
Complex Logical Action-State Prediction

by

Justin Schlauwitz

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software and Intelligent Systems Engineering

Department of Electrical and Computer Engineering

University of Alberta

c© Justin Schlauwitz, 2021

Abstract

This thesis proposes three novel improvements to the Actor-Critic State-Action-

Reward-State-Action algorithm while considering potential biologically equiv-

alent mechanisms. The algorithms are optimized via a Particle Swarm Algo-

rithm, tested on a unigram character prediction problem, and evaluated on

bit-wise accuracy and character exactness. Some non-unique changes include,

kerneling for flexibility in state encoding options, and mixing historical and

predictive information into the algorithm’s logical input to supplement non-

observable elements. The first contribution is a more flexible δ calculation

method which better emulates how neurotransmitters are released, recovered,

and lost. The second contribution is w.r.t. the implementation of complex

weights and states using a trigonometric interpretation, allowing the algorithm

to more clearly distinguish between non-observability and non-existence. The

last contribution, bounded error, restricts the maximum output magnitude of

the logical predictions in a way that improves weight stability and filtration

of influence from states with weak relations to the output.

ii

To God above

I see what you have made and frequently ask: why or for what purpose? You

have planted in me the desire to emulate my own likeness and experience the

frustrations, joys, and sorrows that come with.

iii

A good name is more desirable than great riches; to be esteemed is better than

silver or gold.

– Proverbs 22:1, NIV

Whoever loves discipline loves knowledge, but he who hates correction is

stupid.

– Proverbs 12:1, NIV

When pride comes, then comes disgrace, but with humility comes wisdom.

– Proverbs 11:2, NIV

A fool gives full vent to his anger, but a wise man keeps himself under control.

– Proverbs 29:11, NIV

Even a fool is thought wise if he keeps silent, and discerning if he holds his

tongue.

– Proverbs 17:28, NIV

Do you see a man wise in his own eyes? There is more hope for a fool than

for him.

– Proverbs 26:12, NIV

iv

Acknowledgements

I would like to thank my supervisor, Dr. Petr Musilek, for granting me the

opportunity to thrive and study under him. In the time I have spent under

his care, he has provided me opportunities to grow as a researcher, public

speaker, and teaching assistant. I thank my supervisory committee for being

the voice of reason and confrontation. While I was trying to figure out the

scope and focus for my research; if I attempted to accomplish as much as

initially thought I could have, I would probably need another 20 years. I would

also like to acknowledge the Queen Elizabeth II PhD. Scholarship offered by

the University of Alberta as it has provided significant financial support. I

thank my close relatives for their moral support even though they could not

easily grasp the concepts and perspectives of my work — If you’re reading this

dissertation, I hope what has been written makes it clearer than what was

conveyed orally. I will also extend a thank you to my fellow work colleagues

who made my time on campus lively and enjoyable. I could start thanking

all the people I have learned from inside the classroom, on the job site, etc.;

however, it would be too long winded, and I am sure they know how sharing

their experiences and knowledge can, have, and will create better opportunities

for those who receive it.

v

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 3

2 Background 5
2.1 Conventional Logic: Faults With Incomplete Sets 5

2.1.1 Inherent Assumption of Complete Knowledge 5
2.1.2 Grouping of Denial and Non-Observability; and Value

and Inconclusivity . 8
2.2 Complex Logic and Signed Probability 13

2.2.1 Complex Valued Logic 14
2.2.2 Signed Probability . 16

2.3 Ions in the Neuron Cell . 26
2.4 The Generalized Sigmoid Function 31

3 Baseline: SARSA 45
3.1 Bellman Equation . 46
3.2 Discrete SARSA Actor-Critic 47
3.3 Analysis . 49

4 Modifications: CLASP 53
4.1 Model and Policy Matching 53

4.1.1 Equation Interpretation 57
4.2 Quality Error: Modified δ . 61
4.3 Kerneling . 63
4.4 Fleshing out State Information 65

4.4.1 Traces: Intangible Information 66
4.4.2 Traces: Past and Present 67
4.4.3 Bifurcation: Affirming and Denial States 69

4.5 Logical Error . 72
4.5.1 Bounded Errors . 76

5 System Model 80
5.1 World/Problem Models . 80

5.1.1 In-Sample: Parameter Optimization 82
5.1.2 Out-of-Sample . 83

5.2 Agent Models . 83
5.2.1 Reward . 84
5.2.2 Transmission Channels 86
5.2.3 Artificial Intelligence 86

5.3 System Simulation . 92
5.4 Summary . 94

vi

6 Testing CLASP and SARSA 95
6.1 Results . 95

7 Conclusions, Contributions, and Future Work 102
7.1 Conclusions . 102
7.2 Contributions . 103
7.3 Future Work . 104

References 106

Appendix A CLASP Algorithm Summary 110

Appendix B Out-of-Sample Plots 113

Appendix C Variant Out-of-Sample Plots 125

vii

List of Tables

2.1 Ion properties at equilibrium 27
2.2 Ion exchangers and anti-porters 27
2.3 Regulated ion channels . 28
2.4 Ion symporters and co-transporters 29
2.5 Sigmoid limits for a→∞ . 39
2.6 Sigmoid limits for 0 < a <∞ 40
2.7 Sigmoid limits for a→∞ . 40
2.8 Sigmoid limits for −∞ < a < 0 40
2.9 Sigmoid limits for a→ −∞ 41

4.1 Error Types . 77

5.1 Chosen PSO parameters. 82

6.1 Hit-rate Favored Optimal Algorithmic Parameters 96
6.2 Hit-rate Favored Out-of-Sample Results 96
6.3 Equal Scaling Optimal Algorithmic Parameters 97
6.4 Equal Scaling Out-of-Sample Results 97
6.5 Accuracy Favored Optimal Algorithmic Parameters 97
6.6 Accuracy Favored Out-of-Sample Results 97

viii

List of Figures

2.1 Complex Logic Visualized . 17
2.2 Contours of Z space . 21
2.3 Bounding of Complex Values 26
2.4 Ion permeability plots . 32
2.5 Varying a in the General Sigmoid Function 42
2.6 Varying b in the General Sigmoid Function 43
2.7 Varying c in the General Sigmoid Function 44

3.1 AC Method . 47
3.2 Bellman Interpretation . 51
3.3 SARSA Interpretation . 51

4.1 Kernaled SARSA Interpretation 54
4.2 Modified δ initial reward plots 64
4.3 Error Measures . 74
4.4 Slacked Error Example . 75

5.1 The basic system model . 84
5.2 Agent: third layer model . 85
5.3 Samples of coding methods . 87

B.1 SARSA plots . 114
B.2 Modelold γ Plots . 115
B.3 Model Plots . 116
B.4 Kernelold γ Plots . 117
B.5 Kernel Plots . 118
B.6 Tracesold γ Plots . 119
B.7 Traces Plots . 120
B.8 Complex Errorold γ Plots . 121
B.9 Complex Error Plots . 122
B.10 Bounded Errorold γ Plots . 123
B.11 CLASP (Bounded Error) Plots 124

C.1 Equal Scale SARSA plots . 126
C.2 Equal Scale CLASP plots . 127
C.3 Equal Scale SARSA plots . 128
C.4 Equal Scale CLASP plots . 129

ix

List of Symbols

A The set of all possible actions.

S The set of all possible states.

~a The column vector representation of the action space.

~s The column vector representation of the state space.

a The scalar/singular action representation.

s The scalar/singular state representation.

r The scalar/singular reward.

�t The arbitrary item(s) of what is present or available at time t.

�t+0.5 The arbitrary item(s) of what is present or available while transitioning
from time t to t+ 1.

�t+n−0.5 The arbitrary summary of what is expected to be present or available
while transitioning from time t to t+ n.

�t−m̃−0.5 The arbitrary summary of what has occurred while transitioning from
time t− m̃− 0.5 to t.

E {x} Expected value of expression x.

[�] The default 2 dimensional matrix.

[�n] A tensor matrix of n dimensions.

�T Transpose of an item.

x

Chapter 1

Introduction

The focus of this research is to modify the State-Action-Reward-State-Action

(SARSA) algorithm in a way that more closely resembles a biological neuron.

These modifications are done with the intention of increasing the Learning

Algorithm’s (LA’s) flexibility, stability, and memory density. SARSA was de-

signed to work with state-spaces that have a fixed number of active binary

states at any given time, i.e. Gray-encoding methods. Similarly, it expects

the action space to produce only one active output while all others are in-

active. Through some small tricks, it is possible to make SARSA work with

Binary-encoded or similar state/action-spaces with limited success. However, a

poor choice of reward scale, parameters that do not sufficiently restrain weight

growth, and encoding methods other than Gray-coding can cause weights to

diverge without limits. The restriction to only use Gray-coding for states

and actions is not an issue for small state-spaces and even helps in lowering

the learning difficulty in most cases, however, it can become impractical for

problems with a large number of states.

Biological neurons are the foundational source of algorithms such as Neural

Networks (NNs) and Temporal Difference Reinforcement Learning (TDRL),

albeit from different perspectives. This thesis will continue along this avenue

because there are aspects of the biological neuron that have been excluded or

simplified, but may also offer hints of how to reach this research’s objective.

Some hints lay in the fact that they operate in an environment where resources

are finite and mediums of information come in different forms.

1

W.r.t. this research, it may be possible to make similar improvements to a

NN model, however, certain aspects of TDRL are more favorable for making

improvements. TDRL tends to focus on how neurotransmitters that function

as rewards are processed within a single layered cluster of neurons. NNs focus

on signal processing and transmission between sequentially connected neurons.

Non-hybridized NNs usually do not use qualitative rewards in conjunction with

prediction error to learn because state/output quality is a generalized measure

w.r.t. the current state and all outputs. Instead, methods such as backwards-

propagation convert the logical error into a neuron specific qualitative reward

for all but the output layer. For an output layer, the total logical error can

be applied as a qualitative reward, but getting logical error measures from

qualitative reward is not necessarily possible as they may not have a strong

relation to each other. As a visual interpretation, neurons inside a NN have

cell membranes and inter-cellular connections with the method for process-

ing signals within the cell depending on the chosen flavor of neuron. The

inter-cellular interactions and processing methods used in NNs are relatively

developed and rigid. Alternatively, TDRL severely lacks the signal processing

capabilities found in NNs as well as the cell walls that define the boundary

between one cell and the next. Instead, it models the overall interactions of

an arbitrary arrangement of competing ‘skinless’ cells with vague environmen-

tal feedback. Given that NNs have been researched for a relatively long time

compared to TDRL, there seems to be more potential for unique biologically

inspired improvements in TDRL.

Each modification is applied step-by-step to demonstrate the progressive ef-

fects they have on the algorithm, gradually bringing about the new algorithm:

Complex-Logical-Action-State-Prediction (CLASP). The problem to be used

in this research is unigram character prediction. Character-level prediction al-

lows us to use any text-based file as a dataset and is structured w.r.t. sequence,

while also being largely stochastic [10]. The difficulty w.r.t. predictability can

typically be adjusted by changing the number of characters presented as inputs

or including relevant state information about higher level data. The LAs will

be optimized with a focus on hit-rate while bit-wise accuracy is second, i.e.

2

getting the exact binary sequence for a character as much as possible is more

important than getting a character that is similar in binary.

1.1 Motivation

Most algorithms tend to focus on using presented observations and internally

set states to decide which actions to take. Some may even use internal states

with dual properties (i.e. negative state values), but one would be hard pressed

to find an algorithm that explicitly considers non-dual predictions of its ob-

served states and attempts to strike a balance between observation and pre-

diction. This is not without reason: adding too much useless or conflicting

information may lead to a case of ‘garbage-in-garbage-out.’ A learning method

that mitigates, if not entirely filters out the effects of noisy state data, will be

desirable. A method that better ensures learning stability w.r.t. reward would

be worth including. Weight transparency is another aspect to be considered,

but not strictly focused on in this research. The primary objective of this

research is not to produce a perfected product; however, it is expected to

show new ways that TDRL can be improved through biologically inspiration.

Though adding to SARSA is expected to increase time and memory require-

ments, if the flexibility of encoding, compression of information, stability of

learning, and weight clarity can be improved, it may offer a desirable starting

point for further research focusing on rigor and clarity.

1.2 Objectives

To improve SARSA, a series of modifications will be progressively implemented

and tested. The first step is to try and improve the δ calculation method to

reduce the likelihood of having state-action quality predictions diverge — a

common way that SARSA has been found to fail in highly non-stationary

environments. This change will consider additional aspects of how neuro-

transmitters can be manipulated. The next objective will be to implement

complex weights. This will serve to increase the amount of information that

can be stored for each state. As complex logical states already deviate from

3

the norm of logic and probability, an alternative perspective will be proposed:

logical values will be assumed to have units in the form of energy or amplitude,

i.e. they will no longer be considered unit-less. This change in perspective is

expected to allow weights to be viewed as trigonometric relations with high

degrees of similarity to conventional logical operations, instead of as purely

logical or probabilistic components. Combining trigonometry with complex

numbers is expected to increase the potential flexibility of a given weight ele-

ment by permitting intermediate forms of the fundamental logical operations.

The last objective is to improve the logical stability. This will be done with

consideration of how neurons are limited in size by the number of resources at

their disposal, i.e. limiting roughly how large the weights used can become. A

limitation on the size of the logical error will also be imposed in expectation

of improving the stability of logical error calculations — making the algorithm

more compatible with non-gray-coding methods in chaotic state-spaces. In

short, w.r.t. SARSA, this research aims to:

• improve on the δ calculation method to gain better stability,

• allow for alternative weight interpretations, and

• improve on the logical error calculation’s stability to better handle chaotic

densely coded state information.

4

Chapter 2

Background

2.1 Conventional Logic Faults When Expecta-

tion Deviates From Application

There are two faults to be addressed in this chapter: the assumption of know-

ledge about the dual H of a subset T when only T is given without guarantee

that X = {0}; and the oversight that, denial and non-observability are both

mapped into 0. These issues are usually ignored because we turn a blind eye

to X, assuming it will likely never happen, and focus on the duality of in-

terest. However, for Learning Algorithms (LAs) that are required to develop

their own logical circuits, it is very unlikely for the internal logic equations

to abide by the rules and restrictions provided in the field of probability, e.g .

producing values outside the range of [0, 1] if an explicit bounding function is

not imposed. The consequence of this is that the LA’s X set is not the empty

set {0} and is not insignificant — as is the case learning has converged to a

deterministic policy. Because X is not insignificant, it is necessary to address

the problems that arise in our conventional interpretations before working to

find a resolution.

2.1.1 Inherent Assumption of Complete Knowledge

One of the requirements for probability to work is that ‘all’ outcomes must

be known/represented in some form, i.e. for all elements in the universe of

5

discourse Z[4], [23]:

1 =

∫
Z

P(Z), (2.1)

however, though possible in theory, this is often impossible in practice, i.e. for

S ⊆ Z such that Z = S ∪X:

1 ≥
∑
S

P(S). (2.2)

To make this easier to comprehend, a coin flip example will be used to represent

a simple two state problem. Theoretically, the ideal coin flip game has two

outcomes S = {H,T} with claimed equal probability {0.5, 0.5} where:

T = ¬H (2.3)

and

H = ¬T . (2.4)

I.e. H and T are mutually opposed elements that cannot or at least should not

occur together or be entirely absent [4], [23]. However, given all the possibilities

of reality, we must acknowledge that there is some possibility for an unknown

and unaccounted for state X = Z −S, e.g . the coin landing on its side, which

causes the inequalities:

(1− P(T)) ≥ P(¬T) (2.5)

and

(1− P(H)) ≥ P(¬H) (2.6)

or the equalities

(1− P(H)) = P(X) + P(T) (2.7)

and

(1− P(T)) = P(X) + P(H). (2.8)

To rectify this, one must use a more elaborate equation that accounts for the

anomaly:

((1− P(X))− P(T)) = P(H) (2.9)

6

where P(H ∪ T) = 1→ (1−P(X)). Given P(X) is unknown, the assumption:

T = ¬H =⇒ P(T) = (1− P(H)) (2.10)

only holds under the assumption that all states are accounted for, i.e. the 1 in

P(T) = (1− P(H)) implies that S = Z and T and H are mutually exclusive,

i.e. X = {0}. Let us return to the original problem of the coin flip, but with

a case where the assumption of exclusivity is false, e.g . a second identical coin

gets mixed in during the flip and it is now possible for H and T to appear

simultaneously. It would imply the original rules of the game were violated,

but this is also a valid state outside the expected set of outcomes should it come

into existence. If the probability of such an outcome were to be accounted for,

then one could write the probabilistic sum:

1 = P(H) + P(T)− P(T ∩H). (2.11)

which can be rearranged to get equation (2.7) or (2.8) if it is permitted for

−P(T ∩ H) ⊆ P(X). The consequence of not establishing rules that account

for violations of exclusivity, but do consider all other possibilities, would result

in:

1 ≤
∑
∀S

P(S). (2.12)

The range for P(X), when accounting for unexpected outcomes and con-

tradictions, is −∞ < P(X) ≤ 1 if 0 ≤ #S <∞. The lower bound of P(X) is

determined by the correctness of the rules w.r.t. the relations of the elements

within S while the upper bound is determined by how closely S equates to Z.

In summary, conventional logic has little to no tolerance for incomplete or

inaccurate rule sets — there exists an inherent assumption of infallible prior

knowledge; however, if the completeness and accuracy is sufficiently close to

the ideal theoretical scenario, it can be regarded as, and often is acceptable

for implementation. It should be noted that w.r.t. intelligent systems that are

required to learn their own logical policies, |P(X)| can only be regarded as

being minimized after learning has converged — even then, it may still not

be insignificant enough to be ignored. Regarding whether or not a probability

7

should be allowed to exceed the range [0, 1] is another issue that must be

addressed separately.

2.1.2 Grouping of Denial and Non-Observability; and
Value and Inconclusivity

Through the research thus far, attempts have been made to distinguish be-

tween logical values and probabilities. This is because, though similar, they

represent two very different aspects: all logical values, and only two probabilis-

tic values, {0, 1}, suggest a definite outcome, while probabilities in the range

(0, 1) suggest indefinite outcomes. Even then, the interpretation of P(Y) = 0

and V(Y) = 0 depend on the observability of the duality of Y .

Logical values state the strength of a conclusive statement, e.g . the degree

to which something observably, in part or whole, exists. The duality of V(Y) >

0 pertains to the non-confidence in the statement, e.g . the lack of supporting

evidence, while the duality of V(Y) = 0 is a full declaration of non-existence;

however, a lack of supporting evidence is not the same as a degree of confidence

an observation’s dual. E.g . on a moderate day, one person asks: is it hot

outside? The one being asked could potentially answer with: it is bright or it

is cold. Of the two answers, one is irrelevant, i.e. a lack of supporting evidence

for affirmation, while the other is true on the premise that ‘cold’ is the dual

of ‘hot,’ and both cannot be directly relied upon and thus should be mutable,

i.e. 0, because both responses are disjointed from the question which expects

a truthful and direct reply regarding heat — yes or no. The word ‘directly’ is

placed under emphasis because, if there exists additional rules governing the

relation between radiance and duality of the source respectively to the prompt,

one may be able to make a conclusion; however, such considerations are not

made within the logic compiled by the question, and if the premise of duality

is established, there is still the problem of potentially lost information during

the interpretation of ‘cold’ to ‘not hot.’ The loss comes from the fact that,

linguistically speaking, there are several degrees of relative ‘hot’ and ‘cold’

that do not have an equivalent in the opposing spectrum. This is to say that,

w.r.t. conclusive statements made with conventional logic in response to ‘is it

8

hot outside,’ i.e. SV = {Y,N}, using values in the spectrum of ‘hot’ can be

interpreted with:

V(Y) > 0 =⇒ Yh = 1 =⇒ Nh = 0 (2.13)

and

V(Y) = 0 =⇒ Yh = 0 =⇒ Nh = 1, (2.14)

i.e. a statement of even the smallest non-zero magnitude in affirmation con-

stitutes Y otherwise it is N . Naturally, this also applies when swapping N

and Y .1 However, from this information, it can only be concluded if it is hot

or not and cannot claim if it is cold or lukewarm, unless there are additional

questions related to said temperature groups. For a discrete case where the

direct inverse states are observable, it can be an acceptable answer with w.r.t.

the inverse statement, but for a case where the dual is not observable, e.g . ex-

istence and non-existence, a direct claim that something does not exist simply

because it is not observable is erroneous, i.e.:

V(Yh) =

{
1 If V(Y) > 0,

0 Otherwise,
(2.15)

and

V(Yh) = x 6=⇒ Nh = 1− x. (2.16)

From these sets of implications, when regarding the matter of temperature,

there is more information relevant to the question contained in the response

directly coinciding with the spectrum of said question than in a dual value

that is not diametrically opposed.

If logic represents a conclusive statement, then probabilistic values repre-

sent the possibility that something will/does/did exist/occur. Probability is

not concerned with the value of a statement, but more concerned about the

possibility and reliability of said value, e.g . the possibility of Y = 1 or false

negative N = 1 of a photo-voltaic’s activity in a circuit given brightness level

B. It is important to note that the set of claims and conclusions are similar but

different, i.e. SP = {Y,N} 6= SV = {Y,N}. The probability that something

1This set of implications does not work for X because it is not part of the duality relation.

9

will occur with P(Y) = x implies that it will not occur with P(N) = 1 − x.

The implicit part of this duality relation is that one always implies the oppo-

site for the other which is characteristic of leading questions, e.g . if one claims

that Schrödinger’s Cat is dead you imply that it is not alive; and the use of a

non-vectorized value implies that one is not fully excluded/included unless the

other is fully accepted/denied respectively, e.g . a bird is not a cat nor a dog

and white contains both red and green but each question can only be answered

with one of the two candidate solutions: cat or dog and red or green. The

problem perceived from these cases is when we rely on P(Y) = P(N) = 0.5 as

a mutable case and assume P(Y) +P(N) = 1 when not all dualities are proper

duals — as mentioned in the previous section where X 6= {0}. To examine

this further, let us scrutinize the two questions: is it hot and does it exist?

The first question is an example of ‘cold’ not being a proper dual to ‘hot,’ and

the second question, though more subtle, implies that non-observable equates

to non-existent. For clarity, it is necessary to state the relation between the

soft/continuous P(Ys) and hard/discrete P(Yh) as:

P(Yh) =

∫
Ys∈Y

P(Ys), (2.17)

which also applies to N and X. Unfortunately, P(Xh) and P(Xs) are unknown

because they include outcomes outside of our expectation S, however, this does

not stop us from learning some information about E(Xh) and E(Xs) through

indirect means. The expected logical value of affirmation can be calculated as:

E(Ys) =
∫

Ys∈Y
V(Ys)× (P(Ys|Y) + P(Ys|N) + P(Ys|X))

=
∫

Ys∈Y
V(Ys)× P(Ys) (2.18)

while

E(Ys) ≤ E(Yh) = V(Yh)× P(Yh) = V(Yh)×
∫

Ys∈Y

P(Ys). (2.19)

10

This inequality can also be presented more broadly as:

E(Ys) ≤ E(¬Nh)− E(Xh)

≤ V(¬Nh)× (P(¬Nh|N) + P(¬Nh|Y) + P(¬Nh|X))− E(Xh)

≤ V(¬Nh)× P(¬Nh)− E(Xh)

≤ (1− V(Nh))× (1− P(Nh))− E(Xh)

≤ (V(Yh) + V(Xh))× (P(Yh) + P(Xh))− E(Xh)

≤ V(Yh)× P(Yh) + E(Xh) + V(Yh)× P(Xh) + V(Xh)× P(Yh)− E(Xh)

≤ E(Yh) + V(Yh)× P(Xh) + V(Xh)× P(Yh), (2.20)

given the relations:

V(¬Nh) = (1− V(Nh)) = V(Yh) + V(Xh). (2.21)

The relation in equation (2.21) in reasonable because, anything that is not

Nh is expected to be Yh, however, should it be neither or both, then V(Xh)

would be non-zero to enforce the sum of values equal to 1 as is done for the

probability in the previous section. If both methods of calculating E(Ys) are

acceptable, then:

E(Yh)− E(Ys) ≥ −V(Yh)× P(Xh)− V(Xh)× P(Yh), (2.22)

Using the same approach for Ns, we get the inequality:

E(Nh)− E(Ns) ≥ −V(Nh)× P(Xh)− V(Xh)× P(Nh), (2.23)

Given that the left hand side is the region to which a declaration is lacking, we

can expect that they are part of Xs or the respective dual component, given

by the other equation. For regions outside of S and Yh ∩ Nh 6= 0, Xh takes

on the necessary value to ensure these inequalities. To define E(Xs) w.r.t. Z

give:

E(Xs) =
∫

Xs∈X
V(Xs)× P(Xs)

= E(Nh)− E(Ns) + E(Yh)− E(Ys) + E(Xh), (2.24)

11

which is in accordance with equation (2.21). Considering the other side of the

inequalities, gives:

E(Xs) ≥ E(Xh)− V(Yh)× P(Xh)− V(Xh)× P(Yh)

− V(Nh)× P(Xh)− V(Xh)× P(Nh), (2.25)

which can be rearranged into:

V(Xh)× P(Xh) = E(Xh) ≤ V(Yh)× P(Xh) + V(Xh)× P(Yh) + E(Xs)

+ V(Nh)× P(Xh) + V(Xh)× P(Nh). (2.26)

A problem that arises here is that E(Xs) can only be calculated with the sum

of unknown values and probabilities or by requiring E(Xh) which also has the

unknown component P(Xh). What is known is that E(Xh) = 0 when Yh = ¬Nh

and E(Xh) = E(Xs) = 1 if it is observed that Yh = Nh = 0, however, this does

not give the value of E(Xs) when E(Xh) 6= 1, thus the inequality.

Going back to equation (2.21), if there is any instance where V(Xh) 6= 0

it is guaranteed that inequality (2.26) will be influenced by P(Yh) = P(Nh) =

x > 0, i.e. a non-zero value suggesting indifference is not mutable if P(Xh) =

1−2×x 6= 0. If we apply these expected value equations to the question: does

it exist, since the dual, i.e. non-existence, cannot be observed to any degree

and realistic sensors are not infallible and omniscient, we must conclude that

N ⊂ X and E(Xh) = 1−E(Yh). This can be implemented by setting P(N) = 0

and V(N) = 0 which allows equation (2.24) to reduce to:

E(Xs)− E(Xh) = E(Yh)− E(Ys)

= (1− E(Xh))− (1− E(Xs)). (2.27)

This allows a reduction for the inequality between E(Xs) and E(Xh) to become:

V(Xh)× P(Xh) = E(Xh) ≤ V(Yh)× P(Xh) + E(Xs) + V(Xh)× P(Yh) (2.28)

or

V(Yh)× P(Xh) + V(Xh)× P(Yh) ≥ E(Xh)− E(Xs)

≥ E(Ys)− E(Yh). (2.29)

12

Due to X being diametrically opposed to Y , we can claim that:

V(Xh) = 1− V(Yh) (2.30)

and

P(Xh) = 1− P(Yh), (2.31)

therefore:

E(Xs) ≥ E(Xh)− V(Yh)× P(Xh)− V(Xh)× P(Yh)

≥ (1− V(Yh))× (1− P(Yh))− V(Yh)× P(Xh)− V(Xh)× P(Yh)

≥ 1 + E(Yh)− V(Yh)× (2− P(Yh))− (2− V(Yh))× P(Yh).

(2.32)

From this inequality, even though N was removed from the scope of the prob-

lem, it is still not possible to find a solution for the expected value of Xs.

The conclusion regarding conventional logic and probability is that, it is

viable only in cases where the claims and conclusions consider all possibilities

and establish proper dualities w.r.t. interpretation. If the established duality

is improper or incomplete, there is a risk of encountering logical errors when

relying on states derived from the inverse of a prior claim/conclusion. In cases

where X 6= {0}, there are situations where V(X) and P(X) are required to

exceed the range [0, 1] to maintain the range for valid responses in S which

further implies that rules of conventional logic cannot be guaranteed to hold

when situations beyond the limits of expectation occur.

2.2 Complex Logic and Signed Probability

Due to the necessity to be able to handle conflicting, fallible and/or irrelevant

logical information, it was necessary to implement a method of representing

V(Y) and P(Y) and their claimed duals V(N) and P(N) separately but in

a way that can still demonstrate their relations. The requirement for logical

representation is that the observable/real value must reflect what is seen in

conventional logic, however, the process of switching between duals must be

13

lossless, i.e. no data compression. The requirements for probabilities build off

of the understanding of logic, but must either be applicable to the conventional

operations or have an alternative that displays equivalent behavior. It should

be noted that the primary interest of this chapter is not to give a thorough

proof, as would be found in a dissertation from a department of mathematics,

but to give sufficient explanation of the concept for justifiable implementation

and interpretation.

2.2.1 Complex Valued Logic

To improve on conventional logic, the properties of complex numbers are be-

lieved to have the best matching characteristics as a way to implement V(Y)

and V(N):

L(Y) ≡ L(S) = V(Y) + ı̂V(N) (2.33)

and

L(N) ≡ V(N) + ı̂V(Y), (2.34)

where L(S) is the more generalized expression, taking Y as an affirmation and

N as a denial. If N is used to represent the dual of Y , the relation between

L(Y) and L(N) is established as a rotation about 1 + ı̂1:

L(N) =
√
−L2(Y). (2.35)

or more generally:

L(S) =
√
−L2(S)∗ = ı̂L(S)∗. (2.36)

As with conventional logic, the inverse value relative to the focus is summa-

rized as zero w.r.t. the real value; however, unlike conventional logic, the data

stored on the imaginary axis is not lost when considering the entirety of the

logic value. The consequence of this is that N = Y — a commonly found

property in logical paradoxes — places the logic vector on the axis of rotation,

and though less meaningful, still gives a non-zero logic value which suggests

that a conclusion exists, e.g . admitting that it does not know [23]. Such a

property is useful for differentiating between a non-statement and a conflict-

ing statement. It is also possible to claim N = {0}, i.e. the dual literally does

14

not exist, to which the inverse, S, is properly non-observable while the real

component of L(S) projected to the imaginary axis is expressed in a way that

does not interfere with the real axis. Discarding the relation:

1 = V(Yh) + V(Nh) + V(Xh), (2.21)

is necessary as it is not capable of performing as it did before in this context.

In its stead, the following equality will be used:

12 = L2(X) + L(S)× L(S)∗ = L2(X) + V2(Y) + V2(N), (2.37)

will be used. This new relation is based on the radial distance, where L2(X)

takes on the deviation from the unit circle assuming all values of N and Y

are positive. This method gives the implication that the real and imaginary

components of L(X) represent regions where S is deficient or excessive respec-

tively. In the ideal scenario, L(X) = 0 as this would imply that N and Y

together are able to fully and properly represent Z, i.e. they are diametrically

opposed in accordance with the equation for the unit circle. If we wish to

specifically identify the contradiction Y ∩ N , we can use the imaginary part

of L2(S), i.e.:

V2(Y ∩N) = I{L2(S)} = 2× V(Y)× V(N)

V(Y ∩N) =
√

2×
√
V(Y)×

√
V(N), (2.38)

which gives the largest combined value V(Y ∩N) = 1 at V(Y) = V(N) = 1/
√

2

given L(X) = 0. It should be clarified that L2(X), assuming it can be found,

only tells us if the logical values are exaggerated or reserved/deficient, but

do not tell us if they are perfect duals; thus, equation (2.38) is not something

that should be carelessly discarded when evaluating a set of logical operations.

This statement of conflicting information between Y and its assumed dual

N inherently suggests the degree to which the logical input is incomplete.

The difference between X here and X from chapter 2.1 is that the resulting

L(X) here may not be well contained. However, to ensure its magnitude is

bounded, it is sufficient to use a squashing function to establish a tolerable

limit w.r.t. exaggeration for which all values greater are considered equally

15

large. This same squashing/bounding function can be applied to ensure that

output values remain in the valid range when they are to be used again for

further calculations, e.g .:

R{L(S)}


R{L(S)}
||R{L(S)}||

If ||R{L(S)}|| ≥ 1,

R{L(S)} Otherwise,
(2.39)

and

I{L(S)}


1 If I{L(S)} ≥ 1,

0 If 0 ≥ I{L(S)},
I{L(S)} Otherwise.

(2.40)

2.2.2 Signed Probability

Assuming logic and probability can be handled similarly, what was uncovered

in the previous section can carry over, however, a distinction should be made:2

P(Y ⊕N) = R{L2(S)} = R{P(S)} = P(Y)− P(N). (2.41)

This is acceptable because all conflicting information is placed on the imagi-

nary axis, becoming mutable when only the real component is used. If infor-

mation regarding conflict is relevant, it is possible to restate equation (2.38)

as:

P(Y ∩N) = I{L2(S)} = I{P(S)} = 2×
√

P(Y)×
√
P(N). (2.42)

To match with equation (2.37), probability P(Sh) will have to be defined as:3

P(||Sh||) =

∫
Ss∈S

||
√

P(Ss)||2 = V2(Yh) + V2(Nh) = L(Sh)× L(Sh)
∗. (2.43)

If conflicting information exists, it would be prudent to keep in mind that:

||P(Y ⊕N)|| ≤ P(||Sh||) ≤ ||P(Y ⊕N)||+ P(Y ∩N) = P(||S||). (2.44)

This inequality is worth noting as the XOR probability P(Y ⊕N) removes

all conflicting information while said information is retained in P(Sh), and if

2For this work it is assumed that all logical/probabilistic values of Y and N are positive.
3||
√
P(Ss)||2 ≡

√
P(Ss)×

√
P(Ss)

∗
. Where subscript s and h denote the soft or contin-

uous probability space and hard or discrete space.

16

(a)

(b)

(c)

(d)

Figure 2.1: These figures demonstrate several basic properties of signed proba-
bility given complex logical values. (a) demonstrates the different probabilistic
values (given as the radius) that result from a set of logical values (given as real
and imaginary values). r is an arbitrary maximum value that allows for a cir-
cle to be formed with L(S), i.e. r =

√
Y 2 +N2. This figure also demonstrates

how P(||Sh||) (the green line on the circle) is bounded by ||P(Y ⊕N)|| (the red
solid and dotted line in the positive quadrant) and ||P(Y ⊕ N)|| + P(Y ∩ N)
(the dotted purple line outside the circle). (c) shows how P(Xh) can be ap-
proximated by its respective upper and lower bound demonstrated in (a). (d)
shows how the negation P(¬S) relates to the elements of P(S) to which (a)
and (c) can be reapplied to get what is shown in (b). (c) demonstrates how
the intersections of inequalities for S and ¬S form a closed region surrounding
point Sh. The two radial lines (black intersecting lines) also demonstrate the
disjoint relation between S and ¬S.

17

the logical AND probability P(Y ∩N) is added to the lower bound ||P(Y ⊕N)||,

a value greater or equal to the probability of the hard value Sh is guaranteed.

A rough visualization has been provided in figure 2.1(a). This means that,

if all conflicting information is removed, the set of inequalities will become

equalities. It should also be noted that, for 0 ≤ Y and N ≤ 1, we get

0 ≤ ||P(Y ⊕N)|| ≤ 1 and 0 ≤ P(||S||) ≤ 2.

Reinterpreting equation (2.37) to probabilities:

12 =

∫
Ss∈S

||
√

P(Ss)||2 +

∫
Xs∈Z

P(Xs) = P(||Sh||) + P(Xh). (2.45)

X is processed differently here compared to before because S contains signed

information pertaining to Y and N while X is only concerned with the mag-

nitude of S and the areas where it is deficient or excessive.

Operations: Inverse and Negation

The first operation to be proposed will be a simple extension of the logical

inverse:

P(S) = −P(S)∗. (2.46)

It is also necessary to establish a claim that the inverse is distinctly different

from the negations:

P(¬||Y ⊕N ||) = 1− ||P(Y ⊕N)||, (2.47)

P(¬||S||) = 1− P(||S||), (2.48)

and

P(¬S) = (1 + ı̂1−
√

P(Y ⊕N) + ı̂P(Y ∩N))2

= (1 + ı̂1−
√

P(S))2, (2.49)

which can be separated into its elements:

P(¬Y ⊕ ¬N) = R{P(¬S)} (2.50)

and

P(¬Y ∩ ¬N) = I{P(¬S)}. (2.51)

18

The key difference between inversion and negation is that the inverse serves

to swap the interpretation of Y and N which may not be true dualities while

the negation considers the true dual of S or its elements (see figure 2.1(d)).

When considering equation (2.44), it can also be claimed that:

P(¬||Y ⊕N ||) ≥ P(¬||Sh||) = P(Xh) ≥ P(¬||S||). (2.52)

If 0 ≤ Y and N ≤ 1, then 1 ≥ P(Xh) ≥ −1 is known. Equation (2.49) is

distinctly different from the other two negations because it deals with what

is not being declared, e.g . if the elements of
√

P(Y) are the probabilities of

two supposedly dual states being activated, then the elements of
√
P(¬S)

represent the probability of inactivation/deactivation for said states. A rough

explanation as to why the distinction is not made in conventional logic would

be that when N = 1− Y = ¬Y , the equivalence P(¬S) ≡ P(S) comes about,

i.e. the distinction cannot be made. The properties of equations (2.45) and

(2.37) should not be confused with the one found in equation (2.49) as the

former consider S as a whole, which allows for consideration of possibility X,

while the latter is only concerned with its elements, which rightly assumes

X ∈ ¬S but does not allow for a proper separation of X from ¬S.

It may be easier to understand the complications of using P(¬S) by com-

paring its inverse P(¬S) with P(S). An important aspect that must be pointed

out, is that the real and imaginary components of P(¬S) are disjointed. As

the respective origins lay at Y = 1 and N = 1 respectively, it is implied that

¬N on the real axis and ¬Y on the imaginary axis are largely independent

declarations despite Y and N being supposed duals. Likewise, P(Xh) and

P(¬Xh) are disjoint (see figure 2.1(b)).

Though equation (2.49) makes it more apparent that Y and N are dis-

jointed, it distinctly represents what is not presented in the elements of S.4

To draw a conclusion w.r.t. the negation and inverse of S, if N is not directly

processed as the absence of Y , i.e. N ⊆ X such that N = ¬Y , it is not

permissible to assume that N is diametrically opposed to Y , e.g . when N is

derived from an alternative source; even then, N = X cannot be assumed

4A more general method of implementation for P(¬S) will be introduced later.

19

as this only occurs under ideal circumstances. Another remark that can be

made to help understand how this integrates with set theory is that sets are

primarily concerned with what does and does not exist and are not concerned

about their placement much like P(Y), P(N), ||P(Y ⊕ N)||, and P(Y ∩ N)

which are strictly positive and real [16]. Though values of said sets can be

considered as unstable, there are applicable methods for establishing upper

and lower bounds. For the probability of outcomes X, there is ||P(X)|| which

can be acquired with some manipulation of equation (2.37). The values of

||P(X)|| can also be considered a valid set which contains what is lacking from

set S and/or overly covered by Y and N . Lastly, it should not be forgotten

that the 1 and 1 + ı̂1 in the negations, as well as the 1 in equations (2.45) and

(2.37) are representative of the complete universe of discourse Z.

Operations: Product and Summation

From equation (2.42) and from a reinterpretation of the traditional method,

there are two likely proposals for the product:

P(B ∩ C) = 2×
√

P(B)×
√
P(C) (2.53)

and

P(B ∩ C) =
√
P(B)×

√
P(C). (2.54)

As is, the second method is more desirable since this would imply that, for a

product of a set with itself, P(A ∩ A) = P(A) while the first method implies

P(A ∩ A) = 2 × P(A), however, there are several other aspects to consider

before making a conclusion, e.g . re-scaling and clipping of exaggerations. Two

other operations that can be built off of these two product equations are XOR

and OR:

P(B ⊕ C) = P(B) + P(C)− 2×
√

P(B)×
√

P(C) (2.55)

and

P(B ∪ C) = P(B) + P(C)−
√
P(B)×

√
P(C). (2.56)

These equations have some similarity to the Law of Cosines equation:

a2 = b2 + c2 − 2× b× c× cos(θbac), (2.57)

20

(a) P(||S||)

(b) P(||Sh||)

(c) P(Y ⊕N)

(d) P(¬||S||)

(e) P(Xh)

(f) P(¬||Y ⊕N ||)

Figure 2.2: Where the y-axis is N and the x-axis is Y . The corresponding
plots for P(¬S) can be demonstrated by rotating about the line formed by
N = 1 − Y and the plots for the inverse can be found by rotating about the
line formed by N = Y .

21

when a ≡ L(A), b ≡ L(B), and c ≡ L(C). cos(θbac) is of interest because

it is the angle between the logical hyperplanes for which B and C lay on

respectively. By manipulating θbac subject to 0 ≤ θbac ≤ π/2, it is possible to

get P(B ⊕ C) at θbac = 0; P(B ∪ C) at θbac = π/3 for non-mutually exclusive

sets of B and C; P(B ∪ C) at θbac = π/2 for mutually exclusive sets of B and

C; and every fine combination that lays between each of these. Unfortunately,

this only applies under the assumption that all probability values are positive

and real or at least lay on a single axis and not a plane. To better encompass

the expression, it would require extending the Law of Cosines to include an

arbitrary degree of flexibility for the angles between input planes and their

relative orientations to the output.

Before going further, it may be useful to address whether the results should

be treated as an aggregation of its input sets or as a directly dependent but

separate event. For equation (2.53), it is likely more appropriate to apply the

latter while equation (2.54) would apply the former, allowing the use of:

P(A|B ∩ C) = 2×
√

P(B)×
√
P(C)× cos(θbac), (2.58)

and since (A∩B) = (A|B)×B for A dependent on B, it can be implied that:

P(A ∩B ∩ C) =
√

P(A|B ∩ C)
√
P(B ∩ C)

=
√

2× cos(θbac)×
√

P(B)×
√
P(C). (2.59)

This further implies that 2×cos(θbac), given the Law of Cosines, determines the

degree of dependence of A on B ∩C, even if A ≡ B ∩C, i.e. it can be claimed

that: A = B ∩ C if θbac = π/3; A is exclusive from B ∩ C if θbac = π/2; and

A ∝ B∩C otherwise. Nitpicking about B and C being potentially dependent,

the case of B ∝ C can be considered:

P(B ∩ C) =
√

P(B|C)×
√
P(C)

=
√

2× cos(θbc)× P(C)×
√

P(C)

=
√

2× cos(θbc)× P(C), (2.60)

which implies that the probability of B ∩ C is a scaled up/down value of the

probability of C. More explicitly, the relation between A|B and (A ∩ B), for

22

A that is dependent on B, can be given as:

P(A|B) = 2× cos(θbab)× P(B)

=
√

2× cos(θab)× P(A ∩B). (2.61)

These relations imply that 2 × cos(θbab) = P(A|B)/P(B) ≡ P(A ∩ B) and√
2× cos(θab) ≡ 1/P(B) which further implies

√
2 × cos(θbab)/

√
cos(θab) ≡

P(A|B). They are only equivalent and not equal because 2 × cos(θ) is unit-

less while the probabilities are not necessarily so. Carrying this over to our

probabilistic sum, we can claim the general expression is based on conditional

statements:

P(A|B© C) = P(A|B) + P(A|C)− 2× cos(θbac)× P(A|B ∩ C)

= 2× cos(θab)× P(B) + 2× cos(θac)× P(C)

−2× cos(θbac)×
√

P(B)×
√
P(C).

(2.62)

In this form, the angles can be manipulated to form an assortment of logical

expressions as well as there intermediates. This equation is more favorable due

to A not being entirely dependent on one component or the other and because

it is more compatible with the expression for the XOR operation. Making the

replacement of 2 × cos(θ) in equation (2.62) with the learned weights of our

learning algorithm only further enforces the utility of this interpretation.

Apply this new equation to the special case of P(B) = 1,
√

2× cos(θ1ac) ≤

0,
√

2× cos(θac) ≤ 0, a range of P(A|1 © C) where A is an inverse form

of C become possible. In short, the Law of Cosines with an orientation of

inputs w.r.t. the output, though with different methods of representing the

angles, can be considered equivalent to a generalized logical operator which

can include several core logical operations — namely AND, OR, and INV. If

this is acceptable, it is possible to analyze the complex valued weights of the

learning algorithm as the scaling components produced by the orientations of

each hyperplane relative to the output space and each other.

23

Calculating Expected Values

For the topic of expected values, the claim that they can be expressed by:

E{A|B} = V(A|B)× P(A|B)

= 2× cos(θbab)× V(A|B)× P(B)

=
√

2× cos(θab)× V(A|B)× P(A ∩B), (2.63)

will be proposed. In this form V(A|B) is more generalized than its previous

usage, i.e. it includes logical values. If the expected value associated with

equation (2.62) is the sum of its products, then:

E{A|(B© C)} = E{A|B}+ E{A|C} − E{A|B ∩ C}

= V(A|B)× P(A|B) + V(A|C)× P(A|C)

−V(A|B ∩ C)× P(A|B ∩ C), (2.64)

which implies the expected value A can depend on the respective input set,

i.e. a sum of its parts. It should be noted that the effective units of E{} and

V() are distinctly different because E{} includes the assumed units of P(). The

simplification, given A = B© C and the relation between logical values and

probability values, as well as equations (2.59) and (2.60):

V(A) = V(A ∩ A) =
√
V(A|A)× V(A)

= V(A|A) = V(A|B© C), (2.65)

for which it is assumed θa = π/3. An expected value calculation that depends

on but is strictly separate from its inputs can be given as:

E{A|(B© C)} = E{A} = V(A)× P(A). (2.66)

To distinguish between E{A|(B©C)} from the one from equation (2.64) and

this shorter expression, the former accounts for relations between B and C

according to the operation © while the latter’s value is independent of this

upstream aspect even if it is represented by A.

24

Operations: Reorienting, Re-scaling, and Clipping

Reorienting has to do with cases were logical values are partially negative

on the their respective axis. Though encountering negative values can be

prevented with appropriate bounding functions, it would be best to at least

propose methods of handling them. Firstly, due to the nature of how phase

angles are affected by operations of the form xn, going from L(A) to P(A)

for negative real or imaginary values would yield overlapping or contradictory

results. Therefore, before squaring logical values it is necessary to convert

them to their equivalent positive values. This may be done with:

2L(A) = L(A) + ı̂L(−A)∗, (2.67)

which adds the magnitude of negative denials and affirmations to the real and

imaginary axis respectively. Following this conversion, the negative values can

be clipped with:√
P(A) ≡ R{2

√
P(A)} × u(R{2

√
P(A)}) + ı̂I{2

√
P(A)} × u(I{2

√
P(A)}).

(2.68)

This method cannot be performed in the probability space due to the over-

lapping regions for which two different phase angles, upon being doubled, give

the same result.

To ensure P(Xh) ≥ 0, the total probability should not be allowed to ex-

ceed 12. One option is to immediately re-scale the values using euclidean

normalization whenever they exceed the unit circle boundary, i.e. ensuring

0 ≤ ||
√

P(A)|| ≤ 1, which preserves the ratios of the real and imaginary

components; however, this may render the less dominant statement mute sim-

ply because the counter-statement was excessively large. The alternative is

to forgo preserving the phase angle and clip exaggerated values to 1 before

performing normalization. Clipping, followed by re-scaling, has an interesting

property whereby, the more something is exaggerated for or against a state-

ment to which there is a conflicting alternative, the greater the distortion of

phase angle away from said exaggeration, e.g . when something is too good

to be true, doubts regarding credibility gain more influence. These three op-

25

Figure 2.3: Following the operations: logical components can first be reori-
ented such that they lie in the complex plane; then values exceeding 1 can
be clipped to remove exaggerations, causing skepticism of exaggerated values;
finally, the ratio is preserved while exaggerations of the total logic space S are
projected onto the unit circle. It should be noted that no matter how large the
exaggeration is, it will not cause the conclusion to cross the axis for inversion,
i.e. 1 + ı̂1.

erations can also be used in order of reorienting, clipping, and re-scaling to

maintain the desired range of values within the probability space.

2.3 Ions in the Neuron Cell

By focusing on the four major ions, i.e. Calcium, Sodium, Potassium, and

Chloride, and getting a sufficient understanding of their interactions with the

neuron cell membrane (see tables 2.1 to 2.3), it is possible to differentiate their

effects and roles in neuron signal transmission and processing.5 It quickly be-

5Characteristics that were researched include resting concentrations, method of trans-
port across the membrane, influence on membrane voltage, conditions for associated acti-
vation/inhibition, order of movement during cell activation, and refractory period duration.
Factors that affect cellular development/learning are not covered as the application of this

26

Ion
In-Cell Out-Cell Equilibrium

Potential
Permeability

[mMol] [mMol] [mV] [%]

Ca2+ 0.0001 1.2 +125 ≈0*

Na+ 18 145 +56 0.04

K+ 135 3 -102 1

Cl− 7** 120 -76 0.45

* The numerical value could not be found, however, it can be expected
to be extremely small.
** This value tends to be higher in immature cells, typically 25-40
[mMol] [30].

Table 2.1: Ion properties at equilibrium [15], [21], [26]

In→ Out Ratio In← Out :ATP*

Ca2+ 1 : 3 Na+ :1

Ca2+ 1 : 0 n/a :1

Na+ 3 : 2 K+ :1

H+ 1 : 1 Na+ :0

HCO−3 1 : 1 Cl− :0

Cl− 1 : 0 n/a :1

* ATP is an energy source from inside the cell

required for active transport.

Table 2.2: A sample of ion exchangers and anti-porters [7], [30], [32]

comes apparent that Ca2+, and Na+ play a major role in representing imme-

diate information, while the activities of K+ and Cl− persist much longer after

activation and focus more on the final clean-up and stabilization after peri-

ods of high cellular activity, suggesting a role with more historical significance

w.r.t. impulse activity.

Ca2+ is only active for extremely short periods of time and largely respon-

sible for the release of neurotransmitters [34]. It can be seen from table 2.1

that, at equilibrium, the concentration of Calcium inside the cell is minuscule

in comparison to the concentration outside, and from table 2.3, the gating

information will focus on signal processing w.r.t. the cell membrane and not the cell as a
whole.

27

Target Direction Gating Inhibitors

Cl− In→ Out Pressure

Cl− In← Out Voltage*

Cl− In↔† Out GABA, Membrane Tension

K+ *** In→ Out Medium/Low-Voltage, Ca2+

Na+ In← Out Low-Voltage Inactivation

Ca2+ In← Out High/Medium/Low-Voltage Mg2+

* Acts to rectify during hyper-polarization.
† Direction is primarily regulated by the chloride concentration gradient,
Osmotic Pressure, and relative concentrations of chloride transporters and
channels [30].
***These tend to have a delayed and very slow transition between open and
closed states and serve to re-polarize the cell.

Table 2.3: A sample of regulated ion channels [3], [9], [12], [13], [24], [25], [30].

method typically used functions only in the presence of a sufficient positive

voltage stimulation. The nature of these two factors suggest that neurotrans-

mitter release occurs when the Ca2+ enter the cell which only occurs when a

positive voltage is induced. There are three voltage ranges that specifically

induce gate reaction: low (T-Type), medium (R-Type), and high (N-, P/Q-,

and L-type) voltage stimuli. Given sufficient membrane permeability to Ca2+,

the induced voltage can result in activation, however, this does not necessarily

mean complete membrane activation must/will occur solely because of Ca2+

[9], [26]. Another point to keep in mind is that the presence of Ca2+ inside

the cell is only for a relatively short amount of time as the Mg2+ in the cell

act as inhibitors, preventing more from entering while the ion pumps work to

quickly remove the inter-cellular Ca2+ using ATP and available Na+. Though

there are a number of other interesting functions that Ca2+ is responsible for

— such as influencing gene expression and long term potentiation — the seg-

ment this work is primarily interested in is the fact that, given the membranes

reactivity to voltage, Ca2+ is responsible for neurotransmitter release and is

utilized during the rising edge of a positive voltage spike. [25].

The Sodium cation, Na+, is one of two ions — the other being K+ — that

are commonly attributed to neural activity. Similarly to Ca2+, the majority of

28

Set Ratio Direction

Na+:Gluclose 2 : 1 In← Out

Na+:Pi* 3 : 1 In← Out

Na+:I− 2 : 1 In← Out

Na+:Cl−:GABA 2 : 1 : 1 In← Out

Na+:Cl− 1 : 1 In← Out

Na+:K+:Cl− 1 : 1 : 2 In← Out

Na+:HCO−3 1 : 1 In← Out

Na+:HCO−3 1 : 2 In← Out

Na+:HCO−3 1 : 3 In→ Out

K+:Cl− 1 : 1 In→ Out

H+:Pep** 1 : 1 In← Out

H+:R – COO−*** 1 : 1 In→ Out

* Pi refers to inorganic Phosphate.
** Pep refers to Di/Tripeptides.
*** R – COO− refers to Monocarboxylates.

Table 2.4: A sample of ion symporters and co-transporters [30], [32].

29

the Na+ concentration is outside the cell at resting equilibrium and is typically

gated by a low voltage threshold. The primary difference in the gating mecha-

nism is that the gates are closed and enter an inactivation phase after a short

period of time and are not inhibited by other ions or molecules during normal

operation [1]. From the information in tables 2.2 and 2.4, it can be gathered

that Na+ is largely responsible for maintaining the condition of the cell as

it is used to remove Ca2+ that causes neurotransmitter release and HCO−3 ,

which is a byproduct of regular cellular activity. It is also responsible for carry-

ing in neurotransmitters once released for signal emission such as GABA and

molecular compounds and ions necessary for maintaining regular cell health

[30], [32]. Based on how involved Na+ is w.r.t. cell activity, this information

also suggests that a sufficiently high cellular metabolism can also cause self

activation. It is also worth noting that most of its applications involve moving

from outside to inside the cell, therefore the opening of the voltage-gated Na+

channel to balance the ion concentrations can cause a temporary interruption

and, if active for prolonged periods of time, may even cause the cell to become

exhausted. The last point to mention is that Na+ typically has the greatest

influence on the membrane voltage during cell activation and is the primary

signal carrying medium [24].

The potassium ion, K+, is the second ion that plays a notable role in neuron

activation. K+ is most active during the depolarization phase which returns

the cell back to its resting potential. In contrast to Sodium and Calcium,

the resting membrane concentrations for K+ are such that the concentration

inside the cell is much higher than the concentration outside the cell, and

during activation, they flow out of the cell. Another notable difference is

that the permeability of K+ is much larger than any other ion during the

resting phase, allowing for relatively easy movement in and out of the cell in

the presence of sufficient osmotic pressure. K+ gates also have an interesting

characteristic in that they tend to have some amount of delay before opening

to allow K+ out of the cell [1]. Given that the primary task of K+ is removing

Na+ and, to a lesser degree Cl− from inside the cell after polarization, it can be

understood that K+ plays a specialized role in maintaining the concentration

30

gradients of other ions that are critical for cellular operation, i.e. primarily

Cl− and Na+ [1], [30].

The Chloride ion — though not as influential as the other ions w.r.t. neuron

spiking — is comparable to Ca2+ in that it has a significant influence on cellular

development. Cl− is primarily responsible for maintaining PH and limiting

osmotic pressure, but also influences internal structures such as micro-tubules

— typically by binding with free Mg2+. The role of Cl− also carries some

similar characteristics to the roles of other ions, such as: removing cellular

waste; maintaining the overall concentration gradient as well as the specific

gradients of Na+ and K+; and drawing in neurotransmitters. From table 2.3,

it can be gathered that Cl− gating is mostly reactive. Additionally, Cl− is the

only ion whose concentration gradient changes as the cell matures, starting

as an excitatory ion and shifting to an inhibitory ion. Lastly, relative to the

other ions, Cl− has the longest period of activity after a neuron has fired [30].

Based on the information gathered, there are several aspects of interest.

The order of initial dominant activity is roughly Ca2+, Na+, Cl−, and K+,

while the order of recovery is roughly Ca2+, Na+, K+, and Cl−. The activity

threshold and duration tend to be gradual and short for Ca2+; crisp and short

for Na+; delayed, crisp and moderate for K+; and conditionally crisp and long

for Cl−. Given Na+ is strongly tied to cellular activity, it can be assumed that

it is related to immediate current information while K+ and Cl−, which are

responsible for cleanup have some ties to short term historical record keeping.

In this way it can also be expected that Ca2+ is related to predictions of the

immediate future.

2.4 The Generalized Sigmoid Function

The sigmoid function comes in many forms, with each being built with some

specific purpose in mind. Similarly, the generalized sigmoid function proposed

here is formed with the specific purpose of offering the flexibility to optimize

its curvature in a continuous fashion alongside the learning algorithm’s pa-

rameters. There are some circumstances where a piece-wise linear sigmoid

31

Figure 2.4: Approximate plots of the expected signal medium permeabilities
of interest given an input stimuli.

32

is preferred over the exponential equivalent, but there are also many other

forms that have the potential to better suite the problem. Flexibility allows

for a progressive optimization of the threshold function itself. The proposed

function is defined as:

sig−(x, a, b, c) =
|x|a×b

(|x|a×c + 1)b/c
(2.69)

for the unsigned case and:

sig+(x, a, b, c) =
x

|x|
× |x|a×b

(|x|a×c + 1)b/c
(2.70)

for the signed case.6 Starting from the two relatively simple signed forms, it

is possible to see how these equations come about:

sig(x) =
x√
x2 + 1

(2.71)

and

sig(x) =
x

|x|+ 1
. (2.72)

Focusing on the denominator first, they can be likened to the Euclidean and

Hamming distance measures respectively. Given the similar structure, we can

write a more generalized function that, under specific conditions, can achieve

one, the other, something in-between, or something different altogether:

sig(x, c) =
x

c
√
|x|c + 1

. (2.73)

Before moving on, consideration of all possible values of c ∈ R including when

c → ±∞ should be taken. For c → ∞, we will rely on two equivalent forms

by restructuring the denominator as needed:

c
√
|x|c + 1 = |x| × c

√
1 +

∣∣∣∣1x
∣∣∣∣c. (2.74)

given that, |x|c > 1 for c > 1 and x > 1 we can expect (2.74) to reduce to:

lim
c→∞

c
√
|x|c + 1 = 1 (2.75)

6These two functions allow us to cover requirements for both odd and even forms respec-
tively while maintaining equivalence.

33

for 0 < x ≤ 1 and:

lim
c→∞

c
√
|x|c + 1 =∞ (2.76)

for x ≥ 1. These limits apply equally to c → −∞ as x−c = (x−1)c. The last

extreme value is when c = 0 as |x|0
∣∣
x 6=0

= 1 but 00 is undefined. Based on the

fact that the largest finite value follows the aforementioned relation, we also

expect ∞0 = 1. The known limits of the denominator approach ∞ which will

result in the sigmoid function going to zero. Since the function is continuous

in all other cases, an expectation of 00 = 1 will be held to for now and thus:

lim
c→0

c
√
|x|c + 1 =∞. (2.77)

The second value considered is a as a power of x which, if applied to

equation (2.73) under normal circumstances, would result in:

sig(xa, c) =
xa

c
√
|xa|c + 1

; (2.78)

however, the value of a will affect both the magnitude and sign of the result,

for which the signed function will transition between a signed and unsigned

function depending on the value of a. To preserve the sign without affecting

the influence on magnitude, it is preferable to reapply it as an internal value:

sig(x, a, c) =
x× |x|a−1
c
√
|x|a×c + 1

. (2.79)

For the limit case where a→∞ and assuming a finite positive c, we get three

solutions depending on the magnitude of x, i.e.:

lim
a→∞

x× |x|a−1
c
√
|x|a×c + 1

= 0 (2.80)

for |x| < 1,

lim
a→∞

x× |x|a−1
c
√
|x|a×c + 1

=
x

c
√

2× |x|
(2.81)

for |x| = 1, and

lim
a→∞

x× |x|a−1
c
√
|x|a×c + 1

=
x

|x|
(2.82)

for |x| > 1. If a < 0, we can rearrange equation (2.79) to:

sig(x, a, c) =
x

|x| × c
√

1 + |x|−a×c
(2.83)

34

for which the limits become:

lim
a→−∞

x

|x| × c
√

1 + |x|−a×c
= 0 (2.84)

for |x| > 1,

lim
a→−∞

x

|x| × c
√

1 + |x|−a×c
=

x
c
√

2× |x|
(2.85)

for |x| = 1, and

lim
a→−∞

x

|x| × c
√

1 + |x|−a×c
=

x

|x|
(2.86)

for |x| < 1. Should a→ 0, we get the limit:

lim
a→0

x

|x| × c
√

1 + 1c
=

x
c
√

2× |x|
(2.87)

which applies for all values of x. As can be seen by these limits, the phase of

the input is preserved for instances that do not go to zero.

To complete the generalized sigmoid functions, an exponential will also

be applied to the output such that it does not interfere with the phase, i.e.

equation (2.70). Should a and c both be finite and positive, the limits as

b→∞ can be obtained by:

lim
b→∞

x

|x|
× |sig(x, a, c)|b = 0 (2.88)

for |sig(x, a, c)| < 1,

lim
b→∞

x

|x|
× |sig(x, a, c)|b =

x

|x|
(2.89)

for |sig(x, a, c)| = 1, and

lim
b→∞

x

|x|
× |sig(x, a, c)|b =∞ (2.90)

for |sig(x, a, c)| > 1. With these limits known, the solution for b → −∞

becomes trivial. Should b→ 0, the limit is:

lim
b→∞

x

|x|
× |sig(x, a, c)|b =

x

|x|
(2.91)

for all values of x. These limits allow us to understand the result given a single

parameter approaches a limit, however, it is also necessary to grasp how they

35

interact with each other at their limits. For this, an order of operation giving

priority to resolving the parameters closest to the input first and work to the

output will be used, thus for |x| < 1 we get:

lim
a→∞
b→∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→∞

x

|x|
× 0b

(0c + 1)b/c
= lim

b→∞

x

|x|
× 0b

(1)b
= 0, (2.92)

lim
a→∞
b→∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→0

x

|x|
× 0b

(0c + 1)b/c
= lim

b→∞

x

|x|
× 0b

(∞)b
= 0, (2.93)

lim
a→∞
b→∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→∞

x

|x|
× 0b × (∞c + 1)b/c

= lim
b→∞
c→∞

x

|x|
× (1 +

1

∞c
)b/c = lim

b→∞

x

|x|
× (1)b =

x

|x|
, (2.94)

lim
a→∞
b→0
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→∞

x

|x|
× 0b

(0c + 1)b/c
= lim

b→0

x

|x|
× 0b

(1)b
=

x

|x|
, (2.95)

lim
a→∞
b→0
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→0

x

|x|
× 0b

(0c + 1)b/c
= lim

b→0

x

|x|
× 0b

(∞)b
=

x

|x|
, (2.96)

lim
a→∞
b→0
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→∞

x

|x|
× 0b × (∞c + 1)b/c

= lim
b→0
c→∞

x

|x|
× (1 +

1

∞c
)b/c = lim

b→0

x

|x|
× (1)b =

x

|x|
, (2.97)

lim
a→∞
b→−∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→∞

x

|x|
× 0b

(0c + 1)b/c
= lim

b→−∞

x

|x|
× 0b

(1)b
=

x

|x|
×∞,

(2.98)

lim
a→∞
b→−∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→0

x

|x|
× 0b

(0c + 1)b/c
= lim

b→−∞

x

|x|
× 0b

(∞)b
=

x

|x|
×∞,

(2.99)

lim
a→∞
b→−∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→∞

x

|x|
× 0b × (∞c + 1)b/c

= lim
b→−∞
c→∞

x

|x|
× (1 +

1

∞c
)b/c = lim

b→−∞

x

|x|
× (1)b =

x

|x|
, (2.100)

36

lim
a→0
b→∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→∞

x

|x|
× 1b

(1c + 1)b/c
= lim

b→∞

x

|x|
× 1b

(2)b
= 0, (2.101)

lim
a→0
b→∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→0

x

|x|
× 1b

(1c + 1)b/c
= lim

b→∞

x

|x|
× 1b

(∞)b
= 0, (2.102)

lim
a→0
b→∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→∞

x

|x|
× 1b × (1c + 1)b/c = lim

b→∞

x

|x|
× (2)b =

x

|x|
×∞,

(2.103)

lim
a→0
b→0
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→∞

x

|x|
× 1b

(1c + 1)b/c
= lim

b→0

x

|x|
× 1b

(2)b
=

x

|x|
, (2.104)

lim
a→0
b→0
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→0

x

|x|
× 1b

(1c + 1)b/c
= lim

b→0

x

|x|
× 1b

(∞)b
=

x

|x|
, (2.105)

lim
a→0
b→0
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→∞

x

|x|
×1b×(1c+1)b/c = lim

b→0

x

|x|
×(2)b =

x

|x|
, (2.106)

lim
a→0
b→−∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→∞

x

|x|
× 1b

(1c + 1)b/c
= lim

b→−∞

x

|x|
× 1b

(2)b
=

x

|x|
×∞,

(2.107)

lim
a→0
b→−∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→0

x

|x|
× 1b

(1c + 1)b/c
= lim

b→−∞

x

|x|
× 1b

(∞)b
=

x

|x|
×∞,

(2.108)

lim
a→0
b→−∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→∞

x

|x|
× 1b × (1c + 1)b/c = lim

b→−∞

x

|x|
× (2)b = 0,

(2.109)

lim
a→−∞
b→∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→∞
c→∞

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→∞

x

|x|
× 1

(1)b
=

x

|x|
, (2.110)

37

lim
a→−∞
b→∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→0

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→∞
c→0

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→∞

x

|x|
× 1

(∞)b
= 0, (2.111)

lim
a→−∞
b→∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→∞
c→−∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→∞
c→∞

x

|x|
× (1 +∞c)b/c = lim

b→∞

x

|x|
× (1)b =

x

|x|
, (2.112)

lim
a→−∞
b→0
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→0
c→∞

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→0

x

|x|
× 1

(1)b
=

x

|x|
, (2.113)

lim
a→−∞
b→0
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→0

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→0
c→0

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→0

x

|x|
× 1

(∞)b
=

x

|x|
, (2.114)

lim
a→−∞
b→0
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→0
c→−∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→0
c→∞

x

|x|
× (1 +∞c)b/c = lim

b→0

x

|x|
× (1)b =

x

|x|
, (2.115)

lim
a→−∞
b→−∞
c→∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→−∞
c→∞

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→−∞

x

|x|
× 1

(1)b
=

x

|x|
, (2.116)

38

a→∞ b→ −∞ −∞ < b < 0 b→ 0 0 < b <∞ b→∞

c→ −∞

x

|x|

−∞ < c < 0

c→ 0 x

|x|
×∞ 0

0 < c <∞

c→∞

Table 2.5: The sigmoid limits for a→∞ assuming |x| < 1 which includes the
limit |x| → 0±. This is also the case for a → −∞ assuming |x| > 1 which
includes the limit |x| → ∞

lim
a→−∞
b→−∞
c→0

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→0

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→−∞
c→0

x

|x|
× 1

(1 +
1

∞c
)b/c

= lim
b→−∞

x

|x|
× 1

(∞)b
=

x

|x|
×∞, (2.117)

lim
a→−∞
b→−∞
c→−∞

x× |x|a×b−1

(|x|a×c + 1)b/c
= lim

b→−∞
c→−∞

x

|x|
× ∞b

(∞c + 1)b/c

= lim
b→−∞
c→∞

x

|x|
× (1 +∞c)b/c = lim

b→−∞

x

|x|
× (1)b =

x

|x|
, (2.118)

For x > 1, it is equivalent to exploring x < 1 when changing a→ −1× a;

likewise — for the purpose of continuity and symmetry — a → 0 × a is

equivalent to exploring x0 = 1. Given these limits are w.r.t. equation (2.70),

the equivalent for the unsigned equation (2.69) would have the replacement

|x/|x|| = |0/|0|| = 1 in difference to the signed equation which assumes:∣∣∣∣ x|x|
∣∣∣∣ =

{
0 If |x| = 0,

1 Otherwise.
(2.119)

The phase values are considered dominant within the equation, therefore, for

the signed case 0/|0| × ∞ = 0. If these limits are tabulated, we obtain what

is shown in tables 2.5 to 2.9.

The generalized functions are much more powerful than the traditional

forms because they can be properly and justifiably applied to vectorized in-

puts, e.g . complex numbers, without having to make special exceptions or

39

0 < a <∞ b→ −∞ −∞ < b < 0 b→ 0 0 < b <∞ b→∞

c→ −∞

x

|x|

−∞ < c < 0 0
x

|x|
× 1

(1 + |x|−a×c)b/c
x

|x|
× (1 + |x|−a×c)−b/c x

|x|
×∞

c→ 0
x

|x|
×∞ 0

0 < c <∞ x

|x|
×

(
1 +

∣∣∣∣1x
∣∣∣∣a×c

)−b/c
x

|x|
× |x|a×b

(1 + |x|a×c)b/c

c→∞

Table 2.6: The sigmoid limits for 0 < a < ∞ assuming |x| < 1. This is also
the case for 0 > a > −∞ assuming |x| > 1.

a→ 0 b→ −∞ −∞ < b < 0 b→ 0 0 < b <∞ b→∞

c→ −∞

x

|x|

−∞ < c < 0 0
x

|x|
× 1

2b/c
x

|x|
× 2−b/c

x

|x|
×∞

c→ 0
x

|x|
×∞ 0

0 < c <∞
x

|x|
× 2−b/c

x

|x|
× 1

2b/c

c→∞

Table 2.7: The sigmoid limits for a → 0 which applies for all values of |x|,
including its limits.

−∞ < a < 0 b→ −∞ −∞ < b < 0 b→ 0 0 < b <∞ b→∞

c→ −∞

x

|x|

−∞ < c < 0 0
x

|x|
× |x|a×b

(1 + |x|a×c)b/c
x

|x|
×

(
1 +

∣∣∣∣1x
∣∣∣∣a×c

)−b/c
x

|x|
×∞

c→ 0
x

|x|
×∞ 0

0 < c <∞
x

|x|
× (1 + |x|−a×c)−b/c

x

|x|
× 1

(1 + |x|−a×c)b/c

c→∞

Table 2.8: The sigmoid limits for −∞ < a < 0 assuming |x| < 1. This is also
the case for ∞ > a > 0 assuming |x| > 1.

40

a→ −∞ b→ −∞ −∞ < b < 0 b→ 0 0 < b <∞ b→∞

c→ −∞

x

|x|
−∞ < c < 0 x

|x|
×∞ 0

c→ 0

0 < c <∞

c→∞

Table 2.9: The sigmoid limits for a → −∞ assuming |x| < 1 which includes
the limit |x| → 0±. This is also the case for a → ∞ assuming |x| > 1 which
includes the limit |x| → ∞.

modifications. They can approximate/replicate a large number of threshold

functions even outside the genre of sigmoid functions just by changing the

parameters a, b, c, and the parameters and resulting output are unit-less re-

gardless of the input’s units. If the signed and unsigned functions are used

together, it is also possible to increase the variety of representable curves fur-

ther, e.g . using sig+(x, a1, b1, c1) × sig−(x, a2, b2, c2). For completeness, the

first order derivatives are defined as:

δsig−(x, a, b, c)

δx
= x×|x|a×b−1

(|x|a×c+1)b/c
× a× b

(|x|a×c + 1)× |x|

= sig+(x, a, b, c)× a× b
(|x|a×c + 1)× |x|

(2.120)

and

δsig+(x, a, b, c)

δx
= |x|a×b

(|x|a×c+1)b/c
× (a× b× x2 − x2 × |x|a×c + |x|a×c+2)

(|x|a×c + 1)× |x|3

= sig−(x, a, b, c)× (a× b× x2 − x2 × |x|a×c + |x|a×c+2)

(|x|a×c + 1)× |x|3
.

(2.121)

It is not surprising that the derivative of one has the other cleanly present in its

derivative, but this does further suggest that they are a pair. Figures 2.5 to 2.7

are samples of several variations of a, b, and c in the signed function, showing

how they distort the curve. From these graphs, it can be concluded that a

causes a rotation x = 1, the decrease in magnitude of b causes a compression

along the x-axis towards the y-axis, and the magnitude of c determines the

41

Figure 2.5: The signed general sigmoid function given that a varies while
b = c = 1. The arrows show how the curve is distorted w.r.t. changes in a.

crispness w.r.t. the corner point at x = 1, i.e. how close the output approaches

point (1, 1) for x = 1. The triangular relationship between a, b, and c also

allows for some flexibility in the choice of values, e.g . if b/c = 1 then bnew =

cnew = 1 and anew = a× b.

42

Figure 2.6: The signed general sigmoid function given that b varies while
a = c = 1. The arrows show how the curve is distorted w.r.t. changes in b.

43

Figure 2.7: The signed general sigmoid function given that c varies while
a = b = 1. The arrows show how the curve is distorted w.r.t. changes in c and
the filled in regions are the areas that the curve will never pass through with
the given values of a and b. It should be noted that c = 0 is the step function
while c = ±0 results in a strait horizontal or vertical line respectively.

44

Chapter 3

Baseline: SARSA

As SARSA (State-Action-Reward-State-Action) is closely aligned with the

fundamentals of Temporal Difference Reinforcement Learning (TDRL), this

research will be using it as the starting point and baseline for improvement.

Since most TDRL algorithms are biologically inspired and designed with the

intention of emulating the human brain, attempts will be made to clarify the

insights and perspectives regarding the behavior/habits of the algorithm and

analogies of the components. NNs attempt to model the brain by emulating

individual neurons and their connections, while TDRL seeks to model policy

and valuation aspects seen on a behavioral level. TDRL does this by iteratively

adding expected value with an inversely proportional relation to the distance

from the state or states that give rewards, creating an expected value gradient

that can be followed to the goal [36]. If a positive reward can be equated to a

neurotransmitter that incites an individual to act, then TDRL models the dis-

persion of neurotransmitters among a cluster of neurons, or more specifically

their dendrites which are stimulated by state inputs. To further demonstrate

SARSA’s similarity to a NNs, by reducing the algorithm to having only one

action, it becomes similar to a perceptron in how it converts inputs to out-

puts, but with a different learning rule applied.1. This chapter will start with

the foundation of SARSA and progressively work though the algorithm to en-

1As the action selection process for SARSA is usually based on a probability distribution
across all actions, i.e. competitive activation, using only one action output is functionally
useless as it can only choose one action, but still serves to demonstrate the similarity between
TDRL and NNs.

45

sure later changes will have a proper basis of interpretation with which to be

compared.

3.1 Bellman Equation

As the basis for SARSA, Q-Learning, and Monte Carlo, it is important to give

an acceptable interpretation for the algorithm’s underlying principles. The

Bellman Equation is defined using these two fundamental equations [36]:

v(st) =

At+0.5∑
at+0.5

(
µ(at+0.5|st)× q(at+0.5, st)

)
, (3.1)

and

q(at+0.5, st) =
∑
rt+0.5

St+1∑
st+1

(
ρ(rt+0.5, st+1|st, at+0.5)×

(
rt+0.5 + γt+0.5 × v(st+1)

))
.

(3.2)

From equation (3.1), v(st) is the approximation of the state’s expected value;

µ(at+0.5|st) is the probability of taking action at+0.5 out of all valid actions

At+0.5 given state st, i.e. µ is the agent’s action policy; and q(at+0.5, st) is

the quality or expected value approximation of the action and state combi-

nation.2 The state-action value q(at+0.5, st) can be calculated using equation

(3.2), where p(rt+0.5, st+1|st, at+0.5) describes the next state — existing within

St+1 — and reward probabilities given the current state and intended action.

The probability values p(rt+0.5, st+1|st, at+0.5) can be calculated/approximated

using a model, however, model-based algorithms tend to strongly rely on

the premise that the model is accurate. Learning Algorithms (LAs) such as

SARSA are classified as model-free methods. They integrate p(rt+0.5, st+1|st, at+0.5)

into the state-action value q(at+0.5, st) approximation and by extension into the

state value v(st) through their gradual learning processes. The reward, rt+0.5,

naturally is the measure of goodness/badness that is experienced for a given

action or state. The discounting factor, γ, is used to determine the degree of

2Taking action at+0.5 results in setting the elements of the action space encoding at+0.5

to 1 while all others are set to 0. Typically, SARSA only has one element of ~at+0.5 represent
a corresponding element in the action space A, thus setting one at+0.5 to 1 while all vector
elements are 0 is equivalent to selecting one action from A.

46

Figure 3.1: The Actor-Critic Learning Model.

short-sightedness in the face of rewards, where, for γ ∈ [0, 1), a larger value

gives greater weight to a future reward. In some algorithms, γ will be a func-

tion based on factors such as time or state.

Given a deterministic solution for every step, i.e. the Monte Carlo solution,

the cumulant is [37]:

Gt+N−0.5 =
N−1∑
n=0

(
(
n∏
k=0

γk+0.5)× rt+n+0.5

)
. (3.3)

γk+0.5 is the discounting factor at transition t + k + 0.5, and rt+n+0.5 is the

reward received when transitioning from time step t+n to time step t+n+ 1.

The cumulant G∞ is what the Monte Carlo solution converges to and Boot-

strapped methods approximate [36].

3.2 Discrete SARSA Actor-Critic

Discrete SARSA refers to the algorithm structure designed to give outputs for

a discrete/logic-based action space as opposed to a continuous/value-based

action space. Actor-Critic methods are designed to calculate and learn the

policy µ(at+0.5|st) independently from the state-action value q(at+0.5, st). In

contrast, non-AC methods use the state-action value as an approximation of

the policy when using greedy single action selection methods. Though non-

AC methods are simpler, they inherently assume a fixed number of actions

— typically only one — will be selected. AC methods divide the burden

of learning state/action quality and action policies, making each step more

efficient as the actor and critic strictly focus on learning policies and expected

values respectively [36].

47

As a part of the foundational research, a comparison of the linear and

gradient methods was carried out, SARSA and SARSA(λ) respectively. For

the SARSA(λ) algorithm, the update equations are defined as:3

q(~at+0.5, ~st) = ~aTt+0.5 · [Q] · ~st, (3.4)

~at+0.5 = [µ] · ~st, (3.5)

δt = rt−0.5 − r̄t + γp × q(~at+0.5, ~st)− q(~at−0.5, ~st−1), (3.6)

r̄t+1 = r̄t + δt × αr, (3.7)

[e] = γp × λ× [e] +
δt × ~at−0.5 · ~sTt−1

max(1,
∑
~at−0.5 · ~sTt−1)

, (3.8)

and

[Q] = [Q] + αq × [e], (3.9)

where [e] is the trace of the gradient of q(~at+1.5, ~st+1), and λ is the forgetting

factor of the trace. To make this an Actor-Critic method, a separate term is

updated for the policy along side the weight update as:

[τ] = γp × λ× [τ] +
(~at−0.5 − ~p(At−0.5|st−1)) · ~sTt−1

max(1,
∑
|~sTt−1|)

(3.10)

[µ] = [µ] + αµ × δt × [τ], (3.11)

where ~p(At+0.5|~st) is the probability distribution (or prediction of ~at) over the

action set At given state ~st, and [τ] is the trace of the policy gradient. In

difference to SARSA(λ), SARSA does not have a trace and equations (3.9)

and (3.11) are replaced with:

[Q] = [Q] +
αq × δt × ~at−0.5 · ~sTt−1

max(1,
∑
~at−0.5 · ~sTt−1)

(3.12)

and

[µ] = [µ] +
αµ × δt × (~at−0.5 − ~p(At−0.5|~st−1)) · ~sTt−1

max(1,
∑
|~sTt−1|)

(3.13)

respectively. It should be noted that the action probabilities ~p(At+0.5|~st) will

be calculated based on what is suitable for the LA: Soft-Max for SARSA(λ)

3Some elements are shown in matrix form for clarity, i.e. demonstrating the linear prop-
erties of the equations. The functions are broken down into steps for visual ease and con-
sistency w.r.t. syntax and labels. Parametric symbols γp and γq are used for consistency in
function with the modified algorithms.

48

and Piece-wise linear for SARSA (refer to section 5.2.3 for details). It should

also be noted that, for the linear SARSA method, the initial weights of [Q]

will be set to zero and the initial weights of [µ] will be set to 1/(#S ×#A).

The non-zero initial values of [µ] allow the policy to start off as a uniform

random policy as a way of generating the push needed for the agent to start

learning. In a prior work, it was found that SARSA(λ) is not suitable for this

type of non-stationary problem, however, we have included its equations for

completeness.

3.3 Analysis

Since the purpose of this research is to derive a new algorithm based on

SARSA, it is best to have a firm grasp of how its foundation can be inter-

preted. In section 3.1, the Bellman Equation was defined using inputs/outputs

st, at+0.5, and rt+0.5; functions p(rt+0.5, st+1|at+0.5, st), µ(at+0.5|st), q(at+0.5, st),

and v(st); and the constant γt+0.5. This section will give alternative inter-

pretations that are more closely aligned with physiology and psychology. By

drawing relations between the algorithm and biological neurons, it becomes

easier to identify components that have been simplified or left out. From the

elements that have been included, identifying how they may have been sim-

plified can lend some explanation as to why some issues are present in the

algorithm. Regarding components that have been excluded, the biological in-

terpretation lends some explanation of what their purpose is and suggests how

they can be integrated into the algorithm.

To make the relations between the algorithm and the biological neuron

clear, several conjectures will be proposed. The neuron — like a state or action

— tends to have two key modes activity, namely being active or resting. From

the perspective of neurobiology, it can be concluded that an active action/state

corresponds to an activated neuron or set of neurons in part or in whole, i.e.

their cell body and/or their axon at a corresponding time:

Conjecture 3.1. Neural State and Action — State st = 1 and action

at−0.5 = 1 correspond to activated axons of neuron s and a, while state st+1

49

and action at+0.5 equate to the stimulated cell body of neuron s and a in the

following time step.

If this is to be accepted, it could then be concluded that state value and

state-action values would correspond to the neurotransmitters released during

activation/stimulation:

Conjecture 3.2. Neural State Value — The state value v(st) corresponds

to the neurotransmitters released when the axon and/or cell body of neuron s

is stimulated/activated.

Conjecture 3.3. Neural State-Action Value — The state-action value

q(at+0.5, st) corresponds to the neurotransmitters released during neuron a’s

stimulation by neuron s, likely from the dendrite of neuron a.

The assumption that these values are neurotransmitters is further rein-

forced by their relation with the rt+0.5 which is a direct representation of

rewards and punishments. If these statements are to be accepted, then the

neural responses to stimuli, being an activation probability associated with the

next time step matches the function of p(rt+0.5, st+1|at+0.5, st) and µ(at+0.5|st).

As the stimulation of a given cell s or a at time t increases, its likelihood of

activation in the next time step — st+1 = 1 or at+0.5 = 1 respectively — also

increases. Given the policy and state prediction are related to the strength of

stimulation is within reason to expect:

Conjecture 3.4. Neural Policy Value — The policy value µ(at+0.5|st)

corresponds to how well neuron s’s axon can stimulate neuron a’s dendrites or

how easily neuron s can stimulate neuron a.

Conjecture 3.5. Neural Prediction Value — The prediction value

p(rt+0.5, st+1|st, at+0.5) has two parts. The first part, p(st+1|st, at+0.5), cor-

responds to how well neuron s@t’s axon and stimulated neuron a@t+0.5 can

stimulate neuron s@t+1’s dendrites. The second part, p(rt+0.5|st, at+0.5), corre-

sponds to the probability of however much neurotransmitter will be expected to

be present in the vicinity in the immediate future.4

4As a probability, it is unable to clarify how much and would likely represent the prob-
ability of E{rt+0.5|st, at+0.5}.

50

Figure 3.2: An interpretation of the Bellman Equation where signals flow
forward and neurotransmitters flow backward and cyclically.

Figure 3.3: An interpretation of SARSA where the model component is re-
moved.

The last component to be interpreted is the discounting factor γt+0.5. With

the conjectures thus far, it is reasonable to conclude:

Conjecture 3.6. Neural Discounting Factor — The discounting factor

γt+0.5 corresponds to the percentage of neuron s@t+1’s neurotransmitter release

that will be carried back to neuron s@t.
5

Drawing a simple diagram of a neuron model to show the locations asso-

ciated with each of the Bellman Equation’s components, it would probably

as shown in figure 3.2. This model carries all the components described in

the Bellman Equation such that neurotransmitters flowing together are added

5This does not clarify if the difference is covered by production of neurotransmitters by
neuron s@t+1 or s@t.

51

then multiplied by the counter-flowing signal activity. Given that SARSA has

the world model removed or included in the absorption of the associated neu-

rotransmitters, the resulting model will be closer to what is shown in figure

3.3. If these statements and diagrams give a proper representation of the Bell-

man Equation and SARSA, then some areas for improvement become rather

easy to identify.

52

Chapter 4

Modifications: CLASP

Building off of the biological interpretations derived when analyzing SARSA,

the first revision to be considered is improving symmetry between states and

actions (see figure 4.1). Symmetry between states and actions allows the

algorithm to create action-to-state, state-to-state, and action-to-action rela-

tions in addition to the original state-to-action relation. This allows us to

group states within the set St and actions within the set At−0.5 together, e.g .

Nt+1 ≡ St+1 ∩ At+0.5 for generic state-action predictions. This model-based

form removes one of the major benefits offered by SARSA, however, it will be

necessary for future modifications which introduce complex logical states [36].

Additionally, it will allow for a more thorough understanding of where the

rewards are being administered from and how it can regulate its own policy.

Later modifications address other aspects such as input space size compres-

sion, inclusion of historical and predictive elements in the input space, and

restricting the scale of each output. It should be noted that, with the inclu-

sion of an internal model, only the bias term for each logical output will be

initialized with a non-zero value.

4.1 Model and Policy Matching

By including an internal model and reducing the algorithm to one state pre-

diction or one action prediction, the most distinct difference between states

and actions is whether or not the output can cause a change in the environ-

53

Figure 4.1: A Simplified interpretation of SARSA with a model and including
logical actions. In contrast to the visual interpretations for the model-free
SARSA and Bellman Equation, logical information is expected to flow seam-
lessly into neurons representing future states or actions. The dispersion of
neurotransmitters — represented by quality prediction — is preserved, how-
ever, it occurs at the dendrites and is largely contained within the localized
area of activity (circled in yellow) instead of at the cell body. γ also no longer
represents the percent of neurotransmitters that disperse from the stimulated
cell body, but the percent diffusing away from the synaptic region. This sug-
gests neurotransmitters can be released even if the stimulated dendrites do
not carry the signal to the cell body. If state and action elements are allowed
to stimulate themselves in this model, it would be more accurate to say that
each element is represented by a micro-cluster with internal connections and
the output is an aggregate of all representatives within.

54

ment.1 As state and action predictions are so similar, it is easier to regard

both as next state predictions where actions represent transitional states.2 By

extension, the update method for both can be expected to be similar. When

considering these aspects, it is acceptable to say that:

Claim 4.1. Actions are transitional states — Just as states are used

to indicate the condition of the environment, logical actions can be used to

indicate the current state of the LA and the intended method of transition

between the current state and the next state.

If the agent will be trained to predict the next character in the words

‘caterpillar’ and ‘catamaran,’ it is possible for the fourth letter, e.g . ‘e,’ to

be consistently predicted as ‘a.’ If the erroneous prediction is consistent, the

agent’s selected action, given as an input, allows for an embedded understand-

ing of the known error in the policy which can be exploited to improve the

prediction of the next letter, i.e. ~s∩~a ∈ {‘ee’, ‘ea’} =⇒ ‘r’ has more potential

for convergence than ~s ∈ {‘e’} =⇒ ‘r’. To implement state-action symmetry,

the equations for the state-action value and policy will be rewritten as:

q(a, s)t =

[
~st+1

~at+0.5

]T
· [Q] ·

[
~st

~at−0.5

]
(4.1)

~at+0.5 = [µ] ·
[

~st
~at−0.5

]
, (4.2)

and the unbounded prediction method will be define as:

~st+1 = [p] ·
[

~st
~at−0.5

]
. (4.3)

Unfortunately, there is a critical flaw in this method, i.e. all functions are

linear and there is no mixing of inputs.3 If there are any outcomes that are

dependent on more than one state and/or action, these methods can only give

1This interpretation implies that both state and action probabilities are correlated to
the environment’s future, but the output is only regarded as an action if it has a causal
relationship with the future, i.e. correlation does not mean causation for states but does for
actions.

2Though the policy distribution is the cause for activation, it also serves as a probability
w.r.t. the associated random number being sufficiently low to cause activation, i.e. this view
reverses the perspective of cause and effect for convenience of symmetry.

3This will be resolved through the kernel trick addressed in section 4.3

55

a linear approximation. For compactness, state-action pairs will be presented

as:

~ηt+1 =

 1̃
~st+1

~at+0.5

 (4.4)

for non-thresholded future values,

~χt =

 1
~st

~at−0.5

 (4.5)

for logical percent values, i.e. facts, and

~p(Nt+1|χ)t = ~p(

[
St+1

At+0.5

]
|χt) (4.6)

for thresholded predictions of future logical values. With these new represen-

tations, the quality will be expressed as:

q(η, χ)t+0.5 = ~ηt+1 · [Q2] · ~χt; (4.7)

and policy as:

~ηt+1 =
[
p2
]
· ~χt, (4.8)

bounded by:

p(Nt+1|~χ)t =


1 if ηt+1 ≥ 1 ,

ηt+1 if 1 > ηt+1 > 0 ,

0 if 0 > ηt+1 ;

(4.9)

The benefit of these policy and prediction methods are that it is possible to

identify if reward values are caused by the state transitioned into, the action

used, the state departed from, or a combination of two or more of these cases.

This will grant the LA a more detailed understanding about the happenings

between time step t and t + 1 and not just a vague summary of the results

assigned to the action and previous state. The obvious demerit that should be

kept in mind is that, for horde architectures, the inbuilt state-models can be

redundant and very wasteful. Though it is beyond the scope of this research, it

will be desirable to separate each output without affecting overall performance

and stability, i.e. converting the TDRL algorithm into a neural network model

which steps within the deadly triad [36].

56

As the only change is w.r.t. how the policy and state-action value are

calculated, the error and mean reward calculations can remain as:

δt = rt−0.5 − r̄t + γp × q(η, χ)t+0.5 − q(η, χ)t−0.5 (4.10)

and

r̄t+1 = r̄t + δt × αr. (4.11)

An interesting property that crops up because of the new method is that,

similarly to r̄t+1, q(1̃, 1)t+0.5 will effectively be the approximation of the mean

state-action value, i.e. equation (4.11) will be redundant. Now that the model

and policy have been defined, the update equations can also be redefined to

accommodate the changes in policy and the addition of the model:4

∂t =

{
αp × (χt − p(Nt|χ)t−1) for state predictions,

αµ × αp × (χt − p(Nt|χ)t−1)× δt for policy learning;
(4.12)

[Q2] = [Q2] +
αq × δt × ~χt ⊗ ~χt−1

max(1, (
∑
|~χt|)× (

∑
|~χt−1|))

; (4.13)

and

[p2] = [p2] +
~∂t ⊗ ~χt−1

max(1, (
∑
|~χt|)× (

∑
|~χt−1|))

. (4.14)

The policy update and model update will be different from each other

because the policy is expected to change with reward, while the model is only

mapping out what will be possible/likely regardless of the reward.

4.1.1 Equation Interpretation

The inclusion of an action feedback suggests that some cells will require ca-

pacity for more than one active source. The inclusion of a model allows all

dendrites to have a corresponding axon, i.e. each χt has an associated ηt+1.

This also means that any state or action element can influence the neurotrans-

mitter release as q(η, χ)t+0.5. Consequently, the γp× q(η, χ)t+0.5 component in

equation (4.10) must then be a non-targeted emission much like the reward

4⊗ denotes the outer product, which allows us to construct the tensor for the state and
error update information.

57

rt+0.5. Reviewing the conjectures made in 3.3, several revisions will be in order.

Firstly, Conjecture 3.1 must be revised to:

Conjecture 4.1. Neural State and Action — State/action χt corresponds

to the activated axon of a representative/dominant neuron χ within a micro-

cluster of neurons that collectively represent χ, while state/action p(ηt+1|χ)t

equates to stimulated dendrites and/or cell bodies of micro-cluster η.

This correction is required because p(ηt+1|χt), where χt|χt=ηt+1 , can be

non-zero; however, most biological neurons are not self-activating, instead op-

erating in groups to increase reliability through a majority vote [20]. Though

it is not likely to require detailing the internal interactions of these micro-

clusters, they will likely be more correct for our models and may also carry

some preferred features that singular neurons cannot offer.

Because the model will be included in the calculations, the original equation

for the state value v(s) will not carry over to the condition value v(χ) and/or

v(η|η=χ). Interestingly, there are three values, q(1̃, χ)t+0.5, q(η|η=χ, 1)t−0.5, and

q(η|η=χ, χ)t±0.5, that carry similar meaning to v(χ) and/or v(η|η=χ). The dif-

ference lay in the transition relative to χ/η: leaving, entering, or staying re-

spectively. The value function can be defined as:5

v(χ)t = q(1̃, χ)t+0.5 +
q(η|η=χ, χ)t+0.5 + q(η|η=χ, χ)t−0.5

2
+ q(η|η=χ, 1)t−0.5.

(4.15)

q(1̃, χ)t+0.5 describes the expected average value for leaving a particular state;

and q(η|η=χ, 1)t−0.5 is the expected value of entering the state or using the

action. The middle term must be regarded as a result of intra-micro-cluster

interactions, describing the value of transitioning to and from the same state

or action. The values q(1̃, χ)t+0.5 and q(η, 1)t+0.5 are somewhat interesting:

they imply a diffusive property exists along side q(η, χ)t+0.5, meaning some

neurotransmitters can be emitted from or drawn in by neuron χ without a

targeted dendrite; similarly, neuron η can release/absorb neurotransmitters

passively.

5This equation deliberately does not distinguish between state and action within χ as
the value of a state-action pair or just the action — a transitional state — can also be of
interest.

58

Though the equation for v(χ) changes significantly, the interpretation given

by conjecture 3.2 remains more or less correct, however, a subtle difference

must be clarified:

Conjecture 4.2. Neural Circumstance Value — The circumstance value

v(χ)t corresponds to the neurotransmitters released purely due to neuron or

micro-cluster χ’s stimulation or activation.

This is acceptable despite not multiplying and summing with the policy as

in equation (3.1) because the mean value will already be relative to the policies

that were learned up to time t. Additionally, the calculation in equation (4.15)

will not be directly dependent on the details regarding other states/actions,

i.e. it is not based on conditional statements regarding the previous or next

state/action such as at+0.5|st, at+0.5|at−0.5, st+1|st, or st+1|at−0.5.

Though the state-action value definition is unchanged, it would be prudent

to rephrase it in a way that will be more acceptable, i.e. conjecture 3.3 will

be revised to:

Conjecture 4.3. Neural Transition Quality — The Transition quality

q(η, χ)t+0.5 corresponds to the neurotransmitters released during neuron/micro-

cluster η’s stimulation at its dendrites by neuron/micro-cluster χ.

As implied, this function describes the quality attributed to transitions

between states which may or may not include the specific means used to cause

the transition, e.g . taking action at+0.5 while in state st to arrive at state st+1

or transitioning from state st to state st+1 irrespectively of the action taken.

The primary reason t, t+0.5, and t+1 are being used so explicitly is to clarify

that the action and reward will be realized at some point between time t and

t+ 1 in accordance with the transition of states.

Similarly to the transition quality, it will be useful to generalize the inter-

pretation for the policy to include all predictions, i.e. conjecture 3.4 should be

revised to:

Conjecture 4.4. Neural Policy Value — The policy value that can be

defined as p(η|χ) corresponds to how well neuron χ can stimulate neuron η.

59

Since the model is included in this statement, i.e. p(χt+1|ηt+1, χt) is learned,

the prediction of the reward will also require redefinition. The redefinition of

conjecture 3.5:

Conjecture 4.5. Neural Prediction Value — p(rt+0.5|ηt+1, χt) corre-

sponds to the probability for the neurotransmitter, in an approximate concen-

tration corresponding to rt+0.5, will be present in the vicinity in the immediate

future.

The pleasant part about the logical model being separated from the reward

model is that both p(rt+0.5|ηt+1, χt) and rt+0.5 will become external factors

entirely determined by the whims of the environment. The expected value

E{rt+0.5|ηt+1, χt} can be calculated as:

E{rt+0.5|ηt+1, χt} = p(rt+0.5|ηt+1, χt)× rt+0.5, (4.16)

while the approximation q(ηt+1, χt) relies on the expected values dependent

factors χ and η. This also means that a change in policy — η — will not

necessarily overwrite the expected quality of a previous learned policy. By

extension, it can also be said that v(χ) for a given policy will remain relatively

unchanged when using a different action unless the reward mechanism changes.

In such cases where the rewards will be partially or entirely stochastic, the

problem can be considered non-stationary.

As a final statement, conjecture 3.6, is still correct but will be generalized

to:

Conjecture 4.6. Origin of the Discounting Factor — The discount-

ing factor γp corresponds to the percentage of neuron ηt+1’s neurotransmitter

release that will be carried back to neuron χt.
6

To some degree, this discounting factor can be considered a neurotrans-

mitter dispersion factor since the requirement/expectation for the transition

quality to be constrained to specific targets — axons needing to be bound to

6This does not clarify but suggests that the lost neurotransmitters are replaced by ηt+1’s
production.

60

specific dendrites — no longer needs to be strongly adhered to. Given these

conjectures, it is expected that a simplified connection model will look similar

to what is shown in figure 4.1.

4.2 Quality Error: Modified δ

In the simplest case restricted to immediate rewards, the reward error can be

calculated as:

δt = rt−0.5 − q(η, χ)t−0.5. (4.17)

Unfortunately, this is insufficient for emulating the adaptive behavior of the

biological neuron. By considering the reward to be a neurotransmitter whose

magnitude corresponds to the logarithm of the concentration in a fixed volume,

the error becomes a discrepancy in the prediction creating a deficit or surplus

of chemical stimuli. This will in turn result in a shortage or excess of recov-

ered neurotransmitters and correspondingly influence the dispersion gradient

of extracellular neurotransmitters. These consequences in turn, influence the

dynamics of the cell growth which seeks to adapt to the ever-changing envi-

ronment. Using steps, the first step will be to represent the neurotransmitter

sources and amounts, e.g .:

Rt−0.5 = rt−0.5 + (1− γb)× (γq × q(η, χ)t−0.5 + γR ×Rt−1) (4.18)

for what will be kept and:

rt = γR × γb × (γq × q(η, χ)t−0.5 + γR ×Rt−1) (4.19)

for amounts that will ‘bleed’ out beyond the network’s area of influence. γb

represents the percentage of neurotransmitters that will disperse from the local

region [27]; γR corresponds to the life expectancy of the neurotransmitter that

will remain from half of an iteration [6]; and γq is the percent total stored

concentration that will be utilized per time step [35]. As neurotransmitters

will be considered a relatively limited resource, γq will serve to indicate roughly

how many activations would be required to exhaust a particular connection

61

w.r.t. rewards. The implication of these equations is that rewards can be self-

administered under certain conditions and excess rewards will be pushed off

to later iterations.

rt will become important for systems composed of sub-networks where a

summary of local information must be shared with other regions, i.e. as a

part of rt−0.5, increasing the algorithm’s scalability.7 Based on how rewards

are learned, one of the primary differences between Temporal Difference Re-

inforcement Learning (TDRL) and Neural Networks (NNs) is that the former

primarily relies on interactions at a group level while the latter uses an individ-

ual or layer-by-layer level of processing. By allowing some amount of bleeding

of rewards to the surroundings, some amount of flexibility is being permitted

in how rewards are processed, i.e. by individual nodes, small clusters or as an

entire network. Though it is beyond this research, node-level processing will

be kept in mind for future work.

Moving forward to the next full iteration, the residual neurotransmitter

will be calculated as:

Rt = γR ×Rt−0.5 − γq × q(η, χ)t−0.5 (4.20)

where γq will also serve as a recovery efficiency parameter. Rt closely resem-

bles the prediction error δt found in SARSA, however, it lacks the cumulant,

therefore the preferred error measure:

δt = Rt + γp × γq × q(η, χ)t+0.5, (4.21)

will be used. In this instance, γp is a percent of the quality that is released

prematurely. When sorting through these equations, it can be seen that exces-

sive rewards will be pushed into later iterations while predictions of the next

iteration will be drawn to the current quality prediction. This will force the

learning process of a given state to be restricted, temporarily blur the region

for which the reward is attributed, and yet not have the consequences fully

suppressed. The effect of spreading a fraction of the reward around its source

7It is assumed that, if rt is the only source of reward, the relation would be rt+0.5 = γR×rt
as the neurotransmitters decay over time and require time to propagate.

62

will also be expected to grant some tolerance to rewards that are correctly

administered but temporally inconsistent.

For clarity, if equation (4.21) is expanded out, the delta equations will

become:

δt = γR × (rt−0.5 + γR × (1− γb)×Rt−1)

+ γp × γq × q(η, χ)t+0.5

− γq × (1− γR × (1− γb))× q(η, χ)t−0.5 (4.22)

for the error,

rt = γR × γb × (γq × q(η, χ)t−0.5 + γR ×Rt−1) (4.23)

for the dispersed reward, and

Rt = γR × (rt−0.5 + γR × (1− γb)×Rt−1)

− γq × (1− γR × (1− γb))× q(η, χ)t−0.5 (4.24)

for the on-iteration residual reward. The result of testing with a reward that

switches between one and zero is shown in figure 4.2. It is worth noting that

under-, critically, and over-damped responses are possible by modifying these

γ parameters, allowing for a better range of potential optimal combinations.

One case worth pointing out is where γb = 1 such that excess values will be

removed and γR = γq = 1, allowing all quality values to be fully used. This

specific configuration gives the δt calculation from SARSA less r̄.

4.3 Kerneling

Energy variant coding methods, such as binary-coding, will be a more com-

pact alternative to constant energy coding methods, such as gray-coding. For

energy variant methods, it is possible to interpolate based on shared active

states, but two similar states-spaces with drastically different policies may

hinder the agent’s ability to converge for either of them. Kerneling largely

remedies this by increasing the number of states available using ~χt ⊗ ~χt. This

63

(a) rt is not fed back as part of the reward.

(b) rt is fed back as part of the reward with retention γR = 0.8.

Figure 4.2: Two Plots of the reward input rt−0.5, reward bleed out rt−0.5 (shown
as bt−0.5), and error calculation over 300 iterations when γb = 0.2, γR = 0.8,
γq = 0.9, γp = 0.1, αq = 0.2 and all initial values are set to zero. In both
cases, the administered reward was 0 for 100 < t ≤ 200 and 1 otherwise. The
only active state was the internal-bias value.

change will affect the quality and policy equations as follows:

~ηt+1 =
[[
p3
]
· ~χt
]
· ~χt; (4.25)

p(Nt+1|χ)t) =


1 if R{ηt+1} ≥ 1,

R{ηt+1} if 1 > R{ηt+1} > 0,

0 if 0 ≤ R{ηt+1};
(4.26)

q(η, χ)t+0.5 = ~ηt+1

[
[Q3] · ~χt

]
· ~χt; (4.27)

[Q3] = [Q3] +
αq × δt × ~χt ⊗ ~χt−1 ⊗ ~χt−1

max(1, (
∑
|~χt|)× (

∑
|~χt−1|)2)

; (4.28)

and

[p3] = [p3] +
~∂t ⊗ ~χt−1 ⊗ ~χt−1

max(1, (
∑
|~χt|2)× (

∑
|~χt−1|)2)

. (4.29)

64

Though it is not yet relevant, to reflect the change in units, logical error will

be calculated as:

∂t =

{
αp × (R{χt}2 − R{p(Nt|χ)t−1)} for state predictions,

αµ × αp × (R{χt}2 − R{p(Nt|χ)t−1})× δt for policy learning;

(4.30)

and action selection will be based on R{
√
p(Nt+1|χ)t}.

Given the cardinalities #A, #S and #X = #A + dlog2(#S)e for input

sets X and S and output sets X and A, the Kerneled method will significantly

reduce the number of required states at the cost of changing the order of

time complexity from O(#A × #S) to O(#X × #X2/2). CLASP’s order of

complexity becomes relatively smaller at 500 < #S < 512 and 672 < #S

given #A = 1.8 If the model was removed, the situation O(#A × #S) <

O(#A ×#X2/2) occurs when 14 ≤ #S ≤ 16 and 19 ≤ #S for #A = 1, i.e.

by removing the model, it is possible to significantly reduce the algorithms

complexity for most larger state-spaces.

4.4 Fleshing out State Information

W.r.t. logical information, machine learning algorithms are designed to learn

what is presented within a given set of data, either by being given a set of

logical targets as in supervised learning or by identifying clusters of samples by

their similar properties. Near the decision boundary dividing logical outcomes,

the algorithm can still assume the probability of a point belonging to either side

of the decision boundary depending on the threshold function used. However,

from the standpoint of conventional logical states, it is impossible to learn

about information that is not there.

Lets take the trivial case where an input space has zero points within and

is being evaluated on by a simple algorithm with one binary output, e.g . a

perceptron or modified SARSA algorithm with only one output. An algorithm

cannot learn without data, but the initial weights will still establish a decision

boundary, thus making the assumption that the input space is divided into

8A larger action space will require a larger #S value to flip the inequality but the fact
that is CLASP is more compact for a sufficiently large state-space remains unchanged.

65

distinct sub-regions equal to the number of possible outputs. The most correct

answer that can be given in such a circumstance is a prediction of ≈ 0.5,

however, given a lack of additional information, this also implies that the

algorithm is confident in this prediction and its relevance to the input space.

In reality, it is impossible for algorithms such as SARSA and the perceptron to

admit that they don’t know what is supposed to happen in this search space

because they are not designed to account for ambiguity caused by missing

information. The significance of this trivial case becomes more apparent when

it is taken as a sub-space of the complete input space. Interpolating between

two sub-spaces already exists within the learning algorithm to different effects

relative to the encoding method used, and can allow the algorithm to make

valid conclusions with certainty. However, the problem becomes more apparent

when an algorithm extrapolates to edge cases without supporting evidence —

e.g . having no surrounding sub-spaces containing sample points — and yet

claims the same degree of certainty regarding its output.

Learning about information that is absent from the data, is not as simple

as taking the inverse of the logical value because a logical zero embodies two

fundamental concepts depending on circumstance — either ‘is not’ or ‘don’t

know and/or don’t care.’ To learn about both of these aspects will be greatly

beneficial to decision making, but that will only be the case if one can distin-

guish between the two (see chapter 2.1). To resolve this limitation, it will be

necessary to assess what can extracted for a given state then consider how to

arrange the information.

4.4.1 Traces: Intangible Information

One of the ironic aspects of control systems is that observed state informa-

tion will almost always be assumed to be correct. In contrast, if the predic-

tions contradict the presented state, they will be assumed to be wrong. Such

assumptions, though often true, can be rather bold when considering real

world problems where sensor information can be fallible and very localized.

Though the prediction cannot be claimed as being entirely correct, it would

be improper to fully disregard what the Learning Algorithm (LA) will have

66

concluded to be correct after having learned for a period of time. The grad-

ual learning process reduces the likelihood of erroneous predictions preventing

convergence, but does not solve the problem of having incomplete information

potentially propagate from one input state to the next. To prevent a build up

of errors, a ratio of mixing predictions of the current state with its observations

should be implemented. This will also shift a portion of the learning rate away

from the designated policy learning parameter, but this is also acceptable. As

the proposal involves modifying the input state space, the modified space will

be defined as:

χ̃t = ζp × χt + (1− ζp)× R{
√
p(ηt|χ̃)t−1}. (4.31)

Equation (4.31) will combine the logical observation and prediction under

the assumption that the output units match the input units. As both are

signal amplitudes, there should be no issue. This form of mixing can be done

because both sources represent the exact same source; the difference being

that one is based on non-omniscient observations, while the other is based on

prior experience. By replacing χt with χ̃t, the process of re-learning in non-

stationary environments will be softened. This method is not unreasonable as

even the human brain — that CLASP seeks to emulate — uses predictions

and observations together. If ζp 6= 1, it will be reasonable to claim:

Claim 4.2. Partial Reliance on Predictions — The agent should be able

to rely on predictions and observations with partial independence. In other

words: for a short period after the loss of observability, the agent should still

be able to act on the expectation of what the current state should have been,

giving it time to shift its focus to states that are still reliable [33].

4.4.2 Traces: Past and Present

As a compliment to the current state information χt, a trace of the historical

activity will also be kept. Adding traces of past states will serve a few purposes:

• generating a state transition vector,

• determining the ‘age’ of an active state, and

67

• providing a record of past active states.

For some problems, having knowledge of the path used to get to the current

state can be as important as the current state itself [29]. This applies to many

sequential and time-series problems, including k-gram prediction. Something

else to note is that: if the sample frequency for the state-space is considered

very low and based on accumulated values since the last observation, a portion

of R{χ̃t} may already be expired historical data. With these considerations,

the proposed candidate solution will be:9

χt−m̃−0.5 = βh×(βp×R{χ̃t}+(1−βp)×R{χ̃t−1})+(1−βh)×χt−m̃−1.5, (4.32)

and its integration with the prediction information will be done via:

χ̃t−m̃−0.5 = ζh × χt−m̃−0.5 + (1− ζh)× I{
√
p(ηt|χ̃)t−1}. (4.33)

In total χt is the fully active signal, R{
√
p(ηt|χ̃)t−1} is the excitatory signal,

I{
√
p(ηt|χ̃)t−1} is the inhibitory signal, and χt−m̃−0.5 is the refractory/recovery

signal, all of which having a strong resemblance to the respective ion concen-

tration roles found in the biological neuron (see chapter 2.3).

As a state’s duration of activity typically causes a depreciation in positive

signal strength, it is tempting to use:

˜̃χt = χ̃t − χ̃t−m̃−0.5, (4.34)

however, this equation cannot properly express conflicts between observation

and expectation. Therefore, it will be more practical to use:

˜̃χt =
χ̃t + ı̂χ̃t−m̃−0.5

max (1, |χ̃t + ı̂χ̃t−m̃−0.5|)
, (4.35)

while knowing that the historical information negates positive signals when

using ˜̃χ2
t . Setting the limit of the magnitudes upper bound to 1 is partially to

reduce the risk of causing instability while also reducing the scale of the vector

components in a way that will not adversely affect the phase. The phase of

9It should be noted that, the bias state’s trace value is fixed to 1, as it can be assumed
that it has been active since t = −∞; however, not fixing the bias state may also have its
use in determining the neurons age.

68

the ˜̃χt is important when the algorithm must decide how to resolve conflicting

information. With the inclusion of traces, the new algorithm’s policy and

quality equations will be:10

~ηt+1 =
[[
p3
]
· ~̃̃χt
]
· ~̃̃χt; (4.36)

q(η, χ)t+0.5 =

√
p(ηt+1| ˜̃χt)t ·

[
[Q3] · ~̃̃χt

]
· ~̃̃χt; (4.37)

[Q3] = [Q3] +
αq × δt × ~χt ⊗ ~̃̃χt−1 ⊗ ~̃̃χt−1

max(1,
(∑
|~̃̃χt|2

)
×
(∑
|~̃̃χt−1|

)2
)
; (4.38)

and

[p3] = [p3] +
~∂t ⊗ ~̃̃χt−1 ⊗ ~̃̃χt−1

max(1,
(∑
|~̃̃χt|2

)
×
(∑
|~̃̃χt−1|

)2
)
. (4.39)

The maximum value for a state being dependent on duration of activation

will enable conditions where persisting states have slightly less emphasis on the

policy. A point of caution regarding ˜̃χt: though it will provide additional state

information, it is also possible for it to become a source of garbage information.

Granted, the configuration of ˜̃χt will allow for χt to fully suppress the other

sources of information if the PSO determines it is better.

4.4.3 Bifurcation: Affirming and Denial States

To lend further justification for complex state information, it can be divided

into two dimensions within its respective logic space, i.e. affirmation and de-

nial. These attributes of a state will lay on the real and imaginary axes —

extracted via R{�} and I{�} respectively. Unfortunately, denial states are

more abstruse due to their inherently non-observable nature. It is important

to note that the assumption:

I{χt} = 1− R{χt}, (4.40)

10The usage of ~ηt+1 in the quality prediction was replaced with
√
p(ηt+1|χ̃)t as a con-

sideration to limit the effects of exaggerated values in ~ηt+1. The primary difference is that
the former would be based on ion activity while the latter is based on membrane activity
caused by stimuli.

69

is erroneous as the denial state distinctly claims that something is not only ab-

sent from observation but also not present within the state’s scope. Instead,

the negation of the affirmation only assert that something is not observed

and/or predicted. The difference between negation and denial becomes ap-

parent when affirmation and denial are not dualities. In the event that both

denial and affirmation occur as a result of a logical operation, it distinctly ad-

mits the logic does not know. Similarly, if neither affirmation nor denial occur,

it distinctly admits the logic does not care. For conventional logic, both of

these instances would be represented by p(y) = 0.5.

Non-dual state logic can be expected to occur when two supposedly dual

options are unable to properly cover the entire logic space or are somewhat

independent of each other, e.g . ‘hot or cold’ lacks intermediate temperatures

and ‘happy or sad’ does not include ‘happy and sad’. For traditional logic,

it would be required to provide additional states which compartmentalize the

corresponding analog range, i.e. depending on how states are presented, some

form of problem-specific pre-processing of logical states may be required (see

chapter 2.1).

Denial states must be independent from their corresponding observable

dual, but simultaneously have some method of opposing the affirmation state.

Complex numbers will allow the state to achieve independence between affir-

mation and denial, mutability without removal of conflicting information, and

flexibility while maintaining the opposing nature of dualities (see chapter 2.2).

The new interpretation of logic, asserts the complete expression of state x can

be given minimally by:

x = R{x}+ ı̂I{x}. (4.41)

The logical information regarding affirmation is unchanged, however, it

will be necessary to develop the agent’s ability to actively and meaningfully

deny statements. Looking at equation (4.33), the first element to consider

will be the historical trace χt−m̃−0.5. The implication of this component is

that the agent should not care as much about states that will be active more

frequently or for longer durations. This assumption follows the refractory

70

characteristic found with Cl− and K+ in matured cells: functioning as a form

of inhibitory historical information w.r.t. Na+ and Ca2+ which compose χ̃ in

equation (4.31). I{
√
min(0,max(−1,R{ηt}))} is the result of learning what

will cause exceptions in the observed states or more formally the declaration of

denial. This element is also associated with Cl− and K+ and similarly inhibits

positive activation; however, it is distinctly different from the historical trace

as it will be the result of prior knowledge in the form of a logical induction of

unobservable facts/speculations. The consequence of this layout will be that,

if there is no observable state value, the agent will be able to rightly deny

the associated state, and if there is an observation, it can only state that it

does not know the truth of said statement, i.e. it could have been a faulty

observation or an erroneous prediction. It must be noted that not knowing

does not mean that the agent will not be able to come to a decision based

on its indeterminate knowledge; but that it must develop a preference — by

changing the weight phase — in the face of uncertainty.

Another aspect that must be addressed is that the imaginary state value

does not have a target to pursue and will thus lack a method of calculating

error. Applying a direct update method will not be possible as the learning

of what is not there can only be accomplished as a natural consequence of

learning the exceptions for observations. However, the update method and

probability value must be adjusted to properly handle the learning of complex

valued weights:

η̃t+1 =
(R{ηt+1} − 0.5)× λh

1− λh
+ 0.5; (4.42)

R{p(Nt+1| ˜̃χt)t} =



−1 if − 1 ≥ R{ηt+1},
R{ηt+1} if 0 > R{ηt+1} > −1,

0 if λp ≥ R{ηt+1} ≥ 0 or 0 ≥ η̃t+1,

0 if 0.5 ≥ R{ηt+1} ≥ λp and 0 ≥ η̃t+1,

1 if R{ηt+1} ≥ 1− λp or η̃t+1 ≥ 1,

η̃t+1 otherwise;

(4.43)

I{p(Nt+1| ˜̃χt)t} =


1 if I{ηt+1} ≥ 1,

I{ηt+1} if 1 > I{ηt+1} > 0,

0 if 0 ≥ I{ηt+1};
(4.44)

71

p(Nt+1| ˜̃χ)t =
R{p(Nt+1| ˜̃χ)t}+ ı̂I{p(Nt+1| ˜̃χ)t}

max
(
1, |R{p(Nt+1| ˜̃χ)t}+ ı̂I{p(Nt+1| ˜̃χ)t}|

) ; (4.45)

and

∂t =

{
αp ×

(
R{ ˜̃χt}2 −max

(
0,R{p(Nt| ˜̃χ)t−1}

))
for state predictions,

αµ ×
(
R{ ˜̃χt}2 −max

(
0,R{p(Nt| ˜̃χ)t−1}

))
× δt for policy learning.

(4.46)

These new equations will allow a bounded form of the denial predictions, af-

firming predictions, and historical traces to carry into the prediction and learn-

ing error. An additional item included will be the piece-wise linear threshold

function defined by equations (4.44) and (4.45). The ability to optimize the

threshold function will allow the PSO to include a measure of tolerance for

build-up of historical traces should it be desired. Parameter λh will set the sen-

sitivity of the neuron to stimuli between the thresholds determined primarily

by λp and 1− λp.

4.5 Logical Error

The logical error function used for equation (4.46) is simple and effective, how-

ever, both logical and distance error have their shortcomings. Conventional

logical error:

~∂logct = ~χt − ~p(Nt−0.5|~χ)t−1 (4.47)

has a tolerance for exaggerations in logical statements due to the thresholded

nature of p(Nt−0.5|~χ), thus making it very stable; but it does not prevent

weights from growing excessively which can cause issues with divergence. Dis-

tance error:

~∂distt = ~χt − ~ηt (4.48)

has no tolerance for exaggerations, demanding exact values for every predic-

tion, thus making it more unstable for highly stochastic problems. It also

severely restricts the algorithm’s learning ability for points very close to the

decision boundary. The logical error will always be a safe, albeit potentially

unstable default for learning, however, a combination of these two methods

is expected to not only allow the agent to learn about observable states, but

72

also allow it to exploit logical exaggerations as a means to gain additional in-

formation regarding unobserved states. The initial proposal will be to restrict

the error such that it forms a slacked region:

∂raw =



τ + χt − ηt If χt ≥ 1 and ηt > τ + χt,

0 If χt ≥ 1 and τ + χt ≥ ηt ≥ χt,

χt − ηt If χt ≥ 0 and χt > ηt,

χt − ηt If 1 > χt and ηt > 0,

0 If 0 ≥ χt and 0 ≥ ηt ≥ −1− τ,
χt − ηt − 1− τ If 0 ≥ χt and χt − 1− τ > ηt.

(4.49)

This set of conditional statements will allow for strict learning when mis-

classification occurs or when ηt exceeds the target χt by more than τ which

is reminiscent of equation (4.48). If the prediction is correct and within the

tolerance specified by τ , the error will be 0, producing a result similar to

equation (4.47). This method’s more notable characteristic is that it will create

three distinct regions whose edges run parallel to the decision boundary: the

outermost region spanning (∞, τ + χt] and (−∞, τ − 1] on either side affects

weights that have grown excessively large, i.e. imposing a material/resource

constraint on the neurons size; the intermediate region encloses values that

are considered reasonable in magnitude and will thus be handled according to

the rules of logical error; lastly, the region surrounding the decision boundary

spanning to either side. The two logical error methods are virtually identical

for the boundary region, however, it is also a region where the solution will

likely remain stochastic or simply be too vague to make a definite decision

given the scale of the input space. This region is where learning will not be

fully supported due to the lack of sufficient resources to fine-tune the results,

e.g . τ or the number of useful inputs need to be increased. This approach

is similar in principle to the one used in Support Vector Machines (SVMs)

but also distinctly different. The support vectors in SVMs lay relatively close

to the boundary, but the slacked error method produces supporting points

laying at the outermost regions of the problem space relative to the decision

boundary [11], [28].

73

(a)

(b)

(c)

Figure 4.3: Relative to the associated target value T ∈ {0, 0.5, 1} and the
unbounded prediction value (i.e. the x-axis): (a) Probabilistic error, (b) Value
error, and (c) Slacked error with τ = 5.

74

Figure 4.4: The effects of slacked error is demonstrated by the yellow and
gray lines. Assuming correct classification, points beyond the yellow line will
cause the respective weights to shrink while points between the black decision
boundary and the gray line will attempt to increase the weight value. For
incorrect classification, the result is based on distance error.

In reference to figure 4.4, the solid yellow line, representative of the thresh-

old τ , will restrict the maximum cumulative weight size — logical exaggeration

— w.r.t. correctly classified data by shifting all the lines slightly in the direc-

tion of the stimulus point, i.e. reducing the distance between the respective

point and the decision boundary (the black line) in the weight space. The

region between the yellow and gray line serves as the slack permitted for ex-

aggerated activation. The exhibited behavior can also be regarded from a

biological perspective of the membrane as a range of elastic deformation, i.e.

correctly classified points that lay within do not affect the weight values [18].

The region between the two gray lines serves as the non-deterministic area.

Correctly classified data points within this region will attempt to increase their

respective weights, thus reducing the distance between the threshold τ and the

decision boundary line w.r.t. the input space. Though poorly classified data

does not fully oppose the effects of τ , combining said effects with those of mis-

classified data is sufficient for ensuring a proper decision boundary is formed.

To give the analysis from another perspective, figure 4.3 shows the different

error curves for a given set of targets and a range of ‘predicted’ values. It

can be seen from this that, if τ = 0, slacked and value error will be identical

75

while, if τ =∞, slacked and prediction error will become identical for correctly

classified data.

4.5.1 Bounded Errors

Before testing this new error method, it will be preferable to more closely

match slacked error with logical error, i.e. restricting the error range to (−1, 1)

or [−1, 1] is expected to reduce the likelihood of divergence than a potentially

unbounded error. This gives a better guarantee of maintaining the stability

w.r.t. error values inherent to the original logical error method. W.r.t. biolog-

ical neurons, this is establishing a limit to the degree of plasticity a cell will be

able to employ per learning cycle. Additionally, by bounding the error, infre-

quent large errors will not be able to influence the learning process too strongly

relative to smaller but more frequent errors. This minimizes the likelihood of

getting a large number of misclassified data points near the decision boundary

in a futile attempt to rectify the misclassification of potential outliers.11 Table

4.1 shows the two ways of classifying the concerned erroneous data. Though

one could further divide these cases into those that will be better resolved with

further learning and those that will not, such cases would require information

about the data set as a whole and is not within the scope of this research.

Errors that occur often but with a relatively short distance to the decision

boundary can be considered as small frequent errors. If such errors are present,

it would usually imply the learning algorithm is close to convergence but still

requires more learning. If the small errors occur relatively intermittently, this

would suggest that the algorithm has converged to a reasonable but non-perfect

solution. Such cases will tend to have a balanced amount of cumulative error

from each side of the decision boundary. Other cases where small errors would

likely occur also exist: if the training data poorly represents the data along

the true decision boundary, and/or if the algorithm will not or cannot balance

the distance between the training data that neighbors the decision boundary.

11If the grossly miss-classified point is relevant, it is more likely to be a problem of lacking
sufficient resources.

76

Frequent Intermittent

Large

Small

Table 4.1: The four categories for which errors can be categorized into.

77

Similarly to the small errors, if a large error occurs relatively frequently,

it would suggest the algorithm has yet to converge. If it has converged, then

it may be a case where the problem is non-separable to a severe degree. If

a large error occurs infrequently, there are a number of likely system causes:

faulty labeling, erroneous information, and/or a result that occurs due to a

highly non-linear but mostly separable problem space. For infrequent errors,

they could be outliers that should be ignored or genuine points that require

additional resources to be properly represented, i.e. exceptions to the currently

learned rules. Regardless, large infrequent errors should not be allowed to shift

the entire decision boundary too far. It would be advisable to establish a new

boundary instead, using excess resources should they be available. To achieve

a bounded error, equation (4.49) will be replaced with:

∂raw =



sig+ (z + x− y, a, b, c) If x ≥ 1 and y > z + x,

0 If x ≥ 1 and τ + x ≥ y ≥ x,

sig+ (x− y, a, b, c) If x ≥ 0 and x > y,

sig+ (x− y, a, b, c) If 1 > x and y > x,

0 If 0 ≥ x and x ≥ y ≥ x− 1− z,
sig+ (x− y − 1− z, a, b, c) If 0 ≥ x and x− 1− z > y,

(4.50)

where:

x = R{ ˜̃χt}2

y = R{ηt}

z = τ ×#X2

b = 1

The curve for sig+(x, a, b, c) is comparable to the traditional sigmoid functions

when a = b = 1 and c > 0 (see chapter 2.4). Fixing b = 1 serves to reduce

parameter redundancy as a, b, and c are inter-related but the roles of a and

c are more distinct. The sigmoid function will largely influence the effective

learning rate which would otherwise be solely regulated by αµ and αp. An

approximation for the effective logical learning rate:

α =
|∂t|+ ε

|∂distt |+ ε
, (4.51)

78

where ∂t is the final error value after all learning rates are applied and ∂distt is

the distance error calculated from equation (4.48).12 Though it is not relevant

to the learning process, it gives a useful measure of the per iteration learning

limitation imposed on the algorithm via the error method. The final equation

for calculating ∂t will be given as:

∂t =

{
αp × ∂raw for state predictions,

αµ × ∂raw × δt for policy learning.
(4.52)

12ε is an infinitely small number included to prevent instances of 0/0 = NaN when it is
sufficient for 0/0 = x/x = 1.

79

Chapter 5

System Model

In this chapter, the details of the simulator setup starting with the environment

model followed by the agent components will be covered. How these models

are configured largely determine the problem difficultly, practicality, as well

as the extensibility outside of research. The section on agent models goes into

moderate detail about preprocessing of state information and post-processing

of probabilistic action distributions. While making changes to the algorithm, it

will be worth while to consider the effects of sub-optimal real world conditions.

In reality, it is not uncommon for there to be limitations and external factors

forcing the configuration to be sub-optimal, e.g . large data, noisy/faulty data,

and delays. After clarifying the details of the system model, a description of the

simulation setup itself will be in order, followed by what additional information

will be recorded as methods of comparison, and how the performance/score

will calculated for later evaluation.

5.1 World/Problem Models

The problem of choice is character prediction. The reasons why this type of

problem is of interest are that:

• there is a wide variety of raw text to be used as data sets,

• the state-space is moderately large given the number of valid ASCII

characters and symbols available,

• there are several options for encoding and decoding,

80

• there are two distinct ways of evaluating performance (i.e. hit rate and

bit-wise accuracy), and

• unigram prediction from a single character is largely stochastic or highly

non-stationary.

A more popular form of this type of problem is at the level of predicting the

next word using a length of words following behind, i.e. an n-gram formed

with words, to build sentences and paragraphs from an initial phrase. Word

prediction is easier because the order follows the rules for grammatical struc-

ture of the given language, but the set of all states is also large, i.e. there are

as many unique states as the number of word n-grams in the language used [8],

[38]. Character level n-grams are more difficult unless the word construction

also has a set of rules, but it has relatively fewer unique states. English does

have a few rules for spelling, but it also has a lot of exceptions, making it dif-

ficult to predict the next character. As the number of characters/words used

for prediction increases so does the uniqueness of the n-gram, thus decreasing

the number of likely next characters/words [19]. Given that each character

represents its own state, the unigram problem can also be viewed as a highly

connected graph with as many edges leading to the next state as there are

states. The catch being that there is only one correct edge with a positive

reward, i.e. the one corresponding to the destination state.

The highly non-stationary problem of unigram character prediction is used

in this research to test the ability of the LA in what can be considered a very

difficult but compact problem. It is also expected to better demonstrate the

effects of internally tracking historical information and filtering out irrelevant

states than if it were applied to a simple grid-world problem. Character pre-

diction with binary state information is also likely to cause the algorithm to

become unstable if it is not constructed with learning stability in mind. By

demonstrating that the algorithm can not only learn but also remain stable in

a relatively chaotic environment, it will likely be more easily accepted in real-

world applications. In English text, it is not easy to guess the next character

when only presented with the current character, especially when the binary

81

m c0 c1 τ1 c2 τ2 v%lim
0.537582 0.768016 0.999995 0.629405 0.999383 0.872157 0.418376

Table 5.1: Chosen PSO parameters.

encoding does not have elements that represent shared features within the

character set. This is especially so when you do not know any of the higher

level rules, e.g . cat, catapult, caterpillar, catfish, and catamaran have the same

first 3 letters, but the fourth letter would likely be easier to predict if some

knowledge of the context was present. For the encoder, some elements such

as upper/lower-case, vowel/consonant, and symbols will be embedded into the

binary state representation. This is akin to rearranging the order of charac-

ters such that their hexadecimal representations are more convenient for our

learning problem than what is given using ASCII.

5.1.1 In-Sample: Parameter Optimization

To ensure a satisfactory combination of parameters are selected for the Learn-

ing Algorithm (LA), a Dimension-wise Particle Swarm Optimization (PSO)

algorithm is used with the parameters shown in table 5.1. These parameters

were chosen from the results of a previous work which demonstrated that they

were effective in moderately high dimensional problems of approximately 9 di-

mensions, some of which being of much greater difficulty than others [31]. For

the in-sample data, the Temporal Difference Reinforcement Learning (TDRL)

algorithm will predict the next character’s binary value with the same con-

figuration that would be used in the out-of-sample problem. The first 987

characters — including whitespace — from the foreword of Lord of the Ring

— Fellowship of the Ring book:

This tale grew in the telling, until it became a history of the Great

War of the Ring and included many glimpses of the yet more an-

cient history that preceded it. It was begun soon after The Hobbit

was written and before its publication in 1937; but I did not go on

with this sequel, for I wished first to complete and set in order the

82

mythology and legends of the Elder Days, which had then been

taking shape for some years. I desired to do this for my own satis-

faction, and I had little hope that other people would be interested

in this work, especially since it was primarily linguistic in inspira-

tion and was begun in order to provide the necessary background

of ’history’ for Elvish tongues.

When those whose advice and opinion I sought corrected little hope

to no hope, I went back to the sequel, encouraged by requests

from readers for more information concerning hobbits and their

adventures. But the story was drawn irresistibly towards the older

world, and became an account, [22]

This text is expected to be long enough for the LA to show a notable

difference in performance as its parameters are varied, yet short enough to

prevent the PSO from requiring excessive amounts of time to finish. So long

as the training and test scripts are different enough that the samples do not

excessively overlap and a bag of n-grams containing all sample data from both

sets can be generated, the choice of source data is not limited to English text

[8], [19], [38].

5.1.2 Out-of-Sample

To test the optimized algorithms, the Shakespearean play titled ‘All’s Well

That Ends Well’ has been selected for the out-of-sample evaluation [2]. After

making minor adjustments in format, this play produces 135,795 raw text data

samples. Due to the length of the data set, it will be evaluated thrice to ensure

sufficient time for convergence (totaling 407,385 characters).

5.2 Agent Models

For this research, the problem will be considered to be an isolated system com-

posed of multiple elements — characters, rules, topics, semantics, etc. known

or otherwise — with select modes of interaction between the environment and

83

Figure 5.1: The basic system model

agent as shown in figure 5.1. Opening up the general interpretation of an

agent, potential internal components commonly found in control systems can

be filled in (see figure 5.2). Should these elements be relevant, they will be

likely sources of noise, delay, and/or data manipulation occurring indepen-

dently of the problem. The agent will not be considered to have actuators as

the problem set will be strictly observable. The sensor data will be considered

as the raw character observed.1

5.2.1 Reward

Based on the type of the problem, the reward is considered a result of pre-

processing looped back action information with the most recent sensor data.

The reward function takes the character being passed as the next input per-

forming a bitwise comparison with the predicted character, summing the re-

sulting binary sequence, and multiplies it by -1. The reward will be placed

into the first of two reward channels. If the characters match, a ‘+1’ will be

passed to the second channel.2 With this configuration, the first channel’s

value relays how close the agent is to getting the predictions right, and the

second channel relays the agent’s ability to get the right answer. This setup

also prevents the LA from encountering large regions that may lack a reward

stimulus.

1It should also be noted that sensors can be assumed to be infallible, of infinite resolution,
and without delay, i.e. the data from the environment is accurate and precise.

2These channels are combined with the logical information channel in figure 5.2 to reduce
clutter and branch off within the AI block, pointing towards the learning block that needs
the rewards. If the learning algorithm used is intended to operate with only one reward
value, the results of the two channels will be summed during the LAs execution.

84

Figure 5.2: The system model, including a complete layout of the agent’s
general components and a stereotypical layout for the AI.

85

5.2.2 Transmission Channels

Though the communication channels, shown in figure 5.2 and labeled as ‘Comm.

Channel,’ will not be directly evaluated in this thesis, the problems associated

with transmission channels are probably one of the most significant factors

present in real world problems. The major issues with communication chan-

nels include: delay (a known cause of instability), packet loss and corruption,

and limited bandwidth [5], [14]. The practicality of an algorithm for real world

problems will often be heavily influenced by these factors. Though these will

be beyond the scope of this research, they will still be acknowledged as hurdles

that should be examined before promoting a new algorithm for implementation

outside the lab.

5.2.3 Artificial Intelligence

To add clarity to the scope of this research, the state decoder, action encoder,

action selection method, and Learning Algorithm (LA) will be considered as

entirely separate from each other.3 Given the large variety of LAs available

and the veritable number of combinations that can be made with available

encoders, decoders, and selection methods, the scope of this research has been

limited to only comparing with the Temporal Difference Reinforcement Learn-

ing (TDRL) algorithm SARSA (State-Action-Reward-State-Action). The Lin-

ear SARSA with an Actor-Critic implementation will be desirable because of

its close alignment with the Bellman Equation. SARSA will also serve as a

good starting point and benchmark for making changes and evaluating per-

formance improvement.

Decoding and Encoding

Decoding of data into logical information involves translating input values into

a series/vector of logical values that can be more easily processed in the next

step, i.e. where each resulting element is in the range [0, 1] or set {0, 1}. The

common method for TDRL is to use decoders that have a fixed number of

3Everything will be defined, as much as possible, from the perspective of the LA as a
standard, thus state information is decoded and actions are encoded.

86

Figure 5.3: A visual comparison of three different discrete gray-coding de-
coding methods. For clarity: this can also be translated to fuzzy decoding
methods.

87

active states among a group that represents the entire state-space, i.e. gray-

coding. This may be suitable for small scale operations, however, for large

scales which may require an exorbitant number of states to represent the en-

tire state-space, gray-coding methods may no longer be cost-effective.4 Other

problems that can arise with a larger state space include: an increased num-

ber of dead states, i.e. ones that cannot be explored properly if at all; a lack

interpolation between similar states; and an increased likelihood to encounter

under-explored regions after convergence on frequently seen states. Gray-code

methods should not be discredited as they have their own strengths as well —

the state-space learning problem becomes highly linearized and is often more

stable; however, in some extreme circumstances it may not be practical to have

1,114,111 or more input states.5 The modifications will mostly work around

binary-coding methods, making them more compact than the gray-code al-

ternatives. Binary-coding is also more in line with how the brain functions,

because different amounts of information can be conveyed at different times,

and there is no fixed number of active neurons at any given time. The primary

demerits to binary-code methods are that the number of active states will not

be fixed and any given state value will have a different interpretation based on

which other states are also active, i.e. learning is less stable and more likely

to be highly non-orthogonal in nature. If there is any consolation, it would be

that, if the learning algorithm can perform well with such a decoder, it would

likely also have some degree of stability when data corruption and partial data

loss are possible (see section 5.2.2). Strictly considering the character space,

for the number of states #S that will be available, the largest representable

value is found by:

KGray = #S (5.1)

4There are ways of making the code more efficient in some algorithms over others by
exploiting certain aspects such as indexing, however, this research will not be delving into
hardware optimizations. Different platforms may also largely mitigate the requirements for
processing time — graphic processing units being one — but the overall increase in memory
requirements remains.

5This is the number of unique characters for Unicode based on Python3.6’s system read-
ing as of July 2018. There are still other languages that have more characters than this,
and having multiple languages would only cause it to grow exponentially.

88

and

KBinary = 2#S−1. (5.2)

This means that, for ranges that require higher resolutions or cover a larger

span, binary-coding becomes exponentially more attractive. Before moving

on, it should be noted: for the decoding method, an additional bit will be

included — being set to 1 when all other bits are 0 and set to 0 for any other

case. This will prevent cases where 0x00 cannot stimulate the input should it

exist in the character set.

Action Selection

As TDRL algorithms are designed to produce a policy with a probabilistic

distribution, it is necessary to discretize the policy in accordance with the

distribution and encoding method. If the action logic is intended to be gray-

coded, then it will likely be sufficient to use a roulette-style method such

as Soft-Max. For this type of distribution method, the algorithm’s output

values are coupled such that the sum totals to 1. However, in pursuing a

more compact and non-orthogonal binary-coding method, the action selection

method must be decoupled for each probabilistic action value without having

any drastic impact on how SARSA’s error gradient is calculated. Given that

Soft-Max is calculated by:6

p(at+0.5|~st) =
e(~a

T
t+0.5·[µ]·~st)∑

b∈A e
(~bTt+0.5·[µ]·~st)

, (5.3)

it can be considered a form of coupled sigmoidal thresholding — sigmoids

being another equation that relies on the same full range [−∞,∞] and form.

The equivalent decoupled sigmoid will be defined as:

p(at+0.5|~st) =
1

1 + e−(~a
T
t+0.5·[µ]·~st)

. (5.4)

The coupled pair for the implied second action~bt+0.5 from the sigmoid function

can also be generated from:

p(¬at+0.5|~st) =
1

1 + e(~a
T
t+0.5·[µ]·~st)

. (5.5)

6These equations assume that [µ] is the policy matrix and only action at = 1 in the
action set At while all others are zero.

89

In both equations (5.4) and (5.5), the 1 value is generated by the continuous

assumption that ±(~bTt+0.5 · [µ] · ~st) = 0. Because of the coupled nature of

Soft-Max, this assumption is not present in its calculations for cases with

more than one action value being set. However, by using equation (5.4), the

gradient calculation for each action is preserved. Apart from decoupling the

actions, it should be kept in mind that the sigmoid’s knee point becomes fixed,

i.e. the reference point for the probability calculation is not affected by other

action probabilities. In this way, a random number in the range of [0, 1) can

be produced for each probabilistic action value p(at+0.5|st), and if the random

number is less than the probabilistic value, the corresponding output will be

set to 1, otherwise it will be set to 0.

In the event that the algorithm is intended to learn in a linear fashion,

i.e. the action policy values are expected to be within the range [0, 1], the

computational demand will be reduced further by using a piece-wise linear

function such as:

p(at+0.5|~st) =


1 If 1 ≤ ~aTt+0.5 · [µ] · ~st ,

~aTt+0.5 · [µ] · ~st If 0 < ~aTt+0.5 · [µ] · ~st < 1.

0 Otherwise.

(5.6)

To reduce confusion when incorporating changes, the thresholding methods

will be included as part of the LA code while the random number generator

and selection occur separately. This also allows a distinct separation of a likely

source of noise from the LA itself.7

Learning Algorithm (LA)

The LA will be described as a component that receives logical state data

and qualitative reward data to guide the agent’s actions towards maximizing

reward. The first step of the LA will be to process state data for extraction

of information relevant to the action policy. This information will then be

filtered, scaled, and/or shifted to acquire a probability distribution for the

7The noise caused by random activation/selection is useful for exploration but harmful
for exploitation, having it as a distinctly separate module from the LA itself was deemed to
be preferable so as to make it clear that random number generation is not necessarily part
of the LA though it is still part of the AI.

90

action set. After passing out the action probabilities, i.e. on the next time step,

the results will be gathered and compared with prior expectations, generating

a measure of error. The error will then be used to adjust the weights with

the expectation of said error being reduced. With the new weight matrix, the

process repeats. Of the types of LAs available, e.g . on-line or off-line; batch or

iterative; on-policy or off-policy; supervised, semi-supervised, or unsupervised,

this research will be restricted to on-line on-policy TDRL. Off-policy methods

such as Q-learning assume each action is represented by a single element and

rely on this to select the maximum q(at+0.5, st) produced for a given state.

Off-line learning methods such as batch learning require the algorithm to run

on a set of training data, gathering the errors attributed for each weight, and

applying the average of the errors at the end of one training epoch. Off-policy

and off-line learning each add more complications to modifying the algorithm

and will thus be avoided altogether. As for algorithms outside of TDRL,

they are currently beyond the scope of our research. An important point to

note for SARSA w.r.t. the type of problem testing will be conducted on is

that, for highly non-stationary problems, there are often cases where INF or

NaN occur because of the finite range and resolution of the numerical data-

types used. To counter these cases that may result in runtime errors, checks

will be imposed for operations likely to return INF . These INF values will

be replaced with the python value sys.floatinfo.max of matching sign, i.e.

±1.7976931348623157×10308. A similar check will be imposed for NaN which

will be replaced with zero if it is a result of multiplication and one if it is due

to division, i.e. 0 = 0 × INF and 1 = INF/INF respectively. From prior

trials, these occurrences have tended to happen during the policy and value

calculations after a period of frustrated learning; replacing ±INF and NaN

ensures that the outputs remain processable and that the learning process will

not freeze before results will be gathered. That said, diverging weights usually

mean the parameter combination is a poor choice — largely ruled out by the

PSO — or the LA itself is unable to learn properly with the given problem

configuration. If it fails for any reason during the in-sample optimization, the

PSO algorithm will automatically assign a score of −∞ and move on. The

91

modified LAs will automatically be marked as failed for any runtime errors

or warnings they throw, i.e. there will be no attempts to push a parameter

combination through if it fails even once.

5.3 System Simulation

The simulator will be designed to maximize parallelization, minimizing overall

runtime. Each agent will process the problem entirely before the results are

aggregated and the performance metrics are determined. Every in-sample and

out-of-sample test will be initialized with 30 identical individuals, each solving

the problem independently. Each of the 6 particles in the PSO will also be

evaluated in parallel to further minimize processing time. Additionally, the

PSO will terminate if the global best does not improve after 30 PSO iterations.8

There are a few options for evaluating the performance of the algorithm

based on the resulting reward values. The method of choice is to calculate the

running mean of rewards R+
t and R−t :9

R̄t+1 = R̄t × (1− ζ) +Rt × ζ, (5.7)

for each agent. For grid-world problems, the performance measure used is

based on how short the algorithm can make its path or the average reward

given upon ending a training episode [36]. This method relies on the fact that

the algorithm can choose which states to move into, affecting the length of

the path traversed, and that there are terminal states.10 Using a regular mean

of the prediction accuracy across all samples is also based on the assumption

that the algorithm is not learning during the out-of-sample evaluation phase

[8], [19], [38]. However, SARSA and CLASP are continuous learning algo-

rithms, meaning the same logical inputs at different points in time can yield

different results as they make and learn from errors in between. The running

8The simulation will be run on an ASUS PC with Windows 10 and an intel i5-4690K
CPU. Its maximum clock speed is 4.5GHz and it has access to 32GB of RAM.

9R+
t and R−t refer to the reward given for getting the exact character and bit-wise

dissimilarity respectively.
10Terminal states are positions that move the algorithm back to the starting position to

start the next episode.

92

average approach does not discredit older rewards in the online learning pro-

cess, but also does not value them as much as the most recent results. After

the simulations have completed, the mean and standard deviation across all

30 agents will then be processed to get:

Rsim = (R̄+
ave@T+1 + R̄−ave@T+1)− (R̄+

std@T+1 − R̄
−
std@T+1). (5.8)

As there is a large difference in data set size for in-sample and out-of-sample

problems, ζ = 0.011 will be used for the in-sample data while ζ = 0.001 will be

used for the out-of-sample data. Considering weighted significance, only the

b1/ζc most recent samples will be regarded as most relevant to the resulting

score, i.e. the last 90 samples for the in-sample set and the last 1,000 samples

for the out-of-sample set.

The hit-rate and bit-wise accuracy — the LA’s ability to guess the char-

acter correctly and how close it is to the correct character — will be the

primary methods of evaluation; however, per-character processing time via

time.time(), LA memory via pympler.asizeof.asizeof(), and the

3 − σ evaluation results will also be collected. The hit-rate reward, origi-

nally ∈ {0, 1}, will be multiplied by 7 to get R+
t while the bit-wise reward

∈ {0,−1,−2,−3,−4,−5,−6,−7} will be divided by 7 to get R−t ; placing

emphasis on guessing more characters correctly over getting a close binary ap-

proximation. With these alterations in mind, accuracy will calculated using:

X̄−ave% = 100× (1 + R̄−ave@T+1) (5.9)

and the associated standard deviation is calculated using:

X̄−std% = 100× R̄−std@T+1. (5.10)

The corresponding hit rate is calculated as:

X̄+
ave% = 100×

R̄+
ave@T+1

7
(5.11)

and the associated standard deviation is calculated as:

X̄+
std% = 100×

R̄+
std@T+1

7
. (5.12)

93

In these calculations, R̄−ave@T+1 and R̄−std@T+1 refer to the mean and stan-

dard deviation of negative reward running average values, and R̄+
ave@T+1 and

R̄+
std@T+1 refer to the mean and standard deviation of positive hit-rate running

average values.

5.4 Summary

In this chapter, the simulation setup regarding the problem format and gen-

eral agent configuration have been covered. With this system model, it will

be possible to get a rough evaluation and comparison regarding the trade-offs

of deviating from the SARSA model w.r.t. highly non-stationary problems.

From the measures w.r.t. computational resources as well as detailed statisti-

cal performance, it should be possible to roughly determine how the changes

affect learning and if the modifications are worth implementing in highly non-

stationary environments.

94

Chapter 6

Testing CLASP and SARSA

The previous chapters covered the setup of the problem and the iterative

changes made to improve the Learning Algorithm (LA) while using biological

neurons as a source of inspiration. The algorithms were optimized on the

first 987 characters from the forward of Lord of the Ring — Fellowship of the

Ring. The experiments were conducted with only 1 character inputs while

allowing or restricting the γ parameters. In forcing select γ values equal to 1,

it was expected that a clearer comparison of how each modification affected

performance would be possible. The results are based on the mean value of

30 identically initialized learning algorithms.

6.1 Results

The optimization process resulted in the parameter selections shown in tables

6.1, 6.3, and 6.5. For replicating the old δ method, i.e. modifications with the

subscript ‘old γ,’ γR, γb, and γq were set to 1. Seeing as the chosen γ parameters

are not always at extreme values of 1 or 0 and given the difference in the

resulting rewards, the new δ method proved to be a major factor in improving

the algorithm’s scores. Looking at the chosen parameters for CLASP in table

6.1, λh ≈ 0 and λp ≈ 0.2 suggest that the algorithm preferred a probability

of approximately 0.5 for activation when predictions fell within the gray zone

of the decision boundary, i.e. 0.2 ≤ ηt+1 ≤ 0.8. Similar results can be seen

in tables 6.3 and 6.5, suggesting that it was able to confidently predict some

action elements, however, any states that fell within the gray zone were likely

95

M
o
d
ifi

ca
ti

on
bi
a
s

α
p

α
µ

α
q

γ
R

γ
b

γ
p

γ
q
|α
r

β
p

β
h

ζ p
ζ h

λ
p

λ
h

τ
a

c

S
A

R
S
A

0.
09

54
—

0.
27

59
0.

03
50

—
—

0.
63

41
0.

10
81

—
—

—
—

—
—

—
—

—

M
o
d
el

o
ld
γ

0.
05

61
0.

20
28

0.
48

92
0.

58
16

1.
00

00
1.

00
00

0.
30

62
1.

00
00

—
—

—
—

—
—

—
—

—

M
o
d
el

0.
31

33
0.

60
61

0.
76

30
0.

09
86

0.
61

13
0.

63
95

0.
68

83
0.

55
65

—
—

—
—

—
—

—
—

—

K
er

n
el

o
ld
γ

0.
05

18
0.

61
70

0.
30

91
0.

16
46

1.
00

00
1.

00
00

0.
34

13
1.

00
00

—
—

—
—

—
—

—
—

—

K
er

n
el

0.
03

91
0.

63
95

0.
55

16
0.

52
77

0.
85

27
0.

82
00

0.
25

28
0.

44
80

—
—

—
—

—
—

—
—

—

T
ra

ce
s o

ld
γ

0.
27

77
0.

51
31

0.
71

77
0.

54
41

1.
00

00
1.

00
00

0.
53

12
1.

00
00

0.
99

10
1.

00
00

0.
00

00
0.

00
00

0.
49

26
0.

63
42

—
—

—

T
ra

ce
s

0.
52

73
0.

80
81

0.
75

41
0.

73
67

0.
77

43
0.

84
23

0.
81

48
0.

60
74

0.
37

19
0.

82
05

0.
00

00
0.

00
00

0.
49

09
0.

77
20

—
—

—

C
om

p
le

x
E

rr
or

o
ld
γ

0.
03

81
0.

64
32

0.
32

03
0.

52
54

1.
00

00
1.

00
00

0.
67

13
1.

00
00

0.
41

32
0.

78
92

0.
03

31
0.

46
21

0.
51

36
0.

11
87

—
—

—

C
om

p
le

x
E

rr
or

0.
01

80
0.

36
34

0.
96

46
0.

55
17

0.
45

88
0.

55
88

0.
32

39
0.

46
01

0.
00

00
0.

69
17

0.
00

00
0.

53
08

0.
69

56
0.

23
59

—
—

—

B
ou

n
d
ed

E
rr

or
† o
ld
γ

0.
94

33
0.

15
43

0.
32

05
0.

00
00

1.
00

00
1.

00
00

0.
33

48
1.

00
00

0.
03

72
0.

82
63

0.
41

64
0.

72
92

0.
31

85
0.

00
00

2.
71

12
1.

08
12

90
.1

92
1

C
L

A
S
P
†∗

0.
94

76
0.

49
52

0.
33

46
0.

00
00

00
01

7
0.

91
88

0.
65

96
0.

34
20

1.
00

00
0.

06
28

0.
81

77
0.

46
62

0.
59

54
0.

20
37

0.
00

00
04

1.
12

67
1.

16
34

85
.3

35
4

†
B

ou
n
d
ed

er
ro

r
u
se

d
6,

44
2

ch
ar

ac
te

rs
to

ge
t

p
ro

p
er

ly
op

ti
m

iz
ed

re
su

lt
s.

∗
T

h
e

P
S
O

w
as

h
av

in
g

d
iffi

cu
lt

y
w

h
en

tr
y
in

g
to

o
p
ti

m
iz

e
al

l
17

p
a
ra

m
et

er
s.

T
o

im
p
ro

ve
th

e
P

S
O

re
su

lt
s,

th
e

fi
rs

t
p
ar

ti
cl

e
w

as
se

ed
ed

w
it

h
th

e
p
ar

a
m

et
er

s
fr

om
B

ou
n
d
ed

E
rr

or
o
ld
γ

w
it

h
th

e
ex

tr
em

e
va

lu
es

b
ei

n
g

sh
if

te
d

fr
om

th
e

b
ou

n
d
ar

ie
s

b
y

0.
00

00
1
.

T
ab

le
6.

1:
O

p
ti

m
al

p
ar

am
et

er
s

b
as

ed
on

P
ar

ti
cl

e
S
w

ar
m

O
p
ti

m
iz

at
io

n
fo

r
1

in
p
u
t

ch
ar

ac
te

r.

M
et

h
o
d

R
si
m

R̄
a
v
e@
T

R̄
st
d
@
T

X̄
− av
e
%

X̄
− st
d
%

X̄
+ a
v
e
%

X̄
+ st
d
%

m
em

or
y
[b
y
te
s]

tm
a
x

a
v
e

[s
]

tm
a
x

st
d

[s
]

σ
a
cc
1

σ
a
cc
2

σ
a
cc
3

S
A

R
S

A
0.

34
73

0.
71

29
0.

36
55

59
.1

05
5

1.
42

53
16

.0
25

8
5.

20
82

18
,7

04
0.

01
66

0.
00

40
86

.6
66

7
90

.0
00

0
96

.6
66

7

M
o
d

el
o
ld
γ

0.
60

19
0.

81
61

0.
21

42
59

.3
50

8
1.

28
19

17
.4

65
0

3.
24

32
60

3,
00

8
0.

06
11

0.
01

31
96

.6
66

7
96

.6
66

7
96

.6
66

7

M
o
d

el
0.

85
58

0.
85

58
0.

00
00

59
.1

12
8

0.
00

00
18

.0
67

2
0.

00
00

60
3,

00
8

0.
05

42
0.

00
78

10
0.

00
00

10
0.

00
00

10
0.

00
00

K
er

n
el

o
ld
γ

-0
.1

66
6

0.
43

05
0.

59
71

58
.1

77
8

2.
79

29
12

.1
24

2
8.

33
54

83
,2

80
0.

03
30

0.
00

60
80

.0
00

0
90

.0
00

0
10

0.
00

00

K
er

n
el

0.
30

35
0.

70
09

0.
39

74
58

.9
23

3
1.

87
56

15
.8

80
7

5.
61

80
83

,2
80

0.
03

32
0.

00
63

86
.6

66
7

90
.0

00
0

96
.6

66
7

T
ra

ce
s o

ld
γ

-0
.5

66
1

0.
01

28
0.

57
88

53
.4

20
1

4.
68

90
6.

83
70

7.
70

14
83

,2
80

0.
03

68
0.

00
58

63
.3

33
3

96
.6

66
7

10
0.

00
00

T
ra

ce
s

0.
31

27
0.

72
01

0.
40

73
58

.1
82

7
2.

79
02

16
.2

60
5

5.
42

02
83

,2
80

0.
03

21
0.

00
51

90
.0

00
0

90
.0

00
0

10
0.

00
00

C
om

p
le

x
E

rr
or

o
ld
γ

-0
.5

11
0

-0
.3

25
3

0.
18

57
54

.3
53

3
6.

98
00

1.
87

37
1.

88
03

83
,1

52
0.

03
83

0.
00

42
56

.6
66

7
96

.6
66

7
10

0.
00

00

C
om

p
le

x
E

rr
or

-0
.5

10
7

-0
.3

63
9

0.
14

68
52

.6
69

5
4.

92
91

1.
56

31
1.

53
72

83
,1

52
0.

13
44

0.
04

19
70

.0
00

0
93

.3
33

3
96

.6
66

7

B
ou

n
d

ed
E

rr
or
† o
ld
γ

0.
32

30
0.

55
96

0.
23

66
58

.1
87

6
3.

16
29

13
.9

67
1

2.
95

57
83

,1
52

0.
03

55
0.

00
34

73
.3

33
3

93
.3

33
3

10
0.

00
00

C
L

A
S

P
0.

55
83

0.
79

93
0.

24
10

58
.8

00
7

1.
59

96
17

.3
04

0
3.

21
47

83
,1

52
0.

03
63

0.
00

39
96

.6
66

7
96

.6
66

7
96

.6
66

7

tm
a
x

a
v
e

[s
]

an
d
tm

a
x

s
td

[s
]

ar
e

b
as

ed
on

th
e

m
ax

im
u
m

ti
m

e
sp

en
t

to
p
ro

ce
ss

1
ch

a
ra

ct
er

fo
r

1
a
g
en

t’
s

ru
n

fo
r

w
h
ic

h
th

e
av

er
a
g
e

a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

a
re

ta
ke

n
a
cr

o
ss

th
e

30
a
g
en

t’
s

w
it

h
id

en
ti

ca
l

p
ar

am
et

er
s.

T
ab

le
6.

2:
T

h
e

ou
t-

of
-s

am
p
le

re
su

lt
s

fo
r

ea
ch

m
o
d
ifi

ca
ti

on
.

T
h
e

fi
n
al

C
L

A
S
P

al
go

ri
th

m
is

th
e

re
su

lt
of

B
ou

n
d
ed

E
rr

or
.

96

M
o
d

ifi
ca

ti
on

bi
a
s

α
p

α
µ

α
q

γ
R

γ
b

γ
p

γ
q
|α
r

β
p

β
h

ζ p
ζ h

λ
p

λ
h

τ
a

c

S
A

R
S

A
0.

24
07

0.
11

04
0.

05
33

0.
58

47
0.

34
39

–
–

–
–

–
–

–
–

–
–

–
–

C
L

A
S

P
0.

40
82

0.
66

29
0.

54
14

0.
34

26
0.

30
82

0.
57

22
0.

26
51

0.
54

08
0.

68
76

1.
00

00
0.

22
90

0.
58

86
0.

32
73

0.
00

00
5.

58
65

0.
00

00
99

.1
46

3

T
ab

le
6.

3:
O

p
ti

m
al

p
ar

am
et

er
s

b
as

ed
on

P
ar

ti
cl

e
S
w

ar
m

O
p
ti

m
iz

at
io

n
fo

r
1

in
p
u
t

ch
ar

ac
te

r
w

it
h

B
it

-w
is

e
ac

cu
ra

cy
sc

al
ed

d
ow

n
su

ch
th

at
th

e
to

ta
l

re
w

ar
d

is
in

ra
n
ge

[1
,−

1]
.

M
et

h
o
d

R
si
m

R̄
a
v
e@
T

R̄
st
d
@
T

X̄
− av
e
%

X̄
− st
d
%

X̄
+ a
v
e
%

X̄
+ st
d
%

m
em

or
y
[b
y
te
s]

tm
a
x

a
v
e

[s
]

tm
a
x

st
d

[s
]

σ
a
cc
1

σ
a
cc
2

σ
a
cc
3

S
A

R
S
A

-0
.2

25
0

-0
.1

64
0

0.
06

10
67

.7
45

0
3.

03
12

15
.8

55
9

5.
49

78
18

,7
36

0.
41

64
0.

08
60

90
.0

00
0

90
.0

00
0

10
0.

00
00

C
L

A
S
P

-0
.2

43
9

-0
.2

23
1

0.
02

08
62

.9
72

7
1.

91
04

14
.7

18
5

3.
21

69
83

,1
52

0.
35

95
0.

19
45

63
.3

33
3

10
0.

00
00

10
0.

00
00

tm
a
x

a
v
e

[s
]

an
d
tm

a
x

s
td

[s
]

ar
e

b
as

ed
o
n

th
e

m
ax

im
u
m

ti
m

e
sp

en
t

to
p
ro

ce
ss

1
ch

a
ra

ct
er

fo
r

1
ag

en
t’

s
ru

n
fo

r
w

h
ic

h
th

e
av

er
ag

e
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

a
re

ta
ke

n
a
cr

o
ss

th
e

3
0

a
g
en

t’
s

w
it

h
id

en
ti

ca
l

p
ar

am
et

er
s.

T
ab

le
6.

4:
T

h
e

ou
t-

of
-s

am
p
le

re
su

lt
s

fo
r

ea
ch

m
o
d
ifi

ca
ti

on
w

it
h

B
it

-w
is

e
ac

cu
ra

cy
sc

al
ed

d
ow

n
su

ch
th

at
th

e
to

ta
l

re
w

ar
d

is
in

ra
n
ge

[1
,−

1]
.

M
o
d

ifi
ca

ti
on

bi
a
s

α
p

α
µ

α
q

γ
R

γ
b

γ
p

γ
q
|α
r

β
p

β
h

ζ p
ζ h

λ
p

λ
h

τ
a

c

S
A

R
S

A
0.

33
79

0.
03

56
0.

03
98

0.
39

93
0.

38
17

–
–

–
–

–
–

–
–

–
–

–
–

C
L

A
S

P
0.

33
09

0.
58

21
0.

57
15

0.
11

33
0.

23
84

0.
73

36
0.

04
94

0.
56

45
0.

69
09

0.
79

87
0.

22
59

0.
54

70
0.

42
19

0.
00

00
7.

06
85

0.
48

55
71

.5
27

4

T
ab

le
6.

5:
O

p
ti

m
al

p
ar

am
et

er
s

b
as

ed
on

P
ar

ti
cl

e
S
w

ar
m

O
p
ti

m
iz

at
io

n
fo

r
1

in
p
u
t

ch
ar

ac
te

r
w

it
h

B
it

-w
is

e
ac

cu
ra

cy
sc

al
ed

su
ch

th
at

th
e

to
ta

l
re

w
ar

d
is

in
ra

n
ge

[1
,−

7]
.

M
et

h
o
d

R
si
m

R̄
a
v
e@
T

R̄
st
d
@
T

X̄
− av
e
%

X̄
− st
d
%

X̄
+ a
v
e
%

X̄
+ st
d
%

m
em

or
y
[b
y
te
s]

tm
a
x

a
v
e

[s
]

tm
a
x

st
d

[s
]

σ
a
cc
1

σ
a
cc
2

σ
a
cc
3

S
A

R
S
A

-2
.0

70
8

-2
.0

21
0

0.
04

98
69

.8
43

6
0.

52
18

8.
99

40
2.

87
93

18
,7

36
0.

34
52

0.
06

40
76

.6
66

7
93

.3
33

3
96

.6
66

7

C
L

A
S
P

-2
.2

92
4

-2
.1

95
7

0.
09

67
67

.5
96

6
1.

13
26

7.
25

58
3.

27
95

83
,1

52
0.

29
87

0.
22

39
76

.6
66

7
93

.3
33

3
10

0.
00

00

tm
a
x

a
v
e

[s
]

an
d
tm

a
x

s
td

[s
]

ar
e

b
as

ed
o
n

th
e

m
ax

im
u
m

ti
m

e
sp

en
t

to
p
ro

ce
ss

1
ch

a
ra

ct
er

fo
r

1
ag

en
t’

s
ru

n
fo

r
w

h
ic

h
th

e
av

er
ag

e
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

a
re

ta
ke

n
a
cr

o
ss

th
e

3
0

a
g
en

t’
s

w
it

h
id

en
ti

ca
l

p
ar

am
et

er
s.

T
ab

le
6.

6:
T

h
e

ou
t-

of
-s

am
p
le

re
su

lt
s

fo
r

ea
ch

m
o
d
ifi

ca
ti

on
w

it
h

B
it

-w
is

e
ac

cu
ra

cy
sc

al
ed

su
ch

th
at

th
e

to
ta

l
re

w
ar

d
is

in
ra

n
ge

[1
,−

7]
.

97

too intermingled to be allocated a reliable action policy. The action values too

challenging to learn with one TDRL algorithm would likely require additional

layers of processing to resolve. It is also worth noting that mixing parameters

βh, βp, ζh, and ζp were not pushed to 0 or 1 as is with Tracesoldγ. This suggests

that moderately mixing prediction information and historical information into

the input state space — what would be expected to result in a garbage-in-

garbage-out scenario in most cases — was preferred during optimization, i.e.

bounded error was able to filter out unwanted data. In general, the sigmoid

function for bounded error seems to have had a tendency to be crisp, either

being comparable to a piecewise linear function or a step function. For the

case where hit rate was given more weight than bit-wise accuracy, a very small

αq — the critic’s quality learning rate — was preferred, while more moderate

values were selected in the other two test cases.

The Out-of-Sample results are shown in tables 6.2, 6.4, and 6.6, as well as

in appendices B and C. Of the modifications shown in table 6.2, only Modeloldγ,

Model, and CLASP achieved Rsim values greater than SARSA. Again w.r.t.

table 6.2, CLASP achieved a bit-wise accuracy (X̄−ave%) that was lower than

SARSA’s by 0.3 of a percent with its standard deviation being higher by 0.17 of

a percent, but had a hit rate (X̄+
ave%) that was higher by 1.3 of a percent with

the deviation being 2.0 of a percent lower. The 3-σ result for the 30 separate

runs was produced by checking the percentage of how many runs were within

the given standard deviation for bit-wise accuracy. These also suggest that

CLASP’s results are more tightly grouped w.r.t. 1-σ and 2-σ. Given that the

new δ method seems to have relatively consistent improvements in the 3-σ

results, it is likely to be partially responsible for CLASP’s smaller deviations

from the mean. The result of testing with different scales for bit-wise accuracy,

given in tables 6.4 and 6.6, show the parameters chosen by PSO were not

sufficient for CLASP to perform better than SARSA. Whether it is because

the number of parameters is too many for PSO to reliably find the optimal

set or that the algorithm does not learn as effectively with frequent negative

rewards, there are still areas that can be improved on. These results may be

improved by slightly deviating from the pure binary state decoding method

98

in favor of a state distribution that is easier to interpret by the algorithm.1

Regardless, CLASP has potential to be used in real world applications with

its inherent stability.

The two focal contributions of this research, the new method of calcu-

lating δ and the bounded error, worked very favorably. The new δ method

increased the learning stability by better regulating reward damping charac-

teristics. The results show bounded error restricts the amount of over-training

that can occur, forcing excessively large predictions to be reduced by flushing

out superfluous weights. A visible consequence is that the standard devia-

tion was notably reduced (see figure B.11). The stability shown by CLASP

is very appealing for problems where the LA cannot be allowed to fail dur-

ing runtime or where the nature of the state-space or rewards may change

over time. Obtaining results that indicate the LA is performing poorly is bet-

ter than that plus the risk of a forced reset because of an overflow runtime

error. Additionally, given that stability cannot be guaranteed when combin-

ing function approximation, bootstrapping, and off-policy learning, this added

stability may open up an avenue for further development within the region of

the deadly triad [17]. For CLASP, it was difficult for the PSO to find the best

values for τ , a, and c partially because of how significantly the new δ method

influenced performance as well as because of the large number of searchable

parameters relative to the population size. This was accommodated for by

seeding the first individual of the first PSO iteration with the optimal result

for Bounded Errorold γ — or with the result of a prior run that did not have a

seeded individual; encouraging particles to move into the general neighborhood

of the optimal τ , a, and c before working on the γ parameters.

The addition of a purely logical model, increased memory and time require-

ments by factors of ≈ 34 and ≈ 4 respectively. Applying the kernel trick with

binary coding countered the memory and time demands required for including

the model component, reducing the factors to ≈ 4 and ≈ 2 respectively. The

order of complexity for the kerneled method with binary encoding was found

1It should not be forgotten that SARSA is using Gray-coded states which distribute
information over a notably larger number of logical values.

99

to be better than using gray-coding for sufficiently large state-spaces. Traces

of historical values and predictions in the input-space served to increase the

amount of information available to the algorithm, including: state activation

duration, predictions of non-observable data w.r.t. the input-space, as well

as predictions that may enforce or contradict potentially fallible observations.

The complex error modification was an attempt to evaluate and learn with

the full proposed range of complex probabilistic values; unfortunately, its re-

sults were worse than those of just adding the trace information. A better

result may be found by changing how p(Nt+1| ˜̃χ)t is calculated or applied in

the logical error.2

Given the PSO focused on maximizing X̄+, it is understandable that X̄−ave

did not change more than 1.4 of a percent for modifications that did not result

in notably poor Rsim values, which is smaller than SARSA’s corresponding

standard deviation. Part of this was likely because the algorithm chose to

compromise the best policy of a relatively smaller set of states in favor of

making better judgments for a relatively larger set of predictions. In general,

it would appear that there is some restriction preventing the algorithms from

breaching a hit-rate of 20% and accuracy of 70%. It is likely that the

information density for the given states have reached a saturation point or

the remaining bits are too chaotic to be predicted from a single character. To

exceed 20%, it is expected to require multiple algorithms, i.e. daemons, which

are able focus on different character and rule sets. These sets would entirely

depend on the similarity of rules for a given character to come next; some

characters may even belong to multiple sets — a form of distributed duplicate

memory — if there are more than one set of rules. That said, it would require

another agent to choose which daemon, i.e. rule set, to follow. The 3-σ results

are not as useful as hoped because there were only 30 samples of each agent,

however, from what can be seen, CLASP seems to be relatively consistent with

2The notably larger time was likely due to a background program requiring enough
processing power to force at least one of the algorithms to pause during the processing
cycle for several seconds. Additionally, the parameters αµ and λh were too small to be
represented with only 4 significant digits, but would be similar to the optimal parameters
found for CLASP (Bounded Error).

100

only one abnormal agent result. In almost all instances, there was at most,

only one agent whose results fell outside the range of 3-σ, suggesting that the

agents’ learning within the simulations were relatively consistent.

101

Chapter 7

Conclusions, Contributions, and
Future Work

7.1 Conclusions

In this research project, the SARSA algorithm was modified into what is

now presented as the Complex-Logical-Action-State-Prediction (CLASP) al-

gorithm. At the expense of increased memory and time requirements for the

unigram problem covered in this research, several things were achieved:

• reduced order of complexity for large state-spaces by allowing binary

encoding;

• increased the flexibility for encoding options;

• included potentially relevant information (i.e. historical and predictive)

without a loss of stability;

• enabled the algorithm to make predictions for and act on unobservable

state information derived by its internal model;

• emulated in more detail, how the mediums for rewards and punishments

are transmitted and recovered;

• provided a method to maintain algorithmic stability by restricting weight

growth during learning;

102

• proposed a potential avenue for weight transparency via exploitation of

complex number properties and considering a weight space that permits

trigonometric-like relations;

• and incorporated a more detailed model of how neurotransmitters would

likely be influenced during emission.

Overall, CLASP is successful in improving on SARSA in these aspects.

7.2 Contributions

The unique contributions to the formation of CLASP are the revised δ cal-

culation, the application of complex weights, and the bounded error learning

method. The δ calculation in SARSA focuses strictly on how neurons re-

lease neurotransmitters as a way of suggesting a states expected value, and

recover them plus the reward neurotransmitter injected into the algorithm dur-

ing learning. The new δ method considers the aspects of release and recovery

in addition to dispersion and decomposition outside the cell. This change im-

proves the stability of learning state-action qualities. Complex weights allow

for changes in magnitude and phase, offering more flexibility in the number

of logical operations that can be executed. The complex values also allow the

algorithm to account for non-dual action and state predictions/observations.

Bounded error learning method limits the total size of a given ‘neuron’ by

imposing a material limitation. This differs from methods that involve weight

decay as it takes effect only when the unbounded prediction distance error

exceeds a predetermined amount and only affects weights used for said predic-

tion. By limiting the input weights’ size, CLASP prevents divergent behavior.

However, this also limits the effective coverage of data points to those suf-

ficiently far from the decision boundary. Imposing a form of limited plastic

deformation via the generalized sigmoid function ensures the bounded error’s

stability. Restricting the maximum and minimum possible error to ±1 re-

spectively ensures the error itself cannot become unstable and form a positive

feedback loop. The logical values in this research were applied with the as-

103

sumption that they have units in the form of energy or amplitude, deviating

from the logic space expectation that they are unit-less. This change in per-

spective allows the weights to be viewed as trigonometric relations with high

degrees of similarity to conventional logical operations, instead of as purely log-

ical or probabilistic components. W.r.t. the original objectives, this research

has:

• produced a new δ calculation method that improves the stability of state-

action quality predictions,

• proposed an alternative weight interpretation based on complex values

and trigonometry, and

• implemented a bounded logical error method which prevents weight di-

vergence by filtering out less relevant weights, stabilizing the logical error

calculation process.

7.3 Future Work

In future research, the number of explorable parameters will need to be re-

duced as the optimization difficultly for the PSO was showing signs of struggle

when handling more than 14 dimensions. It would also be desirable to remove

the model, or at least separate it from the rest of the policy component, to

recover the perks of being model-free. Going a step further, it would be of

interest to reduce the output scale to a single neuron per algorithm to see if

stability can be maintained within the deadly triad, i.e. bridging the gap be-

tween TDRL and NN models. Testing CLASP in a horde architecture would

also be worth pursuing as the new δ method presents a potential method of

propagating rewards through rt. Its ability to handle fallible observations and

delay is also worth conducting more in-depth research as CLASP is expected

to partially consider for these non-ideal scenarios. Given how bounded error

operates, it may be worth testing if CLASP can exploit the availability of

extra action spaces to develop its own internal states and rules independently

of its external environment. Lastly, It will be necessary to evaluate CLASP’s

104

weight interpretation in more detail to properly verify the validity of using

trigonometric relations as a basis for interpretation.

The problem chosen for this research was a challenge for SARSA and

CLASP. It would be worth testing these algorithms using word level n-gram

prediction which would likely be easier. Grid-world problems would also work

to check the difference in convergence speed and how different encoding meth-

ods affect state-space interpret-ability w.r.t. the LA. Some checks with simple

logical operations were done to ensure LA was operating as intended, but more

rigorous examinations of what CLASP can do should be conducted to more

thoroughly demonstrate how its weights change over time.

105

References

[1] B. Alberts, A. Johnson, J. Lewis, P. Walter, M. Raff, and K. Roberts,
Molecular biology of the cell 4th edition, Ion Channels and the Electrical
Properties of Membranes, New York: Garland Science, 2002. [Online].
Available: https://www.ncbi.nlm.nih.gov/books/NBK26910/. 30, 31

[2] (2018). All’s well that ends well. George Mason University; Open Source
Shakespeare, [Online]. Available: https://www.opensourceshakespea
re.org/views/plays/playmenu.php?WorkID=allswell (visited on
08/14/2018). 83

[3] D. Atlas, “The voltage-gated calcium channel functions as the molecular
switch of synaptic transmission,” Annual Review of Biochemistry, vol.
82, no. 1, pp. 607–635, 2013, PMID: 23331239. doi: 10.1146/annurev-
biochem-080411-121438. eprint: https://doi.org/10.1146/annurev
-biochem-080411-121438. [Online]. Available: https://doi.org/10.
1146/annurev-biochem-080411-121438. 28

[4] (2019). Axiomatic probability and point sets. Lecture 2, [Online]. Avail-
able: https://www.le.ac.uk/users/dsgp1/COURSES/LEISTATS/

SAMPLINF.html (visited on 05/02/2019). 6

[5] J. Baillieul and P. J. Antsaklis, “Control and communication challenges
in networked real-time systems,” Proceedings of the IEEE, vol. 95, no.
1, pp. 9–28, Jan. 2007, issn: 0018-9219. doi: 10.1109/JPROC.2006.
887290. 86

[6] V. Bhatt-Mehta and M. C. Nahata, “Dopamine and dobutamine in pedi-
atric therapy,” Pharmacotherapy: The Journal of Human Pharmacology
and Drug Therapy, vol. 9, no. 5, pp. 303–314, Oct. 1989, issn: 1875-9114.
doi: 10.1002/j.1875- 9114.1989.tb04142.x. [Online]. Available:
https://doi.org/10.1002/j.1875-9114.1989.tb04142.x. 61

[7] M. P. Blaustein and W. J. Lederer, “Sodium/calcium exchange: Its phys-
iological implications,” Physiological Reviews, vol. 79, no. 3, pp. 763–
854, 1999, issn: 0031-9333. eprint: http://physrev.physiology.org/
content/79/3/763.full.pdf. [Online]. Available: http://physrev.
physiology.org/content/79/3/763. 27

106

https://www.ncbi.nlm.nih.gov/books/NBK26910/
https://www.opensourceshakespeare.org/views/plays/playmenu.php?WorkID=allswell
https://www.opensourceshakespeare.org/views/plays/playmenu.php?WorkID=allswell
http://dx.doi.org/10.1146/annurev-biochem-080411-121438
http://dx.doi.org/10.1146/annurev-biochem-080411-121438
https://doi.org/10.1146/annurev-biochem-080411-121438
https://doi.org/10.1146/annurev-biochem-080411-121438
https://doi.org/10.1146/annurev-biochem-080411-121438
https://doi.org/10.1146/annurev-biochem-080411-121438
https://www.le.ac.uk/users/dsgp1/COURSES/LEISTATS/SAMPLINF.html
https://www.le.ac.uk/users/dsgp1/COURSES/LEISTATS/SAMPLINF.html
http://dx.doi.org/10.1109/JPROC.2006.887290
http://dx.doi.org/10.1109/JPROC.2006.887290
http://dx.doi.org/10.1002/j.1875-9114.1989.tb04142.x
https://doi.org/10.1002/j.1875-9114.1989.tb04142.x
http://physrev.physiology.org/content/79/3/763.full.pdf
http://physrev.physiology.org/content/79/3/763.full.pdf
http://physrev.physiology.org/content/79/3/763
http://physrev.physiology.org/content/79/3/763

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems, vol. 29,
no. 8, pp. 1157–1166, 1997, Papers from the Sixth International World
Wide Web Conference, issn: 0169-7552. doi: https://doi.org/10.
1016/S0169- 7552(97)00031- 7. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0169755297000317. 81, 83, 92

[9] W. A. Catterall, “Structure and regulation of voltage-gated ca2+ chan-
nels,” Annual Review of Cell and Developmental Biology, vol. 16, no. 1,
pp. 521–555, 2000, PMID: 11031246. doi: 10.1146/annurev.cellbio.
16.1.521. eprint: https://doi.org/10.1146/annurev.cellbio.
16.1.521. [Online]. Available: https://doi.org/10.1146/annurev.
cellbio.16.1.521. 28

[10] (2018). Character-level language model. Imad Dabura, [Online]. Avail-
able: https://towardsdatascience.com/character-level-languag
e-model-1439f5dd87fe. 2

[11] D.-R. Chen, Q. Wu, Y. Ying, and D.-X. Zhou, “Support vector machine
soft margin classifiers: Error analysis,” J. Mach. Learn. Res., vol. 5,
pp. 1143–1175, Dec. 2004, issn: 1532-4435. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1005332.1044698. 73

[12] E. S. L. Faber and P. Sah, “Physiological role of calcium-activated potas-
sium currents in the rat lateral amygdala,” Journal of Neuroscience, vol.
22, no. 5, pp. 1618–1628, 2002, issn: 0270-6474. eprint: http://www.
jneurosci.org/content/22/5/1618.full.pdf. [Online]. Available:
http://www.jneurosci.org/content/22/5/1618. 28

[13] ——, “Calcium-activated potassium channels: Multiple contributions to
neuronal function,” The Neuroscientist, vol. 9, no. 3, pp. 181–194, 2003,
PMID: 15065814. doi: 10.1177/1073858403009003011. eprint: http:
//dx.doi.org/10.1177/1073858403009003011. [Online]. Available:
http://dx.doi.org/10.1177/1073858403009003011. 28

[14] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R.
Brightwell, “Detection and correction of silent data corruption for large-
scale high-performance computing,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’12, Salt Lake City, Utah: IEEE Computer Society
Press, 2012, 78:1–78:12, isbn: 978-1-4673-0804-5. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389102. 86

[15] J. L. Fitzakerley. (2014). Ion permeabilities, [Online]. Available: http://
www.d.umn.edu/~jfitzake/Lectures/DMED/IonChannelPhysiology/

MembranePotentials/Permeabilities.html (visited on 09/17/2018). 27

107

http://dx.doi.org/https://doi.org/10.1016/S0169-7552(97)00031-7
http://dx.doi.org/https://doi.org/10.1016/S0169-7552(97)00031-7
https://www.sciencedirect.com/science/article/pii/S0169755297000317
https://www.sciencedirect.com/science/article/pii/S0169755297000317
http://dx.doi.org/10.1146/annurev.cellbio.16.1.521
http://dx.doi.org/10.1146/annurev.cellbio.16.1.521
https://doi.org/10.1146/annurev.cellbio.16.1.521
https://doi.org/10.1146/annurev.cellbio.16.1.521
https://doi.org/10.1146/annurev.cellbio.16.1.521
https://doi.org/10.1146/annurev.cellbio.16.1.521
https://towardsdatascience.com/character-level-language-model-1439f5dd87fe
https://towardsdatascience.com/character-level-language-model-1439f5dd87fe
http://dl.acm.org/citation.cfm?id=1005332.1044698
http://dl.acm.org/citation.cfm?id=1005332.1044698
http://www.jneurosci.org/content/22/5/1618.full.pdf
http://www.jneurosci.org/content/22/5/1618.full.pdf
http://www.jneurosci.org/content/22/5/1618
http://dx.doi.org/10.1177/1073858403009003011
http://dx.doi.org/10.1177/1073858403009003011
http://dx.doi.org/10.1177/1073858403009003011
http://dx.doi.org/10.1177/1073858403009003011
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://www.d.umn.edu/~jfitzake/Lectures/DMED/IonChannelPhysiology/MembranePotentials/Permeabilities.html
http://www.d.umn.edu/~jfitzake/Lectures/DMED/IonChannelPhysiology/MembranePotentials/Permeabilities.html
http://www.d.umn.edu/~jfitzake/Lectures/DMED/IonChannelPhysiology/MembranePotentials/Permeabilities.html

[16] P. R. Halmos, Measure theory / [by] paul r. halmos, English. Springer-
Verlag New York, 1974, xi, 304 p. isbn: 0387900888. [Online]. Available:
http://www.loc.gov/catdir/enhancements/fy0814/74010690-

t.html. 20

[17] H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J.
Modayil, Deep reinforcement learning and the deadly triad, 2018. arXiv:
1812.02648 [cs.AI]. 99

[18] D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, “Towards artificial
neurons and synapses: A materials point of view,” RSC Advances, vol.
3, no. 10, pp. 3169–3183, 2013. 75

[19] D. Jurafsky and M. J. H., Speech and language processing (3rd ed. draft).
Stanford University, 2020. [Online]. Available: https://web.stanford.
edu/~jurafsky/slp3/ed3book_dec302020.pdf. 81, 83, 92

[20] V. V. Klinshov, J.-n. Teramae, V. I. Nekorkin, and T. Fukai, “Dense
neuron clustering explains connectivity statistics in cortical microcir-
cuits,” PLOS ONE, vol. 9, no. 4, pp. 1–12, Apr. 2014. doi: 10.1371/
journal.pone.0094292. [Online]. Available: https://doi.org/10.
1371/journal.pone.0094292. 58

[21] D. Kroeger, “Brain activity patterns in deep anesthesia,” PhD thesis,
Université Laval, 2008. [Online]. Available: http://archimede.bibl.
ulaval.ca/archimede/fichiers/25863/25863.html. 27

[22] (2015). Lord of the ring– the fellowship of the ring. Internet Archive,
[Online]. Available: https://archive.org/stream/TheLordOfTheR

ing1TheFellowshipOfTheRing / The % 20Lord % 20Of % 20The % 20Ring %

201-The%20Fellowship%20Of%20The%20Ring_djvu.txt (visited on
04/26/2019). 83

[23] E. Mendelson, Introduction to mathematical logic 4th edition, New York:
Queens College, Aug. 1997. [Online]. Available: https://www.karlin.
mff.cuni.cz/~krajicek/mendelson.pdf. 6, 14

[24] (2011). Neuronal action potential, [Online]. Available: http://www.

physiologyweb.com/lecture_notes/neuronal_action_potential/

neuronal_action_potential_important_features.html (visited on
10/01/2018). 28, 30

[25] E. Pchelintseva and M. B. A. Djamgoz, “Mesenchymal stem cell differ-
entiation: Control by calcium-activated potassium channels,” Journal of
Cellular Physiology, n/a–n/a, 2017, issn: 1097-4652. doi: 10.1002/jcp.
26120. [Online]. Available: http://dx.doi.org/10.1002/jcp.26120. 28

[26] (2011). Resting membrane potential, [Online]. Available: http://www.
physiologyweb.com/lecture_notes/resting_membrane_potential/

resting_membrane_potential_in_real_cells_multiple_ions_cont

ribute_to_the_membrane_potential.html (visited on 09/17/2018). 27, 28

108

http://www.loc.gov/catdir/enhancements/fy0814/74010690-t.html
http://www.loc.gov/catdir/enhancements/fy0814/74010690-t.html
http://arxiv.org/abs/1812.02648
https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf
http://dx.doi.org/10.1371/journal.pone.0094292
http://dx.doi.org/10.1371/journal.pone.0094292
https://doi.org/10.1371/journal.pone.0094292
https://doi.org/10.1371/journal.pone.0094292
http://archimede.bibl.ulaval.ca/archimede/fichiers/25863/25863.html
http://archimede.bibl.ulaval.ca/archimede/fichiers/25863/25863.html
https://archive.org/stream/TheLordOfTheRing1TheFellowshipOfTheRing/The%20Lord%20Of%20The%20Ring%201-The%20Fellowship%20Of%20The%20Ring_djvu.txt
https://archive.org/stream/TheLordOfTheRing1TheFellowshipOfTheRing/The%20Lord%20Of%20The%20Ring%201-The%20Fellowship%20Of%20The%20Ring_djvu.txt
https://archive.org/stream/TheLordOfTheRing1TheFellowshipOfTheRing/The%20Lord%20Of%20The%20Ring%201-The%20Fellowship%20Of%20The%20Ring_djvu.txt
https://www.karlin.mff.cuni.cz/~krajicek/mendelson.pdf
https://www.karlin.mff.cuni.cz/~krajicek/mendelson.pdf
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_important_features.html
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_important_features.html
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_action_potential_important_features.html
http://dx.doi.org/10.1002/jcp.26120
http://dx.doi.org/10.1002/jcp.26120
http://dx.doi.org/10.1002/jcp.26120
http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_in_real_cells_multiple_ions_contribute_to_the_membrane_potential.html
http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_in_real_cells_multiple_ions_contribute_to_the_membrane_potential.html
http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_in_real_cells_multiple_ions_contribute_to_the_membrane_potential.html
http://www.physiologyweb.com/lecture_notes/resting_membrane_potential/resting_membrane_potential_in_real_cells_multiple_ions_contribute_to_the_membrane_potential.html

[27] M. Rice, G. Gerhardt, P. Hierl, G. Nagy, and R. Adams, “Diffusion coef-
ficients of neurotransmitters and their metabolites in brain extracellular
fluid space,” Neuroscience, vol. 15, no. 3, pp. 891–902, 1985, issn: 0306-
4522. doi: https://doi.org/10.1016/0306-4522(85)90087-9. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/0306452285900879. 61

[28] C. Rieger and B. Zwicknagl, “Deterministic error analysis of support vec-
tor regression and related regularized kernel methods,” J. Mach. Learn.
Res., vol. 10, pp. 2115–2132, Dec. 2009, issn: 1532-4435. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1577069.1755856. 73

[29] M. Ring, “Representing knowledge as predictions (and state as know-
ledge),” An unpublished paper used with conditional permission of the
author, Mar. 2016. 68

[30] I. Rinke, “Chloride regulatory mechanisms and their influence on neu-
ronal excitability,” PhD thesis, Ludwig-Maximilians-Universität München,
Dec. 2010. 27–31

[31] J. Schlauwitz and P. Musilek, “A dimension-wise particle swarm opti-
mization algorithm optimized via self-tuning,” in 2020 IEEE Congress
on Evolutionary Computation (CEC), 2020, pp. 1–8. 82

[32] (2011). Secondary active transport, [Online]. Available: http://www.ph
ysiologyweb.com/lecture_notes/membrane_transport/secondary_

active_transport.html (visited on 10/01/2018). 27, 29, 30

[33] A. Seth. (2017). Your brain hallucinates your conscious reality, [Online].
Available: https://www.ted.com/talks/anil_seth_how_your_brain
_hallucinates_your_conscious_reality (visited on 09/25/2018). 67

[34] T. C. Südhof, “Calcium control of neurotransmitter release,” Cold Spring
Harbor perspectives in biology, vol. 4, no. 1, a011353, 2012. 27

[35] T. C. Südhof and J. Rizo, “Synaptic vesicle exocytosis,” Cold Spring
Harbor perspectives in biology, vol. 3, no. 12, a005637, Dec. 2011. doi:
10.1101/cshperspect.a005637. 61

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
ser. Computational neuroscience series. Cambridge (Mass.): MIT Press
London, 2013. 45–47, 53, 56, 92

[37] A. White, “Developing a predictive approach to knowledge,” PhD thesis,
University of Alberta, 2015. 47

[38] K. Wo lk, K. Marasek, and W. Glinkowski, “Telemedicine as a special
case of machine translation,” Computerized Medical Imaging and Graph-
ics, vol. 46, pp. 249–256, 2015, Information Technologies in Biomedicine,
issn: 0895-6111. doi: https://doi.org/10.1016/j.compmedimag.
2015.09.005. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0895611115001275. 81, 83, 92

109

http://dx.doi.org/https://doi.org/10.1016/0306-4522(85)90087-9
http://www.sciencedirect.com/science/article/pii/0306452285900879
http://www.sciencedirect.com/science/article/pii/0306452285900879
http://dl.acm.org/citation.cfm?id=1577069.1755856
http://www.physiologyweb.com/lecture_notes/membrane_transport/secondary_active_transport.html
http://www.physiologyweb.com/lecture_notes/membrane_transport/secondary_active_transport.html
http://www.physiologyweb.com/lecture_notes/membrane_transport/secondary_active_transport.html
https://www.ted.com/talks/anil_seth_how_your_brain_hallucinates_your_conscious_reality
https://www.ted.com/talks/anil_seth_how_your_brain_hallucinates_your_conscious_reality
http://dx.doi.org/10.1101/cshperspect.a005637
http://dx.doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.005
http://dx.doi.org/https://doi.org/10.1016/j.compmedimag.2015.09.005
https://www.sciencedirect.com/science/article/pii/S0895611115001275
https://www.sciencedirect.com/science/article/pii/S0895611115001275

Appendix A

CLASP Algorithm Summary

This appendix contains the series of equations used for CLASP described

throughout Chapter 4. The algorithm starts with mixing information into

the logical inputs, followed by policy generation. These values are used to

determine the quality prediction which is needed for generating the quality

prediction error. The final steps are updating the weights used for prediction

and generating the new policy distribution. The complete CLASP algorithm

is written as:

χ̃t = ζp × χt + (1− ζp)× R{
√
p(ηt|χ̃)t−1}; (4.31)

χt−m̃−0.5 = βh×(βp×R{χ̃t}+(1−βp)×R{χ̃t−1})+(1−βh)×χt−m̃−1.5; (4.32)

χ̃t−m̃−0.5 = ζh × χt−m̃−0.5 + (1− ζh)× I{
√
p(ηt|χ̃)t−1}; (4.33)

˜̃χt =
χ̃t + ı̂χ̃t−m̃−0.5

max (1, |χ̃t + ı̂χ̃t−m̃−0.5|)
; (4.35)

~ηt+1 =
[[
p3
]
· ~̃̃χt
]
· ~̃̃χt; (4.36)

η̃t+1 =
(R{ηt+1} − 0.5)× λh

1− λh
+ 0.5; (4.42)

R{p(Nt+1| ˜̃χ)t} =



−1 if − 1 ≥ R{ηt+1},
R{ηt+1} if 0 > R{ηt+1} > −1,

0 if λp ≥ R{ηt+1} ≥ 0 or 0 ≥ η̃t+1,

0 if 0.5 ≥ R{ηt+1} ≥ λp and 0 ≥ η̃t+1,

1 if R{ηt+1} ≥ 1− λp or η̃t+1 ≥ 1,

η̃t+1 otherwise;

(4.43)

110

I{p(Nt+1| ˜̃χ)t} =


1 if I{ηt+1} ≥ 1,

I{ηt+1} if 1 > I{ηt+1} > 0,

0 if 0 ≥ I{ηt+1};
(4.44)

p(Nt+1| ˜̃χ)t =
R{p(Nt+1| ˜̃χ)t}+ ı̂I{p(Nt+1| ˜̃χ)t}

max
(
1, |R{p(Nt+1| ˜̃χ)t}+ ı̂I{p(Nt+1| ˜̃χ)t}|

) ; (4.45)

q(η, χ)t+0.5 =

√
p(ηt+1| ˜̃χ)t ·

[
[Q3] · ~̃̃χt

]
· ~̃̃χt; (4.37)

∂raw =



sig+ (z + x− y, a, 1, c) If x ≥ 1 and y > z + x,

0 If x ≥ 1 and τ + x ≥ y ≥ x,

sig+ (x− y, a, 1, c) If x ≥ 0 and x > y,

sig+ (x− y, a, 1, c) If 1 > x and y > x,

0 If 0 ≥ x and x ≥ y ≥ x− 1− z,

sig+ (x− y − 1− z, a, 1, c) If 0 ≥ x and x− 1− z > y;

(4.50)

where:

x = R{ ˜̃χt}2;

y = R{ηt};

z = τ ×#X2;

∂t =

{
αp × ∂raw for state predictions,

αµ × ∂raw × δt for policy learning;
(4.52)

δt = γR × (rt−0.5 + γR × (1− γb)×Rt−1)

+ γp × γq × q(η, χ)t+0.5

− γq × (1− γR × (1− γb))× q(η, χ)t−0.5; (4.22)

rt = γR × γb × (γq × q(η, χ)t−0.5 + γR ×Rt−1); (4.23)

rt+0.5 = γR × rt;

Rt = γR × (rt−0.5 + γR × (1− γb)×Rt−1)

− γq × (1− γR × (1− γb))× q(η, χ)t−0.5; (4.24)

111

[Q3] = [Q3] +
αq × δt × ~χt ⊗ ~̃̃χt−1 ⊗ ~̃̃χt−1

max(1,
(∑
|~̃̃χt|2

)
×
(∑
|~̃̃χt−1|

)2
)
; (4.38)

and

[p3] = [p3] +
~∂t ⊗ ~̃̃χt−1 ⊗ ~̃̃χt−1

max(1,
(∑
|~̃̃χt|2

)
×
(∑
|~̃̃χt−1|

)2
)
. (4.39)

112

Appendix B

Out-of-Sample Plots

The figures in this appendix are the resulting plots for the running average

(red) and the upper and lower running standard deviation (blue) over the

out-of-sample character data for SARSA and the modifications leading up

to CLASP. These tests use a weight of 1 for bit-wise accuracy (% Running

Accuracy) and 7 for hit rate (% Hit Rate) when fed to the learning algorithm,

i.e. hit rate is prioritized over bit-wise accuracy. From these plots, it can be

seen that the new δ error method improves the mean and standard deviation

in every instance that did not suddenly worsen over time. The Bounded Error,

i.e. the final modification for CLASP, in figures B.10 and B.11 also show that

it was able to restrict the worsening of the rewards.

113

(a)

(b)

(c)

Figure B.1: The out-of-sample results for SARSA where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

114

(a)

(b)

(c)

Figure B.2: The out-of-sample results for Modelold γ where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

115

(a)

(b)

(c)

Figure B.3: The out-of-sample results for Model where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

116

(a)

(b)

(c)

Figure B.4: The out-of-sample results for Kernelold γ where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

117

(a)

(b)

(c)

Figure B.5: The out-of-sample results for Kernel where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

118

(a)

(b)

(c)

Figure B.6: The out-of-sample results for Tracesold γ where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

119

(a)

(b)

(c)

Figure B.7: The out-of-sample results for Traces where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance.

120

(a)

(b)

(c)

Figure B.8: The out-of-sample results for Complex Errorold γ where (a) cor-
responds to the negative values associated with accuracy, (b) corresponds to
the positive binary value associated with hit rate, and (c) corresponds to the
reward used to evaluate the algorithms overall performance.

121

(a)

(b)

(c)

Figure B.9: The out-of-sample results for Complex Error where (a) corre-
sponds to the negative values associated with accuracy, (b) corresponds to
the positive binary value associated with hit rate, and (c) corresponds to the
reward used to evaluate the algorithms overall performance.

122

(a)

(b)

(c)

Figure B.10: The out-of-sample results for Bounded Errorold γ where (a) cor-
responds to the negative values associated with accuracy, (b) corresponds to
the positive binary value associated with hit rate, and (c) corresponds to the
reward used to evaluate the algorithms overall performance.

123

(a)

(b)

(c)

Figure B.11: The out-of-sample results for CLASP (Bounded Error) where (a)
corresponds to the negative values associated with accuracy, (b) corresponds
to the positive binary value associated with hit rate, and (c) corresponds to
the reward used to evaluate the algorithms overall performance.

124

Appendix C

Variant Out-of-Sample Plots

The figures in this appendix are the resulting plots for the running average

(red) and the upper and lower running standard deviation (blue) over the

out-of-sample character data for SARSA and CLASP. These tests vary the

weight of bit-wise accuracy (% Running Accuracy) and hit rate (% Hit Rate)

fed to the learning algorithm to see how it affects the learning performance.

The cases shown here are when the largest magnitude for hit-rate and bit-

wise accuracy are 1 and 1 or 1 and 7, i.e. the largest values are given equal

consideration or bit-wise accuracy is given more respectively.

125

(a)

(b)

(c)

Figure C.1: The out-of-sample results for SARSA where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance within the range [1,−1].

126

(a)

(b)

(c)

Figure C.2: The out-of-sample results for CLASP where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance within the range [1,−1].

127

(a)

(b)

(c)

Figure C.3: The out-of-sample results for SARSA where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance within the range [1,−7].

128

(a)

(b)

(c)

Figure C.4: The out-of-sample results for CLASP where (a) corresponds to
the negative values associated with accuracy, (b) corresponds to the positive
binary value associated with hit rate, and (c) corresponds to the reward used
to evaluate the algorithms overall performance within the range [1,−7].

129

	Introduction
	Motivation
	Objectives

	Background
	Conventional Logic: Faults With Incomplete Sets
	Inherent Assumption of Complete Knowledge
	Grouping of Denial and Non-Observability; and Value and Inconclusivity

	Complex Logic and Signed Probability
	Complex Valued Logic
	Signed Probability

	Ions in the Neuron Cell
	The Generalized Sigmoid Function

	Baseline: SARSA
	Bellman Equation
	Discrete SARSA Actor-Critic
	Analysis

	Modifications: CLASP
	Model and Policy Matching
	Equation Interpretation

	Quality Error: Modified
	Kerneling
	Fleshing out State Information
	Traces: Intangible Information
	Traces: Past and Present
	Bifurcation: Affirming and Denial States

	Logical Error
	Bounded Errors

	System Model
	World/Problem Models
	In-Sample: Parameter Optimization
	Out-of-Sample

	Agent Models
	Reward
	Transmission Channels
	Artificial Intelligence

	System Simulation
	Summary

	Testing CLASP and SARSA
	Results

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	References
	Appendix CLASP Algorithm Summary
	Appendix Out-of-Sample Plots
	Appendix Variant Out-of-Sample Plots

