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Abstract

Electronic speckle phase interferometry (ESPI) may be utilized in anal-
ysis of surface deformations. This thesis examines some benefits and draw-
backs of interferometric deformation observation. A systematic approach
demonstrates utility of stochastic methods in ESPI analysis. Statistics es-
tablish expected intensity distributions and interference effects for laser scat-
ter. Purely statistical sampling errors are shown to dominate interferometric
observation. Maximum likelihood analysis shows that constructive interfer-
ence maxima, identified by global threshold, hold all information content;
other interferogram measurements contribute negligible data weight in fit-
ting procedures. An attempt to automate general deformation analysis is
presented. The approach utilizes singular value decomposition to address in-
terferometrically invisible displacement fields. Theoretical extensions allow
for elimination of systematic errors from interferometer geometry measure-
ment. Limitations of parametric deformation determination are explored
through examination of a simple cantilever experiment. Physical single pa-
rameter models are shown to succeed where multi-parameter fits fail. Exper-

imental results show consistency with theoretical ESPI precision limits.
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Part I

Theoretical foundations



Chapter 1

Introduction

1.1 Objective

The term interferometry encompasses a wide diversity of research techniques.
These methods are all applications of the elementary wave phenomenon of in-
terference. Interference of electromagnetic waves (light) was first explored by
Thomas Young in 1801.[HECH 74] Modern applications utilize more exotic
techniques, but produce simple fringe patterns which Young himself would
recognize as wave effects. All such methods have the identical goal of ob-
taining fringe patterns representing interference effects between light from a

pair of coherent light sources projected on a surface.

The study of interferometry, as examined in this thesis, derives as a spe-
cific application of the general interference principle. Microscopic deforma-
tions of a projection surface may be observed through interference effects

between an illuminated view of the surface after deformation and recon-



struction of a reference view before deformation. As will become apparent

in the following, this amounts to a rather elegant application of Young’s

experiment.

In applications of this method one obtains fringe patterns which represent
interference effects of light from a coherent source pair. Observed fringe
patterns derive from three-dimensional deformations of the projection surface
between the observations. A key question arises in such examination. How
do observed fringe patterns relate to specific deformation fields? The answer
to this question should enable measurement of deformation vector fields on

the surface.

In this thesis, the relationship between observed fringe interferograms and
underlying deformation fields is subject to detailed study. Deformation mea-
surement utility and inherent limitations to precision are explored, through
application of the modern method of electronic speckle phase interferometry.
Since the goal is to explore the limitations of real experimental measure-
ment, all analysis techniques are programmed and explored in the versatile

C language.[KERN 88]

Electronic speckle phase interferometry (ESPI) has been the state of the
art in interferometry research in the last few decades.[DAIN 89|[JONE 83|
Several methods of interferogram production did in fact exist prior to the
development of electronic image processing. Historical methods showed ele-
gance and extravagance in design and function.[HECH 74}[SCHM 89] Mod-
ern ESPI lacks in nostalgic grace, but also endows practical functionality on

3



this new measurement tool. In the present thesis, interferograms are observed

by a modern method, involving digital analysis.

Traditional interferometry assumes the use of polarized light sources. Ref-
erence works on ESPI methods preserve this tradition.[DAIN 89][JONE 83]
As introduction to a practical holographic interferometry, this thesis exam-
ines interferometry with nonpolarized scattering sources. The relationship
between phase angle and shifting speckle pattern will be subjected to de-
tailed study. Investigation of related intensity phenomena follows in a mod-

ern analysis of stochastic processes.

The method of speckle interferometry can be applied to measure micro-
meter scale (and perhaps smaller) displacements over a surface. The current
thesis restricts investigation and measurement to a very simple interferome-
ter design. Some advantages and detriments of ESPI and general dual-source
interferometry are explored from such a context. Initially, one sets out to de-
velop an algorithm solving the problem of deformation measurement. Along
that path, one encounters a rich diversity of fundamental principles and re-

strictions defining speckle interferometry.

The key goal of this study remains to find interpretation of interferograms
as representations of displacement fields. In solution of interferogram to
deformation field inversion, an incomplete method is presented. Investigation
will confirm that the problem is not invertible in a pure sense. No relationship
exists for assigning a unique deformation field to an observed interferogram.

One does however find a solution subject to some quasi-rigid constraints.

4



One finds, moreover, that theoretically inherent data noise restricts solution

to relatively simple displacement fields.

The classical interference problem includes analysis of observed intensity
fringes for unwinding (inversion) to continuous local phase angle. As the
inverse cosine function is multi-valued, no unique assignment exists. Much
research exists[JONE 83| into the problem of stable phase-unwinding algo-
rithms. Most methods involve complex multi-interferogram measurements.
Unwinding methods are unwieldy: they introduce series of new and often
purely computational problems. FESPI interferograms derive from physi-
cal surface deformations. A method is presented, for simple data from
single interferograms, which unwinds phase angle by extrapolation from a real

deformation model.

Aside from simplicity, real model phase unwinding has the advantage of
physicality: failure occurs precisely under conditions where quasi-rigid dis-
placements cannot be measured, with such insensitivity deriving entirely from
interferometer geometry. The presented method thus shows utility for identi-
fication of regionalized data noise, and as well, for finding real discontinuities

such as fractures and fissures.

The relationship between quasi-rigid constraints and solution spaces yields
new insight into the inversion problem. Limitations of the simple single
observation interferometer are explored in this context. Extensions to ba-
sic deformation field measurement are investigated as well. An algorithm is

presented, which affords a simple technique for evaluation of measurement

5



errors in scattering source geometry. Location correction may in fact be

accomplished from observation of a single simple surface displacement.

The influence of perceived errors on interferometric results is examined
in detail. Speckle interferometry involves observation of inherently noisy
images. Methods for filtering visible noise from interferograms are demon-
strated. Observation noise, however, stems from theoretical properties rather
than from experimental errors. This reality imposes some rather severe re-

strictions regarding the information content of interferograms.

Theoretical and experimental research investigate the nature of inherent
noise in speckle interferometry. Propagation of data noise, through analysis
of displacement fields, finally imposes limitations on accuracy of deformation
measurment. General results are presented, establishing the limitations of

interferometric deformation measurement.

1.2 Background

The established field of interferometry has its foundation in the wave the-
ory of light.[HECH 74][JACK 62] The phenomenon of source pair interfer-
ence was introduced by Thomas Young at the dawn of the nineteenth cen-
tury. Young’s experiment resolved that light was in fact a wave phenomenon.

Interference phenomena have been of scientific interest ever since.

Surface measurements involving wave-front reconstruction (holography)

began more than half a century ago. Application of interference to hologra-



phy was demonstrated by Gabor in 1948, before the advent of lasers.[JONE 83]
Practical holographic interferometry became a reality with the invention of
coherent monochromatic light sources (lasers) and the subsequent 1962 study

of Leith and Upatnieks.[DAIN 89]

Early work in holographic interferometry was dominated by the develop-
ment of photographic techniques for reconstruction of multiple source holo-
grams from multiply exposed film.[HECH 74] Old techniques involved care-
ful acquisition and reconstruction of laser wave-fronts from rigidly mounted
photographic plates. In practice, extremely clean optics were required to
generate smooth wave-fronts: many interferometry techniques devoted great
care toward avoiding laser speckle. Such methods were at once elegant but

also impractical.

The speckle effect was first utilized by Leendertz in 1970.[LEEN 70] Leen-
dertz demonstrated the utility of the Pearson’s cross-correlation as a measure
of phase shift. His original experiment involved manual alignment of a pair of
photographic plates; effectively, this is equivalent to image cross-correlation.
Today, the method may be more simply implemented via electronic image

processing.

Electronic methods also allow the implementation of other powerful tech-
niques. Some methods, for example, proposed by Jones and Wykes (1983)
consist of pixel-by-pixel square or rectification of difference.[JONE 83] Such
methods, amounting to the most basic forms of cross-correlation, are simple

but highly sensitive to noise. Image fringes appear mcre as textural fea-

7



tures than interference phase amplitudes in resulting interferograms. More
complex algorithms may be devised for better results. For example, pixel
averaging before applying a square root to rectified differences also gener-
ates fringe images. Systematic methods generally improve interferograms by

respecting the nature of the laser speckle effect.

Amongst sophisticated interferometric algorithms, a single method stands
out in elegant simplicity. Interferograms of excellent quality obtain from the
method of image cross-correlation.[JONE 83] This approach, introduced by
Jones and Wykes, has another distinct advantage: image noise level may be
traded off against spatial resolution, by altering spatial dimensions of sta-
tistical sample regions. Investigations of this thesis restrict study of speckle

interferometry to the robust Pearson’s cross-correlation method.

In order to facilitate development of physical interferometry concepts, one
requires the statistical foundations for this observational theory. Statistical
concepts involved in cross-correlataion are well established. Work throughout
this thesis utilizes conventional definitions and notations. The interested

reader is referred to a detailed development in the chapter A & B appendices.

Given random variable ordered pair (z,y), and an empirical sample dis-
tribution of such pairs over independent trials, one may estimate variances
o2. and o2, and shared covariance 02,; and one may write the theoretical
Pearson’s cross-correlation:[FREU 62]

o

p(z.y) = ﬁ (1.1)



For real empirical samples, cross-correlation has maximum likelihood esti-
mate expressed, per Appendices B.2 and B.3, as follows:

NYzy—zly

Aoy = T - vy (Vow - Ss5y)

(1.2)

From the non-negative semi-definite property of the correlation tensor,
one finds for any bivariate distribution P(z, y), that Pearson’s cross-correlation

observes boundedness:

-1 < p(z,y) < +1 (1.3)

A few special cases are of note. If random variables z and y are indepen-
dent, then p(z,y) = 0. At the other extreme, p(z,y) = %1 corresponds to an
exact linear relationship: az + by = c. The relationship holds exactly, except
possibly on a set of zero (probability) measure. For the special case where
(z) = (y) and 02, = asy, perfect correlation p(z,y) = +1 implies z = y

exactly on a set with fully unity for (probability) measure.

In application to laser speckle interferometry, justification for use of Pear-
son’s cross-correlation derives from straight forward application of electro-
magnetism and interference. One may examine the phenomenon with vari-
ous degrees of subtlety and rigour. The following gives an overview of simple
documented results. Detailed development of the stochastic basis for the

theory of speckle interferometry is laid out in Appendix A.6.

Interference between plane waves of coherent frequency light, with paral-

lel propagation and single polarization, models as a scalar wave equivalent.



Superposition of a pair of simple coherent waves with intensities ¢4 & ig and

relative phase offset ¢ (in radians) results in following net intensity:
I(i4,ip;9) = i4 + i + 2V/igqigcos@ (1.4)

A simple experiment is devised as follows: suppose two known intensity
distributions i4 & ip are generated and sampled, with respective phase shifts
a & [ applied to each. If one replaces normalized sums by expectations in
the Pearson’s cross-correlation sample formula (equation 1.2), one recovers

the global formula (equation 1.1) and obtains:
pI(i,ig;0+a),I(ia.ig;¢+B)) = 1+ k({ia}, {is})[cos (a—B)—1] (1.5)

One makes a few reasonable assumptions for statistical calculation: ran-
dom variables i 4, ig, and uniformly distributed angle ¢ must be independent.
Under such conditions one finds, in terms of averages {i4) & (ig) and vari-

ances o?_; & o? ; , a general result holds for such simple waves:[JONE 83

BiB iaig?

x({ia}. {is}) = 2ialin) (16)

G?Ai_,\ + 2(i-4> (iB) + Utaia

One can in fact improve this expression. Goodman showed in 1975 (see
Appendix A.6) that random distribution of point intensity, due to laser
speckle from single polarized source, or scalar model equivalent, follows an

ezponential probability density:[GOOD 89]

P(i) = %exp(—(%)); with p=() & of=()? (L)

10



Goodman’s distribution allows for simplification of formula 1.6, yielding in
the simple model a particular result:

. . _ 2(ia)(iB)
k({ia}, {is}) = (AFIT)E (1.8)

One should note with caution that the foregoing results from equations 1.4
through 1.8 describe only coherent plane wave light of parallel propagation
and with single polarization. This scalar model is illustrative but in no
sense reasonable for any ESPI experimental setup. Equation 1.4 assumes a
single polarization direction with colinear light sources and observation point.
One can in principle arrange polarizing filters to create single polarization
scattering conditions locally near some reference point; exotic filters would be
required though, to arrange such conditions globally over a reference frame.
Colinearity of light sources and reference points cannot, however, be sensibly
attained or even approximated over any extended reference surface. One
concludes that the simple model is wrong for any reasonable interferometer

design.

Surprisingly, the foregoing simple results may still be extrapolated to non-
polarized light sources. A demonstration follows in the next chapter, giving
results with similar properties, but showing angular variation across the ref-
erence surface. Angular variability complicates the effect, but does not affect
its utility as a measurement tool. In practice, one requires only a method
which allows observation of fringe patterns for subsequent inversion into dis-

placement fields. One finds in the foregoing, for point intensity observation

11



of polarized light, that if statistical moments of iy & ig vary slowly on a

region of interest, one may simplify formula 1.5 in terms of slowly varying

scalar fields:{JONE 83|

p(I(@+a)l(6+8)) = f(z,y) + 9(z,y) cos(a — ) (1.9)
where |[Vf| <« |V(a—-3)| and [Vg| < |V(a-5)|

The empirical interpretations expressed in equations 1.5 and 1.9 show
surprising applicability: interferograms may be observed over wide varia-
tions in source location and composition. Images show resilience, as well,
under adjustment of other experimental minutae. For example, experimen-
tal observations show insensitivity to variation of speckle size and optical
blur. Theoretical properties of cross-correlation predicate against adverse
effects from such experimental observables, and one in fact often observes
improvement of experimental interferometric image quality when aberrations

are artificially introduced.

12



Chapter 2

Statistics and filters

2.1 Composite pixel intensity samples

The laser speckle phenomenon studied and employed in this work was gener-
ated by dual source scatter, with no attempt to repolarize either sources or
observed light. Interferogram observation showed great resilience under other
significant experimental deviations from simple theoretical models. Many el-
ements of experimental setup in practice required surprisingly little attention.
Quality of speckle patterns was seen to be largely unaffected by camera loca-
tion, precise source location or source composition. Even camera focus and
background light were found to have little effect on fringe observation. Aside
from apparatus rigidity, the principal ingredients for generation of useful cor-
relatjon interferograms were found to be all in the laser: one simply requires

sufficient intensity and coherence from a laser source.

The resilience of the speckle cross-correlation phenomenon under patho-
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logical conditions is in fact predicted by theory. The reasons behind the
resilience to changing from polarized to nonpolarized sources and the toler-
ance to loss of focus are physically unrelated. Mathematically, however, they
stem from the same root: intensity cross-correlation shows invariance under

a class of statistically similar effects.

2.1.1 Statistics for partially polarized light

The polarized point intensity due to Goodman (equation 1.7) is the lowest
order (@ = 1) term of the more general gamma density. Conventionally
parametrized by reala > —1 and 8 > 0, the gamma density may be expressed

over random variable z as follows:[FREU 62]

A(zi0,B) = E;rlﬁxa-lm(_g) 2.1)

with mean ux =af and variance o2, =af3®

Physically, the experimental setup is concerned with observation of light
intensity over an angular field of view, subdivided into pixels of finite size.
Net observed light intensity may be viewed as a sum of contributions. The
contributions are due to polarizations at a point, and due to independent
point intensities which may contribute to the same pixel. Since the proba-
bility of a sum amounts to a simple convolution, one expects that theoretical
light intensity should follow properties of gamma distributions under convo-

lution. Derivation of relevant convolutions can be found in Appendix A.3.
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One may most immediately utilize gamma convolution formulas, to in-
vestigate theoretical intensity distribution for nonpolarized light from its po-
larization mean intensities. One may assume polarizations T and L corre-
spond to independent random variables, and thus infer principal axes where
o} i = 0. If such independent intensity components are distributed as ex-
ponential densities (equation 1.7) viewed as lowest order (@ = 1) gamma
densities (equation 2.1), then one may utilize gamma convolution (per equa-

tions A.36 and A.37) to obtain a physical result:

P(i) = { ;‘gv(i;l,(iL)) + ;_—z;.—_,;yr‘r(i; L(iv)) (L) # (ir) 22)

(i 2, L () + ) (i) = (it)

(i) = (i) + (ir) and
o = (i.)? + (it)® or

() = 3({)+ 208~ (i) and
(1) = 3((0) - V208~ ()

The distribution P(%) describes light intensity from a single, possibly
partially polarized source. Note that purely nonpolarized light has variance
o% only half as large as purely polarized light of the same intensity. (Compare

Goodman’s result, equation 1.7 with the above expression in equation 2.2).

The alert reader will note that while the preceding derivation outline is

quite devoid of physical content, the result does predicate symmetric intensity
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tensor Z, which may be expressed in 3 dimensions as follows:

) fr Gy s ii 0 0\ _
(k-R)T = | iz iy 4. | = R| O it O|R (2.3)
0 0 O

iz izy 1::

Surface incidence derives from (ray) axis of propagation unit vector & and
surface unit normal vector 7 as a simple inner product. Rotation R gives the
conversion from principal axes coordinates. The null eigen-mode corresponds
to the (ray) axis of plane wave propagation. One may immediately deduce

the following coordinate-independent results:

(i) = trace(T)(k-n) & o2 = trace(TT) (k- ) (2.4)

The cross-correlation coefficient for partially polarized light may be eval-
uated in terms of tensors T4 & Zg, due to the respective sources A & B, with
regard to propagation axes along (unit) rays k4 & kg, and with reference to
the local (average) surface unit normal 7fi. The result of detailed derivation,
outlined in Appendix A.6, gives p(14, Ig) following the form of equation 1.5.
The general partially polarized result appears as follows:

T{ia} {is}in)

s({ia}: {ishf) = (1 + S({ia}, {is}; 1)

)~!;  where (2.5)

S({ia}. {is}in) =
(AZa7) (kaZska) + 2 - (iZaks)(kaZsh) + (kpTaks)(Als@t) +

(72 - (ka + kp)|*trace(TaZp) — [fi - (ka + kp)|[A(ZaZs + ZpTa)(Ka + k)]
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T({ia} {ishin) =

5 (- Ea)? - [trace? (Z4) + trace(Z,7)] +
—;— (72 - kp)? - [trace*(Tg) + 3trace(T2)]

One may now derive the simple result as a limiting case. The polar-
ized limit of equation 2.5, with parallel polarizations from sources A and B,

and both propagation axes parallel to the surface normal yields exactly the

requisite reduction:

“(liah Goki) = (1 + G = ZECa e
One notes again that the simplified x({i4}, {ig}; ) of equation 1.8 results
only when experimentally unrealistic conditions are precisely met. Functions
S({ia}, {is}:i7) and T({ia},{ig}; ") do in fact generally appear quite com-
plex. Since tensors Z4 and Zg are expected to vary slowly on the surface,
and since EA, EB and 77 are analytic and slowly varying, equation 2.5 does

however remain of the requisite type, as expressed in equations 1.5 and 1.9.

2.1.2 Stochastic auto-correlations

Statistical treatment of light intensity, as presented in the preceding section,
relies on the presumption of interference between simple plane waves. The
phenomenon of laser speckle does not seem, apriori, to satisfy this presump-
tion: a noisy source of electromagnetic radiation expanded in vector spherical

harmonics[JACK 62] yields a noisy speckle pattern only if high order terms
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are of significant magnitude. The question of validity of the local plane wave
approximation can best be put as follows. Does a limit exist, regulating per-
ceived speckle size and setting a scale at which the plane wave approximation

becomes valid?

The assumption of a stochastic source resolves this question, and in fact
allows for assessment of relevant autocorrelations. One immediately notes
that a stochastic source sensibly approximates a real source. One expects
that scattering at the surface stems from random distribution of many micro-
sources. Micro-sources should show random spatial distribution over the
physical scattering target, and include also random phase offsets. In the
limit as sheer quantity of micro-sources becomes unbounded, net observables
attain stochastic characteristics. One may therefore model the resultant elec-

tromagnetic field by means of stochastic processes and Wiener integration.

One may utilize stochastic methods to evaluate Pearson’s cross-correlation
for spatially separated intensity measurements. General examination of req-
uisite stochastic processes is presented in Appendices A.5 and A.6, with the
particular derivation in Appendix A.6.4. For the case of a single Gaussian
stochastic source, with observed source intensity proportional to G3(Z; fisce, &':2

SCE)’

(per equation B.17,) one may write the result as follows:

P@), (@) ~ exbl(—5 (=3)- OBk GE+T) — i 0s N)-(F =) (2.7

O ek(Ti 00 A) = 2(;—::1)2 (1-7®7) 02, (1-7QRF) where
F= % asymptotically for A < y/trace(s?,) < r
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Equation 2.7 holds regardless of polarization states of incoming and out-
going light at the scattering source. Since most conventional laser sources
moreover generate beams of rated Gaussian (cross-section) intensity, one ex-

pects the result to hold validity under realistic experimental conditions.

From the stochastic result, or the related autocorrelation function, one
may infer that scattering source size regulates speckle dimension. Micro-
source characteristics would have to be quite pathological indeed, to gener-
ate coherent multipole radiation with so great an angular variability. Since
one cannot sensibly expect such pathological micro-sources, and since ex-
perimental speckle dimension accords well with the stochastic description,
(per equation 2.7.) one concludes that the stochastic asymptotic plane wave

model holds validity for the laser speckle phenomenon.

One may draw a predictive inference regarding scattering source proper-
ties and speckle nature. The stochastic model makes no explicit use of sur-
face qualities, such as composition and roughness. Provided surface qualities
suffice to approximate stochastic scatter, theory predicts that other source

qualities should have little effect on the nature of speckle.

A statistical inference follows as well from the stochastic treatment. Pixel
size and speckle dimension are often aligned[ ENNO 89][JONE 83] in the liter-
ature. Theoretically, no requirement exists for a strict ordering relationship.
One requires only that statistical intensity fluctuations be observable. Rig-
orous examination (see Appendix A.6.5) shows that pixel scale does alter

perceived cross-correlations, by respecting equation 1.5, with modification
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only to scaling function x({i1}, {ig}; 7). Intuitively however, observed pixel

cross-correlations should approximate underlying point intensity equivalents.

Consider joint trial variable pair z,, & y,, over independent trials by index
n, with respective means z,, & §,. For fixed weights w,, € R, one may express

composites X & Y with following characteristics:

X = Z waz, & Y = Z WnYn — (2.8)
n
X=Nwiz, & Y = Z Wnin
[ IxXX in } - Z [ Znzn U%n!ln ]
Oyx Oyy n Oynzn  Tynyn

If all measurement covariances are scalar multiples of an identical tensor,
22 32 . . . .
G, = sn 0 , then cross-correlations for contributions and for composites must

equate as p(T,,¥n) = p(X,Y).

One may regard composite pixels in a similar context, as combinations
of independent point intensities. Pixel intensities should thus show cross-
correlations equivalent to those shared by all local asymptotic plane-wave
pair contributions. While magnitudes of intensity means and variances may
fluctuate, any suitable optical arrangement should extract similar cross-

correlation values.

2.1.3 Cross-correlation errors

Pearson’s cross-correlation as expressed in formula 1.2 is based on a statistical
sample. Being a measurement, this quantity is subject to standard error.

Evaluation of the linearized error term (see Appendix B.3) gives for the
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cross-correlation variance the following result:
2 2 212
0% = 5 (1= ) (29)

Numerical constant N refers to real degrees of freedom inside the sample,
rather than pixel number. These quantities should however ordinarily be
similar. Surprisingly, the variance may be expressed solely in terms of the

quantity itself, without reference to moments of underlying measurements.

Quite sensibly, however, under equation 2.9, cases of perfectly correlated
(error free) data with p = *1 give error af,p = 0, and uncorrelated data
with p = 0 give maximal error crgp = % In terms of interferograms one
infers, with reference to formula 1.9, that regions of constructive interference
should have high and quiet signals, whereas regions of destructive interference
should give low and noisy measurements. With view to equation 1.5, such
respective conditions correspond to interference angles where cos(a—8) = +1

constructively and cos(a — 3) = —1 destructively.

One may predict a measurable result in terms of equation 2.9, by consid-

ering the linearized error term for a;‘;p. Direct evaluation shows:

do?
op —1p94
22, ~ 552 — (2.10)
2 linear
o o2 v
2p 2 2
var(v =3 ) ~ 16v TaE P~ 32 NP whereas
0,2 sample
var(v ""2 ) ~ 2 (~ x—dist) —
Top
var (g2 finear) N 6 2
var(g?sample) N



By inference, so long as the ratio stays negligible, either as a limit
(ie. 1 > 1), or less restrictively in average (ie. 1 > 1(p?) ~ %), one may
define by random variable @ the sample ratio, such that @ has approximate

(chi-square) x>-distribution in v degrees of freedom:

Qp, o2) = Lo (2.11)
p7 pp - agplinw -

where the x>-distribution in v degrees of freedom derives as following special

case of the more general y-distribution:[FREU 62]

x(z;v) ='y(:r;a=§,,5=2) — p=v&o’=2 (2.12)

2.1.4 Degrees of freedom

An interesting consequence follows from equations 2.11 and 2.12: one may
measure the pixel density of perceived degrees of freedom for a cross-correlation
interferometer. One has only to interpret the experimental distribution of

random variable @ in terms of the general gamma distribution.

In counting degrees of freedom, one identifies a key proviso. While each
measurement does constitute a true increment in degrees of freedom, one
has not yet accounted for cross-correlations amongst neighbouring measure-
ments. One may express for pixels whose sample regions overlap, following

approximate cross-correlation result:

Ny ab) .,
o2y(p) = Nebaeea(@:B) o (2.13)

Nsample
Cross-correlations amongst sample regions are in fact significant. Their
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effect may however be approximated as a pure reduction in perceived degrees
of freedom. Viewing o® in terms of a basis of its eigenvectors, approxima-
tions may be compared to the true tensor form. If measurements were truly

independent, sharing identical variance, their number would simply count:

trace? (o2)

v
N = N trace(o??) (2.14)

One obtains a pair of results for n x n cross-correlation samples along a
line of length N > n where crf,p is constant. If equation 2.14 holds validity

for the experimental correlation tensor, a simple result follows:

v n? 3n
2= = 2.15
N 2(2"",‘_‘_’1‘ k%) —n? 2n? +1 ( )

Another lower bound in detectable degrees of freedom derives from an intu-

itive observation. One expects minimally, that nonoverlapping regions count

significantly:
v

N

1
= (2.16)

The apriori assumption of independence for each pixel as a degree of freedom

clearly differs greatly from these lower approximations.

As example for the overlap effect, one may examine the case of 5 x 5 cross-
correlation samples, with linear single pixel incrementation along a vertical
line. Cross-correlation interferogram images generated throughout this thesis
follow precisely this prescription. In regions where cross-correlation p is rel-

atively constant, one expects measurements along the line to be represented
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according to equation 2.13 as follows:

5432100000
4543210000
3454321000
2345432100
1234543210

_52-(,2_0123454321 (2.17)

Opp 0012345432
0001234543
0000123454
0000012345

The real eigenvalue distribution, (in descending order,) for cross-correlation
images satisfying equation 2.17, appears in figure 2.1. Trace (equation 2.15)
and minimum dimension (equation 2.16) approximations have been super-

imposed. While the approximations remain poor, real distribution of sample

Cross-correlation eigenvakues __:ﬁ
s \;
LT
NI
X

Figure 2.1: Pixel cross-correlation effect: n =5 & N = 100
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variance of,p should match better with the approximations than with the

initial presumption of total independence.

The presumption of minimal degrees of freedom seems to fit real eigen-
values better than does the trace-based approximation. When imposing a
x3-distribution on a data sample, one expects, perceived degrees of freedom
v should approximate equation 2.16 better than 2.15, in modelling local-
ized measurement correlation. While the prediction is weak, it nonetheless

constitutes an observable.

2.1.5 Cross-correlation weights

In fits of surface deformations to interferograms, one should attempt to
weight data so as to give an optimal fit. Because constructive and destruc-
tive interference show polar extremes in noise levels, low and high limits
respectively, as demonstrated in subsection 2.1.3, one may in fact assign op-
timal weights via equation 2.9. Optimal measurement weighting is given,
as outlined in equation A.16 by inverse variance. Consider equation 1.5
with function x(({i4}, {is}) locally constant in the neighbourhood of a local
maximum. Provided relative phase is locally smooth with almost constant

gradient, one finds along that gradient:

p(z) = 1+ &k (cosp—1) ~ 1-%&(}52 (2.18)

2 :2; 2 2 ;2 2
o‘§p~ K® sin¢ g, ~ K Q" Oy
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2 _ 2 212 4

app - ﬁ(l_p) ~ ﬁ¢ —
2 2 2

Osp ™~ Nn“ﬁ

The optimal weight of a region amounts to the relative measure of that
region. Simple integration thus yields regional (linearized) optimal weight.
Near a local maximum, one finds the following asymptotic form for a closed

linear interval:

1 /w» dp Nk L a9

y ~ = ~ - -
Wiat) ~ 1 fo o ~ 7% 3@ ~ 30

where ¢ ~ k-(z—c) for (z+c)€ [a,b]

One observes that weights near the local maximum dominate over any
other region, beyond any proportionality constant. One concludes that ob-
servations from suboptimal regions fail to add new information content to
fits involving perfectly correlated data points. Symbollically, one may express

the result in set notation and write:

W(6~(0)) > W([a bl —¢-1(0)) —> let w(z) = { gé }Z} ;i (2.20)

Optimal weighting results only when data are restricted to the kernel a’f,‘, =0,
or simply to where p = +1. Weighting of local maxima follows the prescrip-

tion of equation 2.20.

One might note that the variance in equation 2.18 fails to include a local
term due to interferogram pixelation. An independent term may be added,

expressing such a nonlocal effect, in the following form:

2
034, ~ 0’34,0 + W¢2 (221)
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If, for example, one regards constant term a§p° as caused by limitation of the
local maximum to a box of n contiguous pixels, then uniform distribution

(per equation A.11) gives 030 = (nk)?/12.

One may accordingly express weights associated with equation 2.21 in the

form of an associated (Cauchy density) distribution:[FREU 62]

c(¢;®) = 2(B2+4%)7Y & = \/%Nﬁag‘;’ (2.22)

C$:®) = [2df c(¢®) =5+ = tan &
The Cauchy density c¢(¢; ®) has conventional parameter ®, and C(¢; ®) gives

the associated integrated probability.

One finds 50% weight accumulation within 1 x ® of the peak, and more
than 70% within 2 x &, and more than 84% within 4 x . Experimental
values may be approximated as N ~ 25 (sample population), A ~ 50 (inter-
ferogram pixel wavelength), £ ~ 0.5 (from equation 1.5), and n ~ 2 (pixel
box localizing maximum). Such values give resulting & ~ 12.8% of a radian,
or more concretely, about 1.0 pixel. One concludes that, for regions away

from local maxima, data weights remain negligible.

2.1.6 Systematic errors

Experimental cross-correlations are subject to systematic measurement
errors. Real data, for example, should almost never yield a sample of identi-
cally constant phase offset. In particular, one expects greatest unlikelihood

for choosing a perfect sample, with truly optimal cross-correlation p = +1.
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Errors due to sample size may however be mitigated by reduction of sample

dimensions.

One must contend as well with video signal errors. Two primary sources
of signal error were identified. First, true signal measurement noise from
video signal, digitization or laser decoherence must be considered. Noise
decorrelates from any signal, including itself under time delay. Its net effect
is to scale cross-correlations by a uniform factor. Second, surface texture
is illuminated by ambient and scattered laser light. Texture here includes
all purely local lighting effects visible at the surface, including variabilities
in colouration, roughness, reflectivity and light incidence. Texture should
correlate almost perfectly. One notes as special case, that perfectly correlated
(ie. p = +1) signals sum into perfectly correlated sums. Signal errors due to
texture thus should alter all other measured cross-correlations slightly, but

leave constructive interference maxima entirely unaffected.

One may express the cross-correlation of perceived intensity signals X and
Y in terms of actual signals z, y and noise signal n and texture ¢, as well as
two correlation coefficients shared by z and y in a region well centred between
the scattering sources. Speckle intensity has local variance o2,, which applies
for both signals z and y in the central region, and covariance o2, with texture,
primarily due to intensity gradients. This model suggests the following result:

oy _ o2, + 202 + o}

p(X,Y) = =
\/U‘ztxdgry Ufa'*‘?"fz +at2t+arzxn

where (2.23)
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X=z+t+n, & Y =y+t+n, and

2 _ 2 2 _ 2 _ 2 =
O =0y, & oy=o0;,=0, & (nmny) =0

2
Ogs

Error signals were found not to affect experimental results greatly. So long
as all correlation coefficients vary slowly, equation 2.23 appears well suited for
comparison with the desired view expressed in equation 1.5. This assertion
may be verified by inspection of actual interferograms, as for example in

figure 2.2, for observable systematic errors.

Noise could be observed as a varying stitched pattern in cross-correlation
interferograms, but was only significant in regions of low light intensity.
Where signal is lacking, electronic noise dominates the measured video input.

Such dark regions were kept well outside of the measurement region.

Texture, conversely, is visible in well lit regions, as a localized, bounded
and somewhat recurrent phenomenon. With images of crisp focus, surface

texture contribution per equation 2.23 is prone to great local variability. Such

Figure 2.2: Experimental cantilever interferogram
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texture related error could be reduced by blurring the optics. In this manner,

one should replace volatile 02, and o2 by better behaved local averages.

Analysis of systematic cross-correlation errors thus leads to a positive con-
clusion. Interferograms of consistent quality may be generated quite readily.
One finds that noise observed in real experimental fringe images corresponds

almost entirely to statistical sampling error in the cross-correlation.

2.2 Image filters

One would ideally prefer to regard only raw unfiltered data while solving
the inverse problem of this thesis. Such a goal cannot however be reconciled
with another research aim: one requires sole reliance upon the single interfer-
ogram, for data determining the deformation field. One notes, with reference
to equations 1.5 and 1.9, that the current treatment relies upon global rather

than local interference effects.

The purist’s solution to the noise problem lies nearer the traditional ap-
proach to ESPI. Variation of optical path allows for direct evaluation, pixel
by pixel, of all quanitities expressed in formula 1.9. One moreover measures
phase angle directly, rather than its cosine. Rather elegant phase unwinding
schemes may be devised to remove angular wrap modulo 2x. The literature
documents many investigations[DAIN 89|[JONE 83] into related theoretical

diversions.

The interferometer of the experiment at hand is simpler than the tradi-
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tional one: no exotic optics are present for optical path variation in generation
of interferograms. What this thesis investigates is how and to what extent

one may recover the deformation field without such enhancements.

The method under study relies on less localized observation of interfer-
ence. Formula 2.9 of the previous section shows that one expects noisy local
signal behaviour. Image filtering of some type is clearly required, for iden-
tification and location of fringes in the background noise. Association of

location and phase requires such noise reduction.

The impulsive thought toward weighting the ESPI data, through use of
formula 2.18, must be exercised with some subtlety. Regions of high corre-
lation and low noise correspond to relative phase angles ® = N - 27; The
cross-correlation function, like cos ®, should be stationary with respect to
spatial variation along the gradient of . More specifically, cross-correlation
images exhibit least noise in high flat regions. Good discrimination of phase
angle is difficult here. One finds, moreover, that even theoretically quiet

points border on regions with too much experimental noise, for clear identi-

fication of local maxima.

Consequently, some image filtering is required for systematic identifica-
tion of local maxima. The study of optimal filtering opens into an expansive
field with many digressions.[JONE 83|[SCHM 00] From practical experience
with image processing, however, one finds a simple and consistent approach
to similar imaging problems. The problem at hand requires a filter which

reduces local noise sharply while preserving significant edges and gradients;
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one might additionally like to smooth the data further. The industrial means
to this end are simple and well known: apply a local median filter of some
dimension, followed by a low pass or Gaussian blur filter. A comparison of

the effects of such filters appears in Appendix A.2.

The filters employed in the present research were of precisely the indus-
trial type. Images were treated via a rectangular (7 x 7) pixel median followed
by a radius ¢ = 5 pixel circular Gaussian blur. Under such filtering, signals
become quiescent, so that maxima and even minima may be clearly identified.
Data about the maxima, however, do clearly remain most reliable. Examples
of raw and filtered correlograms appear in section 5.2 as steps in the general
image processing algorithm. The effect of the median filter in thresholding

interferograms for maxima is discussed in subsection 4.2.3 below.

2.3 Data refits on raw and filtered images

According to the prediction of subsection 2.1.5, no advaatage can be gained
from use of data outside of cross-correlation maxima. Theory expects that
inclusion of noisy data, in any phase/deformation fit, should in fact deteri-
orate fit quality. One may nonetheless attempt such a sub-optimal fit, and
assign non-zero weight to data, which theory claims should be ignored. As
an aside of the attempt, one may produce better scaled interferograms from
raw and filtered cross-correlation images. One expects to produce cleaner

images, but without improving fit precision.
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A key problem with data located outside local maxima rests in the form
of equation 1.5. Cross-correlations at local maxima should always value near
unity. Away from local maxima however, variation of function x({i4}, {ig})

becomes a material concern.

One may dispense with the variability of x({i4}, {is}) in purely empiri-
cal fashion. Since unmeasured cross-correlation errors may play a role, one
rather considers the practical equation 1.9. Since functions f(z,y) & g(z,y)
vary smoothly over the region of interest, one may approximate them with
low order bivariate polynomials over z & y. In the present research, both
functions were modelled as biquadratics. Biquadratics were chosen as the
best compromise between real functional variation flexibility, in expressing
function x({:1}, {in}), and the aim not to mimic real data fluctuations with

the offset and scaling functions f(z,y) & g(z,y).

One makes use of a primary fit on maxima only. With apriori fit in hand,
one simply forward models the deformation to yield the expected interfero-
gram. For generation of a better scaled experimental interferogram, all that
remains is to identify optimal biquadratic functions f(z,y) & g(z, y), which

map the experimental cross-correlation to the theoretical result.

One may define the respective standard linear regression problem solely
in terms of its x- statistic as follows.[MATH 70] Let Z(z,y) denote the the-
oretical interferogram and A(z,y) refer to the raw or filtered experimental

cross-correlation image. If angle brackets {...) denote statistical expectation
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in the ordinary sense, one minimizes the following:

x = ((Z(z,y) - f(z,y) - g9(z,y)- Alz,9))*) (2.24)

While equation 2.24 does measure 18 parameters, the problem reduces simply

to a standard linear regression of the form outlined in Appendix B.4.

After identifying optimal functions f(z,y) & g(z,y), one applies the cor-
responding transformation to the raw data, and acquires (fixed) experimental
interferogram:

Y(z,y) = f(z,y) + g9(z,y) A(z,y) (2.25)

One interprets Y (z,y) directly as interferogram cosine data. Such a view
assigns to each pixel a relative phase angle corresponding to its measurement
in the raw interferogram. One chooses the branch of the inverse cosine as
that nearest in value to the relative phase predicted by the primary maxima

only fit. Functionally one has the following:
é(z,y) = £cos™ (Y(z,y)) + 2N% where (2.26)
+ & N minimize |¢(z,y) — Z(z,y)|

The newly unwound phase image #(z,y), given by equation 2.26, may
be refit against the deformation inverse problem. As indicated in the fore-
going, one expects unweighted secondary fits, of all data so generated, to
deteriorate in quality from the primary maxima only fits. An experimental

demonstration of this effect on a real cantilever will follow in section 5.3.



Chapter 3

Displacement fields

3.1 Basic interferometry

The mathematics of speckle interferometry are fairly simple to set out, the
guiding physicssHECH 74] being no more complicated than Young’s experi-
ment. The formation of speckle patterns is due to simple wave interference,
between the relative phases of a pair of exposures, from a pair of localized
scattering sources. The problem of this thesis is hence most appropriately

regarded from such a straight forward vantage.

Pearson’s cross-correlation image patterns are no more than interference
fringes. This has been established in chapters 1 and 2. Since general inter-
ference measures differential phase angle in sinusoidal format, one measures
precisely the same in a cross-correlation interferogram. In examination of
speckle patterns, one finds interference bands, with gradients pointing out

the steepest rate of phase angle change. Curves of constant interference phase
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amplitude, (such as maxima and minima,) correspond conversely to locii of

constant phase.

The process of inverting fringe patterns into deformation fields may be
regarded as a series of problems encountered in the imposition of no more
complicated constraints than these. As will be shown in the following de-
velopment, local phase gives an insufficient descriptor on the path to an
inversion. Phase data alone do not contain enough information to identify
a single causative deformation. In light of this revelation, moreover, one
will find general inversion to be impossible. Curiously, even under constraint
to conformal deformation fields, modes of deformation exist, which are not

measurable in any inversion scheme.

Principally, the speckle interferometer is constituted, per figure 3.1, with
a single laser, a beam splitter, a pair of scattering (source) targets to expand
illumination, a deformable illuminated surface re-scattering laser light, and
a recording camera system. Of these constituents, the only factors mate-
rial for controlled production of speckle cross-correlation fringe patterns are
the locations of the (source) targets, and the shape and orienation of the
deformable surface re-scattering light. The experiment seems at least super-
ficially identical to the classic Young’s experiment: two coherent sources are

projected onto a viewing surface.

The sources are however not as simple as idealized Young’s double slits.
Each scattering source is more properly seen as a localized (stochastic) col-

lection of scattering sources, which from a distance may be realized as some
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Figure 3.2: Effects of point displacement

37



high order multipole wave expansion. Such an expansion manifests globally
in terms of vector harmonics, and locally in terms of linearized (plane wave)
asymptotes. A discussion developing this point of view is found in Appendix

A.5. The expansion itself drops out locally, as a stochastic phenomenon.

Pearson’s cross-correlation in turn analyzes the randomizing statistics for
relative phase information. The method renders clean virtual interference
patterns like those from an idealized source pair. The result should not be
so surprising, in that Young in his day could also not have produced a clean
double slit source; he nonetheless was able to observe interference predicted

by the perfect idealized model.[HECH 74]

If one views the scattering surfaces as sources in the style of Young’s
double slit experiment, the mathematics of fringe production become almost
trivial. The pertinent feature of a point in space, determining the degree
of constructive or destructive interference from a source pair, is just the
difference in optical path from the respective coherent sources, as viewed
from that point. From the path difference and the relative source phases,

interference phase trivially follows.

Further predictions follow as well, by extrapolating locally from such a
point in space into its neighbourhood. In moving away from a point along
a direction altering beam path, interference phase variation occurs. Con-
versely, all points sharing the same path difference with respect to the source
pair also share the same phase. This set of points corresponds to a unique

hyperboloid through each point in space. All points on a particular hyper-
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boloid share identical phase difference value. Hyperboloids corresponding to
different values therefore cannot intersect. One may thus imagine a family of
nested hyperboloids, parametrized by phase difference, as pictured in figure
3.1. It is in terms of such hyperboloids that the inversion problem is most

clearly analyzed.

Most texts on the subject of speckle interferometry define the concept of
a sensitivity vector at this point.[DAIN 89][JONE 83] From the view point of
the hyperboloids, this vector is just the phase gradient, and runs perpendic-
ular to the hyperboloids’ surfaces. A graphic illustration the phase gradient
vector appears in figure 3.2. This phase gradient may be expressed precisely

as the following differential form:

A .
2_71'(1) = T4 —TB (31)

A - - -
gd@ = dTA - dTB (32)

Here A denotes the coherent laser wavelength, ® gives the relative interfer-
ence phase, and the other quantities are represented in figure 3.2. Linearized

representation of changing phase (for tiny deformations) can be expressed in

terms of the phase gradient:

kz.y) = T(=-2) (3.3)
6‘»(3"1 y) ~ E(I, y) -J(x, y) (34)

It is convenient to view computations for all deformations under study

in terms of the (asymptotic) linearized representation of equation 3.4. The
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result derives from the lowest order term in an asymptotic expansion of the

radius scalar:

—

|7+dl ~ 1+

'

1

d +
2r
F=

Q7)d (3.5)

1Y

1 -

i

~

Ny

where r=|rf] and

With view to this expansion, linear approximation of relative phase is valid
to fractional corrections on the order O(2). Since d (~ 10um) is at most a
few times the laser wavelength and r (~ 10cm) is of the order of the viewed
surface dimension, one expects the approximation to be good to better than
5 significant figures. Notwithstanding linearization of relative phase, real
surface deformation fields may vary more generally, as nonlinear functions of

location over the viewed surface.

3.2 General displacement fields

One may easily imagine pathological deformations. Suppose, for example,
that one may smoothly deform the surface in a precisely defined manner, to
yield a definite measured fringe pattern. Even if the deformation and result-
ing fringe pattern are known precisely and without error, one finds that they
cannot be invertibly linked. To show that this is the case, define a random
mapping as follows. For each point on the viewed surface, choose a point
sharing the same constant phase hyperboloid as the original point. Move the
original surface point to the new location. This procedure may be applied
individually to each point of the viewed surface. Subject to some physical
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and mathematical constraints, one may thereby generate a pathological and
possibly discontinuous deformation. If point deformations are small relative
to observed speckle size and relative to image pixel dimension, neither image
change nor loss of coherence would be observed. What should be observed,
however, is an image with identically unaltered interferogram. One may thus
generate a family of pathological deformations, with each member yielding

identically the given interference fringe pattern.

The foregoing argument demonstrates that no true inversion is possible,
which assigns to a given fringe pattern a unique deformation field. The
resulting non-uniqueness holds even if apparatus dimensions are known pre-
cisely and the fringe pattern is measured without error. One is led, therefore,
to question whether deformation families may nonetheless be identified with
deformations of more restrictive descriptions. The class of random discon-
tinuous deformations is certainly too general, as seen in the above argument.
Restriction to experimentally realistic displacement fields will be shown to

mitigate but not alleviate the uniqueness issue.

3.3 Stiff displacement fields

Realistic deformations are expected to be (almost) continuous over at least
regions of the surface, outside of neighbourhoods about macroscopic frac-
tures and fissures.[BHAT 86] In fact, one expects deformations to be fairly

smooth on scales orders of magnitude larger than viewed pixel size or speckle
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dimension. Subject to such restrictions, one may re-evaluate the issue of

uniqueness.

For the present discussion one notes that general displacements include
true deformations, as well as purely rigid surface motions. True deformations
are in fact only defined up to a rigid displacement. The current study views
displacement fields through their effective interferogram production. In this
context, one regards the complete displacement field on the surface, and
avoids confusing distinction between the terms. For the sake of simplicity, the
term deformation will be understood as inclusive of all general dispacement

fields modelled in the following development.

3.3.1 Rigid displacement fields

One considers here only the most restrictive of stiff deformations. Rigid
transformations correspond identically to the full set of Killing vector fields
in 3-dimensional space;[SCHU 80] they are most simply expressed as the set

of combinations of translations and rotations.

Amongst rotations, one may single out an obvious anomaly. Rotation
about the axis connecting the scattering sources demonstrates a unique sym-
metry. Since the axis of rotation is precisely the axis of all nested constant
phase hyperboloids, each hyperboloid rotates and maps identically into it-
self. As aresult, no surface alteration can be observed from interference phase
change under such transformation: all such rotations belong to a family of

general deformations with identical shared interferogram.
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Physically, one may picture the anomalous rigid rotations as movements
of a swing: if one imagines the surface as hanging suspended from a bar, con-
necting the scattering laser source pair, all microscopic swing stage motions

to and fro share the same family interferogram.

Functional and linearized forms describing swing stage transformations

may be expressed respectively as follows:
d(z,y) = (R(Eap;0) — 1) (F—Fan) (36)
J(:z:, y) ~ 6. J;wing(:z:, y) where
Lwing(Z,y) = Eap X (F—Fap) or 3.7)
dywing(2,y) = %EAB x (Fa +7B)
Here A and B refer to the scattering sources and § defines rotation angle

in radians, and one defines geometric constants from the scattering source

locations as follows:

and

(A-B)
|

)

— >~1 :131
+ QJ: D:u

)
| = |~

B)
For deformations of at most a few wavelengths magnitude, angles must be
tiny, O(A/r) theoretically or < 10~° experimentally. Sinusoidal expansions
sin(8) ~ 0-(1- %02) and
cos(d) ~ 1-(1—- %02),

show second order corrections as negligible effects. The linearized form does

clearly suffice in description of this singular effect.
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The rigid swing stage rotation may be generalized by allowing the rotation
angle 0 to vary as a function over the deformation surface. The linearized

form of this expression will be of importance in subsequent sections:

d(z,y) = (R(éas:8(z,y)) = 1) (F = 7an) (3:8)
diz,y) ~ 0(z,y) - dewing(:3)

Regardless of the nature of the function 8(z, y), so long as its magnitude is
small in terms similar to those of the rigid transformation of formula 3.6, no
effect will be noted in the corresponding interferogram. If one requires that
displacement fields on the surface vary slowly and smoothly, then function

6(z, y) might parametrize a slowly and smoothly varying invisible component

of the total variation function.

The question arises whether other deformations exist, invisible to interfer-
ometric observation, and if so, how they might be described. Both questions
are answered by generating exactly such a function. With help of the cross-
product, a singular deformation field appears perpendicular to the sensitivity

vector and to the swing stage deformation field:

J‘;ing(r’ y) = I-C‘(.'L', y) x d;wing(zv y) or (3'9)

LA

aB[(ra—r8) (1 —é4-E5)]

LY

(ising(zy y) =

— (Fa+7B)[éan- (€4 —ép)]

The singular deformation field clearly has far more complexity than does the

sunng stage rotation. Close examination shows that no choice of function
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¢(z,y) leaves a simple expression for the functional product ¢(z, y)-ci;ing(:r:, Y);
square root and inverse square root forms do not simplify into finite order

polynomials. One makes use of this observation in following sections.

One may now make some fundamental observations. First and foremost,
the vector set {E, d-;wi,.g,ti:;,,g} forms an orthogonal basis for 3-dimensional
deformations. As such, any microscopic deformation field may be uniquely

expressed in terms of functions ¥(z, y), 8(z,y) and ¢(z,y) as follows:
d(z,y) ~ ¥(z,9) - k(z,9) + 0(2,Y) - duwing(z: ¥) + S(2. ) - duing(z,y) (3.10)

Of the contributions, only the first, being parallel to the sensitivity vector,
can be measured. Sensitivity vector E(:r, y) however, expressed in formula 3.3,
fails to include realistic deformations such as the Killing vectors,[SCHU 80]
and realistic strains which are their smooth local gauge variants.BHAT 86]
The first term describes instead yet another deformation field of peculiar

curvature.

One should rather like to target measurement at realistic deformation
fields. The generalized gauged Killing vector terms are clearly amongst the
contributions one must address. These contributions include, as base terms,
rigid motions which have vanishing strain components. Smooth variation of
parameters generating rigid motions gives the associated gauge terms corre-
sponding to smoothly varying strain fields. Such deformations are the most

common subject of experimental measurement.
As gauge functions vary more flexibly, most realistic smooth deformation
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functions may be expressed within their span. Smooth and slowly varying de-
formations of such description, by construction, have significant components
tangential to the span of {E, Jmmg}; realistic fields are unlikely however to
show the curvature of J;i,,g (z,y). By convenient coincidence, therefore, most
realistic deformations may be locally measured by restriction of displacement

fields to constant rigid transformations perturbed by slowly varying strain

fields.

Expansion of deformations in terms of gauged Killing vector fields seems
a most expedient approach. One at once includes all terms necessary for
extraction of macroscopic strains, but still limits curvature of measured de-
formation fields. In such an approach one may fit realistic stiff deformation

fields to interferogram images.

3.3.2 Polynomial displacement fields

As initial forray into study of polynomial deformations, Killing vectors near
the deformation surface may be expressed as polynomial deformations. In-
spection of the swing stage deformation of formula 3.7 shows this special
rotation to be a monomial in cartesian coordinates. The general Killing

vector may similarly be expressed, as included by the general monomial in

cartesian coordinates, as follows:

d, t, Szz Szy — T
dy | = |ty | + | Sey+7T: |-+ Syy -y (3.11)
d. t. ~Ty 47,

Here, polynomial expansion is with regard to cartesian coordinates (z, y)
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over the deformation surface. The inferred z coordinate runs normal to the
surface. The Killing vector displacement field d is expressed in terms of trans-
lation £, and linearized (antisymmetric) rotation 7. Remaining terms com-
prise the (symmetric) tangential or in-plane dilation & this tensor expresses
all non-rigid (non-Killing) components at monomial order. One observes fur-
ther, that constant translation terms fill out the 0** order polynomial, while

rotations and tangential dilations complete the 1** order terms.

In light of the monomial expansion, one notes that the concept of the
gauged transformation simplifies, in polynomial terms, to simple functional
multiplication. In terms of order statistics, it becomes sensible to deal di-
rectly with polynomials of given order, since polynomial functions are, by
construction, simple multiplicative functions of the linearized Killing vector
fields. With such indirect expansion of gauged Killing vectors, further ques-
tions of overconstraint and underconstraint may be answered simply in terms

of maximal polynomial order.

In demonstration of such an approach, consider as prime example a gen-
eral polynomial deformation field of order NV, with applied interferometrically

invisible perturbation:

d(z,y) = Py(z,y) + Qn-1(2.Y) - dewing(Z, ¥) (3.12)

The bivariate polynomial deformation Py(z, y) is observable. Scalar polyno-
mial @n_;(z,y), parametrizing the invisible part may be varied arbitrarily

to generate a family of maximally N*® order polynomial deformation fields
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sharing the same interferogram.

Conversely, one may devise a consistent reduction method which maps a
family of deformations J(:L', y),expressed via equation 3.12, to a single result.
Intuitively, polynomial division seems the sensible approach. Vector field
Qn-i(z, y) cannot however be reduced to a scalar. One may nonetheless

carry out order by order optimization in some sense.

In writing this thesis, the author chose to minimize residual coefficient

magnitude (in quadrature) successively at each order from highest to lowest:

n=N m=n =3

for Pu(z,y) =Y Y Pumizm™y™ ¢ (3.13)

n=0 m=0 i=1

. 1
minimize x, = In E P2, for n=N,...,1
m,i

The prescribed algorithm projects an entire family expressed in formula 3.12
onto a single polynomial deformation. Thus, even though unique inversion
fails, measurable differences in deformation fields may be identified directly

from measured polynomial coefficients.

The polynomial approach does however suffer from an immediate draw-
back: degrees of freedom expand steeply as polynomial order increases.
Ilustrating this point, one may count the coefficients Sy, defining scalar

polynomials of order NV, over 2 independent variables z and y as:
1
Sy = ) (N+1)(N+2) (3.14)

The number Cx of vector polynomial degrees of freedom, the rank Ry of
the observable fit space, and the dimension Ky of the singular (kernel) space
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spanned by gauged swing stage transformations, respectively, may be deduced

from a fit as follows:

Cv = S(N+1)(N+2),

Ry = (N+1)(N+3) and

Ky = %N(N+1).

(3.15)
(3.16)
(3.17)

The kernel dimension Ky grows quickly from 0, asymptotically (ie. N —

oo) accounting for 1/3 of all degrees of freedom. Low order values appear

displayed in table 3.1. Clearly, limitation of deformations and models to low

order fits is well advised. Higher order fits are limited asymptotically, by the

form of equation 3.10, to one of the total three functional degrees of freedom.

The next problem is to set up a practical fit mechanism. The goal is to

fit actual polynomial deformations to phase angle data from given observed

interferograms. A pair of approaches to the problem present themselves.

Between these methods, the less direct turns out to be the better choice in

terms of both versatility and stability.

N |Cn | Ry | Kn
0 3 3 0
1 9 8 1
2 18| 15 3
3| 30| 24 6
4 | 45| 35| 10

Table 3.1: Polynomial coefficients, fit rank and kernel size
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The obvious method involves apriori elimination of all non-observable
gauged swing stage terms from a polynomial basis set, followed by a fit and
finally by expression of the result as a polynomial. This method, however, has
some undesirable attributes. One immediately increases the problem’s com-
plexity, while failing to deal with a fundamental problem: any optimization
over a large parameter basis lacks stability. Calculation on a finite precision

machine compounds fragilities inherent to the data.

Elimination, order by order, of overdefining basis elements may be ac-
complished in theory by several methods. Problems arise in practice, from
the dimension of the fit. Because one is fitting many parameters, fit stabil-
ity depends strongly on choice of region, balance of data and interferometer

geometry. Fits of this type generally require a great deal of fine tuning.

On completion, a meaningful solution is hoped for, but success is by no
means guaranteed. Upon achieving any solution, results remain suspect.
One has yet to question how close the fit was to being singular. In practice
one would prefer to gauge the quality of a solution, and if possible, identify

singularities directly, checking their contribution to the result.

From the standpoint of utility, a method should yield reliable results in
a sensible fashion, and gauge the quality of a solution, possibly even diag-
nosing the causes of potential algorithm failure. If possible, one would like
to carry out interferometric deformation measurement in the following order:
first, generate a realistic “stiff” (low order polynomial) deformation field, and

second, deal with non-observable components.
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Expression of a final result in invariant terms is the ideal goal. Simply
stated, successive solutions for the same deformation should yield identical
solutions. Results should not vary by a polynomial offsets in the nature of

equation 3.12.

Surprisingly, such an algorithm does actually exist. Solution of the prob-
lem on the above stated terms requires a generalized form of linear regression
analysis: simple matrix inversion solutions do not suffice for the problem
considered here. The more general method of singular value decomposition

(SVD) does however yield a textbook solution.[PRES 92]

3.4 Singular value decomposition

The method of singular value decomposition (SVD) has several advantages
which may be demonstrated by example.[PRES 92] First and foremost, one
must express a (non-negative semi-definite) quadratic form as x- statistic for

linear regression analysis:

x = ((¢(z,y) — do — k(z,v) - Pn(z,y))?) (3.18)
Field ¢(z,y) corresponds to phase angle as measured in an interferogram
image. Vector field E(z, y) is just the spatially varying sensitivity vector
of equation 3.3. Optimization is carried out, respecting as parameters base

offset @9 and coefficients of polynomial deformation ﬁN(x, y). Angle brackets

(-..) denote statistical expectation in the ordinary sense.
One optimizes such a quadratic form, in the normal fashion, as laid out
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in Appendix B.4. The greatest complication here, from a computational
standpoint, involves ordering parameters in sensible fashion. With view to
sequential storage and processing in the C language,[KERN 88] a most sen-

sible order may be prescribed as follows.

The polynomial deformation field may be expanded as a sum, over a
vector basis (€, é;, é3) = (é;, €,,€.), as well as powers of z and y:
- n=N m=n i=3
Py(z,y) = Z Z Z Poni z(n—m)ym & (3.19)
n=0 m=0 i=1
The index ¢ runs fastest and n runs slowest in evaluation of this sum. The
actual deformation fit functions may now be expressed as a set, in terms of

polynomial displacement coefficients P,,;, and sensitivity vector field (equa-

tion 3.3) components k;(z, y), with ordering imposed by sum 3.19:
fnmi(xv y) = x(n—m)ym : k,’(:t, y) (320)

Finally one has only to express functions as a contiguous linear vector:

1 k=0
fi(z,y) = { fami(z,y) k= 1+ %n(n +1)+3m+1i (3.21)
i€{1,2,3} &me{0,...,n}

The resulting curvature matrix C and data vector ¥ may be expressed in

the normal fashion of linear regression:

Cii = (fi(z,y)- fi(z,y)) and v = (é(z,y)fi(z,y)) (3-22)

The problem cannot however be solved in the normal fashion: curvature

matrix C cannot be inverted. More subtlety is required here, but simple

52



matrix methods do suffice for almost magical recovery of all stability, with

full analysis of the remnant instability space.

Symmetry, C;; = Cj;, shows that C may be diagonalized. The kernel of
C is spanned by eigenvectors with vanishing eigenvalues. All geuged swing
stage transformations are included here. Data instabilities may well add to
the kernel’s rank. In computational terms, any sufficiently small eigenvalue

should raise concern.

The problem inherently contains a generating source for functions of pre-
cisely such description. The dramatic example arises as fit polynomial order
is increased; existence of a polynomial of order at most /N, which may be
approximated by ¢¥(z,y) - d-;i.,g(:z:, y) for some nontrivial function ¥(z, y), will

correspond to an eigenvector with small eigenvalue.

Fortunately, singular value decomposition allows for identification of such
problems, and experiment in fact shows that under reasonable interferometer
arrangements, such terms do not become significant until fits of at least 4"
order are attempted over entire images. Localized solutions of 1** order are

stable even on relatively minor regions of an image.

Solution of the singular value decomposition requires application of a final
inference. The optimization solution vector solves, as in the case of normal

linear regression, ¥ = Ca. Any vector £ in the kernel of C thus satisfies:
Vi CE=0 — Z£-7=iCd=aCZ=0 (3.23)
Plainly stated, vector ¥ has no component tangential to the kernel of C.
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One may therefore limit the original curvature matrix C and vector ¥
by omitting the kernel. Solution of the optimization problem reduces to
performing inversion on the nonsingular remnant. One thus finds solution

vector @ which satisfies generalized linear regression equation:

Vi Ci=0 — ¥ =C(@+7) (3.24)

The process of singular value decomposition (SVD) outlined in the fore-
going demonstrates the theoretical utility required for inversion of interfer-
ograms into displacement fields. Practical implementation of such methods
however involves more complexities. Setup and inversion of the experimen-
tal problem of this thesis cannot be accomplished directly in finite preci-
sion math from the derivation presented in this section. Some computa-
tional refinements are required if one wishes avoid recourse to extended pre-
cision arithmetic. Calculations must be arranged so that floating point sums

and differences avoid information loss. The interested reader is referred to

Appendix C.1.

3.5 Source geometry adjustment

One may analyze interferometer precision from the perspective of effects in
SVD linear regression. Errors may be classified by origin into a pair of cate-
gories. The first category entails variation in experimental geometry, due to
physical effects during acquisition of a video image pair. Induced errors affect

only observations taken from a particular pair. Causative factors here include
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vibrational displacements and thermal expansion or contraction. The second
category derives systematically from errors in specification of experimental
parameters. These errors derive from apparatus measurement imprecision.
Geometric deviation from assumed values induces errors in all interferometer
observations. Both error classes relate measurably with geometric interfero-

gram perturbations.

3.5.1 Geometry variation between images

The singular value decomposition method of equation 3.18 contains a hidden
geometry correction as follows. By presumption, the constant phase offset
term ¢y, in the base SVD problem, serves primarily for identification of the
central maximum fringe, where phase ¢(r,y) vanishes. The solution should
return, within error, a whole wave number. In practice, however, any slight

motion of a scattering source target or laser aim can cause a non-integral

phase shift.

The mathematics of source and laser displacement extend the sensitivity
vector derivation of equations 3.1 through 3.4. In the general case at hand,
one varies the viewed surface, and as well, varies laser and scattering source
locations. Continuing to label the scattering sources by their location vectors
A& B and simplifies the respective laser sources to point emanations from
L & Lp, one may express for any point 7 on the deformation surface, the

relative phase through the entire optical path:
A

5=® = (A-Li+|F-A) - (1B~ Ll +|F- B|) (3.25)
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A I T S
00 ~ [57F-Z8(A+ B)- A, - 38(A-B)- &, (3.26)
+ 6(A—L4)-As— 6(B-Lg)-Ag;
i - fzA 7B
7= 4| |7- B
5, = =4, ,7=8B
F— A  |7— B|
Ay = A=La
|A — L4
Ay, = B—Ls
|B — Lg|

Several new and interesting consequences appear in such expression of the
geometric variation. Most immediately, however, one recognizes in the first
term the familiar sensitivity vector k= 27”5,. Other contributions derive

from new vector elements.

As one expects, the A, term shows symmetric motions of the sources to
be indistinguishable from converse global vector translations of the entire
deformation surface. One might also suppose that antisymmetric motions
of the sources be indistinguishable from complementary global rotations and
dilations. Expansion of related transformations shows limited agreement

with this hypothesis.

Rigid rotations about the centroid of the scattering sources may be ex-
panded as inclusions in the A, term of equation 3.26. One may verify such a

claim by noting the following identity for cross-product rotation generators:

-

[(A-B)x R]-A, = [Rx(2F—A-B)]-A, (3.27)
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The related dilation, however, conceals a decoherent effect. Identities for
translation and rotation terms, described above, derive from the existence of
global rigid transformations (Killing vectors) moving the entire apparatus.
The dilation term does not preserve experimental geometry, in that lengths
measured in laser wavelengths do not remain fixed. One may, conversely,
view the dilation in terms of an equivalent perturbation of laser wavelength,
followed by rigid deformations of the types described in the preceding. In
this view the adjustment to laser wavelength is as follows:[JONE 83]

§Ap _ §|A - B
A |A - B|

(3.28)

Since optical paths vary with location 7 on the deformation surface, the A,

dilation term does indeed introduce decoherent relative phase errors.

One finally notes that the last pair of terms shows coherence entirely
independent of surface location 7. One may interpret the net contribution as

a deviant global perturbation of the observed phase offset:
Gdev ~ 8(A~La)- Ay — 8(B—Lp)-Ap (3.29)

One may recognize such variation of phase offset as an included function in
the SVD fit of equation 3.18. Microscopic motions of the optics with respect

to scattering spot location are thereby already reasonably treated.

From the standpoint of experimental design, one infers, in view of equa-
tion 3.26, that the effect of the 5, dilation term should be mitigated by

mounting sources rigidly onto the same structural base. Other changes in
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setup, including motion of that structural base with regard to the viewed
deformation surface, as well as motion in the optics (laser mount, splitting
reflector, etc.) are well circumscribed by the 5,. translations, 5, rotations,

and A a & A B phase offset terms.

In light of mounting constraints and the real distances involved, one must
rely on the predictability of these effects, in that none of the causative vari-

ations can be entirely ruled out.

3.5.2 Geometry variation from specifications

As demonstrated above, most variations in experimental geometry, which
occur during the course of an interferometer observation, are already theoreti-
cally addressed in the SVD fit. One might reasonably ask whether systematic
offsets in source geometry may be dealt with directly by an interferometric
technique. Such a method would allow for fine tuning of the interferometer’s
geometric paramaters. One could thus account for variations which remained

constant throughout sets of experiments.

Such measurement tuning does in fact become possible by extension of
the SVD linear regression of the last section. By extension of the the basis
function set to include gradient terms along the lines of the second order
correction of equation 3.5, one may write a x- statistic expanding that of

equation 3.18 in the following form:
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X = { ( (3.30)
é(z,y) — & — (Fa~75) - flz.y)
_%f(xvy) (1-F4a®7a)d
-+ fz.y)1-Fe@7ip)b
)?)

The non-negative semi-definite quantity of equation 3.30 would be equiv-
alent to that of equation 3.18 but for the augmentation of the pair of vector
parameters @ & b and their respective functions. The new least squares

problem expressed in equation 3.30 is not however linear. The last lines of

equation 3.30 contain quadratic terms in fit parameters.

One may however express the problem as an iteration which is linear at

each step, by eliminating the nonlinearity as follows:

Xk = (( (3.31)
$(z,y) — B — (Fa—75) - fi(z,v)
-+ fer(z,y) (1 = Fa ® Fa) @k
— & fei(z,9) 1 - Fa ® Fa) b
)?)
With natural choice ﬁ;(z, y) = 0, one may acquire a solution sequence, by

iterative minimization for a succession of ordered sets. The algorithm obtains

a solution sequence of the form: {{x, P, ﬁ, ax, Ek) : k€ W}
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One would like to interpret new solution vectors @ & b as corrections to

the respective source locations A & B:

7F— (A -a) = = =
—_—— ~ a4+ —1-F4QT4)a 3.32
(=2 1+ (1-Fa®74) (3.32)
7F—(B+b) = 2 = .
—_—~ T ——1—7’ ®1‘ b
F— (B 1 D) 8- ;7 (1-7a®fg)

Note the adjustments A’ = A— @ & B’ = B + b indicated by the asymptotic
forms. Interpretation of the new parameters @ & b thus becomes transparent:

they do indeed amount to linearized corrections for source locations.

Through application of the prescribed adjustments to source locations,
one should in theory improve base measurements for the sources, and improve
interferometer precision. Such a measurement technique shows the promise
of utility, in that base measurement of scattering source location involves the

awkwardness of measurement around mounted structures.



Part 11

Experiments
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Chapter 4

Image processing

4.1 Intensities

Laser speckle intensity distributions are easily measured from video images.
Consistency of theoretical distributions expressed in equations 2.2 and A.39
may thus be tested against experimental observation. Raw image intensity
histograms (with adjustment for only video offset) need only to be viewed.
Histogram distribution characteristics give a good test for agreement between
theory and experiment: Comparison of peak locations and magnitudes, as
well as low and high intensity drop-off characteristics, may be compared. All
comparisons may further be made in native relative intensity measure. The-
ory makes no use of absolute intensity values, with distributions depending
solely on relative statistics for observable parameters. These tests are purely

statistical and physically trivial.

The limiting case where speckle size at least eclipses pixel dimension was
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Figure 4.1: Speckle pattern: single scattering source, ~ 45° incidence

well beyond the resolution of the actual interferometer. Equivalent speckle
patterns were generated by projecting a red laser diode through translucent
tape onto a white wall. A 35mm lens was unscrewed on a CCD camera to
simulate microscope magnification, for generation of images resembling figure
4.1. In that image, the field of view has dimension of roughly 2mm, and was

illuminated by a source approximately 1.5m away.

Experimental intensity histograms, in figures 4.2 and 4.3, show good
agreement with theoretical curves for relative intensity. One may com-
pare respective parameters, via equation 2.2, for polarization degree. Po-
larized scatter (figure 4.2 with 1 = 15.8 & o = 12.0) gave principal in-
tensities i; = 109 & it = 4.9. The nonpolarized case (figure 4.3 with
pu = 30.0 & o = 21.6) gave corresponding intensities i; = 17.9 & i+ = 12.1.
Polarization degree may indeed be deduced from intensity histogram param-

eters.

Parameter measurements indicate that, even without external polariza-

tion filters, laser light scatter seems partially polarized. While this may be
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Figure 4.3: Nonpolarized intensity vs. eqn 2.2 with . = 30.0 & ¢ = 21.6

true, investigation shows theoretical curves to be insensitive under small vari-
ation of ¢, & ir. One infers that polarization degree cannot be measured

with any real precision from such histograms.
The result corresponding to a badly blurred view of a similar optical

setup is shown in figure 4.4. Statistics u = 108.9 & o = 36.4 generate an

asymptotic gamma function with a = 15.8 & 8 = 9.14. The gamma fit is
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Figure 4.4: Blurred intensity vs. eqn 2.1 with 4 = 108.9 & ¢ = 36.4
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Figure 4.6: Experiment: dual sources vs. eqn 2.1 with u = 34.4 & ¢ = 13.0

65



quite reasonable and the elevation of the a parameter agrees well with theory.

The experimental interferometer was examined under illumination by a
single scattering source, and under illumination by both. Identical 50 x 50
pixel® regions of the deformation surface yielded intensity distributions shown
in figures 4.5 and 4.6, respectively. Figure 4.5 with 4 = 14.23 & o = 5.63
has a = 6.4 & 8 = 2.2, whereas figure 4.6 with u = 34.4 & o = 13.0 has
a=171& B =4.9. The asymptotic gamma function hypothesis of equation
A.39 agrees well with figures 4.5 and 4.6.

While pixel dimension, polarization degree and angle of incidence affect
precise details of the result, theory does predict that the gamma density
parameter a value for the single source should be lower than that for dual
sources. The respective values a = 6.4 (single source) and a = 7.1 (dual

sources) agree with theory on this point.

4.2 Filters

One may readily produce experimental evidence for the theoretical claims,
from subsections 2.1.3, 2.1.4, 2.1.5 and 2.1.6, regarding cross-correlation er-
rors. First, the prediction of equation 2.23 should be tested, that blurred
images might produce cross-correlations of sharper contrast. Second, the
distribution of the linearized error term of equation 2.9 should be examined
for its appearance in real experimental data. Third, cross-correlation vari-

ability has to be demonstrated near local maxima, in order to justify use of
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Figure 4.7: Blur effect: video blur enhances cross-correlation contrast

image filtering in identification of local maxima.

4.2.1 Video blur effect

The effect of real optical blurring may be simulated by applying a Gaussian
blur filter to a pair of raw speckle video images. With subsequent cross-
correlation of respective raw and filtered image pairs, results may be com-

pared, as displayed in figure 4.7.

The cross-correlation of blurred images shows contrast improvement over
the cross-correlation of the original raw images. It also shows increased noise
levels in regions of low cross-correlation, as predicted by equation 2.9. Despite
increased noise, the improved contrast does however offer improved resolu-
tion, for isolation of local maxima from noisy neighbouring data. Since local

maxima contain all the real information in interferogram fringes, blurring

67



does improve data recovery.

One obtains better contrast yet when optics rather than digital images
are blurred. Propagation of errors from signal digitization and processing
roundoff is mitigated. All experimental interferograms used for fits in section

5.3 were generated with a slight but deliberate optical blur.

4.2.2 Cross-correlation sampling errors

Equation 2.1.3 makes a suspect claim: the linearized error might not apply
with complete generality for all cross-correlated samples. One may check
its verisimilitude by testing it against the entire set of cantilever data. De-
fine random variable @ by the ratio between actual and linearized variance
described in equation 2.11. Expressly one may write:

N o}
MR h

The distribution of Q@ was tested against all the cantilever data, with data
binned vertically for each horizontal pixel count. All interferogram images
were used, with only edge data being omitted from the enumeration. The

resulting histogram appears in figure 4.8.

The mean value Q =~ 80% compares reasonably well with unity, indi-
cating agreement with the linearized error estimate. One has also, for the
case with total pixel overlap, good agreement with the minimum dimension
estimate of equation 2.16. Experimental 8 = 2.2 agrees well with theoretical

x*-value 8 = 2; standard deviations o = 28% &30% (experiment & the-
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Figure 4.8: Experimental distribution for Q = ¥ (—1;%%-)3 (85 pixel samples)

ory) agree correspondingly well. The remainder of data tabulated in table
4.1 were enumerated in much the same manner. Data samples were however

selected sparsely, avoiding overlap cross-correlation in the sense of equation

Sample Vthy | Vexp | Bexp | texp | Othy | Texp | o — Oerr
4 3| 34| 1.7 79 65 60 -7
6 51 50| 2.0 82 52 52 0
8 71 6.1 2.3 84 45 48 +7
10 9! 74| 24 85 40 44 +11
12 11| 84| 2.6 85 36 42 +15
14 131 95§ 2.7 86 34 39 +17
16 15(103| 29 85 31 37 +21
85 (min v) 171 154 | 2.2 82 28 30 +5
85 (trace v) | 251|154 | 3.2 82 23 30 +27
85 (max v) 841154} 10.9 82 13 30 +133

Table 4.1: Experimental distribution for Q = % (Tf}-’;%); (various samples)
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2.13. Results show good agreement with the prediction of subsection 2.1.3,
that @ follow a x*-distribution, and with degrees of freedom at approximately
the expected number. Standard deviation estimates o agree, as one expects,

even better than sample v & 3 parameters.

With all the underlying approximations, one must conclude that theory
and experiment agree far better than one might have expected. Equation
2.10 indicates that the approximation should lack accuracy with 5 x 5 cross-
correlation samples. Further precision loss derives from assigning vertical
lines a single relative phase value. One must clearly regard with skepticism
the minimum dimension approximation of equation 2.16. As a result, exper-

iment falls closer to theoretical approximation than one might have hoped.

Due to good agreement with experimental observation, one might find
a more practical purpose, for distributional analysis of quantity Q. Doubts
regarding clear identification of pixel subpopulations, corresponding to fixed
relative phase angles, may be resolved by observing the distribution’s
tendency to spread. Thus @, v and 8 give measure, in some sense, to the
quality of discrimination between subpopulations, corresponding to differing
cross-correlation values. In the case of table 4.1, for example, the iden-
tification of vertical lines as single phase bins lacks perfection; some of the

observed deviation from theoretical values does stem from lack of clean phase

discrimination.

Since figure 4.8 and table 4.1 agree well with the linearized error esti-

mate of subsection 2.1.3, one infers that the linear estimate of equation 2.9
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applies to experimental cross-correlation interferograms. One may moreover
conclude that the optimal assignment of statistical weights as calculated in
equation 2.20 comports with experimental statistics; optimal deformation fits

result when only data from local maxima are utilized.

4.2.3 Location of maxima

Based on the foregoing, one may streamline enumeration of phase informa-
tion. Identification of local fringe maxima is theoretically simple when viewed
through equations 1.2 and 1.5. While cross-correlation values are elsewhere
subject to smooth variability function x({i4}, {i5}), local maxima always
correspond identically to p = 1. Experimental observation agrees on this
point. Local maxima may be identified to constrained regions by apply-
ing an identical optimal global threshold to all cross-correlation images, as

depicted in figure 4.9, with above threshold maxima marked in black.

Signal noise about local maxima derives from subpopulations, with cross-
correlations near unity, neighbouring on those maxima. One would like to
filter out the noisy boundary regions leaving only local extrema. Note that
any filter stripping images for these central maxima must necessarily induce
some statistical bias. While better filters do exist, a simple method with

acceptable bias presents itself.

The median filter simply and naturally selects spatially localized domi-
nant populations. The corresponding bias respects tight bounds, as demon-

strated in Appendix A.2. The image may be thresholded as before, with a
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single optimal global threshold, yielding far cleaner results, as depicted in
figure 4.10, with above threshold maxima again marked in black.

One may further smooth images with a blur filter, as done in the next
section of this research. Blurring however further compromises amplitudes
near local maxima. The advantage of a single global threshold is lost as the

cost of further smoothing.

The theoretical value for such an optimal threshold may be evaluated in
this rare instance. Derivation and discussion of the empirical effects of this
result will follow in section 5.3. Experimentally it was found that intuitive

notions of optimality suffice in setting a global threshold.
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Chapter 5

Deformations

5.1 Model data

The algorithm development stage of the research involved coding and test-
ing of the complex singular value decomposition (SVD) methods outlined
in subsection 3.4 and Appendix C.1. The process required generation and
testing of software against model data. Test simulations included rigid trans-
lations and rotations, as well as polynomial deformations. Results included
matching input and output interferograms; more precisely, input and output
deformations were compared, and the number and nature of (singular) kernel

vectors were examined for consistency with theoretical claims.

Interferometer parameters were identified and structured for computa-
tional utility. Imposition of an orderly approach allowed for testing the more
exotic source geometry corrections described in section 3.5. Algorithms for

geometry adjustment were tested with simulated rigid transformations.
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5.1.1 Rigid translations

Figure 5.1: Translation: éz = 2um

Figure 5.2: Translation: dy = 2um

)| (

Figure 5.3: Translation: 6z = 2um
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5.1.2 Rigid rotations

Figure 5.4: Rotation: 8, = 20nradians

Figure 5.5: Rotation: 6, = 20nradians

Figure 5.6: Rotation: 6. = 20nradians
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5.1.3 Rigid simulations

Figures 5.1 through 5.6 were generated by forward modelling polynomial
deformations, viewed through a particularly simple interferometer arrange-
ment. The arrangement was chosen principally to illustrate the effect of the
swing stage deformation. Note the similarity of figures 5.2 and 5.4. The
images and all underlying phase information are in fact identical. One may
moreover scale both deformations by any small constant, to yield yet another
pair of indistinguishable interferograms. The effect is of such a fundamental
nature. One may nonetheless study the inversion problem via singular value

decomposition as presented in section 3.4.

In order to preserve generality and utility of the method, a complete set
of parameters was constructed to define the interferometer. The general in-
terferometer was defined through a text interferometer (I/FM) data file. The
file was formatted as shown in figure 5.7. An IFM file contains laser wave-
length (mm), six scattering source (spot) coordinates (mm), eleven camera
calibration parameters, two image pixel spatial dimensions (mm), and input
video array width and height (pixels) and (output) perspective corrected ar-
ray width and height (pixels). All distances are assumed to share consistent
reference frame and units. In the example, the reference frame is left handed

and all measurements are in millimeters.

Using the exact interferometer parameter file of figure 5.7, the limits of

singular value decomposition techniques were readily tested. Each of the
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0.0006328 / /laser wavelength

+75.00000 //spot A - Xx-position
0.0000000 //spot A - y-position
+100.0000 //spot A - z-position
-75.00000 //spot B — X-position
0.0000000 //spot B - y-position
+100.0000 //spot B - z-position

136.428321 //afRcam|0]
70.798688 //afRcam|[1]
188.383081  //afRcam(2]
-1.165873 //afEcam(0]
-0.617763 //afEcam(1]
-2.096616 //afEcam[2]

319.500000 //Pixel - x-centre
239.500000 //Pixel - y-centre
1192.765563 //Pixel - Xx-magnification
1192.765563 //Pixel - y-magnification

2.652759  //fChi
0.4000C9 //Grid x-gap
0.400000 //Grid y-gap
512.0000 //Grid width
512.0000 //Grid height
640.0000 //Image width
480.0000 //Image height

out pixel x-dimension
out pixel y-dimension
out array in pixels
out array in pixels

in array in pixels

in array in pixels

Figure 5.7: Model data interferometer parameters in /FM file format
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images in figures 5.1 through 5.6 were subjected to the general inversion
technique with first and second order polynomial deformations. With input
data rounded to single precision floating point, fits returned parameters iden-
tical to the generating inputs, with errors at ~ 1075, near the limit of single

precision floating point accuracy.

The swing stage deformation was eliminated from fit solutions, to yield
“reduced equivalent” deformations, by the algorithm of equation 3.13. Vec-
tors in the kernel of the curvature tensor, corresponding to the null eigenvec-
tors, were tested for consistency with the gauged swing stage hypothesis by

dividing them out by the same algorithm.

A fictitious inner product was devised to test the residue outside the
gauged swing stage function span. In order to keep the result independent
of fit region and data set, one could make use of interferometer design order
parameters to define a test inner product for polynomials (in the form of

equation 3.13) as follows:

n=N m=ni=3

<P.N,Q.N) = Z z Z |§1" nns Qnmi (5'1)
n=0 m=0 i=1
where § = (4~ B)-.x (‘é + B)
2|4 - B

The residue for a fit was defined as the average value, for vectors Ky spanning
the fit kernel, of the quantity (EN, I-c‘N) / (I? v K ~), where Ey is the remainder

when the division procedure 3.13 is applied to K.

All fits on theoretical rigid deformations met expectations, with fit residues

at the limit of double precision floating point accuracy (~ 10~'?), indicating
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stable algorithm success, and as described in the foregoing, floating point
precision accuracy (~ 10~°) results on floating point precision data. Param-
eter agreement from the test fits indicated that the algorithm was stable and

workable on extremely clean data.

One could simulate experimental conditions by adding speckly noise. Two
sets of tests were conducted to investigate the effect of data noise. Both tests
led to roughly the same conclusion: Algorithm stablility depends strongly on

clean data.

A simple noise simulation amounted to rounding input data to 8-bit frac-
tional accuracy (to the nearest 256'"). First order polynomial fits remained
reliable to ~ 1073 whereas second order fits deteriorated sharply in consis-
tency. While parameter matches deteriorated, interferograms generated by

original and fit parameters continued to be in good agreement.

The second simulation amounted to a test of the phase-unwinding refit
algorithm per equation 2.26, simulating experimental refit conditions as fol-
lows. The phase offset term ¢ of equation 3.18 was intentionally altered by
1/4 wave. The second test gave results similar to those of the first. First
order fit consistency survived the noise, while second order fit consistency

deteriorated.

Results agree fairly well with expectations. The algorithm under current
study requires a source of clean input data. Noise gives rise to instability of

the SVD algorithm, especially as the number of fit parameters increases.
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Figure 5.8: Cantilever interferogram (40g) — extrapolated theoretical

5.1.4 Polynomial deformations

More realistic deformations could be investigated as well. With regard to
experimental tests in the next section, one chose to view the theoretical
deflection of a simple cantilever, fixed at one end and loaded at the other. The
interferogram in figure 5.8 results, from precisely the measured experimental

interferometer geometry, described in the IFM data file of figure 5.9.

The non-ideal cantilever grid shape, with real dimensions 140mm x 25mm

has width:height ratio of 700 : 125, which presents a serious problem. All
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0.0006328
+132.00000
-2.50000
+73.00000
-125.00000
-2.50000
+79.00000
136.428321
70.798688
188.383081
-1.165873
-0.617763
-2.096616
319.500000
239.500000
1192.765563
1192.765563
2.652759
0.200000
0.200000
700.0000
125.0000
640.0000
480.0000

/ /laser wavelength

//spot A
//spot A
//spot A
//spot B
//spot B
//spot B

/ /afRcam(0]

/ /afRcaml1]
//afRcam(2]

/ [afEcam(0]
//afEcam(1]

/ /afEcam(2]
//Pixel
//Pixel

/ /Pixel

/ /Pixel
//fChi
//Grid x-gap
//Grid y-gap
//Grid width
//Grid height
//Image width
//Image height

81

X-position
y-position
z-position
X-position
y-position
z-position

x-centre
y-centre
x-magnification
y-magnification

out pixel x-dimension
out pixel y-dimension
out array in pixels
out array in pixels

in array in pixels

in array in pixels

Figure 5.9: Cantilever interferometer parameters in /FM file format

attempts failed to perform the general SVD fit for a cubic order deformation

in the form of equation 3.19 on the peculiar experimental grid shape.

By extrapolating the grid to square (700:700) shape, however, as displayed
in figure 5.8 the inverse problem yielded readily to the theoretical method, as
before, with single precision floating point input data. The parameter match

from the fit is practically perfect, as tabulated in table 5.1. Coefficients in



Coefficient | Theory | SVD Fit | Difference
10° - ¢g/27 | -0.003 0.030 0.033
10° - Py 0.000 0.000 0.000
10° - Pyg; 0.000 0.000 0.000
10° - Pygo -4.964 -4.965 -0.001
10% - Pygg 0.000 0.000 0.000
102 - Py 0.000 0.000 0.000
102 - Pygy -10.197 | -10.197 0.000
10? - Pyyo 0.000 0.000 0.000
102 - Py, 0.000 0.000 0.000
102- Pyya 0.000 0.000 0.000
10% - Pagg 0.000 0.000 0.000
101 - Py, 0.000 0.000 0.000
10% - Pygo -3.615 -3.615 0.000
10% - Py 0.000 0.000 0.000
10% - Py, 0.000 0.000 0.000
10% - Py 0.000 0.000 0.000
10% - Pagg 0.000 0.000 0.000
10% - Pagy 0.000 0.000 0.000
10% - Pagy 0.000 0.000 0.000
106 - Py 0.000 0.000 0.000
10° - P3g, 0.000 0.000 0.000
106 - Pygp 1.724 1.724 0.000
106 - Payo 0.000 0.000 0.000
108 - Py, 0.000 0.000 0.000
106 - Py 0.000 0.000 0.000
10 - P3yq 0.000 0.000 0.000
106 - Pz 0.000 0.000 0.000
106 - Pypp 0.000 0.000 0.000
106 - P33 0.000 0.000 0.000
106 . P33, 0.000 0.000 0.000
106 - Pyzp 0.000 0.000 0.000
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the table are corrected for the elimination of the 6 gauged swing stage defor-
mations via the algorithm of equation 3.13. By experimental design, none

of the swing stage deformations interfere with observation of an expected

deformation mode.

One may draw a pair of conclusions from the theoretical polynomial fit.
First, one could in theory solve the general inverse problem, from interfero-
gram to deformation field, for deformations up to cubic order. This would
be possible despite the 6 dimensional SVD kernel, subject to a few provisos.
The data grid must have dimensions of sufficient size, and the interference
has to be clean of noise to (~ 10~°) single precision floating point accuracy.
In light of these constraints a second more practical conclusion follows. The
real cantilever deformation should fail to yield to the full cubic fit, due to
higher order contributions in a real deformation, due to the limitation of grid

height, and due to statistical noise in the real data.

5.1.5 Source geometry algorithms

Adjustments to interferometer geometry outlined in section 3.5 were exam-
ined in detail with simulated and experimental data. The possibility of de-
viant non-integral wave-number phase offsets, in the sense of equation 3.29,
was reflected consistently in all algorithm tests, on both simulations and real
data. Deformation polynomial solutions consistently included deviant phase
offset terms. Source geometry tuning, in the sense of equation 3.31, was

tested principally on simulations, and only in passing on real data.
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In light of the limitations posed by SV D methods under experimental con-
ditions, poor results might be expected from the source geometry adjustment
algorithm, as prescribed in equation 3.31. Surprisingly, quite the opposite is
found. Example tests indicated that the method returned consistent and sta-
ble results on clean simulated data, and with a single interferogram sufficing

for performance of the tuning procedure.

Rigid motions of a deformation surface are relatively easy to arrange;
the technique outlined in equation 3.31 may be employed with polynomial
deformations of first order. The first nontrivial terms in the solution se-
quences for vectors & & b might be interpreted as geometric corrections to
scattering source location, in the sense of equation 3.32. One may apply the
corrections directly to the interferometer parameter settings outlined in the

interferometer’s IFM file.

Error tolerance of the procedure was quite remarkable, with spot position
deviations of 10mm magnitude vanishing rapidly in the iteration. Interfer-
ometer parameters reflected in figure 5.7 were perturbed from those used
in the model simulation. Deformations corresponding to interferograms of
figures 5.1 through 5.3 were tested as interferometer geometry tuning data,

to recover the correct interferometer source geometry. Iteration results are

displayed in table 5.2.

Subsequent attempts were made to tune experimental interferometer ge-
ometry for the cantilever. The experimental tests on real empirical data

proved less successful. Scattering source locations did in fact converge with
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Tuning (mm scale) via translation dz = 2um (figure 5.1)
iteration k Ot 4 dya 0zy dzp oys dz2p
0 | +10.00 | -10.00 | +10.00 | -10.00 | +10.00 | -10.00
1 -239 | +1.00 | +4.76 | -2.82} +3.09| -1.31
2| +0.05( +0.10| +0.16 | +0.03 -0.10 | +0.36
3 0.00| 0.00 0.00 ( 0.00 0.00| 0.00

Tuning (mm scale) via translation dy = 2um (figure 5.2)
iteration k dT 4 0Ya 8z4 dzrpg dym dzp
0| +10.00 { -10.00 | +10.00 | -10.00 { +10.00 | -10.00
1 -6.45 | +3.63 | +007 | -440| +1.72| -1.91
2 -037( +0.12} +033| 0.00| +0.04{ +0.20
3 -0.09 | -0.02 0.00| -0.05 -0.01 | -0.05

Tuning (mm scale) via translation §z = 2um (figure 5.3)
iterationk o0z 4 dya 024 dzg oys 4z
0{ +10.00 | -10.00 | +10.00 | -10.00 | +10.00 | -10.00
1{ +9.48 | +2.00 | +10.06 | -6.95} +1.23 | +0.99
2| +0.76 | -0.18 -2.26 | +1.21 -0.05 | +0.76
3| +0.02| 0.00 -0.04 | +0.03 0.00{ 0.00

SA =

—

0B =

(-15.5,+1.7, —18.9) mm

(+27.8,—-7.0,—14.4) mm

Table 5.2: Geometry tuning (mm scale) by rigid translation interferograms

stability to new values, but with impossibly large vector displacements:

Displacement magnitudes from measured source positions A and B were
clearly well outside of any reasonably expected (millimeter scale) error range.
One concludes, that limitations posed by the real cantilever data ruled out

source geometry tuning, in this experimental instance.
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5.2 Experimental data analysis

Evaluation of a deformation field may be carried out via a well defined pro-
cedure. Since much of the analysis involves image processing, the algorithm
may be outlined best by demonstration. As will become evident, some min-
imal apriori knowledge of the nature of a deformation field is required for
generation of a precise solution. The nature of this knowledge is limited
though to recognition of phase gradients in an interferogram. Outside of this

step, processing is primarily of a mechanical nature.

One begins processing with a camera view of the experimental setup as
appears in figure 5.10. The camera view is subject to perspective correction
and as well to optical aberrations. One may correct the view through use
of a calibration grid, via polynomial correction or as was the case in this
experiment, via proprietary camera calibration. The calibrated image may

be resampled bicubically to give a view such as shown in figure 5.11.

The principal advantage of the proprietary method ( VisionSmart™ 2000)
is that camera location and orientation derive as parameters from the opti-
mization. In this manner one may measure apriori camera location (optical
centre) and compare with optimal values as a check on measurements. Since
all measurements must be rationalized into a single (left handed) coordinate

system, one finds this feature quite advantageous.

For the current examination, one may compare figures 5.12 and 5.13. The

washer indicates the coordinate origin; the 5g weight demarks the intended
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Figure 5.10: Camera calibration (raw)

Figure 5.11: Camera calibration (perspective corrected)

Figure 5.12: View orientation (raw image)

Figure 5.13: View orientation (perspective corrected)
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top left image corner. Allen keys point out scattering source locations, and
the bolt points back to the camera. The oriented image, figure 5.13, deems
right and down as respective positive x and y directions, with upward positive
z direction completing the requisite left-handed coordinate system. The check

on camera location agreed with rough measurements to within 2mm.

Data analysis requires a pair of image captures via video frame grabber.
The first capture comprises a reference image. The second capture measures
the deformation. Such an ordered image pair is shown in figures 5.14 and
5.15. Pearson’s cross-correlation between the image pair yields a resulting

interferogram depicted in figure 5.16.

The cross-correlation is then corrected for perspective via bicubic interpo-
lation. The result is shown in figure 5.17. One could also perspective correct
reference and video images before cross-correlation. Since edge effects and
resampling cause slight statistical variation in observed cross-correlation, raw
image data (figures 5.14 and 5.15 for example) should be used, rather than
perspective corrected resampled images, for the purpose of cross-correlation

image computation.

Simple image processing filters are applied to the cross-correlation image.
The problem of smoothing an image with variable noise levels has a standard
solution: a 7 x 7 median is applied to remove spike noise. A subsequent. radius
5 Gaussian blur removes local statistical variation. These filter parameters
were fixed for the entire data set. The resulting image is shown in figure

5.18. While contrast is reduced, observable interference fringes do appear to
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Figure 5.14: Cantilever reference image (Og)

Figure 5.15: Cantilever video image (15g)

Figure 5.16: Cross-correlation (15g) with (5 x 5) samples
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Figure 5.17: Cross-correlation (perspective corrected)

Figure 5.18: After 7 x 7 median and radius 5.0 Gaussian
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Table 5.3: Cantilever extremum filter

Figure 5.19: Identification of local extrema



vary far more continuously.

Fringe patterns of the type shown in image 5.18 may be searched for
local extrema by applying a nonlinear filter. For the cantilever, one expects
vertical banding and searches for maxima and minima via a filter of the type
shown in table 5.3. The filter works as follows: when overlaid on the image,
the central pixel is flagged as a local maximum whenever any pixel overlaid
by ‘+’' is above average and every pixel overlaid by ‘-’ is below average on
that region; if exactly the opposite is true, the central pixel is flagged as a
local minimum; in either case pixels overlaid by ‘0’ are not checked for parity
with regard to the average. Application of this filter to figure 5.18 yields
local interference extrema as displayed in figure 5.19. These results do show
good agreement with theory, in that locations found for local minima are far

more poorly defined than are those corresponding to local maxima.

The researcher at this point must intervene, by isolating the well defined
local maxima, and rejecting noisy regions as exist in the left half of figure
5.19. Finally, a gradient is chosen to rank the fringe order, as is shown by the
almost vertical grey-level bands, in figures 5.20 and 5.21. The latter restricts

the former to the cantilever’s right half image.

One next performs the primary data fit, on fringe maxima flagged in
figures 5.20 and 5.21. Fits run on the data set fall roughly into two classes:
cantilever specific fits and general singular value decompositions. Results
of the respective fits are then forward modelled, to simulate interferograms

corresponding to optimal fit functions, as depicted in images 5.22 and 5.23.
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Figure 5.20: Gradient by grey shade on local maxima (full image)

Pl

Figure 5.21: Gradient by grey shade on local maxima (right half image)

!

Figure 5.22: Theoretical interferogram: primary (maxima only) cantilever fit

Figure 5.23: Theoretical interferogram: primary (maxima only) SVD fit
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Figure 5.25: Filtered result with biquadratic scale and offset to cantilever fit

Real experimental fits were performed on full and reduced (right half image)

data sets; only results from the full image sets are shown here.

Interferogram deformation fits are, at this point, performed on data from
interference maxima data only. Theory dictates that such fits give optimal
fit results, as predicted in subsection 2.1.5. One may demonstrate the phe-
nomenon, by utilizing larger regions of images for phase information. A
biquadratic functional fit is first performed, along lines described in section
2.3. This fit of observed to theoretical interferograms applies biquadratically
varying scale and offset functions to the experimental interferogram, and ef-
fectively maps cross-correlations into phase difference cosines. The process
may be applied to either to raw or filtered images. The respective results

from the cantilever model fit are shown in figures 5.24 and 5.25.

The biquadratic transformation imposes a fixed scale and offset on oscil-
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Figure 5.26: Cross-section correction: raw data give true cosine values

latory data. Consistency of results in images (figures 5.24 and 5.25) and in

central cross-sections (figure 5.26) comports with cosine wave interpretation.

One next unwinds the effective cosine image data, by utilizing the primary
(maxima only) fit, to fix the branch of the inverse cosine. The phase value
assigned to an image pixel is defined, per equation 2.26, by the inverse cosine
nearest in value to the primary fit’s theoretical value. One generates a new

phase data image by repeating the procedure over the entire interferogram.
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Figure 5.27: Theoretical secondary cantilever fit (raw phase unwound)

Figure 5.28: Theoretical secondary cantilever fit (filtered phase unwound)

A resulting new phase image may in turn be subjected to another similar
fitting procedure. Forward simulations from such iterated fits are shown in

figures 5.27 and 5.28.

One might in theory repeat the procedure. In practice, however, fit qual-
ity deteriorates with each successive attempt. Interferogram data away from
local maxima tend to corrupt the fit sample, with noise orders of magni-
tude above that found near constructive fringe extrema. The interference
noise profile may be observed directly, in the raw experimental interferogram
cross-section of figure 5.26. This view agrees with perceptions of noise in
raw cross-correlations, as in figure 5.17, and with observed distributions of
minima and maxima, as found in figure 5.19. Noise levels near local minima

are clearly orders of magnitude above those about local maxima.
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5.3 Cantilever deformation

Initial attempts at fitting cantilever data to a general deformation met with
failure. The general cubic polynomial deformation was immediately ruled
out, for reasons outlined in subsection 5.1.4. The obvious compromise, of
fitting a general quadratic deformation near the end of the cantilever failed,
for much the same reasons. A subsequent attempt, to solve for cubic defor-

mation limited solely to vertical displacements, failed as well.

The reason for such failures could be clearly identified as follows. Limita-
tion of image data to a small rectangular region, in the form of a cantilever,
greatly compromises resolution of functional differences. The short span
along the y-axis is particularly harmful. Retreat to solution of a lower order
equation, near the free end of the cantilever, actually worsens the situation,

by creating a similar insensitivity along the x-axis.

If data precision were not so critical a factor, one might have been able
to overcome this difficulty: the fit curvature matrix, and thereby the error
matrix as well, are calculated entirely from independent variables; matrix
precision is not an experimental issue, but rather a purely computational
matter. Measured data needed only to have precision, sufficient to survive a
single matrix multiplication, per equation 3.22. Computational stability of

d@ = E'v was ruled out, however, by error in data vector ¥ alone.

Despite lacking precision required for reliability of SVD algorithms, one

could nevertheless produce suspicious first order polynomial fits to the
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interferograms. Results were tabulated for fits covering most of the can-
tilever surface, in table 5.4, and for fits covering only data near the free
end, in table 5.5. Constant displacement fits for near end data were also
attempted, with results in table 5.6. Such zero-th order polynomial fits are

inherently free of singular values.

One would not have expected sensible results from a low order fit on the
entire surface of the cantilever. Low order end fits, however, either with
the 1°* order SVD method or the 0" order linear regression might have
done better with less noise. As an interesting consequence of the suspicious
fits, one could produce model interferogram simulations for the unrealistic
results. Theoretical and experimental interferograms were found to match
with remarkable consistency, both for near end fits and for the SVD fits over

most of the cantilever surface.

Subsequently, the theoretical cantilever equation was fit against the same
experimental interferograms. These fits were of the familiar sort, where a
single parameter model deformation simulates interferograms, and parameter
variation gives a best fit respecting the particular theoretical model. In the
research at hand, the fits actually contained, as second free parameter, a
global offset of the type described in equation 3.29. Fits of experimental
data, against the theoretical boundary value problem, gave meaningful and

consistent agreement between predicted and observed deviations.

Results from example fits appear respectively in tables 5.7 (full can-

tilever), and 5.8 (end data only). Since weight applied to the cantilever’s
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All Data: SVD (order=1) raw maxima fit ({z,y, z} = um)

My (g) ;:3‘ &iﬁ___i_ﬁ &nd | 27 Gdev Xfie/V res(0)
10.0 3.3 | 95.2 4.5 | -433.8 0.09 | 7.3E-07 1.6E-14
15.0 50| 86| 07| 154 0.50 | 3.3E-04 9.8E-16
20.0 66| -13| 20 156 | -0.40{ 1.3E-03 4.4E-16
25.0 83| 6.7 04 14.2 0.21 | 1.1E-03 5.5E-16
30.0 10.0 | -11.6 | 0.6 159 | -0.35 | 2.0E-03 4.7E-16
35.0 116 | -104 | -0.3 16.4 0.31 | 2.6E-03 8.7E-16
40.0 133 42| 03] 243| -0.03|25E-03 1.6E-16
L 1.4E-03 2.7E-15
All Data: SVD (order=1) raw phase unwind refit ({z,y, 2} — um)

My (6) | oo | o | gt | oy [ 27 Gaer |_xa/v ] tes(d)
10.0 33| 95.7( 4.3]-434.9 0.43 | 1.8E-02 2.5E-16
15.0 50| 79| 09 16.2 | -0.05 | 4.6E-03 2.5E-16
20.0 66| 09| 1.2 16.5| -0.31| 5.6E-03 2.5E-16
25.0 83| -21| 1.2 18.5 0.15 | 8.1E-03 2.5E-16
30.0 100 | -8.0] -0.2 18.4 0.05 | 8.2E-03 2.5E-16
35.0 116 | -95| 0.2 16.9 | -0.46 | 1.0E-02 2.5E-16
40.0 133 -59| 02} 239 0.25 | 8.7E-03 2.5E-16
P 9.1E-03 2.5E-16
All Data: SVD (order=1) filtered phase unwind refit ({z,y, z} — um)
Mapp (8) end. Fond | Wend &jgg 27 Pdev X6 /v res(0)
10.0 33| 950 39]-434.6 0.19 | 1.6E-02 2.5E-16
15.0 50| 66| 08 153 | -0.36 | 1.1E-03 2.5E-16
20.0 66| 11| 09| 159| -0.43|1.6E-03 2.5E-16
25.0 83| -29| 0.2 16.4 0.40 | 1.9E-03 2.5E-16
30.0 10.0 | -10.1 | -0.3 17.2 0.01 | 2.9E-03 2.5E-16
35.0 116 | -93| 03 175} -0.26 | 5.4E-03 2.5E-16
40.0 133| -68| 02| 239| -0.48]2.8E-03 2.5E-16
o 4.6E-03 2.5E-16

Table 5.4: SVD (order=1) offset fit statistics: fit from all data
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End Data: SVD (order=1) raw maxima fit ({z,y, z} — um)

Mup (@) | & | Gt | 8t | &t [ 27 duer | /v ] res(®)
10.0 33| 952 4.5]-433.8 0.09 | 7.3E-07 1.6E-14
15.0 5.0| 243 1.1 | -534 -0.21 | 2.3E-04 3.5E-16
20.0 66| -8.6 19 11.1 0.45 | 1.1E-03 1.1E-15
25.0 83| -133| 04 8.1 0.30 | 9.3E-04 4.2E-16
30.0 100 | -104| 0.2} 24.8 0.27 | 2.0E-03 1.2E-15
35.0 116 | -12.7| -0.3 11.3 | -0.02 | 2.7E-03 2.4E-16
40.0 133| -57| 03| 238 0.02 | 2.7E-03 4.9E-16
7 1.4E-03 2.8E-15
End Data: SVD (order=1) raw phase unwind refit ({z,y, z} = um)
A'[app (g) '~ec_:3t &l‘:;g E;:g &:.:g 27 ¢dcv Xﬁt/ 4 res(@)
10.0 331030 4.9(-4323| -0.44|1.7E-02 5.2E-16
15.0 50| 203} -0.2| -56.1 0.38 | 1.4E-02 5.2E-16
20.0 66| -64| 1.2 11.0 0.20 | 8.0E-03 5.2E-16
25.0 83| -83| 09 7.1 -0.44 | 7.6E-03 5.2E-16
30.0 100 -9.1| -0.1 18.2| -0.16 | 1.0E-02 5.2E-16
35.0 116 | -128 | 0.0 4.3 0.46 | 8.5E-03 5.2E-16
40.0 13.3| -83| -0.1 22.5 0.29 | 8.5E-03 5.2E-16
L 1.1E-02 5.2E-16
End Data: SVD (order=1) filtered phase unwind refit ({z,y, z} = um)
Mupp (€) | o | Gt | &b | Gow [ 27 fuer | /v | ___res(D)
10.0 3311019 4.8]-429.1 048 | 1.3E-02 5.2E-16
15.0 50| 166 -0.5| -57.8| -0.23 | 8.9E-03 5.2E-16
20.0 66| -3.7| 0.6 13.0 0.11 | 1.5E-03 5.2E-16
25.0 83| -6.3| 0.6 10.8 0.24 | 1.3E-03 5.2E-16
30.0 100 99| 10| 264 0.00 | 3.4E-03 5.2E-16
35.0 116 | -14.2 | -0.5 64| -0.29| 2.2E-03 5.2E-16
40.0 133} -89| 06| 26.0| -0.37|2.2E-03 5.2E-16
I 4.7E-03 5.2E-16

Table 5.5: SVD (order=1) offset fit statistics:
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End Data: Constant offset raw maxima fit ({z,y, z} = um)

Mo (8) | o | Bt | B | ot | 27 fae | XV =0
10.0 33| -14} -0.1 3.4 -0.02 | 2.1E-04 0.0E+00
15.0 50! -99 0.3 1.7 0.02 | 5.4E-04 0.0E+00
20.0 6.6 |-13.4 13| 26 -0.47 | 1.9E-03 0.0E+00
25.0 8.3 |-16.6 1.1 3.6 0.29 | 1.9E-03 0.0E+00
30.0 10.0 | -19.6 1.2 3.6 0.07 | 3.9E-03 0.0E+00
35.0 11.6 | -22.4 0.7 44 0.38 | 4.5E-03 0.0E+00
40.0 13.3 | -25.5 1.0 5.0 -0.38 | 4.8E-03 0.0E+00
7 3.5E-03 0.0E+00
End Data: Constant offset raw phase unwind refit ({z,y, z} — um)

Moy (8) | B0 | &0 [ 855 | 808 | 27 Gaee | xee/v res(0)
10.0 33| 20} 03] 32| -0.19]1.1E-02 0.0E+00
15.0 5.0(-10.3 0.6 1.6 -0.03 | 6.5E-03 0.0E+00
20.0 6.6 | -13.5 1.2 2.6 -0.16 | 8.2E-03 0.0E+00
25.0 8.3 |-16.8 1.1 3.5 -0.15 | 8.0E-03 0.0E+00
30.0 10.0 | -19.8 1.2 3.6 -0.43 | 8.9E-03 0.0E+00
35.0 11.6 | -22.6 0.8 4.4 -0.31 | 9.3E-03 0.0E+00
40.0 13.3 | -25.5 09| 5.1 -0.35 | 9.1E-03 0.0E+00
7 8.8E-03 0.0E+00
End Data: Constant offset filtered phase unwind refit ({z,y, z} = um)
M. (8) o | ond | Wond | Zong | 27 Odev Xse/V res()
10.0 33| -2.1| -0.1 3.1 -0.01 | 5.4E-03 0.0E+00
15.0 5.0 [ -10.1 0.3 1.7 0.42 | 1.0E-03 0.0E+00
20.0 6.6 | -13.1 1.1 2.7 -0.16 | 2.0E-03 0.0E+00
25.0 8.3 |-16.7 1.1 3.6 0.45 | 2.0E-03 0.0E+00
30.0 10.0 | -19.7 1.2 3.6 0.27 | 2.4E-03 0.0E+00
35.0 11.6 | -22.5 0.8 4.4 -0.32 | 3.3E-03 0.0E+00
40.0 13.31-254 1.1 5.1 0.37 | 3.4E-03 0.0E+00
i 28E-03|  0.0E+00

Table 5.6: Constant vector offset fit statistics: fit from end data
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All Data:

Cantilever raw maxima fit

A/[app (g) Zwo:xp (8) A/[cxp/Mupp 27 Pdev Xse/V
10.0 11.08 1.108 | -0.489 | 0.00027
15.0 15.05 1.003 | +0.093 | 0.00576
20.0 22.16 1.108 | +0.245 | 0.00694
25.0 28.89 1.156 | +0.102 | 0.00634
30.0 31.17 1.039 | -0.230 | 0.03867
35.0 38.37 1.096 | +0.312 | 0.00671
40.0 42.29 1.057 | +0.347 | 0.02221
I 1.081 0.01242
o 0.051

All Data: Cantilever raw phase unwind refit

A’[app (g) A'[pr (g) A’[cxp/j"!upp 27 ¢dcv Xﬁt/V
10.0 11.19 1.119 | -0.491 | 0.00539
15.0 14.97 0.998 | +0.081 | 0.00647
20.0 22.03 1.102 | +0.239 | 0.00678
25.0 28.66 1.147 | +0.106 | 0.00896
30.0 30.86 1.029 | -0.238 | 0.01042
35.0 37.88 1.082 | +0.329 | 0.01208
40.0 42.53 1.063 | +0.315 | 0.01352
u 1.077 0.00909
o 0.052

All Data: Cantilever filtered phase unwind refit
Mapp (8) | Mexp (8) | Mexp/Mapp | 27 Pdev Xfie/V
10.0 11.18 1.118 | -0.488 | 0.00106
15.0 14.91 0.994 | +0.074 | 0.00350
20.0 21.83 1.091 | +0.233 | 0.00307
25.0 28.64 1.146 | +0.094 | 0.00239
30.0 30.82 1.027 | -0.252 | 0.00727
35.0 37.90 1.083 | +0.321 | 0.00662
40.0 42.42 1.061 | +0.309 | 0.01085
N 1.074 0.00497
o 0.052

Table 5.7: Cantilever fit statistics:
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End Data:

Cantilever raw maxima fit

Moo (8) Mexp (g) Mexp/Mapp | 27 dev X6/ V
10.0 11.08 1.108 | -0.489 | 0.00027
15.0 15.93 1.062 | +0.003 | 0.00103
20.0 22.82 1.141 | +0.166 | 0.00320
25.0 29.28 1.171 | +0.058 | 0.00192
30.0 33.02 1.101 | -0.445 | 0.00451
35.0 38.74 1.107 | +0.270 | 0.00493
40.0 43.42 1.085 | +0.228 | 0.00659
7 1.111 0.00321
o 0.036

End Data: Cantilever raw phase unwind refit

A’[app (g) A'[cxp (g) A/chp/j"[app 2r ¢dev Xﬁz/V
10.0 11.18 1.118 | -0.489 | 0.00676
15.0 15.99 1.066 | -0.002 | 0.00709
20.0 22.71 1.136 | +0.165 | 0.00836
25.0 29.16 1.166 | +0.057 | 0.00835
30.0 32.70 1.090 | -0.425 | 0.01113
35.0 38.58 1.102 | +0.272 | 0.01120
40.0 43.00 1.075 | +0.241 | 0.01125
J7) 1.108 0.00916
4 0.035

End Data: Cantilever filtered phase unwind refit
Mpp (g) Mexp (g) A’[exp/lwapp 27 Pdev X /V
10.0 11.26 1.126 | -0.494 | 0.00117
15.0 15.92 1.061 | -0.002 | 0.00147
20.0 22.59 1.129 | +0.170 { 0.00241
25.0 29.12 1.165 | +0.053 { 0.00179
30.0 32.42 1.081 | -0.412 | 0.00551
35.0 38.44 1.098 | +0.282 | 0.00685
40.0 42.88 1.072 | +0.245 | 0.00604
7! 1.105 0.00361
o 0.037

Table 5.8: Cantilever fit statistics: fit from end data
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free end causes the deformation, applied mass gives the sensible free param-
eter. All fits returned expected deformation measures to better than 4%
standard error, with fits on end data only doing slightly better than those

utilizing data from more of the cantilever surface.

Theoretical interferograms for the cantilever fits match experimental re-
sults better near the free end than toward the constrained end of the can-
tilever. Such characteristics are sensible, in that experimental boundary
conditions at the fixed end failed to match those of the ideal cantilever.
One should not have expected that theoretical boundary conditions could be
perfectly arranged under experimental constraints. One expects intuitively,
however, that induced errors should lose effect, as measurements become

increasingly remote from imperfectly modelled boundaries.

The cantilever’s constrained end condition was complicated by several
factors. The beam was attached to a ledge via a brass bolt ~ 9 mm back from
the limit. Moreover, a 3.175 mm hole punctured the 2.54 mm x 155.5 mm
surface, centred 15.5 mm back from the ledge. While bolt location and the
hole were accounted for in the theoretical model, no allowance was made for
strain at the bolt. Comparison of theoretical and experimental interferogram
images shows, that the rather complicated experimental boundary condition

failed to match perfectly, with that of the corrected theoretical model.

One finds in ironic contrast, as illustrated by figure 5.29, that interfer-
ograms simulated from SVD fits over the full cantilever match better with

the experimental images than do the respective cantilever simulations. The
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Figure 5.29: Fit interferogram comparison: SVD vs. Cantilever

seeming paradox posed by such a result does however yield to analysis. Quite
simply, the SVD results do fit the experimental data better than do the can-
tilever fits. By virtue of variation in altogether far too many free parameters,
the first order SVD algorithm found deformations, which were at once theo-
retically optimal and experimentally nonsensical. The comparatively subop-
timal theoretical cantilever fits produced realistic results, primarily because

they were so constrained, to model cantilever deformations.

One may verify in the results, of data tables 5.4 through 5.8, that SVD fits
generally outperformed their respective cantilever counterparts. Comparison
of tabulated values for x/v (variance per degree of freedom) shows this. For

example, raw data fit SVD results show average variances x/v = 1.4 x 1073,
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both over the entire cantilever, and on fits near the end alone. Cantilever
deformation fits on the same data show average variances of 1.2 x 10~2 over

the full surface, and 3.2 x 10~2 near the free end, away from the imperfect

boundary condition.

One concludes that the SVD method gives unreliable results, when fits
are subject to real experimental noise levels, present in the data of this study.
One might well ask whether data with lower noise levels would have yielded
to more than a single parameter fit. As demonstrated in the simulations
of subsections 5.1.3 and 5.1.4, noise levels at single precision floating point
accuracy (5 significant figures) do allow for SVD type fits up to even third
order. The obvious question, is whether experimental noise levels can be

significantly reduced, to a degree where deformations of more than lowest

order may be fit.

The effect of statistical noise and its limitation has been examined in
detail, as outlined in subsection 2.1.3. The limits to statistical observation
should be examined from the same theoretical vantage. The hypothesis of
optimal data weighting, (restricted to fringe peaks alone,) as expressed in
equation 2.20, may be examined directly. One may attempt data refits, on
equation 2.26 type phase unwound raw or filtered data. One may also derive
the effect of global thresholding, on phase variance of local maxima, thereby

inferring a theoretical limit to speckle-interferometric phase identification.

The prediction that optimal fits derive from data restriction to fringe

maxima, per equation 2.20, was tested against each of the respective data fits.

105



As expected, all attempts to refit phase unwound raw data resulted in greatly
increased values for x/v (variance per degree of freedom). Attempts to refit

phase unwound filtered data failed to improve results on a similar measure.

Given the extreme nature of the functional image fit, outlined in equation
2.24, which has been applied in generating the respective phase unwinding
terms, the effects of over-tuned data should be observable. One should ex-
pect unreasonably good refits, even with equal global data weighting. Consis-
tency of interferogram data, with the primary fit, has after all been imposed
quite artificially, in manufacturing the new data. Since no such dramatic
improvement follows, one must conclude that results concur better with the
hypothesis of equation 2.20. Optimal results do seem to come from weighted

fits, restricting data solely to interference maxima.

The hypothesis of the linearized cross-correlation error, expressed in equa-
tion 2.9, which led to the assignment of optimal data weights, per equation
2.20, does in fact yield a final prediction. One may derive the variance as-
sociated with identification of maxima, as a function of the global threshold
used for the purpose of finding these. Whether a Gaussian or rectangular
distribution is applied, with the theoretical linearized variance of equation
2.9, one achieves roughly the same result. Identification of interference fringe

peaks shows an associated theoretical variance as a function of test threshold.

The theoretical distribution may be readily tabulated, and appears dis-
played for 5 x 5 cross-correlation sample regions, in figure 5.30. Identification

of fringe maxima by threshold is subject to a sharply defined “sweet spot”.
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Figure 5.30: Theoretical peak location variance as function of threshold
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Figure 5.31: Theoretical peak distribution with optimal thresholding
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Optimal thresholding occurs at 99.6% correlation, with ~ 253/256 8-bit

imaging equivalent.

The ideal distribution for the experiment at hand appears in figure 5.31.
The optimal variance in this case was found to be a;",¢ = 0.0285. Due to
systematic errors of the types outlined in equation 2.23, however, one may
in practice only approach the ideal value. A more realistic working estimate
for the expected variance corresponds to the limit value (r — 1) of unit

threshold. Phase identification variance approaches o2, = 0.213 in this limit.

One may derive an asymptotic equivalent for the limiting result, by as-
suming small angle approximations on the cosines, and high z-score asymp-
totic error functions. With nominal x = 1/2 in equation 1.5 one finds a
simple steepest descent (constant phase) approximation:

2 8

Experimental value N = 5 x 5 gives 02, ~ 0.2424, in good agreement with
the detailed calculation per figure 5.30.

Results for theoretical phase identification variance may be compared
with experimental values for x/v (variance per degree of freedom). The
former results as angular radian variances, and the latter wave number vari-
ances, may both be converted to standard deviations in degrees. Optimal and
working theoretical errors correspond respectively to 9.7° and 28.2°. A nom-
inal working (wave number) variance of 1.5 x 1073 has equivalent standard

error o = 13.9°. Experimental values fall within the theoretical range.
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Analysis of data variances indicates that observed experimental errors
closely approach the limits of measurement for a speckle interferometer. In-
terferce phase measurement precision cannot improve, by the several orders
of magnitude required, for successful execution of a multi-parameter inter-
ferogram deformation fit. As a result, the general inverse problem of this
thesis remains beyond the capabilities of a simple interferometer. General

deformation measurment requires more complex interferometric techniques

than those of the current research.

Simple deformations however, with only a few free parameters, may be
measured with high precision. Such simplicity derives by constraining in-
verse problems to real physical models. Model based fitting procedures, as
carried out here for the cantilever deformation, were originally demonstrated,
with practical and theoretical refinements, by Schmitt and Hunt in the late
1990s.[SCHM 97][SCHM 98][SCHM 00] Practical application there involved
hole-drilling residual stress determinations. Theoretical refinements in the

last paper included optimization search for best integral phase angle offset.

Generalizations made in the current research show that many similar
applications have promise. Wherever simply parametrized smooth physical
models apply to microscopic deformations, similar fits might be attempted;
solution for deformation parameters, including phase angle offset, always re-
duces to simple algebra. Many simple parametrized deformations should
yield to high precision interferometric measurment. Experimental investiga-

tion might reveal which deformation types yield meaningful results.
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5.3.1 Raw (5 x 5 sample) cross-correlations

Figure 5.35: Cantilever deformation under 40g
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5.3.2 Filtered cross-correlations

Figure 5.36: Cantilever deformation under 10g

Figure 5.39: Cantilever deformation under 40g
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5.3.3 Theoretical deformations

Figure 5.40: Cantilever deformation under 10g

Figure 5.41: Cantilever deformation under 20g

Figure 5.42: Cantilever deformation under 30g

Figure 5.43: Cantilever deformation under 40g
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5.3.4 Raw interferograms (scaled & offset)

Figure 5.44: Cantilever deformation under 10g

Figure 5.47: Cantilever deformation under 40g
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5.3.5 Filtered interferograms (scaled & offset)

Figure 5.48: Cantilever deformation under 10g

Figure 5.49: Cantilever deformation under 20g

Figure 5.51: Cantilever deformation under 40g
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Chapter 6

What has been shown?

Electronic speckle phase interferometry (ESPI) has been investigated as a
stochastic phenomenon and demonstrated as a tool in analysis of surface
deformations. Some benefits and drawbacks of ESPI interferometric defor-

mation observation were revealed in this research.

Classical stochastic methods found natural application in the field of
speckle interferometry. Expected intensity distributions for possibly partially
polarized laser scatter were evaluated. Interference effects between images
were also subjected to stochastic analysis. Results from such analysis showed
substantial agreement with the simple model of Jones and Wykes.[JONE 83]
Adjustments, due to interactions involving polarizations and surface inci-
dence, left the perception of interference maxima unaltered, with minor ob-
servable effects predicted elsewhere. Speckle interferograms were found, in
theory and experiment, to show resilience with respect to variation of pixel

magnification, and even under loss of optical focus.
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Theory predicted a purely statistical error in cross-correlation sampling.
This error literally defined the scope of possibility for experimental speckle
interferometry. Variance analysis showed that constructive interference max-
ima hold all the information content in an interferogram, whereas other sub-
optimal interferogram data have relatively negligible data weight contribu-
tions, in optimal fitting procedures. Experimental tests consistently agreed

with theoretical application of this linearized error.

An attempt was made to automate deformation analysis. Data filtering
and identification of interferogram maxima reduced to a purely mechanical
computation. Theory indicated, that application of a rectangular median
filter, followed by simple global thresholding, sufficed for identification of the
local maxima, comprising all relevant (optimal) interferogram data. Some
aspects of the analysis were found to be more difficult to automate. For ex-
ample, identification and assignment of phase angles at local maxima remains

a nontrivial task.

A general method for deformation analysis, depending solely on single
simple ESPI interferograms was presented. Relying on singular value de-
composition methods, to deal with symmetries inherent to the experimental
geometry, the method provided a mechanism for identifying and rationaliz-
ing interferometrically invisible displacement fields. Tests on artificial and
relatively noise-free phase data revealed, that such a method was workable,

provided sufficiently clean image interferograms.

This same method could be extended, to allow for tuning of experimental
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geometry. Utilizing a single interferogram, for a rigid (Killing vector) dis-
placement, locations of interferometer scattering sources could be iteratively
corrected from approximate experimental measurements. The algorithm pre-
scribes a simple mechanism for elimination of systematic errors from inter-

ferometer deformation measurements.

Limitations of multi-parameter deformation fits were explored and con-
trasted with simple single parameter physical models. This comparison in-
volved examination of a simple cantilever experiment. Multi-parameter fits
were found to fail by returning nonsensical deformation fields; The simple
single parameter cantilever equation meanwhile gave consistently reasonable
results. When deformations were modelled against original interferograms,
however, roles reversed: the nonsensical multi-parameter deformations gave

better image fits than did deformations modelled for the ideal cantilever.

Such failure was in fact expected, due partially to the limitations im-
posed by cantilever geometry, but due primarily to natural precision lim-
itations in interferometer phase measurement. The natural limitation to
precision derives from the aforementioned purely statistical error in cross-
correlation sampling. Phase angle identification error was modelled from

this phenomenon, giving results consistent with experimental values.

An obvious conclusion follows: observed experimental errors closely
approach the limits of measurement for a simple speckle interferometer;
measurement precision, therefore, cannot improve, by the several orders of

magnitude required, for success in multi-parameter deformation fits. The
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general problem of interferometric deformation analysis, exlored in this re-

search, clearly requires more sophisticated techniques than the simple ESPI
method of this thesis.

Simple deformation analysis methods based on physical models do how-
ever show promise. By variation of only a few parameters, such models
limit the effects of statistical noise on results. High precision measurements
were shown to be possible in the simple case of the cantilever deformation.
Present results also show good consistency with prior simple model-based
analysis.[SCHM 97][SCHM 98][SCHM 00] Since many common deformations
may be simply parametrized, similar methods should be applicable, to high

precision interferometric measurment, in a diversity of practical applications.
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Appendix A

Probabilities

A.1 Distributions and densities

The principal objective of the study of probability is precise prediction of
the nature and scope of outcomes in sets of random experiments.[FREU 62]
Statistics is in this sense a purely empirical field. Detailed analyis of ran-
dom events from such a perspective does however require a strict theoretical
foundation. The fundamental connection between empirical and theoretical

statistics derives in the concept of the distribution.

The theoretically assumed global distribution includes all possible out-
comes. A probability is assigned to each outcome, proportional to its fre-
quency of occurence in independent trials. Experimental distributions derive
conversely from data measurements of empirical samples. Empirical samples
however rarely describe an entire global sample space. Rigorous scrutiny is

thus required in extrapolation of results from incomplete samples to respec-
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tive complete global populations.

Exhaustive research exists investigating the relationship between sample
and global distributions. The law of large numbers suggests empirical sam-
ple distributions should in some sense approach global distribution values as
independent trial iterations increase without bound. At the other extreme,
study of small samples introduces a host of new and diverse complexities. Re-
lated issues have real bearing on research in this thesis, as illustrated by the
effect of pure sampling error in cross-correlations. Investigation of this sta-
tistical error (see subsection 2.1.3) reveals drastic limitations on information

content (see subsection 2.1.5) of ESPI interferograms.

Rigorous introduction to statistical probability requires development of
further concepts, including the relationship between the partition and the
random variable. Precise definition of a global distribution requires that
random outcomes be clearly distinguishable in some natural view: each
experimental outcome should correspond to a single unique theoretical out-
come. Such identification defines the concept of the partition. If a partition
is parametrized or indexed, values of parameters or indices can thus be mea-
sured as random wvariables in experimental trials. One may generalize the
concept of random variables to include all functions of outcomes in random

experiments on a partition.

Strict theoretical development of statistical probability provides a solid
foundation for practical measurement in empirical experiments. [lluminating

as such study might be, detailed study of the theory of probability is beyond
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the scope of this work. Some results can be quoted, however, as definitions

respected throughout the thesis at hand.

The principal definition is that of the probability distribution. General
partitions may be parametrized in some combination of discrete and contin-
uous sets. Classical literature distinguishes between the purely discrete and
purely continuous cases by defining respectively the distribution (discrete
case) and density (continuous case).[FREU 62] Modern treatments based in
measure theory view such distinction as artificial.[FELD 96][TAYL 98] The
general term distribution is thus applied to both discrete and continuous

cases throughout this thesis.

In any case, probability derives as a non-negative function on a partition.
Probability functions of possible experimental outcomes z necessarily satisfy

completeness criteria by the respective normalization conditions:

Z P. =1 or (A.1)
x
[ & P(z) = 1 (A.2)
T
The (discrete) sum in equation A.1 and the (continuous) integral in equation
A.2 cover fully the respective partitions of possible independent outcomes z.

One further defines the concept of mathematical expectation by the brackets

(...) for general functions of random variable z as follows:
(fz)z = sz'f:: or (A3)
(f@)e = [& P@)-f(a) (A1)
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One may write for numerical random variable z some immediate defini-

tions. The mean p and variance o2, = var(z) are as follows:

H= (z)s and (A.5)

2

o= ((z-p)?): =(2*):~{2)} (A.6)

The median gives an intuitive midpoint for z in a distribution or density:

0 t< O

1t>0 A

g =min{z: (@(z-1z));> %} where 6(t) = {

The mode corresponds to the set of most frequent occurrences for a distri-

bution or density:

_ ) P, < P. discrete
Bo=A{z:vz { P(z) < P(z) continuous } (A-8)

One should note that while the mean, median and support of the mode might

in particular cases coincide, no such agreement is generally required.

One may moreover measure a distribution in terms of its defining expec-
tation values by considering an experimental empirical sample distribution.
The sample corresponds to a proper subset of all possible random exper-
iments. One considers the measured expectations or empirical means on
the sample to be estimators of their global counterparts on the total set of

possible experiments.

Expectations measured on samples are also random variables. One may
study the manner in which these in turn are distributed. Following analysis

of this sort, one describes an estimator as unbiased when its expectation
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matches the related global quantity. For example, the unbiased estimators
from a sample of size N for global mean and variance, on any distribution

or density, are given respectively as follows:

o= =) z, (A.9)
v %
1 2
aixs = N-1 Z(zs “S)- (A.10)

One may further conduct comparative studies amongst results from sampling
experiments. Extrapolations involving hypothesis testing are considered in

the chapter B appendices.

In conclusion of this cursory introduction to probabilty, one may tabulate
a few common density functions. Distributions utilized throughout this thesis

include the following:[FREU 62]

k(z;a,b) = { (‘)Tl:"_' :lseew[rtebr]e constant or rectangular (A.11)
g(z;p,0) = \/2%;5 e'%ﬁﬁ Gaussian or normal (A.12)
v(z;0,8) = 5a Il‘(a) ' e”3  gamma density (A.13)
x(z;v) = y(z; =%, 8=2) chi—square density (A.14)
c(¢;®) = 2 (@ +¢%)! Cauchy density (A.15)
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A.2 Means and medians

At the conclusion of a test, the experimentalist often questions, whether data
might have been better analyzed, to extract more precise results. A couple of
results are worth presenting in this context. First, even with perfect unbiased
data, one would approach a limit of diminishing returns. Second, theoretical
optimality of estimation figures as a nontrivial concept, when confronted with

real corrupt and noisy data.

Given a variable one wishes to measure, one might reasonably wonder
how to treat a set of measurements each of which returns an estimate of the
quantity. One may show, by virtue of the Cramér-Rao inequality, that for
asymptotically independent samples from Gaussian distributions, the usual
sample mean (z) gives the best available (minimum variance) estimate of the

true population mean.

The measurement of an experimental sample mean may be somewhat
finessed in precision. One attempts a weighted mean, and finds, by simple
projection or variational analysis, the optimal measurement weights. The
optimal mean measurement, thus calculated, has the minimum variance for

any choice of data weights:

z = E WnTy with constraint 2 w, =1 gives (A.16)
o2, = Y wn - (z, — %) with optimal weight solution
1 1._ 2 =
w, = —-(3. =)' where gl = ((z. —Z)?)
Oa x Tk
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One may derive maximum likelihood variance for sample mean z as follows:

ok = (X 5)" (A17)
k k

One infers that, unless individual measurement errors show disparate scales
of magnitude, such optimization will not yield significant improvement from

the corresponding unweighted result.

When data distributions are punctuated with spike noise error signals, a
mirture distribution results. In such mixtures, the result of any mean calcu-
lation may be compromised. Consider for example, the case of a Gaussian
distribution with mean p¢ and standard deviation oy, corrupted by Gaussian
spike noise of mean p., and standard deviation e comprising a fractional

measure € of the combined global population:

p(:c) = e’g(z;/‘cn’sacrr) + (1 —€) 'g(l';/-lo,a'()) (AIS)

The mean and standard deviation, calculated for the corrupted net signal,

are given respectively by:

U = €-per + (1 —€)- pg (A.19)

2

g = 5'0'3“"}‘(1-6)'03+e(1_€)'(/‘en-ﬂ0)2

Deviations from the requisite values of uy and oy are potentially boundless.
Note further, that the results of equation A.19 may be generalized from
simple Gaussians, to all distributions for which the requisite moments exist.
One clearly has to find an experimental estimator which shows more resilience

under experimental spike noise mixture.
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Much statistical study has been devoted to investigation of the prob-
lem of consistent and sufficient estimators. In theory, one may construct
high efficiency unbiased estimators which work well with asymptotically large
samples. Practically, dramatic improvement may be demonstrated, even re-

stricted to small samples, with a relatively simple solution.

The median of a distribution (defined in equation A.7) permits simple
analysis. If continuous random variable z has density p(z), then the median
for a sample of odd size 2V + 1 distributes as density my(z) (through simple

multinomial combinatorics) by the equation:

ma(z) = S d@)) p@) ([T dp@) )} (A20)

One may eliminate the noncompact integrations, with aid of population me-

dian £, and intuit an asymptotic behaviour as follows:

my(z) = S Fap()} -pE)- (L - [Fdp@)}¥  (A21)
= S p(@) {1~ [2- [F & p(z)]?}Y
~ Sk p(Z) exp( -} [2V2N [Z drp(z)]?)

~ 2 \/-%- p() exp( -4 [2VZN p() ( — @)]?)

~ g(Z; u=a, UN=W§71m)
The above derivation does not withstand rigorous scrutiny. Precise treat-
ment of the limits does however affirm the simple result. Motivated by equa-

tion A.21, one defines random variable z = x——&, with on =

oON 2v 2N 2v2N p(ii)’
New random variable z distributes precisely as My(z) = onp(i + onz2),
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with following exact and limiting expressions:

My(s) = il e (1 - L[ g aiima v (a22)
1 _1:
~ g(zu=0,0=1) = ﬁeé-:

The standard normal limit in equation A.22 holds provided = is held bounded
and with p(z) nonvanishing and continuous in a neighbourhood about median

value z = fi.

Distribution of the sample median is thus asymptotically Gaussian. One
may rank the asymptotic efficiency of the median with respect to the mean
on samples from a Gaussian population:

. var(Z)an+1 m

E = _— = = A.23
N->c var(Z)an+1 2 ( )
One infers that the sample mean gives a somewhat more reliable estimate of

the population mean/median than does the respective sample median.

When Gaussian data are corrupted by mixture with spike noise, (as per
equation A.18,) however, the roles actually reverse. Possible deviation of
the experimental sample mean from the requisite global quantity remains

inestimable. The median however cannot vary by more than a fixed measure:

& = ol < V2erf™! (i) where (A.24)
J9 l—¢
erf (s) = % fos de

Strictly considered, the deviation does derive from a systematic bias. One
finds though, in cases involving small samples, that such a bias often ap-

pears insignificant when compared with Gaussian signal noise. Consistent
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identification of locally dominant populations is thus quite achievable, via

the sample median, provided one accepts the systematic estimate bias.

The above analysis may be extended to still more extreme limits. For
some pathological distributions, such as the Cauchy density of equations
2.22 and A.15, moments such as the mean p and variance o2 actually fail to
exist. One finds, via equation A.17, that the sample mean fails to target the
Cauchy central peak. The sample median does however find its mark with

that distribution, as one infers from equations A.21 and A.22.

One finds that real analysis on experimental data often conceals sub-
tleties of the types discussed in the foregoing. Some insight into the sta-
tistical nature of a particular measured observable often allows for better
measurement of related quantities. In practice, however, one often discovers
problems by exactly the reverse process: one establishes the limits of pre-
cision through measurements that “should have worked better”, and in the
mandatory forensics following such “failed” experiments. Fortunately one
finds, forensic investigations into limitations of experimental precision often

offer far more insight than would the original intended measurements.

A.3 Convolutions

The sum of a pair of random variables is itself a random variable. Consider
the sum z = z + y, for random variables = distributed as density X(z), and

y distributed as density Y (y). One may express distribution (density) Z(z)
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for random variable z, and define the convolution by:
2(z) = (X+Y)(2) = [@ X(®) Y(z-) = [&Y(t)-X(z—1) (A.25)

The integration generally poses complications in this spatial view. One may

however simplify, via Fourier or Laplace transform, defined respectively as:

Ferlf@Y®) = —= [Taettef@) (A20)
Lolf@Hs) = [ e f) (A.27)

If one applies a Fourier transform to a general density over R or a Laplace
transform to a density limited to R*, the convolution is replaced by simple

scalar multiplication:

Foke{(X #Y)(2)Hk) = Feor{X(z)}(K) - Fyr{Y (¥)}(k) (A.28)
L:oo{(X £ Y)(2)Hs) = Lol X(2)Hs) - Lyna{Y ()}(s) (A.29)

By inference from the transforms, the convolution satisfies associativity, dis-

tributivity and commutivity, with respective expressions:

[(X*Y)+Z)(t) = [X=*(Y*2)(¢) (A.30)
[(@X +bY)* Z](t) = a(X *2Z)(t) +b(Y * Z)(t) (A.31)
(X+Y)(t) = (Y +X)(t) (A.32)

A few particular results are of note, with regard to the research at hand.
Viewed in transform, one gains insight into the structure of convolution, and

into composite probabalistic phenomena studied throughout this work.
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The Fourier transform (equation A.26) of the Gaussian density (equation

A.12) may be written as follows:
Fei{g(zip, o)} (k) = e~*#. 737K (A.33)

One deduces that convolutions amongst Gaussian densities yield Gaussian

results, by following a simple rule:

(9( tar 0a) * g( b, 03))(2) = g(Tip = pa + py, 0 =Jo2 +0})  (A.34)
For functions which are nearly Gaussian, convolutions approach Gaussian
form, in some sense even more closely. Theoretical investigation of the phe-

nomenon yields the central limit theorem. Some related notes may be found

in Appendix A.4.

Another example yields a more richly structured result. Laplace trans-
form (equation A.27) of the general gamma density (equation A.13) yields a

simple expression:
Los{r(zi0,8)Hs) = (1+8s)7 (A.35)

With view to equation A.35, one may infer the following set of exact

theoretical results pertaining to gamma density convolutions:

(7G @a,8) *v(a, B))(z) = 7(z;aa+ asp.p) (A.36)
(I;I =G LA (=) = Zk:gw(z'; 1, Be); (A.37)
where gk=H(-1—_lT_L) & k#L-o B # 6
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if f(z) = Z Fev(z;apk, Byx) where Z F. =1, (A.38)
k k
and g(z) = ) Gi7(z; g, Bgk) where Y Gi=1,
k k
with agp,aune N and h(z) = (f()*g())(z) then

h(z) = Y Hiy(z;ank, Buk) where Y Hip=1
% %

Formulas A.36 through A.38 show that the span of such gamma functions
closes under convolution. The results are theoretically elegant; they are also
unfortunately impractical from an experimental perspective. One cannot in

practice expect to measure such a multitude of free parameters.

One may however acquire a more practical result. Real signals should
correspond to multiple convolutions of base gamma signals with various & and
B parameter definitions. Composite signals may be expressed practically as
asymptotic forms of the same gamma functions, but now without restriction

to integral a parameters:

* . . ~ . _ (Z ak.Bk)2 _ Zakﬁz
(I;I( )7(rakyf3k))(z) 7(1:7 a= Zakﬁz r M Zakﬁk ) (A39)

The result obtains from second order expansion of equation A.35. Such
expression preserves a measurable link between sample mean and standard
deviation. One may test real experimental data with this link, for agreement

with the hypothesis of gamma distribution.
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A.4 Central limit theorem

The concept of convolution may be carried to a sensible limit. One might
well ask whether, subject to some normalization, the limit of a highly con-
volved variable is well defined. The well established answer to this question is
in the affirmative.[MATH 70][PATH 72|[SVOZ 93|[TAYL 98] Detailed exam-
inations [CHAN 89][ITO 74][SEN 93][STRA 63] of the central limit theorem
may be found in the literature. A simple demonstration of the result may be

set out as in the following.

Before introducing the central limit theorem, one may establish some
simple results for low order moments of convolved distributions. Expansion
of the Fourier transform (equation A.26) for general density function p(z)

with mean p and standard deviation o yields a simple low order expansion:
- . 1 , .
p(k) = Fooi{p(@)Hk) ~ 1 + p- (k) + (0" + a?) - (ik)* + ... (A.40)

Composite function £ = 3_ z,, (with z, independent) has convolved probabil-
ity density P(z) = ([1(*)pn())(z). Fourier transformation with application

of equation A.28 yields following low order expansion:
1 +  u-(tk) + %(yz-{-az)'(ik)z + ... o~ (A.41)
L+ Spne (k) + (T + ol @2 + ...

One finds, equating terms order by order, the following general results:

r = Zﬂn (A42)
o = Y ol
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These results may also be derived without resort to Fourier transformation.
Didactically, however, one infers that the relationship between observed and

transformed views can illuminate key concepts of convolution.

With view to the convolution scaling inferred from equation A.42, one
may set up the conventional form of the central limit theorem. One first sim-
plifies the multiple convolution by setting all included probability densities
identically, so that p,(z) = p(z) with mean u and variance 0. One further

defines related density gn(z) as follows:

p(z) = —C q~(£(r—#)) (A.43)

By construction, distribution gy (z) has mean 0 and variance 1/N. More

completely, one may write the following Fourier transforms for such densities:

gn(k) = fz—»k{QN(z)}(k) =1

_l. k o k 3 k
(\/—) +(\/-) e(\/—) (A.44)
Bk) = Feor{p(@)}(k) = e [1—'- (0k)? + (ok)° - e(ak) ]

Here, one assumes that function €(z) be analytic about z = 0. One finds
concurrently, by transforming the integration variable in equation A.25, the
multiple convolution identity:

n=N n=N N M

Py(z) = (l:[l(*):p())(r = T( H (*):qn()(z = \;Na ) (A45)

Proof of the central limit theorem now derives naturally as follows. One

extracts normalized density Qn(z) with mean 0 and variance 1, as a multiple
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convolution with respect to its parameter space:

n=N

Qn(z) = (I (*)anv0)(2) (A.46)

n=1
Viewed in Fourier transform, Qx(z) appears as a simple asymptotic form:

n=N

Qn(k) l:[ltizv(k) = Gy (k) (A.47)

1, ko,  k k
{1—5'(-\/7) +(ﬁ)3'6(\/—7)}N
ks

(=)
N IR
~ Q) = ep(—35k)

1,
~ exp(—gk'-%

The asymptotic distribution Q(z) appears, via equation A.33, as the central

limit (standard normal) Gaussian with mean yu = 0 and variance o° = 1:

Q) = g(5p=0,0=1) = (A.48)

Rigorous derivation would require investigation of conditions (Lindeberg-
Feller) under which a density actually converges to the asymptotic central
limit. Many excellent texts study that issue.[FELL 68][ITO 74][STRA 63
For purposes of this work, it suffices to note that the central limit theorem

fails only with densities which are in some sense pathologically constructed.

Example densities may be classified by normalized convolution limit. The
densities of equations A.11, A.12 and A.13 convolve toward the central limit.
The density of equation 2.22, on the other hand fails to converge: that density

is indeed pathological, having unbounded variance {(z — p)?), unbounded
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absolute deviation (|z — g|), and even non-existent mean. For such Cauchy
distributions, the central value, median or mode, p derives only as a principal

value, and no moment of higher order converges.

By design, real experimental distributions should observe sensible be-
haviour subject to strict bounds. One generally expects experimental errors
to follow the central limit; measurements are in fact often modelled with

Gaussian error terms.

The limiting mathematics invoked in derivation of the central limit the-
orem may be generalized into a notational tool, for study of phenomena,
where normalized sums of random variables approach the limits of convolu-

tion. Such a view is presented in the next appendix.

A.5 Simple stochastic process sums

A modern approach to probability with highly convolved functions involves
generalization of concepts developed in the previous appendices A.3 and
A.4.[CHUN 83][EMER 89|{ITO 74][STRA 63] For the sake of simplicity, a
rigorous theory of stochastic variables is avoided in the present treatment,
with only those tools material to the current research being demonstrated.
Stochastic process concepts required for this thesis may be restricted to the
simplest form of the general theory.[CHAN 89][FELD 96|{SEN 93|[TAYL 98]
Throughout this work, simple stochastic process refers only to those pro-

cesses modelled by independent increments in continuous-space and contin-
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uous time. All stochastic process sums are viewed in normalized form.

The fundamental concept of a stochastic process may be viewed as a limit-
ing phenomenon. The classic case is that of the “drunkards walk” envisioned
by Albert Einstein as a theoretical model for Brownian motion.[CHAN 89| In
that example, the diffusion of a particle follows a convolved path of indepen-
dent steps punctuated by random interactions, and yielding a final distribu-
tion. One presumes the limit where interaction number exceeds all bounds.

Solution derives from the central limit theorem of the previous section.

One may infer a pair of useful generalizations from the case of Brownian
motion. First, one notes that the process results in a simple probability den-
sity or distribution. Physical labels of intermediates, for example timing or
location of interactions, do not appear in the final expression. Second, one
notes that the concept of process ordering, expressed by a single continuous
(time-like) parameter is not essential in realization of such a path. One may
rearrange the process order at will without altering the total realized proba-
bility density or distribution. The simple stochastic process sum may thus be

viewed as a conceptual model including more general stochastic processes.

Detailed treatment of the subject would at this point require precise def-
initions for Brownian motion and Wiener process, and as well more general
stochastic methods with the derivation of [ti’s equation.[ITO 74] Present
requirements limit the scope to demonstration of notational tools for basic
stochastic calculations. Precise development of the tools employéd here may

be found in many excellent treatises on the subject of stochastic variables.
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The simple stochastic process sum currently viewed may be modelled
as follows. A set of limiting independent continuous-space increments is
summed over a continuous-time parameter. The time-like parameter should
be understood to address all contributions in some unprescribed order. Since
reordering leaves net results unaffected, precise contruction of time-like inter-
vals may be avoided. The resulting simple stochastic process may be summed
notationally by writing the net stochastic variable A in terms of microscopic

limiting steps dA(s) as follows:
A= / dA(s) (A.49)

One may extend the concepts of expectation expressed in Appendix A.l to

stochastic variables in the same notation:

(A = [ (@A) (A.50)

One may express more general expectations by functional expansion. The

concept of independent local contributions arises naturally as follows:
(dA(s") dA(s")) = (dA(SI))(M(S"» + 48(s',s") 'dait(s') dA(s") (A.51)

The term with the (pseudo) Dirac delta-function §(s’, s”) identifies the point

auto-correlation. Continuing with the notational tool one may write:

(a-4) = ([ [ dANdAE") = (Ae(A)er + ([ dobugao)s (A52)

One has thus recovered for stochastic processes the variance expansion of

equation A.6, by drawing the following association:
A = ([ dohmaads — (A-4) = (A7 +33, (A.53)
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Higher moments may be identified by combinatorics on algebraic expressions.
For example, letting A = (A), one may examine integral powers for the
stochastic variable A—A. While expectations for (antisymmetric) odd powers

vanish, (symmetric) even powers yield the following general result:

(A- Ay = EXL 2w (A54)

One quickly recognizes the combinatorics for this simple stochastic variable
as identically those of the well known Wick ezpansion for real scalar quan-
tum fields. The approach of stochastic quantization explores particle physics
from exactly this point of view. The interested reader is referred to the
literature.[GLIM 81] One may moreover infer a concrete probability density
associated with stochastic variable A, by noting that the moments of equa-
tion A.54 match identically with the Gaussian form:
L
We 2934

Wiener integration confirms recovery of the central limit as net result for

P(A) = (A.55)

such a (limiting) stochastic process.

For the thesis at hand, one requires a minor extension of the above scalar
Gaussian example. Consider here a complex stochastic variable where the

real and complex components A, & A, satisfy respectively:
(dA:(s") dA.(s")) = (dAz(s"))(dA=(s")) +8(s', 8") - 3d034(s) aa(sm) (A-56)
(dAy(s") dAy(s")) = (dAy(s)){dAy(s")) +8(s',s") - 3da% sy aacem)
(dAz(s") dAy(s")) = (dA=(s"))(dAy(s"))
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One finds that expression via complex stochastic variable A and conjugate

A" simplifies combinatoric algebra for salient functional expressions:

A=A +iA, & A" = A, —id, — (A.57)

(d(A - A)(s") d(A=A")(s")) = 6&(s',5") - dodsyarcem
(d(A—- A)(s")d(A- A)(s")) = 0

(d(A*-A")(s") d(A-A")(s")) = O

Consider for example stochastic variable [, based on A & A*, whose moments

and expectations may be expressed combinatorically as follows:
I = (A-A)(A—A") — (IN)y = N1.3N (A.58)

One may expand the Laplace transform for the related density function:

Ll PDKS) = 3 )" = S0 = 1rpz (A59)

P(I) = y(I;a=1,8=0%,)

The expression corresponds precisely to the Laplace transform of the expo-
nential density ¥(I;1, 02,), where the general gamma density follows equa-
tion A.13. One may confirm this by comparing with general gamma density
Laplace transform of equation A.35. Higher order convolutions may be eval-
uated by stochastic methods, or equivalently by the traditional methods of
Appendix A.3.
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A.6 Stochastic EM waves

One may apply stochastic methods presented in Appendix A.5 as notational
tools for derivation of some physically meaningful expressions. While tradi-
tional statistical methods do yield identical results, the older methods also
require repetitive reduction of stochastic limits. The newer stochastic ap-

proach best demonstrates its utility by example.

A.6.1 Scalar wave approximation

Consider the simple forward propagating complex plane wave in a single

spatial dimension:
A(z,t) = Aetik=wt) & [ (2,t) = :}:%n(A(z, t) £ A*(z,t))® (A.60)

One notes that complex scalar A = |Al|e**® and conjugate A* = |A|e~*
parametrize both magnitude and phase offset. Instantaneous instensities
I.(z,t) derive conventionally from the respective flow rates of energy countent
in the real (R{w} = j(w + w*)) or imaginary (S{w} = %(w — w*)) wave

components, with choice of constant x deriving from intensity normalization.

One often measures wave-related quantities in time-average rather than
instantaneously. For the simple wave of equation A.60, one notes the follow-

ing time-averages:
(A(z,t))e =0 —  (Ix(zt)) = K AA® (A.61)
One notes that time-averaging leaves unaffected the constants A & A*, and
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thereby |A| & ¢, defining the original instantaneous wave A(z,t). A related
inference follows, if one views constants A & A* as random variables, and
views time sampling as similarly randomizing. Expectations over time and

expectations over wave parameters may be expressed as a single process:

((@(z.)))aa- = (B(z,t)) = ({ B(z,)).0a)e (A.62)

With this insight, one realizes the potential of stochastic methods for waves

of such description.

As preliminary example of stochastic plane waves, consider the theoretical
(time-averaged) intensity distribution for ¢ = (I:(z,t)),. Examination of
the distribution for related random variable AA* appears in the preceding
Appendix A.5. One infers from expressions of equations A.56 through A.59

the distribution of (time-averaged) intensity:

P(i) = % exp(—<—::>-) where i = (Is(z,8)); (A.63)

Thus recovers the intensity distribution of Goodman,[GOOD 89] whose result

also appears quoted in equation 1.7.

One may derive other results for plane waves, (as per equation A.60,)
in single spatial dimension. Consider introduction of phase angle offset 8,

denoted by subscript:

Ag = Ae™ — Ag(z,t) = et A(2,t) = Aetk=-wt+0) (A 64)

£ = A€ — A(z,t) = e0A (2,1) = Attt
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Time-average intensity shows trivial invariance (I3), = (lp), under phase
offset. One therefore cannot perform direct measurement of phase offset for

a single time-average intensity.

One may however measure such an offset indirectly against a reference
signal. Consider a simple pair of complex waves, A’(z,t) & A”"(z,t), of
the type introduced in equation A.60. The pair is coherent so long as
w' = w". Interference of the wave pair obtains by simple addition of com-
plex amplitudes. Symbolically, one may effect interference in (complex) wave

amplitude and (real) time-average intensity, respectively as follows:
A=A+A" & A"=A"+A" — (A.65)

(De = (INe + I")e + \J{I)e{I"), cos(¢' — ¢")
The result allows for simple estimation of phase differences, provided one
may rely on direct accurate measurements of the contributing intensities.
Experimental measurement of these poses serious logistical complications.

One naturally asks whether a related estimation may be constructed, which

relies still less directly on the contributing intensities.

One may construct a requisite measure of phase difference in the form of
a nontrivial statistical observable. Regarding wave components as deriving
from independent coherent stochastic sources, one infers an independent pair
of complex stochastic variables, each following equation A.57, with vanishing

expectations (A’) = 0 & (A”) = 0. Independence of the interfering stochastic
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variable pair imposes the following explicit expectations:

(d(A'- A)(s') d(A=A")(s")) = O (A.66)
(A4~ A)(s) d(A"= A")(s") = 0

(d(A=A)(s) d(A™ A")(s") = 0
(d(A™= A")(s) d(A™= A")(s") = O

One finds, surprisingly, that measurement of only time-average net inten-
sities suffices. Consider low order moments of time-average intensities under
phase shift as outlined by equation A.64. If A’ and A” are phase offset by

angles a and 3 respectively, intensity moments calculate simply:

(Iag) = (loo) = (I) = (I') + (I") and (A.67)

(Uashe Coohe) = K2 (At AD(ATHAR) (At AD)(A5+AL))
= K’ ((A,AT + AGAT)(AQAS + ATAG))
+ K (ALAFTAGAT + AJALALAYT
= KI(AA"A'A" + A"A"A"A" )
+ 2[1 +cos(a — B)] k% ( A'A"A"A™)
= 2{(I')* + [1+ cos(a = BI')(I") + (I")*}

Intensity covariance under phase shift derives naturally from the results

of equation A.67, which may be expressed as follows:

((lag—TIag)e (Ioo—Too)e) = (I')* + 2cos(a — BKI'NI") + (I")* (A.68)
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One may write the corresponding standard Pearson’s cross-correlation:

_ ((Tag—=Iag)e (Too—Too)e )
pllla)e {aoke) \/( (Iag—TIag)? ) ( {Too—To0)?) (A.69)

Evaluation of the cross-correlation of equation A.69, respecting phase shifted

plane wave covariances expressed by equation A.68, yields a final form:

p({Lag)e: (foo)e) = 1+ &((I'),{I"}))[cos(a—8) —1]  (A.70)

N 2(r'y (I")
K((1)7<I )) ((I') + ([/l>)2

One has thus recovered the simple result of Goodman, which appears
quoted in section 1.2. One may note that such identity holds only subject
to some rather severe limitations. The wave of the foregoing derivation, as
defined in equation A.60, has been simplified to a complex plane wave of sin-
gle spatial dimension and direction. In the case of general electromagnetism,

the result holds only as scalar approximation to the true phenomenon.

One may however draw an inference for extrapolation of equation A.70
to realistic waves. Trivial phase shift invariance, (IJ;) = (If), holds for
all moments of a single measured intensity. Pearson’s cross-correlation (per

equation A.69) thus simplifies:

_ {lTag—Iag)e {Joo—Too)e )
P({(Iag)e, (Too)e) = C(Too—Too)e (oo —Too)2 ) (A.71)

One observes for cross-correlations respecting equation A.71, that the
denominator derives generally as limiting case (ie. (@ — 8) — 0) of the

numerator. Situations, where the cross-moment takes a particularly simple
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form, yield cross-correlations of well defined description:
((Tag—Ing)e (Joo—1Ioa)e) = S-cos(a—B) + T; S&T free of a&fB (A.72)
T
—  p({Lag)e, (Too):) = 1 + k-[cos(a—B) —1] where k = (1 + -57)

Thus recovers, for any phase-shifted intensity cross-correlation satisfying
equation A.72, precisely the theoretical format requisite to investigations of
this thesis. While real solutions for (function) (...) may vary, functional

integrity of the cross-correlation remains transfixed.

A.6.2 Electromagnetic plane waves

One may apply stochastic methods to experiments involving general electro-
magnetic plane waves. In line with experimental concepts of laser speckle
interferometry, as presented in this thesis, one restricts study to stochastic
light sources of a very particular geometry. One should like, nonetheless, to

deal only with experimentally realistic solutions to the Maxwell equations.

The basic source term for the multidimensional case may be written as
asymptotic to the plane wave vector potential. In Coulomb gauge, such a

vector potential, and its derivatives may be expressed as follows:[JACK 62]

-

A7 t) = At & 0 = V.AF L) = k-A(Ft)  (A.73)
EFt) = -%a,ff(r,t) & B(Ft) =V xAFt) —

-

EFt) = i%[f(f‘,t) & B(Ft) = ik x A(F,t)
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One requires electromagnetic (E & B) fields to comply with free space
Maxwell equations. To this end, a pair of obvious constraints may be im-
posed. First, real fields must observe V - .;1'(1"‘, t) = 0, the Coulomb gauge
constraint. Second, simple waves follow ¢ = f - A as standard wave velocity
identity, with light speed ¢, frequency f = 27w and wavelength A = 2r/|k]|.

For plane waves of the type considered, such constraints read respectively:

k-A=0 & w=|kKc (A.74)

Subject to equations A.73 and A.74, one may quickly confirm the free

space Maxwell equations for simple plane waves of such description:

V-E(Ft) =0 V x E(Ft) + -lc-até(r,t) =0 (A.75)
V.B(Ft)=0  VxBFEL)- %a.ﬁ(r*,t) =0

Light intensity in reality derives from energy propagation impinging upon
a surface at some incident angle, to be observed with some proportionality
constant . One may write this result, up to a pure boundary term, in terms

of the Poynting vector S(7, t):[JACK 62]

—. —

S(7t) = 20 E(7,t) x B(F,t) — I(Ft;n) = S@Ft)-7  (A.76)

In view of the current complex vector field notation, set out in equation A.73,
one further defines Poynting vector for real (R{w} = 1(w+w")) or imaginary

(S{w} = 3:(w — w")) wave components respectively as:
S.(Ft) = i-;-a (B + B*)F.t) x (B B)F 1) (A.77)
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Time-average views of the Poynting vector and intensity derive from
scalar multiplication of independent terms. Potential constant A and conju-

gate A" give the time-average flow rate of energy content. Propagation ray;,

-

defined by unit k& = l%’ and intersecting surface with unit normal #, define

the incidence. One may write, for waves respecting equation A.73, following

simple time-average observables:
(8e)e = cSP(A-AVE — (L(GA)) = (Se)eh (ATS)

One must note that while wave solutions do propagate in free space,
reality nonetheless imposes conditions at some boundary. There, some set of
oscillating multipole or surface current terms may be imposed, to model real
boundary conditions. In any case, driving oscillatory source [5(7"‘, t) amounts
to complex constant (tensor) muliplication on the radiating vector potential:

symbollically, ﬁ(f", t) x /-l.(i", t) at the boundary.

One may draw an inference relating stochastic fields and boundary con-
ditions. Stochasticity of either boundary sources D or radiating fields A
imposes stochasticity on both. The result may be applied to stochastic
(asymptotic) plane waves following equation A.73 in form. General (coher-
ent) stochastic sources derive from viewing complex vector potential constant
A and conjugate A* as stochastic sums. Such a view affords practical utility:

stochastic effects may be elegantly modelled in complex vector algebra.

One does rely upon verisimilitude of the asymptotic plane wave inference,

in the study of speckle interferometry. Validity of the inference may be
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shown by considering a single micro-source of a localized composite source.
The radiation field may be technically expanded by solution of the Helmholz
equation. Proper treatment requires expansion in vector harmonics, with all
transverse E and transverse B modes represented.[JACK 62] Interferometry

is however restricted to the far field, where solutions simplify asymptotically:

A(F t) ~ I—%A’(Q=(9,¢)) ikt (A.79)

Restricting observation to a region where variation of inverse radius |—r‘:| and
angular variation of /-f(Q) seem negligible, one extracts asymptotically the
requisite coherent plane wave. Viewed from precisely such an observation
region, micro-sources of a localized source may be combined as coherent,

provided the angular distribution of the net source remains negligible, when

viewed from the respective observation point.

A.6.3 Laser speckle intensity distribution

A single asymptotic stochastic source may be utilized to model the expected
intensity distribution due to a single real scattering source. One may in fact
almost immediately write out the result, which appears quoted in subsection
2.1.1. The obvious stochastic (micro-source) tensor expectations may be

expressed as follows:

(=7}

(dA(s)) =0 (dA(s) ® dA(s")) = (A.80)
([A(s)) =0 (dA"(s) @ dA*(s") = O
o (2)? (@A(s) @ dA"(s")) = 8(s,5") - ATy anor
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One infers construction of observable hermitian intensity tensor Z:
I = / AT 400y ars) (A.81)

Micro-sources share an identical (asymptotic) propagation ray. One may
therefore infer also a tensor constraint: I necessarily has singular kernel

containing propagation (ray) axis k:

k-dA(s) =0 — k-I-k=0 (A.82)

With a null eigen-mode corresponding to the (ray) axis of plane wave prop-
agation, orthogonal transformation from principal axes reads as follows:

[Z':t [zy [z: I N 0 0 -

T =1\ I Iy I =R}10 I+ O0|R (A.83)

L. I, I. 0 0 O
One observes that orthogonal transformation R should sensibly reduce to
a real rotation. The complex form corresponds to introduction of elliptical
polarization. Random scattering from a rough surface should lack any such

phase coherent effects. One deduces that truly random scatter should render

tensor 7 real and symmetric.

Observable moments of time-average intensity derive simply by applica-
tion of equations A.76 through A.78. Direct evaluation of stochastic expec-

tations vields the following results:

1
T
(;—%)%Ug;fz»?)
-7l

{(IGA)e) = [0(2)?(A-A) = trace(T) (A.84)

[0 (92 ((A- A%)?) = trace®(Z) + trace(IT)
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As particular results, time-average intensity mean and variance values obtain

for real scattering from (asymptotic) pointlike stochastic sources:

i = (I:(7)e = (Sz)e-no = I(k-R) — (A.85)
(i) = trace(T) (k-n) & o2 = trace(ZT) (k- 7)?

i

One may finally derive directly the perceived intensity distribution, by
noting that choice of axes along principal moments simplifies differential
expectations. Most first and second order moments vanish, with only the

following pair of exceptions:
K(dAL() dAL(s") = 8(s'—s")- diL(s',s") (A.86)
K (dAT(s')dAT(s")) = &(s'=s")-dit(s,s")

)? (k- )

where Kk = o

olE

One infers that independent components i, & it are each distributed
exponentially, as were simple waves of single spatial dimension, per equa-
tion A.63. As a result, observed intensity should be distributed by gamma
convolution, per equations A.36 and A.37, as follows:

1 . - l - . - 3
=7 (6 1L () + —r (51, G i) # (¢

(i) = { ey f ‘ (.L)). oy (%1, (i1)) (-.L) (-T)

(% 2, 3 ((E1) + (iT))) (iL) = (i1)
(i) = (i) + (ir) and

ok = (i) + (ir)% or

() = 30 +V20E— () and

(1) = 5(6) = 2ok — )

(A.87)
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One notes with interest, that real intensity distributions may be parametrized

solely by observation of net intensity, without resort to polarizing filters.

A.6.4 Laser speckle autocorrelation

One may investigate the spatial scale at which asymptotic plane waves from
localized coherent sources demonstrate stochasticity. Phenomenology takes
an obvious path in derivation of intensity auto-correlation with respect to
shifting observation location. In so doing, one finds that perceived speckle
dimension derives not from surface nature at the stochastic scattering source,
but rather from the electromagnetic field distribution found there. Results

of the current examination appear quoted in subsection 2.1.2.

The auto-correlation under study may be rather simply expressed. One
may moreover infer properties which such an expectation must sensibly sat-
isfy. Near and far signal relationships of time-average intensity under auto-

correlation derive as trivial limits:
((D) (@) = (i@ Ni@) + p(i@), i([@)) - Joi(D)oi(H  (A88)

PLZ+8,i(Z-9) =T 0 (iF+9i(Z2-9) =F (i(2+9 (i~ 9)

Pli+8,i(F-8) =8 1 (iF+9i(F-9) DB (i(9)i(?)

As preliminary to derivation of the asymptotic forms for moments ap-
pearing in the auto-correlation, (equation A.88,) one briefly revisits the real
scattering field viewed (per equation A.79) in the far field. So long as stochas-

tic effects dominate the autocorrelation one may ignore angular variation in
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function f(€) and conjugate f*(Q) as negligible. In anticipation of precisely
such a result, angular variation inherent to a single scattering micro-source

may be ignored.

Required next is a stochastic expression modelling the real scattering
source. Measure for such a stochastic process may be conveniently parame-
trized in real spatial coordinates. One postulates a homogeneous scattering
source distributed in real space by imposing trivial source structure. Struc-

ture derives naturally from perceived (micro-source) tensor expectations:

(@A@) =0  (dd@) ® dA@@)) =0 (A.89)

(=11}

(dd*(@) = 6 (dA*(@) ® dA*@")) =

o (L) (dA(@) ® dA* (@) = 6(@—-a") - p(d = %(a'w’) )-T dada,da,

olE

with constant tensor Z and normalization / da;dayda.p(@) = 1

Evaluation requires an asymptotic expression for optical path variation
under shifting location. One parametrizes location inside the source by vector
d about scattering centroid @ and defines deviation & = @ — @,; observa-
tion in the viewing surface, near location Z, similarly follows 65 = 7 — %,.
The intended limiting condition, A < |§a| < 74,:,, indicates how variation
of equation A.79 might be limited to lowest order. Consideration may thus
be restricted to spatial phase dependence, in angle ¢ = k - ¥ of the com-
plex exponent. The phase field is conserved or Lie-dragged[SCHU 80] under

perturbation of deviations éa & 63

158



2r

d¢sz(d) = Y (raz — Tazp) due only to 6% (A.90)
Taz ~ Tgoz — OG- 1-‘:.,0: to reference point
Tazg ~ Tag: — 0@-Tgs, to perturbed point 7
= = 1 — ps =
Tagz ™~ Tagz + (02 — (fagzo - 02)Fagzo)
agso
e 2r - - =z =
065s(@) ~ ——1[(8a-82) — (8@ - Fagzo)(Fagzo - 62)]
a0z
- — 2r - - - Y rd =
d¢s:(@) ~ 0a-0z, where 82, = (1—Fgy:®Fagz) 02

Taozo

Expression of the (asymptotic) auto-correlation follows, by Wiener inte-
gration, with asymptotic functional phase shift.[EMER 89] The results may
be expressed, in terms of intensity tensor Z and scattering source spatial

distribution p(&), as follows:

P utl]

(k- 7)7* (i(@)i(7)) ~ [0(%)2]2((5(5)-5' D)(A@) - A@))  (A91)

~ O CPP([dA@) - [dd@)([d@ - [d@)
~ (o PP (([dA- [dAr)([erooee@dd. [emisers@yfr))
~ trace’(T) + p(i(F), i(§)) - trace(ZT)

p(i(@), i) = (@ Faslp@}O ] where 5= 2T (1-F@f) (#-7)

Properties of the Fourier transform, per equation A.26, with source nor-
malization, per equation A.89, suffice for satisfaction of the trivial near and

far signal limits in equation A.88. Of further interest is a cross-correlation
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expression for a special intensity distribution. In the case of a Gaussian
stochastic source, observed source intensity is distributed per equation B.17,

as p(@) = G3(@; fAsces gie), from which following cross-correlation results:
p(iE),i(y)) ~ exp(-3 (-’t—y) ( (Z+9) = fsce 02 A)-(Z-9) ) (A.92)
speck(r? sce? ) = 2 (AI -1)2 (1 T®T) Usce (1 1’®T‘) where

| asymptotically for A < y/trace(o2,) < r

One notes that variation of function f(2) and conjugate f*(Q), for a

|~

F=

3

scattering micro-source, should indeed be negligible on such a scale. As
anticipated, stochastic effects dominate in production of laser speckle. One
draws a conclusion in relation to scattering source properties and speckle
nature. Stochastic Wiener integration makes no explicit reference to surface
qualities, such as composition and roughness. So long as a surface provides
approximate stochastic scatter, theory predicts that other source qualities

should have little effect on the nature of observed speckle.

For purposes of this thesis, perceived speckle scaling dimension is of in-
terest only as a gross order parameter. The simple statistical goal is that
perceived intensity should vary amongst neighbouring pixels, but that mea-
sured local averages should be observed as relatively fixed. One may in fact

view such a goal as directive for experimental design.

By design, one must satisfy a pair of nontrivial constraints on statistical

observations. First, observed pixel dimension should be no more than a few
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orders of magnitude larger than the intensity auto-correlation deviation, to
ensure that statistical intensity variation be made observable. Second, pixel
sample dimension for cross-correlation should be larger than a few times
the intensity auto-correlation deviation, in order that cross-correlations be

calculated from requisite independent bivariate trials.

By fortunate coincidence, such constraints are mutually compatible. Ex-
perimentally, one might choose composite pixels, spanning only a few char-
acteristic auto-correlation lengths. Statistically, intensity variation becomes
observable, and the necessarily larger cross-correlation sample dimensions
automatically span independent trial regions. Such was the case in work

throughout this thesis.

A.6.5 Laser speckle phase interferometry

One would like to generalize the concepts of phase interferometry, expressed
in equation A.70, to true interferometer physics. That simple result consid-
ered scalar waves in single spatial dimension. With expectations raised by
the suggestion of equation A.72, one anticipates that generalization to real
waves might be workable. The asymptotically correct interferometer does
however involve some sophistication. One must directly evaluate Pearson’s
cross-correlation for real electromagnetic fields from a stochastic asymptotic

plane-wave source pair.

Consider the natural generalization of the simple scalar wave phase offset

in equation A.64. Introduction of phase angle offset 6 to realistic EM vector
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potentials may be similarly denoted by subscript as follows:
Ay = Aet® 5 Ay(7t) = " A(F,t) = Aetilkrwtio) (A.93)
Ay = Ae™® — A(Ft) = e A (7 t) = AnemiETutr0)

One sets out to examine the low order moments of real intensity dis-
tributions under phase shift. Due to the introduction of incidence and po-
larization, which remain nontrivial in real interference, direct evaluation for
moments of the Poynting vector §-=(F, t) of equation A.77 is required. The
time-average real Poynting vector for a source pair expresses thus:

- 1 - — — -
(S(7,t)) = 50((ExB‘+E‘xB))¢ (A.94)
= o (%)2 [(A'I . A‘I-) I’él + (A‘n . A‘n.) ]’én]
+ %a(%’_)‘z [(EI A A"")A'l- + (kl . A‘"-)A'/]
+ %0’(%)2 [(E”'/i.')fi‘"' + (,’&n‘ A‘;-)A‘n]
1 o = - - . .
_ 50(%})2 [(A' R An-) + (Alt . A")] (kl + k”)

Evaluation of stochastic (expectation) moments for Poynting vector
(S(7,¢) )e yields the effect of shifting phase. With interfering EM plane
waves, A’ and A”, phase offset by angles a and 3 respectively, intensity mo-
ments may be calculated directly. The immediate expectation of radiation
propagation yvields a trivial invariant:

(8(7,t)) = trace(T')K + trace(T") k" (A.95)
Expectations for second order moments do however reveal phase shift infor-

mation. Basic stochastic manipulation, on the Poynting vector of equation
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A.94, allows for extraction of the Pearson’s cross-correlation, as expressed
in equation A.69. The result, with labels altered from equation 2.5, may be

expressed in current conventions as follows:

p({lag)es (Too)e) = 1+ &(T', I @) [cos(a - B) —1]  (A.96)
(1" %),

t v, - -
k(Z',I"; n) (1 + S(T. T 7))

)~!  where
S(T,I'n) =

(RI'A)(K'I"E") + 2 - (RT'K")(K'T"R) + (K"T'K")(RI"R) +

[ﬁ, . (El + E”)]"’tmce(I'I”) _ [ﬁ, A (EI + E")][ﬁ(Z’I" + IIIII)(EI + ”c'")]

T(T.T% 8) =
% (7t - K')? - [trace*(T') + 3trace(T'?)] +
% (72 - k")? - [trace*(I") + 3trace(T"?)]

Thus derives a solution which respects point intensity of real light, from
a coherent stochastic source pair of arbitrary polarization. Having dispensed
with the complexities of polarization, the introduction of composite sources
and pixels reduces to a triviality. Evaluation reveals the simple net effect of
compositeness: ohserved interferograms appear equivalent to point intensity

results taken under optimal conditions.

The general result evaluates by parametrization of point intensity paths.
Parametrizations, labelled by X & Y, may be understood to include parti-
tion of stochastic micro-source composites in both members of the scattering

source pair, and partition measuring the viewed surface. View of the surface
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may include spatial pixel dimension and weighting as well for optical blur.
One may extrapolate the requisite form of intensity cross-moment from ele-

ments of the net partition to the full measure:

(dI°®(X)dI®(Y)) = dS(X,Y) cos(a—8) + dT(X,Y) — (A.97)

(12 1%) = ([ [ a1 [ a1y = [ (d10(0) ar*(v))
= | /\ LAS(X,Y)] cos(a=B) + [ /‘wdT(X, Y)]
= SUX}L{YY) cos(a=B) + TUX}{Y})

Assumed here is the asymptotic limit where intensity tensor expectations
T' & I" and wave vectors k' & k" remain fixed. Variability should however
be allowed in surface normal fi. Angular variability represents surface tex-
ture, whereas magnitude variability models local reflectivity. By inference,

equation A.97 indeed describes a most general form of composite moment

expectation.

One draws a final inference from the present investigation. Composite
pixel intensities following equation A.97 satisfy conditions giving the result
of equation A.72. The nature of the composite function, k({X}, {Y'}), yields
as well to simple interpretation. While polarization has introduced mea-
surement angularity and more complex intensity dependence, interferome-
try following functional equation 1.5 nonetheless respects simple constraints.

Function x({X}, {Y'}) respects strict bounds and appears as equivalent to an
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optimal point intensity result observed under quiescent surface conditions:

if x(X,)Y) = (1+ —Zggg )"! and (A.98)
k({X} (Y} = (1+%’§%)-1 then

dT(X,Y) T{Xx}1{¥}H
mE @y =M T S sy <

k< h(XY)< K — k< s({X}1{YH) <K

Composite intensity measurements inherently mitigate local effects such
as surface variability in texture and reflectivity. Variability in function
k({X},{Y}) may be damped, without alteration in observed interference
amplitude. Macroscopic pixelation and optical blur show precisely such an
effect. So long as speckle variation may be observed as significant in video
images, one concludes that compositeness should induce not deterioration

but rather enhancement in quality of observed interferograms.
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Appendix B

Likelihoods

B.1 The Neyman-Pearson lemma

The investigative goal of the study of likelihoods, converse to the study of
probability, is inference of which experiment was conducted, based purely on
observation of results in sets of random experiments. While the aim of such
study should seem familiar to the experimentalist, direct examination of the

theory of likelihood does raise some peculiar concepts.[FREU 62]

One may illustrate the likelihood concept by posing the following thought
experiment. Suppose that one was given a coin and the associated task of
conducting an experiment of 10 tosses. Suppose further, that the experi-
ment resulted in 8 heads and 2 tails. Now, one may ask, what is the most
probable result of the next toss? If one assumes a balanced coin, heads and
tails outcomes retain equal probabilities. The preceding experimental evi-

dence however suggests otherwise. The experimental coin might likely be
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unbalanced. The sample in fact suggests the intuitive (maximum likelihood)
prediction, that the coin should come up heads with 80% and tails with 20%
probability respectively. One is left asking why such a qualitative description

should seem so reasonable.

One may in fact quantify a general concept of likelihood which reflects the
qualitative view. The Neyman-Pearson lemma amounts to demonstration of
this actuality. A few preliminary refinements are required though. One re-
quires strict definition for intuitive concepts regarding statistical tests. From
rigid foundations, one may quite elegantly demonstrate the general truth of

the intuitive assessment.

Suppose one has a pair of possible hypotheses A & B as to the nature
of an experiment. Assume that proposition A amounts to the practical fall-
back assumption, often referred to as the null hypothesis. The alternative
hypothesis, comprised by B corresponds to recognition of membership in a
distinctly defined subclass on some clear criterion. One would like to find an

optimal decision criterion which experimentally separates the populations.

One recognizes an obvious classification based on observation. Given an
observation = one may calculate the probabilities of £ supposing hypothesis A
holds and supposing hypothesis B holds respectively as L 4(z) & Lg(z). One
acknowledges the conditional nature of hypothetical probabilities by coining
the term likelihood for such distributions. One might guess that the higher
value of the likelihood pair indicates the better hypothesis.
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One acquires clear insight into classification through examination of con-
ditional probabilities. For observable events u & v, one defines by P(u|v) =
P(u&v)/P(v) the conditional probability for event u given that one has al-
ready observed event v. One notes that sensibly P(v) # 0, since after all, v
has been observed. One may derive, given observed event z, (with P(z) # 0,)

the following ratio of conditional probabilities:

P(Alz) _ P(A%z) _ P(A) P(z|A)
P(Blz) = P(B&z) P(B) P(z|B)

(B.1)

One intuitively identifies P(z|A) = L(z) & P(z|B) = Lg(z). The global
probability ratio P(A)/P(B) derives from experimental conditions. One may
indeed assign, for the event pair A & B, a relative likelihood classification

based on experimental observation.

One should like to investigate further the nature of classification. The
result of equation B.1 suggests a test criterion and motivation for the study
of optimal hypothesis tests. One sensibly defines the assessment of best
hypothesis from equation B.1 by H(z;{L4()},{Ls()},%) on the following

functional criterion:

H(z;{Ls0},{Ls(},k) = { B Tz {LaO0}. {LsO)}) < &
either 7(z; {L4()},{Ls()}) = &
LA(I)

Lg(z)

Parameter £ may be varied to bias preference toward either hypothesis A

{ A m(z; {La0}, {Ls()}) > &

(2 {L40}. {Ls0}) (B.2)

or B. Choice of k affects relative likelihoods of misclassification by skew-

ing questionable hypothesis comparison ratios preferentially. The constant
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may also be identified with global probability ratio P(A)/P(B) appearing in

equation B.1.

One may further precise the test definition by writing the test in terms

of set R and conjugate R/, referred to as critical regions, such that:

H@ (L0 (La01C,C) = { § ZEFK whee (B3

R 2 {z: m(z;{L4()}.{Ls()}) >k}
R 2 {z: r(z;{La()}.{Ls()}) <k}

One may observe that more general functions 7(z; {L4()},{Ls()}) may
be tested against constants k, and that one may thus define more general
critical regions. Conversely, one may view a general test as constructed by
choice of its critical regions. The question presents itself, whether other test
criteria exist, which show optimal performance (in some sense) relative to

the ratio of likelthoods test.
The most obvious measure of test performance relates to the amount of

classification error. The traditional definition of error types is as follows:

type I: rejection of the null hypothesis when it is true

type II: acceptance of the null hypothesis when it is false

Viewing error classification in terms of error probability allows for a bal-
anced treatment regarding the pair of hypotheses. Type I errors erroneously

reject null hypothesis A, comprising measure a under distribution L,(z);
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Type II errors erroneously reject alternative hypothesis B, comprising mea-
sure 8 under distribution Lg(z). One identifies sets where a test fails by the
respective errors with precisely the critical regions of that test. One often
refers to these by measure or size. One infers from this balanced view that a
sensible definition of optimality amounts to minimization of either error, with
the other held fixed. One finds that choice as to which error is minimized

and which is held fixed has no effect on the result.

The ratio of likelihoods test criterion of equation B.2 shows itself as opti-
mal by such error minimization. The result may be demonstrated directly as
follows. Suppose that ratio of likelihoods test (for some k) has critical region
R of of type I error size a; more simply, R defines the set where hypothesis
A fails on the ratio of likelihoods test. Consider also any other test with
respective critical region S of identical size a. Symbollically, one may write

the fixed error term as:

/,- LFLa(r) = a = /sesszA(s) (B.4)

By cancelling integrations over shared region RN S one finds:

/lems'ctLA(t) = / @ La(2) (B.5)

teR'NS
One next observes from equation B.2, that for any positive choice of k, the

following pair of identities hold on the respective regions:

zeRNS — Lg(z) > %LA(.’L‘) (B.6)

zteRNS — %:'LA(.’L‘) > Lg(z)
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As a result, one derives the following meaningful inequality:

[ ko 2 5[ ka0 =3[ 2La0 > [2La0  ®D)

One may apply precisely this inequality to generate a result regarding the

likelihoods of avoiding type II errors:

1-8r = /dLB(t) =/dLB(t) +/ @ Ly () (B.8)
/dLB(t + [ aLs) /dLB(t) = 1-8s
€RNS teR'NS

One may conclude the demonstration by noting that 8r < Bs: likelihood of

type Il error under the ratio of likelihoods test gives optimal performance.

One may expand the result by viewing both the above demonstration and
its converse equivalent. By interchanging set labels one may swap critical
regions for null and alternate hypotheses, showing optimality as well in the
converse view, where error measure 3 (type II error) is held fixed and a
(type I error) is optimized. One labels a test satisfying such characteristics

of optimality as having most powerful critical regions.

In conclusion of this introduction to the concept of likelihood, one notes
that intuitive notions of qualitative likelihood may be sensibly quantified by
adherence to accepted definitions and conventions. Concepts which seem
awkward and ill-defined in a qualitative view become well grounded in the

peculiar rigorous view of the preceding demonstration.

171



B.2 Maximum likelihood methods

Mazimum likelihood methods encompass procedures where functional opti-
mizations are drawn from analysis based on the Neyman-Pearson Lemma of
the previous section. As a special case of equation B.1, one may compare
experimental likelihoods for similar parametrized distribution models. One
assumes equal apriori global probabilities P(A’) = P(A”) for test distribu-
tions parametrized by & & &” respectively. Given experimentally observed
data sample £ one may express conditional probability ratios as follows:

P(AlZ) _ PEA) _ pl&a)
P(A"7) = P@A" ~ pFa)

(B.9)

By testing parametrizations pairwise according to equation B.9, a unique
and consistent optimality ordering arises. Moreover, as parameters @ vary
over their allowed domain, the function p(Z; &) may be maximized. Continu-
ity of p(Z; @) over a compact domain of test parameters & suffices to ensure
that a maximum is actually attained. One thereby chooses, from amongst
a class of distributions parametrized by &, the optimal member distribution
given experimental result £. Functional classification error assumes optimi-

mality for such a mazimum likelihood result.

Practical applications of mazimum likelihood often involve data sets with
iterated independent trials. In the case of such an independent iteration,

general optimization obtains from expression of the likelihood of the complete
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experimental result, given a choice of parameters:

n=N
P(£;a) = [] L(za; @) (B.10)
n=1
0 = %mP(f;&)

One solves the latter system of equations to recover mazimum likelihood &

parameters.[MATH 70]

As example for the method, assume independent data of Gaussian dis-
tribution, per equation A.12. For a fixed data set of repeated trial measure-
ments, z, with n € {1,..., N}, one may vary Gaussian parameters u & o to
find optimal values:

n=N
P(Zp,0) = [] 9(znip,0) (B.11)

n=1

One optimizes P(Z; u,0) by solving following systems of equations:

i) 1 el
0= —=—InP(Zuo) — = — Tn B.12
7 nP@Eme) — u =53 (B.12)
0= -a—lnP(:i:" o) — o? = iniN(x - )2 (B.13)
- & 1“9 - N ~ n /-L .

The mazimum likelihood mean of equation B.12 equates identically with the
unbiased estimate of equation A.9, while the mazimum likelihood variance of
equation B.13 scales by a factor of _1!1\7_1 relative to the unbiased estimate of
equation A.10. Introduction of the corresponding bias gives a better variance
estimate for the particular data set in question. Statisticians classify such

optimizations as point estimation.
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More general applications abound. Any independent statistical measure-
ments may express products in the form of equation B.10, with parameter
variation optimizing likelihood. Further examples of mazimum likelihood

methods appear in the following appendices.

B.3 Pearson’s cross-correlation

With the concept of a bivariate probability distribution, P(z, y), one encoun-
ters mixed moments of the form (z™y"), lending new and robust potentials
to the study of expectations. New non-negative quantities are readily con-

structed: given general a&b € R, one finds the following example:

_ —\12 0’3.1. 0".%, a
0 < (fate-2) +sy-9F) = [a 8] 77 ][ | @
yz

Tyy

The correlation tensor must satisfy the non-negative semi-definite con-
dition. Most simply stated, eigenvalues of the tensor must be non-negative.

Equivalently, 0 < 62, & 0 < 062, and the tensor’s determinant must be

non-negative as well:

0 < deto? = o2, -0, 02, 02 (B.15)

Iz

One thus finds for cases with nontrivial statistics, where (02, > 0 & 02, > 0),

the following result:

2
Izy

P = —F7—
2 42
,/a“aw

Clearly inferred, Pearson’s cross-correlation p thus defined, bears infor-

— -~1<p<+1 (B.16)

mation content. One may in fact draw conclusions based solely on this
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statistic. If random variables z and y are independent of one another, then
p(z,y) = 0. Thus non-vanishing p contradicts pairwise independence of
z & y. At the other extreme, p(z,y) = +1 corresponds to an exact lin-
ear relationship: az + by = c. The relationship holds exactly, except possibly
on a set of zero (probability) measure. Experimentally, moreover, deviations

from perfection may be measured as caused by statistical error.

One might next ask how best to estimate cross-correlations from exper-
imental samples. Derivation of a mazimum likelihood estimate for p follows
the prescription of equation B.10. Solution here makes use of the general
multidimensional Gaussian having vector mean j and positive-definite co-

variance tensor gzz[PATH 72|

=2 1
Gn(Z: 4,0 ) =
¥ \/(27.')N -det o2

expl~3 (2-A)o® "(@~A)]  (B1T)

An experimental likelihood, over independent multidimensional Gaussian tri-

als, expresses as a product of the following form:

n=N

2 2
) = I Gk(Zni5,5) (B.18)
n=1

P(z;d,6

Optimization of P(Z; , 32) follows by solving systems of equations:[FREU 62]

0=2wPEad) — i=1%z (B.19)
a-i ’l‘: N & n e

0

n=N
0=ZwPEd) — &=~ (G-i)®(@—f) (B20)
w N n=1

Results B.19 and B.20 mirror the respective simple single dimensional coun-
terparts of equations B.12 and B.13.
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In the example of the 2-dimensional case, with z;, = z &z, = y, pa-
rameters transform as (02,,02,,02,) — (02,,p,02,) without altering any
likelihood values. One thus finds marimum likelihood cross-correlation:

Nyzy-3Szdy
VINEez - Tz L z)(NEyy - Ty v)

The mazimum likelihood estimate of expression B.21 (with indices suppressed

plz,y) = (B.21)
for clarity) has been used throughout this thesis.

Multivariate distributions allow as well for calculation of further quanti-

ties. Linear functions of random variables generally follow:[MATH 70]

0z 0z

z= Zo+;g-8k = Zo+£,'s — (B22)
- 0z _ _ dz .
z= ~0+¥¥-Sk = ZO+3§ s
0z 0z 0z 0z
2 -_— — . 2 ¢ — — — 2.—
== 2 g Tmn g a5 7 "5

Here o gives the matrix equivalent of the covariance tensor for purposes of
the calculation. The result may be extended to nonlinear functions, with

negligible second order contributions, giving linearized variance estimates.

As an example of a linearized variance (error) estimate, consider the sam-
ple cross-correlation of equation B.21 as a function of data vectors T & 7.

Assuming statistically independent measurement pairs, one has:

02z = Omn-02; (B.23)
azz:mlln = 6'"" ) af'!l
oimyn = 6’"" . ag!l



Application of linearized variance, per equation B.22, to the sample cross-
correlation equation B.21, respecting the covariances of equation B.23, yields

a surprisingly simple result:
2 2 22
Opp = V (1 - p ) (B24)

Variance in the cross-correlation may be expressed, to lowest order, as a
function of the value on itself. Effects from data distribution cancel in the

linear calculation.

Equation B.24 raises a measurable consequence. One may investigate
the assumption of independent measurements expressed in equation B.23 by
measuring real sample p and azp. Effective and actual sample populations
(N from equation B.24) should correspond. Detailed theoretical and experi-

mental examinations appear respectively in subsections 2.1.4 and 4.2.2.

B.4 General linear regression

The general least squares problem may be expressed as an application of
mazimum likelihood methods. Optimization for a linear regression reduces to
choice of a (positive definite) quadratic. The quadratic x- statistic should
be chosen to vanish identically, when theory and experiment match. The

remainder of the optimization follows as trivial algebra.[MATH 70][PRES 92]

Suppose one wishes to test a theoretical prediction of the following form:

¢(2) = a- f(» (B.25)
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Here, one assumes (well defined) measurement function ¢(2), and order n
set, of (well defined) basis functions fi(Z), being linearly independent on
the (as yet undefined) experimental data set. One wishes to measure the n
corresponding (dual) coefficients ax. One should, therefore, choose (positive

definite) quadratic form y as follows:

Xexp = ([8(2) =@ - f(D)] )exp (B.26)

The suggested form vanishes with perfect theoretical data, and assumes a
unique minimum stationary point for noisy data. As will be made clear in

the following exposition, that stationary point gives the best fit.

Experimentally, solution requires N > n independent trials. One assumes
the experimental data set to be nonsingular, in a sense which will become
clear below. In anticipation of the following discussion, one has defined a

new ezperimental expectation (.. .)exp With following normalization:

k=N 1
(B(Zik) )exp = . =5 B(5k;k) where (B.27)
k=1 Tkk
(Am-An) = bmn 0,2,,,, statistical expectation with

Ai(%: Giheory) = (%) — Geheory - F(7) k€ {L,...,N}

Optimization reduces to solution for the (unique) stationary point of the

quadratic form in equation B.26. Standard solution may be expressed by:

" 1 9 1= -
0 = 3 55 Xew = 0% ld@s, — 7 where (B.28)

o' = (fi(D) fi(D)ew and v = ($()fi(2))exp
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— 2—-1~— 2 2 ~1\— — ~
T=o0"""ag & 30*: 0® = (6> V) — ag = %%

One infers, by way of solution, that (non-negative semi-definite) sym-
metric form 0% 7! (ie. 637! = 03!) should be (positive-definite) invertible.
Such requirement may in some sense be circumvented by the more general
singular value decomposition presented in section 3.4. Conventional single
valued solution requires that data be non-singular in the sense that o2 ~! be

matrix-invertible.

Provided a solution exists, as outlined in equation B.28, equation B.26

may be rewritten as follows:

xae({Z} @) = xL{Z}) + (@—aa)0® '({Z}) (@—ds) where (B.29)
x2({Z}) = (0*(3) )exp — @a({Z}) - #({Z}) independent of &
@({z}) = o*({})#({2}) linear regression fit

One recognizes the definition of x2, as a multi-dimensional generalization to

the variance expression of equation A.6.

Application of the mazimum likelihood principle reduces to simple in-
ference from the preceding. If one presupposes Gaussian distribution for

variables A, of equation B.27, one infers the following likelihood product:

- k=N
P(A;a) = ] 9(Aw(zd); =0, 0 =/o}) (B.30)
k=1
1

1 .
" e e
k

One observes that the exponent matches identically with the experimental
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expectation term of equation B.26. Thus maximum likelihood analysis, via
equation B.10 and respecting equation B.30, gives the same solution for dg,
as expressed by the respective stationary point solution of equation B.28. In
this instance, maximum likelihood and least-squares solutions are perfectly

interchangeable.

From a slightly more sophisticated vantage, one would like to presuppose

for the experiment, multidimensional Gaussian likelihood of another format:

-

1
. . se 2 exp(—3 Xtheory)
P (8noises @at; Grneory: 035, 020 ) = \/ (27’)1\f de-t a't'-’ eoc;::taz (B.31)

: 8 ag

- -

— L0 = ~ 2-1/(> — 0 —_ 2-1
Xtheory = Xtheory+ (aﬁt—athcory) %aa (aﬁt_athcory) where Xtheory — 6066 4

If such an identity holds, one may view in separation, noise modes S'noise
as independent of the random variables a@s,. This view accords well with

intuitive concepts of measurement in the presence of noise.

Generally, likelihoods expressed in equations B.30 and B.31 are only ap-
proximately compatible. One could investigate the relationship between the
likelihood expressions by attempting to construct the requisite transforma-
tion from one into the other. Most sensibly, here, one should express both
with respect to distribution of the underlying z. Such investigation, though,
extends well beyond the needs of this thesis. Relying upon such a qualitative
view, however, one may exploit the natural expression of equation B.31, to

draw some meaningful inferences.
Comparing the experimental x of equation B.29 with the model xpeory Of
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equation B.31, one recovers mazimum likelihood estimate Gpeory ~ @5 ({Z})-
Comparing further coefficients one infers o2, ~ 0%({z}) as covariance (error)

tensor. One moreover postulates following measure for degrees of freedom:

n = ( (&ﬁt_&theory) aza-l(aﬁt—atheory) ) (832)

N-n (6037'8) = (Xhoory) ~ (X&) ~ xB({Z})

From such expressions one may estimate, even without apriori knowledge
of error magnitudes, the elements of the covariance (error) tensor o2,. More
precisely, if one assumes weights to be known only up to a constant scaling

factor, one may eliminate that factor as follows:

0 - -
o~ L (faefaz ~ B sy By

Such assignment of experimental values to fill unknown expectation values
amounts to point estimation. One ordinarily assumes experiments with data
size nearing the limit N > n. In such cases, distributions are sharply peaked,

and point estimates most often suffice for purposes of error analysis.

The foregoing presentation has demonstrated linear regression as a pure
application of mazimum likelihood. Other approaches do exist, however,
which apply conventional algebraic techniques. Any solution for best fit

vector dg, should naturally return identically the same equation B.28 result.

The identical covariance (error) tensor o2, often derives simply as well

from a linearized calculation.MATH 70] Calculation here relies upon the
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following variational approximation:

a{z) = C{FHi({zh — (B.34)

8@ = 00 — o%8(0* V)| ~ o7

67 = (fod(D)+68f(D))exp ~ (F(2)56(2))exp

For validity of such approximation, errors in the dependent (measured)
quantity should dominate. More precisely, functions ¢(2) & f(2) (per equa-
tion B.25) should satisfy 03,(2) 3> |0%,(Z)| for each measurement. Linearized

covariance estimation may then be expressed in matrix equivalent form:

o2, ~ (d@®da) ~ ((690%) @ (0%87)) ~ (c*(§7® 67)0?)(B.35)
~ (e f(5)® f(D))ew o™ ~ (o0 'o?)
~ (0% ~ o*({z})

A sensible linearized calculation does indeed confirm that covariance (error)

tensor follows 02, = 02, in good agreement with equation B.31 assertion.

One concludes that relatively simple conditions allow for recovery of best
fit vector dg and corresponding covariance (error) tensor o2,. Equations
B.28 and B.33 demonstrate how sensible measurement precepts suffice for
identification of respective experimental quantities. Generality of the solution

extends, however, with concepts from this presentation of linear regression

analysis seeing routine use in a vast diversity of applications.
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Appendix C

Computational methods

C.1 Least squares stability analysis

In applications involving computation, one often encounters problems at the
limits of machine precision.[PRES 92] A standard reaction on encountering
precision related issues is to move from single precision to double precision
floating point math in performance of the critical task. This approach often
fails to address the causative factors leading to precision loss. The true
source of such problems often rests in the algorithm performing the critical

calculation, rather than in the precision of stored data.

One may illustrate the point with a rather simple example. Consider the
standard linear regression. One may write the x- statistic and solution in

the notation of Appendix B.4 as follows:

x=(—a—b®) and A=(H—(z)) — (CI)
A RERE I H IR R Wi
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One immediately notes a pair of opportunities for precision loss. First,
calculation of sums for tensor and vector elements might add components of
disparate magnitudes or even worse cancel large values by subtraction. Sec-
ond, calculation of the determinant certainly cancels a value of large magni-

tude by subtraction. In both cases floating point information is lost.

Precision losses of the types illustrated above are needless. One quickly
demonstrates the point by recasting coordinates. About the centroid, with

Z = (z) and § = (y), the identical problem may be expressed as follows:

x = ((%y—a —b&)®) where &r=z—-Zandy=y—35 — (C.2)

SR RN RBENTER

a'=03ndb’=% — a=g-—bFandb=1b

Iz

Inspection of equation C.2 shows that the parameter and coordinate
transformation reduces linear regression to a mathematical triviality. The
new prescription also eliminates both sources of possible precision loss present

in the common regression of equation C.1. The method works by first min-

mizing magnitudes in moment calculations and second trivializing the fit

determinant.

Similar methods may be employed in more complicated multiple regres-
sion analysis, and even in cases where singular value decompositions are
required. One finds in fact, that as fit dimension increases, reliance on algo-

rithm stability becomes an increasingly critical issue.
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Application of a transformation along the lines of equation C.2 may be
simply accomplished if one of the fit functions gives a constant offset. In
that case, one may write the x- statistic for the general multiple regression

as follows:

Xeo = ([6(D) ~a- f(O e = ([8(2) — & - 5f( )exp where (C.3)

f(9 =1 6= G, 550 = 509 - 5 7= Lo, 47 = g - F
— a;=a;Vi#0 and ao=¢—) fi where a5p=0

i£0

The transformation in equation C.3 has accomplished as well conversion
of the curvature tensor into a true covariance matrix. Diagonal elements
are thus minimized, and other elements are bounded by the non-negagive

semi-definite nature of the covariance tensor:
(D @F(Dew = (FDSF(Dep = FRF(ew  (CA)
The subtracted tensor term may be of great relative magnitude, but al-

ways has vanishing determinant. The removal of this tensor contribution

greatly improves general stability and conserves precision.

All that remains is a multidimensional matrix inversion. This step alone
affects algorithm stability. While the inversion cannot be eliminated, the

process can be simplified. One observes the following transformation:
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T = (B(N)exp and C' = (D) QED)erp — ¥ =CF (CH)

() = TSf(H) — & = TF = (TC'TT'd) = C"&"

for orthogonal transformation T diagonalizing C”

Since C” appears diagonalized, equation C.5 gives a prescription for sim-
plifying matrix inversion in the linear regression. Diagonalization does in-
volve a new calculation for orthogonal transformation T'. The new calculation
does not however depend on the inversion of curvature tensor C. The salient
result is recovery after solution of the result @ = Ta" in the original ref-
erence frame, and regardless of whether the transformed solution involved a
true inversion or a singular value decomposition. If singular values are found,

transformation T does in fact allow for recovery of the null eigenvectors.

One thus finds that recourse to extended precision arithmetic can be
avoided in many unstable fit problems. At the cost of modestly increased
complexity and a few extra passes over data sets, precision instabilities may
be quite elegantly addressed. Singular value decomposition analysis also

becomes a natural extension of the general regression solution.

C.2 The cantilever

The cantilever is defined as a beam with rectangular cross-section, hanging
off a ledge at a fixed end, with the other end free. The cantilever sags un-

der its own weight and perhaps under an additional end load. Solution of
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the cantilever problem derives simply from a most elementary treatment of
stress and strain. Complexities of rigorous elastic deformation analysis are
not required and actually complicate approximate solution for the deforma-
tion field.[BHAT 86] For the following demonstration, consider a cantilever
with the following attributes: the beam has length [ hanging in the positive
direction, horizontally over a ledge at location z = 0, with ambient vertical
gravitational field g. The cantilever has material density p, cross sectional

area A, and Young’s and shear moduli F and G respectively.

An intuitive approach might involve evaluation of deformation under
shear. Cantilever shear modulus deformation under its own weight may be

expressed by the following differential equation:

o dz d*
[aut)=F=6aA% — caZ

= —w(z) (C.6)

with boundary conditions z(0) =0 and %(l )=0
With constant weight density w = pg, the solution to the shear modulus
differential equation may be written:

'r—ﬁ -—
:= Zo(-2) (C.7)

This deflection is constant regardless of applied end load, and should there-
fore not be observable as a relative deformation between any pair of ob-
servations. The effect of end load (mass = m) variation should however be
observable. By linear superposition of solutions, one may denote this contri-

bution by primed variables, and apply equation C.6 in homogeneous form,
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but with new boundary conditions:

_ ey & . mg
w(z) = mgéd(l—z) — 2(0)=0and pa = +GA (C.8)
Solution reduces to the elementary form ' = %z. Calculation for the

experimental aluminum beam of this analysis shows shear strain to be a

negligible effect.

The foregoing evaluation of shear strain models the more complicated
effect of Young's modulus strain. Young’s modulus strain is longitudinal
along the beam. The effect is as though narrow filaments of cantilever stretch
quite independent of one another. Under the influence of torque, the beam
should bend due to unbalanced stretching of independent filaments. The
observable effect of an angular deviation d?/dr should follow the elementary

Young’s modulus form FF = EAd/! for each independent filament:

The moment I sensibly should be mimimized, as static strains minimize
local stresses. The requisite minimum value corresponds to the moment
about the cross-section centroid. For a rectangular cross-section of breadth b
and depth d this moment is given by I = % bd. The approximation of this

derivation, that coordinate z tracks along the locus of cross-section centroids,

holds validity for small angle deviations, with corrections of the order O(6?).

. R -
To the same order one may utilize the familiar linearization — = tanf ~ 6

and obtain a Young’s modulus equation valid for small angular deviations.
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Cantilever Young’'s modulus deformation under its own weight may be ex-

pressed by the following differential equation:[EDWA 85]

ac d?z d?

/I d(t-zju(t) =7 = EI 55 — EIEZI = +w(z) (C.10)
. .\ & d* d*

with boundary conditions z(0) = 2;(0) = E(l) = F(l) =0

With constant weight density w = pg, the solution of the Young’s modulus

differential equation may be written:

pgA

L 2 _ 2
2= oapr? (z* — 4lz + 61°) (C.11)

This deflection is constant regardless of applied end load, and should there-
fore not be observable as a relative deformation between any pair of obser-
vations. The effect of end load variation should however be observable. By
linear superposition of solutions, one may denote this contributior. by primed

variables and apply equation C.10 with a single altered boundary condition:

3.,
w(z) = mgs(l —z) —> %a) = -% (C.12)

Solution for observable Young’s modulus deformation may be expressed as

the following simple formula:

' mg

= SEI

z? (3l — 1) (C.13)

Amongst observable deformations, Young’s modulus deformations domi-
nate over their shear modulus counterparts. Comparision of maximal deflec-

tions at the free cantilever end finds the following disparate ratio between
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shear and Young’s type deflections:

z/max 1F d
shear - =32
R = 2 - = 16D (C.14)

The experimental aluminum cantilever of the current research had values
E = 70 G Pa (Young's modulus) and G = 25 GPa (shear modulus) as well as
dimensions ! = 10” (length), b = 1” (breadth) and d = 1/4” (depth). Calcu-
lation of the deflection ratio in equation C.14 gives R ~ 0.044%. Clearly, the
shear modulus component amounts to a negligible contribution in the net
deflection. The Young's modulus deflection of equation C.13 thus quantifies

a model for observable cantilever deformations as examined in this thesis.

The cantilever of this research had an anomaly: a hole had been bored,
vertically through through the beam, a short distance into the overhang. The
location is apparent in figures 5.14 and 5.15 of section 5.2. Due to complex-
ities involved, values of parameters describing the experimental cantilever
were enumerated in a data text (CNT) file. Figure C.1 displays precisely
the file utilized for all included experimental cantilever deformations, with
all spatial units measured in millimetres.

9.810000e+03 // gravitational constant
7.000000e+10 // Young'’s modulus

155.5 // cantilever length

25.4 // cantilever width

6.35 // cantilever depth

15.5 // hole location (from ledge)
3.175 // hole radius

Figure C.1: Cantilever model parameters in CNT file format
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The effect of the hole could be modelled via perturbation expansion of the
general integro-differential form of equation C.10 with view only to the ob-
servable contribution corresponding to the boundary conditions of equation

C.12. Analysis may be motivated by the following expression:

mg(l — z) = E(I + €dI) (25 + €2} + €°23) (C.15)

Denoting the hole radius by r and its centre location by A, solution obtains
by standard methods, involving a few elementary angular integrations, for
perturbative corrections. The identification z{j(z) = z’(z) already appears in

equation C.13. The full solution set, to second order, may be enumerated:

" mg

4 = g E[ (31 z) (C.16)
o 16 p2 M9 _ _ é 2

Net perturbation solution derives from assertion € = 1 in equation C.15,
and yields simply z” = zj+2z{+ 2z}, with contributions expressed in equation
C.16. The perturbations were found to be experimentally significant, and
thus cantilever model fits appearing in section 5.3 consistently rely on the

complete second order perturbation solution.

Due to the obvious and convenient linear scaling of equations C.15 and
C.16, all cantilever model fits utilized applied end load mass m as sensible

free parameter. The measured deflection function is so simply described.
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Appendix D

Notation

Wherever possible, consistent symbolic notation has been utilized throughout

this thesis. Frequently referenced symbols are listed here along with the

equations of their definition or extension.

Symbol Equation
(..)*(...) A.25

{...) A3A4
(- Jexp B.27

Az, t) A.60

Agc Ay A.64
A(7,t) A.73

Apke A A.93
B(7,t) A.73

c(¢; ®) 2.22,A.15
Cij 3.22

X 2.24,3.18,3.30
x(z;v) 2.12)A.14

Definition

convolution binary operator

mathematical expectation (unit norm)
experimental expectation (population norm)
simple plane wave (complex) function

phase offset simple plane wave amplitude
realistic plane wave (complex) vector potential
phase offset realistic EM plane wave amplitude
realistic plane wave (complex) magnetic field
Cauchy density probability function

curvature tensor components for SVD fit
least-squares & SVD minimization functionals
chi-square density probability function
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Symbol

d(z,y)
djing(z7 y)
dswing(-rv y)
dAp

A,

E

E(7t)
fk(rv y)
fnmi(z" y)

Fear{ f(z) }(K)

G
g(z;p,0) \
Gn (T 5,0 )
1(z; @, B)

1

i, &ir
ta&ipg
I(ia,iB; ®)
I(F,t;n)
Ii(zv t)
Z(..)

lf

k(z,y)

&({ia}. {is})
‘Cz—»s{f(x)}(s)

Equation

3.4
3.9
3.6
3.28
3.25
C9
A73
3.21
3.20
A.26
C.6
Al12

B.17
2.1,A.13
1.7,2.2
2.3,A.83
14

1.4

A.76
A.60
2.3,A.83
2.3,A.82
3.3
1.5,A.98
A27

Definition

surface deformation displacement vector field
invisible constructed singular displacement
invisible rigid swing stage displacement
systematic decoherent wave dilation effect
phase systematic error generators by cause r
elastic deformation Young’s modulus
realistic plane wave (complex) electric field
fit functions (SVD) fit computational view
fit functions (SVD) natural euclidean view
Fourier transform definition

elastic deformation shear modulus

Gaussian density probability function

multivariate Gaussian probability density
gamma density probability function

single source speckle intensity

principal axes intensity tensor moments
interfering signal intensities

net interference intensity

realistic EM wave intensity

simple plane wave real/imaginary intensity
speckle intensity distribution tensor
plane-wave propagation ray unit vector
interferometer phase sensitivity vector field
cross-correlation to phase cosine scale
Laplace transform definition
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Symbol

I
8

YN @RTBTTRTER >
T

nmi

PN(-’B, y)

¢
¢dev
¢

Q(p, 02,
QN—-I (.’L‘, y)
p(z,y)

$(7.1)
Si(7,t)
S({ia}. {is})
oo

2z

=2

g

T({ia}: {is})
Ch

w(z)

i

Equation

3.1
A5A9
A5

AS8

B.17
2.3,A.86
2.12
1.7,2.2
3.19
3.12,3.19
1.4

3.29

3.1

2.11

3.12
1.2,1.3,1.9
A.76
AT
2.5,A.96
2.9,B.24
A6,A.10

B.17
2.5,A.96
3.22
2.20

Definition

coherent laser scatter wavelength

statistical mean (global population)
statistical median (global,sample)

statistical mode (global population)
multivariate Gaussian mean vector

incidence surface normal unit vector
statistical sample degrees of freedom

speckle intensity probability function
bivariate polynomial displacement coefficients
bivariate polynomial displacement vector field
interference relative phase (theoretical)
systematic non-integral deviant phase offset
interference relative phase (experimental)
sample to linearized o2, variance ratio
bivariate polynomial (multiplying) scalar field
Pearson’s cross-correlation

Poynting vector for realistic EM waves
Poynting vector for real/imaginary EM waves
speckle intensity distribution tensor
cross-correlation sample variance

statistical variance (global,sample)

multivariate Gaussian covariance tensor
speckle intensity distribution tensor
data vector components for SVD fit
data weight for least-squares SVD fit
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