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Abstract

Parkinson’s Disease (PD) is a major progressive neurological disorder and is

extremely difficult to diagnose PD [91] since there are no defined medical

tests for this task. The existing approach involves a combination physical

examinations, neuroimaging and demographic analysis performed by expert

medical professionals. This process is both time and resource draining as well

as being prone to human error and bias. Moreover, the motor symptoms might

not appear until the advanced stages of the disease, the diagnosis often does

not provide ample time to administer preventive measures. Computer Aided

Diagnosis (CAD) systems have been gaining popularity in recent years, but

these solutions are not without their own shortcomings. In this work, non-

invasive approaches to identify PD and monitor the progression of one of the

motor symptoms of PD using deep learning based techniques are analyzed.

We explore various approaches to discuss PD case from control using

Magnetic Resonance (MR) T1 images of the brain, one of the most popular

neuroimaging techniques, non-invasive and generating high resolution images

in the soft tissue. We experimented with some Convolutional Neural Net-

work (CNN) models of ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) with whole brain, extracted Gray Matter (GM) and White Matter

(WM) scans. We also propose multiple ensemble architectures combining the

ILSVRC models. The detection accuracy increases drastically when we focus

on the extracted GM and WM regions from the MR images instead of using

the whole brain scans. ILSVRC Deep Learning (DL) models pretrained on the
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ImageNet dataset perform relatively better than when they are trained solely

on the MRI scans. The proposed solutions outperform state of the art existing

methods on similar datasets.

One of the major obstacles in applying learning algorithms to this task is

lack of properly labeled training data. So our finding that training on unrelated

data might increase the performance of DL models is a possible solution. We

also perform occlusion analysis and determine brain areas are relevant in the

DL architectures decision making process. This was to further narrow down

the regions of interest. Focusing on the identified relevant regions might be

helpful in achieving the same performance while reducing the amount of data

needed to be processed.

Freezing of Gait (FOG) is an impairment that affects the majority of pa-

tients in the advanced stages of PD, defined as a short period of time when

the patient fails to move forward, despite attempting to do so. The patients

describe this event as a sudden feeling of their feet being stuck to the ground.

FOG can lead to sudden falls and injuries, negatively impacting the quality of

life for the patients and their families. Rhythmic Auditory Stimulation (RAS)

can be used to help patients recover from FOG and resume normal gait. How-

ever, even if FOG is detected in early stages, RAS might not be effective due

to the latency between the start of a FOG event, detection and initializa-

tion of RAS. In the second section, I propose a system capable of both FOG

prediction and detection using signals from tri-axial accelerometer sensors.

This approach will be useful in initializing RAS with minimal latency. I com-

pared the performance of several time frequency analysis techniques, including

moving windows extracted from the signals, handcrafted features, Recurrence

Plots (RP), Short Time Fourier Transform (STFT), Discreet Wavelet Trans-

form (DWT) and Pseudo Wigner Ville Distribution (PWVD) with DL based

Long Short Term Memory (LSTM) and CNN. I also propose three Ensemble
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Network Architectures that combine all the time frequency representations

and DL architectures. Experimental results show that our ensemble architec-

tures significantly improve the performance compared with existing techniques

on benchmark dataset. Our research group also collaborated with A. T. Still

University to collect motion data for a group of PD patients, some of whom

experienced FOG during the data collection. I also applied the methods pro-

posed in the second section on this data to identify the instances of FOG.
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Chapter 1

Introduction

Intricate interactions and co-ordinations between muscles, nerves and the Cen-

tral Nervous System (CNS), consisting of the brain and spinal cord, are re-

sponsible for every movement of the human body, from walking, raising an

arm to even the smallest twitch of the eye. Pathological changes within the

brain can cause damage to these components, leading to a number of nervous

system conditions that cause abnormal, excess or paucity of movements, both

voluntary and involuntary [120]. These group of neurological conditions are

referred to as movement disorders. Depending on the location and type of

damage to the nervous system, movement disorders can be of varying types.

Some of the more well known types of movement disorders are Hyperkinesia

(excess movements), Dyskinesias (unnatural movements), abnormal involun-

tary movements, Hypokinesia (reduced amplitude of movement), Bradykinesia

(slowness of movement) and Akinesia (complete loss of movement or paraly-

sis) [25]. More than 30 different diseases are classified as movement disorders,

some of the most prevalent ones being Alzheimer’s Disease (AD), Essential

Tremor (ET), Parkinson’s Disease (PD), Multiple System Atrophy (MSA),

Progressive Supranuclear Palsy (PSP) and Dementia with Diffuse Lewy body

(DLB). Despite having diverse symptoms, they are usually progressive, with

increasing in severity over time [28]. Movement disorders drastically impact

a persons ability to be self sufficient in day to day life, although they are not

usually life threatening.
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1.1 Parkinson’s Disease - Importance, Causes

and Symptoms

PD had affected about 6.2 million people globally in 2015 [136]. Since then,

the number is estimated to have risen to around 10 million [128], making

it the second most widely occurring neuro-degenerative movement disorder,

only behind AD [4]. PD is present in 22 out of 100,000 person-years when

considering all age groups [53], [138]. Person years take into account both the

number of people in an experiment as well as the time each person spends

being a part of that experiment. For instance, a study with 1000 participants

that ran for 1 year would generate 1000 person years worth of data [23].

PD is usually much more prevalent in aging people, being incredibly rare

in subjects younger than the age of 50 [103], with an estimated 96% of all

cases being found in patients older than 50 and biological males being almost

1.5 times more likely to suffer from it compared to those who are female [1].

PD is found in 529 out of 100,000 person-years for the elderly population [53],

[138]. Above 1% of the worlds population aged above 60 and around 4% at

the age of 80 are affected by it [4].

With the advancement in modern medical sciences, the life expectancy of

people has increased significantly. Paul et al. [123] estimated in 2013 that

the number of people older than 60 or older will be higher than the number

of children younger than 5 years by 2018. In 2019, the World Bank stuff

estimates the population with ages above 65 to be more than 9% of the world’s

population, the highest ever, based on age/sex distributions of United Nations

Population Division World Population Prospects [97]. With this vast and ever

increasing number, there arises a need for development of health care system

targeting the aging population susceptible to PD. However, it was observed

that in subjects without PD older than 80, there was no major decline in

midbrain Catecholaminergenic neurons, which indicates that PD is not simply

a byproduct of the natural aging process [59]. The incidence of PD was actually

found to be in decline after the age of 70 to 75 years [57], [132], [133], and PD

is not one of the major causes of mortality in people who are older than 85
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years [3]. So it can be concluded that, while PD is sporadic in the younger

people and mostly affects the elderly, age itself is not one of the reasons for it.

The main cause of PD is thought to be the loss of nerve cells or neurons

in the Substantia Nigra (SN) region [32], [76], [103], [138]. SN is located in

the Basal Ganglia (BG) of the human midbrain, playing a significant part in

movement and coordination. Neurons in this part of the brain are responsible

for producing an catecholaminergenic organic chemical known as dopamine,

which acts as a neurotransmitter in the brain by helping the neurons com-

municate, facilitating the coordination of body movements. If the amount

of Dopamine produced in the brain is insufficient, communication between

neurons for coordinating body movement is hampered; leading to PD.

PD has been clinically defined and studied for decades, but the exact mech-

anisms leading to it are still unclear [95]. PD is characterized by a num-

ber of neurological and motor symptoms. Since the loss of Dopamine causes

PD, the motor symptoms are more prominent and manifest earlier including

autonomic dysfunctions, resting tremors, rigidity and stiffness of trunk and

limbs, Bradykinesia, Dyskinesia, irregular stride length and gait speed, aki-

nesia, Freezing of Gait (FOG), falls and postural disorders [67]. The motor

symptoms for PD usually incapacitate a subject, creating difficulties in sitting

and standing up. The patient also suffers from losing the normal pendulum

motion of the arms and displaying very small steps [32], [138]. The motor

symptoms are followed by subsequent non motor and neurological problems

like speech impediments, olfactory dysfunctions, sleep, cognitive and mood dis-

orders, fatigue [131] with dementia being common in the advanced stages [1].

1.2 Diagnosis of Parkinson’s and Challenges

Although neuroimaging and genetics have developed rapidly in recent years,

PD is primarily diagnosed pathologically [12]. It is difficult to diagnose with-

out the manifestation of motor symptoms, which are often unlikely to appear

before 50% to 70% of the total neurons in the brain have been damaged [17],

making it extremely difficult to administer any kind of preventive measures.
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Additionally, the symptoms for PD in the early stages resemble other medical

conditions like Parkinsonian Variant of Multiple System Atrophy (MSA-P),

PSP, ET; often causing misdiagnosis [108]. Pagal et al. [91] discovered that

PD had a misdiagnosis rate of 24% depending on the person performing diag-

nosis strictly following clinical guidelines. Primary care doctors had a success-

ful diagnosis rate of 53% and movement disorder experts had a rate of 75%.

There are no established laboratory test or blood analysis for diagnosing PD,

it is done by interviews and observations with the patients, which should be

conducted by a neurologist well versed in movement disorders to avoid misdi-

agnosis. This process is heavily reliant on expertise and is subjective. There

is also possibility of human error and bias affecting the diagnosis. The limited

number of specialists also have to allocate a lot of their time in assessing large

quantities of data, which is time and resource consuming.

Although a guaranteed cure for PD has not been found yet, early detection

might play a crucial role in slowing or stopping the progression of the disease.

Some new forms of treatment like Exenatide [9] show promising results in case

of early detection. So developing methods capable of identifying PD in its

early stages remains a priority.

1.3 Computer Aided Diagnosis of Parkinson’s

Disease

Analyzing the structural changes in the brain using Medical Imaging tech-

niques have been proven to be helpful for detecting neuro degenerative dis-

eases with cognitive impairments recently [100], [109]. Significant research has

been conducted on diagnosing PD with the help of Computer Aided Diagnosis

(CAD) techniques. It is easier to capture and detect motor-based symptoms

compared to non-motor symptoms with computer detection techniques. Over

the years, different types of technologies have been used depending on the na-

ture of the symptoms. Voice tremors corresponding to Dyskinesia is captured

with the help of microphones [65]. Tremor in the limbs, also corresponding to

Dyskinesia is monitored with motion sensors placed in the arms and wrists [96].
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FOG corresponding to Akinesia is monitored with the help of motion sensors

as well as image and video of the patients [11]. In particular, Magnetic Reso-

nance Imaging (MRI) provide better performance in brain structure analysis

because of having high contrast and resolution within soft tissue.

The PD detection algorithms are usually complicated due to their nature of

identifying peculiar symptoms, being heavily reliant on hand crafted features,

which are time consuming and extremely sensitive to outliers in the data. The

features are needed to identify each special symptom. The complex nature of

these algorithms is a hindrance in the development of real time PD detection

systems [91]. The delays caused by these issues might result in increase in

the progression of the disease or worsen the symptoms. Therefore, systems

capable of detection of PD and its symptoms with high accuracy without

complex handcrafted feature engineering are a necessity.

1.4 Freezing of Gait (FOG) - Major Symptom

of Parkinson’s

Studies show that around 60.5% of all PD patients experience a minimum of

one fall and 39% of all patients experience recurrent falls, which might lead

to fracture as well [6]. Falls and fractures significantly damage the quality

of a persons life, might lead to disabilities and has a 10.6% chance of being

fatal [53]. Falls can be one of the usual aftermath of FOG, which is one of

the most common symptoms of PD, with around 50% of all PD patients being

affected [30], [87]. A typical FOG causes the patient suddenly experiencing

a sudden inability to move, which often occurs while initiating gait, making

turns while walking, when experiencing stress, approaching narrow spaces or

performing multiple tasks in parallel [86], [122]. The patients report a feeling

of their feet being glued to the ground during these events [84], [118]. FOG

episodes are transient and they usually last for a few seconds, but can last for

upto 1-2 minutes in some cases [26], [84]. Based on the signals received from

sensors worn around the ankles, it was found that while normal walking steps

occur at a frequency of 0.5 Hz to 3 Hz, FOG exhibits a frequency of 6 Hz to
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8 Hz [5], [56], [79].

Typically, FOG is very difficult to estimate and predict, but it can cause

falls and pose health risk for the affected elderly [55], [62], [77], [86]. An accu-

rate prediction and detection of FOG can reduce accidents and thus improve

the quality of life of the patients and their loved ones. However, FOG is one of

the least responsive to medical treatments among PD motor symptoms [26].

External cues leading to auditory or visual stimulus show promising results as

treament for FOG. One such treatment is to use Rhythmic Auditory Stimula-

tion (RAS) [38], which produces a rhythmic ticking sound to help the patient

resume normal gait when a FOG is detected. Cueing on demand is more ef-

ficient than continuous cueing in reducing FOG duration. Continuous cueing

would be disruptive in the patients day to day life. There is also the possibility

that it would lose effectiveness because the patient will be de-sensitized to the

cues if it is continuous. So the goal is to automatically detect FOG to trigger

the cueing only when it is needed.

Current methods for detecting FOG mostly consist of movement tests in

controlled lab setting, self-monitoring and assessment by patients, manual

video analysis by professionals and detailed Freezing of Gait-Questionnaires

(FOG-Q) used to assess the frequency and severity of FOG episodes and symp-

toms [29], [31], [82], [106]. Although somewhat accurate, these methods suffer

from shortcomings because of their clinical setup not reflecting real-world sce-

narios. FOG events usually tend to occur at home or while the patients are

performing Activities of Daily Living (ADL) [83], [118], [131], which are differ-

ent from the clinical test setup. Furthermore, FOG-Q is usually dependent on

the opinion of the patient, which might be subjective and biased. In addition,

since PD patients are prone to experiencing dementia and memory loss, their

self-assessments are unreliable [106]. Assessments are also time consuming and

not suitable for continuous monitoring the the patients health.

With the advancement in technology, using wearable sensors to monitor

movements, body temperatures, heart rates and other physical parameters

has become increasingly commonplace [117]. These sensors are lightweight,

comfortable and usually do not hamper a person’s daily activities while mon-
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itoring ADL. The data recorded from wearable sensors for activity detection

has brought promising performance in various applications, especially when

combining with modern Machine Learning (ML) and Deep Learning (DL)

based techniques [39], [61], [85], [88], [137]. There are wearable sensors that

use auditory stimulation to treat FOG, which help shorten the duration of

the events [11]. But these sensors cannot effectively help stop FOG episodes

because of the latency of detection, which can still be hundreds of milliseconds

in the best case scenarios [52].

There have been many applications using wearable technologies along with

ML and DL based techniques to monitor motor functions of PD patients, aim-

ing to achieve more effective treatment and reduce healthcare expenses [60],

[71], [114]. These approaches can provide an unobtrusive and comfortable ex-

perience to the patient, while collecting personalized long term relevant med-

ical history and improving the quality of treatment. Maetzler et al. [69] state

that an automatic FOG analysis and detection system could play a vital role in

monitoring the occurrence and evolution of FOG events over time. Although

a permanent and guaranteed cure for PD or FOG itself not been available at

this time, a sufficiently accurate automatic monitoring system might prove to

be helpful in minimizing the frequency and duration of FOG events. Rhythmic

auditory cues RAS have shown to improve walking by maintaining the speed

and amplitude of movements [7], [64], [105].

1.5 Application of Deep Learning for Parkin-

son’s Analysis and Challenges

With the popularity of these sensors, the amount of available data is increas-

ing at a rapid pace, which facilitates the use of DL based techniques. DL

is under the scope of Artificial Intelligence (AI) that has the capabilities to

automatically extract features from data without manual feature engineering.

DL based end-to-end classifiers have shown promising performance, outper-

forming ML based classifiers in general, if sufficient amount of training data is

available [47]. Recently DL based approaches have been adopted to perform
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tasks related to Human Activity Recognition (HAR) using data from various

sensors. [39], [85], [88], [137].

Deep Convolutional Neural Network (CNN) are a type of common DL

architectures. Lecun et al. [63] mention that CNN can be applied to tempo-

rary signals and images to automatically extract abstract distinct features by

combining several convolutional operators. Although CNN are proficient in

extracting invariant local features from data, this architecture often falls short

when the data has global time dependency, which is often the case with data

obtained from wearable sensors. Recurrent Neural Network (RNN) are able to

solve this issue because the connections between the nodes of this architecture

exhibit a discrete-time dynamical system [54], [92]. Long Short Term Memory

(LSTM) is one of the most widely used RNNs, able to model time dependency

in sequential time series data using various logic gates to control a memory

space [41].

Neural Network Ensembling is the learning paradigm of training a collec-

tion of neural networks to perform the same task [125]. The idea of ensembling

was introduced by Hansen et al. [37], who proposed that the generalization

ability of a Neural Network based system can be significantly improved by

training a number of neural networks and by combining their solutions to

solve the same problem. A typical ensemble architecture consists of two steps,

i.e., training multiple components or constituent neural networks, and then

creating an architecture that combines their outputs. In recent years, ensem-

ble learning techniques have been applied to PD detection tasks and they have

achieved significant success [8], [81].

One of the major challenges to applying DL based techniques is data

scarcity. A large number of properly labeled training data is necessary in

order to train a DL based model. The small size of the training dataset is re-

sponsible for the poor performance of many ML and DL based models. With

medical issues such as detecting PD and monitoring its symptoms, such data

are hard to obtain. There are issues related to privacy of the patients, lack

of domain experts to properly label the dataset, discrepency among data col-

lected from different patients or different sensors, lack of time and resources
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for data collection etc. There are multiple ways to solve such issues such as

data augmentation, generating synthetic data or transfer learning.

1.6 Contributions

The total contribution of this thesis can be organized in two main categories.

� PD Detection from Neuroimaging Data.

– Using transfer learning based approach with ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) models considering 2 situ-

ations, trained on ImageNet [20] and without any prior training to

detect PD from weighted T1 MRI brain scans.

– Propose multiple ensemble architectures for PD detection combin-

ing the ILSVRC models.

– Compare the performance of using Whole Brain Scans, extracted

GM and WM with and without smoothing applied using multiple

evaluation metrics.

– Perform Occlusion analysis to identify the regions of the brain that

have a large significance in the decision making process of our mod-

els and present relevance per brain area graphs.

� FOG detection and prediction for PD patients

– Propose 2 Neural Network (NN) architectures with various time fre-

quency representation techniques from publicly available accelerom-

eter data including non overlapping windows, handcrafted features,

RP, STFT, DWT and PWVD and thoroughly evaluate the perfor-

mance of proposed models with their respective data modalities.

– Develop three ensemble architectures combining the proposed mod-

els and various data modalities and evaluate their performance.

– Select appropriate sensors for data collection from an experiment

conducted by A. T. Still University and apply our model trained

on public dataset to the new data.
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1.7 Organization of the Thesis

The rest of the thesis is organized as follows:

� Chapter 2 : Literature review for both PD detection from MRI images

and FOG monitoring are presented in this chapter. The definition and

formulas for the multiple evaluation criteria used in this thesis are also

provided here.

� Chapter 3 : In this chapter, the proposed methods for PD detection from

MRI are detailed, including dataset details, model architectures, perfor-

mance evaluation etc. This chapter also contains results for Occlusion

analysis on some of our models.

� Chapter 4 : This chapter contains work on FOG detection and predic-

tion using various modalities of data generated from accelerator sensor

signals. The chapter contains details of the dataset, preprocessing and

feature extraction steps, model architectures, results etc. This chapter

also presents the application of the proposed models on data collected

from patients in a study performed by A. T. Still University.

� Chapter 5: We list our conclusions and indicate future direction for our

work in this chapter.
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Chapter 2

Background Material

Significant research has been conducted in PD diagnosis and progress analysis

using various data modalities including human voice, motion and neuroimaging

data.

2.1 Background and Literature Review for Parkin-

son’s Disease detection

Over the years, a multitude of ML [27], [94], [95], [110] and DL [18], [24] based

approaches have been introduced for the detection of PD. Focke et al. [27]

extracted GM and WM from Magnetic Resonance (MR) images and fed them

to a Support Vector Machine (SVM) Classifier for PD detection, achieving

39.53% and 41.86% classification accuracy using GM and WM respectively.

Radial Basis Function Neural Network (RBFNN) was used by Pazhanirajan

et al. [94] for PD classification. Babu et al. [116] achieved a 87.21% accuracy

in classifying PD using GM with a CAD system. They identified Superior

Temporal Gyrus (STG) as a potential biomarker that plays a vital role for

PD.

Choi et al. [18] achieved an accuracy of 96% for PD detection using Single

Photon Emission Computed Tomography (SPECT) imaging with CNN. Al-

though their accuracy was very high, SPECT Imaging is invasive and not very

popular as it requires injecting a radioactive tracer into the patient. Around

100 times more MR scans were performed compared to SPECT over one year

period in the National Health Service (NHS) operation in England. Thus the

11



SPECT approach is less practical for normal medical use due to limited sample

size, despite its reported high accuracy. Also, their dataset is class imbalanced

since about 69% of the data is from PD patients. Class imbalance causes the

models to over classify the majority class [13].

Detecting PD from resting-state functional MRI (rsf-MRI) aims to discover

subtle changes in blood oxygenation level. For detecting PD, researchers focus

on using structural MRI (sMRI) in order to capture the anatomical details.

Long et al. [66] used a ML based approach and they achieved 87% classification

accuracy, but the dataset used by them was very small. Rana et al. [99]

used a SVM for classification with t-test feature selection on WM, GM and

Cerebrospinal Fluid (CSF) achieving 86.67% accuracy for GM and WM, and

83.33% accuracy for CSF. In another work [101], the authors used the relation

between tissues instead of considering the tissues separately and achieved an

accuracy of 89.67%.

Among the various regions in the brain, the SN region has significant cor-

relation with PD according to Braak’s neuroanatomical model of Parkinson’s

Disease [12] and it is often used as a Region Of Interest (ROI) in PD identi-

fication. However, the challenge is the lack of brain MR images for GM and

WM training.

To address this issue, we explore the feasibility of pre-training a model

with non PD related images. ImageNet [20] is one of the well known image

datasets for Computer Vision (CV). It is unrelated to PD. ImageNet is or-

ganized according to the WordNet [21], [139] hierarchy. WordNet is one of

the largest lexical database of English words with nouns, verb, adjectives etc.

organized into ”Synonym Sets” or ”synsets”, which are sets of cognitive syn-

onyms. A ”synset” describes a meaningful concept with multiple words or

word phrases. WordNet contains more than 100,000 synsets, with more than

80,000 being nouns. Currently ImageNet labels images using only the nouns

from WordNet. Each node of WordNet hierarchy is represented by a thousand

image samples in ImageNet on average. The ILSVRC [107] evaluates the per-

formance of various algorithms for object detection and image classification

on the ImageNet dataset. The challenge has 1000 object categories, with the
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categories containing both internal and leaf nodes of ImageNet, but they do

not overlap with each other. It is to be noted that the WordNet hierarchy

contains more categories, but these 1000 non overlapping classes were chosen.

Figure 2.1 shows two sample images from the ImageNet dataset and their po-

sitions in the WordNet hierarchy. Kornblith et al. [58] proposed that models

performing well on the ILSVRC also perform better when they are applied on

other datasets.

(a) Animal-Beast-Chordate-Vertebrate-Mammal-Placental-

Carnivore-Feline-Big Cat-Lion

(b) Artifact-Instrumentation-Container-Wheeled Vehicle-

Self Propelled Vehicle-Motor Vehicle-Car/Automobile-Race Car

Figure 2.1: Sample Images from ImageNet [20] dataset and their position in
the WordNet [21], [139] Hierarchy
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2.2 Background and Literature Review for Freez-

ing of Gait Detection and Prediction

Smart sensors have been commonly used as a tool for assessing motor symp-

toms such as FOG in PD and other movement disorders. This is possible

because of the improvements in computational power of small devices [14].

Existing FOG assessment methods using these sensors can be categorized into

different groups depending on the sensor types, sensor locations, extracted fea-

tures, and the analytics methods. FOG detection can be conducted real-time

[126]. However, FOG detection and prediction are challenging tasks because

of the variability of event duration and frequency. We observe that previous

studies mainly captured FOG episodes that are not consistent with the pa-

tients’ normal daily activities because their data were simulated in laboratory

settings. In this section, we review related work on FOG detection.

An early FOG detection method was proposed by Han et al.[36] using Ac-

tivity Monitoring System (U-AMS) based on wavelet power features for dis-

crimination of abnormal movements in PD patients which showed a promising

avenue for research. Moore et al. [80] then proposed a threshold based method

for FOG detection by defining the Freeze Index (FI), which is the ratio be-

tween the power of the signal in “freeze” band (3-8 Hz) divided by the power of

the signal in the “locomotion” band (0.5-3 Hz). The proposed method marks

FOG episodes when FI exceeds a certain threshold. The subject dependent

experimental results, which means training and testing separate instances of

the model on data from each patient, show 78% correct detection of FOG (true

positive rate) and 20% false positive rate. Bachlin et al. [10] presented a real

time FOG detection method by introducing a new term to Moore et al. [80]

method, called Power Index (PI), which is the addition of Walking Band (WB)

and Freezing Band (FB) that indicates the movement amount. In [11], FOG

episodes are determined using two thresholds (Freezing Threshold (FTH) and

Power Threshold (PTH)) given FI > FTH and PI > PTH respectively. In

this method, once the FOG episodes are detected, the patient will get the

auditory signals until his normal walking ability is resumed. They reported
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73.1% and 81.6% for sensitivity and specificity respectively. The author also

created the Daphnet data set [11] for FOG assessment methods evaluation.

The first proposed FOG detection method based on ML was by Mazilu et

al. [74]. The features for this classification were from the work of Bachlin et

al. [11] with some additional features including mean, standard deviation, en-

tropy, energy, FI and power of the acceleration signals. Random Forest (RF),

Naive Bayes and K-Nearest Neighbour (KNN) were the ML algorithms for do-

ing classification. Motion data capture was done by a smartphone and a wrist

acceleration sensor. The best obtained results were 66.25 and 95.83 for sensi-

tivity and specificity respectively with RF using 10-fold cross-validation. In the

following year, they presented another automatic FOG detection system using

wearable sensor. In this work, they did multi-class analysis as the ”PreFOG”

motion was considered a new class (FOG vs. PreFOG vs. normal locomotion).

Learning was conducted by studying the time domain and statistical features

from the motion data. In this new work, they could improve F1 score by

8.1%. The new automatic FOG detection method introduced auditory cueing

to warn the patient about FOG episodes. In the same year (2013), a system for

automatic FOG detection was proposed by Tripoliti et al. [135]. The system

was based on four steps: data imputation (interpolation), band-pass filtering,

entropy calculation, and automatic classification (Naive Bayes, RF, Decision

Trees and Random Tree). Data was obtained from 5 healthy subjects, 5 PD

patients with FOG symptoms, and 5 PD patients without FOG symptoms.

The results show 81.94% sensitivity, 98.74% specificity, 96.11% accuracy and

98.6% Area Under Curve (AUC) using RF. Another proposed FOG detection

work in 2013 was by Moore et al[78], which assesses seven sensors placed in

different locations for gait analysis. Their analysis found that the shank and

back were the most convenient places for the sensors producing best results.

However, they found that using all the seven sensors could get higher and more

robust performance with sensitivity 84.3% and specificity 78.4%.

In 2015, Zack et al.[141], presented a threshold based FOG detection fol-

lowing the approach of Moore [78] using a single triaxial accelerometer placed

at the waist. Receiver operating characteristic (ROC) curves were drawn to
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determine a global FI threshold to distinguish between FOG and non-FOG

episodes for different tasks. In addition to the global FI threshold, they cal-

culated the sensitivity and specificity of the FI threshold for each subject.

Combining all task results, a sensitivity of 75% and specificity of 76% were

achieved [126].

Rodŕıguez et al [106] presented a novel approach for FOG detection using

machine learning techniques and daily activities of the PD patients in real

environments. They extracted 55 FOG related features from 21 PD patients

using just a single waist-worn triaxial accelerometer. SVM with leave-one-out

cross-validation was used for classification in two scenarios: user independent

and user dependent. Experimental results show a sensitivity of 88.09% and

specificity 80.09% with R-10-fold cross-validation, and a sensitivity of 79.03%

and specificity of 74.67% for Leave-One-Subject-Out (LOSO) evaluation. After

that, Sama et al [111] decreased the number of features from 55 to 28 28 for the

same data set. The extracted features were sent to 8 different classifiers with

greedy subset selection process, 10-fold cross-validation and different window

sizes. The results of FOG detection at patients’ homes were 91.7% and 87.4%

for sensitivity and specificity respectively, which are better than the results of

Rodrigues’s method.

Orphanidou et al [89], evaluated ML algorithms to identify the FOG prior

to its onset. An accelerometer time series dataset containing 237 individual

FOG events from 8 patients identified by experts was considered, from which

features were extracted and presented to 7 machine learning classifiers. SVM

achieved the highest performance in comparison with the benchmark tech-

niques. The classification algorithm was applied to 5 second windows using

18 features, obtaining balanced accuracies (the mean value of sensitivity and

specificity) of 91%, 90%, and 82% over the Walk, FOG and Transition classes,

respectively. However, the need for systematic analysis of the problem was

identified. Therefore, in their next study [90], they specifically focused on the

early detection of a FOG event, through classification of the transition class

using varying size time windows and time/frequency contrary to the majority

of previous studies that recognized FOG only when it had occurred. In their
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paper, the Daphnet dataset [11] was used with accelerometer signals obtained

from sensors mounted on the ankle, thigh and trunk of the PD patients.

Data augmentation was performed on the dataset to include another class

label called ’transition’ that showed the episodes before FOG occurrence.

Daphnet features were sent out to a group of 5 classifiers, including Gradient

Boosting (GB), Extreme Gradient Boosting, SVM, RF, and NN. Experimen-

tal results show that SVM with Radial Basis Function (RBF) kernels has the

best performance with sensitivity of 72.34%, 91.49%, 75.00%, and specificity

values of 87.36%, 88.51% and 93.62%, for FOG, transition and normal activity

classes, respectively.

DL techniques have also been used for automatic FOG determination. DL

can handle multi-modal data, missing information and high dimensional fea-

ture spaces. The first proposed FOG detection method using DL was by

Camps et al. [15]. The proposed 1D CNN has 8 layers, which is trained using

a novel spectral data representation strategy that considers information from

both the previous and current signal windows. The data was collected from

21 subjects, consisting 9-channel signals recorded from a waist-worn Inertial

Measurement Unit (IMU) with three tri-axial sensors: accelerometer, gyro-

scope, and magnetometer. The experimental results show a performance of

90.6% for the Geometric Mean (GM), an AUC of 0.88, a sensitivity of 91.9%,

and a sensibility of 89.5%.

In 2019, San-Segundo et al. [113] presented a study to evaluate the ro-

bustness of different feature sets and ML algorithms for FOG detection using

body-worn accelerometers. They used four feature sets: (Mazilu et al. [74]

features, HAR features, Mel Frequency Cepstral Coefficients (MFCCs) fea-

tures, and Speech Quality Assessment (SQA) features). They also used four

classification (RF, Multi-Layer Perceptron, Hidden Markov Model (HMM),

and Deep Neural Network (DNN)). Evaluation was performed using a LOSO

cross-validation. The best results were obtained when using the current win-

dow and three previous windows, with the feature set composed of Mazilu

features [74] and MFCCs [112]. They found that the best classifier was a deep

CNN achieving an AUC of 0.93 and an Equal Error Rate (EER) of 12.5%.

17



In 2020, Sigcha et al. [121] evaluated some ML and DL classification and

detection techniques with accelerometer signals acquired from a body worn

IMU to enhance the FOG detection performance in real world home environ-

ments. Three data representations proposed in the literature were reproduced

(including Mazilu features [74], MFCCs [112], and Fast Fourier Transform

(FFT)) to establish a baseline using RF classifier with 10-fold cross-validation

(R10fold) and LOSO. This analysis was also conducted to find the best data

representation to test DL approaches including: a Denoiser Autoencoder, a

DNN with CNN, and a combination of CNN and LSTM layers. For compar-

ison proposes, shallow algorithms such as One-Class Support Vector Machine

(OC-SVM), SVM, AdaBoost, and RF were tested. OC-SVM was set up to only

identify the important class, FOG in this case. This study was evaluated on

the data collected by Rodŕıguez-Mart́ın et al. [106], which includes recordings

from 21 PD patients, who manifested FOG episodes when performing ADL at

their homes. The best performance for AUC was 0.93. Their results illustrate

that modelling spectral information of adjacent windows through an LSTM

model can improve the performance of FOG detection without increasing the

length of the analysis window.

2.3 Performance Evaluation Criteria

Multiple evaluation metrics were used to properly quantify the performance

of our proposed methods. This was necessary because detection accuracy by

itself is not always a reliable evaluation metric. For example, in cases where a

majority class dominates the dataset, it might be possible that the detection

accuracy is very high despite the model failing to identify the minority classes.

To ensure that the performance of our models were properly evaluated and it

is not over classifying the majority class, a number of evaluation metrics were

utilized in our study.
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2.3.1 Detection Accuracy

Detection accuracy is the most widely used evaluation metric. It is defined as

the fraction of predictions by a model that are accurate. Detection accuracy

can be computed as Eq. (2.1). The output of this metric ranges between (0, 1),

with 0 being completely inaccurate and 1 representing perfect prediction.

Accuracy =
Number of correct predictions

Total number of records
(2.1)

2.3.1.1 Precision, Recall/Sensitivity, Specificity, Fβ Score

Precision, Recall/Sensitivity, Specificity and Fβ Score are very important in

understanding the performance of a model. For multi-class classification, each

of these metrics computes an individual class and then their weighted average

is calculated.

Precision for a class is the measure of the classifier’s ability to not classify

a negative sample as positive, as defined in Eq. 2.2.

Precision(Ak, Bk) =
|Ak ∩Bk|

|Ak|
(2.2)

Recall/Sensitivity of a class measures how well the classifier can identify

positive samples of a class, as defined in Eq. 2.3.

Recall(Ak, Bk) =
|Ak ∩Bk|

|Bk|
(2.3)

Specificity for a class is defined as the ability of a classifier to reject samples

that are not a member of that class.

Specificity(Ck, Dk) =
|Ck ∩Dk|

|Dk|
(2.4)

The Fβ is calculated as the weighted harmonic mean of Precision and Re-

call, ranging between [0,1]s, with 1 being the best possible value, as presented

in Eq. 2.5.

Fβ(Ak, Bk) = (1 + β2)
Precision(Ak, Bk)×Recall(Ak, Bk)

β2Precision(Ak, Bk) +Recall(Ak, Bk)
(2.5)

where,
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� Ak is the predictions for class k

� Bk is the occurrences for class k

� Ck is the predictions for samples not in class k

� Dk is the occurrences for samples not in class k

� k represents a class in range 1 : K, K being the number of classes

2.3.2 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC), also known as Phi Coefficient, was

proposed by Matthews et al. [72] in 1975. MCC offers a balanced measure of

quality for both binary and multi-class classifications, which can be used even

if the classes are imbalanced. The value of this metric ranges from [−1,+1]. A

MCC value of +1 indicates perfect prediction, 0 indicates random prediction

and −1 indicates inverse predictions. Gorodkin et al. [34] generalized MCC for

multiple classes as the RK statistic, defined with respect to confusion matrix

C for K classes following Eq. (2.6).

MCC =
c× s−

∑K
k pk × tk√

(s2 −
∑K

k p2k)× (s2 −
∑K

k t2k)
(2.6)

[75] where,

� tk =
∑K

i Cik, the number of occurrences of class k

� pk =
∑K

i CKi, the number of predictions for class k

� c =
∑K

k ckk, total correct predictions

� s =
∑K

i

∑K
j Cij, total number of samples
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Chapter 3

Parkinson’s Disease Detection
from Magnetic Resonance
Imaging

3.1 Introduction

As mentioned in Section 1.2, the existing methods for PD detection comes

with a number of limitations including being influenced by human errors and

biases, being heavily reliant on individual expertise as well as being time and

resource consuming for the patients [101]. Advanced neuroimaging techniques

have resulted in significant improvements in neurodegenerative disease diag-

nosis [1.3]. One of the most widely used neuroimaging techniques is MRI,

which is comparatively inexpensive, non-invasive and capable of generating

images of the soft tissue with high contrast and resolution [1.3]. MRI addi-

tionally has the ability to identify sub-cortical volume and shape variation in

the brain [140]. In this chapter, we analyze whether transfer learning based

approach is suitable for identifying PD from MRI scans. Models designed

for ILSVRC [107] were used both with previous training weights from Ima-

genet [20] dataset and without any training. Our approach was different from

ordinary transfer learning based approaches in that we did not use a related

dataset for our training. Multiple ensemble architectures were also proposed

combining the models and their performance was evaluated. Finally occlusion

analysis was performed to quantify the importance of the regions of the brain

in the decision making process of the model.
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3.2 Data

For this experiment, we used Parkinson Progression Markers Initiative (PPMI)

dataset [134], a comprehensive set of clinical, imaging and bio-sample data

defining PD progression and diagnosing bio-markers. The dataset consists of

T1-weighted sMRI scans for 568 PD and Healthy Control (HC) subjects from

which 445 subjects were chosen and the rest were discarded due to some struc-

tural anomalies during the preprocessing steps. The resulting data had a class

imbalance with 299 PD and 146 HC subjects. The HC subjects were people

over 30 years old without PD who signed up for the study, and were without a

first degree blood relative with PD. To address this issue, 153 HC T1-weighted

sMRI scans from the publicly available IXI dataset [46] were collected. Our

final dataset was class balanced with 598 subjects. The demographic for the

dataset is presented in Table 3.1.

Table 3.1: Demographic Data

PD HC Average

Age (Years) 62.0± 9.54 49.2± 16.9 55.6± 15.1

Sex (Male / Female /Total) 189 / 110 / 299 172 / 127 /299 361 / 237 / 598

From Table 3.1, it can be observed that there was a difference between

the mean age of our PD and HC subjects. The mean age for PD patients

is 62 years whereas the mean age for HC subjects is around 49.2 years. But

we believe that this difference does not influence the analysis, based on ex-

isting research that the human brains are more or less structurally developed

by the age of 30 [51]. After that the brain ages, but there is no structural

development. According to Cole et al [19], as our brains age, we tend to ex-

perience cognitive decline and are at greater risk of neurodegenerative disease

and dementia. Figure 3.1 presents an illustration of the concept of brain aging

trajectories. With increase in age, even healthy people face a higher risk of

cognitive impairment and brain diseases, eventually crossing a threshold for

appearance of symptoms. The trajectories differ from person to person. The
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blue line shows the trajectory for a person with genetic or developmental envi-

ronmental factors that confer a higher rate of aging throughout life. A person

may experience a traumatic injury or infection as an adult shown by the black

arrow, which would result in them following the accelerated purple trajectory

or accentuated, but stable yellow trajectory of brain aging. But Cole et al.[19]

show that even a person with generic or developmental environmental fac-

tor that contributes to rapid aging (blue line) or someone with an injury or

infection causing accelerated aging (purple line), will reach the symptomatic

threshold for cognitive impairment or brain diseases after 60 years. A normal

person with healthy aging will reach this threshold much later in life. This

shows that using our PD and HC patient data with an average age of 55.6

years is suitable for comparison and analysis purposes.
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Figure 3.1: Brain aging with age represented as trajectories. The thick brown
line represents healthy aging. The purple line represents rapid brain aging due
to injuries and blue line represents brain aging due to generic or environmental
issues. The yellow line represents more prominent but stable brain aging due
to injuries. X axis represents age and Y axis represents probability. Figure
taken from [19]

.

3.3 Preprocessing

Preprocessing is one of the essential steps in any CAD system, specially in

case of neuroimaging data analysis. There are morphological and dimensional

differences between our data since the scans come from different machines.

To make the data comparable we had to standardize it to a common format.

All scans were resized to the same dimensions. For preprocessing, Statistical

Parameter Mapping (SPM12) [2], [127] and Computational AnatomTtoolbox

(CAT12) [130] were used.
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Figure 3.2: Preprocessing Pipeline

Figure 3.2 shows the structure of our preprocessing pipeline. MRI inten-

sity varies from subject to subject. To minimize discrepancies we normal-

ized the values to [0,1] range. Then all images were aligned to a standard

space named Montreal Neurological Institute (MNI). Then a bias field correc-

tion (FAST) [142] is performed to remove general intensity non-uniformities.

FNIRT / BET [48] was used to extract brain from the scans removing the

skull, fat and background regions which do not contain useful information.

The data was registered to MNI152 format (FLIRT) [49], [50]. After that ar-

tifact removal was performed, i.e. any voxel intensity values higher than 1 is

corrected to be in the range [0,1]. Then a deformation method was applied to

extract GM and WM from the scan and a 8mm Isotropic Gaussian Kernel was

used to smooth and increase the signal-to-noise ratio and remove unnecessary

portions of the scan. GM and WM are significant in brain structure analysis

and can help in PD identification. Finally we have three separate datasets:

whole brain scans, GM and WM extracted from the brain and Smoothed GM

and WM. An example of the extracted brain is shown in Figure 3.3 and the
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resultant WM and GM extracted from the brain is given in Figure 3.4 and

Figure 3.5.
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(a) Whole Brain Scan for Healthy Control subject

(b) Whole Brain for Parkinson’s subject

Figure 3.3: Sample MRI scan comparison for a Healthy Control subject and
Parkinson’s Patient
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(a) Extracted White Matter for Healthy Control subject

(b) Extracted White Matter for Parkinson’s Patient

Figure 3.4: Extracted WM from MRI scans from Figure 3.3
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(c) Extracted Gray Matter Healthy Control subject

(d) Extracted Gray Matter for Parkinson’s Patient

Figure 3.5: Extracted GM from MRI scans from Figure 3.3
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3.4 Model Structure

We selected six existing models of the ILSVRC [107] implemented in Pytorch

[93] for this experiment.

� ResNet 101 [40]

� SqueezeNet 1.1 [45]

� DenseNet 201 [44]

� VGG 19 [124]

� MobileNet V2 [115]

� ShuffleNet V2 [68]

The six ILSVRC models are available from Torchvision [70] in two versions:

without any training (untrained) and trained on the ImageNet dataset. Since

the six models were originally designed to process the ImageNet dataset, we

had to modify the models in order read the MRI training data. The input lay-

ers of all models were changed to accommodate the format of our MRI input

and the output layers were changed to predict between 2 classes (PD and HC)

instead of the 1000 ImageNet classes. Both untrained and pretrained versions

of the models were trained on whole brain, WM and GM scan. Then the

models were combined to construct multiple ensemble model blocks and the

performances of the resultant architectures were compared to examine if train-

ing on the non-PD related ImageNet dataset makes the architectures perform

better in PD detection and whether the ensemble architectures outperform

individual models. Ensemble architectures often produce better results and

our motivation was to compare their performance in this task.

3.4.1 Ensemble Architecture - Model 1

In this architecture, we pass our brain scans through six models in parallel and

the concatenated output is passed through a Rectified Linear Unit (ReLU)

activation function and then to a linear layer with 2 distinct output classes.
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The input and output layers are modified to accommodate the shape of the

input scans depending whether whole brain scans were used or extracted GM

or WM were used. Figure 3.6 shows a visual representation of this architecture.

Figure 3.6: Ensemble architecture for whole brain scan: Model 1

3.4.2 Ensemble Architecture - Model 2

This architecture is trained on the exclusively extracted GM and WM scans

of dimension 121× 145× 121. It is comprised of four models. The GM scans

are passed through ShuffleNet and SqueezeNet and the WM scans are passed

through DenseNet and MobileNet. The output of all models are concatenated

and passed through a ReLU activation layer and a linear layer with 2 output

classes to get final predictions. Figure 3.7 shows a visual representation of this

architecture.
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Figure 3.7: Ensemble architecture for Extracted Gray and White Matter Scans
: Model 2

3.4.3 Ensemble Architecture - Model 3

This architecture was designed with multiple different ensemble structures in

mind. The extracted GM and WM scans with dimension 121×145×121 were

passed in parallel through two model blocks, each of which is comprised of

multiple ILSVRC models. For our experiment, the models blocks were kept

similar. Three instances of the architecture were tested, each with a different

sub architecture as both model blocks. The output from both blocks were

concatenated and passed through a ReLU activation layer followed by a final

linear layer, which predicts between the two output classes. Figure 3.8 shows

a visual representation of this architecture.
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Figure 3.8: Core Architecture

Three distinct model block designs were used for experimentation. Each

structure had two versions: pre-trained and untrained with ImageNet data.

3.4.3.1 Sub Architecture 1 - TriNet1

The model block was named TriNet1, due to being comprised of 3 mod-

els, DenseNet, ShuffleNet and SqueezeNet in parallel. The input was passed

through all three models simultaneously, as shown in Figure 3.9.

Figure 3.9: Architecture 1 : TriNet1
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Figure 3.10: Architecture 2 : QuadNet

Figure 3.11: Architecture 3 : TriNet2

3.4.3.2 Sub Architecture 2 - QuadNet

This architecture comprised of 4 models and was named QuadNet. The model

block was created by adding MobileNet to Block 1, so it was comprised of

DenseNet, ShuffleNet, SqueezeNet and MobileNet in parallel. The input was

passed through all four models simultaneously, as shown in Figure 3.10.
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3.4.3.3 Sub Architecture 3 - TriNet2

This architecture was also comprised of 3 models and was The model block

was created with ShuffleNet, VGG and MobileNet in parallel. The input was

passed through all three models simultaneously, as shown in Figure 3.11

3.5 Experimental Results

Two versions were constructed for each of our ensemble architectures; one with

all untrained constituent models and another with all pretrained constituent

models. The dataset was divided randomly with evenly split labels, and 80%

was selected for training and 20% for testing. Each model was trained for 50

epochs with an Adam Optimizer and Cross Entropy Loss function. At each

epoch, the training set was further split randomly, and 20% was selected for

validation. We repeated the procedures listed above 5 times to obtain average

scores. The models were trained with 3 different learning rates, .01, .001 and

.0001. After experimenting with different learning rates these 3 produced

the best performance. The results are presented in this section. Table 3.2

presents the results of some existing approaches on similar data for reference.

This models were trained on some version of the PPMI dataset, but were not

class balanced.
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Table 3.2: Results of some related works on similar dataset

Source Accuracy

Focke et al.[27] [GM] 0.3953

Focke et al.[27] [WM] 0.4186

Babu et al.[116] [GM] 0.8721

Rana et al.[99] [GM & WM] 0.8667

Rana et al.[101] 0.8967
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Table 3.3: Results for Resnet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.650 0.306 0.655 0.650 0.650

False 0.817 0.625 0.847 0.817 0.802

Gray Matter

True 0.948 0.895 0.948 0.948 0.948

False 0.522 0.064 0.751 0.522 0.363

White Matter

True 0.963 0.925 0.955 0.955 0.955

False 0.526 0.052 0.639 0.524 0.444

Smooth Gray
Matter

True 0.708 0.412 0.773 0.708 0.662

False 0.483 -0.047 0.430 0.483 0.338

Smooth White
Matter

True 0.850 0.710 0.817 0.779 0.755

False 0.513 0.036 0.476 0.498 0.425
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Table 3.4: Results for VGG with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.775 0.561 0.785 0.775 0.773

False 0.775 0.587 0.813 0.775 0.768

Gray Matter

True 0.925 0.848 0.926 0.925 0.926

False 0.545 0.139 0.584 0.545 0.535

White Matter

True 0.940 0.880 0.933 0.933 0.933

False 0.541 0.098 0.569 0.543 0.498

Smooth Gray
Matter

True 0.779 0.615 0.837 0.779 0.770

False 0.543 0.170 0.615 0.543 0.498

Smooth White
Matter

True 0.813 0.641 0.832 0.796 0.791

False 0.603 0.289 0.645 0.573 0.542
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Table 3.5: Results for DenseNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.808 0.624 0.825 0.808 0.803

False 0.683 0.451 0.764 0.683 0.666

Gray Matter

True 0.918 0.838 0.921 0.918 0.918

False 0.854 0.716 0.862 0.854 0.855

White Matter

True 0.955 0.909 0.938 0.937 0.937

False 0.877 0.756 0.871 0.866 0.866

Smooth Gray
Matter

True 0.858 0.734 0.878 0.858 0.858

False 0.667 0.337 0.670 0.667 0.666

Smooth White
Matter

True 0.838 0.721 0.869 0.858 0.858

False 0.700 0.410 0.701 0.684 0.673
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Table 3.6: Results for MobileNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.658 0.311 0.658 0.658 0.657

False 0.683 0.454 0.766 0.683 0.667

Gray Matter

True 0.925 0.852 0.927 0.925 0.925

False 0.534 0.041 0.526 0.534 0.496

White Matter

True 0.925 0.849 0.926 0.925 0.925

False 0.604 0.203 0.565 0.569 0.550

Smooth Gray
Matter

True 0.779 0.587 0.808 0.779 0.774

False 0.614 0.104 0.577 0.582 0.533

Smooth White
Matter

True 0.850 0.690 0.829 0.815 0.812

False 0.551 0.104 0.577 0.582 0.533
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Table 3.7: Results for ShuffleNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.708 0.498 0.812 0.708 0.675

False 0.692 0.496 0.800 0.692 0.674

Gray Matter

True 0.918 0.836 0.920 0.918 0.918

False 0.534 0.042 0.533 0.534 0.453

White Matter

True 0.937 0.874 0.929 0.927 0.927

False 0.494 0.111 0.531 0.485 0.420

Smooth Gray
Matter

True 0.738 0.471 0.742 0.738 0.734

False 0.476 -0.035 0.473 0.476 0.392

Smooth White
Matter

True 0.708 0.436 0.734 0.723 0.720

False 0.494 0.111 0.531 0.485 0.420
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Table 3.8: Results for SqueezeNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Whole Brain
Scan

True 0.733 0.450 0.741 0.733 0.722

False 0.675 0.357 0.681 0.675 0.674

Gray Matter

True 0.873 0.747 0.874 0.873 0.873

False 0.757 0.542 0.790 0.757 0.748

White Matter

True 0.948 0.898 0.912 0.910 0.910

False 0.765 0.530 0.779 0.761 0.755

Smooth Gray
Matter

True 0.727 0.452 0.748 0.727 0.711

False 0.543 0.000 0.295 0.543 0.382

Smooth White
Matter

True 0.772 0.534 0.768 0.749 0.735

False 0.730 0.457 0.541 0.637 0.538
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Table 3.9: Results for Ensemble Model 1 for Whole Brain Scans

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.700 ±
0.000

0.396 ±
0.000

0.762 ±
0.048

0.703 ±
0.024

0.688 ±
0.032

0.001 0.733 ±
0.000

0.552 ±
0.000

0.823 ±
0.009

0.758
± 0.025

0.742 ±
0.025

0.01 0.550 ±
0.000

0.000 ±
0.000

0.630 ±
0.232

0.658 ±
0.077

0.593 ±
0.143

True

0.0001 0.700 ±
0.000

0.436 ±
0.000

0.719 ±
0.087

0.686 ±
0.086

0.677 ±
0.092

0.001 0.708 ±
0.000

0.414 ±
0.000

0.706 ±
0.025

0.706 ±
0.024

0.704 ±
0.022

.01 0.742 ±
0.000

0.515 ±
0.000

0.770 ±
0.019

0.725 ±
0.024

0.709 ±
0.026
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Table 3.10: Results for Ensemble Model 2 for Gray Matter and White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.754 ±
0.000

0.562 ±
0.000

0.837 ±
0.060

0.806 ±
0.079

0.799 ±
0.084

0.001 0.791 ±
0.000

0.626 ±
0.000

0.844 ±
0.046

0.826 ±
0.055

0.824 ±
0.056

0.01 0.549 ±
0.000

0.000 ±
0.000

0.309 ±
0.009

0.556 ±
0.008

0.397 ±
0.009

True

0.0001 0.948 ±
0.000

0.896 ±
0.000

0.941 ±
0.006

0.939 ±
0.008

0.939 ±
0.008

0.001 0.937 ±
0.000

0.871 ±
0.000

0.917 ±
0.022

0.915 ±
0.022

0.915 ±
0.022

0.01 0.556 ±
0.000

0.000 ±
0.000

0.687 ±
0.272

0.767 ±
0.157

0.714 ±
0.229
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Table 3.11: Results for Ensemble Model 2 for Smoothed Gray Matter and
White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.566 ±
0.000

0.173 ±
0.000

0.641 ±
0.026

0.625 ±
0.042

0.611 ±
0.056

0.001 0.513 ±
0.000

0.000 ±
0.000

0.530 ±
0.201

0.605 ±
0.094

0.544 ±
0.154

0.01 0.577 ±
0.000

0.000 ±
0.000

0.309 ±
0.019

0.556 ±
0.017

0.397 ±
0.020

True

0.0001 0.933 ±
0.000

0.870 ±
0.000

0.921
± 0.016

0.919 ±
0.014

0.919
± 0.015

0.001 0.899 ±
0.000

0.798 ±
0.000

0.838 ±
0.048

0.813 ±
0.061

0.811 ±
0.063

0.01 0.562 ±
0.000

0.000 ±
0.000

0.490 ±
0.247

0.645 ±
0.118

0.539 ±
0.190
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Table 3.12: Results for Ensemble Model 3 with Trinet1 for Gray Matter and
White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.882 ±
0.000

0.801 ±
0.000

0.874 ±
0.070

0.837 ±
0.121

0.823 ±
0.141

0.001 0.862 ±
0.000

0.725 ±
0.000

0.686 ±
0.305

0.767 ±
0.186

0.712 ±
0.263

0.01 0.519 ±
0.000

0.000 ±
0.000

0.270 ±
0.011

0.520 ±
0.011

0.356 ±
0.012

True

0.0001 0.903 ±
0.000

0.811 ±
0.000

0.926 ±
0.018

0.923 ±
0.019

0.923 ±
0.019

0.001 0.922 ±
0.000

0.844 ±
0.000

0.944 ±
0.016

0.942 ±
0.014

0.941 ±
0.014

0.01 0.511 ±
0.000

0.000 ±
0.000

0.706 ±
0.314

0.789 ±
0.196

0.733 ±
0.274
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Table 3.13: Results for Ensemble Model 3 with Trinet1 for smoothed Gray
Matter and White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.745 ±
0.000

0.522 ±
0.000

0.722 ±
0.041

0.704 ±
0.029

0.701 ±
0.026

0.001 0.551 ±
0.000

0.000 ±
0.000

0.609 ±
0.219

0.682 ±
0.095

0.625 ±
0.167

0.01 0.543 ±
0.000

0.000 ±
0.000

0.273 ±
0.016

0.522 ±
0.016

0.358 ±
0.018

True

0.0001 0.858 ±
0.000

0.736 ±
0.000

0.902 ±
0.022

0.894 ±
0.029

0.894 ±
0.030

0.001 0.944 ±
0.000

0.889 ±
0.000

0.925 ±
0.016

0.919 ±
0.018

0.918 ±
0.018

0.01 0.914 ±
0.000

0.828 ±
0.000

0.863 ±
0.044

0.854 ±
0.054

0.854 ±
0.054
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Table 3.14: Results for Ensemble Model 3 with QuadNet for Gray Matter and
White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.963 ±
0.000

0.925 ±
0.000

0.890 ±
0.101

0.848 ±
0.159

0.834 ±
0.179

0.001 0.813 ±
0.000

0.651 ±
0.000

0.667 ±
0.274

0.740 ±
0.151

0.684 ±
0.226

0.01 0.496 ±
0.000

0.000 ±
0.000

0.269 ±
0.023

0.519 ±
0.022

0.355 ±
0.025

True

0.0001 0.963 ±
0.000

0.927 ±
0.000

0.951
± 0.010

0.950 ±
0.009

0.950 ±
0.009

0.001 0.918 ±
0.000

0.838 ±
0.000

0.934 ±
0.010

0.933 ±
0.011

0.933 ±
0.011

0.01 0.944 ±
0.000

0.891 ±
0.000

0.922 ±
0.018

0.919 ±
0.018

0.919 ±
0.018
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Table 3.15: Results for Ensemble Model 3 with QuadNet for Smoothed Gray
Matter and White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.708 ±
0.000

0.447 ±
0.000

0.722
± 0.048

0.690 ±
0.025

0.674 ±
0.014

0.001 0.738 ±
0.000

0.499
± 0.000

0.441 ±
0.229

0.598 ±
0.100

0.487 ±
0.173

0.01 0.524 ±
0.000

0.000 ±
0.000

0.271 ±
0.053

0.519 ±
0.034

0.356 ±
0.038

True

0.0001 0.906 ±
0.000

0.813 ±
0.000

0.902 ±
0.003

0.898 ±
0.006

0.898 ±
0.006

0.001 0.948 ±
0.000

0.899
± 0.000

0.914 ±
0.028

0.911
± 0.027

0.911 ±
0.027

0.01 0.753 ±
0.000

0.533 ±
0.000

0.625 ±
0.243

0.683 ±
0.197

0.624 ±
0.180
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Table 3.16: Results for Ensemble Model 3 with TriNet2 for Gray Matter and
White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.515 ±
0.000

0.000 ±
0.000

0.487
± 0.182

0.534 ±
0.026

0.412 ±
0.049

0.001 0.649 ±
0.000

0.322 ±
0.000

0.404 ±
0.189

0.563 ±
0.063

0.452 ±
0.136

0.01 0.541 ±
0.000

0.000 ±
0.000

0.301 ±
0.009

0.549 ±
0.008

0.389 ±
0.009

True

0.0001 0.955 ±
0.000

0.910 ±
0.000

0.947 ±
0.030

0.947 ±
0.030

0.947 ±
0.030

0.001 0.966 ±
0.000

0.932 ±
0.000

0.955 ±
0.020

0.954 ±
0.020

0.954 ±
0.020

0.01 0.866 ±
0.000

0.739 ±
0.000

0.891 ±
0.009

0.886 ±
0.014

0.886 ±
0.016
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Table 3.17: Results for Ensemble Model 3 with TriNet2 for smoothed Gray
Matter and White Matter

Pre
Trained

LR Accuracy MCC Precision Recall F1 Score

False

0.0001 0.599 ±
0.000

0.175 ±
0.000

0.614 ±
0.055

0.615 ±
0.055

0.611 ±
0.056

0.001 0.536 ±
0.000

0.000 ±
0.000

0.500 ±
0.154

0.583 ±
0.048

0.528 ±
0.114

0.01 0.539 ±
0.000

0.000 ±
0.000

0.288 ±
0.010

0.537 ±
0.009

0.375 ±
0.011

True

0.0001 0.951 ±
0.000

0.902 ±
0.000

0.944 ±
0.009

0.943 ±
0.010

0.943 ±
0.010

0.001 0.903 ±
0.000

0.806 ±
0.000

0.888 ±
0.044

0.886 ±
0.046

0.887 ±
0.046

0.01 0.547 ±
0.000

0.000 ±
0.000

0.453 ±
0.224

0.613 ±
0.099

0.500 ±
0.167
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Table 3.18: Results for Ensemble Model 1 with Pre trained constituent models
for Gray Matter and White Matter

Datatype LR Accuracy MCC Precision Recall F1 Score

WM

0.0001 0.963 ±
0.000

0.928 ±
0.000

0.944 ±
0.028

0.943 ±
0.028

0.943 ±
0.028

0.001 0.907 ±
0.000

0.815 ±
0.000

0.936 ±
0.021

0.934 ±
0.023

0.934 ±
0.023

0.01 0.933 ±
0.000

0.866 ±
0.000

0.698 ±
0.314

0.781 ±
0.196

0.726 ±
0.275

GM

0.0001 0.948 ±
0.000

0.896 ±
0.000

0.936 ±
0.013

0.935 ±
0.013

0.935 ±
0.013

0.001 0.918 ±
0.000

0.835 ±
0.000

0.916 ±
0.013

0.915 ±
0.021

0.915 ±
0.021

0.01 0.892 ±
0.000

0.784 ±
0.000

0.691 ±
0.301

0.774 ±
0.183

0.719 ±
0.261

3.6 Discussion

The tables report multiple evaluation metric scores including Accuracy, Pre-

cision, Recall, F1 score, MCC score. The best measure for understanding

whether a model is performing well in all 4 criteria of a standard 2 x 2 confu-
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sion matrix is the MCC score. All scores are reported in the range of (0, 1),

except MCC score, which is in the range of (-1, 1). The scores are reported in

Mean ± Standard Deviation format. The best scores for each model using

the same modality of data but with different window sizes were reported in

bold font.

Table 3.3 presents the performance of Resnet [40] architecture with mod-

ified input and output layers and with a 0.0001 learning rate with all our

data modalities. Comparing the overall performance, we can conclude that

WM achieves the best performance across all metrics for PD detection. GM

performed highly across all metrics as well, although the scores were lower

than that of WM. In fact, modified Resnet with WM achieved one of the best

scores across all metrics among all of the tested models. Using smoothed scans

did not improve the performance and both smoothed WM and GM had lower

scores than original scans. Whole Brain scans had better performance than

smoothed GM but worse scores than smoothed WM. While testing on both

original and smoothed GM and WM, models pretrained with Imagenet data

showed significantly better performances. However, for whole brain scans,

models without any previous training achieved better results.

The scores of VGG [124] architecture with modified input and output layers

and with a 0.0001 learning rate with all of the listed data modalities are

presented in Table 3.4. WM achieved the best performance across all metrics

for PD detection for VGG. GM also achieved high scores across all metrics,

but the scores were slightly lower than that of WM. Both smoothed WM and

GM had lower scores. Whole Brain scans had the worst performance among

all the data modalities. Pretrained models achieved better metric scores across

all modalities except with whole brain scans, which had better scores for some

of the metrics using untrained models.

Table 3.5 present the results for Densenet [44]. The input and output

layers of the Densenet architecture were modified to accommodate our data.

The learning rate was fixed at 0.0001. Pretrained models on ImageNet data

achieved better metric scores across all modalities for this model. WM pro-

duced the best performance, followed by GM, smoothed WM, smoothed GM

53



and finally whole brain scans.

The results for modified MobileNet [115] architecture with a learning rate

of 0.0001 are presented in Table 3.6. Non trained models achieved superior

scores for whole brain scans for this model, pretrained models on achieved

better scores across all other modalities. GM and WM achieved comparable

accuracy with this model, followed by smoothed WM and then smoothed GM.

Whole brain scans produced the overall lowest scores for this model.

Table 3.7 lists the metric scores for modified ShuffleNet [68] architecture

with a constant learning rate of 0.0001. It can be seen that pretrained models

on the ImageNet dataset outperform non trained models with all data modal-

ities . WM provides the best performance, closely followed by GM. Smoothed

GM perform worse than GM but better than whole brain scans and smoothed

WM. Whole brain scans also outperform smoothed WM.

The performance of modified SqueezeNet [45] was listed in Table 3.8. The

learning rate was once again kept constant at 0.0001. Pretrained models on

ImageNet data outperform non trained versions across all modalities for this

model. WM achieved significantly better scores, followed by GM. The scores

for whole brain scan, smoothed GM and smoothed WM were more or less

similar.

Table 3.9 presents the results for Ensemble Architecture 1 defined in Sec-

tion 3.4.1 trained on whole brain scans with three different learning rates. We

see that for learning rates of 0.0001 and 0.001 pretrained models do not sig-

nificantly impact the performance. In fact the highest scores were achieved a

learning rate of 0.001 with non trained model. However, for a learning rate

of 0.01, pretrained models significantly outperform ensemble model 1 without

any previous training.

The results for Ensemble Architecture 2 defined in Section 3.4.2 trained

on GM and WM scans with three different learning rates are shown in Ta-

ble 3.10. Pretrained models show significantly higher metric scores compared

to non trained models for this architecture. Table 3.11 presents the scores for

the same model, but with smoothed GM and WM scans. Pretrained models

outperform nontrained models with smoothed scans as well, however for simi-
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lar parameters, the performance of using smoothed GM and smoothed WM is

slightly worse than using non smoothed GM and WM. For both non smooth

and smooth scans, a learning rate of 0.0001 generated the best results.

Table 3.12 presents the results for Ensemble Architecture 3 [3.4.3] with

TriNet1 defined in Section 3.4.3.1. For non trained constituent models, the

best scores were achieved with a learning rate of 0.0001, whereas a learning

rate of 0.001 provided best results for pretrained constituent models. Using

pretrained models to construct the ensemble architecture produced better re-

sults when keeping all other parameters fixed. The scores of same model with

smoothed GM and WM are listed in Table 3.13. For this model, using non

trained models to construct the ensemble architecture produces lower met-

ric scores when compared to previous models where GM and WM were used

without smoothing. However keeping all parameters fixed and using pretrained

constituent models gives better results with learning rates of 0.001 and 0.01.

The performance for the learning rate of 0.0001 is slightly worse when using

smoothed GM and WM.

The results for Ensemble Architecture 3 [3.4.3] with QuadNet defined in

Section 3.4.3.2 is listed in Table 3.14. For both non trained and pretrained

constituent models, the best scores were achieved with a learning rate of 0.0001.

The scores for both approaches were pretty close with 0.0001 learning rate, but

for other learning rates of 0.001 and 0.01 pretrained models to construct the

ensemble architecture produced significantly better results keeping all other

parameters fixed. The scores of the same QuadNet model with smoothed

GM and WM are shown in Table 3.15. For QuadNet, non trained models

produce lower metric scores when compared to previous models where GM

and WM were used without smoothing. Using pretrained constituent models

gives significantly better results with all learning rates keeping all parameters

fixed. Overall, the performance is better when using non smoothed GM and

WM.

Table 3.16 contains the results for Ensemble Architecture 3 [3.4.3] with

TriNet2 defined in Section 3.4.3.3. For both non trained and pretrained con-

stituent models, the best scores were achieved with a learning rate of 0.001.
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The scores for pretrained models to construct the TriNet2 architecture pro-

duced significantly better results keeping all other parameters fixed. The scores

for the TriNet2 with smoothed GM and WM are shown in Table 3.17. For

TriNet2, non trained models produce similar metric scores with smoothed and

non smoothed GM and WM. Using pretrained constituent models gives sig-

nificantly better results with all learning rates keeping all parameters fixed.

When using smoothed scans, the best results were obtained with a learning

rate of 0.0001. Overall, the performance is better when using non smoothed

GM and WM.

Table 3.18 presents the metric scores for Ensemble Model 1 defined in

Section 3.4.1 with only non smooth GM and WM. Based on our previous

observations it was derived that individually GM and WM would be sufficient

in our task of PD detection. Only pretrained constituent models were used

as pretrained models have produced superior results in previous experiments.

The experiments were done with a total of 3 different learning rates, with

0.0001 producing the best results for both GM and WM. For learning rates of

0.0001 and 0.01, WM produces better results compared to GM, however the

results are more close for a learning rate of 0.001.

Overall,

� it can be seen that our proposed architectures perform better than ex-

isting models on similar data and achieve above 90% accuracy,

� the scores increase significantly in models pre-trained on ImageNet when

using WM and GM scans, however for whole brain scans, models without

any previous training produced better scores.

� it was also noted that extracted GM and WM produce better perfor-

mance compared to whole brain scans.

� we also observe that the results using non-smoothed scans are better

than using smoothed scans. We believe that fine representative details

are likely removed during the smoothing process.
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� it was concluded that for detection we did not need both GM and WM.

Individually both of them produced above 90% detection accuracy, but

overall WM produces better performance.

3.7 Occlusion Analysis

To understand which regions of the brain are important in the decision mak-

ing process, we performed a slightly modified version of occlusion analysis

proposed by Rieke et al. [104] to fit our data. In this analysis, usually a part

of the scan is occluded with gray or white patch and the output from the net-

work is recalculated. The occluded region is considered to be important if the

probability of the target class decreases compared to the original image. The

heatmap of relevance is calculated by sliding the patch across the image and

plotting the difference in the probability in red. The brightness of the shade

of red indicates the importance of the region. The relevance was calculated

such that the sum of relevance of all areas was 1. The heatmaps presented

in the following sections contain slices taken from the original MRI scan at

specific x,y or z coordinates and overlaying the difference in probability for

that point. Occlusion analysis was performed for three of the models with

parameters that produced the best performance. The models were modified

Resnet [40], Ensemble Architecture Model 1[3.4.1] and Ensemble Architecture

Model 2[3.4.2]. All models were pretrained with ImageNet [20] dataset, and

they were trained with a learning rate of 0.0001. In our experiments, GM and

WM produced superior results than whole brain scans, so only models trained

on GM and WM were selected for occlusion analysis. To better understand

the heatmaps we also calculated the relevance per brain area using methods

provided by Rieke et al [104].

3.7.1 Occlusion Analysis for Modified ResNet

Modified Resnet [40] produced the best results out of our individual mod-

els 3.3. Two versions of the model were trained, one on WM and the other on

GM. Figure 3.12 presents the relevance heatmap for WM and GM using pre-
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trained ResNet [40]. Figure 3.13 shows that the Middle Temporal Gyrus and

Superior Temporal Gyrus were significant in the decision making process for

the model when using WM, followed by the Postcentral Gyrus region. The rest

of the regions were of relatively low relevance. Figure 3.14 shows that when

using GM, the relevance were comparatively more evenly distributed. Middle

Temporal Gyrus was once again vital in the decision making process, followed

closely by Middle Frontal Gyrus, Frontal Superior Medial Gyrus, Thalamus

and Superior Temporal Gyrus.
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(a) Heatmap for White Matter

(b) Heatmap for Gray Matter

Figure 3.12: Relevance Heatmaps for Occlusion of Gray Matter and White
Matter images using Pretrained ResNet [40]

59



Figure 3.13: Relevance per brain area for White Matter for Pretrained
ResNet [40]

Figure 3.14: Relevance per brain area for Gray Matter for Pretrained
ResNet [40]
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3.7.2 Occlusion Analysis for Ensemble Architecture -
Model 1

Ensemble Architecture 1[3.4.1] performed very well when trained on GM and

WM 3.18. The relevance per brain area was computed on 2 version of the

model trained on WM and GM separately. The relevance heatmaps for both

types of data are presented in Figure 3.15. Figure 3.16 presents the bar graph

for relevance per brain area while using only WM, showing the Middle Frontal,

Middle Occipital and Middle Temporal Gyrus to be the three most relevant

areas for decision making. However, the Thalamus, Superior Temporal and

Middle Temporal Gyrus appear to be the most relevant when using GM as

shown in Figure 3.17.
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(a) Heatmap for White Matter

(b) Heatmap for Gray Matter

Figure 3.15: Relevance Heatmaps for Occlusion of White Matter and Gray
Matter images using Ensemble Architecture 1 with pretrained constituent
models
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Figure 3.16: Relevance per brain area for White Matter using Ensemble Ar-
chitecture 1 with pretrained constituent models

Figure 3.17: Relevance per brain area for Gray Matter using Ensemble Archi-
tecture 1 with pretrained constituent models
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3.7.3 Occlusion Analysis for Ensemble Architecture -
Model 2

This architecture[ 3.4.2] was unique from the other architectures we performed

occlusion analysis on, in the sense that this architecture needed both GM and

WM as input simultaneously. To overcome this issue, the occlusion procedure

was repeated twice, once for each of the GM and WM images and then the

results were overlayed on top of each other to produce the heatmaps. The

resultant heatmaps are presented in Figure 3.18. The relevance per brain area

is presented in Figure 3.19 and Figure 3.20. We can see for GM the most

focused on area is Superior Frontal, Superior Temporal and Frontal Superior

Medial Gyrus and for WM it is Postcentral, Middle Temporal and Fusiform

Gyrus.
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(a) Heatmap for White Matter

(b) Heatmap for Gray Matter

Figure 3.18: Relevance Heatmaps for Occlusion of White Matter and Gray
Matter images using Ensemble Architecture 2 with pretrained constituent
models
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Figure 3.19: Relevance per brain area for White Matter using Ensemble Ar-
chitecture 2 with pretrained constituent models

Figure 3.20: Relevance per brain area for Gray Matter using Ensemble Archi-
tecture 2 with pretrained constituent models
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Overall, we can conclude that,

� Although the relevance of the areas vary from model to model and it

is an approximate estimate, some common areas appear to show high

importance in all models.

� Superior Temporal Gyrus and Middle Temporal Gyrus are found to be

the most common area that models with high performance focus on.

� Postcentral Gyrus, Thalamus and Superior Frontal Gyrus are focused

on by most models and appear to have moderately high relevancy in the

decision making process.

� The other areas show varying relevance depending the model and the

data modality being used.

3.8 Conclusion

In this part of the thesis, the author applied transfer learning based approach

by applying models trained on the ImageNet [20] dataset on MRI images to

detect PD. Pretrained models produced superior metric scores which show a

promising direction for research in situations where there is insufficient train-

ing data. Multiple novel deep learning architectures for PD detection using

Ensemble Learning were proposed, which outperforms related works on simi-

lar dataset. It was concluded that pretrained models outperform non trained

models for this task. Also, WM by itself produced the best metric scores. We

also applied occlusion analysis to identify the region of significance for model

decision making process. In future, we want to expand on our research and

focus further on the regions that were identified to be most important on the

decision making process.
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Chapter 4

Freezing Of Gait Detection and
Prediction

4.1 Introduction

In this chapter, we developed DL based techniques and used some of the

most widely used time frequency representation techniques as feature set to

classify as well as predict the FOG events using data captured from a tri-axial

accelerometer sensor. In order to solve the issue of detection latency, we predict

the changes in gait before the start of a FOG event. If the onset of FOG events

can be accurately predicted, RAS can be applied even before it starts. We use

a BiDirectional LSTM architecture with raw signals and handcrafted features.

We explored a CNN architecture with multiple visual representation methods

including RP, STFT, DWT and PWVD. Experimental results show that our

approach give higher accuracy compared with existing state-of-the-art models

based on tri-axial accelerometer sensor signals. The performance of each DL

model was evaluated with different feature sets and multiple metrics in order

to determine the optimal combination of models without bias. Finally, we are

able to propose three ensemble architectures, each of which is composed of a

selected set of models and features. The ensemble architectures significantly

improve the performance of individual models.

Our research group obtained gait data from a multitude of sensors in col-

laboration with A. T. Still University. In the later parts of this chapter, I

propose a system to use proposed models to detect gait from the collected
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data using an ensemble architecture.

4.2 Data

The publicly available DAPHNet [11] dataset was used for our experiments.

The dataset contained data collected from ten PD patients, with seven male

and three female experiencing regular FOG in their day to day activities. The

average age of the participants was 66.4 ± 4.8 years, with an average disease

duration of 13.7±9.67 years. The average Hoehn and Yahr score was 2.6±0.65,

indicating that the subjects had mild symptoms with mild balance impairment

to moderate balance impairment [42]. Two tri-axial (3D) accelerometer sensors

were attached to one of the patient’s legs: One was located at the shank just

above the ankle, and another was attached to the thigh slightly above the knee.

The third sensor was placed at the lower back of the patient. The locations of

the sensors are shown in [11] as shown in Figure 4.1.
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Figure 4.1: Sensor Placement for Data Collection

The dataset contained 237 FOG events which were identified by profes-

sional physiotherapists in a post hoc video analysis. Synchronized video record-

ings were used by physiotherapists to identify the FOG events. The signal

point, where the left-right steps alternating, is defined as the start of a FOG

event. The point, where pattern resumed is defined as the end of the FOG

event. Eight out of the ten subjects experienced FOG during the study, with
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the duration of the events ranging from 0.5 seconds to 40.5 seconds. The mean

duration was 7.3±6.7 seconds. 50% of the FOG episodes were shorter than 5.4

seconds and 93.2% were shorter than 20 seconds. The signals were annotated

in three categories:

� 0 - Not part of the experiment; user performed activities are unrelated

to the experimental protocol while the sensors were installed.

� 1 - Experiment; no FOG.

� 2 - FOG.
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4.3 Proposed Method

Figure 4.2: Proposed Preprocessing, Data Augmentation and Feature Extrac-
tion workflow

The preprocessing, data augmentation and feature extraction algorithm used

in this study is presented in Figure 4.2. The major components are explained

in the subsections below.

4.3.1 Preprocessing

In the preprocessing component, data that is irrelevant to the study is removed

and signals from the three axes of each sensor is combined so that there is only
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one signal stream for each sensor.

4.3.1.1 Removing Unrelated Data

Data with an annotation of 0 (not a part of the experiment) was removed. We

also removed data from subjects who did not experience FOG at all during

the experiment.

4.3.1.2 Calculating Magnitude of Acceleration for all three axis

The three signals originating from each channel were combined to calculate

the magnitude of acceleration, resulting in three signal streams with one from

each of the sensors as shown in Eq. (4.1).

τC = {AC , LC , TC} (4.1)

Magnitude of acceleration is the relative value of the overall acceleration at

any given time instance, calculated as shown in Eq. (4.2).

αC =
√
α2
X + α2

Y + α2
Z , where αX , αY , αZ ∈ τ, αC ∈ τC (4.2)

Each of the accelerometers was assigned to a single channel, with the data

being recorded for three channels: Ankle (A), Leg (L) and Torso (T). Each

channel consisted of three separate signals, with each of the signals correspond-

ing to a single axis from the accelerometer. The axes were horizontal forward

(X), vertical (Y) and horizontal lateral (Z). Thus, a set τ of nine signals were

recorded for each of the patients with a sampling frequency (fs) of 64, as

illustrated in Eq. (4.3).

τ = {{AX , AY , AZ}, {LX , LY , LZ}, {TX , TY , TZ}} (4.3)

4.3.2 Data Augmentation

We applied small non-overlapping windows to extract data from the original

continuous signal. The window data immediately before the start of a FOG

event was labeled with a new class PreFOG, which is essential for predict-

ing FOG events before they occur. The number of Non-FOG samples vastly
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outnumber the PreFOG and FOG samples, making Non-FOG our majority

class. In order to solve the issue of class imbalance, the minority classes, Pre-

FOG and FOG, were over sampled to match the number of samples from the

Non-FOG class.

4.3.2.1 Signal Segmentation

Non-overlapping 1-dimensional windows of length fs×w time-steps were used

to extract signal αC ∈ τC , where w is the length of the signal window in

seconds.

αC = [ α1 α2 .... αw×fs ]w×fs (4.4)

Since the windows were non overlapping, shorter window lengths provided a

larger dataset. Signals were segmented into window lengths ranging from 1 to

4 seconds. Each signal window generated a separate dataset.

4.3.2.2 Labeling PreFOG class

Mazilu et al. [73] proposed that gait cannot enter into FOG state directly from

normal walking without first going through a state of deterioration. They de-

fine this state as PreFOG, which is a transition period with variable duration.

Identifying this transition state would be valuable for both FOG detection

and prediction. Since the duration of PreFOG might not be the same from

patient to patient, for our experiment the immediate window (w × fs time

steps) before the onset of a FOG event was labeled as PreFOG.
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Figure 4.3: Example of combined Accelerometer signal from Ankle, capturing
the motor variations in the gait of a Parkinson’s patient, containing Normal
gait, followed by a window of PreFOG period (Yellow), and then a FOG event
(Red).

The final dataset thus had three annotations,

� 0 - Non FOG

� 1 - FOG

� 2 - PreFOG

4.3.2.3 SMOTE Oversampling

At this stage, the dataset was hugely imbalanced, with majority of the data

being from the Non-FOG class. Such imbalanced data would lead to most

architectures ignoring the minority classes and over-classifying the majority

class, although the performance on the minority classes is much more signifi-

cant in this case. There are multiple ways to address this issue. One approach

is to under sample the majority class to match the number of samples in the

minority classes. But in our case, the minority samples are sparse, and un-

der sampling the majority class would lead to a drastic decrease in the total
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number of training samples. NN architectures require a large number of train-

ing samples in order to perform satisfactorily, and therefore under sampling

would lead to poor performance. An alternative method is to over sample the

minority class. It involves duplicating the samples of the minority class to

match the number of samples in the majority class. Although this method

balances the class distribution, it does not provide the networks with any new

information to learn. We decided to choose the approach proposed by Chawla

et al. [16] to synthesize new samples from existing samples. This Synthetic

Minority Oversampling Technique (SMOTE) creates new synthetic plausible

samples that are in the same feature space as other minority class samples.

The generated data was only used for training, the performance of the models

was evaluated with real data during testing.

4.3.3 Feature Extraction

After data augmentation, our final feature set consisted of 5 different modali-

ties extracted from the same source, αi ∈ αC as shown in Eq. (4.5).

Featuresi = {αi, Fi, RPi, STFTi, DWTi, PWV Di}, αi ∈ αC (4.5)

where,

� αi = Moving window extracted from signal αC

� Fi = Manually extracted feature set from αi

� RPi = Recurrence Plot representation of αi

� STFTi = Short Time Fourier Transform representation of αi

� DWTi = Discrete Wavelet Transform representation of αi

� PWVDi = Pseudo Wigner Ville Distribution representation of αi

4.3.3.1 Time and Frequency Domain Features

For each αi ∈ αC , feature relating to the time and frequency domain was

extracted, as explained in Table 4.1.
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Table 4.1: Fi Features extracted for each αi ∈ αC

Time Domain Features Description

Min, Max Minimum and Maximum value of the
signal

Range Difference between the minimum and
maximum value of the signal

Mean Average value of signal
Median Median value of the signal
Mode Modal value of the signal

Trimmed Mean Trimmed/Truncated mean of the sig-
nal

Standard Deviation Deviation of a signal compared to its
mean

Variance Square root of the standard deviation
of the signal

Root mean square Square root of the mean of the
squared signal

Mean absolute value Mean of absolute value of the signal
Median absolute deviation Median over the absolute deviations

from the median
25th Percentile 25th percentile value of the signal
75th Percentile 75th percentile value of the signal

Interquantile range Difference between the 75th and 25th
percentile of the signal

Skewness The degree of asymmetry in the signal
Normalized Signal Magnitude Area Sum of standardized acceleration

magnitude normalized by window
length

Kurtosis The degree of peakedness in the sig-
nal, signals with high kurtosis have
more outliers

Mean Crossing Rate The number of times the signals goes
from above average value to below av-
erage value normalized by the window
length

Signal Vector Magnitude Sum of euclidean norm over the win-
dow normalized by window length

Peak of Fourier Transform Maximum magnitude of Discrete
Fourier Transform of the signal nor-
malized by the window length

Frequency Domain Features Description
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Entropy Measure of random distribution of fre-
quency

Energy Sum of squared magnitude of FFT of
the signal divided by window length

Peak Frequency Maximum frequency value in the
power spectrum

Freeze Band Power The sum of power in Freeze band of
frequencies divided by sampling fre-
quency

Locomotion Band Power The sum of power in Locomotion
band of frequencies divided by sam-
pling frequency

Freeze Index Power of signal in freeze band (3-8Hz)
divided by it’s Power in locomotion
band(0.5-3Hz)

Band Power Sum of the power in freeze band and
in locomotion band
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4.3.3.2 Recurrence Plots (RP)

RP are used to represent temporal correlations of univariate series data defined

in a square matrix [22]. For time series data, the matrix elements represent

the times at which the amplitude of the signal recurs. If i and j are two time

instances, and x(i) and x(j) are values in the time series at two recurrence

time instances, the formula to compute the recurrence plot [102] is given in

Eq. (4.6).

R(i, j) =

{
1, if ||x(i)− x(j) ≤ ϵ||
0, otherwise

, (ϵ is a custom similarity threshold)

(4.6)

RP are often robust against outliers and noisy data for periodic signals. Some

examples of RP for our signals can be seen in Figure 4.4. The plots were

generated with a window length (w) of 2. It was observed that for w = 2,

Non-FOG events had no distinct pattern when represented as a recurrence

plot, PreFOG events show clear distinct patterns and FOG events had patterns

that were more defined than Non-FOG but less defined than PreFOG. Both

x and y axes represent time for RP.
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Figure 4.4: Examples of Recurrence Plot generated from Accelerometer signal
from Ankle with a Window size of 2 and ϵs value of 0.5.

(a) Signals representing Normal walking or Non-FOG

(b) Signals representing PreFOG

(c) Signals representing FOG
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4.3.3.3 Short Time Fourier Transform (STFT)

STFT is a Fourier transform that quantifies the phase content and the sinu-

soidal frequency of signal segments changing over time [22]. STFT is useful

in capturing the time and frequency characteristics in the signals. Rajoub

et al. [98] mentioned that STFT does not perform well in capturing sharp

signals and patterns with varying duration. Figure 4.5 shows some exam-

ple spectograms generated using STFT, describing magnitude over time for

each of our signal types over a 2 second time window. x axis represents time

and y axis frequency for STFT. For w = 2, STFT captured the difference

between Non-FOG and other classes, with the spectograms for PreFOG and

FOG classes being almost clear compared to that of Non-FOG. However, it

was difficult to visually differentiate PreFOG and FOG from STFT alone.
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Figure 4.5: Examples of Short Time Fourier Transform Plot generated from
Accelerometer signal from Ankle with a Window size of 2.

(a) Signals representing Normal walking or Non-FOG

(b) Signals representing PreFOG

(c) Signals representing FOG

4.3.3.4 Discrete Wavelet Transform (DWT)

DWT is a process of decomposing a signal sequence into subsets, with each

subset being a time series consisting coefficients that represent the time evo-

lution in the corresponding frequency band [43]. A main advantage of DWT

is the ability to capture both frequency and location characteristics in a time

series. Haar Transform is the simplest of wavelet transforms. We used Haar

sequence proposed by Haar et al. [35], which is the first known wavelet ba-
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sis. The Haar wavelet can be used to analyze signals with sudden transitions.

Figure 4.6 shows sample plots of the approximation and detail coefficients of

transforms for a 2 second time window. For DWT, x axis represents time and

y axis frequency.

DWT representation plot for w = 2 is useful for visually identifying the

Non-FOG class compared to PreFOG and FOG classes. For Non-FOG events,

the approximation and detail coefficient plots are almost flat, without any large

fluctuations in value, which is distinctly identifiable. The representations for

PreFOG and FOG events are harder to differentiate as both representations

show sudden rise and drop in their values.
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Figure 4.6: Examples of Discrete Wavelet Transformation generated from Ac-
celerometer signal from Ankle with a Window size of 2.

(a) Signals representing Normal walking or Non-FOG

(b) Signals representing PreFOG

(c) Signals representing FOG

4.3.3.5 Pseudo Wigner Ville Distribution (PWVD)

PWVD is a method to represent transient phenomena in three dimensions, i.e.,

time, frequency and amplitude [119]. PWVD has been proven to be effective

in generating accurate time frequency representation, since its frequency and

time resolutions are determined by the resolution of the signals and not by

the duration [119]. Figure 4.7 shows some examples of PWVD computed on

signals with 2 second time window from our data. For PWVD, x and y axes
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represent time and frequency respectively. The Non-FOG and FOG gaits can

be clearly distinguished from PWVD representations for w = 2, as Non-FOG

gaits have a clear central section compared to FOG events. Both PreFOG and

FOG classes have patterns appearing in the central section, which makes it

difficult to differentiate them visually.

Figure 4.7: Examples of Pseudo Wigner Ville Distribution generated from
Accelerometer signal from Ankle with a Window size of 2.

(a) Signals representing Normal walking or Non-FOG

(b) Signals representing PreFOG

(c) Signals representing FOG

85



4.4 Model Structure

We introduced a CNN based model architecture based on the findings obtained

from the four feature visual representations, RP, STFT ,DWT, PWVD dis-

cussed above. A LSTM based architecture was proposed for the original signal

α and the corresponding feature set F . For each data modality ∈ Features,

an instance of the corresponding model was trained and its performance was

recorded. Then, the trained model instances were combined in three ensemble

network architectures, M7, M8 and M9, as explained below. Our objective

is to demonstrate that ensemble models provide better performance than in-

dividual constituent models.

4.4.1 Basic Convolutional Neural Network Architecture
(CNN)

CNNs are known for their ability to identify complex non-linear relationships

between data points without hand crafted feature engineering. To comple-

ment our techniques to present time series data visually, a CNN architecture

was designed, which is presented in Figure 4.8. The input is passed through

four 2D Convolutional layers with filter sizes 64, 32, 16 and 8 respectively, a

kernel size of (4, 4) and LeakyReLu activation function with a negative slope

coefficient, and alpha value of 0.3. Each of the Convolutional layers was fol-

lowed by a 2D MaxPooling layer with a pool size of (2, 2) and a Dropout

layer having a dropout rate of 0.25. The data was then flattened and passed

through two Dense layers with 100 and 50 units respectively. Each of the

Dense layers had LeakyReLu activation function with alpha value of 0.3 and

was followed by 2 Dropout layers having a dropout rate of 0.2. Finally a

Dense layer with Softmax activation function of 3 units for our three out-

put classes was added. The model was compiled with a RMSProp optimizer

with an initial learning rate of 0.0001. The parameter values were selected

after trial and error on multiple values. For our four visual feature types,

RP, STFT ,DWT, PWVD, a separate instance model was trained and vali-

dated, which are labelled M1,M2,M3 and M4 respectively.
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Figure 4.8: Proposed basic CNN Architecture with 4 recurring 2D Convolution
blocks, followed by 3 Dense layers.

4.4.2 Basic Bidirectional Long Short Term Memory Ar-
chitecture (LSTM)

LSTM network is a type of recurrent NN architecture, which is suitable for

learning and remembering a long sequences of input data, automatically ex-

tracting features from the raw sequence and providing comparable performance

to using handcrafted features. Bidirectional LSTMs add a duplication of the

first recurrent layer. The first layer is trained on the original input sequence

and the duplicated layer is trained on a reversed copy of the input sequence.

For our data, the use of Bidirectional LSTM is justified because the context

87



of the whole signal sequence, instead of a linear interpretation, is relevant for

FOG identification and prediction. Our Bidirectional LSTM architecture is il-

lustrated in Figure 4.9. The input is passed through four BidirectionalLSTM

layers stacked on top of each other with tanh activation function and nlayers

hidden layers. The value of nlayers is computed by Equation (4.7) where linput

is the length of the input sequence and σ is the multiplication coefficient.

The value for σ was set to 3 based trial and error as it generated the best

results, keeping the rest of the pipeline unchanged. The output of LSTM

was passed through a Dense layer with Softmax activation function. The

final Dense layer had 3 units to classify between the three output classes. An

Adam optimizer with an initial Learning rate of 0.0001 was used to compile

the model. One instance of this model, M5, was trained on the original signal

αC and another instance, M6, was trained on the handcrafted feature set FC

corresponding to the signal αC .

nlayers = linput × σ (4.7)

Figure 4.9: Proposed basic Bidirectional LSTM Architecture with 4 recurring
Bidirectional LSTM block, followed by a Dense Layer.

4.4.3 Ensemble Architectures

Ensemble Learning is a NN training approach, where the predictions from

multiple trained networks are combined to solve a problem [143]. In this
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work, three ensemble network architectures are examined (Figure 4.10). The

constituent model set is defined as,

Mconstituent = {M1,M2,M3,M4,M5,M6} (4.8)

Figure 4.10: Proposed Ensemble Architectures, (1) M7 concatenates the out-
put all constituent models, followed by a Dense Layer, (2) M8 Averages the
outputs of all constituent models and (3) M9 calculates the majority predic-
tion of all models using mode.

4.4.3.1 Stacked Ensemble Model - M7:

This model architecture is designed by combining the output predictions of all

Mi ∈ Mconstituent. The models have already been trained on their respective

data, and all layers of constituent models are set as non-trainable before adding

them to the ensemble model. The constituent models were already proven to

produce good results and our purpose was to compare the performance of

ensemble approaches keeping the constituent models unchanged. Thus they

were set to be non-trainable. The outputs of the models are passed through a
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Concatenation layer and then two Dense layers with 10 and 3 units respec-

tively. The first Dense layer has a ReLu activation function and the final

Dense layer has a Softmax activation function. An Adam optimizer is used

with a learning rate of 0.0001.

4.4.3.2 Average Ensemble Model - M8:

This model architecture takes the average of the predicted outputs of all Mi ∈

Mconstituent. The constituent models pre-trained on their respective data are

set as non trainable, and the outputs are passed through an Average layer.

M8 is compiled with an Adam optimizer having a learning rate of 0.0001.

4.4.3.3 Majority Voting - M9:

For majority voting, the output is predicted as the majority class predicted by

the constituent models Mi ∈ Mconstituent. The hard voting approach is used to

calculate the final outcome, where every constituent model votes for an output

class and the majority vote is selected as the final prediction. In statistical

terms, this is equivalent to calculating the Mode of the predictions from all

constituent models.

4.5 Results

4.5.1 K-Fold Cross Validation

In order to get an accurate estimate of the models performance, Stratified K-

fold cross validation technique was utilized to separate the data into training

and testing sets, with 80% of the data being used for training and the rest

for testing, preserving the ratio of samples of each class. Since neural network

models take a long time to train and evaluate, it is difficult to use high values

for K. For this experiment, K was set to 5. The dataset was first shuffled, and

then it was split into K unique class balanced (train, test) combinations. For

each fold, a new instance of each of our models was trained using the training

set and its performance on the testing set was evaluated and recorded. The

evaluation performances were retained while the instances of the models were
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discarded. Finally, the average performance of the models across all K folds

was recorded.

4.5.2 Normalization

The visual feature representations in RP i, STFT i, DWT i, PWV Di are nor-

malized using Eq. (4.9). Since the range for RGB values in images is 0− 255,

each channel is normalized to the range of 0.0 − 1.0. Then the values are

centered through division with the mean.

pnormalized =
po − 255.0

mean(po)
, po ∈ RPi, STFTi, DWTi, PWV Di (4.9)

4.5.3 Experimental Setup

For each of the training sets, it was further divided into (train,validation) sets

with 80% being used for training and the rest for validation. Validation using

unseen data was crucial to evaluate whether the model was learning over time

by comparing its performances. Each of the models was trained for at most 500

epochs. The training was stopped if the validation accuracy did not improve

over 50 epochs. All the experiments were done on a Ubuntu Machine, with 4

core Intel Xeon Processor, 62 Gigabytes of RAM and Nvidia Tesla GPU with

16 Gigabytes memory. The algorithm was tested with data from all three

wearable sensors αC ∈ τC , but we achieved the best performance using only

data from the ankle mounted sensor AC . All results presented here are based

on AC . In order to train Convolutional Neural Networks, all image features

were adjusted to the shape of (3, 128, 128) and then normalized. The runtimes

presented include both training and testing of the model but do not include

the preprocessing and feature extraction time. Runtimes presented here for

ensemble models do not include the time for training the constituent models.

All scores presented in Section 4.5.4 are average scores. Five instances of each

model were trained and evaluated on five folds of (train, test) sets, and their

scores and runtimes were averaged.
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4.5.4 Metric Scores

Table 4.2: Results of some existing methods

Model Window length (s) Recall/ Sensitivity Specificity Fβ Score

Mazilu et al.[73] (Unsuper-
vised - 20 Features)

3 76.86 86.21 81.56

Mazilu et al.[73] (Supervised -
20 Features)

3 66.65 88.74 78.27

Mazilu et al.[73] (Unsuper-
vised - 25 Features)

3 76.86 85.52 80.82

Mazilu et al.[73] (Supervised -
25 Features)

3 67.58 88.52 78.65

Decision Tree [33] 4 96.70 98.92 -

Random Forest [33] 4 98.91 99.44 -

AdaBoost [33] 4 97.99 99.56 -

KNN [33] 4 94.61 97.38 -

SVM [33] 4 97.54 98.64 -

ProtoNN [33] 4 95.25 99.66 -

Bonsai [33] 4 92.9 98.36 -
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Table 4.3: Results of Basic CNN architecture M1 with RP

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.894 ±
0.021

0.929 ±
0.006

0.894 ±
0.021

0.933 ±
0.007

0.904 ±
0.016

0.687 ±

0.039
52.05

3 0.832 ±

0.023
0.905 ±

0.011
0.832 ±

0.023
0.926 ±

0.010
0.849 ±

0.021
0.648 ±

0.035
17:41

4 0.864 ±

0.030
0.901 ±

0.020
0.864 ±

0.030
0.925 ±

0.020
0.873 ±

0.027
0.695 ±
0.058

11:52

LC

(4.1)

2 0.891 ±
0.019

0.929 ±
0.008

0.891 ±
0.019

0.937 ±
0.008

0.902 ±
0.016

0.684 ±

0.037
57:31

3 0.873 ±

0.005
0.915 ±

0.006
0.873 ±

0.005
0.937 ±

0.006
0.883 ±

0.005
0.702 ±
0.014

22:41

4 0.840 ±

0.022
0.895 ±

0.013
0.840 ±

0.022
0.930 ±

0.014
0.853 ±

0.020
0.664 ±

0.037
9:25

TC

(4.1)

2 0.926 ±
0.013

0.942 ±
0.007

0.926 ±
0.013

0.944 ±
0.009

0.930 ±
0.011

0.755 ±
0.033

64:58

3 0.876 ±

0.021
0.921 ±

0.008
0.876 ±

0.021
0.924 ±

0.008
0.889 ±

0.017
0.649 ±

0.038
15:24

4 0.849 ±

0.000
0.911 ±

0.000
0.849 ±

0.000
0.934 ±

0.000
0.863 ±

0.000
0.667 ±

0.000
9:59

93



Table 4.4: Results of Basic CNN architecture M2 with STFT

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.678 ±

0.016
0.893 ±
0.008

0.678 ±

0.0176
0.860 ±

0.007
0.742 ±

0.011
0.407 ±

0.014
68.11

3 0.799 ±
0.030

0.883 ±

0.010
0.799 ±
0.030

0.897 ±

0.012
0.819 ±
0.026

0.585 ±

0.038
18:41

4 0.781 ±

0.030
0.877 ±

0.005
0.781 ±

0.030
0.905 ±
0.010

0.803 ±

0.025
0.588 ±
0.026

11:22

LC

(4.1)

2 0.719 ±

0.023
0.889 ±

0.009
0.719 ±

0.023
0.864 ±

0.017
0.762 ±

0.019
0.452 ±

0.035
127:59

3 0.815 ±
0.025

0.902 ±
0.006

0.815 ±
0.025

0.921 ±
0.008

0.834 ±
0.021

0.633 ±
0.030

21:02

4 0.746 ±

0.036
0.865 ±

0.010
0.746 ±

0.036
0.894 ±

0.013
0.770 ±

0.031
0.550 ±

0.032
8:55

TC

(4.1)

2 0.781 ±

0.010
0.899 ±

0.002
0.781 ±

0.010
0.894 ±

0.003
0.813 ±

0.008
0.516 ±

0.008
57:19

3 0.831 ±
0.037

0.911 ±
0.013

0.831 ±
0.037

0.914 ±

0.019
0.854 ±
0.030

0.586 ±

0.060
14:36

4 0.816 ±

0.005
0.905 ±

0.004
0.816 ±

0.005
0.927 ±
0.003

0.836 ±

0.004
0.629 ±
0.004

8:19
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Table 4.5: Results of Basic CNN architecture M3 with DWT

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.939 ±
0.002

0.948 ±
0.004

0.939 ±
0.002

0.947 ±

0.009
0.942 ±
0.002

0.785 ±

0.013
67.44

3 0.922 ±

0.031
0.940 ±

0.019
0.922 ±

0.031
0.949 ±
0.017

0.926 ±

0.028
0.796 ±
0.068

22:39

4 0.906 ±

0.022
0.923 ±

0.018
0.906 ±

0.022
0.941 ±

0.017
0.910 ±

0.021
0.766 ±

0.050
13:48

LC

(4.1)

2 0.923 ±

0.005
0.941 ±

0.001
0.923 ±

0.005
0.944 ±

0.006
0.928 ±

0.004
0.748 ±

0.003
127:32

3 0.940 ±
0.010

0.951 ±
0.006

0.940 ±
0.010

0.963 ±
0.003

0.943 ±
0.009

0.834 ±
0.020

26:43

4 0.930 ±

0.020
0.940 ±

0.015
0.930 ±

0.020
0.958 ±

0.014
0.932 ±

0.019
0.817 ±

0.044
16:47

TC

(4.1)

2 0.946 ±
0.015

0.954 ±
0.010

0.946 ±
0.015

0.952 ±

0.010
0.949 ±
0.013

0.811 ±

0.042
55:17

3 0.938 ±

0.019
0.949 ±

0.012
0.938 ±

0.019
0.952 ±
0.008

0.941 ±

0.017
0.784 ±

0.048
22:12

4 0.943 ±

0.008
0.953 ±

0.005
0.943 ±

0.008
0.971 ±

0.003
0.945 ±

0.008
0.839 ±
0.019

12:39
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Table 4.6: Results of Basic CNN architecture M4 with PWVD

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.831 ±

0.023
0.906 ±

0.006
0.831 ±

0.023
0.902 ±

0.011
0.852 ±

0.018
0.571 ±

0.035
74.00

3 0.865 ±
0.015

0.907 ±
0.009

0.865 ±
0.015

0.930 ±
0.010

0.876 ±
0.014

0.681 ±
0.031

32:34

4 0.825 ±

0.024
0.888 ±

0.010
0.825 ±

0.024
0.919 ±

0.010
0.839 ±

0.021
0.641 ±

0.035
17:46

LC

(4.1)

2 0.811 ±

0.011
0.901 ±

0.005
0.811 ±

0.011
0.897 ±

0.009
0.836 ±

0.009
0.545 ±

0.021
131:00

3 0.871 ±
0.020

0.912 ±
0.005

0.871 ±
0.020

0.930 ±
0.005

0.881 ±
0.016

0.695 ±
0.026

28:58

4 0.831 ±

0.025
0.895 ±

0.010
0.831 ±

0.025
0.923 ±

0.013
0.846 ±

0.021
0.657 ±

0.032
16:27

TC

(4.1)

2 0.805 ±

0.011
0.900 ±

0.010
0.805 ±

0.011
0.887 ±

0.017
0.832 ±

0.010
0.531 ±

0.036
68:28

3 0.842 ±

0.033
0.908 ±

0.009
0.842 ±

0.033
0.917 ±

0.013
0.861 ±

0.026
0.590 ±

0.052
29:24

4 0.864 ±
0.025

0.916 ±
0.010

0.864 ±
0.025

0.946 ±
0.012

0.877 ±
0.021

0.687 ±
0.040

15:50
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Table 4.7: Results of Bidirectional LSTM architecture M5 with Raw Signals

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.797 ±
0.106

0.896 ±

0.027
0.797 ±
0.106

0.917 ±

0.048
0.827 ±
0.082

0.527 ±

0.149
302.21

3 0.784 ±

0.124
0.903 ±
0.018

0.784 ±

0.124
0.939 ±
0.053

0.817 ±

0.092
0.597 ±
0.152

149:31

4 0.695 ±

0.178
0.832 ±

0.053
0.695 ±

0.178
0.774 ±

0.074
0.715 ±

0.155
0.441 ±

0.168
73:22

LC

(4.1)

2 0.705 ±

0.106
0.877 ±

0.012
0.705 ±

0.106
0.836 ±

0.034
0.747 ±

0.088
0.418 ±

0.091
121:56

3 0.894 ±
0.021

0.929 ±
0.006

0.894 ±
0.021

0.933 ±
0.007

0.904 ±
0.016

0.687 ±
0.039

96.09

4 0.360 ±

0.380
0.315 ±

0.432
0.360 ±

0.380
0.806 ±

0.134
0.312 ±

0.419
0.246 ±

0.351
52:05

TC

(4.1)

2 0.715 ±

0.270
0.880 ±

0.071
0.715 ±

0.270
0.800 ±

0.120
0.744 ±

0.239
0.478 ±

0.314
199:10

3 0.778 ±
0.142

0.903 ±
0.032

0.778 ±
0.142

0.930 ±
0.060

0.814 ±
0.111

0.531 ±
0.181

105:22

4 0.441 ±

0.312
0.517 ±

0.372
0.441 ±

0.312
0.728 ±

0.059
0.411 ±

0.305
0.111 ±

0.157
74:20
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Table 4.8: Results of Bidirectional LSTM architecture M6 with Extracted
features

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.846 ±
0.034

0.912 ±
0.015

0.846 ±
0.034

0.902 ±

0.023
0.865 ±
0.028

0.600 ±

0.067
179.36

3 0.815 ±

0.020
0.896 ±

0.007
0.815 ±

0.020
0.923 ±
0.009

0.834 ±

0.017
0.620 ±
0.026

91:14

4 0.803 ±

0.033
0.875 ±

0.010
0.803 ±

0.033
0.893 ±

0.009
0.821 ±

0.028
0.597 ±

0.040
49:37

LC

(4.1)

2 0.822 ±
0.013

0.907 ±
0.008

0.822 ±
0.013

0.904 ±

0.012
0.845 ±
0.010

0.563 ±

0.025
147:41

3 0.812 ±

0.011
0.897 ±

0.001
0.812 ±

0.011
0.917 ±
0.002

0.832 ±

0.008
0.620 ±
0.011

89:48

4 0.783 ±

0.070
0.859 ±

0.042
0.783 ±

0.070
0.855 ±

0.043
0.801 ±

0.062
0.557 ±

0.122
47:42

TC

(4.1)

2 0.840 ±
0.007

0.907 ±
0.014

0.840 ±
0.007

0.898 ±
0.025

0.859 ±
0.006

0.579 ±
0.039

190:06

3 0.773 ±

0.022
0.900 ±

0.001
0.773 ±

0.022
0.897 ±

0.004
0.807 ±

0.017
0.519 ±

0.019
61:44

4 0.770 ±

0.019
0.888 ±

0.013
0.770 ±

0.019
0.909 ±

0.019
0.797 ±

0.017
0.560 ±

0.035
40:11
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Table 4.9: Results of Stacked Ensemble M7 with Extracted features

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.971 ±

0.007
0.972 ±

0.007
0.971 ±

0.007
0.956 ±

0.012
0.971 ±

0.007
0.885 ±

0.027
200.32

3 0.979 ±
0.002

0.979 ±
0.002

0.979 ±
0.002

0.977 ±
0.005

0.979 ±
0.002

0.934 ±
0.006

157:30

4 0.967 ±

0.005
0.967 ±

0.007
0.967 ±

0.005
0.967 ±

0.012
0.967 ±

0.006
0.905 ±

0.018
108:52

LC

(4.1)

2 0.967 ±

0.008
0.968 ±

0.008
0.967 ±

0.008
0.954 ±

0.013
0.967 ±

0.008
0.870 ±

0.032
200:29

3 0.980 ±
0.002

0.980 ±
0.002

0.980 ±
0.002

0.977 ±
0.005

0.980 ±
0.002

0.938 ±
0.006

132:45

4 0.965 ±

0.011
0.965 ±

0.011
0.965 ±

0.011
0.968 ±

0.014
0.965 ±

0.011
0.899 ±

0.032
118:05

TC

(4.1)

2 0.972 ±
0.009

0.973 ±
0.009

0.972 ±
0.009

0.956 ±

0.013
0.972 ±
0.009

0.889 ±

0.036
324:54

3 0.971 ±

0.006
0.971 ±

0.006
0.971 ±

0.006
0.960 ±
0.008

0.971 ±

0.006
0.882 ±

0.024
196:53

4 0.967 ±

0.009
0.971 ±

0.007
0.967 ±

0.009
0.979 ±

0.003
0.968 ±

0.009
0.900 ±
0.026

178:51
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Table 4.10: Results of Average Ensemble M8 with Extracted features

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.979 ±

0.008
0.978 ±

0.009
0.979 ±

0.008
0.958 ±

0.013
0.978 ±

0.009
0.913 ±

0.034
103.09

3 0.980 ±
0.005

0.980 ±
0.005

0.980 ±
0.005

0.976 ±
0.007

0.980 ±
0.005

0.938 ±
0.015

43:36

4 0.967 ±

0.005
0.967 ±

0.006
0.967 ±

0.005
0.967 ±

0.012
0.967 ±

0.006
0.905 ±

0.018
32:09

LC

(4.1)

2 0.973 ±

0.008
0.973 ±

0.008
0.973 ±

0.008
0.956 ±

0.013
0.973 ±

0.008
0.893 ±

0.032
107:14

3 0.978 ±
0.003

0.978 ±
0.002

0.978 ±
0.003

0.976 ±
0.003

0.978 ±
0.003

0.931 ±
0.008

51:31

4 0.969 ±

0.008
0.970 ±

0.008
0.969 ±

0.008
0.969 ±

0.013
0.969 ±

0.008
0.911 ±

0.024
24:04

TC

(4.1)

2 0.983 ±
0.006

0.983 ±
0.006

0.983 ±
0.006

0.960 ±
0.012

0.983 ±
0.006

0.932 ±
0.026

64:56

3 0.975 ±

0.005
0.975 ±

0.005
0.975 ±

0.005
0.962 ±

0.009
0.975 ±

0.005
0.900 ±

0.019
32:55

4 0.976 ±

0.008
0.978 ±

0.007
0.976 ±

0.008
0.983 ±

0.003
0.976 ±

0.008
0.925 ±

0.024
38:40
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Table 4.11: Results of Majority Voting M9 with Extracted features

Data
Type

Window
(s)

Accuracy Precision Recall/
Sensi-
tivity

SpecificityFβ

Score
MCC Runtime

(Min)

AC

(4.1)

2 0.981 ±

0.007
0.980 ±

0.007
0.981 ±

0.007
0.951 ±

0.015
0.980 ±

0.007
0.921 ±

0.029
< 1

3 0.985 ±
0.003

0.985 ±
0.003

0.985 ±
0.003

0.979 ±
0.006

0.985 ±
0.003

0.953 ±
0.010

< 1

4 0.969 ±

0.006
0.969 ±

0.007
0.969 ±

0.006
0.967 ±

0.012
0.969 ±

0.007
0.911 ±

0.019
< 1

LC

(4.1)

2 0.977 ±
0.008

0.977 ±
0.008

0.977 ±
0.008

0.958 ±

0.012
0.977 ±
0.008

0.907 ±

0.032
< 1

3 0.973 ±

0.008
0.975 ±

0.006
0.973 ±

0.008
0.974 ±
0.002

0.973 ±

0.007
0.917 ±
0.020

< 1

4 0.971 ±

0.008
0.972 ±

0.008
0.971 ±

0.008
0.967 ±

0.008
0.971 ±

0.008
0.917 ±

0.023
< 1

TC

(4.1)

2 0.983 ±
0.007

0.983 ±
0.007

0.983 ±
0.007

0.960 ±

0.012
0.983 ±
0.007

0.932 ±
0.030

< 1

3 0.977 ±

0.003
0.977 ±

0.004
0.977 ±

0.003
0.962 ±

0.008
0.976 ±

0.004
0.905 ±

0.015
< 1

4 0.976 ±

0.011
0.978 ±

0.009
0.976 ±

0.011
0.979 ±
0.004

0.976 ±

0.010
0.925 ±

0.032
< 1
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4.6 Discussion

Since we used non-overlapping time windows, smaller window sizes yielded

significantly larger amount of data, which led to better performance in neural

network based architectures. We experimented with widow sizes of 2, 3, 4

seconds. A window size of w seconds means that our model is able to predict

the start of a FOG event w seconds before it happens. We believe that a

window size of 1 would lead to much better detection performance since it

means more training examples for the model. But we did not use a smaller

window size of 1 because it would also decrease the time window by which we

can predict the FOG event. Larger amount of data would also lead to a higher

resource consumption during training.

We also observed that the size to which the features in RPi, STFTi, DWTi,

PWVDi are reshaped also plays a vital role in model performance, with larger

sizes producing better results. Due to resource constraints, we set this size to

be (3, 128, 128). We considered smaller dimensions as well, but they did not

yield better results.

Section 4.5.4 presents the performance of for each model M ∈ M1, .....M9

with signal S ∈ τC (for each of Ankle(AC), Leg(LC) and Trunk(TC)) with

Window Size w ∈ 2, 3, 4(seconds). The tables report multiple evaluation

metric scores including Accuracy, Precision, Recall/Sensitivity, Specificity, Fβ

score, MCC score and the Runtime taken for the model to train in minutes.

All scores are reported in the range of (0, 1), except MCC score, which is in

the range of (-1, 1). The scores are reported in Mean ± StandardDeviation

format. The best scores for each model using the same modality of data but

with different window sizes were reported in bold font.

From the metric scores presented in Table 4.3, it can be seen that Basic

CNNM1 trained on RP generated from signals performs reasonably well across

all metric scores. In most cases the smallest window size of 2 seconds yielded

the best scores, but there was no drastic decrease in performance when we

increased the window sizes. Comparing sensor locations, data collected from

Trunk sensor (TC) performed the best, followed closely by data collected from
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Ankle (AC) and Leg (LC).

Table 4.4 presents the scores for Basic CNN M2 trained on STFT plots

generated from the signals. For STFT. window size of 3 seemed to provide

comparatively better results, although the scores were poor when compared to

the scores from RP. The data collected from Trunk sensor (TC) provided best

results when using STFT, followed closely by data collected from Leg (LC)

and Ankle (AC).

The metric scores of Basic CNN M3 using DWT are reported in Table 4.5.

M3 achieved the highest accuracy among our models using visual features (RP,

STFT, DWT, PWVD). The scores for varying window sizes were very similar,

with a window size of 2 seconds providing the best scores for Ankle (AC) and

Trunk (TC) sensor data. For data collected from the Leg (LC), a window

size of 3 generated the best scores. Comparing the scores of the three sensors

locations, it was noted that Trunk (TC) provided the best scores, followed very

close by Leg (LC) and Ankle (AC).

Table 4.6 notes the metric scores of Basic CNNM4 using PWVD. A window

size of 3 seconds provided the best scores for Ankle (AC) and Leg (LC) sensor

data. For data collected from the Trunk (TC), a window size of 4 generated

the best scores. Comparing the best scores for each sensor location, the scores

for all three locations were pretty similar with there being no clear advantages.

Table 4.7 contains the scores of Bidirectional LSTM with extracted raw

signal windows. The overall performance is not as as good as using visual

features. The performance do not experience drastic changes when the window

size increases from 2 to 3 seconds, but we see significant drop in performance

as the window size changes from 3 to 4 seconds. A window size of 3 seconds

provided comparatively better scores for Trunk (TC) and Leg (LC) sensor data.

For data collected from the Ankle (AC), a window size of 2 generated the best

scores. Data from Leg (LC) sensor provided the best overall scores when using

bidirectional LSTM and raw signals.

The scores of Bidirectional LSTM with extracted features are presented

in Table 4.8. The performance is slightly better than using raw signals. The

performance does not experience drastic changes with changes in the window
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size. A window size of 2 seconds provided comparatively better scores for

Ankle (AC), Trunk (TC) and Leg (LC) sensor data. Data from Ankle (AC)

sensor provided the best overall score. The results when using Trunk (TC)

sensor data slightly outperformed the scores when using Leg (LC) sensor data.

The scores from LSTMs (M5 and M6) were moderate, but the issue was the

very long runtime. The time for training LSTMs on raw signals was almost

5 times and features was almost 3 times of that for training the CNNs on

visual features. All three of our ensemble architectures M7, M8 and M9,

improved the scores of individual models. The majority voting model M9 had

the best performance across all evaluation criteria without any extra training

or parameter tuning. The scores were high for all evaluation criteria. The

reported runtimes for ensemble models do not include the training time needed

to prepare the constituent models.

Table 4.9 contains the scores of Ensemble architecture M7 with all features.

The overall performance is vastly superior to using individual features. The

performance is not affected much when the window size changes. A window

size of 3 seconds generated the best scores for Ankle (AC) and Leg (LC) sensor

data and a window size of 2 generated the best scores for data collected from

the Trunk (TC). Data from Leg (LC) sensor provided the best overall scores.

We can see that for M7, the runtimes were very large with all window sizes,

which is a disadvantage considering this does not include the training time

for individual models that make up the ensemble architecture. Adding the

runtimes for constituent models, a significant amount of time was needed to

train this model architecture. Training time is significant in the sense that

when we incorporate more data modalities and increase data volume this will

lead to that much more time consumption.

Table 4.10 reports the scores of Ensemble architecture M8 with all fea-

tures. This architecture is similar to M7, except it adds a Average layer and

calculates the average of the prediction of all constituent models, whereas M7

concatenates the predictions and uses 2 Dense layers to reshape the output.

The overall performance is superior to using individual features and compara-

ble to the performance of M7. The performance does not change significantly
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when the window size changes. For this model, window size of 3 seconds gener-

ated the best scores using Ankle (AC) and Leg (LC) sensor data and a window

size of 2 generated the best scores for data collected from the Trunk (TC).

Data from Trunk (TC) sensor provided the best overall scores. The runtimes

for m8 were not that large when compared to M7, but the performances were

comparable. Thus, adding the runtimes for constituent models, M8 was able

to produce similar results while needing a lot less time for training.

Table 4.11 presents the scores of Majority voting architecture M9 with all

features. This architecture is different from M7 and M8, there is no training

for this method. The overall performance is similar to the performance of

M7 and M8. The performance is not majorly affected when the window size

changes. For this model, window size of 3 seconds generated the best scores

using Ankle (AC) sensor data and a window size of 2 generated the best scores

for data collected from the Trunk (TC) and Leg (LC). Data from Ankle (AC)

sensor provided the best overall scores, very closely followed by Trunk (TC)

and Leg (LC). However the main strength of this model lies with its runtime.

As this model only outputs the majority result of its constituent models, there

is no training time, it can generate the output in milliseconds. It can produce

similar scores to M7 and M8 while not needing any extra training time.

The results were also compared with the performance of some state-of-

the-art models on the same dataset, as shown in Table 4.2. Mazilu et al [73]

compared feature learning approaches based on time and statistical domain

with unsupervised learning approaches using principle component analysis for

both FOG detection and prediction. Their average sensitivity, specificity and

Fβ score are presented for only the FOG class with both supervised and unsu-

pervised approaches. Our proposed approach in this work outperforms their

results for the FOG class. Moreover, the result they presented is only for the

FOG class, their method had lower scores when identifying the PreFOG class.

Gokul et al [33] presented a number of Machine Learning based techniques

to detect FOG events and evaluate their performances with sensitivity and

specificity, which are also presented in Table 4.2. They also experimented with

multiple window sizes and achieved the best results with a window length of 4
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seconds. Although their performance is higher than our proposed model, they

solved a binary classification problem of only identifying the FOG event. Their

work does not have a prediction component. They achieved the best results

with Random Forest classifier, with a sensitivity score of 98.91 and a specificity

score of 99.44. Our ensemble architecture results were very close to their scores,

while being able to also predict the onset of a FOG event. However, compared

to Gokul et al [33], one shortcoming of our method would be the large size of

the trained models, which might pose a problem in deploying the models to

wearable sensors.

4.7 Application of Trained Model on Data col-

lected from APDM� sensors

In coordination with A. T. Still University, 14 PD patients took part in an ex-

periment where their gait was monitored and various sensor data was recorded

using APDM� wearable sensors. Using the existing models trained on Daph-

net [11] data, I attempted to monitor the onset of FOG on this data.

4.7.1 Data collection and Processing

The data was provided by the Arizona School of Health Sciences, A.T. Still

University. The study was supervised, with the prior knowledge that 7 out

of the 14 patients being Freezers, identified as a score 0 on the New Freez-

ing of Gait Questionnaire (NFOGQ) and the rest being non-Freezers, with a

score of zero on the NFOGQ [82]. There were 2 different configurations of

the Six-Minute Walk Test (6MWT), a common clinical assessment of walking

endurance [129]: 50 and 100 feet. For both configurations, the duration of the

study was fixed at 6 minutes. Each patient had to walk for 6 minutes contin-

uously with a 180 degree turn after either a 50 or 100 feet walk respectively.

The number of turns was less for the 100 feet configuration. For each of the 14

patients, 2 datasets were generated with one for each configuration. The data

was cleaned and missing values were filled with zeros. Twenty-eight data files

were generated with 14 containing Freezer data and 14 containing non-Freezer
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data.

4.7.1.1 Sensor types and locations

The sensors were placed in 6 locations on a patients body. The location of the

sensors can be seen in Figure 4.11.

Figure 4.11: Sensor placement for data collection

The locations of the sensors are
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� Left Foot (Ankle)

� Right Foot (Ankle)

� Left Wrist

� Right Wrist

� Sternum

� Lumber (Trunk)

For each location, there were 5 sensors recording data simultaneously. The

sensors are as follows.

� Accelerometer

� Magnetometer

� Gyroscope

� Barometer

� Temperature

The recorded data was processed using Moveo Explorer� and Mobility Lab�.
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4.7.2 Workflow and Challenges

Figure 4.12: Workflow of monitoring FOG using models trained on Daphnet
data

Figure 4.12 depicts our workflow for this part of the experiment. In order

to make the data consistent across both Moveo Explorer and Mobility Lab,

MinMax normalization was used. Since our purpose was only to monitor

FOG, we discarded all the data where the patient did not experience FOG.

That discarded data from 7 out of the 14 total patients.
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As there were multiple sensors in multiple locations, finding the appropriate

sensors for our experiment was an important step. Since there are multiple

sensors producing a large amount of data, processing all of it it can be both

time and resource consuming. Furthermore, it could impact the performance

negatively. Identifying the optimum combination of sensors that were the

most useful in detecting FOG posed a challenge. It was decided that we

would only consider sensors locations that overlap with Daphnet [11] sensor

locations, i.e. Left and Right foot (Ankle) and Lumber (Trunk). And although

there were data from a varying number of sensors as well as derived kinematic

information like velocities and displacements were available, we only considered

accelerations. This was done because our training dataset, Daphnet [11] only

provided acceleration data, so it was not possible for our existing architecture

to use data from other sensors like Magnetometer, Gyroscope or Barometer.

Our training dataset also did not consist of data from sensors placed on the

wrist or sternum area of the patient, so signals from those areas would not

be useful in this case. After that the signal from all three axis (X, Y, Z) were

combined using Equation 4.2.

The sampling frequency for the data was 128 Hz, which is double the

sampling frequency of Daphnet [11]. Since our models were trained on a

sampling frequency of 64 Hz, the data needed to be down sampled from 128

Hz to 64 Hz in order for the trained models to be effective.

Although the data was labeled, the labels were for the whole time series. So

one continuous 6 minute time series had only one label indicating whether FOG

occurred in that series or not. The exact occurrence of FOG was unmarked.

Thus even if we did apply our models trained on Daphnet [11], where the exact

time instance of FOG was marked on this data, it would be difficult to verify

the accuracy of the results. Figure 4.13 shows some accelerometer signals from

both Freezer and non Freezer data. No significant difference can be visually

defined between the two, because the FOG episodes occur in between regular

walking. So even the majority of Freezer data is basically similar to the non

Freezer data, with some FOG episodes in between.
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Figure 4.13: Comparison of Freezer vs Non Freezer Accelerometer signals

(a) Accelerometer signal representing Freezer data

(b) Accelerometer signal representing non Freezer data

For detecting even a very small occurrence of FOG, a window size of 2

seconds was selected. After selecting the appropriate sensors and downsam-
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pling the data, non overlapping moving windows of 2 seconds were extracted

from the source signal. Then the relevant features were generated from the

windows. We only chose to use visual features RP, STFT ,DWT, PWVD,

since they showed superior performance and were less time consuming during

the previous part of our experiment.

After generating the features, the models M1, M2, M3 and M4 trained on

Daphnet [11] data were used to analyze the data. There were three instances

of trained models. For data from Left and Right foot, the instances of models

trained on data from Ankle sensor of Daphnet was used, and for data from

Lumbar, models trained on data from Trunk sensor of Daphnet was used. Our

training dataset Daphnet does not specify whether the sensors were located at

the left of right side of the body. So Left and Right foot data was used with

models trained on Ankle sensor. Finally the results for each of the models

were passed through a majority voting model, providing us with a result.
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Figure 4.14: Comparison of Freezer vs Non Freezer Accelerometer signals, with
detected FOG, PreFOG and Non FOG regions highlighted

(a) Accelerometer signal representing Non Freezer data

(b) Accelerometer signal representing Freezer data with detected Pre FOG(Yellow)
and FOG(Red) region

Figure 4.14 shows a small 4 windows chunk of the signal from Accelerometer

signal from right Ankle with a window size of 2 seconds for comparison. Since

our data was downsampled, this signal has a sampling rate of 64 Hz instead

of 128 Hz. The first figure shows a part of the signal that does not contain

any FOG or PreFOG according to our model. When we compare it with

the marked PreFOG and FOG region in the second figure, we can visually

identify some differences. For the PreFOG region, all the peak heights are

smaller than that of NonFOG signal. The FOG region has higher peaks than

that of PreFOG, but the average peak height still appear to be lower than
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that of Non FOG signals. These patterns appear to be consistent with our

observations from Daphnet Data presented in Figure 4.3.

4.8 Conclusions

In this work, the performance of multiple time frequency representation tech-

niques were compared in detecting and predicting FOG using tri axial ac-

celerometer sensor data from the publicly available Daphnet [11] dataset.

Three ensemble neural network architectures comprised of multiple modali-

ties of data were proposed and their performance was analyzed. It was estab-

lished that ensemble network architectures significantly improve the perfor-

mance over individual models. I applied some of the trained models to mon-

itor the progression of FOG from accelerometer data captured using APDM

wearable sensors. In future works, I would like to integrate more data modal-

ities, improve the model selection process for creating ensemble architectures,

reduce size and complexity of the models and finally apply the resultant mod-

els to more real-world data. More importantly, I will transfer our models in

identifying the PreFOG class i.e., predicting FOG events, to use real-world

data from wearable sensors, in order to test the potential of preventing falls

by initiating RAS even before the start of the event. One of the drawbacks

of proposed system was that the performance was not verified when applied

on collected data due to lack of proper annotations. Thus, future goals also

include properly testing the performance of this method with collected data

using wearable sensors and develop it further so that the system is capable of

administering RAS upon prediction of FOG.
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Chapter 5

Conclusion And Future
Directions

In this work, automatic CAD based systems are proposed for the diagno-

sis and monitoring of PD. Multiple contributions were made using 2 kinds

of data, namely Neuroimaging Data (MRI) and motion data captured using

accelerometer sensors.

For the first part, a non-invasive method for PD detection is proposed using

T1-weighted MRI scans of the human brain. The proposed solution is trans-

fer learning based, using models trained on unrelated ImageNet [20] dataset,

and does not require a large number of training data. Models designed for

the ILSVRC were used for this problem, both individually and in multiple

ensemble structures. It was discovered that instead of using the Whole Brain

scans, extracting the GM and WM yields better performance. Multiple eval-

uation criteria was used to properly validate the performance of the proposed

solution.

Occlusion analysis was also performed on models that achieved notable

performance in this task, to identify regions of interest from the extracted GM

and WM scans. Since the system is fully automated and does not require

human supervision, it can play a vital role in remove human errors and biases

in PD detection as well as reduce detection time and save resources. For

future works, the relevant areas identified during occlusion analysis need to be

focused on. Focusing on a small region of the brain instead of the whole brain

scan would reduce the volume of the data needed to be processed, lowering
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the usage of both time and hardware resources.

In the second part of the thesis, the performance of various time frequency

representation techniques to predict and detect FOG was analyzed. 2 NN

based architectures were proposed and 3 ensemble architectures were designed

combining various data modalities with the proposed NN architectures. The

performance of the models were evaluated on the publicly available Daph-

net [11] dataset. The trained models were also used to monitor the progression

of FOG from a dataset collected by A. T. Still University. Detecting the onset

of FOG can play a vital role in helping the patients lead a healthy lifestyle.

Early detection can help in starting RAS and helping patients resume normal

gait.

There are multiple possibilities for future research. For both PD detection

and FOG monitoring, improving the model performance is vital. Further-

more, deploying the proposed systems to be used in real world scenarios and

evaluating their performance remains a challenge.
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[114] Á. Sánchez-Ferro, M. Elshehabi, C. Godinho, et al., “New methods
for the assessment of parkinson’s disease (2005 to 2015): A systematic
review,” Movement Disorders, vol. 31, no. 9, pp. 1283–1292, 2016. doi:
10.1002/mds.26723. 7

[115] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2019. arXiv: 1801.
04381 [cs.CV]. 30, 54

[116] G. Sateesh Babu, S. Suresh, and B. S. Mahanand, “A novel pbl-mcrbfn-
rfe approach for identification of critical brain regions responsible for
parkinson’s disease,” Expert Systems with Applications, vol. 41, no. 2,
pp. 478–488, 2014. doi: 10.1016/j.eswa.2013.07.073. 11, 36

[117] E. Sazonov, Wearable sensors: fundamentals, implementation and ap-
plications. Academic Press, an imprint of Elsevier, 2021. 6

127

https://doi.org/10.21533/scjournal.v2i1.44
https://doi.org/10.21533/scjournal.v2i1.44
https://doi.org/10.1016/j.ultras.2012.04.005
https://doi.org/10.1016/j.jneumeth.2013.11.016
https://doi.org/10.1016/j.patrec.2017.05.009
https://doi.org/10.1016/j.patrec.2017.05.009
https://doi.org/https://doi.org/10.1016/j.sigpro.2015.09.029
https://doi.org/https://doi.org/10.1016/j.sigpro.2015.09.029
https://www.sciencedirect.com/science/article/pii/S016516841500331X
https://www.sciencedirect.com/science/article/pii/S016516841500331X
https://doi.org/10.3390/electronics8020119
https://www.mdpi.com/2079-9292/8/2/119
https://www.mdpi.com/2079-9292/8/2/119
https://doi.org/10.1002/mds.26723
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.1016/j.eswa.2013.07.073


[118] J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. Hausdorff,
and N. Giladi, “Characterization of freezing of gait subtypes and the
response of each to levodopa in parkinson’s disease,” European Journal
of Neurology, vol. 10, no. 4, pp. 391–398, 2003. doi: 10.1046/j.1468-
1331.2003.00611.x. 5, 6

[119] Y. S. Shin and J.-J. Jeon, “Pseudo wigner–ville time-frequency distribu-
tion and its application to machinery condition monitoring,” Shock and
Vibration, vol. 1, no. 1, pp. 65–76, 1993. doi: 10.1155/1993/372086. 84

[120] E. A. Shipton, “Movement disorders and neuromodulation,” Neurology
Research International, vol. 2012, pp. 1–8, 2012. doi: 10.1155/2012/
309431. 1

[121] L. Sigcha, N. Costa, I. Pavón, et al., “Deep learning approaches for
detecting freezing of gait in parkinson’s disease patients through on-
body acceleration sensors,” Sensors, vol. 20, no. 7, p. 1895, Mar. 2020.
doi: 10.3390/s20071895. [Online]. Available: https://doi.org/10.
3390/s20071895. 18

[122] A. L. Silva de Lima, L. J. Evers, T. Hahn, et al., “Freezing of gait and
fall detection in parkinson’s disease using wearable sensors: A system-
atic review,” Journal of Neurology, vol. 264, no. 8, pp. 1642–1654, 2017.
doi: 10.1007/s00415-017-8424-0. 5

[123] P. J. Silvia Mangia, “Magnetic resonance imaging (mri) in parkin-
son’s disease,” Journal of Alzheimer’s Disease &; Parkinsonism, vol. 03,
no. 03, 2013. doi: 10.4172/2161-0460.s1-001. 2

[124] K. Simonyan and A. Zisserman, Very deep convolutional networks for
large-scale image recognition, 2015. arXiv: 1409.1556 [cs.CV]. 30, 53

[125] P. Sollich and A. Krogh, “Learning with ensembles: How overfitting can
be useful.,” vol. 8, Jan. 1995, pp. 190–196. 8

[126] S. Soltaninejad, I. Cheng, and A. Basu, “Kin-FOG: Automatic simu-
lated freezing of gait (FOG) assessment system for parkinson’s disease,”
Sensors, vol. 19, no. 10, p. 2416, May 2019. doi: 10.3390/s19102416.
[Online]. Available: https://doi.org/10.3390/s19102416. 14, 16

[127] Spm software - statistical parametric mapping. [Online]. Available: https:
//www.fil.ion.ucl.ac.uk/spm/software/ (visited on 06/18/2021). 24

[128] Statistics. [Online]. Available: https://www.parkinson.org/Understanding-
Parkinsons/Statistics. 2

[129] T. Steffen and M. Seney, “Test-retest reliability and minimal detectable
change on balance and ambulation tests, the 36-item short-form health
survey, and the unified parkinson disease rating scale in people with
parkinsonism,” Physical Therapy, vol. 88, no. 6, pp. 733–746, 2008.
doi: 10.2522/ptj.20070214. 106

128

https://doi.org/10.1046/j.1468-1331.2003.00611.x
https://doi.org/10.1046/j.1468-1331.2003.00611.x
https://doi.org/10.1155/1993/372086
https://doi.org/10.1155/2012/309431
https://doi.org/10.1155/2012/309431
https://doi.org/10.3390/s20071895
https://doi.org/10.3390/s20071895
https://doi.org/10.3390/s20071895
https://doi.org/10.1007/s00415-017-8424-0
https://doi.org/10.4172/2161-0460.s1-001
https://arxiv.org/abs/1409.1556
https://doi.org/10.3390/s19102416
https://doi.org/10.3390/s19102416
https://www.fil.ion.ucl.ac.uk/spm/software/
https://www.fil.ion.ucl.ac.uk/spm/software/
https://www.parkinson.org/Understanding-Parkinsons/Statistics
https://www.parkinson.org/Understanding-Parkinsons/Statistics
https://doi.org/10.2522/ptj.20070214


[130] Structural brain mapping group. [Online]. Available: http : / / www .

neuro.uni-jena.de/ (visited on 06/18/2021). 24

[131] S. Sveinbjornsdottir, “The clinical symptoms of parkinson’s disease,”
Journal of Neurochemistry, vol. 139, pp. 318–324, 2016. doi: 10.1111/
jnc.13691. 3, 6

[132] C. M. Tanner and S. M. Goldman, “Epidemiology of parkinson’s dis-
ease,” Neurologic clinics, vol. 14, no. 2, p. 317, 1996. 2
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