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Abstract

This thesis uses an optimal statistical method for averaging global surface tem-
peratures. The method minimizes the standard error budget resulting from statisti-
cal sampling errors due to station gaps and random data errors due to instrumental
and human factors. Empirical orthogonal functions are used to represent the in-
homogeneous covariance structure of the temperature field, and are computed from
the following datasets: the Jones’ land and United Kingdom Meteorological Office
(UKMO)'s ocean 5°x3° data (1949-1998), the National Center for Environmental
Prediction/National Center for Atmospheric Research Reanalysis data (1949-1998).
the Climate Prediction Center’s optimally interpolated sea surface temperature data
(1982-1999), and the National Climatic Data Center’s blended data from Global His-
torical Climatology Network and Special Sensor Microwave Imager (1992-1999). The
Jones’ box-data (1856-1998) over the land and UKMO’s box-data (1856-1998) over
the ocean are used as the observations. which are optimally averaged by our optimal
averaging method. Using this method, one can generate not only the global average
surface temperature of the monthly mean, annual mean, or decadal mean. but also an
estimate of the error in the averaging process. The errors resulting from our method
are only about 30% of those in the earlier assessments of the same quantities. The
behavior of global averages is dominated by the sea surface temperature, whose spa-
tial average has smaller standard errors compared with land data. Global warming
trends during 1920-1944 and 1978-1998 are obvious. The standard error decreases
from 0.065°C prior to 1900 to 0.03°C in recent time. These errors mainly result from

random errors in the observations rather than sampling errors due to station gaps.
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Chapter 1

Introduction

Because of the overwhelming concern about climate change, an accurate estimation of
global average surface temperature for past climate is of great importance. According
to [IPCC 1995 report. the observed decadal temperature changes are about 0.3-0.6°C
since the mid-19th century, indicating that care must be taken to reduce the uncer-
tainty associated with this estimation. The uncertainty includes mainly the random
observational data errors and sampling errors of the temperature anomaly. Without
systematic estimation. the combination of the two errors was assessed to be around
0.15°C. which is about 25-50% of the warming amplitude since the mid-19th century
(IPCC. 1995).

Up to now. there is less than 300 years of instrumental data. The globally well-
covered data have only about 150 vears history. Climate from before the thermometer
era must be deduced from paleoclimatic proxy records. These include tree-rings. pollen
series, faunal and floral abundances in deep sea cores, isotope analysis from coral and
ice cores. and diaries and other documentary evidence. Cook et al. (1994) used two

alternative spatial regression methods to reconstruct climate from tree-rings: orthog-



onal spatial regression and canonical regression. The two methods have a common
foundation in least-squares theory. The results showed that there was little difference
between orthogonal spatial regression and canonical regression with regard to recon-
structing climate from tree-rings. Each method was equally good (or deficient) in
its ability to reconstruct temperature using different tree-ring data bases. This strong
similarity of results must be due to the fact that each method is based on least-squares
theory. The failure of each method to reconstruct some regions of each climatic grid
shows that these sophisticated statistical procedures cannot extract a climatic signal
from tree-rings when it is very weak or effectively non-existent in the data.

Because the instrumental data distribution cannot cover every point in the world.
instrumental data has a problem of sampling gaps. Whether can we use less data in
the early period to get an accurate global average temperature? Many methods have
been developed on studying the incomplete spatial sampling.

QOort (1978) used the output from a Geophysical Fluid Dynamics Laboratory
(GFDL) global general circulation model (GCM) to test the adequacy of an 855-station
rawinsonde network for global circulation studies. He compared globally averaged tem-
perature based on numerical output from the model at its full spatial resolution with
similar temperature values determined only at grid points near actual rawinsonde loca-
tions. He pointed out that the errors were mainly coming from the spatial gaps. Tren-
berth and Olson (1991) used nine years of global European Centre for Medium-Range
Weather Forecasts (ECMWF') analyses to test the representativeness of a 63-station
rawinsonde network. Like the Oort study, they determined differences between glob-
ally averaged anomalies sampled at all available grid points of the ECMWTF analyses
and those sampled at only the 63 grid points nearest to the stations. They found

the root-mean-square difference (RMSD) averaged over all months and seasons to be



0.18°C and 0.15°C, respectively.

Jones et al. (1986a.b) used the “frozen grid” approach. Their calculation of the
hemispheric average temperature for all years used only those grid points that operate
80% of the time during a particular decade. to estimate the effects of incomplete
spatial sampling. They compared annual and hemispherically averaged temperature
anomalies. determined using either all of the observed grid points available at a given
time or frozen grids, that is, grids made up of only the observed grid points available
during an earlier period. For the frozen grids available after the mid-19th century. the
differences were typically a few tenths of a degree centigrade for both hemispheres.
Hansen and Lebedeff (1987) made a comparison somewhat similar to that of Jones et
al. (1986a,b) to test the effects of poor spatial sampling, but they used output from
a 100-year GCM run, rather than observed data. In their comparison, it is important
that the models exhibit spatial variations that are similar to those of the atmosphere.
Hansen et al. (1987) showed that available comparisons indicate that the temperature
variability on large spatial scales in their model is comparable in magnitude to the
variability in the real world. They compared globally averaged temperature anomalies
based on the “true” model values with those determined from only those grid points
that were near available stations during each decade. For annual averages, they found
an RMSD of 0.07°C for station locations available in the 1880s and 0.02°C for those
available in the 1960s.

Madden et al. (1993) used model data to study the effect of imperfect spatial and
temporal sampling on estimates of the global mean temperature. Two methods used in
his study were the simple statistical model and the Monte Carlo method. The simple
model method shows that when a single adjustable parameter is suitably chosen. a

simple statistical model based on the theory for a randomly sampled finite population



can give values reasonably close to the empirical estimates. The RMSD between
perfectly and imperfectly spatially sampled temperatures varied from 0.224°C before
the turn of the century to 0.045°C after 1950. The Monte Carlo method is based on the
sampling of synthesized maps that have the same spatial spectrum and are reasonably
close to the empirical ones. He also pointed out that if there are reasonable estimates of
the spatial variance of the number of independent estimates in the global distribution
of actual surface temperature data. or, alternatively, their spatial spectrum. one might
be able to make first-order estimates of the spatial sampling errors. The only thing
one needs is the temporal variance of the temperature to make best- or worst-case
scenario estimates of the error due to imperfect temporal sampling.

In order to show how many stations would be required to reasonably estimate the
global average temperature, Jones (1994) analyzed the station monthly mean air tem-
perature series, with over 1000 more stations than previously used and employing a
3° x 3° box resolution with 1961-1990 climatology. Even if he had put 1088 addi-
tional stations. the hemispheric-mean temperature series would have achieved similar
results with fewer stations. This result confirms the robustness of hemispheric-mean
temperature with fewer stations. Jones et al. (1997) also made a systematic study
of the standard errors and found that the annual errors on an interannual timescale
decreases from 0.091°C prior to 1900 to 0.059°C since 1951. Thus. for the standard
error calculation, increasing the density of stations over land areas and the number
of measurements per month for ocean squares will reduce the error. The substantial
uncertainty in the assessment undermines the significance claim of global warming. It
gives a high noise level in the climate change signal and hence affects the detectability
of global warming.

Several methods are introduced in this work to reduce standard error estimation



due to imperfect sampling and instrumental errors. The question is which method
is the best for estimating global temperature variation. The optimal averaging (OA)
method used here belongs to the category of objective analysis first invented in the for-
mer Soviet Union (Kagan. 1979 (English edition 1997), Vinnikov. 1990). The method
uses a covariance model to achieve one spatial average of a field. If the spatial covari-
ance structure of the temperature is known, the OA should be a closer estimate to the
true mean than a simple area-weighted average. Additionally, it provides an intrinsic
estimate of the error due to imperfect spatial sampling. In earlier times, covariance
models were typically assumed to be simple and homogeneous. Weber and Madden
(1995) used the correlation decay-length to do the OA to determine the global average
temperature. The method considered the spatial inhomogeneity of the temperature
field. In their study, they divided the globe into six latitudinal bands of 30° width.
The covariance structure based on the correlation model for each band was calculated.
Their results showed that the OA procedures provide a better approximation to the
true mean than a simple area-weighted average.

However, this method did not consider the systematic global structure, such as
El Nino-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO) etc. The
atmospheric circulation is the main control behind regional changes in wind, temper-
ature. precipitation, soil moisture and other climatic variables. Variations in many
of these variables are strongly related through large-scale features of the atmospheric
circulation, as well as through interactions involving the land and ocean surfaces. Two
well-known examples of such large-scale features are the ENSO and the NAO, both of
which are closely related to climatic fluctuations in many regions. Evidence of associ-
ated changes or variations in the atmospheric circulation may enhance confidence in

the reality of observed changes and variations in the climate variables in these areas.
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Shen et al. (1994) developed an OA method and applied it to inhomogeneous fields
using empirical orthogonal functions (EOF') for global OA. The spatial inhomogeneity
of the covariance function is resolved by the superposition of the EOF model. Their
OA results showed that the OA has the smallest sampling error compared to the other
methods. But random error was not considered until a later study (Shen et al.. 1998).
Kim et al. (1996) used this idea to estimate the spherical harmonic coefficients on a
sparse network of observational data. The global average temperature and sampling
error were calculated. The OA performed best compared to the uniform averaging
and Gaussian averaging of the data. Kaplan et al. (1997) developed a method to
reconstruct the Atlantic sea surface temperature. The method filled spatial gaps in the
data and minimized sampling error. Similar to Shen and Kim’s result, the advantage
of Kaplan’s method, inherited from the classical least-squares approach, is its ability
to provide error estimates for analyzed data. Further research on optimal regional
averaging methods was undertaken by Shen et al. (1998). This method was tested on
tropical Pacific SST data and random observational error was considered. Their idea
was that an inhomogeneous covariance function could be represented by its eigenvalues
(i.e. variance ) and eigenfunctions (i.e. EOF).

In our present work. we attempt to bring the previous researches together to study
the OA of global temperature. The purpose of this thesis is to show that the OA
method can be used in such a way that the uncertainty in assessing global warming
can be reduced significantly. This work follows the theory by Shen et al. (1998) and
optimally averages the global anomaly temperature. The main idea is to minimize
the mean square error (MSE) and to obtain the optimal weights for each data box.
Not only the sampling error but also random error for global average temperature will

be considered. Then with these optimal weights, the OA temperature can be easily



calculated.

The thesis structure is as follows. Section 2 will explain the data used in the study.
Sections 3, 4 and 5 will explain the OA theory. In Section 6, numerical results are
described and standard errors are assessed. Section 7 summarizes the main conclusions

and gives some discussion.
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Chapter 2

Data

Several datasets are used in this study. divided into two groups. The first group con-
tains the recent data in all 3° x 5° boxes used to extract the statistical EOF and
variance, which will be used by optimal averaging. The second group includes the
historical data only in some 5° x 3° boxes. used to calculate the global average tem-
perature. In order to compare the effect of different EOF on OA, two datasets are used
in group one. One comes from Climate Prediction Center’s (CPC) Optimal Interpola-
tion (OI) data and Global Historical Climate Network (GHCN) blended data. Another
spans from the 1949 to 1998 Jones land data and the United Kingdom Meteorological
Office (UKMO) SST data. In group two are the Jones land data and UKMO ocean
data from 1836 to 1998. The 1961-1990 climatology is computed separately for each
dataset and is used to compute the climate anomalies. The climatology is 1961-1990
averages rather than the 1951-1980 period, because the new reference period contains
more SST data and more data from currently operating land stations. Jones’ (1997)
interannual error is introduced as the observational error. This error is used in cal-

culating optimal weights and estimating the total error. Each dataset consists of the



monthly anomaly temperature on a 5° x 5° longitude-latitude grid box. If there were
data in each box, the total number of boxes would be 72 x 36. The center of first box
is at 177.5°W 87.5°S.

The OI SST analysis was produced weekly on a one-degree latitude-longitude grid.
The analysis used in situ and satellite SST plus sea-ice cover. Before the analysis was
computed, the satellite data were adjusted for biases using the method of Reynolds
(1988) and Reynolds and Marsico (1993) in order to improve the large scale accuracy.
A description of the Ol analysis can be found in Reynolds and Smith (1994). and
examples of the effect of recent corrections can be found in Reynolds (1993). Because
the OA method requires 5° x 5° monthly data, one can adjust the 1° x 1° monthly Ol
data to 3° x 5° monthly OI data by simply average the grid data in the 5° x 5° box. As
OI data cover only ocean areas (from January 1982 to June 1999), a combination of
the OI data with the GHCN blended data on land (from January 1992 to June 1999)
was used. Both anomalies were with respect to 1961-1990 climatology. The blended
data anomalies were obtained using the climatologies of Reanalysis in the periods of
1992-1998 and 1961-1990. The offset between the two base periods was removed from
the GHCN blended data anomalies. whose base period was 1992-1998. For the OI
data. the boxes over land are empty. For the GHCN blended data. the boxes over
ocean and snow-covered areas are likewise empty. These empty boxes are then filled
in by the Reanalysis data. The variances of the Reanalysis data are smaller than the
true variances in the tropical areas and larger than the true ones in the high-latitude
areas. Such properties limit the utility of the Reanalysis data in computing the EQOF.

The 1856-1998 dataset is a combination of the land temperature anomalies de-
scribed by Jones (1994) and the UKMO SST data. The Jones land data are based

upon station observations, simply taken as an average over each 5°x5° box. On the



other hand, the UKMO ocean data are based on ship observations. Various corrections
were made before the two datasets were merged. For example, a bias correction was
applied to the SST anomalies before 1942 to account for changes from bucket-base to
intake-base temperature measurements (Folland and Parker 1995). In the remainder
of this paper, these merged data are simply referred to as “Jones data”. Now the
Jones data has missing data in 5°x5° boxes. Namely, there are “holes” in the dataset.
These “holes™ will be filled by the Reanalysis data. The data from the last 50 vears.
1949-1998. are taken as a second dataset in Group 1 for EOF analysis. There are
two reasons to select the period from 1949 to 1998 for EOF analysis. First. since the
Reanalysis data spans the period 1949 to 1998, it can be used to fill in the “holes”
in the Jones data. Another reason is that the sample density of Jones data becomes
large after the Second World War. But there is a further problem of whether we can
simply merge two datasets, because they are two different datasets and have different
strengths and weakness. The Reanalysis data reflects large scale patterns well. but
are too smooth at low latitude and have too large variance at high latitude. Jones
dataset reflect a more realistic field but have missing data. Is it possible to combine
the advantages of the two datasets? One method, called weaver, is applied. This
method can be explained most clearly by using figures. Fig. 1(a) and (b) are the
Jones data and the Reanalysis data in January 1983, respectively. One may observe
that the large scale patterns of the Reanalysis data and the Jones data are similar,
but that there are differences in details between the two datasets. For example, in
Fig. 1, there is a strong ENSO anomaly in the Eastern Pacific Ocean in the Jones
data, but the corresponding anomaly is weaker and more smooth in the Reanalysis
data. One can also notice the shapes of anomalies in Russia are the same, but the

strength of the anomaly is different. The weaver method uses the Reanalysis data
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pattern and the Jones data strength to form a more realistic dataset. First, it takes
the difference of the two datasets, and then disperses the difference value in each box
to the neighboring points to get a new difference dataset. Then the new difference
dataset is added to the Reanalysis data to form the weaver data, as shown in Fig. 1(c).
Thus in Fig. 1(c), it can be seen that the weaver data keeps the information of the
Jones data and the pattern of the Reanalysis data. The Jones data bring some small
scales into the Reanalyvsis data. These kinds of small structures will influence the EOF
analysis. One may use a spatial five-point average to remove the small scales. Fig.
2(c) shows the averaged result. Compared to Fig. 1(c), it is clear that the small scales
have been removed. Thus, a new dataset whose structure is taken from the Reanalysis
and whose amplitude is taken from the Jones data has been developed.

Jones et al. (1997) developed a method to calculate the standard errors of 5°x5°
boxes for any regional/hemispheric/global time series of a climate variable. The main
idea is that the standard error depends on station numbers (n) and average the intersite
correlation (7) between the n stations in the box. The formula is written as SE? =
571 = F)/[1 + (n — 1)7]. where 3, is the characteristic variance of a station time
series within the grid box. Using this method. they obtained typical standard errors.
estimated for annual data as 0.059°C since 1951. Prior to 1900, the standard error
was 0.091°C.

A time series of the number of 5°x5° data boxes sampled in January is shown
in Fig. 3. The sparse samples occurred either in the first few decades from 1856
or during the First and Second World Wars. The sampling distribution in January
1900 (Fig. 4a) shows that there were almost no data poleward of 70° latitude, and
there were often large numbers of “holes” over non-industrialized land regions at the

beginning of the twentieth century and earlier. Over the oceans, the Atlantic tends
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to be the best sampled and the Pacific the worst sampled. The southern ocean is
also poorly sampled. In the 1980s’, the sampling distribution was more dense than at
the beginning of the twentieth century. Fig. 4b shows the sampling distribution in
January 1983. Most of the area except the poles were well sampled.

The data used in this work can be summarized in table 1.

Data comparison

Name Temporal | Spatial Period Property
resolution | resolution

Reanalysis 1 month 3° x 5° January 1949 - | Globe
December 1998

Optimal 1 month 1° x 1° January 1982 - | Ocean

Interpolation June 1999

GHCN 1 month 5° x 5° January 1992 - | Land

blended June 1999

Jones 1 month 5° x 5° January 1856 - | Globe with
December 1998 | “holes™

12




Chapter 3

EOF computing

EQOF is a popular method for analyzing the inhomogeneous covariance structure of a
field. It is very useful in data compression and physical pattern analysis. In meteorol-
ogy. one can use a few modes to reconstruct a meteorological filed, such as temperature
or precipitation. As instrumental records extended back only to the mid-19th century
and the data were sparse in the early period, as shown in Fig. 4a. it is necessary to use
various proxy approaches to derive the history of temperature. In addition to historical
records, proxy measurements such as corals, tree-rings, ice cores. and varve sediments
have also been employed to derive the temporal history of temperature variability.
Several methods can be used in the calculation of global average temperature. The
simplest method., whose accuracy is in question, is to average all the boxes which
contain data. One problem with this method is that the area of a 5°x5° box varies
according to latitude. A larger area should make a larger contribution to the global
temperature average compared to a smaller one. For example. when selecting one
box in the tropics and one at mid-high latitude (60°N), the areas for these two boxes

are 309,778 km? and 154,889 km?, respectively. This means that at 60° south and
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north latitudes, the area in one box is half the area of a box in the tropics. This is
shown clearly in Fig. 5. So the area influence must be considered. This leads us to
the area-weighted average method which considers area influence (Jones et al., 1999).
But this causes another problem. Because the anomaly temperature is inhomogeneous
over the globe. the area-weighted average does not consider the anomaly temperature’s
inhomogeniety, since in this method the same latitude has the same area-weight in the
area-weighted average. The temperature anomaly is warmer than average during El
Nino and cooler than average during La Nina in the Eastern tropical Pacific (Fig. 4b).
Inhomogenieties also exist in the mid-latitude regions, where different patterns occur
along the same latitude band. The homogeneous area-weighted average has certainly
neglected the inhomogeneous physical properties. In order to reflect the inhomogeniety,
the EOF method was introduced. Adapted to the data's inhomogeniety and sparse
distribution. this optimal method to the global average temperature was developed
by Shen et al. (1994). Subsequently, random observational errors were included and

regional temperature averaging was studied (Shen et al. 1998).

3.1 The definition of continuous and discrete EOF
The covariance function is defined by
p(&, &) = (T (. t)T(F',¢)). (3.1)

The continuous EOF w,(F) are the eigenfunctions of the covariance function defined
by
[ P& F)un(®) d¥ = dapn(®), n=1.2,3,--, (32)
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where €2 is the domain, )\, is the eigenvalue which is equal to the variance of the

temperature’s projection on the n-th EOF:

A = (( /n T(E, t)un(F) dQ)z). (3.3)

The EOF have orthogonality and normalization properties

/Q Cm(E)0n(F)AQ = bum, (3.4)

which is equal to unity if m = n, and zero otherwise.
The region  is divided into J grid boxes. The discretization of the above integral

on these J boxes is
J -~
z p(fiv i.])wn(i‘])-‘lj = ’\nwn(fi)v = 11 27 Tty J7 (3'5)
j=t

where 4, is the area of the grid box j. and A is the approximation of A, due to

discretization. In the case of 5° x 5° grid boxes. the box area is

3

R x (2 2 |
4, =R"x (180") X (180“) cos @;, (3.6)

where @, is the latitude of the center of the box j, and R is the radius of Earth.
approximately 6,376 km.

To make the equation (3.5) symmetric, it can be rewritten as

5 (Ve ) (enlt ) = o (a(RVA)  i=1.2-, 0, (3)
=1

The new discrete eigenvalue problem is then

J
Y B(E ) = A, (3.8)
Jj=1
where
BEE) = VA plE: )\, (3.9)
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is the area-modified covariance matrix, and
B = ya(#;)\/4; (3.10)

is the area-modified eigenfunction. which is defined as the discrete EOF. They satisfy

the normalization condition
J

Y () =1 (3.11)

=1
Therefore. based upon equation (3.8). one can obtain the eigenvalues A, and the

EOF
5"

Un(E;) = . (3.12)
Vs
The length of observations is denoted by Y. Depending on the values of ¥ and J.

the calculations of the eigenvalues and eigenfunctions follow different algorithms since
a covariance matrix computed from insufficient observations is not of full rank. The

next two sub-sections describe these algorithms.

3.2 Computing EOF whenY > J

To compute the EOF for each month, two anomaly datasets are used: OI+GHCN
blended+Reanalysis data and weaver data (1949-1998).

These data are put into one matrix of order J x Y, which is denoted by T:
T =[T(§.t)]. j=123.---.J, and t=1,2,3,---,Y, (3.13)

where J is the total number of boxes in the domain €2, and Y is the total number
of years of the data. For example, for the January EOF, the combination of the OI
(1982-1999) and GHCN blended (1992-1999) gives a total of 26 years of data, and

hence Y = 26.
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The spatial covariance matrix [p(f,, ;)] is
TT'/Y, (3.14)

which is a J x J order matrix. where ' indicates the transpose of the matrix. The
maximum number of independent column vectors in this matrix is ¥". When the data
stream is sufficiently long such that ¥" > J, the spatial covariance matrix is most likely
full rank, and one can compute the discrete EOF directly from (3.7). The discretized
eigenvalue problem (3.7) from the integral eigenvalue problem requires the inclusion

of an area-factor matrix
VA = [/, (3.15)

where /4, is the area of the grid box i. and the diagonal matrix is of order J x J.

The discrete spatial eigenvalue problem with the inclusion of the area factor is then
[plo = Ao, (3.16)
where the spatial covariance matrix with the area factor is

(6 = -(VAT)(VATY. (3.17)

3.3 Computing the spatial EOF from the temporal
EOF when Y < J

Often. the dataset used for computing the covariance matrix has not been sufficiently
long. meaning that the spatial covariance matrix is not of full rank. In such a case.
the spatial EOF can be computed indirectly from the temporal EQOF.

Because each month has a different physical pattern, the EOF has to be computed

according to month. For example, if one works on the globe with 5° x 5° boxes, then
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J = 36 x 72 = 2592. For January, the OI data (January 1982 to June 1999) and
GHCN blended data (January 1992 to June 1999) can provide only 26 years of data,
and the index ¢ in the above matrix runs from 1 to 18 for the OI data, and from 19
to 26 for the GHCN blended data, so ¥ = 26. Hence, ¥ < J, the spatial covariance
matrix is not of full rank, and its determinant vanishes. However, one can exchange

space and time by transposing the data matrix first:
T'T/J. (3.18)

This is the temporal covariance matrix. whose order is ¥” x Y.

The temporal eigenvalue problem with the inclusion of the area factor is
[6Ju = Au. (3.19)
where the temporal covariance matrix with the area factor is
1
(] = S(VAT)(VAT), (3.20)
and the eigenfunction u is normalized:
v
ui=1 (3.21)
k=1

Multiplying the temporal eigenvalue problem by the matrix (J/Y)(VAT) and
comparing the resulting equation with the spatial eigenvalue problem (3.16) vields the

following relationship:

A= }i,\ (3.22)
b= —1—_\/XTu (3.23)
Vi
This vector ¢ is a unit vector because
't = —lju’(\/KT)’i_\/KTu =uu=1

A A
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Finally, the EOF and the corresponding eigenvalues are

~(n)
5!
Un(fj)) = ——=. j=1,2,---,J, and n=1,2,---, (3.24)
o-lJ
An = An. (3.25)

There are two benefits derived through space and time exchange. First, the problem
of determinant vanishing does not exist. Second, because the dimension of ¥ x Y is

less than that of J x J. the EOF analysis will require less calculation through this

transposing.
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Chapter 4

The optimal averaging method and

its MSE

The average of the field T over a region Q is

- 1
T_E Q

T(t) d (4.1)
where A is the area of the region Q. Our objective is to use the sampling data T'(£,) to
estimate this quantity with maximum accuracy. The method employed here is referred
to as optimal averaging (OA) and has been discussed by Kagan (1979), Vinnikov et
al. (1990). Smith et al. (1994), Kim et al. (1996), Kaplan et al. (1997), and Shen et
al. (1994 and 1998). Here the version of OA is similar to that of Shen et al. (1998)
in which EOF defined on the entire globe were computed for 26 (24) years from the
OI+GHCN blended data and from 50 years of weaver data (1949-1998). These two
datasets are used in the series expansion. The method of Shen et al. (1998) is extended
in this study from a regional average to a global average. In this work. however, unlike

the spherical harmonics method in Kim et al. (1996), an area factor will be taken

into account when computing eigenvalues and EOF. Namely, the EOF are computed

20



from area-weighted OI data for the period of January 1982 to June 1999 and GHCN
blended data from January 1992 to June 1999 and for the weaver of the Jones and the
Reanalysis data. Because Jones (1999) calculated an area-weighted average for each
month, the OA of each month will be calculated for comparison. The annual average
will be obtained through averaging the results of 12 months. The effect of random
observational errors is included in the total error.

The linear estimator of the average, denoted by T is

T=Y wT (4.2)

1] EN

where N denotes the observational network on which the gaped data are distributed

and the weights w, satisfy a normalization condition:

This condition is needed because our data contain trends. So to guarantee that

(T) = ¥ wilTy)

JEN
when (T,) = (T). it is necessary to have the normalization condition (4.3) as discussed
by Kagan (1979).

The sampling error is measured by the mean square error (MSE)
& = (T - T)?), (4.4)
and the covariance function is defined by
p(&,¥) = (T(F)T())- (4.3)
The following notations are adopted:
pij = p(ts, ;) = (IT5) (4.6)
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and
p=1 [ TETH0. (47)

In terms of data T, and observation errors (E?), the covariance matrix p;, can be

written as

= (T.T,) + (E?)dy;, (4.8)

where 9,, is the Kronecker delta which is equal to unity when i = j and zero

otherwise.

The MSE can be written as

e =(T-T0 = (@T) - «TT) + (IT)
1 L AN 2 . N N
= 5 [ do [ a1 - S([ THde L wT) +(E whi ¥ )

1IEN jEN
1 - .
= = [da [ d¥p(e.¥) -2 Y w;p, w, (TT
12 /n /n p(E, ') Jgfwjp, + wng w; (T;T;)
1 -
=— [ dQ | d¥ &) ~2 5. W TT E? 8,
Az/(; /Q p(&, ) Jg‘w,p, +l'§v’w w;((TT") + (E?)6,;)
= ‘17 dQ [ dUp(E.F) -2 w,p; + Y wiw; pij + 3 wED).  (4.9)
4
’ " f JEN 1,jEN teN

To minimize the MSE, a Lagrange function is constructed

Llwy, -+, wy] = E(wy, -+, wy) +2A (’z w; — 1) (4.10)
jEN
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where \ is the Lagrange multiplier and NV is the number of stations in the network N.

The partial derivatives

oc
— =0 1 =1,2,3,---, N,
3111]- J , ;
and
oL
= =0
oA
lead to
Z/’U 11.']+(E,-2)'w,~+:\=/3,~, i=1,2,---,V: (4.11)
JEN
Y w, =1 (4.12)
JEN
The solution of the above set of equations yields the optimal weights w).ws,---. wy

for computing the OA by (4.2).

The covariance matrix (p;;] can be approximated by

My
= S BT + (EDS,: (41

Y 4=l

pPi; =

In this expression it is assumed that the time series T'(F,, t) satisfies an ergodic process
(the ensemble average (T(F;,t)T(£,.t)) is equal to the temporal average). which is
approximated by the above summation with respect to the time variable v. M, is
the maximal length of the data streams to be processed. It should be pointed out
that T]-('y) may be serially correlated, but due to the short length of the data streams
of the recent accurate observations, it is still the best approximation to estimate the
covariance matrix [p;;] by (4.13) rather than throwing out some data so that the
remaining data are serially independent of one another. From formula (4.13) one can
see that the rank of the computed covariance matrix {p;;] is M, since M, is usually
much less than the total number of grid boxes. Thus the covariance matrix [p;,] is

often not a full rank matrix as discussed in the last section of Chapter 2.
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To solve egs. (4.11)- (4.12). one needs to find 5;, the average of the covariance
function around the station #;. Hence, the original problem of averaging T is partially
converted into an averaging problem of the covariance function. This conversion is
important since it provides us a new way of evaluating sampling errors due to the
fact that the g, can be computed from the averages of the EOF. They can also be
estimated from climate models, such as GCMs (Zwiers and Shen 1997) or even energy
balance models (Kim and North 1993). The algorithms for computing EOF from the

area-weighted data and for computing j; are described in the next section.
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Chapter 5

Optimal averaging procedure

Our method of computing p; is illustrated using the monthly SST OI data from January
1982 to June 1999 and GHCN blended data from January 1992 to June 1999 and also
the 50-vear weaver data. Here these data are regarded as the “truth”. The OI+GHCN
blended anomalies are gridded on a 5° x 5° grid. denoted by OZ. Let My, denote the
length of the data stream (equal to 26 vears for the first half year and 24 for the second
half year of OI+GHCN blended data and 50 years of weaver data). Then eq. (4.13).
with exclusion of the random error (E?2), is used to compute the covariance matrix

[pg’ | from the OI data. The exact eigenvalue problem is

/ p(E, F')ur () dY = Mewn(E). (5.1)

Here i (F) is the kth EOF (or mode) and A is the variance (eigenvalue) of T'(f) on
the kth mode (k = 1,2,---). The approximate eigenvalues of the above continuum
eigen problem can be estimated by a discretization procedure given by

k k
Y by = 2il®, (.
jEOT

(S]]
N
—



where
[6is] = [\/Z oo\ J4; ] (5.3)

is the modified covariance matrix,

i = (i) /4, (5.4)

are the modified eigenfunctions satisfying the normalization condition

¥ (#) =1, (5.3)

JEOT
and A, is the area associated with the station £,. For uniform latitude-longitude grid

boxes. one has

4, = cos9;A0A¢0 (5.6)
where @; is the latitude of f; and the Af and A¢ are the zonal and meridional box
dimensions respectively, which are measured in radians. The linear spatial unit (i.e..
the length unit) is in the radius of the Earth: R = 6376 km.

Since the eigenfunctions v, (f) form an orthogonal functional basis, the covariance

function can be expanded into an EOF form

oQ
pE.F) = 3 Mntin(E)tn(F). (5.7)
n=1
The EOF representations of p(f.f;) and p; are respectively
p(i;v f‘,) = z ’\nwn(i;)wn(i‘:) (58)
n=1
and
pi = Z ’\n'wn(f'i)'lZ'm (5.9)
n=1
where ¥, is defined as
- 1
vn = [ n(®) 0 (5.10)
AlJa
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which is the average of the eigenfunction 1,(f). In practice one has to compute an
approximate value of this by numerical integration:
= Z Ua( ~<">V (5.11)
1,cor Jeoz' 4

In summary, to compute g; we:

(1] Compute the covariance matrix [p)'] according to (4.13) (excluding the term

(E?)d,;) and the modified covariance matrix j;; according to (5.3).

[2] Solve the eigenvalue problem for the modified covariance matrix p;; to obtain

eigenvalues /\k and normalized eigenfunctions v( ),

[3] Use (5.11) to compute ¥, and (5.4) to compute ¥, (F;), and finally compute j; by

M
Pi = Y A (i) (5.12)

n=1

The quantities p;; and p; will be used in eq. (4.11) which. together with eq.
(4.12). determines the optimal weights w;,---.wy for averaging. The eigenvalues
An. eigenfunctions w,(f,). and their averages v, will be used to calculate the total
sampling error given by eq. (5.13) below. The sum in eq. (5.12) above and eq. (5.13)
below for n in practice runs through a relatively small number of modes M,. say 12
for OI+GHCN blended data, since the higher modes are contaminated by noise and
the inclusion of these modes may increase error. As discussed by Kagan (1979) it is
important to avoid adding more detail to the covariance function than can be justified
by the amount of data available to compute them. However, this problem is lessened
by using EOF and the MSE formula (5.13) below since each mode is scaled by its

eigenvalue. This forces the first few, most important modes, to dominate. In practical
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computations, one may choose the cut-off mode number M, according to the criterion

of 80 to 95% variance explained (by the first M. modes).

By (4.9) and (5.7), the final expression of MSE is obtained in terms of M. EOF

modes

o 1 . = -
e = ?/QdQ/QdQ'p(r.r') -2 wipg + D> ww,; pi; + ) wHE?)
: JEN LJEN eV

1 ] , o< R y . ‘ _1- .
= j_rg/QdQ/QdQ mzz:l Ann(F)un(F) = 2J§.\'w1.4/0p(r.rj)dﬂ

+ ) wiw; i AWn(ri)tn(r;) + 3 wi(E?)

ijEN n=1 JEN
o0 oC o0

=3 A2 =23 A Y witn(F)0n + Y MY wita(75))? + Y wi(ED)
n=1 n=1 jeN n=1 JEN iEN
Me [ 2 '

2 A |Un = Y wjua(iy)| + D wi(E?). (5.13)
n=1 JEN iIEN

Since this formula includes the EOF patterns. if the observations are along the node
lines of an EQF (where the EOF is equal to zero) or in the fine spatial structure area
of an EOF. the sampling error is large for the corresponding mode. Thus this formula
is also useful for future observation network design.

The sampling error formula (5.13) implies that the MSE is linearly proportional to
the eigenvalues and is in a square relationship with the numerical integration errors of
the eigenfunctions. This is the mathematical basis of many researchers’ opinion that
to estimate the MSE of an OA it is crucial to obtain highly accurate eigenvalues, and
the exact shapes of the eigenfunctions do not matter as much. Therefore it is desirable

to compute the eigenvalues as accurately as possible.
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Chapter 6

Optimal averaging results

This section describes our computational results on eigenvalues, eigenfunctions. OA.
its MSE and optimal weights. In the discussion of Chapter 5, the eigenvalue was
believed to be the most important component in OA. The influence of eigenvalues
on MSE is larger than that of eigenfunctions on MSE (5.13). Section 6.1 will give
a detailed discussion of eigenvalues. An accurate eigenfunction is important in the
optimal weights calculation. and the optimal weights will influence the result of OA.
The optimal weights are important because the purpose of OA is to obtain an accurate
annual average temperature. Section 6.2 will pay attention to the eigenfunctions. The
OA result will be given in Section 6.3. Sections 6.4 and 6.5 will discuss errors and

weights. respectively. Now we begin with the eigenvalues and their validation.

6.1 Eigenvalues and their validation

The area-weighted total variance (Jg T%(f) d) can be used as verification for the

eigenvalue computation and as a reference quantity to determine the number of modes
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used in sampling error calculations. Table 1 shows the eigenvalues in January. From
these eigenvalues, one can calculate the total variance in January. This variance
(fo T?(E) dQ) can be computed directly from numerical integration

/ T2(#) dQ) ~ 62 Y T%(£;,7) cos ¢; (57/180)% = 22.425 ["CPR®  (6.1)

v=13€0T

where ~ indicates the time variable in the unit of month. @, is the latitude of the grid
point f;, and cos ¢; (57/ 180)? is the area of the jth 5° x 5° grid box.

Because of the statistical similarity of the eigenvalues of the two datasets, only the
eigenvalues resulting from the OI+GHCN blended data are discussed. From Table
1. one finds that the first 12 modes (less than half) can explain 86.85% of the total
variance.

The summation of the first 12 of these eigenvalues is

Because of
o <]
(T3(£)) = D Mt (F)
n=1

and the normalization condition for ¥2(#), one has

A(T2,) = (/ T2(§) dQ) = Z,\,, ~ 2 An = 1052 [CPR?,

where R is the radius of earth and (T?,,) is the mean value of the SST variance. The
total variance 19.52 [°C|2R? computed from the summation of the first 12 eigenvalues is
in good agreement with 22.425 [°C]?R? computed from the direct numerical integration
shown in eq. (6.1). Note that this is an independent verification for the eigenvalue
computation. The area of Q is A = 47 R2. Hence

19.52
47

(Tony) = =1.553 [°C]%
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The standard deviation is

(T2,,) = 1.246[°C]. (6.2)

The first 12 extrapolated eigenvalues from the 5° x 5° grid explains 86.85 % (=
19.52 + 22.425) of the total variance. Considering that the high modes contain much
noise. it was decided to take the first 12 modes in our OA and sampling error estima-
tion. i.e.. M. = 12 for OI+GHCN blended data in egs. (5.12) and (5.13). Similarly,
M, = 20 was used for weaver data in the rest of this paper. This value also explains
85% of the total variance of the Weave data.

Another direct method to select the modes is to use the eigenvalue curve. Fig. 6
shows the eigenvalues for each mode in January. Examining Fig. 6, one can conclude
that the contribution after mode 12 is very small compared to the first 12 modes.
They can be considered as white noise after mode 12.

Now, the eigenvalues vary with the month. Comparing the eigenvalues in January
(Table 2) and July (Table 3). the first mode in January explains 20.5% of the total
variance while the first mode in July explains 28.1% of the total variance. But the
summation of the first 12 modes explains a similar percentage of the total (86.85%
in January, 89.17% in July). The difference comes from the length of the sample for
EOF analysis: there are 26 modes in total in January EOF analysis and 24 modes in
total in July EOF analysis. So the percentage of 12 modes in July is a little bit higher

than the one in January.

6.2 Eigenfunctions

Now we turn to the eigenfunction discussion. Eigenfunctions of a covariance function

often reflect the field’s physical patterns. Through analyzing the eigenfunctions, one
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can infer the surface temperature distribution characteristics, such as ENSO. Fig. 7a
shows the first 6 eigenfunctions in January for OI+GHCN blended data. One can find
that each eigenfunction reflects the land and sea distribution well in January. The
small scale structures in each mode arise from the inconsistency of OI. GHCN blended
data and Reanalysis data. The second characteristic is the ENSO phenomenon. One
can see that there are 5 modes containing ENSO phenomena in January (all except the
second mode). This is the result of the fact that the ENSO mode was the main mode
in the tropical ocean in January during the 1980’s and 1990’s. This is consistent with
the frequent occurrence of strong E! Nino in the 1980’s and 1990°s. This characteristic
is also reflected in July (Fig. 7b). Looking at Fig. 7b. one can find the difference in
eigenfunctions between January and July. In July. not only is the land-sea difference
not as strong as in winter (because the winter system in Northern Hemisphere is very
strong, such as the winter monsoon in Asia), but also the ENSO modes are weaker than
the ones in January. The ENSO modes only appear in modes 2, 4, 5 and 6. Comparing
the Januaryv and July eigenfunctions (Fig. 7a and Fig. 7b), one forms the impression
that the strongest ENSO signal mainly emerges in Northern Hemispheric winter. In
January. the Nino 3. which is bounded by 90°W-150°W and 5°S-5°N, is strong for first
six modes. But in July, the Nino 1+2 is the main part. This is consistent with the
ENSO characteristic that the ENSO in summer (Northern Hemisphere) is relatively
weaker than in winter (Northern Hemisphere).

One result from Section 6.1 is that the eigenvalues do not change significantly with
seasons. This is true for different datasets, such as weaver of Jones and Reanalysis data
for EOF analysis. What about the eigenfunctions? Their stability is investigated by
comparing eigenfunctions belonging to different datasets. Fig. 8a and 8b show the first

six eigenfunctions for the weaver data in January and July, respectively. The strength
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of the ENSO mode for the weaver data is weaker than that for the OI+GHCN blended
data. The reason is that the 1997-1998 El Nifio was the strongest in this century and
the ENSO in the 1980’s and 1990’s were stronger than the earlier period. It should be
recalled that the OI+GHCN blended data use the data of 1980’s and 1990’s. When
using these data for EOF, the eigenfunctions reflect the stronger ENSO mode. But
the weaver data has a longer sample. This means that there is a smaller contribution
to the total variance for the first six modes compared to the OI+GHCN blended data.
because the ratio of the first 6 modes for weaver data is only 6/50 whereas the ratio for
OI+GHCN blended data is 6/26. So the stronger ENSO mode in the first six modes
of the OI+GHCN blended data is perceptible. There are also five ENSO modes in
the first six modes shown in the weaver dataset in January. Because of the smoothing
inherent in the weaver data. the small scale structures do not appear in the EOF of
this dataset. Mode 6 still clearly contains the ENSO component not only in January
but also in July. However. their structures are different. The SST anomaly over Nino
3 is obvious in January. but that over Nino 1+2 is strong in July. In conclusion. the
eigenfunctions change very little with season even though the percentage variance of
each mode is different. The weak magnitude can be compensated by increasing the
mode and keeping the mode percentage the same. This is important for OA and data

reconstruction, which will be discussed further in detail in Chapter 7.

6.3 Optimal averaging results

In this section. the previous discussion will be verified. First, let us discuss how many
modes should be used. Section 6.1 demonstrated that eigenvalues do not change with

respect to season, and it was determined that one should use 12 modes to do the OA
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for the OI+GHCN blended data and 20 modes for the weaver data. A test of the
mode selection will be done through calculations in this section. Two experiments
are designed in this test to use the OA method twice for the same EOF analysis.
The first experiment uses all 26 modes in the optimal weight calculation, whereas the
second uses only 12 modes. Fig. 9 gives the comparison. One may easily see that
the difference is very small (0.03°C). This means that using 12 modes is sufficient to
perform the OA. with the modes after 12 regarded as white noise. When all modes are
considered, this white noise is included and consequently weakens the optimal result.
From the third panel in Fig. 9, the white noise influence can be observed. In this
study. it ranges from —0.03°C to 0.03°C. This characteristic is also reflected in the
weaver data for EOF analysis. 20 out of 50 modes are taken for OA using weaver data
in the EOF analysis.

Now we consider the OA results from the OI+GHCN blended data for EOF anal-
vsis. Fig. 10 shows the comparison between OA and the Jones area-weighted average.
The first panel shows the annual average comparison and its 10-year running average is
given in the second panel. One can see that the OA and area-weighted average reflect
the temperature trend svnchronously. This is because of the constraint on the weight
calculation for the two methods, i.e.. ¥ w; = 1. Two periods of warming are clearly
shown in panel two. namely 1920 - 1944 and 1978 - 1998. The difference between the
two series is shown in the third panel. The solid line represents the annual difference.
and the dashed line represents the 10-year running average for the difference. This fig-
ure shows that OA before 1980 is mostly higher than the Jones area-weighted average,
while OA is lower than the Jones area-weighted average during the 1980’s and 1990’s.
The difference is between —0.10°C and 0.15°C. This means the global warming in OA

is not as strong as that in area-weighted average. Why did the area-weighted average
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obtain so strong a global warming before?

Jones and his group made a series of studies of global surface temperature. In
his 1988 and 1994 papers. in which he studied the land surface air temperature. the
annual average result in the 1994 paper is higher than in the 1988 paper in the early
period. The differences are mainly due to the introduction of a few extra Australian
stations in Jones’ 1994 work. which resulted in warmer late 19th century temperatures
relative to the earlier time-series (IPCC 1995). Returning to the OA result (Fig. 10).
the warmth in the late 19th century is very clear. The OA advantage is obvious here
because the OA considers the influence of the structure. For example, if there is one
grid point in Australia and the pattern there is large enough, the contribution for the
anomaly temperature from this one point can represent the total temperature variance
of Australia through a change in the weight distribution. Thus. through redistributing
the weight. one can get a more accurate annual average than the simple area-weighted
average. especially for the earlier period. In the IPCC report (1995), the improved
data is typically up to 0.05°C warmer before 1900. Our result shows this difference
will reach about 0.1°C and the average is about 0.03°C before 1900. Yet the difference
between the area-weighted average and OA is small in the period of EOF (1982-1998).
There are two possible reasons for this small difference. The first was proposed by
Ravner (1999 personal communication), who believed the EOF influence is a crucial
element in the OA method. That is, in her opinion, the OA result mainly depends
on the EOF analysis. A second reason for the difference in question considers data
quality. It basically suggests that the large amount of satellite data introduced after
1980 causes the difference between OA and area-weighted average to be small. In our
later discussion, we will find that this is a consequence of the improvement of data

quality. If this small difference comes from such an improvement of the data, one can
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say the eigenfunctions are stable. This leads to the problem of whether we now can
use the eigenfunctions since the year 1982 to reflect the patterns of the earlier vear.
In Section 6.2, we touched lightly on the question of eigenfunction stability. It seems
that the eigenfunctions are stable even though the mode amplitudes vary greatly. But
we need more to prove this stability, and another experiment was designed for this
comparison. This time, the weaver data were used for the EOF analysis, with the
same method to do the OA. Because there is a long period for the EOF analysis
(50 vears), the hypothesis is that a small difference between the OA and the area-
weighted average for the EOF period (1949-1998) will be obtained. Fig. 11 is the OA
temperature time series using the weaver data for the EOF analysis. It is surprising
to see that the difference between the OA and the area-weighted average is not small
during the period of EOF analysis (1949-1998), although it is small in the 1980’s and
1990’s. This supports the above hypothesis that the small difference between the OA
and the area-weighted average in the 1980’s and 1990’s is due to the improvement of
the data quality. In the 1980’s and 1990’s. especially for the ocean data. a large body
of satellite data were introduced and this improved the data quality. Consequently. the
difference between the OA and the area-weighted average becomes small in this period.
A further point is that in spite of the fact that the satellite data at high latitudes are
poor because of snow cover. the OA result will not be influenced because there are no
data coming from the same area. Yet one should emphasize that the OA method does
not have this advantage over the area-weighted average when we have high quality
data. Similar to the OA result for the OI+GHCN blended data, the late 19th century
warmth is also obvious in this OA result, which means the global warming is not as
strong as the area-weighted average result. The global warming over the period 1856-

1998 is about 0.05°C less than previously inferred. Another difference between the
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OA result using the weaver data and the one using the OI+GHCN blended data is
that the former result is not always larger than the area-weighted average before 1980.
Also, the amplitude of the difference is less than that using the OI+GHCN blended
data in the EOF analysis. about —0.12°C to 0.12°C. Even though the EOF analysis
is stable. the longer dataset should be used to do the EOF analysis. since the longer
the data sample, the more stable is the EOF analysis.

From the above discussion. two conclusions can be drawn in this section. First.
the difference between the OA and the area-weighted average will become small when
the data quality is improved. Second, the EOF analysis is very important and thus. if

it is possible. one should use a long dataset to do the EOF analysis.

6.4 Error estimation

Error estimation is an important part in determining the global temperature anomaly.
Through estimating the error. one can learn the global average accuracy. Errors pro-
vide us useful information for improving our method of estimating the global temper-
ature anomaly.

In this study, the error is composed of two parts from eq. (5.13): sampling error and
observational error. Sampling error comes from the spatial gaps in the data, whereas
observational error accounts for the error in the 5° x 5° box. Eq. (5.13) is used to
estimate the sampling error and the observational error separately. Fig. 12 shows
the error changing with time, and the total error decreasing with time. The error
becomes larger during the two World Wars because of the decreasing sample size. The
total error amplitude is about 0.05°C during the early period and 0.01°C in recent

times. From Fig. 12, one obvious property is that the sampling error is less than
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the observational error not only in January but also in July, because optimization
is used for minimizing the sampling error. Another property is that not only the
observational error but also the sampling error in January are larger than those in
July. The sampling error using the weaver data for the EOF analysis is a little bit
higher than that using the OI+GHCN blended data, peaking at 0.03°C during the
earlier period (Fig. 13). Comparing the modes (20/50) used in the weaver data. this
error is reasonable, because the OI+GHCN blended data use half of the modes in OA.
Fig. 14 shows the area-weighted error. Unlike the OA error, the error for the area-
weighted average does not decrease stably with time. Its amplitude is about 0.06°C
to 0.18°C. This is the same as the amplitude of the difference between the OA and
the area-weighted average. So the difference between the OA and the area-weighted
average is due to the sampling error. Thus the smaller the sampling error. the more
accurate the annual average will be. Fig. 14 also shows that the amplitudes of the
sampling error and the observational error switch in the area-weighted average. that
is. the sampling error is larger than the observational error. Because the area-weighted
calculation does not perform an optimization for sampling error. the sampling error
becomes very large compared to the optimal method. Another problem is that the
most of the sampling error for the area-weighted average in January is less than the
most of the sampling error in July. This is also switched compared to the OA error

result: from Fig. 12, the OA error is small in July and large in January.

6.5 Weight distribution

Because the OA redistributes weights, the optimal weights play an important role

in the OA result. In this section, the weight distribution will be discussed and the
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evidence for weight influence on the global average will be shown.

Figs. 15a and 15b show the weight distribution in 1900 and 1983, respectively.
As opposed to the area weight, the optimal weight is inhomogeneous. Comparing
Figs. 15a and 15b. one can see that the weight distribution is similar in both vears.
This consistency shows the influence of covariance structure. If there is an accurate
structure (EOF'), there will be accurate weights, and the accurate weights will lead
to an accurate global average temperature. For example, comparing Fig. 4a and Fig.
15a. one common characteristic for both periods is the positive anomaly temperature
but negative optimal weights in the United States. This means that the anomaly
temperature in the United States has a negative contribution to global warming. This
is a major difference with the area-weighted average because the area weight is always
positive. Thus. for the area-weighted average. the positive anomaly is always a positive
contribution to the global average anomaly. Consequently. the inhomogeneous weight
distribution in the OA method shows the OA’s advantage. That is, it provides a better
reflection of the anomaly temperature structure than the area-weighted average. The
same phenomenon occurs when using the weaver data to calculate EOF (Fig. 16).
Because the weaver data has a longer history, the strength of each mode is less than
OI+GHCN blended data. Consequently, the weights are weaker than when using the
OI+GHCN blended data for the EOF. This means that the contribution of negative
weights is not as strong as the weights of the OI+GHCN blended data; however. the
negative contribution is still obvious. especially in the southern United States.

In order to clearly show the weight contribution to the global temperature anomaly,
two more figures are presented on this topic. Fig. 17a and Fig. 17b show the product
of the weight and the temperature anomaly for the two years. The contribution of

single box to the global anomaly is clearly shown in these two figures. It depends
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not only on the temperature anomaly but also on the weight. Even a local negative
anomaly can contribute to the positive anomaly for the global average. Comparing
the anomaly temperature (Fig. 4a) and Fig. 17a, one can see that even though there
are positive anomalies in the United States in 1900, the optimal result is not positive
in this region. A negatively weighted temperature appears in the middle of the United
States. One can also see negative weighted temperature along the East and West
coasts. On the other hand, in Russia, the negative anomaly temperature in Fig. 1a
corresponds to the negative anomaly in Fig. 17a. In 1983, similar results occurred. In
the middle of the United States. negative weighted temperatures are obvious. as well
as along the East and West coasts. Once again the weighted temperature in Russia
is positive. corresponding to the positive anomaly temperature (Fig. 4b). One may
say the contribution of the anomaly temperature from Russia to the global anomaly
temperature corresponds to the local anomaly temperature variation, but the con-
tribution of the anomaly temperature from the United States to the global anomaly
temperature is opposed to the local anomaly temperature variation in 1900 and 1983.

Now that the global anomaly average has been studied, another question is whether
the contribution of each latitude is the same. Zonal mean anomalies of combined land-
surface air temperature (from Jones 1994) and SST (from Parker et al. 1995) confirm
that the recent warmth is greatest in mid-latitudes of the Northern Hemisphere. This
can be compared with the warm period of the mid-20th century, where the greatest
warmth was in the high latitudes of the Northern Hemisphere. The recent warm period
also exhibits higher temperatures in the southern Hemisphere (IPCC, 1995).

In order to check the consistency and differences between our results and those of
Jones and Parker, we divide the globe into 6 bands. Each band spans 30 degree of

latitude. The results of averaging over each band are shown in Fig. 18. In this figure,
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one can see that the global warming mainly comes from 0-60°N, especially in the
middle latitude of the Northern Hemisphere (0-360, 30°N-60°N). Most contributions
to the first period warming are in the band of 0°N-30°N. For the second period of
warming (1978-1998), most contributions come from 30°N-60°N. The contributions
from the other latitude bands to global warming are not obvious.

The Pacific decadal time-scale variations have been linked to recent changes in the
frequency and intensity of El Nino versus La Nina events, and it has been hypothesized
that the decadal variation has its origin in the tropics (Trenberth and Hurrell, 1994).
Observational studies by Kawamura (1994), and Lau and Nath (1994) have shown that
the decadal variation in the extratropics of the Pacific is closely tied to tropical sea
surface temperatures in the Pacific and Indian Oceans. Several aspects of the decadal-
scale fluctuations beginning around 1976 have been simulated with atmospheric models
(Kitoh 1991. Chen et al. 1992, Miller et al.1994, Kawamura et al. 1995). These studies
also suggest that the temperature changes over the North Pacific are substantially
controlled by the anomalous SST forcing from the tropics.

Fig. 18 also shows this decadal time-scale anomaly temperature variation. The
long-term variation in 30°S-30°N temperature is more obvious than in mid-high lat-
itudes. In the mid-high latitudes of the Northern Hemisphere, not only does the
variance of the anomaly temperature become larger but the time scale also becomes
longer. It revealed regions with strongly enhanced variability. The El Nifio events
after the 1980’s enhanced the variance in the eastern tropical Pacific from 1978 to

1998 relative to the variance from 1950 to 1980.
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Chapter 7

Conclusion and Discussion

The OA method presented in this work makes use of the EOF derived from the recently
available OI+GHCN blended data and weaver data. Our results include not only the
spatial average of the historical data from 1856 to 1998 but also the standard error.
The standard error is measured by RMSE and is computed from the theoretical formula
eq. (3.13). It is concluded that the OA result is reliable and accurate. and it takes into
account the spatial inhomogeneity of the data. The advantages and disadvantages of

OA will be discussed in Section 7.1 and 7.2. In Section 7.3, conclusions will be given.

7.1 Stability of EOF

The stability of EOF was discussed in Sections 6.1 and 6.3. Section 6.1 mainly dis-
cussed eigenvalue stability and Section 6.3 discussed eigenfunction stability. However.
other aspects of EOF stability need further discussion.

Gray (1981) suggests that similar patterns should occur in the same order if the

ratio of time to space is high (greater than 10). In Wigley’s study (1984), the same
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patterns occur in the same order down to mode 4, and Tabony (1981) obtained similar
results. A question is that the above authors used a long time series to study a small
area, hence, they have a high ratio of time to space. But in our dataset. the short
period of the data for EOF analysis is obvious, while the spatial dimensions are very
large. The spatial size is 72x 36, which is much more than the temporal length (26 for
the OI+GHCN blended data and 50 for the weaver data). How to deal with this kind
of problem? Smith et al. (1996) suggested a method that divides the globe into several
areas and performs the anomaly temperature reconstruction in each area. But there
is a problem in using this method. If the globe is divided into several bands according
to Smith et al. (1996). the stationarity for each band is better than for the global
data because of the higher ratio of time to space. This means similar patterns may be
obtained even for higher modes during different periods. However. such a procedure
introduces another problem. For example, some regions do not have enough data or
had no data during the early period. As shown in Fig. 4a, there were less data in the
Pacific ocean and at high latitudes at the beginning of this century than at present.
Such a sparse dataset will influence the accuracy of OA., or prevent OA analysis at all
where no data are available.

In order to solve the problem of the lack of data in the early time, global data
are used to do the OA. This introduces the problem of nonstationarity. Is there a
way to minimize this nonstationarity? The following experiment will give the answer.
Because the Reanalysis data have quite a long history, starting from 1949, they will
be used to do the experiment. First, we divide the Reanalysis into two datasets, one
from 1949 to 1973, and the other from 1974 to 1998. Each covers a period of 25 years.
Next. we perform the EOF analysis for the entire Reanalysis dataset from 1949 to

1998. In order to explain the eigenfunctions clearly, the first 12 modes are shown for
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each dataset. The differences are obvious for the two datasets. Figs. 19a and 19b
show the eigenfunctions for 1949-1973 in January. The modes reflect the land-sea
distribution well. The 5*. 8 and 9** modes reflect the ENSO component. One can
see that the ENSO mode is weak during the first 25-year dataset, but strong for the
second 23-vear dataset. Figs. 20a and 20b show the first 12 modes for the second 25
vears. Besides the land-sea distribution. the ENSO pattern is evident in modes 2. 3.
6, 7. 8,9, 11 and 12. Because the eigenvalues decrease with modes, the ENSO modes
for the second 25 years are stronger than for the first 25 years. This is consistent with
the observation that the second 25-year period contains stronger ENSO events, with
more frequent occurrence during 1980’s and 1990’s.

Fig. 21 shows the eigenfunctions for the entire period. 1949-1998. The ENSO
pattern is reflected in modes 2. 4. 8. 9. 10 and 12. The whole dataset exhibits some
common characteristics in both the first 25 years and the second 25 years. Using
these three datasets for EOF analysis. one gets three OA results. There are obvious
differences between the first 25-vear time series and the second 253-year time series
shown in Fig. 22. Compared to this large OA difference. the difference between the
first 25-year and the 50-year EOF analyse is small (Fig. 23). Because the 50-vear
EOF analysis contains all the characteristics of the first and second 25-year EOF
analyses. while the longer EOF analysis is more stable, in further analysis, one should
use longer series to do the EOF analysis. The stability discussed here is different from
the stability discussed in Section 6.3. There, the differences between EOF period and
non-EQF period OA are discussed. But in this section, a single dataset is divided into

two parts. If it is possible. the longer period dataset should be used.



7.2 Comparison between optimal averaging and spa-

tial interpolation

Smith et al. (1996) discussed the advantages and disadvantages of OA versus spatial
interpolation. He pointed out that traditional spatial and temporal interpolation into
data void regions can give larger errors, whereas EOF reconstruction gives a more
spatially coherent field of SST anomalies. The disadvantage of the traditional method
can be ameliorated by the reconstruction method, especially in the tropical Pacific.
where anomalies can be large and persistent and where sampling is often sparse. In
regions where in situ sampling is dense, the EOF based reconstruction does not have
as clear an advantage over more traditional methods of forming gridded fields. In
this paper, the OA method shows its advantage in the 19th century. It considers the
spatial structure and minimizes the error optimally. However, the OA method has
less advantage in determining recent global average temperature anomalies, especially
for the last two decades, when high quality and dense data from satellites have been

available.

7.3 Conclusions

From the above discussion, the following conclusions can be drawn:

(i) The longer dataset should be used for EOF analysis. The longer the EOF
dataset, the more accurate the annual average.

(ii) An increase in the length of the data period for EOF analysis cannot reduce
the difference between the OA and the area-weighted average. The reduction of this

difference depends on data quality and density improvement.
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(iii) The standard error of the OA is less than that of the area-weighted average.
The amplitude of the difference between the OA and area-weighted average is similar
to the area-weighted sampling error.

(iv) The optimal weight field is important for estimating global temperature varia-
tions. Unlike the area-weighted average. the optimal weight changes the contribution
of each area to the global temperature variation. The positive anomaly is always pos-
itive for the area-weighted average. but this is not true for the OA. As discussed in
Section 6.5. the positive anomaly may contribute a negative anomaly to the global
average because of the opposing sign of anomaly temperatures and weights. The in-
troduction of negative weights shows the advantage of OA, because it considers not

only the data values but also their physical structure.
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Table 2 Modes 1 to 26 in January

Modes Eigenvalues Percentage of variance Cumulative percent

1 4.60 20.47 20.47
2 3.24 14.41 34.88
3 2.34 10.43 45.31
4 1.82 8.12 53.42
5 1.40 6.24 59.66
6 1.24 5.51 65.17
7 1.18 5.25 70.42
8 97 4.31 74.73
9 .90 4.00 78.72
10 .12 3.21 81.93
11 .60 2.66 84.59
12 .51 2.25 86.85
13 44 1.97 88.82
14 40 1.79 90.60
15 37 1.64 92.24
16 32 1.42 93.66
17 .28 1.26 94.92
18 .28 1.24 96.16
19 22 97 97.13
20 14 .62 97.76
21 11 .50 98.26
22 10 44 98.70
23 .09 41 99.11
24 .08 35 99.45
25 .06 .28 99.74
26 .06 .26 100.00



Table 3 Modes 1 to 24 in July

Modes Eigenvalues Percentage of variance Cumulative percent

1 6.08 28.06 28.06
2 3.48 16.07 44.13
3 2.04 9.43 53.56
4 1.47 6.78 60.34
5 1.31 6.04 66.38
6 1.01 4.65 71.03
7 .94 4.34 75.37
8 .80 3.68 79.05
9 .64 2.95 82.00
10 o7 2.63 84.63
11 .50 2.28 86.92
12 49 2.25 89.17
13 45 2.07 91.24
14 .38 L.75 92.99
15 33 L.51 94.50
16 32 1.45 95.95
17 .28 1.31 97.26
18 23 1.05 98.31
19 A1 0.51 98.83
20 .06 0.29 99.12
21 .06 0.28 99.40
22 .05 0.23 99.63
23 .04 0.20 99.82
24 .04 0.18 100.00
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The global anomaly temperature distribution in January 1900
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The global anomaly temperature distribution in Januory 1983
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The areg—weight distribution for the Jones data in January 1983
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The error variation in January(long dash for sampling and solid for observation)
and July(short dash for sampling and dot dot “dash for observation)
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The error variation in January(long dash for sampling and solid for obseryation)
and July(short dash for sampling and dot dot “dash for observation)
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The error variation in January(long dash for sampling and solid for observation)
and July(short dash for sampling and dot dot dash for observation)
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The weight distribution in January 1900
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The weight distribution in January 1983
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The weight distribution in January 1900
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The weight distribution in January 1983
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The weighted temperature in January 1900
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The weighted temperature in January 1983
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Average(0—360, 90S-60S) ) Average(0-360, 60S—30S)
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First mode
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First mode Second mode
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(a)

0.6
82 ———— 0A(1949-1973 for EOF)
--------- 0A(1974-1998 for EOF)
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(c) The difference between the two Optimal Averagings
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