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Abstract

Knowledge is central to intelligence. Intelligence can be thought of as the

ability to acquire knowledge and apply it effectively. Despite being a subject

of intense interest in artificial intelligence, it is not yet clear what the best

approach is for an intelligent system to acquire and maintain a large body of

knowledge. One interesting approach that we pursue in this thesis is based

on the view that much of world knowledge is predictive. For example, to

know that a box is heavy, is to predict that we need lots of effort to lift it.

We call this predictive approach to maintaining and acquiring knowledge, the

predictive knowledge approach. In this thesis, we implement an instance of

this approach in order to explore and assess it further. To do so, we build

upon the techniques and ideas of reinforcement learning. In particular, we

use the idea of value functions. In conventional RL, value functions capture

predictions about reward. Recently, value functions have been extended to

capture more general predictions which can constitute knowledge. A value

function in the extended form is called a general value function (GVF). GVFs

provide a language to talk and think about predictions. More generally, we

can think of GVFs as a language for representing predictive knowledge.

In this thesis, we develop the predictive knowledge view using the lan-

guage of GVFs and apply it to several robot domains. Our work has three

main contributions. First, we contribute to the idea of predictive knowledge

by providing several new examples of it on robot domains, gaining a more

substantive understanding of knowledge as predictions. Second, we perform
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empirical comparisons of many off-policy temporal-difference (TD) learning

algorithms including gradient-TD and emphatic-TD families of methods on

robot data. Third, we systematically study the learning process on robots.

Such studies provide insights about how to effectively evaluate and compare

algorithms on real-world systems.
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Preface

Parts of one of the experiments appeared in a paper in preparation by Ghi-

assian et al. (2018). However, all the experiments were originally produced

for this thesis. The writing of the thesis was also independent of the work by

Ghiassian et al. (2018).
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Chapter 1

Introduction to the Predictive
Knowledge Approach

In this work, we consider learning predictions that can constitute knowledge.

While the big goal is to investigate the idea of general value function (GVF)

for learning predictive knowledge, the more concrete goal of this work is to

empirically compare algorithms for learning predictions in the form of a GVF.

In this chapter, we introduce the predictive knowledge approach that is an

approach for acquiring and maintaining knowledge. We also briefly describe

the idea of GVF which can be used to develop an instance of the predictive

knowledge approach. In the end, we discuss the three contributions of this

work.

Understanding how world knowledge should be represented, acquired, and

maintained is crucial to artificial intelligence. Much of what we believe to be

world knowledge can be thought of as predictions. As an example, to know

that a cup of coffee is hot is to predict that if we touch it, it will burn our

hands. We can make such a prediction because we have burned our hands

many times in similar situations and we have noticed certain regularities when

interacting with hot cups of coffee. For example, whenever a cup of coffee had

steam rising from it and we touched it, it burned our hands. To know the

world is to know these regularities and to be able to predict what happens.

In this thesis, we subscribe to this predictive knowledge approach that

is based on the view that much of world knowledge is predictive. A great

advantage of viewing knowledge as predictions is that predictive knowledge can
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be verified by what really happens in experience. In other words, a learning

system can check the correctness of its predictions based on how well they

match with what it observes.

The predictive knowledge approach creates special requirements for our

predictions and learning algorithms. First, predictions need to be grounded in

experience. By experience, we mean the low-level sensorimotor data acquired

through interaction with the world. More specifically, experience is a temporal

stream of sensations and actions. It is natural for the predictions to be trans-

latable into statements about this stream, considering that knowledge can be

thought of as regularities in experience.

Second, predictions have to be about the very own experiences of the learn-

ing system and do not need to be interpretable universally or by people. The

predictive approach emphasizes the experience of the learner and encourages

a subjective view of knowledge as opposed to an objective one. For example,

for a robot to learn how far it is from the wall, it does not need to understand

distance in terms of meters, but it can have a sense of closeness based on how

many times its wheels turn until it reaches the wall. In other words, the robot

can understand everything based on its own body, sensors, and actuators. This

view seems natural if we think of human early years. An infant has a sense

of distance not in terms of universal unit systems, but in terms of its own

low-level sensorimotor experiences.

Third, predictions need to be expressive. In order to constitute knowledge,

predictions have to express many aspects of the world including both low-level

pieces of knowledge and high-level concepts.

Fourth, predictions should be suitable to be used by reasoning and plan-

ning procedures. We have been talking about representing knowledge as pre-

dictions, but it is also important to be able to use this knowledge. We want

to represent knowledge in a form such that reasoning and planning procedures

could easily use it to model the world and generate and improve behavior.

Fifth, predictions need to be both efficiently learnable and updated online.

We want to learn and represent many aspects of the sensorimotor data. To do

so, we need a massive number of predictions, each capturing a regularity in the
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data. To learn a massive number of predictions, we need algorithms that are

efficient both in terms of memory and computation. Moreover, the predictions

need to be continually adapted during the interaction of the learning system

with the world. Therefore, we need algorithms that can use the data gathered

during interaction with the world to learn, called online algorithms.

To represent and learn predictive knowledge, Sutton et al. (2011) proposed

generalizing an existing idea in reinforcement learning (RL) called a value

function. In conventional reinforcement learning, there is an agent interacting

with its environment. The agent can perform different actions and the envi-

ronment responds to the agent by emitting rewards. Value functions capture

predictions about the reward signal. More specifically, value functions give an

estimate of how much reward the agent receives from each state given that it

behaves in a specific way. While value functions are about the reward signal,

there is an extended form of value function that can be about any signal in

the world and is called general value function or GVF. GVFs can be thought

of as a language for representing predictive knowledge.

Reinforcement learning framework and in particular general value functions

are well suited for predictive knowledge because they meet the aforementioned

requirements. First, RL is based on experience and seeks to find the regu-

larities in the sensorimotor data. Second, in RL, learning happens without

supervision and based on the very own experiences of the agent. Third, the

language of GVFs is capable of expressing many aspects of the world given

that each prediction can be about any signal. Moreover, high-level pieces of

knowledge can be constructed from low-level ones. Fourth, RL makes predic-

tions that are commonly used for planning and reasoning procedures. Fifth,

RL is equipped with temporal-difference (TD) methods that are suitable for

learning a massive number of predictions efficiently and online.

There are other classical approaches addressing the challenge of represent-

ing and maintaining knowledge. Many of these approaches hold an objective

view of knowledge meaning that there are certain correct statements about

the world that are universally true. To be able to maintain knowledge using

such approaches, the system would either require human experts or logical
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inference. It is evident that as the number of statements grow, maintaining

knowledge using these approaches become infeasible. In other words, the clas-

sical approaches may suffer from lack of scalablility. The predictive knowledge

approach, on the other hand, is potentially scalable because the correctness

of the statements can be automatically verified by the learning system itself,

during learning, and based on how well they match with what actually hap-

pens.

The idea of representing knowledge as predictions has been studied in other

fields and is not limited to artificial intelligence. Drescher (1991) presented

a predictive mechanism for building an understanding of the world. This

mechanism was inspired by the work of the psychologist Jean Piaget who

proposed that the new-born infant understands the world exclusively in terms

of sensations and actions. The ability to make predictions about the sensory

data has often been argued to have a key role in perception (Friston, 2005;

Clark, 2013).

In this work, we take another step forward in investigating the suitability

of the GVF language for learning predictive knowledge. Our work has three

main contributions. Our first contribution is to give several new examples of

learning predictive knowledge on robot domains. Providing these examples,

we verify that robots can effectively use GVFs to acquire knowledge about

their interaction with the world.

The second contribution of this work is an empirical comparison of many

off-policy TD algorithms, learning predictive knowledge on robot domains.

Off-policy learning can be explained as learning about one way of behaving

while behaving in another way. Using off-policy learning, a system can learn

predictions about different ways of behaving while behaving in one specific

way. This property of off-policy learning is particularly suitable for the pre-

dictive knowledge approach. A handful of off-policy TD algorithms have been

proposed in the past couple of years. However, there are not many studies

investigating them, especially on robot data. White and White (2016) per-

formed an empirical comparison of many off-policy TD algorithms on simu-

lated domains, providing insights about the strengths and weaknesses of them
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in different situations. In this work, we perform similar empirical comparisons

on robot domains. Our work is not the first to study off-policy learning on

robot domains. Delp (2011) investigated GQ(λ), one of the most important off-

policy algorithms, learning several optimal policies on a mobile robot. White

(2015) also presented an extensive investigation of GTD(λ) and GQ(λ) algo-

rithms on many robot domains. While these two studies focused on GTD(λ)

and GQ(λ), we consider many algorithms, presenting the first empirical com-

parison of off-policy TD algorithms on robots.

The third contribution of this thesis is to gain a better understanding of

how we can do systematic studies on robot domains. Studying the learning

algorithms on robots is valuable. However, there are not many systematic

studies on such domains. There are many reasons why performing such studies

is challenging. First, robots are often unreliable. Second, gathering enough

data so as to be able to extract meaningful results from the experiment is time-

consuming. Third, there are many factors that affect the learning process, but

unlike simulations, we do not have control over them. Finally, evaluating the

learning process is more challenging on robots.

This thesis consists of 9 chapters. In the second chapter, we provide the

background on reinforcement learning. In the third chapter, we discuss the

generalized form of value functions that can be used to learn predictive knowl-

edge. Chapter 4 and 5 discuss the robots and algorithms that we used in our

experiments respectively. In Chapter 6 to 8, we present our three case studies

that make up the primary contribution of this thesis. We will close the thesis

in the conclusion chapter.
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Chapter 2

Background on Reinforcement
Learning

In this chapter, we provide background on reinforcement learning, setting the

context for understanding the rest of the thesis. We start by discussing the

agent-environment interaction loop and introducing basic concepts such as

returns, policies, and value functions. Then we discuss linear function approx-

imation and introduce temporal-difference learning. We close the chapter by

a discussion of off-policy learning and its challenges.

Readers familiar with basic reinforcement learning concepts and off-policy

learning can skip this chapter as the purpose of this chapter is to only provide

the background on those topics.

2.1 The Agent-Environment Interaction Loop

Reinforcement learning (RL) is learning from interaction. The problem of

RL is formalized using Markov decision processes (MDP) where there is an

interaction loop between the learner and its world. The learner is called the

agent and its world is called the environment. The agent and environment

interact with each other continually in discrete time steps. At each time step t,

the agent is in a state St ∈ S and performs an action At ∈ A. The environment

responds to the action by taking the agent to the next state St+1 ∈ S and

providing it with a reward signal Rt+1 ∈ R. This continual process produces
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a sequence of states, actions, and rewards:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ...

One main property of finite MDPs, where the sets of states, actions, and

rewards are finite, is that the transition to the next state and reward only

depends on the current state and action. This property is called the Markov

property. According to the Markov property, the current state and action

contain enough information to determine the probability of the next state and

reward. Because of the Markov property, the dynamics of the environment

can be fully summarized by this probability function:

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s, At = a}

2.2 Returns, Policies, and Value Functions

In RL, the agent seeks to maximize the total amount of reward it receives in

the long run. More specifically, the agent wants to maximize the expectation

of a weighted sum of the rewards. This weighted sum is called the return. We

denote the return from time steps t by Gt:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1

The rewards are weighted by powers of a continuous parameter 0 ≤ γ ≤ 1,

called the discount factor. The discount factor determines how less valuable

a reward signal will be if it is received in the future compared to if it was

received immediately.

The expectation of the return from each state provides the agent with an

estimate of how good the state is. This expectation is called the value function.

Value function at each state depends on two things. First, it depends on the

way that the agent will behave in the environment. Second, it depends on the

reward signal that the environment emits as a response to the agent’s behavior.

The agent’s way of behaving is called its policy. Policies determine the

probability of choosing each action at each state; they are functions of state

and action and are denoted by π where π : |S| × |A| → [0, 1].
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With the notions of return and policy, we can define value functions more

formally. The value of a state given a specific policy π, is defined as the

expectation of the return under that policy.

vπ(s) = Eπ[Gt|St = s]

We can define the value of a state action pair under a specific policy similar

to the value of state as the expectation of return under that policy. Value of

a state action pair is denoted by qπ(s, a).

qπ(s, a) = Eπ[Gt|St = s, At = a]

In RL, there are two main categories of problems that we want to solve:

policy evaluation and control. In policy evaluation problems, we seek to esti-

mate the value function for a given policy. In the control problem, we want to

learn an optimal policy that maximizes return. Solving the control problem

involves a policy improvement step in addition to estimating the value function

of the learned policy. In this thesis, we consider both the policy evaluation

and control problems.

2.3 Function Approximation

To estimate the value function, we first need to determine how to represent

it over the state space. In the simplest case, we can represent each state

directly. In that case, we would estimate the value function for each state

individually. This kind of representation is called tabular. In many cases,

estimating the value function for each state is not practical, either because the

number of states is large or the state space is continuous. In these cases, we

need to generalize value function over groups of states. This can be done using

function approximation.

Function approximation is a method to generalize a function using samples

of its input and output in order to approximate it over the entire input space.

In the case of estimating the value function, the input space is the state space.
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Linear function approximation is one simple and important example of

function approximation. In linear function approximation the approximator is

a linear function of a weight vector w and the state is represented as a vector

of features x = (x1(s), x2(s), ..., xd(s))
T where d is the number of features. In

this case the estimate of the value function is v̂(s; w) = wTx(s).

Tile coding is a feature construction mechanism that uses multiple over-

lapping partitions of the state space to produce features. These partitions are

called tilings. Each tiling is broken into many parts each called a tile. In the

simplest case, tile coding has only one tiling: a simple discretization of the

state space. See left part of Figure 2.11. Each state falls into a specific tile

of the tiling; in other words, each state activates the feature corresponding to

one tile. In this case, generalization happens only between the states that are

in the same tile.

tiling 1 with 16 tiles tiling 1

tiling 2
tiling 3

activated tiles
activated

 tile

point in state space

continuous
2D state
space

Figure 2.1: An example of how a point in a 2D state space activate different
tiles of different tilings

The strength of tile coding becomes clear when multiple tilings are used.

In this case, each state activates multiple tiles each belonging to one of the

tilings. To better understand this case, see the example shown on the right

side of Figure 2.1. In this example, we are using 3 different tilings and we

have shown which tile of each tiling has been activated for a point in the state

space. After finding the activated tiles for each tiling, tile coding produces

1This figure is adapted from Sutton and Barto (2017)
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a feature vector with one feature corresponding to each tile of each tiling.

Having multiple active features helps generalization happen between states

with common features. For more detail on tile coding look at Sutton and

Barto (2017).

2.4 Temporal-difference Learning

To estimate the value function without a model of the environment’s dynam-

ics, the learner has to directly use experience, that is sample states, actions,

and rewards generated from interaction with the environment. One natural

approach for estimating the value of a state directly from experience, is to sam-

ple and average returns from that state. This approach is taken in a family

of methods called Monte Carlo methods. The Monte Carlo methods can only

be applied to settings in which experience can be divided to subsequences and

return is defined as Gt =
∑T

k=0 γ
kRt+k+1, where T is a final time step. One

main drawback of Monte Carlo methods is that they need to wait till the end

of each episode and then update their estimates. While Monte Carlo methods

are not incremental in a step-by-step sense, there are a family of methods that

are fully incremental and also estimate the value function from experience,

called temporal-difference (TD) learning methods (Sutton, 1988).

Temporal-difference learning methods can update their estimates immedi-

ately after each state transition by using other learned estimates. To under-

stand how TD methods can do this, lets take a look at the general update rule

used in reinforcement learning in the case of function approximation:

wt+1 = wt + α[Ut − v̂(St,wt)]∇v̂(St,wt)

where we denote the weight vector at time step t by wt. v̂(St,wt) is the learned

estimate of the value of state St and α is the learning rate. Ut denotes the

target of learning that is an estimate of the value of St.

The main difference between the Monte Carlo methods and TD methods

can be found in their target of learning. Monte Carlo methods use the return,

Gt, as the target of learning. However, TD methods use Rt+1 +γt+1v̂(St+1,wt)
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as the target. The target of TD can be formed immediately after each state

transition using the current estimates of the value of the next state.

The simplest TD method is called TD(0) and in the case of linear function

approximation can be summarized as:

δt = Rt+1 + γt+1w
T
t x(St+1)−wT

t x(St)

wt+1 = wt + αδtx(St)
(2.1)

δt is called the TD error and can be thought of as an error because it is the

difference between the learned value of St and another more accurate estimate

of it that is Rt+1 + γt+1v̂(St+1,wt).

The Monte Carlo and TD(0) methods can be unified to a more generalized

class of methods by setting the target of learning to an intermediate value

between the target of Monte Carlo methods, Gt, and the target of TD(0) that

is Rt+1 + γt+1v̂(St+1,wt). This target is in the form of:

Rt+1 + γt+1Rt+2 + ...+ γn−1v̂(St+n,wt+n−1)

where n denotes the number of intermediate rewards that we use directly in

the target and v̂(St+n,wt+n−1) is used in the target as a proxy to the remaining

rewards. This target is called the n-step return. Computing the n-step return

requires information that becomes available only after n steps.

In addition to setting the target of learning to an n-step return, we can

set the target of learning to any average of n-step returns. Such a target is

used in the TD(λ) algorithm. TD(λ) also uses a mechanism called eligibility

traces that makes it possible to do updates continually and without delays.

The TD(λ) algorithm can be summarized as:

δt = Rt+1 + γt+1w
T
t x(St+1)−wT

t x(St)

zt = γtλzt−1 + xt

wt+1 = wt + αδtzt

(2.2)

where z is a vector of the same size as the weight vector w and is called

the eligibility trace vector. The eligibility trace at each time step determines
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the eligibility of each component of the weight vector to be affected by the

TD error of that time step. The eligibility of the components of the weight

vector decays over time and increases whenever they participate in forming an

estimate of the value of a visited state. The rate of decaying is determined by

the trace parameter λ. There are two extreme cases of λ = 0 and λ = 1. In

the case of λ = 0, the algorithm becomes the same as TD(0). λ = 0 is also

known as the case of full bootstrapping. In the case of λ = 1, the algorithm

becomes equivalent to Monte Carlo methods.

2.5 Off-policy Learning

Off-policy learning is to learn about a policy using data generated from an-

other policy. The policy that we want to learn about is called the target policy

and is denoted by π and the policy that generates the data is called the be-

havior policy and is denoted by b. Using off-policy learning we can have a

more exploratory behavior policy that chooses non-optimal actions, while we

learn about an optimal policy. Moreover, off-policy learning makes it possi-

ble to behave in one specific way while learning about many different ways of

behaving.

In order to learn about the target policy based on the data generated by the

behavior policy, we have to correct for the difference between the two policies.

To do so, we use the ratio of the probability of choosing an action under the

target and behavior policy. This ratio is called the importance sampling ratio:

ρt =
π(At|St)
b(At|St)

Adding the importance sampling ratio to the linear TD(λ), we get the

off-policy linear TD(λ):

δt = Rt+1 + γt+1w
T
t x(St+1)−wT

t x(St)

zt = ρt(γtλzt−1 + xt)

wt+1 = wt + αδtzt

(2.3)
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TD(λ) has been shown to be unstable in conjunction with linear function

approximation under off-policy training (Baird,1995). Many algorithms have

been proposed to solve the instability of TD learning under off-policy train-

ing. In this thesis, we consider many of these algorithms and review them in

Chapter 5.

As we discussed in Section 2.2, RL problems can be divided into two main

categories of prediction and control. Till this point, we have been focusing on

solving the prediction problem. However, both the ideas of off-policy and TD

learning can be applied to RL control problems. A well-known off-policy TD

algorithm for control problems is Q-learning introduced by Watkins (1989).

The Q-learning algorithm in the case of function approximation can be speci-

fied by equations 2.4:

δt = Rt+1 + γt+1w
T
t x̂(St+1)−wT

t x(St)

wt+1 = wt + αδtx(St)
(2.4)

where x̂(St+1) = x(St+1, A
∗
t+1) and A∗t+1 = argmaxaw

T
t x(St+1, a).

Despite having nice results on many domains, including Atari games (Mnih

et al., 2016), Q-learning does not have convergence guarantees in the case of

function approximation and is potentially divergent. In this work, we consider

two other off-policy TD control algorithms, in addition to Q-learning, with nice

convergence properties. A discussion of these algorithms will be presented in

Chapter 5.

2.6 Summary

In this chapter, we provided the background useful for understanding the rest

of the thesis. We started by discussing basic concepts in reinforcement learn-

ing. Then, we covered topics of linear function approximation and temporal-

difference learning. We closed the chapter by a discussion on off-policy learn-

ing.
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Chapter 3

Pursuing the Predictive
Knowledge Approach Using
General Value Functions

As we discussed in Chapter 1, we subscribe to the predictive knowledge ap-

proach. This approach is based on the view that knowledge is regularities in

one’s interaction with the world and to know the world is to know these reg-

ularities and predict them. In this work, we pursue the predictive knowledge

approach using general value functions (GVFs).

In this chapter, we discuss how general value functions are related to con-

ventional value functions and how they are formulated using reinforcement

learning ideas. We will also provide some reasons why we think implementing

the predictive knowledge approach using GVFs is promising. Finally, we will

review some of the previous work on GVFs.

3.1 From Value Functions to General Value

Functions

As we said, knowledge can be well thought of as regularities in one’s interaction

with the world. To model this interaction, let’s suppose we have an agent and

environment interacting with each other at discrete time steps. At each time

step t, the agent receives sensory signals from the environment and performs

an action. The environment receives the action and responds to the agent

with new sensory signals. We denote the observation at time t with Ot ∈ O
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and the action at time step t with At ∈ A. The experience of the agent in its

environment can be expressed as the sequence of the observations and actions.

We call this sequence sensorimotor data:

O0, A0, O1, A1, O2, A2, ...

As the agent and environment interacts, certain regularities emerge in the

sensorimotor data. The regularities in the sensorimotor data are of the same

kind as the sensorimotor data itself; they are in terms of observations, actions,

and time steps. As an example of a regularity, we can think of the sensorimotor

data of a child lying on his back. The child is looking at the ceiling. He starts

moving his arm randomly and notices changes in his visual input. Whenever

he moves his arm in a specific manner, he sees his arm. We can think of this as

a pattern in the child’s sensorimotor data. Whenever certain stream of actions

are performed, certain sensors receive certain values.

To express the regularities in the sensorimotor data, we can use ideas from

reinforcement learning, in particular value functions. Value functions capture

certain regularities in the interaction between the agent and environment.

More specifically, there is an interaction loop between the agent and the envi-

ronment very similar to the one described in the previous paragraph. At each

time step, t, the agent is in a state St ∈ S, performs an action At ∈ A, and the

environment responds to the agent by generating a reward signal Rt+1 ∈ R
and taking the agent to the next state St+1 ∈ S. This procedure generates the

following stream of states, actions, and rewards:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ...

In reinforcement learning, we seek to learn a specific pattern in the stream

of states, actions, and rewards. This pattern is called a value function. As

we discussed in Chapter 2, a value function is the expected sum of discounted

reward given our actions come from a policy π where π : A× S → [0, 1].

vπ(s) = E[Gt|St = s, At:∞ ∼ π]

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...
(3.1)

15



where we denote the value function and return with vπ and Gt respectively.

Value functions can be extended to a more general form such that they can

capture a broader range of patterns in the data and be more expressive. One

such general form has been proposed by Sutton et al. (2011). A value function

in this extended form is not limited to the reward signal and is called a general

value function (GVF). In the next section, we discuss GVFs in more detail.

3.2 General Value Function Formulation

General value functions are a language for expressing regularities in the data.

Formulation of a GVF consists of specifying a question part and an answer

part. The question part defines the target that we want to predict. We can

think of the target as a summary of the future that we are interested in. The

answer part is the process that estimates the target. In what follows, we

discuss the question and answer part in more detail.

The question part defines the regularity in the data that we are interested

in and we want to predict. The regularity is a scalar target similar to the case

of conventional value functions. As we mentioned before, the regularity is in

terms of observations, actions, and time steps. The question part has three

main elements, each capturing one of these three aspects of a regularity: 1-

Target policy 2- continuation function 3- cumulant.

The target policy is the policy that we want to know about. In other

words, the target policy generates the sequence of actions that we want to ask

a question about. We denote the target policy with π : S ×A → [0, 1].

The continuation function specifies the time scale or horizon of the regular-

ity. As we discussed earlier, the regularity is a scalar target that is a summary

of the future; at each time step, we care about what happens in the future only

till some specific point. The continuation function specifies that point. We

denote the continuation function by γ : S → [0, 1]. The continuation function

is similar to the discount factor in conventional reinforcement learning. The

discount factor specifies how much weight an immediate reward gets compared

to the one that happens in the far future. There is an interpretation of the
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discount factor that is similar to the role of a continuation function. The inter-

pretation suggests that we can think of the discount factor as a probability of

termination or continuing. At each time step, the probability of terminating is

1−γ and the probability of continuing is γ. If the task is episodic, the discount

factor is one during an episode and becomes zero when we reach the end of

the episode. This is called hard termination. If the task is continuing, the

discount factor is constant and there is a constant probability of terminating

at each time step. This is called soft termination. In this case the expected

number of steps till termination will be T = 1
1−γ . The same interpretation is

true for the continuation function in GVF language. However, the continu-

ation function is a generalized form of the discount factor that is a function

of the state and can use the information in the state to specify the point of

termination. Therefore, it adds to the expressiveness of the GVF language.

The cumulant is the information that is available at each time step to be

accumulated to construct the target. The cumulant has a very similar role

to the reward signal in conventional reinforcement learning. However, it has

been introduced as a more general signal so that the learning system can make

predictions about many signals in the world and not limited to the reward

signal. These signals can be some sensory observations or any function about

any signal in the world. The cumulant is a function of states and is denoted

by c : S → R.

These three functions – target policy, continuation function, and cumulant

– define the target of a GVF. Similar to conventional RL, we will have a notion

of return or outcome that is a weighted sum of the cumulant. However, this

formulation of return uses a state dependent discounting γ(St); therefore, the

cumulants are weighted by products of γ(St) instead of powers of γ.

Gt = Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 + ...

=
∞∑
k=0

(
k∏
j=1

γt+j)Ct+k+1

(3.2)

Where Ct and γt are c(St) and γ(St) respectively.
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The value function is defined as the expectation of outcome or return,

similar to conventional RL. We subscript v(s) by the target policy, continuation

function, and cumulant:

vπ,γ,c(s) = v(s; π, γ, c) = E[Gt|St = s, At:∞ ∼ π]

The answer part of a GVF is the mechanism that is used to approximate

the answer to the GVF. In order to approximate the answer, we have to make

certain choices about the mechanism. First, we should specify what function

approximator we want to use and set the parameters of the function approx-

imator. For example, we might want to use linear function approximation

with tile coded features. Second, we should decide which algorithm we want

to use to estimate the answer to the GVF and specify the parameters of the

algorithm such as step-size. Finally, we should choose the behavior policy that

would generate the data.

3.3 Why GVFs are a Promising Approach for

Representing Knowledge

Understanding how knowledge can be acquired, represented, and maintained

is a big challenge. We believe GVFs provide us with a path to understand how

we can approach this challenge. In this section, we discuss certain character-

istics of GVFs that makes it a proper language for representing knowledge.

First, GVF predictions are in terms of observations, actions, and time steps.

Therefore, the GVF language produces pieces of knowledge that are grounded

in experience.

Second, acquiring and maintaining GVF predictions does not rely on hu-

man intervention. The correctness of a prediction can be verified by what

actually happens. Therefore, acquisition of predictive knowledge may be scal-

able with computation and data.

Third, a GVF prediction is specified by a target policy, continuation func-

tion, and cumulant function, all of which are functions of state. Therefore, a

GVF prediction has access to any information that is included in the state.
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This information could be low level sensorimotor information, or some func-

tions of the sensorimotor data, or other GVF predictions. Therefore, GVFs

have the potential to be an expressive language.

Fourth, the GVF language produces pieces of knowledge that have con-

tinuous values. Therefore, GVF predictions can easily be used by different

procedures such as reasoning and planning.

Fifth, we need the same mechanism and algorithms for learning GVF pre-

dictions as we use for conventional value functions. Therefore, we can take

advantage of the computational power of conventional reinforcement learning

to learn GVF predictions efficiently and online.

3.4 Related Work

GVFs were first introduced as a shift from value functions to knowledge in

Sutton et al. (2011). In that work, an architecture for acquiring knowledge

was proposed, called Horde. The architecture consisted of many sub-agents

each trying to answer a predictive question about the environment in the form

of a GVF. Each sub-agent had its own target policy, but learned about the

environment from experience generated by the same behaviour policy.

The power of GVFs in representing a psychological class of predictions

called nexting was shown in Modayil et al. (2014). Nexting is defined as the

tendency of people and many animals to continually make predictions about

what will happen next. Modayil et al. (2014) showed that thousands of GVF

predictions can be learned online, on a robot, and using conventional compu-

tational resources. While Modayil et al. focused on on-policy prediction learn-

ing, White (2015) further investigated the effectiveness of the GVF language

providing experiments on both on-policy and off-policy prediction learning.

Ring (2014) provided a thought experiment showing how knowledge can

be built layer-by-layer from low-level understanding of the sensorimotor data

to high-level concepts, using GVFs. To construct knowledge, Ring proposed

putting a set of GVFs into a layer-by-layer architecture where each layer was

built upon lower-level layers
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The GVF language is not the only predictive approach addressing the chal-

lenge of grounding knowledge in experience. Two other approaches are pre-

dictive state representations (PSR) and temporal-difference networks. PSRs

represent the state of a system in terms of predictions about the stream of

observations and actions (Littman et al., 2002). While the GVF predictions

are the accumulative value of a cumulant signal, the PSR predictions are the

probability of different sequences of observations happening.

Temporal-difference networks are another framework for representing and

learning regularities in the interaction of an agent with its world (Sutton and

Tanner, 2015; Tanner and Sutton, 2005; Rafols et al., 2006; Rafols, 2006;

Sutton, 2009). These regularities are in the form of predictions about the

consequences of performing an action and are compositional in the sense that

each prediction uses the output from other predictions. In TD nets, similar

to GVFs, we want to estimate a collection of scalar predictions. However, in

TD nets these scalar predictions are arranged in an interrelated network. The

network has some primitive nodes that are predictions about some observation

signals; the non-primitive nodes are predictions about the value of other nodes

given that some specific action is performed. Similar to GVFs, TD nets have

a notion of a question and answer language that are represented as networks.

The question network determines how the predictions are connected to each

other; the answer network specifies how we should approximate the value

of one prediction from our estimate of another prediction. There are two

main differences between TD nets and GVFs. First, TD nets predictions are

predictions about the value of a specific observation signal, given that a specific

stream of actions is followed. However, GVF predictions are predictions about

the accumulative value of a signal. Second, the state representation is more

complicated in TD nets compared to GVFs.

3.5 Summary

In this chapter, we discussed general value functions. We reviewed how con-

ventional value functions can be generalized to be more expressive and be able
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to capture a wider range of regularities in the sensorimotor data. We provided

some reasons why GVFs are a proper language for acquiring and representing

knowledge. The chapter closed with a review of the previous work on GVFs

and some other related predictive approaches.
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Chapter 4

The Robots Used in this Thesis

In this chapter, we introduce the robots that we used for our experiments. The

main goal of this chapter is to take a close look at the sensors and actuators

of the robots and give a sense of what the sensorimotor data looks like.

We used two robots for our experiments. One is a simple robot consisting of

just two servo actuators. We call this robot the Dynamixel robot. The second

robot is a more complicated mobile robot designed for research on robotics,

called Kobuki. In what follows we provide details about the sensors and ac-

tuators of the robots and how the sensorimotor information is communicated

between the robots and the computer on which the learning system runs.

4.1 The Dynamixel Robot

We made the Dynamixel robot with the purpose of performing empirical stud-

ies on robot prediction tasks. The robot consists of two Dynamixel AX-12

servo actuators, two OF-12S frames, and two OF-12SH frames. See Figure

4.1a and 4.1b. The servo actuators are connected to one another by OF-12S

frame. In addition, an OF-12SH frame is installed on each of the AX-12 as

shown in Figure 4.1c. 1

The Dynamixel robot communicates with a computer on which the learning

system runs, through a USB2Dynamixel and a connector that we made. The

connector also connects the robot to the power supply. See Figure 4.2. The

1Figures 4.1a, 4.1b, 4.2a, and 4.2c were provided in CMPUT 607 (Applied Reinforcement
Learning course), University of Alberta.
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(a) Dynamixel AX-12 actuators (b) OF-12SH and OF-12S frames
are in left and right of the figure
respectively

(c) The body of the robot

Figure 4.1: The components of the Dynamixel robot.

sensorimotor data gets transferred between the robot and the computer using a

library created by Georgia Tech Research Corporation, called lib robotis hack.

(a) The USB2Dynamixel (b) The connector (c) The power supply

Figure 4.2: The USB2Dynamixel, connector, and power supply of the Dy-
namixel robot.

There is four sensory information regarding each servo actuator: angle,

load, temperature, and voltage. We can also control the movements of the

servo actuators by sending a command telling the actuator to move to a specific
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angle.

4.2 The Kobuki

The Kobuki is a robotic base designed for research on robotics. There are

several manufacturers that make Kobukis; we got one Kobuki from Clearpath

Robotics. The Kobuki is well suited for research because it can run for multiple

hours, has reliable sensors and driving system, and is physically robust. For

our experiments, we used a Kobuki as the base of the robot, added an Orbbec

Astra Pro Sensor to it, and put a netbook on top of the base. See Figure 4.3.

Figure 4.3: The Kobuki with the 3D camera and netbook.

The Kobuki has multiple sensors including bumpers detecting when the

robot bumps into something, wheel drop sensors detecting drops, and cliff

sensors that are infrared emitters detecting edges and stairs. The Kobuki is

also equipped with a gyroscope providing information about the orientation,

angular velocity, and angular acceleration. There are also some sensors provid-

ing information about the motors and battery such as motors’ current, battery

level, and charger state. We have also attached an Orbecc Astra 3D camera

to the Kobuki. The resolution of the camera is 480 × 640.

Another main sensing ability of the Kobuki is provided by three infrared

receivers detecting the position of the robot with respect to its charging station.

The charging station has 3 infrared emitters each covering the left, center, and

right regions in front of it. The regions are also divided to near and far sub-
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fields. The three infrared receivers of the robot are located in front of it and

each receiver can detect in which region it is if it is facing toward the charging

station. Each infrared receiver produces a unique reading that is based on the

region in which it is.

For reading the sensory information and controlling the robot we use the

Robot Operating System (ROS). ROS is an open-source collection of libraries

for making robot software. The sensorimotor information gets communicated

between the Kobuki and the netbook via a USB cable. The sensory data

of most of the sensors are available at a rate of 50 Hz. The camera data are

available at a rate of 30 Hz. The sensory information of each sensor gets stored

in a queue and will be ready for the learning system to access at some specific

timescale. For different experiments, we have set the timescale to different

values. At each time step, the learning system has access to the data stored

in all of the queues. It should summarize the data of each queue to one value

so that in each time step it would have only one value for each sensor. There

are multiple methods for summarizing the data of the queues. For most of

the sensors, we use the most recent element of the queue. For both the bump

sensor and infrared sensors, we use bitwise or; however for the former we apply

bitwise or on all the elements of the bump queue and for the latter we apply

it only to the last 10 elements of the infrared queue.

The driving system of the Kobuki allows it to go forward and backward and

turn left and right. The Kobuki has two powered wheels and two non-powered

wheels. To make the Kobuki move smoothly, we made a process that sends

action commands to the Kobuki at a rate of 40 Hz. This process is called the

action manager. The learning system determines the action commands that

the action manager sends to the Kobuki. The rate of sending action commands

from the learning system is determined by its timescale and is different from

the rate of sending action commands from the action manager to the Kobuki.

The action manager resends the previous action command to the Kobuki until

it receives a new action command from the learning system.

To use ROS libraries, a process called ROS Master should run. ROS master

manages the communication between different ROS processes. In our imple-
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mentation, ROS master was run on the netbook. We also ran the learning

system on the netbook by connecting to it via SSH from another computer.2

4.3 Summary

In this chapter, we discussed the robots that we used for our experiments.

The first robot is a simple robot with a limited number of sensors. Although

this robot is simple, performing empirical studies on it is a good first step for

studying the language of GVFs for representing predictive knowledge. This

is mainly because it is easier to understand the data stream and there are

fewer factors that affect the learning process which we do not have control

over. In Chapter 6, we present a case study involving the Dynamixel robot.

While the first robot consists of just two actuators, the second robot is much

more complicated and consists of a Kobuki, a 3D camera, and a netbook. We

present the case studies that use the Kobuki in Chapter 7 and 8.

2To do experiments on the Kobuki, we used software provided as a re-
sult of the Robot Learning Project initiated in the University of Alberta:
https://amiithinks.github.io/RobotLearning/
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Chapter 5

The Off-policy Algorithms Used
in this Thesis

In this chapter, we discuss the reinforcement learning (RL) algorithms that

we used for our case studies. The algorithms that we considered belong to the

family of temporal-difference (TD) learning methods. We use them to learn

off-policy. These considered 10 prediction algorithms and 3 control algorithms,

all with per step computation linear in the number of function approximation

parameters. In what follows, first we discuss the prediction algorithms then we

talk about the three algorithms that we used for solving our control problem.1

5.1 The Algorithms for Solving the Policy Eval-

uation Problem

In this section, we discuss the algorithms that we used in our case studies

for estimating the value function for a given policy. The first algorithm is

off-policy TD(λ). A description of TD(λ) can be found in Chapter 2. As we

discussed in Chapter 2, off-policy TD(λ) has been shown to be unstable in

conjunction with linear function approximation.

We considered several algorithms from the gradient-TD family of methods.

Gradient-TD methods are one of the most important family of methods with

nice convergence guarantees under off-policy training. The first algorithm that

we considered from this family was GTD(λ); this algorithms applies stochastic

1We would like to thank Sina Ghiassian for useful discussions on different algorithms and
in particular for providing the variant of ABQ(ζ) algorithm for learning state values.
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gradient descent (SGD) to an objective function called mean squared projected

bellman error (MSPBE) and take advantage of the robust convergence proper-

ties of SGD (Sutton et al., 2009; Maei and Sutton, 2010; Maei, 2011). GTD(λ)

can be specified by equations 5.1. This algorithm has two weight vectors, w

and h, and two step-sizes, α and αh. The update to the main weight vector,

w, for GTD(λ) is similar to the one for TD(λ). However, there is an additional

term in the update of GTD(λ). This additional term, γt+1(1 − λ)(zTt ht)xt+1,

is called the gradient correction. This term is added to correct the TD update

so that the update follows the gradient of MSPBE.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

wt+1 = wt + α[δtzt − γt+1(1− λ)(zTt ht)xt+1]

ht+1 = ht + αh[δtzt − (xTt ht)xt]

(5.1)

We also considered GTD2(λ) from the gradient-TD family of methods.

GTD2(λ), similar to GTD(λ), applies stochastic gradient descent to MSPBE

and is convergent under off-policy training. The main difference between

GTD2(λ) and GTD(λ) algorithms is that they use different techniques for

computing an estimate of the gradient of MSPBE. The GTD2(λ) algorithm

can be specified by equations 5.2. Similar to GTD(λ), GTD2(λ) has two

weight vectors and two step-sizes.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

wt+1 = wt + α[(hTt xt)xt − γt+1(1− λ)(zTt ht)xt+1]

ht+1 = ht + αh[δtzt − (xTt ht)xt]

(5.2)

Another gradient-TD algorithm that we considered is hybrid TD or HTD(λ)

that can be thought of as a combination of GTD(λ) and TD(λ) methods

(Hackman, 2012; White and White, 2016). HTD(λ) applies updates similar to

GTD(λ) when the target and behavior policies are different and behaves simi-
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larly to TD(λ) otherwise. This algorithm takes advantage of both GTD(λ) ro-

bustness and TD(λ) sample efficiency. Equations 5.3 summarizes the HTD(λ)

algorithm. Similar to GTD(λ), HTD(λ) has two weight vectors. HTD(λ) has

an extra eligibility trace vector, zµt , which is an on-policy trace.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

zµt = γtλzµt−1 + xt

wt+1 = wt + α[δtzt − (xt − γt+1xt+1)(zt − zµt )Tht]

ht+1 = ht + αh[δtzt − (xt − γt+1xt+1)(h
T
t zµt )]

(5.3)

We also used two other gradient-TD methods in our case studies that

use proximal methods to achieve acceleration. The first method is proximal

GTD(λ) (Mahadevan et al., 2014; Liu et al., 2015) and can be specified by

equations 5.4. The equations for proximal GTD(λ) are similar to those of

GTD(λ); however, the proximal one has an additional half step update.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

ht+ 1
2

= ht + αh[δtzt − (xTt ht)xt]

wt+ 1
2

= wt + α[δtzt − γt+1(1− λ)(zTt ht)xt+1]

δt+ 1
2

= Rt+1 + γt+1w
T
t+ 1

2
xt+1 −wT

t+ 1
2
xt

wt+1 = wt + α[δt+ 1
2
zt − γt+1(1− λ)(zTt ht+ 1

2
)xt+1]

ht+1 = ht + αh[δt+ 1
2
zt − (xTt ht+ 1

2
)xt]

(5.4)

The second proximal method that we considered is proximal GTD2(λ).

The equations for proximal GTD2(λ) are provided below. The updates to

the weight vectors for proximal GTD2(λ) are similar to those of GTD2(λ).

However, proximal GTD2(λ), similar to GTD(λ), had an additional half step

update.
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δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

ht+ 1
2

= ht + αh[δtzt − (xTt ht)xt]

wt+ 1
2

= wt + α[(xTt ht)xt − γt+1(1− λ)(zTt ht)xt+1]

δt+ 1
2

= Rt+1 + γt+1w
T
t+ 1

2
xt+1 −wT

t+ 1
2
xt

wt+1 = wt + α[(hT
t+ 1

2
xt)xt − γt+1(1− λ)(zTt ht+ 1

2
)xt+1]

ht+1 = ht + αh[δt+ 1
2
zt − (xTt ht+ 1

2
)xt]

(5.5)

Another important method with appealing convergence properties under

off-policy training that we used is emphatic-TD(λ) or ETD(λ) (Sutton et al.,

2016). This method achieves stability by ensuring that the distribution of the

updates are on-policy meaning that all state transitions are based on the target

policy. ETD(λ) can be specified by equations 5.6. ETD(λ) has an extra trace,

F , which changes the distribution of the updates by affecting the eligibility

traces. F is a scalar and is called the followon trace.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

Ft = ρt−1γtFt−1 + It, with F−1 = 0

Mt = λIt + (1− λ)Ft

zt = ρt(γtλzt−1 +Mtxt)

wt+1 = wt + αδtzt

(5.6)

We also considered a generalized form of ETD(λ) introduced by Hallak et

al. (2016), denoted by ETD(λ, β). This algorithm introduces an additional

parameter, β, working as a bias-variance knob. Adding β was proposed to

control the high variance of conventional ETD(λ) by adding bias to it. The

equations of ETD(λ, β) are provided below. The difference between ETD(λ)

and ETD(λ, β) is in the update of the followon trace. ETD(λ, β) uses β instead

of γ when updating the followon trace. The original ETD(λ, β) algorithm was

proposed for the case of constant discount factor. In the problems that we

considered the discount factor was state dependent and either had a non-zero
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value less than 1 or was 0. To use the ETD(λ, β) algorithm, we used the same

equations but whenever the discount factor was zero, the followon trace, Ft,

became equal to It.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

Ft = ρt−1βFt−1 + It, with F−1 = 0

Mt = λIt + (1− λ)Ft

zt = ρt(γtλzt−1 +Mtxt)

wt+1 = wt + αδtzt

(5.7)

Off-policy learning suffers from high variance introduced by the importance

sampling ratio. There exists methods that control the effect of importance

sampling ratio on updates, not allowing high values of it to affect the trace.

One such algorithm for learning action values is ABQ(ζ) introduced by Mah-

mood et al. (2017) with ζ being a trace parameter similar to λ. This algorithm

also uses gradient-based TD updates, achieving stability under off-policy train-

ing. In this work, we used a variant of ABQ(ζ) that is used for learning state

values, called ABTD(ζ) (personal communication with Sina Ghiassian). For

our case studies, we implemented a simpler version of ABTD(ζ) that did not

involve gradient corrections. The simpler version of ABTD(ζ) that we used

can be summarized by equations 5.6. These equations are similar to the equa-

tions of off-policy TD. However, instead of λρ in the update of the eligibility

traces, ABTD(ζ) uses a new term νζπ. This new term controls the variance

of the updates.

δt = ρt[Rt+1 + γt+1w
T
t xt+1 −wT

t xt]

zt = γtνζ,t−1πt−1zt−1 + xt

wt+1 = wt + αδtzt

(5.8)

We also considered one algorithm that has convergence guarantees only in

the tabular case, called provisional TD or PTD. This algorithm is interesting

because it is the first off-policy algorithm that is equivalent to Monte Carlo

algorithms when λ = 1 (Sutton et al., 2014). The equations for PTD(λ) are
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provided below. In the case of on-policy training, PTD(λ) is exactly the same

as TD(λ). However, in the off-policy case, an additional weight vector, h,

affects the updates to the weight vector w.

δt = Rt+1 + γt+1w
T
t xt+1 −wT

t xt

zt = ρt(γtλzt−1 + xt)

wt+1 = wt + αδtzt + (ρt − 1)ht

ht+1 = γt+1λ(ρtht + αδ̄tzt)

δ̄t = Rt+1 + wT
t xt+1 −wT

t xt

(5.9)

5.2 The Algorithms for Solving the Control

Problem

We considered three control algorithms in our work. The first one is the well-

known Q-learning algorithm which we discussed in Chapter 2. As we discussed

in Chapter 2, Q-learning is potentially divergent in the case of function ap-

proximation.

The second algorithm that we considered belongs to the family of gradient-

TD algorithms. In the previous section, we discussed some of the algorithms in

this family such as GTD(λ). Maei and Sutton (2010) introduced an extension

of GTD(λ) for estimating action-value functions called GQ(λ). To extend

GQ(λ) to control domains, Maei et al. (2010) presented an algorithm called

greedy GQ(λ). The extension of GQ(λ) to greedy GQ(λ) is similar to the

extension of TD(0) to Q-learning. Greedy GQ(λ) is the second algorithm that

we considered in our studies. This algorithm can be specified by the following

equations:

δt = Rt+1 + γt+1w
T
t x̂(St+1)−wT

t x(St)

zt = ρtγtλzt−1 + xt

wt+1 = wt + α[δtzt − γt+1(1− λ)(xTt ht)x̂t+1]

ht+1 = ht + αh[δtzt − (xTt ht)xt]

(5.10)
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where x̂(St+1) = x(St+1, A
∗
t+1) and A∗t+1 = argmaxaw

T
t x(St+1, a). If At = A∗t ,

ρt = 1
b(A∗

t |St)
; otherwise ρt = 0.

The third off-policy control algorithm that we considered is a variant of

ABQ(ζ) for policy learning which we call greedy ABQ(ζ). We derived this

algorithm from ABQ using the same greedifying method that was used for

extending GQ(λ) to greedy GQ(λ). The greedy ABQ algorithm that we con-

sidered did not apply gradient corrections and can be specified by the following

equations:

δt = Rt+1 + γt+1w
T
t x̂(St+1)−wT

t x(St)

zt = γtνζ,tπtzt−1 + xt

wt+1 = wt + αδtzt

(5.11)

where x̂(St+1) = x(St+1, A
∗
t+1) and A∗t+1 = argmaxaw

T
t x(St+1, a). If At = A∗t ,

πt = 1; otherwise πt = 0.

5.3 Summary

In this chapter, we reviewed the RL algorithms that we considered in our

case studies. First, we discussed the 10 off-policy algorithms that we used

for solving the policy evaluation problem. Then, we briefly reviewed the 3

off-policy algorithms that we used for solving the control problem. Reviewing

our robots in the previous chapter and discussing our algorithms in this one,

we are ready to present our first case study in the next chapter.
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Chapter 6

The Dynamixel Case Study

Having introduced our robots and algorithms, in this chapter we present the

first of our case studies that make up the primary contributions of this thesis.

In this first case study, we perform an empirical assessment of many algorithms

on a relatively simple robot prediction task. We decided to start with a simple

task because interpretation of the results is more straightforward in this case.

In the subsequent chapters, we present studies on more complicated tasks.

As we discussed in Chapter 1, we pursue the predictive knowledge approach

using reinforcement learning (RL) ideas such as general value functions (GVFs)

to learn predictive knowledge. In this thesis, we study how effective RL algo-

rithms are at learning GVF predictions. This helps us in the bigger project

of investigating the utility of GVFs as a language for representing knowledge.

In the past couple of years many RL algorithms have been proposed; however,

there are not any studies comparing these algorithms on real-world systems.

We aim to provide a better understanding of RL algorithms by studying their

application on robot data.

6.1 The Dynamixel Prediction Task

In this case study, we use the Dynamixel robot, which was described in Chapter

4, learning a prediction task. The Dynamixel prediction task is to learn how

soon one of the motors reaches a particular target angle, given that it is going

back and forth between two limiting angles. See Figure 6.1. The limiting

angles have the values of 0 and 1.5 radians and at each time step, the motor
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moves for 0.05 radians. It takes about 60 steps for the motor to go from one

end to the other and come back.

Figure 6.1: The Dynamixel robot

6.2 The GVF Formulation of the Dynamixel

Prediction Task

We formulate the Dynamixel prediction task as a single GVF. As we discussed

in Chapter 3, to formulate a GVF, we use the language of questions and

answers.

For the question part, as we discussed in Chapter 3, we have to specify

the target policy, the continuation function, and the cumulant function. For

this prediction task, the target policy is to move back and forth between

two limiting angles of 0 and 1.5. The continuation function always returns

0.9 except for the time when the distance between the current angle and the

target angle is less than 0.05 in which case it returns 0. The cumulant function

returns 1 when the distance between the current angle and the target angle is

less that 0.05; otherwise, it returns 0.

The answer part is the mechanism that approximates the answer to the

question and depends on the state representation, the learning algorithm, and

the behavior policy. In this study, our answer part is a linear function with

a tile coded representation. A description of tile coding and the learning

algorithms is given in Chapter 2 and 5 respectively. We provide the details

about the parameters that we used for the tile coding and learning algorithms,
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together with a description of the behavior policy in the next section.

6.3 The Dynamixel Prediction Experiment

To construct the feature vector, we used two signals from the motor: angle

and velocity. Angle is a continuous value that can be between −0.1 to 1.6.

We computed the velocity from the difference between the current angle and

the previous angle. It is a discrete number that has a value of 1 whenever the

difference is positive and has a value of −1 otherwise. To produce the features,

the angle position was tile coded using 8 tilings each with 4 tiles. Tile coding

the position resulted in a binary vector of size 8 × 4. The final feature vector

was of size 2 × 8 × 4 where each of the 2 parts corresponded to one of the

values that velocity could have.

We applied the 10 algorithms discussed in Section 5.1 to this prediction

task. For each algorithm, we made many instances of it with different val-

ues of the parameters. The step-size was in the form α
number of tilings

where

α ∈ {0.1 × 2x|x = −13,−12, ..., 3}. For the gradient based algorithms the

second step-size was in the following form: αw = η × α
number of tilings

where

η ∈ {2x|x = −13,−12, ..., 2}. The ζ parameter for the ABTD algorithm

and the trace parameter λ for all the other algorithms was a number in

{0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1}. The β parameter for ETD(λ, β) was a number

in {0, 0.2, 0.4, 0.6, 0.8, 0.9, 1}
We used a behavior policy that was the same as the target policy plus

ten percent randomness. Ten percent of the time, the motor would move in a

direction opposite to the direction that it was supposed to go. The importance

sampling ratio would have values of 0 and 1.11. We generated 30 runs of

sensorimotor data. Each run consisted of 20000 steps and took approximately

100 minutes. Learning happened offline.

6.4 Performance Measure

Evaluating the learning algorithms on a robot can be challenging. In this

robot domain, like all other robot domains, we do not have access to the value
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function. Therefore, we cannot evaluate the algorithms by looking at the dif-

ference between the learned estimations and the values. One natural choice for

evaluating the algorithms in such settings is to calculate the return from the

data and compare the predictions with the calculated returns. However, in this

experiment, the algorithms learn the task off-policy and the data is generated

following the behavior policy. Therefore, we have to correct the return calcu-

lated from the data using the importance sampling ratio. See equation 6.1.

Unfortunately, the importance sampling ratio introduces variance to the re-

turn and the performance measure. Therefore, evaluating the learning process

using the data produced by the behavior policy is not desirable.

Gt = ρtCt+1 + ρtρt+1γt+1Ct+2 + ρtρt+1ρt+2γt+1γt+2Ct+3 + ... (6.1)

To deal with these difficulties of evaluating a learning process on a robot

domain, we collected a number of sample states following the behavior policy

and calculated their return following the target policy. To collect samples from

the behavior policy, we followed the behavior policy for a random number of

time steps coming from the uniform distribution of U(70, 140). After sampling

a specific time step, we followed the target policy for 70 time steps to compute

the return corresponding to that time step. The reason that we used number

70 is that it takes about 60 steps for the motor to complete a cycle following

the target policy; therefore, 70 seemed to be a big enough number to be used

for this prediction task. Following this procedure multiple times, we collected

40 sample states and their corresponding return. During the learning time,

we used these samples to compute a measure of how well the algorithms have

performed. To evaluate the algorithms, we computed the following expression

and got its root:

M̂SRE(w)=̇
1

|D|
∑

(s,G)∈D

(wTx(s)−G)2

where D includes the sample states and their corresponding returns and w is

the weight vector. We denote this measure by M̂SRE(w) because it can be

thought of as an estimation of the mean square return error (MSRE):
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MSRE(w)=̇
∑
s∈S

db(s)E[(wTx(St)−Gt)
2|St = s]

where db(s) denotes the probability of state s under the behavior policy.

6.5 Results

The learning curves of all the algorithms for the case of λ = 0 is shown in Figure

6.2. We decided to first show the results for the case with full bootstrapping

because in this case the difference between the algorithms was more evident

and as we increased the value of the trace parameter, the algorithms performed

more similarly. All the other parameters were set to values resulting in the

lowest asymptotic performance. To estimate the asymptotic performance, we

computed the average of error over the last 0.0025 percent of each run and

averaged over 30 runs.

0 2000 10000 20000

TD, GTD, HTD, 
PTD, ABTD

Proximal GTD2

GTD2

Proximal GTD

ETD,

\RMSRE(wt)

0.15

0.25

0.45

time step

ETD(       )�,�

Figure 6.2: Learning curves for the case of λ = 0 for the Dynamixel prediction
task. All the parameters are set to values resulting in the best asymptotic
performance.

According to the learning curves, ETD(λ) and ETD(λ, β) reached a sig-

nificantly lower level of asymptotic error compared to the other algorithms.

Moreover, they converged faster than the other algorithms with ETD(λ, β)

being the fastest (See Figure 6.2).

The parameter studies of the asymptotic performance of the algorithms

over the step-size for the case of λ = 0 are shown in Figure 6.3. Based on

the parameter studies, the two emphatic-TD algorithms reached the lowest
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Figure 6.3: Parameter studies of the asymptotic performance over the step-size
for the case of λ = 0 for the Dynamixel prediction task. All the parameters
are set to values resulting in the best asymptotic performance.

level of asymptotic error; however, they converged for a smaller range of the

step-size compared to the other algorithms.

The learning curves of the algorithms for the case with λ = 0.95 is shown

in Figure 6.4. Based on this figure, the algorithms performed similarly for

λ = 0.95 with PTD(λ) being slower compared to the other algorithms.

Proximal GTD2

GTD2
Proximal

GTD

ETD

PTD ABTD
GTD

TD,HTD

2000 10000 20000

\RMSRE(wt)

0.15

0.2

0.25

time step
0

ETD(       )�,�

Figure 6.4: Learning curves for the case of λ = 0.95 for the Dynamixel predic-
tion task. All the parameters are set to values resulting in the best asymptotic
performance.

An interesting observation is that ETD(λ) and ETD(λ, β) in the case of

full bootstrapping are as good as all the other algorithms with λ = 0.95. See

Figure 6.2 and Figure 6.4. In other words, using higher values of λ improves
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the performance of all the other algorithms except for ETD(λ) and ETD(λ, β).

The parameter studies of the algorithms for the case with λ = 0.95 is shown

in Figure 6.5. The parameter studies support the result of the learning curves

that all the algorithms perform similarly for λ = 0.95.

\RMSRE(w)

0
0.2
0.4

0.8

0-2-3-4 -1
↵(10x)

Proximal GTD

GTD

GTD2 Proximal
GTD2

PTD
ETD

ABTD

TD
HTD

Asymptotic

ETD(       )�,�

Figure 6.5: Parameter studies of the asymptotic performance over the step-
size parameter for the case of λ = 0.95 for the Dynamixel prediction task. All
the parameters are set to values resulting in the best asymptotic performance.

In addition to the results regarding the comparison between the algorithms,

there were some interesting observations in the parameter studies of each of

them. To understand these parameter studies, lets look at the plot for TD(λ)

in Figure 6.6 as an example. This plot shows the effect of step-size on the

asymptotic performance for different values of λ. Each line in this plot cor-

responds to one value of λ. All of the lines have a U-shape, with the ones

corresponding to the higher values of λ having smaller asymptotic error. The

lines corresponding to the lower values of λ, on the other hand, converge for a

wider range of step-sizes.

Discussing an example of a parameter study in the previous paragraph,

we are ready to discuss some interesting observations about the parameter

sensitivity of the algorithms. First, ETD(λ), unlike the other algorithms, was

not sensitive to the value of λ (See Figure 6.6). Second, GTD(λ), proximal

GTD(λ), and HTD(λ) were not much sensitive to the value of the second step-

size and their sensitivity reduced as the trace parameter got bigger (See Figure
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Figure 6.6: The parameter studies over the step-size parameter for ABTD(ζ),
TD(λ), PTD(λ), and ETD(λ) for the Dynamixel prediction task.

6.7). Third, the asymptotic performance of TD(λ), PTD(λ), and ABTD(ζ)

were very similar (See Figure 6.6). Fourth, for ETD(λ, β) as β got bigger, the

range of step-size for which the algorithm converged got smaller. Moreover,

for higher values of λ, β did not much affect the asymptotic performance.

6.6 Summary and Conclusions

In this chapter, we presented our first case study. We performed an empirical

comparison of 10 off-policy temporal-difference learning algorithms on a simple

prediction robot task. Our results suggest that several RL algorithms seem

useful for learning predictions represented as GVFs, within the computational

and sample complexity constraints of a simple robot. Based on our empirical

comparison, ETD(λ) and ETD(λ, β) outperform the other algorithms both

in terms of asymptotic performance and speed in the Dynamixel experiment.

However, they converge for a shorter range of step-sizes compared to the other

algorithms.
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We can also conclude from this case study that the methodology that we

developed for doing empirical comparisons on a simple robot domain seems to

be effective. Using this methodology, we could do parameter studies of many

algorithms on robot domains and for many runs.
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Chapter 7

The Time-to-align Case Study

Having presented our first case study on a simple robot prediction task, in this

chapter we present the second of our three case studies on a more complicated

robot, the Kobuki. In this case study, similar to the previous one, we perform

an empirical comparison of several algorithms. However, instead of focusing

on a robot prediction task, we consider a robot control task.

As we discussed in Chapter 6, investigating how well RL algorithms learn

GVF predictions can benefit us in the project of examining the suitability

of GVFs as a language for representing predictive knowledge. Reinforcement

learning is enriched with control algorithms; however, there is not any study

comparing these algorithms on real-world control tasks. In this chapter, we

perform an empirical comparison of several RL algorithms learning a goal-

directed GVF.

7.1 The Time-to-align Control Task

For this case study, we use the Kobuki which was described in Chapter 4 and

use it to learn a control task. The control task is to learn to align with the

charging station as fast as possible. To do this task the Kobuki can turn left

and right in place. See Figure 7.1. We call this task the time-to-align control

task. There are two sensors available for the robot to learn this control task.

One is the infrared receiver at the front of the Kobuki that produces a unique

reading whenever the Kobuki is aligned with the charging station. The other is

the Kobuki’s gyroscope that provides the orientation of the robot; turning left
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increases the orientation. It takes about 100 steps for the robot to complete a

cycle with the velocity at which it is turning.

Aligned

The charging station

The Kobuki

(a) The Kobuki is aligned
with the charging station

Not Aligned

The Kobuki

The charging station

(b) The Kobuki is NOT aligned with the
charging station

Figure 7.1: The Kobuki alignment with the charging station.

7.2 The GVF Formulation of the Time-to-align

Control Task

We formulate this control task as a single GVF. As we discussed in Chapter

3, formulating a GVF is a process of specifying a question part and an answer

part.

For the question part of this GVF, we use a target policy that is greedy with

respect to the action-value function where the action set consists of turning

left and turning right. The continuation function returns 0 whenever the

Kobuki is aligned with the charging station, otherwise, it returns 1. Finally,

the cumulant function always returns −1.

The answer part of this GVF is a linear function with tile coded represen-

tation. The things that influence the answer part are the state representation,

learning algorithm, and behavior policy. We provide more details about how

we set these things for learning this GVF in the next section.
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7.3 The Time-to-align Control Experiment

To construct the feature vector, we used the tile coding software.1 The input

to tile coding was the orientation of the Kobuki which was a real value between

−1 and 1 that wraps around 1. We fed the orientation to a wrap tile-coder

with 16 tilings each with 4 tiles. The tile coding software uses an indexed hash

table; for this experiment we set the size of the hash table to 4096.

We applied the 3 algorithms of Q-learning, greedy GQ(λ), and greedy

ABQ(ζ) which we discussed in Chapter 5 to this control task. We made several

instances of each algorithm each corresponding to a parameter setting. The

step-size was in the form α
number of tilings

where α ∈ {0.1× 2x|x = −4,−3, ..., 1}.
λ and ζ parameters were a number in {0, 0.5, 0.9} for the greedy GQ and

ABQ algorithms. The second step-size was in the following form: αw = η ×
α

number of tilings
where η ∈ {0.0625, 0.25, 1, 4}.

The behavior policy selected between turning left and right randomly at

each time step with a 90 percent bias toward repeating the previous action.

The time scale for this experiment was 0.1 seconds.

There were certain issues that made performing this experiment challeng-

ing. First, the Kobuki was supposed to stay in its place and only turn left

and right; however, after turning left and right for a while, it would slightly

slide toward a direction. Second, the orientation readings were not reliable;

therefore, we would get different readings for the same orientation over time.

These two issues introduced non-stationarity to the problem. To deal with this

non-stationarity, we collected small batches of data and manually resolved the

non-stationarity when starting the collection of each batch. For the sliding

problem, we moved the robot manually to the starting position. For the unre-

liability of the orientation readings, we offset the readings by the value of the

orientation at which the Kobuki was aligned with the charging station. By

performing this offsetting, we could make sure that the orientation of the robot

when it was aligned with the charging station was kept at a value around 0.

We collected 80 batches of data each of size 1000 time steps following

1Here is a link to the tile coding software: http://incompleteideas.net/tiles/tiles3.html
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the behavior policy. Collecting each batch took about 100 seconds; however

because of manually readjusting the robot, the whole process of collecting the

80 batches took about 5 hours. We used 20 batches of data for each run,

resulting in 4 runs of size 20, 000 time steps. For half of the batches, the

Kobuki started from the orientation at which it was aligned with the charging

station and for the other half, it started from roughly the opposite orientation.

After collecting the data, we applied different instances of the algorithms to

learn the task offline.

7.4 Performance Measure

A natural approach for evaluating how well an algorithm has learned a robot

control task is to test the policy that it has learned on the robot and compute

the return. For this case study, however, doing the evaluation on the robot

could be expensive because we needed to run lots of tests. A large number

of tests were needed because we had many instances of each of the three

algorithms, each corresponding to a parameter setting. For example, GQ had

72 different parameter settings. In addition to the high number of instances for

each of the algorithms, we had 4 different runs of learning data. Moreover, we

wanted to do multiple tests each starting from a different starting orientation.

Finally, in order to get an estimation of how good each algorithm had learned

over time, we had to evaluate the policy that they had learned after different

number of time steps. To get an estimation of how many tests are needed

to evaluate GQ let’s suppose we want to do the evaluation from 4 different

starting orientations and after 4 different number of time steps. We would

need to run 72× 4× 4× 4 = 4608 tests which is not feasible.

To reduce the high number of evaluations, we decided to select one param-

eter setting for each of the algorithms that seemed to be a reasonably good

setting. We selected the parameter setting for each algorithm, by looking

at the action-value plots of them for different settings. These plots show the

action-value function of the learned policy after 20,000 time steps, for different

orientations and actions, and averaged over 4 runs.
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To understand the action-value plots lets look at the two examples of Figure

7.2. The x axis of the plots is the orientation and the y axis is the action-

value function for action a. Each plot contains two lines with the red one

corresponding to the turning right action and the blue one corresponding to the

turning left action. Given that the goal of the robot is to minimize the number

of steps till aligning with the charging station and that the alignment happens

at an orientation about 0, the optimal policy is to move toward orientation 0.

Therefore, when the orientation of the robot is in range [0, 1], it should turn

right, that is move toward smaller values of orientation, and turn left otherwise.

Moreover, the closer an orientation is to 0, the smaller is the number of steps

needed till alignment. Therefore, Example 2 is a properly learned action-value

function. However, Example 1 is a poorly learned action-value function. If

the robot follows the greedy policy with respect to this action-value function,

at orientation −0.5, it would turn right toward smaller values of orientation

instead of turning left towards orientation 0.

a = left

a = right a = left
a = right

Orientation

-0.8

-0.4

-1.2
-40

-20

0

-60 -0.5-1 0 0.5 1
Orientation

-0.5-1 0 0.5 1

q̂(s, a)

Example 1 Example 2

Figure 7.2: Examples of action-value plots.

We selected a reasonable parameter setting for each of the algorithms by

looking at the action-value plots. For Q-learning, the step-size was set to 0.05.

For greedy GQ, the step-size, second step-size, and trace parameter were set

to 0.05, 4×0.05, 0.5 respectively. For greedy ABQ, the step size and the trace

parameter were set to 0.0125 and 0.5 respectively.

To evaluate the algorithms over time, we considered the greedy policy with

48



respect to the learned action-value functions after different number of time

steps. We call these time steps, evaluation points. For this experiment the

evaluation points were 1000, 5000, 10000, 20000 times steps. To evaluate

the learned policy for each evaluation point and run, we ran 4 tests each

starting from a different orientation and calculated the return. The length of

the tests were 250 time steps. The starting orientations are shown in Figure

7.3. For an optimal policy, the average return from the 4 different starting

orientations should be around −30. This whole process of evaluating the

algorithms considering the manual readjustment of the robot took about 7

hours.

orientation ⇡ �0.3

orientation ⇡ �0.95orientation ⇡ 0.95

orientation ⇡ 0.55

orientation = 0
1

23

4

Figure 7.3: The four different starting orientations for the evaluation.

7.5 Results

The performance of the three algorithms of Q-learning, greedy GQ, and greedy

ABQ is shown in Figure 7.4. The x axis is the evaluation point. The y axis is

the average return over runs and tests where the return is the number of steps

to alignment negated.

According to Figure 7.4, all of the algorithms learned to turn in the di-

rection that would achieve the goal fastest within 20, 000 time steps. Greedy

GQ(λ) outperformed the other algorithms in the mean; however, further work

is required to establish significance.
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Figure 7.4: Comparison of the algorithms on the time-to-align control task.

7.6 Summary and Conclusions

In this chapter, we presented our second case study. In this case study, we

considered a robot control task performed on the Kobuki and assessed the

performance of the three algorithms of Q-learning, greedy GQ, and greedy

ABQ on the task. Based on our results, all of the three algorithms are useful

for learning a simple control task in a real-world setting and under off-policy

training. Our results about greedy GQ is consistent with previous work on this

algorithm, suggesting that it is a reasonable choice to be used in real-world

systems as well as simulated domains.

We found performing empirical comparisons of control algorithms on robots

quite difficult. We could only make the comparison for a few runs and were

not able to draw meaningful conclusions about the superiority of one algorithm

over the others. One important conclusion of this study is that more efficient

and effective evaluation methodologies are required to do empirical studies on

robot domains.
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Chapter 8

The Collision Case Study

In this chapter, we present the last of our three case studies. In the two previ-

ous chapters, we looked at two case studies; one considering a relatively simple

prediction task and one considering a control task. In both of these studies,

we focused on tasks with low-dimensional sensory information. This last case

study is in particular interesting because it considers a more complicated pre-

diction task in which a robot wanders in a relatively large space trying to

predict when it is going to bump into something using its camera.

Assessing how effective reinforcement learning (RL) algorithms learn gen-

eral value function (GVF) predictions is valuable. As we discussed in Chapter

6, such assessments is an step towards investigating the suitability of GVFs as

a language for representing knowledge. In this chapter, we further assess the

applicability of RL algorithms for learning GVF predictions using a relatively

complicated robot prediction task.

8.1 The Collision Prediction Task

The collision experiment task is about a Kobuki robot wandering in a wooden

pen, asking itself the question “If I go forward, how close am I to bumping

into something?”. A picture of the Kobuki in the pen is shown in Figure 8.1

and the description of the Kobuki is provided in Chapter 4. The sensors that

are available for the learning system to answer this question are the Kobuki’s

camera and bump sensors. The learning system tries to make a prediction

about the bump sensor based on the visual input from the camera.
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Figure 8.1: The Kobuki in the wooden pen.

8.2 The GVF Formulation of the Collision Pre-

diction Task

We formulate this prediction task as a single GVF. Like the other two case

studies, we formulate our prediction task using the language of questions and

answers.

Similar to the other case studies, to specify the question part, we have to

specify the target policy, continuation function, and cumulant function. For

this prediction task, the target policy picks the forward action in all states. The

continuation function returns zero whenever the robot bumps into something

and returns 0.97 otherwise. The cumulant function returns a binary value that

becomes 1 whenever either of the bump sensors are on.

The answer part of this GVF, like the other two case studies, is a linear

function with tile coded features. The answer part approximates the answer

to the question and this approximation depends on the state representation,

learning algorithm, and behavior policy. In the next section, we discuss how

we set these things for this GVF in more detail.

8.3 The Collision Prediction Experiment

To construct the feature vector we used the tile coding software. The input to

tile coding was 50 RGB pixels randomly selected from the camera, represented
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as a vector of size 150. We tile coded each of the 150 numbers separately using

8 tilings and 4 tiles in each tiling. The tile coding software uses an index hash

table. For this experiment, we set the size of the hash table to 9600.

We applied the 10 algorithms discussed in Section 5.1 to this predic-

tion task. We made many instances of the algorithms each corresponding

to a specific parameter setting. The step-size was in the form α
number of tilings

where α ∈ {0.1 × 2x|x = −13,−12, ..., 3}. For the gradient based algo-

rithms the second step-size was in the following form: αw = η × α
number of tilings

where η ∈ {2x|x = −5,−4, ..., 1}. The ζ parameter for the ABTD algo-

rithm and the trace parameter λ for all the other algorithms was a number in

{0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1}. The β parameter for ETD(λ, β) was a number

in {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.97, 1}
We used a behavior policy which would go forward with probability 0.9

and turn left with probability 0.1.

8.4 Performance Measure

As we discussed in Chapter 6, evaluating the learning algorithms on robot

domains can be challenging, especially when learning is happening off-policy.

In the first case study, we used a performance measure that could be thought

of as an estimation of mean square return error (MSRE). To compute the

performance measure, we sampled many states from the behavior policy and

computed their returns by following the target policy. We call the pairs of state

and return that is used for evaluation, the evaluation data. During learning,

we used the evaluation data to calculate an estimation of MSRE. In this case

study, we did something similar. However, instead of collecting the evaluation

and learning data separately, we collected all the data at the same time.

The data collection process consisted of three phases: learning-data collec-

tion, excursion, and recovery. See Figure 8.2. In the learning-data collection

phase, the agent followed the behavior policy and the stream of observations

and actions was stored to be used for learning offline. In the excursion phase,

the agent switched from the behavior policy to the target policy to compute
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the return for the state at which the switching happened. The probability of

starting an excursion at each time step of the learning-data collection phase

was 0.01 and the target policy was followed for 100 time steps at the excursion

phase. We selected the number 100 to make sure enough time is given for

the robot to bump into something. At the end of each excursion phase, we

recorded the return and the observations for the state at which the excursion

was executed. This information were used later for evaluation. After the ex-

cursion, the agent entered the recovery phase where it followed the behavior

policy for a while, to come back to the distribution of the behavior policy. In

the recovery phase, the behavior policy was followed for a random number of

time steps coming from the uniform distribution U(100, 200). Following this

procedure, we collected 30 runs of learning and evaluation data. Each run con-

tained 150 excursions. Therefore, each run contained 150 streams of learning

data and an evaluation data consisting of 150 pairs of state and return.

Figure 8.2: The process of collecting the learning and evaluation data for the
collision prediction task.

After collecting the learning and evaluation data, we did learning and eval-

uation offline. For each run, we concatenated the 150 streams of learning data

and applied the algorithms to it to learn the predictions. To evaluate the

learned predictions, we used the evaluation data collected from the 150 excur-

sions. We computed the difference between the learned prediction, wTx(s),

and the return G and got the average over the evaluation data D:

M̂SRE(w) =
1

|D|
∑

(s,G)∈D

(wTx(s)−G)2
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where D includes all the evaluation data collected by executing the 150 excur-

sions of a run.

We computed this value at each time step to evaluate the algorithms over

time. We could use all the evaluation data of a run to compute an estimation

of MSRE because we did learning and evaluation offline. If learning was hap-

pening online, at each time step we could only use the evaluation data that

was collected till that point.

8.5 Results

A comparison between the performance of the algorithms for the case with

λ = 0 is shown in figure 8.3. All the other parameters were set to values

resulting in the lowest asymptotic performance. To estimate the asymptotic

performance, we computed the average of the error for the last 100 time steps of

each run and averaged over 30 runs. The parameter studies of the asymptotic

performance of the algorithms over the step-size is shown in Figure 8.4.

time step
0 2500 7500 12500

TD, HTD, 
PTD, ABTD

Proximal GTD2

GTD2

Proximal GTD

ETD
0.1

0.2

0.3

0.4

\RMSRE(wt)

GTD

ETD(       )�,�

Figure 8.3: Learning curves for the case of λ = 0 for the collision prediction
task. All the parameters are set to values resulting in the best asymptotic
performance.

According to the learning curves and parameter studies, the algorithms of

GTD(λ), ETD(λ, β), and proximal GTD(λ) reached a lower level of asymptotic

error compared to the other algorithms. To establish significance, more runs

would be needed.
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Figure 8.4: Parameter studies of the asymptotic performance over the step-
size for the case of λ = 0 for the collision prediction task. All the parameters
are set to values resulting in the best asymptotic performance.

The learning curves and parameter studies of the algorithms for the case

of λ = 0.95 is shown in Figure 8.5 and Figure 8.6 respectively. In this case,

ABTD(ζ) and GTD(λ) outperformed the other algorithms with the former

being faster.

time step
0 2500 7500 12500

TD, HTDProximal
GTD2

Proximal 
GTD

ETD

0.1

0.2

0.3

0.4

\RMSRE(wt)

GTDABTD

PTD

GTD2

ETD(       )�,�

Figure 8.5: Learning curves for the case of λ = 0.95 for the collision prediction
task. All the parameters are set to values resulting in the best asymptotic
performance.

In addition to the results regarding the comparison between the algorithms,

there were some observations about some of them that were interesting. These

observations are also compatible with the results of our first case study. First,

ETD(λ), unlike the other algorithms, was not sensitive to the value of λ (See
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Figure 8.6: Parameter studies of the asymptotic performance over the step-size
for the case of λ = 0.95 for the collision prediction task. All the parameters
are set to values resulting in the best asymptotic performance.

TD(�)

0.2
0.4

0.8

0-2-3-4 -1
↵(10x)

0
0.2
0.4

0.8

\RMSRE(w)

Asymptotic

0-2-3-4 -1
↵(10x)

0
0.2
0.4

0.8

0-2-3-4 -1
↵(10x)

0
0.2
0.4

0.8

\RMSRE(w)

Asymptotic

0-2-3-4 -1
↵(10x)

0
0.2
0.4

0.8

� = 0
� = 0.2
� = 0.4
� = 0.6

� = 0.8
� = 0.9
� = 0.95
� = 1

TD(�) TD(�)

� = 0
� = 0.2
� = 0.4
� = 0.6

� = 0.8
� = 0.9
� = 0.95
� = 1

PTD(�)

TD(�)

� = 0
� = 0.2
� = 0.4
� = 0.6

� = 0.8
� = 0.9
� = 0.95
� = 1

TD(�)

⇣ = 0.2
⇣ = 0.2

⇣ = 0.4
⇣ = 0.6

⇣ = 0.8
⇣ = 0.9

⇣ = 0.95
⇣ = 1

ETD(�)ABTD(⇣)

� = 1 � = 1

� = 1
⇣ = 0

⇣ = 1

� = 0 � = 0

� = 0

Figure 8.7: The parameter study over the step size parameter for ABTD(ζ),
TD(λ), PTD(λ), and ETD(λ)

Figure 8.7). Second, for GTD(λ), proximal GTD(λ), and HTD(λ), as the

trace parameter got bigger, the sensitivity to the second step-size reduced (See

Figure 8.8). Third, for smaller values of the trace parameter, ABTD(ζ) and

TD(λ) performed similarly. However, for larger values of the trace parameter,
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Figure 8.8: The parameter study over the step size parameter for gradient
based algorithms. Each curve of each plot is for a specific value of λ and η
where all the curves corresponding to λ = 0, λ = 0.6, and λ = 0.95 are shown
in red, blue, and black respectively.
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Figure 8.9: Parameter study over the step size parameter for ETD(λ, β). Each
plot corresponds to one value of λ and contains multiple lines each correspond-
ing to different values of β where β = 0 and β = 0.97 are equivalent to TD(λ)
and ETD(λ) respectively.

ABTD(ζ) converged for a much larger range of step-size compared to TD(λ)

(See Figure 8.7). Fourth, for ETD(λ, β) as β got bigger, the range of step-size

for which the algorithm converged got smaller (See Figure 8.9).
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8.6 Summary and Conclusions

In this chapter, we presented the last of our three case studies. We assessed

the performance of 10 different temporal-difference learning methods on a

relatively complicated robot prediction task. The results of this case study

supports those of the first case study, suggesting that many RL algorithms

can effectively learn predictions represented as GVFs on robot domains. We

can conclude from our empirical comparisons that GTD(λ) is superior to the

other algorithms in terms of asymptotic performance in the collision prediction

task. Based on our results, ETD(λ, β) also seems to be a promising algorithm,

reaching the lowest level of asymptotic error alongside GTD(λ).

Our results also suggest that the evaluation methodology that we used

was successful and applicable to a relatively complicated robot domain. Us-

ing this methodology, we could compare many RL algorithms systematically,

performing parameter studies of the algorithms for many runs.
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Chapter 9

Conclusion

In this work, we took small steps toward answering the grand question of how

an intelligent system can acquire and maintain a large body of knowledge. We

pursued the predictive knowledge approach by using the reinforcement learn-

ing (RL) idea of general value functions (GVFs). We presented three case

studies in which a robot learned a predictive question in form of a GVF about

its world. Our case studies made up the contributions of this thesis. Our

first contribution was providing several new examples of learning predictive

knowledge using GVFs on robots. Our second contribution was performing

empirical comparisons of many different off-policy temporal-difference (TD)

learning algorithms on robot domains. Our third contribution was performing

systematic studies of the learning process on robots, gaining a better under-

standing of how such studies should be done in real-world systems. In the

next sections, we discuss these contributions in detail and draw some general

conclusions regarding each of them. We will close the chapter by a discussion

on the limitations of this work and future directions.

9.1 Contribution 1: Providing Several New

Examples of Predictive Knowledge on Robots

In this work, we contributed to the idea of predictive knowledge by imple-

menting an instance of it and applying it to several robot domains. A handful

of examples of learning predictive knowledge on robots exist in previous work.

One of the most important examples is the work by Modayil et al. (2014)
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which studied learning thousands of GVF predictions on a robot. That work

focused on learning on-policy. However, we considered cases of learning GVFs

off-policy on robots. White (2015) also performed an extensive investigation

of learning both prediction and goal-directed GVFs off-policy on robots. Our

work adds to that work by considering a more complicated task involving vi-

sual data. We also did a more systematic study, performing lots of runs of data

for each experiment. Our work confirms the result from Modayil et al. (2014)

and White (2015) that robots can learn pieces of knowledge in the form of GVF

predictions using RL algorithms. These predictions provide the robot with an

understanding of how different courses of action affect its sensory readings and

can constitute knowledge.

9.2 Contribution 2: Empirical Comparison of

Many Off-policy TD algorithms

The second contribution of this thesis was the empirical comparison of many

RL algorithms on robot domains. These empirical comparisons were presented

in chapters 6 to 8. We focused on off-policy TD algorithms. We also restricted

attention to algorithms with linear complexity. Our experiments concerned

two prediction problems and one control problem. On the prediction prob-

lems, we compared 10 different TD algorithms, including gradient-TD meth-

ods and emphatic-TD methods. On the control problem, we compared the

three algorithms of Q-learning, greedy GQ, and greedy ABQ.

The empirical comparisons presented in this work can be considered as

the most thorough comparisons that have been done on robots. We compared

many algorithms and considered a wide range of parameters. Moreover, we did

the comparison for a large number of runs. It is unusual to do such systematic

comparisons on robots; as a result, we had to do the comparison on relatively

small robot domains.

From the empirical comparisons, we reached fairly general conclusions

about how different algorithms compare to each other and which algorithms

are suitable for learning predictive knowledge. The gradient-TD method of
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GTD(λ) and its variant for control, greedy GQ(λ), are good choices for learn-

ing predictive and goal-directed GVF questions on robots. In our experiments,

GTD(λ) achieved a fairly good level of asymptotic performance in both the

Dynamixel and Collision prediction tasks. Moreover, it was robust to the first

and second step-sizes. In the time-to-align control task, greedy GQ(λ) learned

the optimal policy after a reasonable number of time steps.

Our empirical results suggest that the relationship between GTD(λ) and

its state-of-the-art counterpart, ETD(λ), is subtle. We were not able to draw a

conclusion about the strengths of ETD(λ) over GTD(λ) for learning predictive

knowledge. In the Dynamixel prediction task, ETD(λ) performed substantially

better than GTD(λ). However, GTD(λ) was superior to ETD(λ) in the Col-

lision prediction task. The clear conclusion was that ETD(λ) converged for

much smaller values of the step-size compared to GTD(λ).

In our experiments, ETD(λ, β) performed well. ETD(λ, β) provides an-

other dimension of flexibility to ETD(λ) controlling the bias-variance trade-off.

Based on our empirical results, this additional parameter seems to be useful.

In both of our prediction experiments, ETD(λ, β) performs well, reaching the

same level of error as the superior ETD(λ) in the Dynamixel prediction task

and performing as well as GTD(λ) in the collision prediction task.

9.3 Contribution 3: Systematic Study of the

Learning Process on Robots

The second contribution of this work was developing a good methodology

for systematically comparing many algorithms on robots. Robots are a great

framework for studying predictive knowledge because they are a rich source

of data and working with them involve looking closely at the low-level senso-

rimotor data and understanding the world from the perspective of the robot.

While robots are a great framework for investigating the predictive knowl-

edge approach, as we discussed in Chapter 1, performing systematic studies

on them entails certain difficulties. In what follows, we provide some general

conclusions and suggestions with regard to doing such studies.
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First, a good strategy for evaluating off-policy algorithms, learning a pre-

diction task is to collect a reasonable number of sample states from the be-

havior policy and compute their returns following the target policy. These

sample states and their corresponding returns can be stored to be later used

to compute an estimation of mean square return error.

Second, evaluating control algorithms on robot domains is challenging. One

natural approach for doing evaluation in such settings is to test the learned

policy on the robot and compute the return or outcome. This approach is quite

expensive for many reasons. First, to evaluate the performance of the learning

system over time, we need to evaluate the policy learned after different number

of time steps. Second, we need to run tests starting from different points in

the state space and probably multiple tests are needed for each point. Finally,

we might want to evaluate multiple algorithms each with different parameter

settings. To reduce the number of tests in a problem with a small state space,

one might be able select the parameter setting for the algorithms using action-

value plots. However, for a more complicated task, one might need to use

off-policy policy evaluation methods such as the one introduced by Thomas

and Brunskill 2016 and Jiang and Li 2015.

Third, we found it essential to examine the data closely when working

with robots, including using different visualization tools. Examining the data

is crucial for understanding what is happening and verifying whether our ex-

pectations of the sensor readings match with the actual readings. Moreover,

we need to find whether there is any source of stochasticity in the data and

detect unreliable sensors.

9.4 Limitations and Future Directions

Many more studies are needed to investigate how effective RL algorithms are

at learning predictions in form of GVFs. In this section, we discuss some of

the limitations of our work and possible future studies that could give us more

insights for pursuing the predictive knowledge approach.

In our studies we only considered tasks in which the target policy and the
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behavior policy were similar. To really get a sense of how the algorithms com-

pare to each other, empirical comparisons are needed in cases where the target

policy and the behavior policy are much different. In these cases, the impor-

tance sampling ratio would be large which could make some of the algorithms

unstable.

In all of our experiments, the algorithms learned only one GVF question.

A good next step would be to make algorithms learn lots of GVF questions

with different target policies, and study the overall performance of them over

all these questions.

In all of our case studies, our performance measure was based on following

the target policy. It would be valuable to explore different methods of evalu-

ation on robots. For example, there are methods that use data generated by

an arbitrary behavior policy to do the evaluation. Example of such methods

are off-policy policy evaluation methods.
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