output cluster i, we determine the input cluster f with which it shares the 
largest number of data points. The precision of output cluster i is defined as 
the number of data points common to i and f divided by the total number of 
data points in i. The recall of output cluster i is defined as the number of data 
points common to i and f divided by the total number of data points in j \ 
The F value of output cluster i is the harmonic mean of its precision and recall. 
The F value of a clustering solution is obtained by averaging the F values of 
all its output clusters. Similarly, we use an F value to measure the accuracy 
of found relevant attributes based on the matching between output and input 
clusters (except for ORCLUS, since it generates general sets of orthogonal 
vectors). 

3.8.6 A c c u r a c y R e s u l t s 

On synthetic data, in all performed experiments, the number of clusters dis
covered by P3C equals the number of implanted clusters in the data. 
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Figure 3.3: P3C and competing techniques on category Uniform_Equal 

Figures 3.3, 3.4, 3.5 and 3.6 show the accuracy of the compared techniques 
as a function of increased average cluster dimensionality for the categories 
Uniform-Equal, Uniform-Different, Gaussian-Equal, and Gaussian-Different 

We note that P3C_hard and P3C_soft have similar accuracies, with P3C_soft 
being slightly more accurate in some cases, which shows the benefit of assigning 
data points to more than one cluster. We observe that P3C significantly and 
consistently outperforms the competing techniques, both in terms of clustering 
accuracy and in terms of accuracy of the found relevant attributes. 

The difference in performance between P3C and previous methods is partic
ularly large for data sets that contain very low dimensional clusters embedded 
in high dimensional spaces. Even in these difficult cases P3C shows very high 
accuracies, in contrast to the modest accuracies obtained by the competing 
techniques. As the average cluster dimensionality increases, the accuracy of 
the competing techniques increases as well. 

The competing techniques can be divided into two categories: techniques 
that are eventually able to discover the implanted clusters as the average clus
ter dimensionality increases, and techniques that cannot achieve that. Tech
niques in the first category are SSPC and HARP. Note, however, that both 
these techniques require as critical parameter the target number of clusters. 
Techniques in the second category are PROCLUS, MINECLUS, MAFIA and 
ORCLUS. ORCLUS has very low accuracy on data sets with low dimensional 
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Figure 3.4: P3C and competing techniques on category UniformJDifferent 

clusters due to inaccurate eigen-decomposition of covariance matrices. 
The accuracy results on data sets where cluster points are uniformly dis

tributed in their relevant subspace is slightly higher than the accuracy results 
on data sets where cluster points are Gaussian distributed in their relevant sub-
space. The reason is that projections of clusters on their relevant attributes 
can be approximated more faithfully by the computed intervals for clusters in 
the former category than for clusters in the latter category. 

The accuracy results on data sets where clusters have an equal number of 
relevant attributes are comparable with accuracy results on data sets where 
clusters have a different number of relevant attributes. This is to be expected, 
since P3C does not use in any way the average cluster dimensionality. 

Accuracy results on real data sets. Figures 3.7 and 3.8 show the 
accuracy of the compared techniques on the E.coli and Glass data sets, as a 
function of increased number of uniform attributes added to the data. The 
first point in the graphs correspond to the original data sets with no attributes 
added. 

We observe that P3C has higher accuracy on these data sets than the 
competing techniques. In addition, the accuracies of the competing techniques 
decrease as the number of attributes added increases, because it becomes more 
difficult to detect increasingly lower dimensional clusters. In contrast, the 
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Figure 3.5: P3C and competing techniques on category Gaussian_Equal 

accuracy of P3C is not affected by additional uniform attributes. 
P3C_hard and P3C_soft obtain identical results. On the Ecoli data set 

and its extensions, P3C recovers consistently 1 2-dimensional cluster. On the 
Glass data set and its extensions, P3C recovers consistently 5 2-dimensional 
clusters. 

Given a real data set with K classes, we compute the accuracy, using the F 
value, of a random partition of the data set into K clusters, with no outliers, so 
that a data point belongs to any of the clusters in the random partition with an 
equal probability of \/K. The accuracy of a random partition built in this way 
represents a baseline accuracy against which we can compare the accuracies 
of the competing techniques. On the Ecoli data set and its extensions, the 
accuracy of a random partition into 8 clusters is 0.19, and the accuracy of 
P3C is 0.61. On the Glass data set and its extensions, the accuracy of a 
random partition into 6 clusters is 0.22, and the accuracy of P3C is 0.55. 
Thus, P3C obtains better accuracy on these data sets than the accuracy of a 
random partition into a number of clusters that equals the number of classes. 

The cluster cores computation is exponential in the largest dimensionality 
of a projected cluster. Thus, if, for instance, a 40-dimensional projected cluster 
is the projected cluster with the largest dimensionality in a data set, then the 
computation of cluster cores has complexity of the order 240, regardless the 
total number of attributes in the data. Consequently, we have encountered 
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Figure 3.6: P3C and competing techniques on category Gaussian_Different 
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Figure 3.7: Accuracy of P3C and competing techniques on E.coli data set 
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Figure 3.8: Accuracy of P3C and competing techniques on Glass data set 

- P3C_hard 
-HARP 

5 10 20 

Number uniform attributes added 

Figure 3.9: Accuracy of P3C and competing techniques on Iris data set 

real data sets where the running time of P3C is large. 
We note that there are real data sets where the accuracy of P3C is higher 

than the accuracies of some, but not all, of the compared techniques. An 
example is illustrated in Figure 3.9 on the Iris data set from the UCI machine 
learning repository that measures 4 predictive attributes of 150 data points 
classified into 3 classes. However, the accuracy of P3C is 0.5 and it is higher 
than the accuracy 0.34 of a random partition into 3 clusters on this data set 
and its extensions. 

3.8.7 Robustness to Noise 
To test the robustness of P3C to increasing amounts of noise in the data, we 
generate data sets from the category Uniform-Equal with n = 10000, d = 100, 
K = 5 clusters, 4 relevant attributes per cluster, and percentages of noise 
points as 0%, 5%, 10%, 15%, 20% and 25% of n (cluster sizes are adjusted 
proportionally). Figure 3.10 illustrates the result of this experiment. 

The clustering accuracy of P3C decreases only slightly as more outliers 
are introduced. The accuracies of the competing techniques decreases as well. 
Even when the percentage of outliers in the data is as high as 25%, P3C still 
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Figure 3.10: Robustness of P3C and competing techniques to noise 

obtains a clustering accuracy of 89%. The accuracy of the found relevant 
attributes for P3C remains 100% with increasing percentages of noise. 

3.8.8 Sensitivity Analysis 

We have studied the sensitivity of P3C to the parameter aBinom- Figure 3.11 
illustrates the accuracy of P3C_soft as the parameter aBinom. is progressively 
decreased from 1.0E — 10 to 1.02? — 100 on one of our synthetic data sets. 
Same results are obtained for P3C_hard. We observe that P3C is robust with 
respect to the parameter aBinom- Similar results in the sense of robustness to 
aBinom have been obtained on all our synthetic data sets. Consequently, the 
parameter aBinom can be set at any value in the above range. 

3.8.9 Scalability Experiments 

We measure the scalability of the compared techniques with respect to the 
database size n, database dimensionality d, and average cluster dimensionality, 
because these criteria have the largest impact on scalability. 

In all scalability figures, the time is represented on a log scale, where the 
base of the log is 10. We note that the absolute running times of the compared 
techniques are influenced by the specific implementations of the techniques 
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Figure 3.12: Scalability of P3C and competing techniques with increasing 
database size 

and/or hardware used. Therefore, we are interested in the tendencies/slopes 
of the techniques rather than in a exact characterization of which techniques 
seem to be the fastest. Run times that differ by a small factor only will look 
similar in the log plot. However, if the run times differ by orders of magnitude, 
then there will be a significant difference between them in the plots, which 
suggests that there is a substantial difference between the techniques that 
cannot be overcome no matter how efficient an implementation is. 

Figure 3.12 shows scalability results for increasing database sizes on syn
thetic data sets from category Uniform-Equal with d = 10, K = 2, 2 relevant 
attributes per cluster. HARP can only be run for the first data set with 
n = 10000. The running time of P3C increases with increasing database size 
because the supports of the hyper-rectangles involved in the cluster cores com
putation increase, and the complexity of computing the right critical value of 
a Binomial distribution with parameters x and prob increases as x increases. 

Figure 3.13 shows scalability results for increasing database dimensionality 
on synthetic data sets from category Uniform-Equal with n = 300, K = 2, 
2 relevant attributes per cluster. MINECLUS cannot be run for the last two 
data sets with d = 500 and d = 1000. The running time of P3C increases only 
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Figure 3.14: Scalability of P3C and competing techniques with increasing 
average cluster dimensionality 

slightly with increasing data dimensionality because attributes with uniform 
distribution are not involved in the computation of cluster cores. 

Figure 3.14 shows scalability results for increasing average cluster dimen
sionality on synthetic data sets from category Uniform-Equal. The running 
time of P3C increases with increasing average cluster dimensionality due to 
the increased complexity of cluster cores generation. 

3.9 Summary 

Our experimental evaluation on synthetic and real world data sets shows that 
P3C can effectively discover clusters in the data. P3C's accuracy can be in
fluenced by one parameter setting. However, setting this parameter does not 
require critical prior knowledge about the data set. This parameter is a sig
nificance level used in a statistical test, and it represents the error probability 
that the user is willing to accept. 

Our experiments illustrate that P3C can indeed discover low dimensional 
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clusters embedded in high dimensional spaces. In addition, P3C consistently 
outperforms state of the art subspace and projected clustering techniques. 
P3C is also robust to noise. 

P3C can compute both disjoint and overlapping clusters. This is beneficial, 
because some application domains may require disjoint clusters, whereas in 
other cases overlapping clusters may be preferable. 

From an algorithmic point of view, P3C positions itself between projected 
and subspace clustering techniques. P3C approximates one-dimensional pro
jections of clusters, which are subsequently aggregated in a bottom-up fashion 
to find the clusters. The definition of a cluster core satisfies an anti-monotonic 
property, which is needed for a more efficient traversal of the search space. 
However, unlike the other subspace clustering techniques, our criterion lever
ages the data model, and it is not a global density threshold. 

As a drawback, P3C has exponential complexity in the dimensionality of 
the largest subspace where clusters exist. 
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Chapter 4 

P3C for Categorical Data 

The majority of existing subspace and projected clustering techniques are de
signed for numerical data sets, i.e., data sets where the domain of every at
tribute is inherently ordered. However, many real data sets are categorical, 
i.e., the attribute domains are discrete and not ordered. 

Subspace and projected clustering techniques designed for numerical data 
are not readily applicable to categorical data sets because they may exploit 
geometric properties of the data space that cannot be effectively captured 
by categorical distance functions, use numerical computations that cannot 
be performed on categorical data, and/or assume an implicit order on the 
attributes. 

Our survey of the existing subspace and projected clustering techniques for 
categorical data shows that they exhibit the same drawbacks as their numerical 
counterparts. 

P3C can be extended in order to deal with categorical data. In the fol
lowing, we present the extensions that need to be performed in order to make 
P3C applicable on categorical data. 

4.1 Preliminary Definitions 

We assume the same definition of a projected cluster as in the previous chapter 
and the same preliminary definitions as introduced in Section 3.1, but with 
the following additions/modifications. 

For categorical data sets, we assume that each domain attribute dom(Attrj) 
is finite and discrete, 1 < j < d. 

For a categorical attribute a £ A, an interval I on attribute a is defined 
as a subset of attribute values in dom(a). In this case, the width of the interval 
/ is defined as the number of attribute values in / . 
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4.2 Overview of P3C for Categorical Data 
P3C for categorical data differs from P3C for numerical data in two major 
aspects: 

1. The computation of one-dimensional intervals that approximate projec
tions of characteristic hyper-rectangles on their attributes. 

2. The refinement of cluster cores into clusters and the computation of 
outliers. 

Once ID intervals that approximate projections of characteristic hyper-
rectangles on their attributes have been computed, P3C can aggregate these 
intervals into cluster cores in the same way as for numerical data (Section 
3.4). In addition, the refinement of relevant attributes for each cluster can be 
performed in the same way as for numerical data (Section 3.5). 

4.3 Approximating Projections of Character
istic Hyper-rectangles on Categorical At
tributes 

Since the domain of a categorical attribute is finite and discrete, we consider 
a bin for each single value in the domain of a categorical attribute. Same 
as for numerical data, we use the Chi-square goodness-of-fit test to identify 
attributes with uniform distribution, and for the non-uniform attributes, to 
mark the bins with unusual high support (Section 3.3). 

On numerical attributes, projections of characteristic hyper-rectangles are 
approximated by intervals that are simply computed as maximal sets of con
secutive marked bins. We want to compute ID intervals that approximate 
projections of characteristic hyper-rectangles on their attributes for categor
ical attributes too. To achieve this goal, we use the natural order exhibited 
by numerical attributes to define an "adjacency" relationship between marked 
bins on the same attribute. 

Definition 4.1 Let mb\ and m&2 be two marked bins on the same numer
ical attribute Attrj, 1 < j < d. mb\ and mb2 are called "adjacent" if they are 
consecutive bins on attribute Attrj. 

Subsequently, each numerical attribute can be represented as a graph, in 
which the vertices are the marked bins on that attribute, and edges exist 
between two vertices if the corresponding marked bins are adjacent, as defined 
in Definition 4.1. 

P r o p e r t y 4.1 Let Attrj be a numerical attribute, 1 < j < d. Let 
mbj1,...,mbjh be h marked bins on attribute Attrj. Then, mbj1,... ,mbjh 

52 



are consecutive bins on attribute Attrj if and only if mbj1,..., mbjh form a 
connected component in the associated graph representation. 

Proof. Let us assume that mbj1,..., rnbjh are consecutive bins on attribute 
Attrj. Then, by Definition 4.1, there is an edge between mbjl and mbjl+1 in the 
associated graph representation, 1 < I < (h — 1). Therefore, there is a path 
between any two vertices mbjl and mbji, V7, i € { 1 , . . . , h}, i.e., mbj1,..., mbjh 

form a connected component. 
Conversely, let as assume that mb^,..., mbjh form a connected component 

in the associated graph representation. By Definition 4.1, each node mbjl 

1 < I < h must have degree at most 2, and there must exist 2 nodes with 
degree exactly 1. Starting from one of the nodes of degree 1, we can infer, 
based on Definition 4.1, the order of the bins mbj1,... ,mbjh on attribute Attrj. 
Thus, mbj1,..., mbjh are consecutive bins. 

Consequence. On numerical attributes, intervals that approximate pro
jections of characteristic hyper-rectangles on their attributes are equivalent to 
connected components in the associated graph representation. 

Categorical attributes lack order, and thus the notion of "consecutive" bins 
is not applicable. In order to determine, for each attribute, which marked bins 
should be merged within the same interval, we use a similar methodology to the 
one described in Section 3.4 to define an adjacency relationship for categorical 
attributes. 

Specifically, let mbi and mb2 be two marked bins on two distinct cate
gorical attributes Attri and Attrj (i ^ j), respectively. Let no Joins i and 
no Joins j be the number of bins on Attri, respectively Attrj. We want to de
cide whether mbi and mb2 belong to the projection of the same characteristic 
hyper-rectangle on these attributes. 

We regard mbi as a one-dimensional hyper-rectangle Hi = mbi, and mb2 as 
an interval on attribute Attrj, where Attrj does not belong to subspace(Hi). 
As in Section 3.4, we say that there is evidence that mb2 approximates the 
same projected cluster as Hx — mbi if, for the hyper-rectangle H[ = mbi xmb2, 
it holds that AS(H[ = mbi x mb2) > 0{alinom, where Qctlinom is the right critical 
value of the Binomial distribution with parameters AS (Hi = mbi) and no ^ins 

at a significance level of aBinom. 

Similarly, we regard mb2 as a one-dimensional hyper-rectangle H2 = mb2, 
and mbi as an interval on attribute Attri, where Attri does not belong to 
subspace(H2). We say that there is evidence that mbi approximates the same 
projected cluster as H2 = mb2 if, for the hyper-rectangle H2 = H[ = mb2 x mbi, 
it holds that AS(H'2 = mb2 x mbi) > 9alinom, where 9alinom is the right critical 
value of the Binomial distribution with parameters AS(H2 = mb2) and no ^ 
at a significance level of aBinom-

Definition 4.2 Let mbi and mb2 be two marked bins on two distinct cat
egorical attributes Attri and Attrj (i ^ j), respectively. Let noJoinSi and 
no Joins j be the number of bins on Attri, respectively Attrj. Let aBinom be a 
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Figure 4.1: Illustration of intervals on categorical attributes 

significance level, mbi and mb2 belong to the projections of the same character
istic hyper-rectangle on Attn, respectively, Attrj if the following 2 conditions 
are satisfied: 

1. AS (mbi x mb2) > 0^Bin<m, where 6^Binom is the right critical value of 
the Binomial distribution with parameters AS{mb2) and no ^ins at a 
significance level of ctBinom-

2. AS (mbi x mb2) > 0aBinom, where 9aBinom is the right critical value of 
the Binomial distribution with parameters AS (mbi) and ^ at a 
significance level of a-Binvm-

Using Definition 4.2, all pairs of marked bins on distinct categorical at
tributes that represent the projections of the same characteristic hyper-rectangle 
on these attributes are computed. Subsequently, these pairs are used to de
fine an "adjacency" relationship between marked bins on the same categorical 
attribute. 

Definition 4.3 Let mbi and mb2 be two marked bins on the same cate
gorical attribute Attri. mbi and mb2 are called "adjacent" if there is at least 
one marked bin mb^ on another categorical attribute Attrj, j =fi i, so that 
(mbi,mb3) and (mb2, mb3) belong to the projection of the same characteristic 
hyper-rectangle according to Definition 4.2. 

Figure 4.1 is used to illustrate Definitions 4.2 and 4.3. In this figure, Attri 
and Attr2 are two categorical attributes; mbi and mb2 are marked bins on at
tribute Attri; and mbi, fnb^ and mb5 are marked bins on attribute Attr2. Ac
cording to Definition 4.2, (mbi,mb3), (mbi,mb5), (mb2,mb3), and (mb2,mb4) 
belong to the projections of the same characteristic hyper-rectangle on Attri, 
respectively Attr2. These facts are illustrated in Figure 4.1 by dotted double-
arrowed lines. Thus, based on Definition 4.3, mbi and mb2 on Attri are adja
cent, because there is mb3 on Attr2 so that (mbi,mb3) and (mb2,mb3) belong 
to the projections of the same characteristic hyper-rectangle on Attri, respec
tively Attr2. Also based on Definition 4.3, it follows that mbs and mbi on 
Attr2 and mb3 and mb5 on Attr2 are adjacent. 
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In analogy to numerical data, intervals on categorical attributes are de
fined as connected components under the adjacency relationship introduced 
in Definition 4.3. Some subspace clustering techniques for categorical data 
(e.g., CACTUS, CLICKS) define intervals on categorical attributes as cliques 
under a different adjacency criterion. Note that cliques under the adjacency 
criterion in Definition 4.3 will produce overlapping intervals, which cannot be 
obtained on numerical data, according to the adjacency criterion in Definition 
4.1. In order to have a unified treatment of numerical and categorical data, 
P3C computes connected components instead of cliques under its adjacency 
criterion. 

In Figure 4.1, we obtain two intervals: interval (mbx,mb2) on attribute 
Attri, and interval (77763,77164,777,65) o n attribute Attr^. With cliques instead 
of connected components under the adjacency criterion in Definition 4.3, we 
would obtain three intervals: interval (77761,77162) on attribute Attry, interval 
(77763,77164) on attribute Attr2, and interval (77163,77165) on attribute Attri. The 
intervals on Attr2 would overlap in 77763. Such intervals could not have been 
obtained on numerical data. 

4.4 Cluster Cores Refinement and Outlier De
tection on Categorical Data 

Let K be the number of cluster cores obtained by aggregating the intervals 
computed in Section 4.3 according to the computation of cluster cores de
scribed in Section 3.4. Cluster cores are axis-parallel hyper-rectangles. Sim
ilarly to the computation of clusters on numerical data, we could use some 
distance function for categorical data to assign the remaining data points to 
cluster cores. In the case of numerical data, the resulting fuzzy partitioning of 
the data points into K clusters is used to initialize EM for a mixture of Gaus
sian distributions. Based on the current definition of clusters, EM computes 
cluster means and covariance matrices. Such computations are not possible 
for categorical data; thus EM for a mixture of Gaussian distributions is not 
applicable. 

Instead, we compute the clusters by measuring how "relevant" the bins 
that appear in the signatures of cluster cores are with respect to the cluster 
cores. 

We consider the space given by the union of all ('attribute_id', 'bin_id') 
pairs, where 'attributeJd' is an attribute of an interval / that appears in the 
definition of a cluster core, and 'binid' is a bin that appears in the interval / 
on 'attributeJd'. 

Each cluster core CC is represented as a vector in this space, and each en
try in this vector represents the "relevance score" of a certain ('attributeJd', 
'binJd') pair with respect to the cluster core CC. Similarly to the standard 
"TF-IDF" scheme used in information retrieval, the relevance score of a pair 
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('attribute_id', 'binJd') with respect to a cluster core CC consists of the prod
uct of two terms. The first term of the product is the fraction of cluster core 
points that belongs to the support set of 'binid' on attribute 'attribute_id'. 
The second term of the product is the inverse of the fraction of data points that 
belongs to the support set of 'braid' on attribute 'attributeid'. In other words, 
the relevance score of a pair ('attributeid', 'binid') with respect to a clus
ter core CC is proportional to the frequency at which the pair ('attributeid', 
'binid') appears among the points of the cluster core CC, and inverse pro
portional to the frequency at which the pair ('attributeid', 'binid') appears 
among all data points. 

Each data point is also represented as a vector in the aforementioned space. 
In this case, the entry corresponding to a ('attributeid', 'binid') pair is either 
1 or 0, depending on whether the data point belongs to the support set of 
'binid' on attribute 'attributeid' or not. 

The similarity between a data point and a cluster core is defined as the dot 
product of their corresponding vectors. We can regard the resulting similar
ity matrix between data points and cluster cores as a matrix of membership 
probabilities by "min-max" normalizing each row. 

Similarly to the numerical data, we can compute now disjoint or overlap
ping clusters. Disjoint clusters are obtained by assigning each point to the 
cluster core with the highest similarity. Overlapping clusters are obtained by 
assigning each point to all cluster cores with similarity larger than 1/K. 

Outliers are the points with similarity 0 to all cluster cores. 

4.5 A Note on Parameters 

The performance of P3C on categorical data depends on two parameters ac^ 
and otBinom, which have the same meaning as for numerical data. In the case 
of categorical data, aBinom is involved not only in the computation of cluster 
cores, but also in the computation of intervals. Consequently, we fix ac^ 
to 0.001, and we let (XBinom 

be the only parameter of P3C. We study the 
sensitivity of P3C for categorical data to aBinom in Section 4.7.8. 

4.6 Theoretical Complexity 

The complexity of computing intervals on an attribute is different on cate
gorical data than on numerical data. Computing all pairs of marked bins 
on distinct categorical attributes that represent the projections of the same 
characteristic hyper-rectangle on these attributes has complexity equal to the 
product of the number of marked bins on distinct categorical attributes. Com
puting the adjacency relationship on a categorical attribute between marked 
bins on that attribute (Definition 4.3) has complexity quadratic in the number 
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of marked bins on that attribute. Computing connected components on an at
tribute under the adjacency relationship defined in Section 4.3 has complexity 
linear in the number of marked bins on that attribute plus the number of edges 
between the marked bins on that attribute under the adjacency criterion in 
Section 4.3. 

The complexity of cluster cores refinement and outlier detection in the case 
of categorical data is given by the number of all unique ('attribute Jd' , 'bin_id') 
pairs that appear in the definition of any cluster core. 

4.7 Experimental Evaluation 

As in the case of numerical data, the experiments reported in this Section were 
conducted on a Linux machine with 3 GHz CPU and 2 GB RAM. 

4.7.1 Compared Techniques 

On categorical data, we evaluate P3C against SUBCAD and CLICKS. CAC
TUS is not included in the experiments, since CACTUS can mine only a limited 
class of subspace clusters, and CLICKS was shown to outperform CACTUS 
[84]. STIRR and its following improvement only compute cluster projections 
instead of the clusters. 

The list of compared techniques is therefore as follows: P3C_hard, P3C_soft, 
SUBCAD and CLICKS. 

4.7.2 Synthe t i c D a t a 

We study the performance of the compared techniques according to the fol
lowing criteria: 

1. The number of relevant attributes that clusters can have: 1) an equal or 
2) a different number of relevant attributes. 

2. The average number of relevant attributes. 

Based on the first criterion, we have 2 categories of synthetic data sets: 
category Equal and category Different. For each category, we study the ef
fect of the second criterion in data generation over the performance of the 
compared techniques. For this purpose, in each category, we generate data 
sets with n = 10000 data points, d = 100 attributes, K = 5 clusters (clus
ters sizes are 2000, 2000, 2000, 2000, and 1500 points), 5% * n = 500 uni
formly distributed noise points, and the average number of relevant attributes 
in {2,4,6,8,10,15,20}. The domain size of each attribute is 100 categories. 
Cluster points are uniformly distributed on the irrelevant attributes. Clusters 
span between 2 and 4 categories in their relevant attributes. Various amounts 
of overlap were introduced among the projections of projected clusters. 

57 



4.7.3 Real Data 

We tested the compared techniques on the following data sets from the UCI 
machine learning repository [67]: the Congressional Votes data set that mea
sures 16 categorical attributes for 435 congressmen classified into 2 classes; the 
Post-Operative Patient data set that measures 8 categorical attributes for 90 
patients classified into 3 classes; the Hepatitis data set that measures 19 cat
egorical and numerical attributes for 155 patients classified into 2 classes; the 
Contraceptive Method Choice data set that measures 9 categorical attributes 
for 1473 women classified into 3 classes; and the Flags data set that measures 
30 categorical attributes for 194 country flags classified into 8 classes. The 
Hepatitis data set contains 5 numerical attributes, which are discretized based 
on medical data, as suggested in the documentation that comes with the data. 

4.7.4 Exper imenta l S e t u p 

SUBCAD and CLICKS are tested with their original implementations. 
SUBCAD requires the target number of clusters as a parameter. On syn

thetic data, we set the target number of clusters to the number of implanted 
clusters, and on real data, we set it to the number of classes. SUBCAD is a non-
deterministic technique; thus, it is run 5 times, and the results are averaged. 
We have observed that the performance of CLICKS is very sensitive to the val
ues of its parameters a and a. Thus, we have run CLICKS 50 times (for each 
a E {15,20, 30,40, 50, 60, 70,80, 90,100} and each a e {0.1,0.2, 0.3,0.4, 0.5}), 
and we report the averaged results. For P3C, we set asinam = 1-0E — 20. As 
shown in Figure 4.10, P3C is robust with respect to the value of this parameter. 

Same as for numerical data, in order to actually verify the capability of 
the compared techniques to find subspace clusters, we add 5, 10, 20, and 
50 attributes, respectively, to each real data set where the data points are 
uniformly distributed. The added attributes are categorical attributes with 
100 categories. 

Some real data sets contain missing values. If the number of data points 
that contain missing values is small, we remove these data points. Otherwise, 
we keep all data points and we regard missing values as a category in itself 
(i.e., category "?"). 

4.7.5 Performance Measures 

We measure the accuracy of the compared techniques in the same way as for 
numerical data using an F value (Section 3.8.5). 

4.7.6 Accuracy Results 

On synthetic data, in all performed experiments, the number of clusters dis
covered by P3C for categorical data equals the number of implanted clusters 
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Figure 4.2: P3C and competing techniques on categorical category Equal 

in the data. 
Figures 4.2 and 4.3 show the accuracy of the compared techniques as a 

function of increased average cluster dimensionality for the categories Equal 
and Different. 

We observe that P3C for categorical data significantly and consistently 
outperforms the competing techniques, both in terms of clustering accuracy 
and in terms of accuracy of the found relevant attributes. P3C_hard and 
P3C_soft for categorical data have similar accuracies. 

P3C for categorical data has high accuracy even for data sets that con
tain very low dimensional clusters embedded in high dimensional spaces. The 
accuracy of SUBCAD increases with increasing average cluster dimensional
ity because its initialization in full dimensional space becomes more accurate 
as clusters become more detectable. However, SUBCAD requires the target 
number of clusters as a parameter and it does not compute any outliers. The 
accuracy of CLICKS decreases with increasing average cluster dimensionality 
because it computes increasingly more cliques in its graph representation, and 
the merging of cliques is sensitive to the parameter a. 

Similarly to numerical data, P3C for categorical data obtains comparable 
accuracy results on data sets where clusters have an equal number of relevant 
attributes versus data sets where clusters have a different number of relevant 
attributes. 

laid - P3C_soft -SUBCAD -CLICKS 
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Figure 4.3: P3C and competing techniques on categorical category Different 

Accuracy results on real data sets. Figures 4.4, 4.5, 4.6, 4.7 and 4.8 
show the accuracy of the compared techniques on the Congressional Votes, 
Post-Operative Patient, Hepatitis, Contraceptive Method Choice, and respec
tively, Flags data sets, as a function of increased number of uniform attributes 
added to the data. The first point in the graphs correspond to the original 
data sets with no attributes added. 

We observe that P3C has higher accuracy on these data sets than the com
peting techniques. The accuracy of P3C is not affected by additional uniform 
attributes. The accuracy of CLICKS decreases fast as uniform attributes are 
added. The accuracy of SUBCAD stays relatively constant, but it has a lower 
value. 

P3C_hard and P3C_soft obtain identical results. On the Congressional 
Votes data set and its extensions, P3C recovers consistently 1 6-dimensional 
cluster. On the Post-Operative Patient data set and its extensions, P3C re
covers consistently 1 2-dimensional cluster. On the Hepatitis data sets and 
its extensions, P3C recovers consistently 2 clusters, 1 2-dimensional cluster 
and 1 3-dimensional cluster. On the Contraceptive Method Choice data set 
and its extensions, P3C recovers consistently 1 8-dimensional cluster. On the 
Flags data set and its extensions, P3C recovers consistently 2 clusters, 1 4-
dimensional cluster and 1 9-dimensional cluster. 

The accuracy of a random partition into a number of clusters that equals 
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Figure 4.4: Accuracy of P3C and competing techniques on Congressional Votes 
data set 
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Figure 4.5: Accuracy of P3C and competing techniques on Post-Operative 
Patient data set 
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Figure 4.6: Accuracy of P3C and competing techniques on Hepatitis data set 
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Figure 4.7: Accuracy of P3C and competing techniques on Contraceptive 
Method Choice data set 
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Figure 4.8: Accuracy of P3C and competing techniques on Flags data set 

the number of classes on these data sets is: 0.55 for the Congressional Votes 
data set and its extensions; 0.45 for the Post-Operative Patient data set and 
its extensions; 0.61 for the Hepatitis data set and its extensions; 0.37 for the 
Contraceptive Method Choice data set and its extensions; and 0.17 for the 
Flags data set and its extensions. The accuracy of P3C on these data sets 
is: 0.9 for the Congressional Votes data set and its extensions; 0.82 for the 
Post-Operative Patient data set and its extensions; 0.7 for the Hepatitis data 
set and its extensions; 0.59 for the Contraceptive Method Choice data set and 
its extensions; and 0.45 for the Flags data set and its extensions. In all cases, 
the accuracy of P3C is higher than the accuracy of a random partition into a 
number of clusters that equals the number of classes on these data sets. 

As the in case of numerical data sets, there are categorical real data sets 
where the running time of P3C is large due to the complexity of cluster cores 
generation, or categorical real data sets where the accuracy of P3C is compa
rable to the accuracies of the competing techniques. 
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Figure 4.9: Robustness of P3C and competing techniques to noise on categor
ical data 

4.7.7 Robustness to Noise 

To test the robustness of P3C for categorical data to increasing amounts of 
noise in the data, we generate data sets from the category Equal with n = 
10000, d — 100, K — 5 clusters, 8 relevant attributes per cluster, domain size 
= 100 categories, and percentages of noise points as 0%, 5%, 10%, 15%, 20% 
and 25% of n (cluster sizes are adjusted proportionally). Figure 4.9 illustrates 
the result of this experiment. 

The clustering accuracy of P3C decreases only slightly as more outliers are 
introduced. Even when the percentage of outliers in the data is as high as 
25%, P3C for categorical data still obtains a clustering accuracy of 90%. The 
accuracy of the found relevant attributes for P3C remains 100% with increasing 
percentages of noise. The accuracy of SUBCAD decreases substantially due to 
the fact that SUBCAD does not compute outliers. The accuracy of CLICKS 
is approximately constant, but it has a low value. 

4.7.8 Sens i t iv i ty Ana lys i s 

We have studied the sensitivity of P3C for categorical data to the parame
ter otBinom- Figure 4.10 illustrates the accuracy of P3C_soft as the parameter 
OLBiwmx is progressively decreased from 1.0JE7 — 10 to 1.0.E — 100 on one of our 
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Figure 4.10: Categorical data: sensitivity of P3C to parameter OLBK 
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Figure 4.11: Categorical data: scalability of P3C and competing techniques 
with increasing database size 

categorical synthetic data sets. Same results are obtained for P3C_hard. We 
observe that P3C is robust with respect to the parameter aiBinom- Similar re
sults in terms of robustness have been obtained on all our categorical synthetic 
data sets. Consequently, the parameter otBinom can be set at any value in the 
above range. 

4.7.9 Scalability Experiments 

We measure the scalability of the compared techniques with respect to the 
database size n, database dimensionality d, average cluster dimensionality, 
and domain size per attribute. 

In all scalability figures, the time is represented on a loglO scale. 
Figure 4.11 shows scalability results for increasing database sizes on cate

gorical synthetic data sets from category Equal with d = 10, K = 2, 2 relevant 
attributes per cluster. Similarly to numerical data, the running time of P3C 
for categorical data increases with increasing database size due to increased 
complexity in the computation of the right critical values of Binomial distri
butions. 
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Figure 4.12: Categorical data: scalability of P3C and competing techniques 
with increasing database dimensionality 

Figure 4.12 shows scalability results for increasing database dimensionality 
on categorical synthetic data sets from category Equal with n = 10000, K = 2, 
2 relevant attributes per cluster. CLICKS cannot be run for the last two 
data sets with d = 500 and d = 1000. The running time of P3C increases 
with increasing database dimensionality. This increase is more pronounced for 
categorical data than for numerical data because of increased complexity in 
connected components generation in the computation of intervals. 

Figure 4.13 shows scalability results for increasing average cluster dimen
sionality on categorical synthetic data sets from category Equal. Similarly to 
numerical data, the running time of P3C for categorical data increases with 
increasing average cluster dimensionality due to the increased complexity of 
cluster cores generation. 

Figure 4.14 shows scalability results for increasing domain sizes on categor
ical synthetic data sets from category Equal with n = 10000, d = 100, K = 2, 
2 relevant attributes per cluster. The running time of P3C for categorical 
data is unaffected by increasing domain size. The running time of CLICKS 
increases when the domain size per attribute is larger than 80 categories, and 
the running time of SUBCAD alternates, depending on how fast its objective 
function is minimized. 

4.8 Summary 

P3C for categorical data exhibits the same properties as P3C for numerical 
data, as discussed in Section 3.9. 

P3C can deal with data sets with numerical attributes only, or with data 
sets with categorical attributes only. In the case of mixed data sets, the com
putation of intervals can be performed according to the attribute type, as 
discussed in Sections 3.3 and 4.3, followed by the cluster cores computation, 
as in Section 3.4. However, the projected clusters computation and outlier 
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Figure 4.13: Categorical data: scalability of P3C and competing techniques 
with increasing average cluster dimensionality 
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Figure 4.14: Categorical data: scalability of P3C and competing techniques 
with increasing domain size per attribute 
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detection proposed for numerical data are not applicable on the categorical 
attributes, since they require numerical computations that are not well defined 
for categorical attributes. In this case, we regard the numerical attributes as 
being discretized either as suggested in Section 3.3, or based on existing do
main knowledge, and we apply the projected clusters computation and outlier 
detection for categorical data. 
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Chapter 5 

Finding Non-Redundant, 
Statistically Significant Regions 
in High Dimensional Data 

As noted in the previous chapters, subspace clustering techniques are all based 
on an Apriori-like scheme that involves a global density threshold, for which, 
however, no meaningful value is likely to exist because density naturally de
creases with dimensionality. In the case of projected clustering techniques, 
once "closeness" and "non-closeness" measures for relevant, respectively irrel
evant attributes have been defined, an exhaustive search method will report 
all projected clusters that comply with these measures. If only K projected 
clusters are desired, the techniques should define what the optimal set of K 
projected clusters is. The majority of projected clustering techniques fail to 
define what the optimal set of K projected clusters is, independent of the 
algorithm that finds them. In these cases, the "optimal" set of K projected 
clusters is the set of K projected clusters that the techniques build. Some 
projected clustering techniques use an objective function to define the optimal 
set of K projected clusters. However, these objective functions are restric
tive and depend critically on parameters whose appropriate values are hard to 
determine by the users. 

Based on our analysis, we argue that a first problem for both projected 
and subspace clustering is that their objectives are stated in a way that is 
not independent of the particular algorithm that is proposed to detect such 
clusters in the data - often leaving the practical relevance of the detected 
clusters unclear. 

A second problem for most previous approaches is that they assume, ex
plicitly or implicitly, that clusters have some point density controlled by user-
defined parameters, and they will (in most cases) report some clusters. How
ever, we have to judge if these clusters "stand out" in the data in some way, 
or, if, in fact, there are many structures alike in the data. Therefore, a density 
criterion for selecting clusters should be based on statistical principles. 
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5.1 Overview 

Motivated by the aforementioned observations, we propose a novel problem 
formulation that aims at extracting from the data axis-parallel regions that 
"stand out" in a statistical sense. Intuitively, a statistically significant region 
is a region that contains significantly more points than expected. We consider 
the expectation under uniform distribution. 

The set of statistically significant regions R that exist in a data set is 
typically highly redundant in the sense that regions that overlap with, contain, 
or are contained in other statistically significant regions may themselves be 
statistically significant. Therefore, we propose to represent the set R through 
a reduced, non-redundant set of (axis-parallel) statistically significant regions 
that in a statistically meaningful sense "explains" the existence of all the 
regions in R. 

We will formalize these notions (Sections 5.2, 5.3, 5.4, 5.5) and formulate 
the task of finding a minimal set of statistically significant "explaining" regions 
as an optimization problem (Section 5.6). 

5.2 Statistical Significance 

We assume the same preliminary definitions as introduced in Section 3.1. 

Let H be a hyper-rectangle in a subspace S. We use the methodology of 
statistical hypothesis testing (appendix A) to determine the probability that 
H contains AS{H) data points under the null hypothesis that the n data 
points are uniformly distributed in subspace S. The distribution of the test 
statistic, AS(H), under the null hypothesis is the Binomial distribution with 
parameters n and vol(H) [12] 1, i.e., 

AS(H) ~ Binomial(n, vol(H)) (5.1) 

Definition 5.1 Let H be a hyper-rectangle in a subspace S. Let aio be a 
significance level. Let 0ao be the right critical value of the Binomial distribution 
with parameters n and vol(H) at significance level OIQ. H is a statistically 
significant hyper-rectangle if AS(H) > 6ao. 

A statistically significant hyper-rectangle contains significantly more points 
than what is expected under uniform distribution, i.e., the probability that H 
contains AS(H) data points when the n data points are uniformly distributed 
in subspace S is less than ao 2. 

Let cifo be an initial significance level. A value of a0 = 0.001 is quite com
mon in statistical tests when a single and typically well-conceived hypothesis 

1Note that if the attributes are not normalized to [0,1], we have to replace vol(H) by 
vol(H)/vol(S). 

2 Note that a two-sided test could be used to identify hyper-rectangles with significantly 
less points than expected under uniform distribution. 
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(i.e., one that has a high chance of being true) is tested; however, the value 
should be much smaller if the number of possible tests is very large, and we 
are actually searching for hypotheses that will pass a test; otherwise, a consid
erable number of false positives will be eventually reported. We will test for 
statistical significance hyper-rectangles in each subspace of the data set. Thus, 
the number of false positives increases proportionally to the number of sub-
spaces tested. We can use a conservative Bonferroni approach and adjust the 
significance level a0 for testing hyper-rectangles in a subspace of dimensional
ity p by the total number of subspaces of dimensionality p as a — cho(^°(d N, 
where choose(d,p) is the binomial coefficient, or we can use the False Discovery 
Rate (FDR) method [15]. 

Property 5.1 Statistical significance is not an anti-monotonic property. 

Proof. Let H = I-y x I2 be a hyper-rectangle in a 2-dimensional subspace, 
so that width(Ii) = width(I2) = 0.2. Then, vol(H) = width(Ii) *width(I2) — 
0.04. Let n = 200 be the total number of data points. Let a0 — 1.0E — 10. 

Under the null hypothesis that the n data points are uniformly distributed 
in subspace(H), AS(H) is a Binomial distributed variable with parameters n = 
200 and vol(H) = 0.04. The right critical value of this Binomial distribution 
at significance level tto is ^ = 31. Thus, according to Definition 5.1, H is a 
statistically significant hyper-rectangle if it contains more than 31 data points, 
i.e., if AS{H) > 31. 

Hi = l\ is a one-dimensional hyper-rectangle, and, under the null hy
pothesis that the n data points are uniformly distributed in subspace(Hi), 
AS (Hi) is a Binomial distributed variable with parameters n — 200 and 
vol(Hi) — width(Ii) = 0.2. The right critical value of this Binomial dis
tribution at significance level a0 is d\a — 79. Thus, according to Definition 
5.1, H\ is a statistically significant hyper-rectangle if it contains more than 79 
data points, i.e., if AS (Hi) > 79. 

If statistical significance were an anti-monotonic property, then, when H — 
I\ x I2 is a statistically significant hyper-rectangle, it is guaranteed that also 
Hi = I\ and H2 = h are statistically significant hyper-rectangles. However, 
our example illustrates that this is not always the case. We can construct 
a scenario in which H contains, for instance, 45 data points - thus, H is 
a statistically significant hyper-rectangle - and Hi contains, for instance, 70 
data points - thus, Hi is not a statistically significant hyper-rectangle. 

Since statistical significance is not anti-monotonic, Apriori-like bottom-up 
construction of statistically significant hyper-rectangles is not possible. 

5.3 Relevant vs. Irrelevant Attributes 

In the following, we discuss two interesting properties of statistical significance. 
Let H be a hyper-rectangle in a subspace S. As the dimensionality of S 
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increases, vol(H) decreases towards 0 3. Consequently, for a given significance 
level a0, the critical value 9ao in Definition 5.1 decreases towards 1. Thus, 
in high dimensional subspaces, hyper-rectangles H with few points may be 
statistically significant. 

A second interesting aspect of statistical significance is given next. 

P r o p e r t y 5.2 Let a0 be a significance level. Let H be a statistically 
significant hyper-rectangle in a subspace S. Let a be an attribute so that a fi S, 
where the coordinates of the points in SuppSet(H) are uniformly distributed 
in dom(a). Let H' = H x / ' , where attr(I') = a and SuppSet(I') = H, i.e., 
I' = [l,u] so that I = min{x.a\x 6 SuppSet(H)}, and u — max{x.a\x 6 
SuppSet(H)}. 

Then, hyper-rectangle H' is statistically significant in subspace S' = S U 
{a}. 

Proof. Let X, X' be two Binomial distributed variables so that: 

X ~ Binomial(n, vol(H)) (5.2) 

X' ~ Binomial(n, vol(H')) (5.3) 

For simplicity of notation, let A and B be the right critical values of the 
distributions Binomial(n, vol(H)) and Binomial(n,vol(H')), respectively, at 
significance level a0- By the definition of a Binomial distribution and Equation 
(A.l): 

A,B€{0,l,...,n} (5.4) 

a0 = Probability(X > A) (5.5) 

a0 = Probability(X' > B) (5.6) 

Since H is a statistically significant hyper-rectangle, by definition 5.1: 

AS(H) > A (5.7) 

By the construction of H', it holds that: 

AS(H) = AS(H') (5.8) 

vol(H') < vol(H) (5.9) 

Since X is a Binomial distributed variable as in (5.2), Probability(X > I), 
I € { 0 , 1 , . . . , n} is defined as the probability of obtaining I or more successes 
in n independent "yes/no" experiments, where each experiment has the prob
ability of success vol(H). Probability(X' > I), I 6 { 0 , 1 , . . . , n}, is similarly 
defined. 

3Note that if the attributes are not normalized to [0,1], then vol{H)/vol(S) decreases 
towards 0. 
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Because of (5.9), it holds that [28]: 

Probability{X >l)> Probability(X' > I), W € { 0 , 1 , . . . , n} (5.10) 

Therefore, based on (5.4) and (5.10): 

Probability{X > A) > Probability(X' > A). (5.11) 

Based on (5.5) and (5.11): 

Probability{X' > A) < a0. (5.12) 

From (5.6) and (5.12): 
B <A (5.13) 

Finally, based on (5.8), (5.7), and (5.13): 

AS(H') = AS(H) >A>B (5.14) 

Thus, H' is a statistically significant hyper-rectangle in S' — S U {a}. 

Reporting statistically significant hyper-rectangles such as H' does not add 
any information, since their existence is "caused" by the existence of other 
statistically significant hyper-rectangles to which intervals have been added 
in which the points are uniformly distributed along the whole range of the 
corresponding attributes. 

To deal with these aspects of statistical significance, we introduce the 
concept of "relevant" attributes versus "irrelevant" attributes for a hyper-
rectangle H. 

Definition 5.2 Let H be a hyper-rectangle in a subspace S. An attribute 
a € S, is called relevant for H if points in SuppSet(H) are not uniformly 
distributed in dom(a); otherwise it is called irrelevant for H. 

To test whether points in SuppSet(H) are uniformly distributed in the 
domain of an attribute a, we use the Kolmogorov-Smirnov goodness-of-fit test 
for the uniform distribution [65]. 

The null hypothesis is that the points in SuppSet(H) are uniformly dis
tributed on the domain of an attribute a. The Kolmogorov-Smirnov test 
statistic computes the absolute difference between the theoretical cumulative 
distribution of the distribution being tested (in this case the uniform distri
bution on dom(a) = [0,1]), and the empirical cumulative distribution of the 
projections of the points in SuppSet(H) on attribute a. The distribution of 
the Kolmogorov-Smirnov test statistic under the null hypothesis is the Kol-
mogorov distribution [65]. 

Let OLK be a significance level, and let QaK be the right critical value of 
the Kolmogorov distribution at significance level OIK- 8aK can be found in 
pre-computed tables, or it can be approximated numerically. Attributes a for 
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which the Kolmogorov-Smirnov test statistic is larger than 9aK will be reported 
as non-uniform, or equivalently, relevant for H. The statistical test tells us 
that the probability of declaring an at t r ibute non-uniform/relevant when in 
fact it is uniform/irrelevant is very small, i.e., less that OLK-

5.4 Redundancy-oblivious Problem Definition 

Given a data set D of n d-dimensional points, we would like to find in each 
subspace all hyper-rectangles that satisfy Definitions 5.1 and 5.2. The number 
of hyper-rectangles in a certain subspace can be infinite. However, we consider, 
for each subspace, all unique Minimum Bounding Rectangles (MBRs) formed 
with da ta points instead of all possible hyper-rectangles. The reason is that 
adding empty space to an MBR keeps its support constant, but it increases 
its volume; thus, it only decreases its statistical significance. 

Def in i t ion 5.3 Given a da ta set D of n d-dimensional points. We define a 
subspace cluster as an MBR formed with data points in some subspace so 
that the MBR 1) is statistically significant, and 2) has only relevant at tr ibutes. 

Redundancy-ob l iv ious prob lem definit ion. Find all unique subspace 
clusters in a set of n d-dimensional points. 

For any non-trivial values of n and d, the size of the search space for the 
redundancy-oblivious problem definition is obviously very large. There are 
2d — 1 subspaces, and the number of unique MBRs in each subspace S, tha t 
contain at least 2 points, assuming all coordinates of n points to be distinct in 
S, is at least choose(n, 2) and upper bounded by choose(n, 2) + choose(n, 3) + 
. . . + choose(n, 2 x dim(S)). 

The size of the solution to the redundancy-oblivious problem definition can 
be quite large as well, even if the overall distribution is generated by only a 
few "true" subspace clusters { T i , . . . ,TK}, K > 1, plus uniform background 
noise: 

1. For each T,, 1 < i < K, other subspace clusters may exist around it in 
subspace(Ti), formed by subsets of points in SuppSet(Ti) plus possibly 
neighboring points in subspace(Ti). Some of these cases are illustrated 
in Figures 5.1(a), 5.1(b) and 5.1(c). 

2. Subspace clusters may also exist in lower or higher dimensional sub-
spaces of subspace(Ti) due to the existence of %. Figure 5.1(d) illustrates 
for a t rue 2-dimensional subspace cluster in the xy-plane an induced 3-
dimensional subspace cluster and two 1-dimensional subspace clusters. 

3. Additional subspace clusters may also exist whose points or at tr ibutes 
belong to different T,. Figure 5.1(e) illustrates a subspace cluster in
duced by two subspace clusters from the same subspace. Figure 5.1(f) 
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Figure 5.1: (a)-(f) Redundancy in R (solid/dotted lines for true/"induced" 
subspace clusters) (g) Example data 

illustrates a subspace cluster induced by two subspace clusters from dif
ferent subspaces. 

4. Combinations of all these cases are possible as well. 

The number of subspace clusters that exist only because of the "true" 
subspace clusters is typically very large. For instance, the total number of 
subspace clusters in even the simple data set depicted in Figure 5.1(g) —with 
50 points and two 2-dimensional subspace clusters, which are embedded in a 
3-dimensional space— is 656. 

Conceptually, the solution R to the redundancy-oblivious problem defini
tion contains three types of elements: 1) a set of subspace clusters T repre
senting the "true" subspace clusters, 2) a set e representing the false positives 
reported by the statistical tests, and 3) a set of subspace clusters F represent
ing subspace clusters that exist only because of the subspace clusters in T and 
possibly e, i.e., 

R = Tl)eUF (5.15) 

We argue that reporting the entire set R is not only computationally expen
sive, but it will also overwhelm the user with a highly redundant amount of 
information, because of the large number of elements in F. 
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5.5 Explain Relationship 
Our goal is to represent the set R of all subspace clusters in a given data 
set by a reduced set Popt of subspace clusters such that the existence of each 
subspace cluster H £ R can be explained by the existence of the subspace 
clusters P0?*, and Popt should be a smallest set of subspace clusters with that 
property. Ideally, Popt = T U e. 

To achieve this goal, we have to define an appropriate Explain relationship, 
which is based on the following intuition. We can think of the overall data 
distribution as being generated by the "true" subspace clusters, which we hope 
to capture in the set Popt, plus background noise. We can say that the actual 
support AS(H) of a subspace cluster H can be explained by a set of subspace 
clusters P, if AS(H) is consistent with the assumption that the data was 
generated by only the subspace clusters in P and background noise. 

More formally, if we have a set P — {Pi,..., P^} of subspace clusters that 
should explain all subspace clusters in P, we assume that the overall distri
bution is a distribution mixture of K + 1 components, K components corre
sponding to (derived from) the K elements in P and the K + 1 component 
corresponding to background noise, i.e., 

K+l 

f{x;e) = Y,t*kfk(x;Ok) (5.16) 
fc=l 

where 0), are the parameters of each component density, and //& are the pro
portions of the mixture. 

Conceptually, to justify that an observed subspace cluster H is explained 
by P , we have to test that the actual support AS(H) of H is not significantly 
larger or smaller than what can be expected under the given model. Again, 
this can in theory be done using a statistical test, if we can determine left and 
right critical values for the distribution of the test statistics AS(H), given a 
desired significance level. 

Practically, there are limitations to what can be done analytically to apply 
such a statistical test. An analytical solution requires to first estimate the pa
rameters and mixing proportions of the model, using the data and information 
that can be derived from the set P; and then, an equation for the distribu
tion of AS(H) has to be derived from the equation for the mixture model. 
Obviously, this is challenging (if not impossible) for more complex forms of 
distributions. 

In the following, we show how to define the Explain relationship assum
ing that all component densities are Uniform distributions. Let the K + l 
component be the uniform background noise in the whole space, i.e., 

fK+i(x) ~ Uniform([0,1] x . . . x [0,1]) (5.17) 

For the other components, corresponding to Pfc € P , we assume that data is 
generated such that in subspace(Pk), 1 < k < K, the points are uniformly 
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distributed in the corresponding intervals of Pk (and uniformly distributed in 
the whole domain in the remaining attributes, since these are the irrelevant at
tributes for Pk). Formally, if Pk has mk relevant attributes, i.e., Pk = I*x. . .x 
I^k, and the d attributes are ordered as (attr(I^),..., attr(I^k), [0 ,1] . . . , [0,1]), 
the fc-th component density is given by 

fk(x) ~ Uniform^ x . . . x / ^ x [0,1] x . . . x [0,1]) (5.18) 

To determine whether the existence of a subspace cluster H = 1^ x . . . x 1% 
is consistent with such a model, we have to estimate the possible contribution 
of each component density to H. For a component density fk, that contribution 
is proportional to the volume of the intersection between fk and H in the 
subspace of H, i.e., we have to determine the part of fk that lies in H. This 
intersection is —like H— an m#-dimensional hyper-rectangle 7rn(Pk) that can 
be computed as following. For fk, 1 < k < K, let Pk = 7-f x . . . x / £ and for 
JK+I, i-e. background noise, let PK+I = [0,1] X . . . x [0,1]: 

^ ) ^ " x . . . x e B l (5.19) 

where 
= [if n/*, iflj : attr(lf) = attr(lf) 

1 [If, else 

Because fk is a uniform distribution, the number of points in itH(Pk) gen
erated by fk follows a Binomial distribution 

Binomial(nk, ^ f f ) (5-20) 

with expected value nk * v°^uP \ , where nk is the total number of points 

generated by fk, and v°^up \ is the fraction of Pk that intersects H. 

The numbers nk can easily (under our assumptions) be estimated using the 
total number of points n and the information about the actual supports AS (Pi) 
of the subspace clusters Pt G P in the data set. For any of the components 
ft, 1 < i < K + 1, the number of points generated by that component is, 
according to the data model, equal to the observed number of points in Pi, 
AS (Pi), minus the contributions rij of the other components /_,-, j ^ i, and 
PK+I = [0,1] X . . . X [0,1] (for the background noise / K + I ) : 

ni=AS(P,)- E *&$»,„, (5.21) 

where np^Pj) is the intersection of hyper-rectangle Pj with hyper-rectangle Pt 

as defined in Equation (5.19). The equations in (5.21) can easily be solved for 
Hi since (5.21) is a system of K + 1 linear equations in K + 1 variables. 
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The system (5.21) is equivalent to: 

riK+i = n - (ni + • • • nK) 

A* [n1,...,nK}T = b 

where A is a K x K matrix, A = (di,j)i<i,j<K, where 

_jl-VOl(Pi),i = j 

and b is a K x 1 vector 6 = {bi)\<i<K so that 

6i - AS(P;) - n * vol(Pi) 

The solution (rik)i<k<K+i to (5.21) consists, in general, of real numbers. 
Since (nk)\<k<K+\ represent the number of data points generated by (fk)i<k<K+i, 
we convert (rik)i<k<K+i to integers by taking the largest integer value that is 
not greater than nk, for each k £ { 1 , . . . , K + 1}. 

The solution to (5.21) may include negative numbers. This indicates in
consistency with our assumptions, i.e., the data points within some Pk G P are 
not uniformly distributed in the corresponding intervals of Pk. The solution to 
(5.21) may not be unique when the system (5.21) is singular, which indicates 
redundancy in the set P. In these cases, we discard the set P as a possible 
candidate for the optimal solution P 0 ^ . 

We want to say that a set of subspace clusters P, plus background noise, 
explains a subspace cluster H if the observed number of points in H is consis
tent with this assumption and not significantly larger or smaller that expected. 
From the Binomial distributions (5.20), we can derive a lower and an upper 
bound on the number of points in H that could be generated by component 
density fk, without this number being statistically significant; these are the left 
#^0(fc), respectively right 0^0(k), critical values of this Binomial distribution, 
with significance level ao-

By summing up these bounds for each component density, we obtain a 
range [ES^, ES^] of the number of points in H that could be accounted for 
just by the presence of the subspace clusters in P, plus background noise, i.e., 

K+l 

ESb = J2e*oW (5-22) 
fe=i 

ES% = J2C(k) (5-23) 

If AS(H) falls into this range, we can say that AS(H) is consistent with P, 
or that P is in fact sufficient to explain the observed number of points in H. 
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Figure 5.2: Illustration of {̂ 4} explains B, {B} does not explain A 

Definition 5.4 Let P U {H} be a set of subspace clusters. P explains H 
if and only if AS{H) G [ES%, ES%}. 

P r o p e r t y 5.3 Let {H} U P b e a set of subspace clusters, H not in P. 
Then, {H} U P explains H. 

Proof. Since H is part of the explaining set {H} U P, from (5.21), it 
follows that: 

V0l{TTH{Pk)) AS(H) = nH + J2 
\<k<K+l 

vol{Pk) 
*nk 

(5.24) 

Thus, AS(H) is the sum of the expected values of the Binomial distri
butions given in (5.20), Vfc £ {1,...,K+1}, plus the expected value of the 
Binomial distribution Binomial(nH, „^(m — 1)) which represents the com
ponent H. Since the expected value of a Binomial distribution is between 
the left and right critical values of the Binomial distribution, it follows that 
AS(H) € [ES%, ES%], i.e., {H} U P explains H. 

Consequence. The Explain relationship is "reflexive", i.e., {H} explains 
H, VH e R. 

Property 5.4 The Explain relationship is not "symmetric", i.e., given 
two subspace clusters A, B € R, A ^ B, it is possible that {̂ 1} explains B, 
but {J5} does not explain A. 

Proof. Figure 5.2 illustrates two MBRs A and B, so that AS (A) = 80, 
vol(A) = 0.2 * 0.2 = 0.04, AS{B) = 20, vol(B) = 0.1 * 0.1 = 0.01. The data 
set has n — 300 data points. The data points are omitted from the figure for 
better clarity. 

Let ato = l.QE—10 be a significance level. A is a statistical significant MBR 
because the right critical value of a Binomial distribution with parameters 
n = 300 and vol(A) = 0.04 at significance level a0 = 1.0E — 10 is 39, and 
AS(A) = 80 > 39. B is a statistical significant MBR because the right critical 
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value of a Binomial distribution with parameters n — 300 and vol(B) = 0.01 at 
significance level a0 — l.OE —10 is 19, and AS(B) = 20 > 19. We assume that 
the points in SuppSet(A) and SuppSet(B) are not uniformly distributed on 
the attributes depicted in Figure 5.2, and thus A and B are subspace clusters. 

We show that {A} explains B. We solve system (5.21) for A and the uni
form background noise, and we obtain the solution (nA,nu), where n^ is the 
number of points generated by the component density associated with A, and 
nu is the number of points generated by the component density associated with 
the uniform background noise. Specifically, we obtain HA = —I-^MA°) ~ ^ 
and nu = n — UA = 230. Consequently, the Binomial distributions (5.20) are 
Binomial(riA, V°VOI[A\ ) = Binomial(70,0.25) and Binomial(nu,vol(B)) = 
Binomial(230,0.01). At significance level a0 = 1-0E — 10, the left and 
right critical values of the first Binomial distribution are 0 and 43, and the 
left and right critical values of the second Binomial distribution are 0 and 
17. By summing up these bounds, we obtain the range [0,60]. Because 
AS(B) = 20 e [0,60], it holds that {A} explains B. 

We show that {B} does not explain A. We solve system (5.21) for B and the 
uniform background noise, and we obtain the solution (ng, nu), where UB is the 
number of points generated by the component density associated with B, and 
nu is the number of points generated by the component density associated with 
the uniform background noise. Specifically, we obtain ns = — i _ ^ f m = ^ 
and nu = n — UB — 283. Consequently, the Binomial distributions (5.20) 
are Binomial(nB, "°Lm ) — Binomial(17,l) and Binomial(nu,vol(A)) = 
Binomial(283, 0.04). At significance level a0 = l.OE — 10, the left and right 
critical values of the first Binomial distribution are 17 and 17, and the left 
and right critical values of the second Binomial distribution are 0 and 37. By 
summing up these bounds, we obtain the range [17,54]. Because AS (A) = 
80 > 54, it follows that {B} does not explain A. 

Property 5.5 The Explain relationship is not "transitive", i.e., given 
three subspace clusters A, B, C € R, A ^ B, B ^ C, A ^ C, it is possible 
that {A} explains B, {B} explains C, but {A} does not explain C. 

Proof. Figure 5.3 illustrates three MBRs A, B, and C, so that AS (A) = 
60, vol(A) = 0.2 * 0.2 = 0.04, AS(B) = 31, vol(B) = 0.1 * 0.1 = 0.01, 
AS(C) = 30, vol{C) = 0.05 * 0.05 = 0.0025. The data set has n = 300 data 
points. The data points are omitted from the figure for better clarity. 

Let cto = l.OE1—10 be a significance level. A is a statistical significant MBR 
because the right critical value of a Binomial distribution with parameters 
n — 300 and vol(A) — 0.04 at significance level a0 = l.OE — 10 is 39, and 
AS(A) = 60 > 39. B is a statistical significant MBR because the right critical 
value of a Binomial distribution with parameters n = 300 and vol(B) — 0.01 
at significance level a0 = l.OE - 10 is 19, and AS{B) = 31 > 19. C is 
a statistical significant MBR because the right critical value of a Binomial 
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Figure 5.3: Illustration of {̂ 4} explains B, {B} explains C, {A} does not 
explain C 

distribution with parameters n = 300 and vol(C) = 0.0025 at significance 
level a0 = 1.0E — 10 is 11, and AS(C) = 30 > 11. We assume that the points 
in SuppSet(A), SuppSet(B), and SuppSet(C) are not uniformly distributed 
on the attributes depicted in Figure 5.3, and thus A, B, and C are subspace 
clusters. 

We show that {̂ 4} explains B. We solve system (5.21) for A and the uni
form background noise, and we obtain the solution (riA,nu)> where UA is the 
number of points generated by the component density associated with A, and 
nu is the number of points generated by the component density associated with 
the uniform background noise. Specifically, we obtain UA = — I - ^ M A ) = ^ 
and nu = n — IIA = 250. Consequently, the Binomial distributions (5.20) are 
Binomial(nA, ^~JTA))

 = Binomial(50,0.25) and Binomial(nu,vol(B)) = 
Binomial(250,0.01). At significance level a0 = 1.0E — 10, the left and 
right critical values of the first Binomial distribution are 0 and 34, and the 
left and right critical values of the second Binomial distribution are 0 and 
18. By summing up these bounds, we obtain the range [0,52]. Because 
AS(B) = 31 € [0,52], it holds that {A} explains B. 

We show that {B} explains C. We solve system (5.21) for B and the 
uniform background noise, and we obtain the solution (ng, nu), where nB is the 
number of points generated by the component density associated with B, and 
nu is the number of points generated by the component density associated with 
the uniform background noise. Specifically, we obtain n# = f_~ /̂m* = 28 
and nu = n — nB = 272. Consequently, the Binomial distributions (5.20) are 
Binomial(nB, "°Lm ) = Binomial(28,0.25) and Binomial(nu,vol(C)) = 
Binomial(272,0.0025). At significance level a0 = 1.0E - 10, the left and 
right critical values of the first Binomial distribution are 0 and 23, and the 
left and right critical values of the second Binomial distribution are 0 and 11. 
By summing up these bounds, we obtain the range [0, 34]. Because AS(C) = 
30 G [0, 34], it holds that {B} explains C. 
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We show that {A} does not explain C. We solve system (5.21) for A and 
the uniform background noise, and we obtain the solution (nA,nu), where 
TIA is the number of points generated by the component density associated 
with A, and nu is the number of points generated by the component density 
associated with the uniform background noise. Same as above, we obtain 
HA = 50 and nu = 250. Consequently, the Binomial distributions (5.20) are 
Binomial(riA, V°VOI[A\ ) = Binomial(50,0.0625) and Binomial(nu,vol(C)) = 
Binomial(250,0.0025). At significance level a0 = 1.0E — 10, the left and 
right critical values of the first Binomial distribution are 0 and 18, and the 
left and right critical values of the second Binomial distribution are 0 and 10. 
By summing up these bounds, we obtain the range [0, 28]. Because AS{C) = 
30 > 28, it follows that {̂ 4} does not explain C. 

Property 5.6 The Explain relationship is not monotonic in the following 
sense. Let P U {H} U {X} be a set of subspace clusters, H, X not in P , 
X j^ H. It is possible that P explains H, but P U {X} does not explain H. 

Proof. We prove this property with a concrete example that we have en
countered on one of our real data sets. Let A, B, C and H be four subspace 
clusters so that AS (A) = 49, vol(A) = 0.0148305; AS(B) = 33, vol(B) = 
0.0047081; AS{C) = 40, vol(C) = 0.00297933; AS{H) = 40, vol(H) = 
0.0642656. Furthermore, vol(B (1 H) = 0, vol(A D C) = 0, vol(B n C ) = 0, 
vol(C fl H) = 0. The total number of points in the data set is n = 150. 

We show that {A,B} explains H. We solve system (5.21) for A, B, 
and the uniform background noise, and we obtain the solution (n^,ns,nj/) , 
where UA and n# represent the number of points generated by the compo
nent densities associated with A and B, respectively, and nu is the number 
of points generated by the component density associated with the uniform 
background noise. We obtain n^ = 41, ng = 29, and nu = 80. At signifi
cance level a0 = 1.0E — 10, the left and right critical values of the Binomial 
distributions in (5.20) are: 0 and 18 for Binomial(41, TO^^)); 0 and 1 for 

Binomial(29, vol}^) = 0); and 0 and 24 for Binomial(80, vol(H)). By sum
ming up these bounds, we obtain the range [0,43]. Because AS(H) = 40 G 
[0,43], it follows that {A,B} explains H. 

We show that {A, B, C} does not explain H. We solve system (5.21) 
for A, B, C, and the uniform background noise, and we obtain the solu
tion (nA,riB,nc,nu), where nA, nB and nc represent the number of points 
generated by the component densities associated with A, B, and C, respec
tively, and nu is the number of points generated by the component density 
associated with the uniform background noise. We obtain n^ = 41, ns = 29, 
nc = 39, and nu = 41. At significance level ao = 1.0E — 10, the left and 
right critical values of the Binomial distributions in (5.20) are: 0 and 18 for 
Binomial(41,vfof{

n
A^y, 0 and 1 for Binomial(29, vol

v
{^B"] = 0); 0 and 1 for 

Binomial(39, v°vol/C\ = 0); and 0 and 17 for Binomial(41, vol(H)). By sum-
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ming up these bounds, we obtain the range [0, 37]. Because AS(H) — 40 > 37, 
it follows that {A, B, C} does not explain H. 

5.6 Redundancy-aware Problem Definition 

The problem of representing R via a smallest (in this sense non-redundant) 
set of subspace clusters can now be defined. 

Redundancy-aware problem definition. Given a data set D of n d-
dimensional points. Let R be the set of all subspace clusters of D. Find a 
non-empty set Popt C R with smallest cardinality \P°pt\ so that P0?1 explains 
H for all HER. 

Property 5.7 The optimization problem is guaranteed to have a solution. 

Proof. Based on Property 5.3, R explains H, MH G R. Thus, if there is 
no other P C R so that P explains H, \/H G R, the optimization problem has 
the solution R. 

We note that, in general, the solution to the redundancy-aware problem 
definition may not be unique. 

We note that any proper subset P' of Popt does not have the property that 
it explains all subspace clusters in R. If such a proper subset P' would exist, 
then P' will be the optimal solution, because P' has less elements that Po p i , 
which contradicts the fact that P°pt is the optimal solution. In this sense, P°pt 

is non-redundant. 

We emphasize the fact that the redundancy-aware problem definition avoids 
shortcomings of existing problem definitions in the literature. First, our ob
jective is formulated through an optimization problem, which is independent 
of a particular algorithm used to solve it. Second, our definition of subspace 
cluster is based on statistical principles; thus, we can trust that Popt stands out 
in the data in a statistical way, and is not simply an artefact of the method. 

Enumerating all elements in R in an exhaustive way is computationally 
infeasible for larger values of n and d. Finding a smallest set of explaining 
subspace clusters by testing all possible subsets of R has complexity 2^1, which 
is in turn computationally infeasible for typical sizes of R. 

As a sanity check, we ran an exhaustive search on several small data sets 
where some low dimensional subspace clusters were embedded into higher di
mensional spaces, similar to and including the data set depicted in Figure 
5.1(g). The result sets Popt found for these data sets were always containing 
only the embedded subspace clusters (i.e., we did not even have any false pos
itives in these cases); In Figure 5.1(g), the two depicted 2-dimensional rectan
gles indicating the embedded subspace clusters represent in fact the subspace 
clusters found by the exhaustive search. 
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The redundancy-aware problem definition is an optimization problem. We 
consider the corresponding decision problem, called RedundancyAware-k: 

Redundancy Aware-k: Given a data set D of n d-dimensional points. Let 
R be the set of all subspace clusters of D. Given k an integer, k G {1,. .. ,\R\}. 
Determine if there exists a set P C R with \P\ = k so that P explains H for 
all HER. 

We note that, given a set P C R, we can verify in polynomial-time, i.e., 
0(|i?|), if P is a solution of RedundancyAware-k. In addition, a naive algo
rithm for solving the decision problem Redundancy Aware-k would generate all 
subsets P of R of length k, and check for each one of them whether P explains 
H, \/H <G R. The running time of this algorithm is 0(\R\ * choose(\R\,k)), 
which is super-polynomial when k is near |i?|/2, because the maximum value 
of choose(\R\, k)) is achieved when k = [|i2|/2j or k — |~|i?|/2]. 

Based on these facts, we conjecture the NP-completeness of the decision 
problem Redundancy Aware-k. 

Relationship to data generation model. In the following, we assume 
that in a data set D with n d-dimensional data points, we embed K subspace 
clusters { C i , . . . , C # } according to Definition 5.3. The embedded subspace 
clusters may share relevant attributes and they may overlap in common rel
evant attributes. However, if two or more embedded subspace clusters have 
the same set of relevant attributes, then, they can overlap in some relevant at
tributes, but not in all, because in this case, the overlapping subspace clusters 
can and should be regarded as just one subspace cluster. In addition, we as
sume that the remaining data points that are not cluster points are uniformly 
distributed on each attribute of D. 

Let Pmodel C R, Pmodel = [jf=1 d U e, where e are the false positives 
subspace clusters that may result from the statistical tests. Ideally, the optimal 
solution P0?1 of the redundancy-aware problem definition should be pmodel. 
This is because the existence of the subspace clusters in R\pmodel [s due to the 
existence of the subspace clusters in pmodel

} and, thus, Pmodel should explain 
all subspace clusters in R. In addition, the existence of a subspace cluster 
in pmodel is not due to the existence of another subspace cluster in pmodel

; 

and thus, the subspace clusters in pmodel should not explain each other. This 
indicates that pmodel should be the smallest set of subspace clusters in R that 
explains all subspace clusters in R. 

In general, we cannot guarantee that P0^ coincides with pmodel. In fact, 
Popt is likely to be "close" to Pmodel in the sense that the subspace clusters 
in Popt correspond well to the subspace clusters in pmode\ but they may have 
a few more or less data points in comparison with the subspace clusters in 
pmodel_ pjgU r e 54 illustrates this point. 

Figure 5.4 illustrates an embedded subspace cluster A in a subspace S, and 
two subspace clusters B and C in the same subspace. B and C consist of some 
of the points in A and some points from the uniform background surrounding 
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Figure 5.4: The existence of subspace clusters B and C is due to the existence 
of embedded subspace cluster A 

A in subspace S. The existence of the subspace clusters B and C is due to the 
existence of the embedded subspace cluster A. In addition to B and C, there 
may be other subspace clusters in subspace 3 whose existence is due to the 
existence of the embedded subspace cluster A. However, we illustrate only B 
and C for better clarity in the figure. 

A explains the subspace clusters that exist because A exists, such as B 
and C, and some of these subspace clusters may explain A as well. But the 
optimal solution Popt is the smallest set with the property that it explains all 
subspace clusters in R. Thus, from the group of A and the subspace clusters 
whose existence is due to the existence of A, only one subspace cluster will 
be placed in P 0 ^ . This subspace cluster may not be necessarily A; it may be 
another subspace cluster that differ from A in a few data points. 
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Chapter 6 

Approximation Algorithm 
STATPC 

In order to find the solution Popt to the redundancy-aware problem definition, 
we need heuristics to 1) find a good set pjeduced c R in which we can effi
ciently search for 2) a smallest set Pso1 that explains (at least) all elements in 
Rreduced. Ideally, Fo p t C pjeduced. We propose an approximation algorithm, 
called STATPC, that follows this schema. 

Let Popt — {Ti,... ,TK} be a solution to the redundancy-aware problem 
definition. We refer to the subspace clusters in Popt as the "true" subspace 
clusters. The approximation algorithm STATPC first constructs a set Rreduced 

by trying to find true subspace clusters around data points. Second, we solve 
heuristically the optimization problem on pjeduced through a greedy optimiza
tion strategy and we obtain the solution Psd. 

The pseudo-code of STATPC is given in Figure 6.1. 

6.1 Finding True Subspace Clusters Around 
Data Points 

For a given data point Q, we want to determine if a true subspace cluster 
exists around Q. Towards this goal, first we select several candidate subspaces 
around Q, so that, when a true subspace cluster exists around Q, the prob
ability that at least one of the candidate subspaces is relevant for the true 
subspace cluster is high. Second, for each candidate subspace, we find a lo
cally optimal subspace cluster around Q. Third, since several locally optimal 
subspace clusters around Q in candidate subspaces may have been detected, 
we select the "best" one among them as the locally optimal subspace cluster 
among them. 
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Input: Data set D — {{xn,...,Xid)\l <i< n}, parameters OLQ, an, 
aH. 
Output: Several, possibly overlapping, subspace clusters, and outliers. 
Method: 

1. Build a set Rredwxd: 

(a) Select a data point Q from the set of data points that does 
not belong to subspace clusters detected so far, either ran
domly or based on a previous recommendation, if it exists. 

(b) Detect several candidate subspaces around Q (Figure 6.3). 

(c) For each candidate subspace, detect a locally optimal sub-
space cluster around Q (Figure 6.4). 

(d) Among the locally optimal subspace clusters detected in 
steps l.b) and l.c), one locally optimal subspace cluster is 
selected, and stored in Rreduced, 

(e) Repeat steps l.a), l.b), l.c), and l.d) until no data point 
can be selected for further subspace cluster search. 

2. Solve greedily the redundancy-aware problem on Rreduced^ and 
obtain a solution Pscl (Figure 6.5). Points that do not belong to 
any of the subspace clusters in Pso1 are declared outliers. 

Figure 6.1: Pseudo-code of STATPC 
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6.1.1 Detecting Candidate Subspaces 

To determine a candidate subspace around a given data point Q, we consider 
all 2D hyper-rectangles with Q in the center and side width 2*5, i.e., all 
hyper-rectangles: 

[Q.Attri - 8, Q.Attri + 8} x [Q.Attrj - 8, QAttr, + 8} (6.1) 

for some 8 G [0, 0.5], 1 < i < j < d. 
Subsequently, we propose to rank the 2D subspaces of the data set D in 

decreasing order of the actual support of these 2D hyper-rectangles. Let Rank 
denote this ranking. By analyzing the ranking Rank, we want to determine a 
set of attributes, called signaled attributes, which are, with high probability, 
relevant for one of the true subspace clusters around Q. 

Motivation Let Q be a data point centrally located in at least one true 
subspace cluster. Then, 2D subspaces that involve attributes of the true sub-
space cluster(s) around Q are likely to be placed towards the top of the ranking 
Rank. 

First, we consider the case when there is a single true subspace cluster C\ 
in the data, which consists of n\ data points, and has r± relevant attributes. 

We estimate the actual support of a 2D hyper-rectangle H around Q that 
involves at least one relevant attribute of C\. There are choose{r\,2) + r\ * 
(d — ri) such 2D hyper-rectangle H, where d is the dimensionality of the data 
set. 

Since Q belongs to C\, H includes a certain fraction fx of the cluster points 
ni, fi G (0,1]. The value of fi depends on the positioning of Q within C\, 
and on the parameter 8. Ideally, / i = 1, when H includes all n\ cluster 
points. Since the remaining n — n\ data points are uniformly distributed on 
subspace(H), H includes data points from the remaining data points propor
tionally to its volume vol(H) = (2 * 8)2. Thus, the actual support of H is 
estimated as: 

AS{H) « A * ni + (n - nx) * (2 * 8f = (/a - (2 * 5)2) * m + n * (2 * 8)2 (6.2) 

We estimate the actual support of a 2D hyper-rectangle H' around Q that 
does not involve any of the relevant attributes of C\. There are choose(d, 2) — 
[choose(ri, 2) + r\ * (d — ri)] such 2D hyper-rectangle H'. 

In this case, all n data points are uniformly distributed in subspace(H'), 
and the actual support of H' is estimated as: 

AS(H') ^n*(2*5)2 (6.3) 

Based on Equations (6.2) and (6.3), it follows that AS(H) > AS(H') when 
/ i > (2*5)2. For instance, for 8 G {0.05,0.1,0.15}, AS(H) > AS(H') when H 
includes at least a fraction fi G {0.01,0.04,0.09}, respectively, of the cluster 
points n\. 
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We cannot guarantee that condition / i > (2 * S)2 always holds, because it 
may hold or not depending on the positioning of Q within C\ and the value 
of 6. But, the more centrally located Q is within C\, the more likely that 
condition / i > (2 * S)2 holds. 

Thus, given a data point Q centrally located in C1; the actual support of 
a 2D hyper-rectangle around Q that involves at least one relevant attribute 
for C\ is likely to be higher than the actual support of a 2D hyper-rectangle 
around Q that involves no relevant attribute for C\. This is in fact equivalent 
to the statement of Property 6.1. 

Second, we consider the case when there are K true subspace clusters in 
the data C\, C?,..., CK, SO that each one of them consists of nk data points, 
and has r^ relevant attributes, 1 < k < K. Without restricting the generality, 
we can assume that Q belongs C\. 

As in the first case, we estimate the actual support of a 2D hyper-rectangle 
H around Q that involves at least one relevant attribute of C\. 

H includes a certain fraction / i , / i G (0,1], of the cluster points ni. Some 
other true subspace clusters k, 2 < k < K, may have relevant attributes in 
subspace(H); let B be the set of such subspace clusters. Let fk, fk G [0,1], 
denote the fraction of points from true subspace cluster km B that is included 
in H, 2 < k < K. 

The remaining n — nx— Y^k€B nk data points are uniformly distributed in 
subspace(H). The actual support of H is estimated as: 

AS(H) sa fi*n1 + J2fk*nk + (n-n1-J2nk)*(2* $Y 
keB keB 

AS(H) w (/i - (2 * Sf) * m + 53(/ f c - (2 * S)2) *nk+n*{2*5)2 (6.4) 
keB 

We also estimate the actual support of a 2D hyper-rectangle H' around Q 
that does not involve any of the relevant attributes of C\. 

Some other true subspace clusters k, 2 < k < K, may have relevant at
tributes in subspace(H'); let B' be the set of such subspace clusters. Let e*, 
efc G [0,1], denote the fraction of points from true subspace cluster k in B' 
that is included in H', 2 < k < K. 

The remaining n — 2~2keB' nk data points are uniformly distributed in 
subspace(H'). The actual support of H' is estimated as: 

AS(H') ^^2ek*nk + (n-Y,nk)*(2* 5)2 

keB1 keB' 

AS(H') *J2(ek-(2* 6)2) * nk + n * (2 * 5)2 (6.5) 
keB' 

In Equations (6.4) and (6.5), the amounts z~2,keB{fk — (2 * 5)2) * nk and 
J2kGB'(ek — (2 * 5)2) * nk, are likely comparable; and thus, AS(H) > AS(H') 
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likely holds when / j > (2 * 5)2. From here, we can draw the conclusion as in 
the first case. 

We note that the above analysis suggests that Property 6.1 is the more 
likely to happen 1) the more points C\ has, because, the larger n1, the higher 
the chance that AS(H) > AS(H'); and 3) the more relevant attributes C\ has, 
because the larger r\, the more 2D hyper-rectangles that involve at least one 
relevant attribute of C\. 

There are choose(d, 2) = *̂ 2~~ ' pairs of attributes in Rank, and let M 
be a positive integer, 1 < M < *'2~ '. Property 6.1 does not mean that the 
top M pairs in Rank consist only of relevant attributes for the true subspace 
cluster(s) around Q. Property 6.1 means that the frequency with which rele
vant attributes for the true subspace cluster (s) around Q occur in the top M 
pairs in Rank is likely to be significantly higher than the frequency with which 
irrelevant attributes for the true subspace cluster(s) around Q occur in top M 
pairs in Rank. Therefore, if we measure the frequency with which individual 
attributes occur in the top M pairs in Rank, then, attributes with "high" 
frequency are highly likely to be relevant attributes for the true subspace clus
ter (s) around Q. We need a way to decide which frequencies are "higher than 
expected". 

To determine if an attribute a € A is significantly more frequent than 
expected in the top M pairs in Rank, we compare its frequency to the expected 
frequency of an attribute in a randomly selected set of M pairs from the set 
of all pairs of attributes formed with the attributes in A. 

In a data set where all data points are uniformly distributed on all at
tributes, the actual support of a 2D hyper-rectangle of side width 2*5 around 
a data point Q is given by formula (6.3). Thus, if we rank the 2D subspaces 
of the data set in decreasing order of the actual support of these 2D hyper-
rectangles, any ranking is equally likely. Then, taking the top M pairs in such 
a ranking is equivalent to selecting M pairs of attributes randomly from the 
set of all pairs of attributes formed with the attributes in A. 

Let a 6 A be an attribute of the data set D. Let us assume that we select 
M pairs of attributes randomly from the set of all pairs of attributes formed 
with the attributes in A. Let X be the random variable that represents the 
number of occurrences of attribute a in the selected M pairs of attributes. X 
is a hyper-geometric distributed variable with parameters * 2 ' (number of 
all pairs), d—1 (number of pairs containing attribute a), and M (sample size): 
for 1 < k < M, Pr{X = k) equals 

Pr(X = k) = Ch00Se{d ~1,k)* choos<'ti¥1 ~(d-l),M- k) 
n ' choose(^^,M) l ' ' 

Definition 6.1 Given a data set D of n c?-dimensional points. Let M be a 
2— .̂ Let an be a significance level. Let 9aH positive integer, 1 < M < -^^—-. Let O>H be a significance level. Let 9aH be 
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the right critical value of the hyper-geometric distribution (6.6), at significance 
level an- An attribute a £ A is said to occur more often than expected in the 
top M pairs in Rank, if its number of occurrences in the top M pairs in Rank 
is larger than 9aii. 

We have to decide a value for M. M should take relatively small values, 
because, as we go down the ranking, eventually all attributes will appear as 
often as expected. 

We observe that, given a fixed significance level value aH, different values 
of M result in the same right critical values 6aH for the hyper-geometric distri
bution (6.6), because of the discrete nature of the distribution. For instance, 
if aH = 0.001, d = 50, then 6aH = 2 for M e Mval = {2,3,4, 5}. This means 
that, for any value of M in the set Mval, we will conclude that an attribute 
a G A occurs more often than expected in the top M pairs in Rank, if it occurs 
at least 0art = 2 times in the top M pairs in Rank. Therefore, we shall choose 
M as the largest value in Mval. 

In STATPC, in order to be robust to the value of M, and in order to 
position M at the top of the ranking, we consider three sets of values M\al, 
M™1, and M^ai for M that result in three consecutive critical values 0ajl £ 
{2,3,4}. In each case, we set M to the largest value in M?"1, 1 < i < 3, 
and we obtain three values Mi, 1 < i < 3, for M. In our example, the three 
values for M are 5, 12, and 20, because for each M e {2,3,4,5}, we obtain 
8ai] = 2; for each M € {6,7,8, 9,10,11,12}, we obtain 6aH = 3; and for each 
M E {13,14,15,16,17,18,19,20}, we obtain 9aH = 4. 

Definition 6.2 For each M,, 1 < i < 3, let At, 1 < i < 3, be sets of 
attributes that occur more often than expected in the top Mi, 1 < i < 3 
pairs in Rank. For an attribute a G A, we define count(a) as the number 
of times a occurs in all Ai, 1 < i < 3. We define the signaled attributes as 
SignaledAttributes = {a 6 A\count(a) > 0, count(a) = max^ACOuntib)}. 

For example, if we obtain A\ = {Attri, Attr2, Attr3} for Mi = 5; A2 = 
{Attri,Attr2,Attr3} for M2 = 12; and A3 = {Attrlt Attr3} for M3 = 20, then 
the set of signaled attributes is {Attri,Attr3}. 

By taking the signaled attributes to be the most frequently occurring at
tributes in At, 1 < i < 3, we decrease the probability that a signaled attribute 
is irrelevant for all true subspace clusters to which Q belongs, and we increase 
the probability that a signaled attribute is relevant for the true subspace clus
ter^) to which Q belongs. 

We note that, if an attribute a E A occurs more often than expected in the 
top Mi pairs in Rank, it is not guaranteed that attribute a occurs more often 
than expected in the top M2 pairs in Rank, where M2 > Mi. In our previous 
example, it is possible that when we take the top Mi = 5 pairs in Rank, 
attribute a occurs more often than expected because it occurs in 2 pairs, but 
when we take the top M2 = 12 pairs in Rank, attribute a does not occur more 
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• Attr2 

Figure 6.2: The issue of committing to a candidate subspace 

often than expected, because it occurs in the same 2 pairs, and in order to 
occur more often than expected, it should have occurred in at least 3 pairs. 

Iterative refinement of signaled attributes. Let S° be a set of signaled 
attributes. We observe that if S° is only a subset of the relevant attributes 
for a true subspace cluster around Q, then, by considering the points in a 
hyper-rectangle W of side width 2*5 around Q in subspace 5°, we capture 
a fraction of the true subspace cluster's points, which is often large enough 
to allow us to determine more of the relevant attributes; these are attributes 
where the points in SuppSet(W) are not uniformly distributed. 

Based on this observation, we can obtain a candidate subspace around Q 
through an iterative refinement of 5°, as follows. Let S1 be the set of relevant 
attributes for W built in subspace S°. If 5° is not included in S1 , return the 
empty set. If S° = 5 1 , return S°. Otherwise, we repeat with S1, selecting 
the relevant attributes of W built in subspace S1, and so on, until no more 
attributes can be added. 

Commit to a candidate subspace or recommend the next data 
point. Let S = Stter, iter > 1, S ^ 0, be the candidate subspace determined 
by the iterative refinement of a set of signaled attributes S°. Let W be a 
hyper-rectangle of side width 2*5 around Q in subspace Siter~1. 

By the construction of S, the data points in SuppSet(W) are not uniformly 
distributed on each attribute a£ S. Thus, for each attribute a E S, we would 
like to detect the ID regions that are responsible for the fact that the data 
points in SuppSet{W) are not uniformly distributed on a. In addition, Q may 
or may not belong to these ID regions. 

For instance, in Figure 6.2, Q is a data point for which we want to determine 
a candidate subspace. We determine that the set of signaled attributes S° is 
S° = {Attri}. W is a hyper-rectangle of side width 2*6 around Q in subspace 
S° = {Attri}. Through the iterative refinement, S° is extended into the 
candidate subspace S — {Attri, Atttr2}, because the points in SuppSet(W) 
are not uniformly distributed on Attri and on Attri- The ID regions that 
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are responsible for the fact that the points in SuppSet(W) are not uniformly 
distributed on Attri and on Attr2 are depicted as bold segments on Attri and 
on Attr2. Q belongs to such a ID region on the signaled attribute Attri, but 
it does not belong to such a ID region on the attribute Attr2. 

As exemplified in Figure 6.2, there are cases when a candidate subspace 
contains a subspace cluster (which may be a true subspace cluster), and Q is 
placed in the candidate subspace in the vicinity of the subspace cluster. If we 
keep the candidate subspace, then, in the next step, STATPC will compute a 
locally optimal subspace cluster around Q in the candidate subspace. Because 
of the positioning of Q with respect to the subspace cluster, the locally optimal 
subspace cluster around Q in the candidate subspace will be a subspace cluster 
that includes Q and some of the cluster points. The locally optimal subspace 
cluster around Q in the candidate subspace may be stored in Rreduced^ j n 

which case, its points cannot be selected for further subspace cluster search. 
Thus, the probability of selecting a data point for subspace cluster search 
that is centrally located in the subspace cluster of the candidate subspace 
has decreased. Therefore, the probability that the subspace cluster of the 
candidate subspace will be stored in Rreduced has decreased as well. 

Thus, if a situation like the one illustrated in Figure 6.2 is detected, we do 
not commit to the candidate subspace, i.e., we do not keep this subspace as 
a candidate subspace. Furthermore, we are able to recommend the next data 
point for subspace cluster search as the data point that does not belong to any 
of the previously computed subspace clusters, and that is located centrally in 
the subspace cluster of the candidate subspace. In this way, we increase the 
probability of having in Rreduced the subspace cluster of the candidate subspace 
for the next data point used for subspace cluster search. 

Therefore, we need to decide whether to commit or not to a candidate 
subspace S. For each attribute a € S, we detect the ID region(s) that are 
responsible for the fact that the data points in SuppSetiW) are not uniformly 
distributed on a using a methodology similar to the one used in P3C to detect 
cluster projections. First, we divide attribute a into [l+log2(AS(W))\ bins, by 
the Sturge's rule [65]. Second, we compute, for each bin, how many points from 
SuppSet(W) it contains, and compare this number with the expected number 
of points in a bin if the points in SuppSet(W) were uniformly distributed 
across all the bins on attribute a. If a bin has more points than expected, then 
the bin is marked. Finally, adjacent marked bins are merged into ID regions. 
For an attribute a € S, more than one such ID region may be detected on a. 

If there exists at least one attribute a € S so that Q does not belong to 
one ID region, computed as above, on this attribute, then, we conclude that, 
if there were a subspace cluster in the candidate subspace, then Q is placed in 
its vicinity, and thus we do not commit to the candidate subspace. 

When we do not commit to a candidate subspace, we can recommend the 
next data point for subspace cluster search. The ID regions identified as de
scribed above form one or more multi-dimensional regions in the candidate 
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subspace. We choose arbitrarily one of the multi-dimensional regions in the 
candidate subspace, and we recommend as the next data point for subspace 
cluster search, the data point that does not belong to any of the previously 
computed subspace clusters, and that is closest, in terms of Manhattan dis
tances in the candidate subspace, to the centroid of the multi-dimensional 
region formed with the ID regions. 

So far, we have detected a candidate subspace around Q given a certain 
value for S. There is no "best" value for S, and to improve our chances of 
detecting a true subspace cluster if it exists around a data point, we suggest 
to use several different values. We simply try the 3 values 0.05, 0.1, 0.15 for 
5. The candidate subspaces detected for different values of 5 may be identical 
or they may be the empty set 0; thus, we detect up to 3 candidate subspaces 
for each data point Q that we consider. 

6.1.2 Detecting a Locally Optimal Subspace Cluster per 
Candidate Subspace 

Let S be a candidate subspace. To determine if a subspace cluster around Q 
exists in S, we build a series of MBRs in S, starting from Q, and adding in 
each step to the current MBR the data point with the smallest MINDIST to 
the current MBR in subspace S. MINDIST l is the popular distance between 
a data point and an MBR used in index structures [39]. For efficiency reasons, 
and because a cluster contains typically only a fraction of the total number of 
points, we only build 0.3 * n MBRs around Q in subspace S. 

Let Rlocal be the set of MBRs built in this way that are also subspace 
clusters. If Rlocal = 0, no true subspace cluster around Q in S could be 
found; otherwise, we obtain a set of highly overlapping subspace clusters. 
We want to select one of these subspace clusters that is locally optimal in 
the sense that it explains more subspace clusters in Rlocal than any other 
subspace cluster in Rlocal. However, because the subspace clusters in Rlocal are 
highly redundant, there may be several subspace clusters in Rlocal that explain 
the same maximum number of subspace clusters in Rlocat. Thus, we want to 
select one of these subspace clusters that is locally optimal in the sense that it 
explains better all subspace clusters in Rlocal than any other subspace cluster 
in Rlocal. 

Under the same data model assumptions as for the Explain relationship, 
we can define the expected support of a subspace cluster H assuming a single 

xIf I = (h,..., I/) and u = (u\,... ,Ud) are the left-most, respectively, right-most corners 
of a d-dimensional MBR M, then MINDIST between a d-dimensional point P = {pi, • • • ,Pd) 
and the MBR M is the square of ~}2i=1(pi — ri)2, where r; = h, if p; < U; r; = «;, if p* > m\ 
n=pi, else. 
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Input: Data set D — {{xa,. .. ,Xij)\l < i < n}, parameter aH, data 
point Q. 
Output: Up to 3 candidate subspaces around Q. 
Method: 

1. For each 5 e {0.05,0.1,0.15}: 

(a) Build a hyper-rectangle of side width 2*8 around Q in each 
2D subspace of the data set. 

(b) Rank the 2D subspaces in decreasing order of the actual 
support of the 2D hyper-rectangles built at step l.a). 

(c) Let 6aH be the right critical value of the hyper-geometric 
distribution (6.6) at significance level a# . Determine the 
largest values Mi, M2, M3 for which the corresponding crit
ical values 9aH are 2, 3 and 4, respectively. 

(d) For each Mi} 1 < i < 3, determine a set of attributes Ai, 
1 < i < 3, that occur more often than expected in the top M, 
pairs in the ranking computed in step l.b), i.e., attributes 
that occur more than 2, 3, and 4, respectively, times in the 
top Mi pairs in the ranking computed in step l.b). 

(e) Compute the set of signaled attributes S° as the attributes 
most frequent in Ai, 1 < i < 3. 

(f) Refine iteratively S° and obtain a candidate subspace S: 
5 ^ 0 ; iter <- 0 
while(C ontinue) 
W := hyper-rectangle of side width 2 * 5 around Q in S%ter 

Suer+i . = r e l e v a n t attributes of W built in Siter 

If Slter not included in Slter+1: Continue = 0, return S 
If Siter = Siter+1: Continue = 0, return S = Siter 

If Siter C Siter+1: S «- Siter+1, iter *- iter + 1 
End while 

(g) Decide whether to commit to candidate subspace S, and if 
not, recommend the next data point for candidate subspace 
construction. 

Figure 6.3: Pseudo-code of detecting candidate subspaces around a point Q 
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subspace cluster Fj and the uniform background noise, as: 

ES(H\P,) = nPl *
 V-^J^ + (n _ n ) * u o / ( i / ) (6.7) 

where np2 is the number of points generated by the density component asso
ciated with Pi, obtained by solving Equation (5.21) for Pi and background 
noise. 

We measure how well Pi explains H by comparing expected support ES{H\P\) 
and actual support of AS(H), using a function Quality Explain : Rlocal x 
Rlocal _ ^ [ 0 ) 1 ] . 

QuaUiyE^an^.H) := ! - J ^ ' ^ ^ . fl.* € tf~ 

(6.8) 
Quality Explain represents the relative difference between the actual sup

port A3(H) of H and the estimated support ES{H\P\) of i7 given the sub-
space cluster Pi and the uniform background noise. QualityExplain(Pi,H) 
can be written as: 

N f 4mfp .̂ if A$(H) < ES(H\Pi) 
QualUyE^niA.H) _ j ^ J ' ^ j £ ^ j 

The closer AS(H) and ES(H\Pi) are, the closer Quality Explain is to 1, 
and the better the quality of explanation. 

Consequently, we choose as the locally optimal subspace cluster around Q 
in S the subspace cluster plocal g pjocai ^ a t maximizes 

J2 Quality Explain(Plocal,H) (6.9) 
//gpiocoi 

6.1.3 Detecting a Locally Optimal Subspace Cluster Be
tween Locally Optimal Subspace Clusters in Can
didate Subspaces 

For a given data point Q, let RalUocal be the set of all locally optimal subspace 
clusters around Q detected in Sections 6.1.1 and 6.1.2. Since we determine 
up to 3 candidate subspaces around Q, and in each one of these candidates 
subspaces, we determine up to 1 locally optimal subspace cluster around Q, it 
holds that |.RaMJoco'| < 3. 

We select the subspace cluster palUocal g palUocal ^at explains better 
all subspace clusters in RallJ°cal than any other subspace cluster in pL

allJocal, 
Formally, we select the subspace cluster palUocal g paiuocai ̂ ^ maximizes 

J2 Quality Explain(PalUocal,H) (6.10) 
JJciftall-local 
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Input: Data set D = {(xn,... ,£jd)|l < i < n}, parameter a0j OLK, 
data point Q, candidate subspace S. 
Output: A subspace cluster around Q in subspace S. 
Method: 

1. Build 0.3 * n MBRs around Q in subspace S by adding, one at 
a time, the data point with smallest MINDIST to the current 
MBR. 

2. Build Rlocal as the set of MBRs constructed in step 1) that are 
subspace clusters. 

3. Choose as the locally optimal subspace cluster around Q in S the 
subspace cluster Plocal e Rlocal ^ a t maximizes (6.9). 

Figure 6.4: Pseudo-code of detecting a locally optimal subspace cluster around 
a data point Q in a candidate subspace S. 

6.1.4 Cons t ruc t ing t h e Set Rreduced 

To construct a set Rreduced
j STATPC tries to find subspace clusters around 

data points as described in Sections 6.1.1, 6.1.2, and 6.1.3. The first point to 
consider is selected randomly from the set of all points. Subsequent points are 
selected randomly from the points that do not belong to detected subspace 
clusters in previous steps. Building Rreduced terminates when no data point 
can be selected for further subspace cluster search. 

6.2 Greedy Optimization 
Although \Rredu<xd\ < \R\^ solving the optimization problem on Rreduced by 
testing all its possible subsets is still computationally too expensive in general. 
Thus, we construct greedily a set Pso1 that explains all subspace clusters in 
Rreduced

) but may not be the smallest set with this property. 

We build Pso1 by adding one subspace cluster at a time from Rreduced. At 
each step, let Cand be the set of subspace clusters in Rreduced that are not 
explained by the current Ps°l. Thus, subspace clusters in Cand can be used 
to extend Pso1 further, until Pso1 explains all subspace clusters in Rreduced_ 
Initially, Pso1 = 0 and Cand = Rreduced, in each step, we select the subspace 
cluster H* G Cand for which Pso1 U {H*} explains more subspace clusters in 
^reduced ^an a n y 0ther choice from the set Cand. H* is added to Pso1, and 
we stop when Cand is empty. 

Because of Property 5.3, set Cand cannot include a subspace cluster that 
has been already selected in Pso1. Thus, Cand is guaranteed to become void, 
and the optimization strategy is guaranteed to end. 
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Input: Data set D — {(xn,... ,xi(i)\l < % < n}, parameter a0, set 
L>reduced 

Output: A solution Psd C BT^uced SQ t h a t p s o ; e x p i a i n s H, 
W C 7 r TDveduced 

Method: 
1. Initialization: P s o i := 0; Cand := / T e d W . 
2. Greedy optimization: 
While (Cand ^ 0) 
Choose tf* e Cand so that Pso1 U {H*} 
argmaxHeCand\ExplainedBy(Pso1 U H)\. 
psol .__ psol i j I P[*\ 

Cand := Rreduced\ExplainedBy(Psd). 
End while 

Figure 6.5: Pseudo-code of detecting greedily a solution Pso1 on Rreduced. 

The pseudo-code of the greedy optimization is given in Figure 6.5. For 
\/P C Rreduced^ w e define ExplainedBy(P) as the set of subspace clusters in 
j j redw t h a t a r e e Xpi a in ed by P, i.e., ExplainedBy(P) := {H E Rreduced\ P 
explains H}. 

6.3 A Note on Parameters 

The accuracy of STATPC depends mainly on 3 parameters: a0, ax, and aH . 
All these parameters represent significance levels used in statistical tests. 

STATPC takes three additional parameters. The first additional parameter 
is the number of values for M, where M is used to inspect the top of the ranking 
Rank. In our implementation, we consider 3 values for M. The actual values 
for M are well-determined based on the statistical significance level an • The 
second additional parameter is the value of 6 for building 2D hyper-rectangles 
around a data point Q. We consider 3 values for 5 in our implementation. The 
third additional parameter is the number of MBRs that we construct around 
a data point Q in a candidate subspace, which is currently set to 0.3. Some 
preliminary experiments suggested that the effect of varying these additional 
parameters is likely to be more pronounced in terms of computational time 
than in terms of accuracy of the algorithm. 

The robustness of STATPC to the main parameters a0, aK, and CK# is 
studied in Section 6.5.8. 
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6.4 Theoretical Complexity 
For a given data point Q, the complexity 0\ of building a candidate subspace 
around Q is controlled by: 1) the complexity of step l.a) in Figure 6.3, which 
is 0(d * n H — 2 ); 2) the complexity of step l.b) in Figure 6.3, which is 
,9(*K|zi) * /0^2[*H|zl)]); 3) the complexity of step l.f) in Figure 6.3, which is 
0(d * no Jter), where no-iter is the number of times we iteratively refine 5°; 
and 4) the complexity of step l.g) in Figure 6.3, which is 0(dim(S)). 

For a given data point Q, the complexity 02 of detecting a locally optimal 
subspace clusters around Q in candidate subspace S is controlled by: 1) the 
complexity of steps 1) and 2) in Figure 6.4, which is 0(0.3 * n * (n * dim(S) + 
dim(S)); and 2) the complexity of step 3) in Figure 6.4, which is 0(\Rlocal\2). 

Thus, the complexity of building the set Rreduced is O {no-datajpoints-tried* 
(3 * (Oi + 02) + \RalUocal\2)). 

The complexity of the greedy optimization is 0(\Rreduced\ * l3 + . . . + 
reduced! . I psol \3\ 

6.5 Experimental Evaluation 

The experiments reported in this section were conducted on a Linux machine 
with 3 GHz CPU and 2 GB RAM. 

6.5.1 C o m p a r e d Techniques 

As for P3C, we compare STATPC against several state-of-the-art projected 
and subspace clustering techniques: SSPC, PROCLUS, HARP, MINECLUS, 
MAFIA and ORCLUS. In addition to these techniques, we compare STATPC 
against P3C and PRIM. 

We also compare STATPC against a representative set of full dimensional 
clustering algorithms: KMeans (denoted by KM), EM, CLARANS, agglomer-
ative (BAHC) and divisive (DIANA) hierarchical clustering, and DBSCAN. 

6.5.2 Synthetic Data 

We study systematically the performance of the compared techniques as a 
function of different data generation criteria: 

1. The distribution of cluster points in the relevant subspace: 1) uniform 
or 2) Gaussian; 

2. The number of relevant attributes that clusters can have: 1) an equal or 
2) a different number of relevant attributes; 

3. The average number of relevant attributes; 

R 
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4. The database dimensionality d; 

5. Database size n; 

6. Number of clusters k; 

7. Cluster sizes and number of noise points; 

8. Extent of clusters in their relevant attributes; 

9. Overlap between clusters in common relevant attributes; 

By combining the first 2 criteria, we obtain 4 categories of synthetic data 
sets: Uniform-Equal, Uniform-Different, Gaussian-Equal, and Gaussian-Different. 
For each category, we study the effect of the 3 r d criterion in data generation 
over the performance of the compared techniques. For this purpose, in each 
category, we generate data sets with n = 300 data points, d = 50 attributes, 
k = 5 clusters (clusters sizes are 60, 50, 40, 40, and 50 points), 60 uniformly 
distributed noise points, and the average number of relevant attributes in 
{2,4,6,8,10,15,20}. The clusters have axis-parallel orientation, i.e., when the 
cluster points are Gaussian distributed in their relevant subspace, the Gaus
sian distributions have diagonal covariance matrices, and when the cluster 
points are uniform distributed in their relevant subspace, the clusters are axis-
parallel hyper-rectangles. Cluster points are uniformly distributed on [0,1] on 
the irrelevant attributes. The extent of clusters in their relevant attributes is 
between 10% and 30% of the attribute range. No overlap between clusters in 
common relevant attributes is introduced. 

To study the effects of the remaining criteria in data generation, we gen
erate synthetic data sets where the cluster points are uniformly distributed 
in their relevant subspace, and clusters have an equal number of relevant at
tributes (i.e., 4 relevant attributes per cluster), with the parameters listed 
above, and we vary the parameter of interest. 

To study the effect of the database dimensionality (4th criterion), for a 
database of size n = 300, k ~ 5 (60, 50, 40, 40, 50 cluster points, and 60 
uniformly distributed noise points), 4 relevant attributes per cluster, we vary 
d 6 {20, 35, 50, 75, 100}. 

To study the effect of the database size in data generation (5th criterion), we 
vary n 6 {100,300,500,1000,2000}. Cluster sizes and number of noise points 
are as follows: for n = 100: 20, 17, 14, 14, 17 cluster points and 18 noise 
points; for n = 300: 60, 50, 40, 40, 50 cluster points and 60 noise points; for 
n = 500: 100, 84, 67, 67, 84 cluster points and 98 noise points; for n = 1000: 
200, 170, 140, 140, 170 cluster points and 180 noise points; for n = 2000: 400, 
340, 280, 280, 340 cluster points and 360 noise points. 

To study the effect of the number of clusters in data generation (6*'' cri
terion), we vary k 6 {2, 3,4, 5}. Cluster sizes and number of noise points are 
as follows: for k = 2: 125, 125 cluster points and 50 noise points; for k = 3: 
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83, 83, 84 cluster points and 50 noise points; for k = 4: 62, 63, 63, 62 cluster 
points and 50 noise points; for k = 5: 50, 50, 50, 50, 50 cluster points and 50 
noise points. 

To study the effect of the cluster sizes and number of noise points in data 
generation (7th criterion), we vary cluster sizes and number of noise points as 
follows: Setup 1) 40, 30, 20, 20, 30 cluster points and 160 noise points; Setup 
2) 50, 40, 30, 30, 40 cluster points and 110 noise points; Setup 3) 60, 50, 40, 
40, 50 cluster points and 50 noise points; Setup 4) 65, 55, 45, 45, 55 cluster 
points and 35 noise points. 

To study the effect of the extent of clusters in their relevant attributes 
in data generation (8th criterion), we generate the clusters with Setup 1) 0.1, 
Setup 2) 0.2, Setup 3) 0.3, respectively Setup 4) 0.4 extent in the relevant 
attributes. 

To study the effect of the overlap between clusters in common relevant 
attributes in data generation (9th criterion), we generate data sets with k = 2 
(125, 125 cluster points and 50 noise points), so that the two clusters are char
acterized by an overlap of Setup 1) 0, Setup 2) 0.1, Setup 3) 0.2, respectively 
Setup 4) 0.3 in common relevant attributes. 

6.5.3 Real Data 

We test the compared techniques on the following data sets from the UCI 
machine learning repository [67]: Pima Indians Diabetes (768 points, 8 at
tributes, 2 classes); Liver Disorders (345 points, 6 attributes, 2 classes); Wis
consin Breast Cancer Prognostic (WPBC)(198 points, 34 attributes, 2 classes); 
and Glass (214 points, 9 attributes, 6 classes). 

6.5.4 Experimental Setup 

STATPC has the same experimental setup as the one used in P3C. 
In addition, for P3C, we use the variant that computes overlapping clusters. 

For KM and EM, we use the implementations available in the R statistical 
software [62]. BAHC, DIANA, and CLARANS are provided by the Biosphere 
project [78]. DBSCAN is provided by [3]. PRIM is available as a package [60] 
for the R statistical software. 

For P3C, we set a-Binom = 1.0E — 20. For PRIM, we set peeLalpha = 
0.05, paste-alpha = 0.01, massjmin — 0.1. The full dimensional algorithms, 
except DBSCAN, require the target number of clusters as a parameter, which 
is set to the number of implanted clusters on synthetic data, and to the number 
of classes on real data. For CLARANS, we set maxn = 250, numl = 5. For 
DBSCAN, e is set to 10% of the maximum distance in the data space, and 
minpts is set to 3. 

STATPC requires 3 significance levels: aQ, ax, and a # . After testing the 
sensitivity of STATPC to these parameters (see Figures 6.21, 6.22, and 6.23), 
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we set a0 = l.OE — 10, a^ = an = 0.001. 
As for P3C, the real data sets used are extended with attributes where 

the data points are uniformly distributed on [0,1]. The real data sets do not 
contain missing values. 

6.5.5 Performance Measures 

We measure the accuracy of the compared techniques as in P3C using a F 
value, as defined in Section 3.8.5. 

6.5.6 Statistical Significance of Results 

STATPC computes subspace clusters that are statistically significant. The 
other techniques sometimes compute statistically significant subspace clusters, 
other times they do not, depending on parameter values and on the density 
of the implanted clusters (denser clusters are easier to detect). The classes in 
the real data sets form statistically significant clusters, and these clusters stay 
statistically significant when adding uniform attributes, as shown in Section 
5.3. 

6.5.7 Accuracy Results 

Effect of average cluster dimensionality. Figure 6.6 shows the accuracy 
of the compared techniques as a function of increased average cluster dimen
sionality for the category Uniform-Equal, where the cluster points are uni
formly distributed in their relevant subspace, and the clusters have an equal 
number of relevant attributes. Figures 6.7, 6.8 and 6.9 illustrate the accu
racy of the compared techniques as a function of increased average cluster 
dimensionality for the categories Uniform-Different, Gaussian-Equal, and 
Gaussian-Different. 

We observe that STATPC significantly and consistently outperforms the 
competing techniques, both in terms of clustering accuracy and in terms of 
accuracy of the found relevant attributes. The difference in accuracy between 
STATPC and previous techniques is more pronounced for the more difficult 
case of data sets with low dimensional subspace clusters. 

We observe that the accuracies of SSPC, PROCLUS, HARP and MINECLUS 
increase as the average cluster dimensionality increases. PROCLUS depends 
strongly on an initial clustering in full dimensional space, which is a better 
approximation of the implanted clusters as the average cluster dimensionality 
increases, because the implanted clusters become more easily recognizable in 
full dimensional space. For the same reason, the accuracy of ORCLUS in
creases slightly as the average cluster dimensionality increases, but even when 
the average cluster dimensionality is 20, ORCLUS cannot estimate well enough 
the directions of least spread of the clusters. SSPC, HARP and MINECLUS 
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Figure 6.6: STATPC and competing techniques on category UniforrrLEqual 

leverage the principle that clusters with as many relevant attributes as possible 
are preferable; thus, their accuracies increase with increasing average cluster 
dimensionality. 

The accuracies of MAFIA and PRIM increase only slightly as the average 
cluster dimensionality increases, but these accuracies have low values. 

P3C does not exhibit increasing accuracy as the average cluster dimen
sionality increases. The reason is that, on these data sets, the density of 
the implanted clusters is low enough so that P3C cannot detect all the ID 
projections of the implanted clusters, and the statistical evidence needed to 
aggregate II? cluster projections is lacking. 

The accuracies of the full dimensional clustering algorithms increase as the 
average cluster dimensionality increases. The reason is that the higher the av
erage cluster dimensionality, the more recognizable are the implanted clusters 
in full dimensional space. EM may sometimes report an accuracy of 0, if it en
counters in the computation singular or nearly-singular covariance matrices. 
We observe that the full dimensional clustering algorithms are not effective 
for the task of retrieving the implanted clusters, especially when the average 
cluster dimensionality is small. However, some of the full dimensional clus
tering algorithms outperform some of the projected and subspace clustering 
techniques, especially for higher average cluster dimensionality. DBSCAN was 
unable to detect any clusters although a reasonable parametrization was used. 
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Figure 6.7: STATPC and competing techniques on category UniformJDifferent 

Note, however, that the remaining full dimensional algorithms are bound to 
find a predefined number of clusters. 

Effect of distribution of cluster points in the relevant subspace. 
For all techniques, including STATPC, the accuracy results on data sets where 
cluster points are uniformly distributed in their relevant subspace are slightly 
higher than the accuracy results on data sets where cluster points are Gaussian 
distributed in their relevant subspace. The reason is that Gaussian distributed 
clusters are denser in the center than at the boundaries, and all techniques 
tend to recover only the dense, central part; thus, the decrease in accuracy. 

Effect of equal vs. different number of relevant attributes. The 
accuracy results of STATPC on data sets where clusters have an equal number 
of relevant attributes are comparable with the accuracy results of STATPC on 
data sets where clusters have a different number of relevant attributes. 

For most other techniques, the accuracy results on data sets where clusters 
have an equal number of relevant attributes are slightly higher than the ac
curacy results on data sets where clusters have a different number of relevant 
attributes, although the average cluster dimensionality is the same in both 
cases. This is because, in the latter case, there are implanted clusters with low 
dimensionality, which are more difficult to retrieve than the implanted clusters 
with high dimensionality. 

Effect of database dimensionality. Figure 6.10 shows the accuracy of 
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Figure 6.8: STATPC and competing techniques on category Gaussian_Equal 

the compared techniques as a function of increasing database dimensionality 
d. Varying the dimensionality of the data set has a similar effect as varying 
the average cluster dimensionality: the dimensionality of the clusters varies 
relatively to the database dimensionality. However, in this experiment we see 
the effects on a different range of d. 

STATPC obtains consistently a high accuracy as the database dimension
ality increases, and significantly higher accuracy than the accuracies of the 
competing techniques. 

The accuracies of PROCLUS and ORCLUS decline as d increases, because 
their initializations in full dimensional space approximate increasingly worse 
the implanted clusters. Similarly, HARP's accuracy decreases, because HARP 
favors clusters with many relevant attributes. SSPC's accuracy decreases too, 
but only slightly, because it becomes increasingly difficult to initialize it with 
"good" representative points and relevant attributes. MINECLUS accuracy 
decreases because the parameter /? fails to control effectively the trade-off 
between cluster sizes and number of relevant attributes. The accuracy of 
PRIM is relatively unaffected by decreasing d, but it has a low value. 

The accuracy of MAFIA slightly decreases with increasing d, because 
MAFIA reports more low dimensional projections of the implanted clusters. 

The accuracy of P3C alternates between higher and lower values, depending 
on how successful P3C is in detecting and aggregating cluster projections. 
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Figure 6.9: STATPC and competing techniques on category 
GaussianJDifferent 
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Figure 6.10: The effect of data dimensionality d on STATPC and competing 
techniques 
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Figure 6.11: The effect of database size n on STATPC and competing tech
niques 

The accuracies of KM, BAHC, DIANA, and CLARANS decrease with in
creasing d, because the pair-wise distances between data points become more 
and more similar. The accuracy of EM decreases too, because the quality of 
the 1-step KM initialization decreases, and because, as d increases, the covari-
ance matrix of each cluster tends to over-fit the data more and more. Again, 
DBSCAN was unable to detect any clusters. 

Effect of database size. Figure 6.11 shows the accuracy of the compared 
techniques as a function of increasing database size n. 

The accuracy of STATPC has a consistently high value once the number 
of data points is at least 300. When the data set has only 100 data points, 
STATPC misses the implanted clusters with least points (i.e., the two clusters 
with 14 points), which are marginally statistically significant. 

The accuracies of PROCLUS, HARP, SSPC, MINECLUS, and ORCLUS 
increase with increasing n, because the more points are in a cluster, the more 
reliable is the identification of relevant attributes. The accuracy of PRIM is 
relatively unaffected by increasing n, but it has a low value. 

The accuracy of MAFIA also increases with increasing n, because more 
points in a cluster translate into less ID cluster projections wrongly reported. 

P3C's accuracy increases significantly with increasing n, because the II? 
cluster projections become increasingly detectable, and more evidence is present 
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Figure 6.12: The effect of the number of clusters k on STATPC and competing 
techniques 

for their aggregation. 
The accuracies of the full dimensional algorithms are relatively unaffected 

by increasing n. EM's accuracy slightly increases, because more points in 
a cluster means a more reliable covariance matrix for the cluster. Again, 
DBSCAN did not find any clusters. 

Effect of number of clusters. Figure 6.12 shows the accuracy of the 
compared techniques as a function of increasing number of clusters A;. 

STATPC's accuracy remains constantly high as the number of implanted 
clusters increases. 

The accuracies of the majority of techniques decrease as k increases, be
cause larger k means less points per cluster, thus less reliable identification 
of relevant attributes, less detectable ID cluster projections, and less reliable 
covariance matrices for clusters. MAFIA and PRIM are relatively unaffected 
but very inaccurate overall. 

Effect of cluster sizes and number of outliers. Figure 6.13 shows 
the accuracy of the compared techniques as a function of increasing cluster 
sizes (and consequently, decreasing number of noise points). The points on 
the x-axis correspond to Setup 1) to 4), as described in Sub-section 6.5.2. 

STATPC shows constant, high accuracy as the cluster sizes increase, and 
significantly higher accuracy than the accuracies of the competing techniques. 
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Figure 6.13: The effect of cluster sizes on STATPC and competing techniques 

PROCLUS, HARP, SSPC, MINECLUS, and ORCLUS show increased ac
curacies as the cluster sizes increase, because the identification of relevant 
attributes is the more reliable, the more points are in clusters. 

MAFIA and PRIM are relatively unaffected, but they obtain low accuracy. 
Similarly, P3C's accuracy increases, because denser clusters can be more 

easily detected in individual attributes, and there is more evidence for aggre
gating the ID cluster projections. 

The accuracies of KM, BAHC, DIANA, and CLARANS increase as clus
ter sizes increase, because these algorithms do not compute outliers, so their 
accuracies will suffer when the number of outliers is large. EM's accuracy also 
increases, because the covariance matrices of the clusters are more reliably 
determined. DBSCAN is unable to detect any clusters. 

Effect of extent in relevant attributes. Figure 6.14 shows the accu
racy of the compared techniques as a function of increasing extent in relevant 
attributes. The points on the a>axis correspond to Setup 1) to 4), as described 
in Sub-section 6.5.2. 

The accuracy of STATPC decreases with increasing extent in relevant at
tributes because the clusters become sparser, and thus less statistically signif
icant. 

The accuracies of most competing techniques decrease as the extent of 
clusters in their relevant attributes increases, because clusters will "stand out" 
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Figure 6.14: The effect of extent of clusters in relevant attributes on STATPC 
and competing techniques 
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Figure 6.15: The effect of overlap of clusters in common relevant attributes on 
STATPC and competing techniques 
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Table 6.1: Analysis of different criteria in data generation 

Avg. cl. dim. f 
Unif./ Gauss. 

Eq./Diff. 
Db. dim j 
Db. size f 

Numb. cl. | 
Cl. sizes/outl. t 

Extent t 
Overlap f 

STATPC 
T 
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r^j 

r^u 
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/~^J 
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MINECLUS 
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SSPC 
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T 
I 
T 
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less and less in comparison with the uniform background. 
Effect of overlap in common relevant attributes. Figure 6.15 shows 

the accuracy of the compared techniques as a function of increasing overlap 
between clusters on common relevant attributes. The points on the x-axis 
correspond to Setup 1) to 4), as described in Sub-section 6.5.2. 

The accuracies in terms of cluster points for the majority of the compared 
techniques, including STATPC, decrease as the overlap between clusters on 
common relevant attributes increases, because clusters become more and more 
identical. Some techniques have constant, but poor, accuracy. However, the 
accuracies in terms of relevant attributes of the compared techniques, includ
ing STATPC, increase, because more overlap translates into more points per 
cluster, and thus, into a more reliable identification of relevant attributes. 

Summary of systematic evaluation on synthetic data. We summa
rize our experimental results in Tables 6.1 and 6.2. The first column contains 
the effects in the data generation that we have studied, and the first row 
contains the compared techniques. Arrows indicate increase or decrease in 
accuracy, and ~ indicates constant accuracy. For instance, the first cell in 
the Table 6.1 should be read as "the accuracy of STATPC increases as the 
average cluster dimensionality increases". The notation Tc/™/ signifies that 
the accuracy of the technique given in the corresponding column is higher 
when cluster points are uniformly distributed in their relevant subspace than 
when the cluster points are Gaussian distributed in their relevant subspace. 
Similarly, the notation "\Eq means that the accuracy of the technique given 
in the corresponding column is higher when clusters have an equal number 
of relevant attributes than when clusters have a different number of relevant 
attributes. 

In general, we observe that the compared techniques show consistent ten
dencies with respect to the data generation effects studied. All techniques 
show higher accuracies when cluster points are uniformly distributed in their 
relevant subspace than when cluster points are Gaussian distributed in their 
relevant subspace. Also, most techniques obtain higher accuracies when clus-
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Table 6.2: Analysis of different criteria in data generation (cont.) 

Avg. cl. dim. f 
Unif./Gauss. 

Eq./Diff. 
Db. dim t 
Db. size T 
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ters have an equal number of relevant attributes than when clusters have a 
different number of relevant attributes. Most techniques have higher accu
racies when database size or average cluster dimensionality or cluster sizes 
increase. Most techniques have lower accuracies when number of clusters or 
extent of clusters in relevant attributes or overlap of clusters in common rele
vant attributes increase. 

The fact that DBSCAN did not find any clusters in almost all cases re
veals a fundamental problem of the density-based paradigm applied on high 
dimensional data. While these concepts work on data of moderate dimension
ality as shown in several publications, the high dimensional data used in our 
experiments shows a variety of effects of the curse of dimensionality impeding 
the use of global density-based approaches. 

Our results indicate that the denser and/or the more relevant attributes 
subspace clusters have, the easier it is for the compared techniques to detect 
these clusters. If clusters are sufficiently dense and/or have enough relevant 
attributes, even most of the full dimensional clustering algorithms can obtain 
a good accuracy. We believe that in these cases the selection of the algorithm 
should be driven by the trade-off between run time and accuracy, and it should 
be oriented towards techniques with less parameters that, in order to be set, 
do not require crucial knowledge about the data set (such as the number of 
clusters or the average cluster dimensionality). 

Accuracy results on real data sets. Figures 6.16, 6.17, 6.18, and 6.19 
show the accuracy of the compared techniques on the Pima Indians Diabetes, 
Liver Disorders, WPBC, and Glass data sets and their extensions, respectively, 
as a function of increased number of uniform attributes added to the data. The 
first point in the graphs corresponds to the original data sets with no uniform 
attributes added. 

STATPC outperforms the competing techniques on these real data sets, 
and the largest gap in accuracy between STATPC and the other techniques is 
obtained on the Pima Indians Diabetes data set. 
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Figure 6.16: Accuracy of STATPC and competing techniques on Pima Indians 
Diabetes data set 
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Figure 6.17: Accuracy of STATPC and competing techniques on Liver Disor
ders data set 
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Figure 6.18: Accuracy of STATPC and competing techniques on WPBC data 
set 
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Figure 6.19: Accuracy of STATPC and competing techniques on Glass data 
set 

On the Pima Indians Diabetes data set, STATPC consistently finds 4 8-
dimensional clusters. On the Liver Disorders data set, STATPC consistently 
finds 4 6-dimensional clusters. On the WPBC data set, STATPC finds 2 or 
3 33-dimensional clusters. On the Glass data set, STATPC finds 1 or 2 9-
dimensional clusters. 

The accuracy of a random partition into a number of clusters that equals 
the number of classes on these data sets is: 0.56 for the Pima Indians Diabetes 
data set and its extensions; 0.53 for the Liver Disorders data set and its exten
sions; 0.6 for the WPBC data sets and its extensions; and 0.22 for the Glass 
data set and its extensions. The accuracy of STATPC on these data sets and 
their extensions is: 0.75 for the Pima Indians Diabetes data set; 0.59 for the 
Liver Disorders data set; 0.63 for the WPBC data set; and 0.6 for the Glass 
data set. In all cases, the accuracy of STATPC is higher than the accuracy of 
a random partition into a number of clusters that equals the number of classes 
on these data sets. 

The accuracies of most competing techniques decrease as the number of 
uniform attributes added increases, because it becomes more difficult to detect 
increasingly lower dimensional clusters. Some of the techniques are not affected 
by increasing number of uniform attributes, such as P3C and MAFIA. 

We have studied the performance of STATPC and the competing tech
niques on several other real data sets from the UCI machine learning reposi
tory, which are comparable in size to the 4 real data sets presented here. In 
these additional experiments, the accuracy of STATPC is comparable with the 
best accuracies obtained by the competing techniques, as illustrated in Figure 
6.20 for the Iris data set (150 data points, 4 attributes, 3 classes). The accu
racy of a random partition into 3 clusters on the Iris data set and its extensions 
is 0.34. The accuracy of STATPC on the Iris da ta set and its extensions varies 
around 0.8. 

Accuracy results on larger real data sets. We test STATPC on two 
gene expression data sets: 1) the colon cancer data set [9] that measures 
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Figure 6.20: Accuracy of STATPC and competing techniques on Iris data set 

expression levels of 62 colon tissues (40 tumor and 22 normal colon tissues) in 
2000 human genes, and 2) the leukemia data set [37] that measure expression 
levels of 72 patients (47 patients with acute myeloid leukemia (AML) and 
25 patients with acute lymphoblastic leukemia (ALL)) in 7070 human genes. 
These real data sets are challenging due to the small number of points and the 
large number of attributes. 

On the colon cancer data, STATPC discovers 10 subspace clusters having 
the following dimensionalities: 1878, 1902, 1973, 1882, 1934, 1752, 1858, 1513, 
1900, and 1840. The subspace clusters contain more points from the larger 
tumor class than from the smaller normal class. The accuracy of STATPC is 
0.66. On this data set, MINECLUS, PRIM, and ORCLUS encounter errors in 
the computation and stop; P3C and MAFIA take unacceptable long time; and 
EM fails because of singular covariance matrices. Thus, the techniques that 
can be run on this data set are SSPC, PROCLUS, HARP, KM, BAHC, DI
ANA, CLARANS, and DBSCAN. DBSCAN does not find any clusters. SSPC 
computes one 1744-dimensional subspace cluster, and one 1545-dimensional 
subspace cluster, and its accuracy is 0.45. PROCLUS computes two sub-
space clusters, one 55-dimensional and one 145-dimensional, and its accuracy 
is 0.43. HARP computes one 1109-dimensional subspace cluster, and one 1353-
dimensional subspace cluster, and its accuracy is 0.52. KM, BAHC, DIANA 
and CLARANS compute full dimensional clusters, and their accuracies are 
0.54, 0.51, 0.51, and 0.45, respectively. The accuracy of a random partition 
into 2 clusters on this data set is 0.56. 

On the leukemia data set, STATPC finds 4 subspace clusters with the 
dimensionalities: 884, 974, 718 and 618. The subspace clusters contain more 
points from the larger AML class than from the smaller ALL class. The 
accuracy of STATPC is 0.74. On this data set, the same techniques as for the 
colon cancer data set can be run, except SSPC, which encounters errors in 
the computation and stops. DBSCAN does not find any clusters. PROCLUS 
computes two subspace clusters, one 10-dimensional and one 190-dimensional, 
and its accuracy is 0.46. HARP computes one 3935-dimensional subspace 
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Figure 6.21: Sensitivity of STATPC to parameter ato 

cluster, and one 2094-dimensional subspace cluster, and its accuracy is 0.56. 
KM, BAHC, DIANA and CLARANS compute full dimensional clusters, and 
their accuracies are 0.73, 0.42, 0.43, and 0.42, respectively. The accuracy of a 
random partition into 2 clusters on this data set is 0.56. 

We observe that STATPC outperforms the competing techniques both on 
the colon cancer and the leukemia data sets in terms of accuracy. Also, on 
these data sets too, the accuracy of STATPC is higher than the accuracy of a 
random partition into a number of clusters that equals the number of classes 
on these data sets. 

The subspace clusters computed by STATPC are relatively high dimen
sional, especially on the colon cancer data set. On the leukemia data set, the 
largest dimensionality of a subspace cluster discovered by STATPC is 13% of 
the total data dimensionality. The competing techniques, except PROCLUS, 
also discover clusters with relatively high dimensionality. Relevant attributes 
of the subspace clusters found represent genes that could be relevant for dis
tinguishing between healthy and cancer tissues, or between different types of 
cancer. Thus, subspace clusters with less relevant attributes are more useful 
from this point of view than subspace clusters with many relevant attributes. 
Note that the full dimensional clustering algorithms do not provide this infor
mation at all. 

We also note that, except STATPC, all the competing techniques require as 
critical parameter the target number of clusters, which was set to the number 
of classes. In addition, none of the techniques, except STATPC, can guarantee 
the statistical significance of their results. 

6.5.8 Sensitivity Analysis 
We study the sensitivity of STATPC to its parameters a0, aK and ecu- Figures 
6.21, 6.22 and 6.23 illustrate the accuracy of STATPC as the parameters ao, 
O.K and an, respectively, are progressively decreased from 1.0E—3 to 1.0.E—20 
on one of our synthetic data sets. 
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Figure 6.22: Sensitivity of STATPC to parameter aK 
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Figure 6.23: Sensitivity of STATPC to parameter aH 
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Figure 6.24: Scalability of STATPC and competing techniques with increasing 
database size 

STATPC is relatively robust in terms of the accuracy of the cluster points 
for all three parameters. In terms of the accuracy of the found relevant at
tributes, STATPC is robust with respect to parameter OJO, but less robust 
with respect to parameters a # and an- The effect of parameter aK is more 
pronounced because smaller values for this parameter translate into more at
tributes discarded as irrelevant. Based on this sensitivity analysis, we set 
a0 = 1.0E - 10, and aK = aH = 0.001. 

6.5.9 Scalability Experiments 

In all scalability figures, the time is represented on a loglO scale. We do not 
need to study the scalability of the full dimensional algorithms because this 
issue has been studied carefully in the existing literature. 

Figure 6.24 shows scalability results for increasing database sizes on syn
thetic data sets from category Uniform-Equal with d = 10, K = 2, 2 rel
evant attributes per cluster. HARP can be run only on the first data set 
with n = 10000 data points, and PRIM can be run only on the first two data 
sets with n = 10000 and n = 100000. Based on their tendencies and the 
gap between them, the techniques can be partitioned into several groups from 
smaller to larger running times: MAFIA and MINECLUS in the first group; 
PROCLUS, ORCLUS, P3C and SSPC in the second group; and STATPC in 
the last group. The larger runtime of STATPC is due to the construction of 
numerous MBRs in candidate subspaces around data points Q, and the po
tentially large number of data points Q tried, but we believe, it is worth the 
trade-off for much better effectiveness in finding subspace clusters. However, 
if the scalability of STATPC with the respect to the database size becomes 
unacceptable for specific applications, one could reduce the number of data 
points Q tried by choosing these data points Q according to some heuristics, 
e.g., we could choose data points Q that are far away from subspace clusters 
already constructed. 
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Figure 6.26: Scalability of STATPC and competing techniques with increasing 
average cluster dimensionality 

Figure 6.25 shows scalability results for increasing database dimensionality 
on synthetic data sets from category Uniform-Equal with n = 300, K = 2, 
2 relevant attributes per cluster. MINECLUS cannot be run for the last two 
data sets with d = 500 and d = 1000. Based on their running times, the 
techniques can be roughly divided into several groups: MAFIA and SSPC in 
the first group, followed by PROCLUS in the second group, followed by P3C in 
the third group, followed by STATPC and HARP in the forth group, followed 
by PRIM in the fifth group, and finally the group of ORCLUS. 

Figure 6.26 shows that the majority of the techniques are unaffected by in
creasing average cluster dimensionality on data sets from category Uniform-Equal. 
P3C has exponential complexity in the dimensionality of the largest subspace 
where clusters exist. MAFIA suffers theoretically from the same problem; 
however, in this case, MAFIA reports only some ID cluster projections, and 
thus its run time does not show the expected behavior. STATPC and PRIM 
form a group of techniques with larger run times than the group of the other 
techniques, except P3C. 
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6.6 Summary 
In this chapter, we have introduced the algorithm STATPC - an approximation 
algorithm for the redundancy-aware problem definition given in Section 5.6. 

Our extensive experimental evaluation shows that STATPC can effectively 
discover clusters in the data, even when clusters have low dimensionality with 
respect to the total dimensionality of the data set. In addition, STATPC 
significantly and consistently outperforms state-of-the-art projected and sub-
space clustering techniques, as well as full dimensional clustering algorithms, 
in terms of accuracy. 

We have systematically evaluated and analyzed STATPC, together with 
numerous, representative projected, subspace and full dimensional clustering 
algorithms under a variety of experimental conditions on synthetic data sets. 
We have identified and discussed the strengths and weaknesses of these tech
niques. We believe that this systematic study can be used by data mining 
practitioners to decide which techniques are suitable for the problem on hand. 

One desirable property of STATPC is that it requires parameters that 
represent the error probability that the user is willing to accept in statistical 
tests. These types of parameters are easily understood by users, and can be 
set without any prior knowledge about the data. 

Another desirable property of STATPC is that it can assign a data point 
to more than one cluster. 

The scalability of STATPC with respect to database dimensionality and 
average cluster dimensionality is comparable to that of the competing tech
niques. The scalability of STATPC with respect to database size is poorer 
than that of the competing techniques, but it can be improved through scal
ing techniques, such as sampling. 

The results of STATPC on real data sets are less conclusive than the results 
of STATPC on synthetic data sets. The results of the compared techniques 
on real data sets are evaluated using class labels as cluster labels. Although 
class labels typically indicate some similarities between members of the same 
class, class labels are not the "perfect" ground truth in the sense that they 
do not correspond necessarily to subspace clusters in the sense of Definition 
5.3. Ideally, the results of a clustering algorithm should be evaluated based on 
domain knowledge or with the help of a domain expert. But, when the number 
of algorithms to be evaluated is large, and when many algorithms depend 
on parameters, such as the number of clusters, whose best values can only 
be determined through repeated trial-and-error procedures, the evaluation of 
clustering results becomes tedious. In these situations, class labels provide an 
acceptable "pseudo"-ground truth that can be used for evaluation. 

We underline that STATPC has two important properties that makes it 
appealing for applying it on real data: 1) we can trust that the solution com
puted by STATPC stands out in the data in a statistical sense, and it is not 
just an artefact of the algorithm, and 2) in contrast to most other techniques, 
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STATPC is not based on parameters whose setting requires critical knowledge 
about the data. 



Chapter 7 

Conclusions and Future Work 

Subspace and projected clustering techniques have been proposed as a solution 
to the challenges associated with clustering in high dimensional data sets. 
Subspace and projected clustering techniques are similar in that they detect 
cluster of points in subsets of attributes, but they differ in their problem 
definitions, strengths and weaknesses. 

Our comprehensive survey of related work in subspace and projected clus
tering identified several drawbacks of existing work. Subspace clustering tech
niques are based on global density thresholds, for which no meaningful values 
is likely to exist; they compute a large number of overlapping clusters; and 
some of them are sensitive to the resolution of the grid used for density estima
tion. Projected clustering techniques depend crucially on parameters whose 
appropriate values are hard to set without critical domain knowledge; they 
cannot identify well low dimensional clusters embedded in high dimensional 
spaces; and many of them compute disjoint clusters. 

In this thesis, we introduce three novel techniques that advance the state-
of-the-art in the subspace and projected clustering field, as discussed below. 

First, we propose the projected clustering technique P3C that, in con
trast to previously proposed projected clustering techniques: 1) depends on 
parameters that represent the error probability acceptable by a user in statis
tical tests, and thus, setting these parameters does not require critical prior 
knowledge; 2) can effectively discover low dimensional clusters embedded in 
high dimensional spaces; 3) can compute disjoint or overlapping clusters; 4) is 
robust to noise in the data. 

Second, since there are a few subspace and projected clustering techniques 
for categorical data, which suffer in general from the same problems as their 
numerical counterparts, we extend P3C for categorical data. This makes P3C 
the first projected clustering technique applicable to both numerical and cat
egorical data. P3C for categorical data inherits the properties of P3C for 
numerical data. 

Third, we observe that many subspace and projected clustering techniques 
have a problem definition that is not independent on the particular algorithm 
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that is proposed for solving the problem. In addition, we cannot assess for 
the existing algorithms whether the reported clusters are an artefact of the 
algorithms, or, in fact, these clusters stand out in the data in a statistical 
sense. 

Thus, we propose a novel problem formulation for subspace and projected 
clustering that aims at extracting from the data non-redundant, axis-parallel 
regions that stand out in a statistical sense. The problem formulation is given 
as an optimization problem, which makes our problem formulation indepen
dent of a particular algorithm used to solve it. 

Since exhaustive search is computationally infeasible, we propose the ap
proximation algorithm STATPC for the optimization problem. STATPC has 
the following desirable properties: 1) it guarantees that its solution stands out 
in the data in a statistical sense; 2) its parameters are error probabilities that 
a user is willing to accept - thus, these parameters are easily set without any 
domain knowledge; 3) it can discover low dimensional clusters embedded in 
high dimensional spaces; and 4) it computes overlapping clusters. 

In addition, we have evaluated and analyzed STATPC, together with state-
of-the-art subspace, projected, and full dimensional clustering algorithms, un
der a variety of experimental conditions on synthetic data sets. We have 
discussed strengths and weaknesses of these techniques. We believe that this 
study not only shows that STATPC outperforms significantly the competing 
techniques in terms of accuracy, but it can also be used as a guide for the 
data mining practitioner to select which techniques are preferable in certain 
scenarios. 

7.1 Directions for Future Work 

We envision the following interesting directions for future work. 
First, from a theoretical point of view, it would be beneficial to have a 

formal proof for our conjecture that the redundancy-aware problem definition 
is NP complete. 

Second, other approximation algorithms may be proposed for the redundancy-
aware problem definition, which may improve upon STATPC in certain as
pects, such as scalability or accuracy on real data sets. 

Third, one possible explanation for the results of STATPC on real data 
sets may be that we assume in the Explain relationship that all component 
densities are the uniform density. It would be interesting to study how the 
Explain relationship changes if we change the distribution of the component 
densities to Gaussian densities, and whether this change improves the results 
on real data sets. 

Forth, in the current problem formulation, we search for axis-parallel re
gions that have significantly more points than expected under uniform distri
bution. We may as well search for axis-parallel regions that have significantly 
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less points than expected under uniform distribution. Such "holes" in the data 
may be interesting in certain applications. 

Fifth, we can also adapt STATPC to categorical data once we are able to 
compute intervals on categorical attributes. For this, we can use the approach 
of P3C for computing intervals on categorical attributes. 

125 



Bibliography 

E. Achtert, C. Bohm, H.-P. Kriegel, P. Kroger, I. Miiller-Gorman, and 
A. Zimek. Detection and visualization of subspace clusters hierarchies. In 
DASFAA, 2007. 

E. Achtert, C. Bohm, H. P. Kriegel, P. Kroger, and A. Zimek. Robust, 
complete and efficient correlation clustering. In SDM, 2007. 

E. Achtert, H.-P. Kriegel, and A. Zimek. ELKI: a software system for 
evaluation of subspace clustering algorithms. In SSDBM, 2008. 

D. Agarwal, A. McGregor, J. Phillips, S. Venkatasubramanian, and 
Z. Zhu. Spatial scan statistics: approximations and performance study. 
In KDD, 2006. 

C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast 
algorithms for projected clustering. In SIGMOD, 1999. 

C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in 
high dimensional spaces. In SIGMOD, 2000. 

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic 
subspace clustering of high dimensional data for data mining applications. 
In SIGMOD, 1998. 

R. Agrawal and R. Srikan. Fast algorithms for mining association rules. 
In VLDB, 1994. 

U. Alon and al. Broad patterns of gene expression revealed by clustering of 
tumor and normal colon tissues probed by oligonucleotide arrays. PNAS, 
96:6745-6750, 1999. 

M. Ankerst, M. Breuning, H. P. Kriegel, and J. Sander. OPTICS: Order
ing points to identify the clustering structure. In SIGMOD, 1999. 

I. Assent, R. Krieger, E. Miiller, and T. Seidl. DUSC: Dimensionality 
unbiased subspace clustering. In ICDM, 2007. 

A. Baddeley. Spatial point processes and their applications. Lecture Notes 
in Mathematics, 1892:1-75, 2007. 

S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by 
seeding. In ICML, 2002. 

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure 
in gene expression data: the order-preserving submatrix problem. In 
RE COMB, 2002. 

126 



Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. JRSS-B, 57:289-200, 
1995. 

P. Berkhin. Survey of clustering data mining techniques. Technical report, 
Accrue Software, 2002. 

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest 
neighbor meaningful? LNCS, 1540:217-235, 1999. 

C. Bohm, K. Railing, H.-P. Kriegel, and P. Kroger. Density connected 
clustering with local subspace preferences. In ICDM, 2004. 

C. Bohm, K. Kailing, P. Kroger, and A. Zimek. Computing clusters of 
correlation connected objects. In SIGMOD, 2004. 

M. M. Breunig, H. P. Kriegel, P. Kroger, and J. Sander. Data Bubbles: 
quality preserving performance boosting for hierarchical clustering. In 
SIGMOD, 2001. 

C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering 
for mining numerical data. In KDD, 1999. 

Y. Cheng and M. Church. Biclustering of expression data. In ISMB, 2000. 

L. Cheung, K. Y. Yip, D. W. Cheung, B. Kao, and M. K. Ng. On 
mining micro-array data by order-preserving submatrix. In International 
Conference on Data Engineering Workshops, 2005. 

H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue 
co-clustering of gene expression data. In SDM, 2004. 

A. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood for 
incomplete data via the EM algorithm. J. R. Stat. Soc, 39(1): 1-38, 1977. 

L. Ert 6z, M. Steinbach, and V. Kumar. Finding clusters of different sizes, 
shapes, and densities in noisy, high dimensional data. In SDM, 2003. 

M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm 
for discovering clusters in large spatial databases. In KDD, 1996. 

W. Feller. An Introduction to Probability Theory and Its Applications. 
John Wiley and Sons, NY, 1950. 

A. Foss and O. Zaiane. A parameterless method for efficiently discovering 
clusters of arbitrary shape in large datasets. In ICDM, 2002. 

J. Friedman and N. Fisher. Bump hunting in high-dimensional data. 
Statistics and Computing, 9:123-143, 1999. 

J. H. Friedman and J. L. Meulman. Clustering objects on subsets of 
attributes. Journal of the Royal Statistical Society, 66(4):815-849, 2004. 

G. Gan and J. Wu. Subspace clustering for high dimensional categorical 
data. ACM SIGKDD Explorations Newsletter, 6(2):87-94, 2004. 

V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS - clustering cate
gorical data using summaries. In KDD, 1999. 

127 



B. J. Gao, 0 . L. Griffith, M. Ester, and S. J. M. Jones. Discovering 
significant opsm subspace clusters in massive gene expression data. In 
KDD, 2006. 

D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: 
An approach based on dynamical systems. In VLDB, 1998. 

A. Gionis, A. Hinneburg, S. Papadimitriou, and P. Tsaparas. Dimension 
induced clustering. In KDD, 2005. 

T.R. Golub and al. Molecular classification of cancer: class discovery and 
class prediction by gene expression monitoring. Science, 286:531-537, 
1999. 

S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algo
rithm for large databases. In SIGMOD, 1998. 

A. Guttman. R-trees: a dynamic index structure for spatial searching. In 
SIGMOD, 1984. 

J. Han and M. Kamber. Data mining: concepts and techniques. Morgan 
Kaufmann, 2001. 

A. Hinneburg and D. A. Keim. An efficient approach to clustering in large 
multimedia databases with noise. In KDD, 1998. 

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a survey. 
ACM Computing Survey, 31(3):264-323, 1999. 

K. Railing, H. P. Kriegel, and P. Kroger. Density-connected subspace 
clustering for high-dimensional data. In SDM, 2004. 

G. Karypis, E-H. S. Han, and V. Kumar. CHAMELEON: a hierarchical 
clustering algorithm using dynamic modeling. In IEEE Computer, 1999. 

L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction 
to cluster analysis. John Wiley and Sons, New York, 1990. 

H. P. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for 
efficient subspace clustering of high-dimensional data. In ICDM, 2005. 

G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering 
with flexible dimension partitioning. In ICDE, 2007. 

J. Liu and W. Wang. OP-Cluster: Clustering by tendency in high dimen
sional space. In ICDM, 2003. 

J. MacQueen. Some methods for classification and analysis of multivari
ate observations. In Berkeley Symposium on Mathematics, Statistics and 
Probability, 1967. 

S. C. Madeira and A. J. Oliveira. Biclustering algorithms for biological 
data analysis: a survey. IEEE TCBB, l(l):24-45, 2004. 

G. Moise and J. Sander. Finding non-redundant, statistically significant 
regions in high dimensional data: a novel approach to projected and sub-
space clustering. In KDD, 2008. 

128 



G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering 
algorithm. In ICDM, 2006. 

G. Moise, J. Sander, and M. Ester. Robust projected clustering. Knowl
edge and Information Systems, 14(3):273-298, 2008. 

H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering 
massive data sets. In SDM, 2001. 

K.K.E. Ng, A.W. Fu, and C.-W. Wong. Projective clustering by his
tograms. IEEE TKDE, 17(3):369-383, 2005. 

R. T. Ng and J Han. Efficient and effective clustering methods for spatial 
data mining. In VLDB, 1994. 

L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimen
sional data: a review. SIGKDD Explorations Newsletter, 6(l):9O-105, 
2004. 

J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. Maple: a fast algorithm 
for maximal pattern-based clustering. In ICDM, 2003. 

A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices 
with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Ap
plications, ll(3):430-452, 1990. 

PRIM package, h t tp : / / c ran . r -p ro jec t .o rg /web/packages /p r im/ . 

C. M. Procopiuc, M. Jones, P. K. Agarwal, and T.M. Murali. A Monte 
Carlo algorithm for fast projective clustering. In SIGMOD, 2002. 

R package, ht tp: / /www.r-proj e c t . o r g / . 

K. Sequeira and M. Zaki. SCHISM: a new approach for interesting sub-
space mining. In ICDM, 2004. 

G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-
resolution clustering approach for very large spatial databases. In VLDB, 
1998. 

G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State 
University Press, 1989. 

A. K. H. Tung, X. Xu, and B. C. Ooi. CURLER: finding and visualizing 
nonlinear correlation clusters. In SIGMOD, 2005. 

UCI Machine Learning Repository, h t t p : //www. i c s . u c i . edu/~mlearn/ 
MLRepository.html. 

H. Wang, F. Chu, W. Fan, P. S. Yu, and J. Pei. A fast algorithm for 
subspace clustering by pattern similarity. In SSDBM, 2004. 

H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern simi
larity in large data sets. In SIGMOD, 2002. 

W. Wang, J. Yang, and R. R. Muntz. STING: A statistical information 
grid approach to spatial data mining. In VLDB, 1997. 

129 

http://cran.r-project.org/web/packages/prim/
http://www.r-proj


X. Wang and H. J. Hamilton. DBRS:a density-based spatial clustering 
method with random sampling. In PAKDD, 2003. 

X. Wang and H. J. Hamilton. Density-based spatial clustering in the 
presence of obstacles and facilitators. In PKDD, 2004. 

X. Wang and H. J. Hamilton. Towards an ontology-based spatial cluster
ing framework. In Eighteenth Canadian Artificial Intelligence Conference, 
2005. 

K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. FINDIT: a fast and 
intelligent subspace clustering algorithm using dimension voting. Infor
mation and Software Technology, 46(4):255-271, 2004. 

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transac
tions on Neural Networks, 16(3):645-678, 2005. 

X. Xu, Y. Lu, A. K. H. Tung, and W. Wang. Mining shifting-and-scaling 
co-regulation patterns on gene expression profiles. In ICDE, 2006. 

J. Yang, W. Wang, H. Wang, and P. Yu. 5-clusters: capturing subspace 
correlation in a large data set. In ICDE, 2002. 

K. Y. Yip, P. Qi, M. Schultz, D. W. Cheung, and K. H. Cheung. SemBio-
sphere: a semantic web approach to recommending microarray clustering 
services. In PSB, 2006. 

K.Y. Yip, D.W. Cheung, and M.K. Ng. HARP: a practical projected 
clustering algorithm. IEEE TKDE, 16(11):1387-1397, 2004. 

K.Y. Yip, D.W. Cheung, and M.K. Ng. On discovery of extremely low-
dimensional clusters using semi-supervised projected clustering. In ICDE, 
2005. 

M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected 
clustering. In ICDM, 2003. 

M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace 
mining. IEEE TKDE, 17(2): 176-189, 2005. 

O. Zaiane and C. H. Lee. Clustering spatial data when facing physical 
constraints. In ICDM, 2002. 

M. Zaki, M. Peters, I. Assent, and T. Seidl. CLICKS: an effective al
gorithm for mining subspace clusters in categorical datasets. In KDD, 
2005. 

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data 
clustering method for very large databases. In SIGMOD, 1996. 

Y. Zhang, A. W. Fu, C. H. Cai, and P. A. Heng. Clustering categorical 
data. In ICDE, 2000. 

L. Zhao and M. J. Zaki. Microcluster: Efficient deterministic biclustering 
of microarray data. IEEE Intelligent Systems, 20(6):40-49, 2005. 

130 



Appendix A 

Statistical Hypothesis Testing 

Statistical hypothesis testing is a formal way of choosing between two compet
ing claims/hypotheses: the null hypothesis, denoted by H0, and the alternative 
hypothesis, denoted by Ha. The null hypothesis represents a theory that has 
been put forward. Special consideration is given to the null hypothesis because 
it relates to the statement being tested, whereas the alternative hypothesis re
lates to the statement to be accepted when the null hypothesis is rejected. 

In order to set up a statistical hypothesis test, the null hypothesis Ho must 
be formulated, and a test statistic must be chosen. The test statistic is a 
number that summarizes the information in the data that is relevant for H0. 
Then, the distribution of the test statistic under Ho is determined. The result 
of a statistical hypothesis test is given in terms of the null hypothesis. It is 
either "Reject Ho" or "Do not reject Ho". 

The significance level a of a statistical hypothesis test is a fixed probability 
of wrongly rejecting the null hypothesis, when in fact it is true, a is also called 
the rate of false positives or the probability of type I error. 

The critical value of a statistical hypothesis test is a threshold to which 
the value of the test statistic is compared to determine whether or not the null 
hypothesis is rejected. For a one-sided test, the critical value 9a is computed 
based on the equation 

a = Probability(Teststatistic > = 0a) (A.l) 

and for a two-sided test, the right critical value 9^ is computed by (A.l), and 
the left critical value 0% is computed based on the equation 

a = Probability^'est.statistic <= 0%) (A.2) 

where the probability is computed in each case using the distribution of the 
test statistic under the null hypothesis. 

Figure A.l illustrates a distribution of a test statistic under a null hypoth
esis. Oa and 9% are the right, respectively left, critical values of the statistical 
test. The significance level a equals the area under the curve to the right 
of 0%, and it also equals the area under the curve to the left of 0%. When 
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Figure A.l: Two-sided statistical hypothesis test 

the test statistic is greater than 0^ or smaller than 0%, the null hypothesis is 
rejected. Equivalently, the probability that the test statistic has its current 
value, provided that the null hypothesis is true, is very small, i.e., it is less 
than a. 

The probability of not rejecting the null hypothesis, when in fact it is false, 
is called the rate of false negatives or the probability of type II error, and it 
is denoted by (3. A type I error is often considered more serious; thus a is set 
to a suitable small value. The exact probability of a type II error is generally 
unknown, because the distribution of the test statistic under Ha cannot be 
generally determined. Type I and type II errors are inversely related; the 
smaller the risk of one, the higher the risk of the other. 
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