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They have strange limits and one must learn to observe them. It is that surface 
simplicity of theirs which makes a trap for the stranger. One’s first impression is 
that they are entirely soft. Then one comes suddenly upon something very hard, 

and you know that you have reached the limit and must adapt yourself to the fact. 
— Sir Arthur Conan Doyle, His Last Bow
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Abstract

The aim of this thesis is to  investigate the complexity in a class of hybrid sys­

tems: networked control systems (NCSs), where sampling, quantization, time delay, 

packet dropout, network protocol and controller design are the main design issues. 

The study begins with limiting behavior of digital implementations of analog control 

systems. I t is shown that as the sampling period tends to zero, internal stability and 

performance of an analog system can be recovered in the digital implementation via 

the bilinear transformation. Following this is a new network data  transmission strat­

egy that is proposed to reduce network traffic thus avoiding large tim e delays and 

high percentage of packet dropout. The effectiveness of this transmission strategy is 

illustrated by simulations. Then the qualitative behavior of the nonsmooth dynam­

ical systems arising from the aforementioned transmission strategy is investigated. 

Though appears innocent, surprisingly, this type of nonsmooth systems possesses 

bewildering dynamics. Local stability of fixed points, existence of periodic orbits, 

strange attractors and topological entropies are investigated in considerable detail 

first for scalar cases. Then it is proved that this type of systems is not structurally 

stable. Following this is the analysis of the difficulties involved in studying these sys­

tems. Next the two-dimensional cases are studied with emphasis on their geometric 

structures. After that, a two-dimensional continuous-time system, the counterpart 

of the above-mentioned discrete one is discussed, where special attention is paid to 

the demonstration of its rather complex dynamics. Because this study originates 

in the analysis of networked control systems, some control problems are discussed 

after the foregoing analysis. Finally several open problems are listed as our future
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research directions.

K eyw ords. Digital control, networked control systems, nonsmooth dynamical sys­

tems, bifurcation, chaos, numerical precision.
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Chapter 1

Introduction

After a  brief discussion of the problems involved in the analysis and design of net­

worked control systems, this chapter reviews existing literature, then provides a 

vague exposition of a  new network data transmission strategy, and finally gives the 

outline of the thesis.

1
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1.1 Background

In a traditional control system, system components such as processes, controllers, 

sensors and actuators are connected directly by dedicated wiring; signals are as­

sumed to be communicated accurately and without time delays. Control systems 

based on such “direct” connection have achieved great success. However, as mod­

ern control systems axe becoming more and more complex in terms of their scales 

and functionalities, the huge number of components of a  system will lead to  enor­

mous wiring if the aforementioned point-to-point connection is used. Obviously it is 

also hard to maintain. Therefore, the complexity of control systems demands new 

efficient connection structures.

The fast-developing secure, high speed computer networks [72,102] make control 

over networks possible. In this framework, system components are regarded as 

nodes, and connected via common computer networks, i.e., they use communication 

media to send and receive signals.

Networked control systems can be classified roughly into two broad categories: 

local and internet-based networked control systems. Clearly, local networked control 

systems are built with all system components connected via local communication 

media. On the contrary, internet-based control systems are truly distributed geo­

graphically; system components are tied together by both local networks and the 

Internet.

Compared with the traditional point-to-point connection, the main advantages 

of connecting various system components via communication networks are wire re­

duction, low cost and easy maintenance, among others. Thanks to these merits, 

networked control systems have been built successfully in various fields such as auto­

mobiles [42, 6 8 ], aircrafts [75, 94], robotic controls [59, 91]. In the field of distributed 

control, networks may provide distributed subsystems with more information so that 

performance can be improved [37].

However, the insertion of communication networks into a control system will 

incur several problems unexpected in a conventional control system.

There are four of these issues we’d like to draw your attention to:

1 . Signal quantization — control signals have to be quantized and encoded into

2
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packets of finite bits before being transmitted through communication media. 

This procedure will introduce quantization errors and lead to certain time 

delays.

2. Time delays

Time delays involved in a networked control system include at least:

•  Sampling of a continuous-time process.

•  Quantization and coding time — the time required to quantize and then 

encode signals to be transmitted.

•  Waiting time — packets have to wait in queues (there are sensor queues, 

controller queues and actuator queues to accommodate process outputs, 

controller outputs and process inputs respectively) before getting access 

to communication media.

•  Propagation time — time taken for packets to travel over communication 

channels.

Time delays may be deterministic or random, constant or time varying. For 

local networked control systems, it may be possible to analyze the nature of 

time delays, then design controllers to achieve control performance by taking 

them into account. The Internet can provide control systems with certain 

quality of service(QoS), which in general is in the form of bounded time delays 

or probabilities of time delays and packet dropouts. Time delays induced by 

the Internet are definitely time-varying and random. Therefore it is more 

reasonable to assume that time delays are unknown but bounded. However, 

some deficiencies occur when making this assumption.

•  Considering only the upper bound introduces conservatism to controller 

design.

•  Controllers designed to  compensate bounded delays may not perform well 

for time-varying delays [78, 82].

Time delays, especially time-varying ones, normally will degrade system per­

formance; however, quite often, controllers designed taking time delays into

3
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account can improve system performance. These make the analysis and design 

of delayed control systems very challenging as well as extremely interesting. 

For a recent survey on time-delay dynamical systems, interested readers may 

refer to [82].

3. Packet dropouts — packets may get lost due to collision, noise saturation or 

large time delays.

4. Multiple transmission — signals have to  be coded into two or more packets 

for transmission if their size is too big.

These detrimental effects often coexist and will damage system performance or 

even lead to instability. Therefore, to design a networked control system is really 

challenging. Coding methods, network protocols and controllers have to  be carefully 

chosen or designed if a  networked control system of high performance is to  be built.

1.2 Literature review

In this section some lines of research on networked control systems will be briefly 

reviewed. Let us first look at a typical networked control system in shown Figure 

1.1. System G is a process usually described by a set of differential equations

x( t )  = f ( x , u , t ) ,  (1.1)

y(t )  = g (x, u, t ) ,

where x  € Rn, u  6 R m, y e  R p are system state, input and output respectively. /  

and g are both continuous functions (or even continuously differentiable, specified 

when modelling) of x, u, and t.

Sensors sample y  periodically. For example, suppose the sampling period of the 

sensor S i is Ti, then the output of Si is ydi (k) =  y\ (fcTi), k e  Z+ , the set of all 

nonnegative integers. Now we look at actuators shown in Figure 1.1. Each actuator 

contains a holder which transforms a discrete signal 4> into a continuous one. For 

instance, assume the holding time of the actuator A1 is hi, then u\ (t) =  <?\ (k) , 

t  S [khi, (k + I)hi),  k E . In general 4>i{k) is not identical with u<n(k) in Figure

1.1 because Udi may undergo other operations in the block ‘A l’.

4
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Figure 1.1: A typical networked control system

A discrete system denoted Gd is obtained if we cascade actuators, the system G 

and sensors together. For Gd, a digital controller C  can be designed to fulfill certain 

system performance such as tracking. Interested readers can refer to [11, 22] for 

some detailed discussions. One fundamental problem involved here is:

P ro b le m  1.1 Ignoring the network connection (queues, communication media and 

other traffic), what is the limiting behavior o f the digital system composed of Gd cmd 

C a sh  and T  tend to zero? Suppose C  is obtained from an analog controller K  via 

some discretization method, Will internal stability and performance o f the analog 

system composed o f G and K  be recovered in the digital control system composed of 

Gd and C  ?

The step-invariant (the ZOH equivalent) and bilinear transformations are two 

most commonly used discretization techniques. Suppose their corresponding digital 

controllers are Kd and Kbt respectively, two versions of C  in Figure 1.1. In the 

literature, there are pieces of work studying limiting properties of Kd. Assume

5
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h = T . As h tends to zero, internal stability and performance of the analog system 

are recovered in the digital control system using Kd [1 1 ]. However, Astrom et al. [2 ] 

points out that if the relative degree of the transfer function of K  is greater than 3, 

then Kd(z ) is non-minimum-phase as h  goes to zero; Properties of limiting zeros axe 

also studied in [9,35,108]. On the other hand, concrete examples reveal that even as 

the sampling period approaches zero, the best sampled-data closed-loop performance 

may not necessarily converge to the best analog closed-loop performance [69]. A 

similar problem is investigated in [70].

In light of a result of [2], if AT is minimum-phase, Kd can be non-minimum- 

phase as h goes to zero; whereas Kbt is always minimum-phase. However, will 

internal stability and performance of the analog system be recovered in the digital 

control system using AT**? An affirmative answer will be given in Chapter 2, thus 

partially answering Problem 1.1. However we should warn you that the sampling 

period of a digital system can not be made arbitrarily small. One reason is that 

sampling rates are not always re-designable; another is that fast sampling may even 

degrade system performance. For example, the simultaneous effect of sampling and 

quantization is studied in [3], where it is shown via simulation th a t performance will 

degrade unboundedly as the sampling period tends to  zero if some time-invariant 

quantizer is inserted into a  system controlled by an unstable controller. Therefore 

it is fair to say that the problem — performance of quantized sampled-data systems 

— is very complicated and challenging. Much research is required here. We next 

address the problem of quantization in some detail.

Before the sampled system output yd enters a queue to be broadcast, it is usually 

quantized and encoded. A quantizer q =  (g i,...,qn) with quantization size A =  

(A i,..., An)7, A* >  0, i =  1, ...,7i, is a map from Rn to a finite or countable subset 

L  =  of Rn. One possible quantizer can be constructed in the following

way: Given a  scalar A i >  0, partition continuously R  into finite or countably 

many subsections Qi :=  {flij}y6 2  satisfying 1 ) U jez 2 ) Q y f] &n =  o,

Vi 7  ̂ j;  3) 0 € flio and 0 0 fli* for Vi ^  0. One choice of partition methods 

is flij  =  [(j — 1/2) A i, (j  +  1/2) A i), j  E Z. Choose a finite or countable subset

6
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h  = {hj } jeZ of R- Then qi is the map:

qi : M —i ( f - 2 )  

x  i— ► hj,  V s e  f i j j .

Analogously, one can similarly define Q2 , —, Qn, h ,  •••> and then 92 , 9n-

Let 5  =  (qi , ..., qn) \  then q is a quantizer. If A is fixed, q is called time-invariant, 

otherwise time-varying. For the simplicity of description, we call the partitioned 

subsets of Rn quantization subsets.

If the quantizer q is inserted into the closed-loop system composed of Gd and C , 

then a quantized “nonlinear” sampled-data system is obtained. Thus an interesting 

problem is: W hat is the effect of q on this system?

This problem is actually now a continuing interest in the literature. For example, 

suppose G is a linear and time-invariant (LTI) unstable system, and h =  T. If 

a (dynamic) controller C is used with a  time-invariant quantizer, the closed-loop 

system can never be asymptotically stable; moreover, chaos may occur in this closed- 

loop system [16]. This complexity is further addressed in [23] for the SISO case and 

in [24] for a system with multi-dimensional state and one-dimensional input. In [24], 

the complexity of a  controller is characterized by three numbers: L  being the number 

of the states of the controller while N  and M  being the numbers of quantization 

subsets of the controller output and state respectively. Then the tradeoff among 

L , M , N  and T, the mean time required to shrink the state of the plant from a 

starting point to a target set, is studied. In [38], an upper bound for T  (h = T  

is assumed) is calculated geometrically using state feedback for an unstable LTI 

system G with a  proposed time-invariant quantizer under which the trajectories 

of the closed-loop system do not converge to the origin; instead, they enter and 

stay in a region of attraction around it. In order to achieve asymptotic stability, 

time-varying quantizers must be adopted. In [6 ], for an unstable LTI system G, 

choosing a quantizer q with variable sensitivity A, an LTI controller is designed to 

yield global asymptotic stability. This problem is also studied in [20] for exponential 

stability using logarithmic quantizers. In [63], exponential stabilization of a finite- 

dimensional LTI system with a quantizer in the closed loop is studied based on 

probability theory.

7
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To be transmitted over communication media, quantized signals should be en­

coded to form packets which axe the true objects transmitted over the networks. 

Different networks have different packet formats in terms of packet length, data 

length, head size, etc. At this stage, there is a possible problem: if a signal is very- 

big, it has to be first decomposed and then encoded into several packets (multiple 

packeting). Then if one of them is lost during transmission or discarded due to 

queue overflow, how will this affect the control performance? Fortunately, normal 

control signals are relatively small, multiple packeting is thus not a big problem.

A packet -waits in a queue before being allowed to be transmitted. This procedure 

is managed by a  media access control (MAC) algorithm which, together with the en­

coding algorithm, is a critical component of network protocols. A network protocol 

is a suit of algorithms managing how network packets are formulated, transmitted 

successfully, in addition to other functionalities such as network security. There are 

many commercially successful network protocols such as TC P/IP, Ethernet, Con- 

trolNet, DeviceNet, and so on. However, most of them were created originally for 

data  networks rather than for control networks. One of the significant differences 

between data  and control networks is: Packets of data networks are relatively big, 

their transmission is infrequent and there is no critical timing requirement; whereas 

packets of control networks are relatively small, however they demand frequent 

transmission and critical timing guarantee. Therefore how to adopt data network 

protocols to control networks or design protocols directly for control networks is 

an important problem faced by control engineers. Another requirement on network 

protocols is that protocols should also be adaptable in terms of update of softwares 

and insertion of new nodes and insertion of a  local NCS to the Internet.

At this point, one can claim that a networked control system is a delayed 

sampled-data system with quantization, signal loss, sampling, and network proto­

cols as its major design concerns. All these make the analysis of networked control 

systems difficult, and the controller design based on the analysis fairly complicated. 

This can be best summarized by the following sentences in [58] reported in the April 

issue of IEEE Control Systems Magazine, 2003:

Current control systems are almost universally based on synchronous, 

clocked systems, so they require communication networks that guarantee

8
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delivery of sensor, actuator, and other signals with a known, fixed de­

lay. Although current control systems are robust to variations that are 

included in the design process (such as a variation in some aerodynamic 

coefficient, motor constant, or moment o f inertia), they are not at all 

tolerant of (unmodeled) communication delays or dropped or lost sensor 

or actuator packets. Current control system technology is based on a 

simple communication architecture: all signals travel over synchronous 

dedicated links, with known (or worst-case bounded) delays and no packet 

loss. Small dedicated communication networks can be configured to meet 

these demanding specifications for control systems, but a very interest­

ing question is whether we can develop a theory and practice for control 

systems that operate in a distributed, asynchronous, packet-based envi­

ronment.

Many network protocols and various control strategies have been proposed. 

Loosely speaking, these considerations fall into three general categories.

The first category merely regards a networked control system as a control system 

with bounded time delays and studies the problem of determining how big the upper 

bounds can be.

Work of Walsh, Bushnell, Ye, et al.

In a series of papers [103, 104, 105, 106, 110], a  new network protocol, TOD (try- 

once-discard), is proposed and analyzed. Its basic configuration is: regarding the 

subsystems (including G, C  and other traffic in Figure 1.1) connected by a com­

mon communication medium as a whole system, we get a multi-input multi-output 

(MIMO) system. Omit the quantization effect and assume the network from the 

controller to  the actuator is transparent. Also suppose the sampling period and 

holding time are equal, equidistant, and small enough so tha t the control system

can be viewed as a continuous one. Then denote the plant dynamic by

xp {t) =  f p (t, xp {t ) , Up ( t ) ) , (1.3)

V (t) = 9p (*, xP (*), Up (*)) i

9
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and the controller by

i c (t) =  f c ( t , xc ( t ) , y{ t ) ) ,  (1.4)

Up (t ) =  gc {t, xc ( t) ) ,

where y  (t ) is the input to  the controller, a (possibly delayed) version of y(t); f p, gp,

f c, gc axe continuously differentiable. Let e(t)  =  y  (t) — y  (t), x  = (x'p, x c)'. Then

combining equations (1.3) and (1.4) together, one can obtain

x{t )  =  /  (t, x ( t ) , e  ( t ) ) , (1.5)

e(t) = 9 ( t , x ( t ) , e ( t ) ) .

Note that the vector e (f) is the error between the plant output y  (f) and the input 

to the controller y  (t ). Suppose the dimension of y  (t ) is r , y  (t) =  (y\ (t ) ,..., yr (f)) . 

E  at time to, Vi {to) =  Vi (*o)i he., &i (to) =  0, then yi is transmitted successfully. 

Suppose that there is one and only one yi (t) which can be transmitted over the net­

work at each sampling instant, then yi (f) for which |e, (t)| =  ||e ( t ) !^  is transmitted, 

i.e., the element with the largest error gets access to the network. This is the so- 

called try-once-discard (TOD) protocol they proposed. The question studied there 

is: Suppose the original system with network transparent is exponentially stable, 

how small the sampling period T  should be to guarantee exponential stability of this 

networked control system? A sufficient condition is obtained based on perturbation 

theory [39] and the Gronwall’s inequality.

This idea is further generalized in [6 6 ] to derive a  set of Lyapunov UGES (Uni­

formly Globally Exponentially Stable) protocols in the LP framework.

In [111], assuming bounded time delays and packet dropouts, a  robust con­

trol problem is studied for networked control systems.

Obviously regarding a NCS simply as a  system of bounded time delays is rather 

conservative, so there comes the second category.

The second category models network time delays and packet dropouts as random 

processes such as Markov chains. In  this way, some specific features o f these random 

processes are utilized to design controllers guaranteeing desired system performance.

10
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Work by Krtolica, et al.

In their work [42, 6 8 ], assuming h = T , the discrete system Gd in Figure 1.1 is 

described by a set of difference equations:

x(fc-t-l) =  Ax(k)  + B u ( k ) ,  (1.6)

y (k ) =  Cx  (k ).

The controller C  is

p  (fc +  1 ) =  Fp  (fc) +  Ew  (fc), (1.7)

v  (fc) =  Hp  (fc) +  E w  (fc).

Here matrices A, B,  C , E,  F  and H  are all constant with compatible dimensions. 

Omit quantizers, queues, and communication media, and suppose

Di D2

u  (fc) =  X )ai  (fc -  i ) , w  (fc) =  ^ 2  &  (fc) y { k - i ) ,  (1 .8 )
i=0 z=0

where =  1’ £ £ o & ( * 0  =  1 with a *(fc) 311(1 e  {O’1}- 311(1

Do are two given positive integers which act as upper bounds of sensor-to-controller 

and controller-to-actuator time delays respectively. In this way one can derive a 

closed-loop system as a  time-varying one via state augmentation, necessary and 

sufficient conditions of stability are obtained based on time-varying Lyapunov equa­

tions. Alternatively, Regarding a  (fc) and /? (fc) as Markovian chains with given 

probability transition matrices, the networked control system is therefore framed 

to be a discrete-time jumped linear system, and necessary and sufficient conditions 

of mean-square exponential stability are thus derived via the stochastic Lyapunov 

method.

A similar approach is adopted in [118] where sensor-to-controller and controller- 

to-actuator time delays are assumed to behave according to Markov chains respec­

tively. The plant G  may be unstable, which is very hard to control if there are 

unknown delays from a  controller to an actuator. By augmenting the system to 

obtain a  delay-free system and then with resort to LMI techniques, a  sufficient con­

dition is derived which guarantees the closed-loop system is stochastically stable. 

Based on this, a time-varying controller is constructed. I t is worth mentioning that
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time-varying controllers are always necessary when there are delays from a controller 

to an actuator.

R e m a rk  1 .1  One drawback of this method is th a t time delays are assumed to be 

integer multiples of the sampling period T.  Unfortunately, this is unrealistic. Also 

no analysis was conducted when sampling and quantization effects are involved.

In [96], the network transmission process is modeled as a  Bernoulli process with 

a parameter 0 <  A <  1, and its effect on a discrete-time Kalman filtering problem 

is studied. It is shown there exists such a Ac that the expectation of the estimation 

error covariance of the system state is always finite if the probability of the arrival 

of an observation is A >  Ac. Explicit upper and lower bounds on Ac are also derived.

W o rk  done in  L u n d  In s t i tu te  o f  Technology

There are two major pieces of work done in papers [12, 60, 61, 62, 109]: One is theo­

retic analysis and controller design of a real-time system in the stochastic framework, 

and the other is two simulation toolboxes which can be employed to analyze the tim ­

ing problem in networked control systems. First we briefly outline that theoretic 

one.

Suppose the system G is:

x (t ) =  A x  (t) +  B u  (t ) +  Fv  (t ) ,  (1.9)

where v (t) is an external input and assumed to be white noise with unit incremental 

variance. Assume h = T,  then one can get a discrete model Gd a t time interval 

[,kh , (fc +  1) h) for some fc £ Z+ :

s(fc +  l)  =  (fc) +  r 0 ( r^ ,  t “ ) u (fc) +  Ti (t&c, t “ ) u ( k  — i) + v (fc)(1.10) 

y  (fc) =  Cx  (fc) +  w (fc)

where r | c, r “  denote the sensor-to-controller and controller-to-actuator time delays 

a t time instant kh  respectively. Furthermore, suppose t | c, t£“ are 1) random; 2) 

independent; 3) having known probability distributions; 4) r | c 4- rjFa <  h. Assume 

also v (fc) and w (fc) are uncorrelated white noise with zero mean and covariance

12
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matrices Ri and Ri and

then the problem raised there is reduced to designing a controller C  minimizing the 

standard LQG function

where Q.v and Q are both symmetric and positive-definite matrices. £  is the expec­

tation operator.

Then an optimal state feedback controller as well as an output feedback (sub- 

optimal) controller is designed using the same techniques as those for the standard 

LQG problem.

In [36], the condition 4) t | c + r f f  < h is  relaxed.

R e m a rk  1.2 The above work is done within the stochastic framework where the 

probability distributions of r | c and are crucial. Therefore, it is important to 

know these distributions. For a well-configured local networked control system, 

they may possibly be discerned successfully by experiments; however it is really 

hard to get them for internet-based control systems. Furthermore, it is not justified 

to assume that r ff  and r f f  axe independent.

Two Matlab toolboxes, Jitterbug and TrueTime, are introduced in [12]. The ba­

sic principle is that networked control systems can be seen as delayed sampled-data 

systems with quantization effect. These two toolboxes can be used as experimental 

platforms for research on real-time control systems. They can easily and quickly 

assert how sensitive a control system is to delay, jitter, lost samples, etc. However, 

no quantization analysis is involved in these two toolboxes.

These two categories deal with network effect passively, namely, solely concen­

trating on the effect of network traffic on the control systems concerned, instead of 

the interwinding effect between control systems and communication networks. This 

later consideration leads to the third category which pays special attention to the 

tradeoff between data rate and control performance. One key problem is: How many 

bits are required to ensure system performance?

lim J/v =  x  (N) Qn x  (N ) +  £  < V 'I ' ^ (1.11)
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Work by Wong and Brockett

In papers [107], the effect of quantization error, quantization and propagation time 

on the stability of networked control systems is studied. Suppose G is a continuous­

time system, its output y is sent to a continuous-time controller K  through a quan­

tizer and a communication channel; computed control signal is then sent to the 

actuator through that communication channel. Assume the bandwidth of the chan­

nel is R  bits per second, then it takes <5 =  1/12 second to send a byte. Denote by 

Ci and di the coded quantized system output and control signal at ith  time instant, 

respectively. Suppose the encoder I is of variable length which is a function of c* 

and di. Denote time taken for signals to travel from the quantizer to the controller 

by Si, and from the controller to the actuator by r*, where i stands for the ith  time 

instant, then one obtains

Si = n  + l (a) 5, to =  0, (1.12)

ri+i =  Si  + l{di)5, i >  1.

Based on these relations, a necessary condition for the closed-loop system to be 

containable is derived:

then the following inequalities hold

<  1, (1-13)

<  1, 

< 1,

is the dimension of the encoder, and A  

Work by Ray’s group

In [75], concentrated on distributed digital avionics, several control protocols are 

compared in terms of sampling periods and time-varying transport delays due to 

data latency of messages at different terminals of the control loop. In [32, 87], due

14

T h eo rem  1.1 I f  the system is containable,

Y ——/  J *jmTn,x'T7li 
0

where m i = I (cj), rii =  I (di), r  = e5tr(A). p 

is the “A ” matrix of G.
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to time-varying and possibly stochastic delays, a  finite-dimensional, time-vaxying, 

discrete-time model is proposed to approximate the networked control systems and 

its effectiveness is analyzed using simulation. For related work, interested readers 

may refer to [33, 50, 51, 52, 53, 54, 76, 77, 78, 81, 83].

W ork  by  T atik o n d a , et al.

The networked control system studied by Tatikonda, et al. in [97, 98, 100] is a 

closed loop starting from an unstable discrete-time system G, through an encoder 

E , a communication channel C N , a decoder D  and an controller C, then returning 

back to G (Figure 1 .2 ). In  [97], the following stochastic linear quadratic Gaussian

CN

Figure 1.2: System plot in reference [97]

problem is studied. Suppose the system G is given by

X £+i =  F x t + GUt +  W t, (1.14)

where {Wt} is an independent and identically distributed sequence of Gaussian

random variables with zero mean and covariance aw- Suppose the initial state  X q

15
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is also Gaussian. Here the performance objective is to  minimize:

limsup i f  { V  X't Q X t + U't SUt>
T~°° 1  U=o J

(1.15)

where Q and U are positive definite.

As is well-known, if there is no network constraint, the optimal cost in Eq. 

(1.15) is given by tr (P)aw  where tr(P)  is the trace of the matrix P.  Obviously 

the insertion of a finite bandwidth communication network will distort the state 

Xt,  so the question studied in the paper is: How will the network C N  affect the 

performance in Eq. (1.15) and how to design the encoder E  and the decoder D  

to ensure good performance? To address this problem, the concept of no dual 

effect is introduced, which states essentially that the estimate of the state error, 

X  — X ,  is independent of the system input U. Then some necessary conditions 

axe given to guarantee this so-called no dual effect. Under this assumption, the 

optimal cost defined in Eq. (1.15) is decomposed into two parts: tr (P )cw  and 

t r ( (F 'PF  — P  + Q))A where A is the steady state estimation error covariance of 

X  — X .  In view of this decomposition, the problem is converted to the design of 

encoders and decoders which in the sequel have been addressed based on information 

theory.

The deterministic case is studied in [100], where the system is given by

Suppose (C, G) is observable, which means the initial state X q can be uniquely 

determined. How will the communication network affect this observability? To 

address this problem, the concept of asymptotic observability is proposed. Let

unbounded for bounded X q and the error decreases to zero uniformly if Xo —> 0. 

Suppose the data rate of the network channel C N  is R , then a necessary condition 

to asymptotic observability is

Following this study, the effect of the communication channel C N  on asymptotic 

observability of the system is discussed. Correspondingly the concept of asymptotic

X M  = A X t + BUt. (1.16)

et =  X t  — X t, then asymptotic observability states th a t the error et cannot grow

R  >  ^  max{0,log |A(A)|}. 
A(>1)

(1.17)
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stabilizability is proposed and a  necessary condition to guarantee it is given by the 

same formula, namely Eq. (1-17). Finally the design of encoder E  and decoder D 

guaranteeing asymptotic observability and stabilizability is investigated.

W ork  by  G oodw in , et al.

Consider the networked control system in shown Figure 1.3. The problem investi-

CN

Figure 1.3: System plot in reference [27]

gated in [27] is: Given the system G and the communication channel C N , design 

quantizer Q and controller C  to minimize network traffic. On the up-link side (from 

G to C), quantizer Q is designed to reduce network traffic, however this will affect 

state estimation which is always important in control. On the down-link side (from 

C  to G), delay due to network can not be detected by the controller C. To resolve 

these two problems, instead of a fixed controller, a set of controllers is employed 

based on online moving horizon techniques.

O th e r  W ork

There is a pretty much amount of work reported in the literature. In [48, 49], 

some detailed descriptions of design consideration and performance evaluation are

17
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reported. In [117], a systematic networked control method designed specifically 

to handle the constraints of the networked realization of a linear time invariant 

control system is studied. The general structure of the proposed controller requires 

switching between the open loop and closed loop subsystems of the controller which 

is specified by the behavior of the communication network. In [73], a maximum 

allowable delay bound is derived for a class of networked control systems under 

which the control systems are stable.

Our proposal

In this thesis, a new network data transmission strategy is proposed to reduce net­

work traffic. By adding constant deadbands to both the controller and the plant in 

Figure 3.2 in Chapter 3, signals will be communicated only when necessary. So by 

adjusting the deadbands, a tradeoff between satisfactory control performance and 

reduction of network transmission can be achieved.

More importantly, the data transmission strategy we proposed is more suitable 

to  fit a  control network into an integrated communication networks composed of 

control and data networks, so as to fulfill the need for a new breed geared toward 

total networking [79]. This problem is of course very appealing as depicted by Raji in 

[79]; and a t the same time is fundamentally important, so is listed in [58] as a future 

direction in control in an information-rich world (see Page 9). Essentially speaking, 

under the network transmission strategy proposed in this thesis, in an integrated 

network composed of data and control networks, it is required tha t networks provide 

sufficient communication bandwidth upon request of control systems. As a payoff, 

control systems will save network resources by deliberately dropping packets without 

degrading system performance severely. This is a  crucial tradeoff. On the one hand, 

control signals are normally time critical, hence the priority should be given to them 

whenever requested; on the other hand, due to one characteristic of control networks, 

namely, small packet size but frequent packets, it is somewhat troublesome because 

it demands frequent transmission. Our scheme aims at relieving this burden for the 

whole communication network. This is exactly the motivation of this research.

There are three main topics in this thesis. The first one is the analysis of efficacy 

of the above-mentioned network data  transmission strategy. The control system in

18
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this framework is a type of nonsmooth dynamical systems. Clearly the analysis of 

this class of systems will shed some light on the nature of this data  transmission 

strategy, hence our second topic is the qualitative analysis of nonsmooth dynamical 

systems in this context. This research originates in the networked control systems, 

hence naturally, our third, the last, topic is the controller design under this network 

data transmission strategy. In the next section, a chapter-by-chapter review will 

disclose more details .

1.3 O utline o f th e  thesis

Chapter 2 addresses some issues involved in digital implementations of analog con­

trol systems. Prom an analog system K , digital systems Kd and Kbt are often 

obtained via the step-invariant (the ZOH equivalent) and bilinear transformations, 

respectively. For the case when K is stable, SISO or MIMO, it is shown th a t Kbt 

converges to Kd in lp induced norms as the sampling period tends to zero for all 

1 <  p  <  oo. Furthermore, K ^  converges to Kd  in the graph metric as the sampling 

period tends to zero no m atter whether K  is stable or not. Thus, internal stability 

and performance recovery properties for Kd in the literature can be translated to 

those for Kbt-

In  chapter 3, a  new network data  transmission strategy is proposed in order to 

reduce network traffic, thus avoiding large time delays and high percentage of data 

loss. The stability of the resulting nonsmooth dynamical systems is analyzed briefly. 

Some simulations are conducted to illustrate the effectiveness of this network data 

transmission strategy in terms of system performance and network traffic reduction 

rate.

From Chapter 4 through Chapter 7, complex dynamics of the discrete-time non­

smooth dynamical systems discussed in Chapter 3 are studied in detail. These 

nonsmooth dynamical systems are switching systems each composed of two linear 

systems governed by a switching law. In Chapter 4, following some motivational 

examples, qualitative analysis of a  two-dimensional switching system is conducted 

with emphasis on local stability of fixed points, existence and stability of periodic 

orbits, bifurcations and first return maps.

Chapter 5 addresses difficulties involved in the analysis of the strong nonlinearity
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inherent in these nonsmooth dynamical systems. Here we point out why traditional 

methods fail and propose some new numerical methods primarily based on softwares 

such as Mathematica and Matlab.

Chapter 6  investigates structural stability of a switching system. By introducing 

a parameter A to derive a  line of systems, with one end point being a linear stable 

system and the other being the original nonsmooth dynamical system, we seek phase 

transition as A moves from 1 to 0. We are interested in the invariance or continuous 

functions of A as it goes from 1 to 0.

A higher-order discrete-time nonsmooth dynamical system, induced by the same 

switching machinery as those in the aforementioned two-dimensional systems, is 

studied in Chapter 7. Some examples are first used to illustrate geometrically the 

rich dynamics of this system, then fixed points and switching surfaces are discussed. 

Finally an example is given to show the rich dynamics of the class of higher dimen­

sional nonsmooth dynamical systems.

A continuous-time nonsmooth dynamical system, the counterpart of tha t stud­

ied in Chapter 7, is discussed in Chapter 8 . Intriguing behavior of this system such 

as sensitive dependence on initial conditions and coexisting attractors is demon­

strated by simulations using Matlab/Simulink. Then the machinery leading to this 

strong nonlinearity is investigated from the viewpoint of numerical solutions of the 

trajectories of the system.

We return back to the issue of control in Chapter 9 which can be divided into 

three parts: Part one is about chaotic control; part two contains some simulations of 

system performance under the new controller design; part three converts the design 

problem into an optimization one, which can be studied via LMIs.

Finally some open problems are fisted in Chapter 10 to close this thesis.

1.4 Collections o f definitions

For the convenience of readers, some important definitions are collected and given 

in this section. For details please refer to  [11], [85] and the references therein.
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1.4.1 Step-invariant transformation

Given a real function y(t), where t 6 l ,  an ideal sampler S  with input y and output 

is defined as

ip(k) =  S  (;y(t)) :=  y(hk), (1.18)

where k £  Z. Also, a zero-order holder (ZOH) H  transforms a discrete-time signal 

v to a continuous-time one u(t) in the following way:

u(t) = H (■v(k)) := v(k), k h < t  < ( k  + l)h. (1.19)

Then a step-invariant transformation Gd mapping a  discrete-time signal v to a 

discrete-time ip is defined as:

<p = Gdv := SG H v , (1.20)

where G is a continuous-time system.

1.4.2 Bilinear transformation

Given s S R  and A s Z . where R and Z denote the sets of real numbers and integers 

respectively. Define the following bilinear transformation:

where the real number h  >  0 is a sampling period. Then, under this transformation, 

a continuous-time transfer function G(s) can be mapped to a discrete-time one, 

Gbt(\). which has the form:

(L22)

1.4.3 Non-wandering set

Let X  be a metric space, and /  : X  —> X  a  map. An element x  of X  is a  wandering 

point if there is a neighborhood U of x  and an integer N  such that, for all n  >  N , 

f n (U) fl U =  0, where 0 denotes the empty set. If x  is not wandering, we call 

it a non-wandering point. Equivalently, x  is a non-wandering point if for every 

neighborhood U of x  there is n  >  1 such tha t f n(U) n  U is nonempty. The set of all 

non-wandering points is called the non-wandering set of / ,  and is denoted by f 1( f) .

If X  is compact, then Q.(f) is compact, nonempty, and forward invariant; if, 

additionally, /  is an homeomorphism, then Q (/) is invariant.
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1.4.4 cj-limit set

Let $ (f,x ) be the flow of the differential equation x'  =  /(x ) , where f  £ C k(M,  Rn), 

with k >  1 and M  an open subset of Rn. For any given x  £ M,  the u-lim it set of x, 

denoted ui(x), is the set of points y £ M  such that there exists a sequence tn —► oo 

with <&(tn, x) = y. Similarly, the a-limit set of x, denoted a(x), is the set of points 

y £ M  such tha t there exists a sequence tn —> —oo with $ (fn,x) =  y.

1.4.5 Poincare-Bendixson theorem

Let M  be an open subset of R2, and f  £ C 1 (M, R2). Consider the planar differential 

equation x ' =  /(x ) . For a  fixed x £ M , suppose that the w-limit set u>{x) ^  0 is 

compact, connected, and contains only finitely many equilibria. Then one of the 

following holds:

1 . a;(x) is a fixed orbit (a periodic point with period zero, i.e., an equilibrium).

2. lj(x ) is a regular periodic orbit.

3. ui(x) consists of (finitely many) equilibria {xj}  and non-closed orbits 7 (y) such 

tha t u>(y) £  {xj} and a(y) £  {xj}  (where a(y)  is the alpha limit set of y).

The same result holds when replacing w-limit sets by a-limit sets.

1.4.6 Topological entropy

Let (X , d.) be a compact metric space and / :  X  —► X  a continuous map. For each

n  > 0, we define a  new metric dn by dn(x,y)  =  max.{d(fl( x ) , f i (y)) : 0 <  i < n}.

Two points are e-close with respect to this metric if their first n  iterates are e-close.

For e >  0 and n >  0 we say that F  C X  is an (n, e)-separated set if for each pair x, y

of points of E  we have dn(x,y) >  e. Denote by N(n,e)  the maximum cardinality

of an (n, e)-separated set (which is finite, because X  is compact). Roughly, N (n, e)

represents the number of “distinguishable” orbit segments of length n, assuming we

cannot distinguish points that are less than e apart. The topological entropy of /

is defined by htop(f) = lim ( limsup — log N(n ,  e) ] . I t  is easy to  see that this limit 
£—*0 y n—. 0 0  ri J

always exists, but it could be infinite. A rough interpretation of this number is 

that it measures the average exponential growth of the number of distinguishable
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orbit segments. Hence, roughly speaking again, we could say tha t the higher the 

topological entropy is, the more essentially different orbits we have.

Topological entropy was first introduced in 1965 by Adler, Konheim and McAn- 

drew. In this thesis we use its generalized form given in [40] for piece-wise linear 

dynamics.

1.4.7 Homeomorphism

A homeomorphism, f  of topological spaces is a continuous, bijective map such that 

/ - 1  is also continuous. We also say tha t two spaces axe homeomorphic if such a 

map exists.

If two topological spaces axe homeomorphic, they are topologically equivalent -  

using the techniques of topology, there is no way of distinguishing one space from 

the other.

1.4.8 Structural stability

Given a metric space (X , d) and an homeomorphism / :  X  —* X ,  we say tha t /  is 

structurally stable if there is a neighborhood V  of /  in Homeo(A) (the space of all 

homeomorphisms mapping X  to itself endowed with the compact-open topology) 

such that every element of V  is topologically conjugate to / .

1.4.9 Sensitive dependence on initial conditions

A map /  on a metric space X  is said to have sensitive dependence on initial condi­

tions if there is an r  > 0 (independent of the point) such tha t for each point x  G X  

and each e >  0 there is a point y  € X  satisfying d(x, y) < e and a k > 0 such that 

d { f k{ x ) , f k{y)) > r.

1.4.10 Expensive

A map /  on a metric space X  is said to be expensive if there is an r  >  0 (independent 

of the points) such tha t for each pair of points x, y  € X  there is a  k  > 0 such tha t 

d { f k ( x ) , f k{y)) > r .
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1.4.11 Topologically transitive

A map /  : X  —► X  is topologically transitive on an invariant set Y C X  if there 

exists a point y €  Y such th a t U£L0 f n{y) is dense in Y.

1.4.12 Chaos (Definition I)

Let (X, d ) be a metric space, / :  X  —► X  a  map, and A a  set of X  with a t least two 

points. A is called a scrambled set of /  if Var, y  S A, x  y,

•  l im s u p ^ ^  | / n (x) -  f n {y)\ > 0;

• liminfn_oo | / ” (x) -  P iy ) ]  = 0.

/  is said to  be chaotic in the sense of Li-Yorke if there exists an uncountable scram­

bled set A.

1.4.13 Chaos (Definition II)

A map on a metric space X  is said to be chaotic on an invariant set Y  C X  if

• /  is topologically transitive on Y ;

•  /  has sensitive dependence on initial conditions on Y ;

•  Periodic points are dense in Y.

If f  is continuous on Y, it is proved that the third item in the above definition 

is redundant, hence there comes the following definition.

1.4.14 Chaos (Definition III)

A map /  on a metric space X  is said to be chaotic on an invariant set Y C X  if

•  /  is topologically transitive on Y;

•  /  has sensitive dependence on initial conditions on Y.
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Chapter 2

Convergence in digital control 
system s

In this chapter, some issues involved in digital implementations of analog control 

systems are discussed. Prom an analog system K , digital systems Kd and Kbt are 

often obtained via the step-invariant (the ZOH equivalent) and bilinear transfor­

mations, respectively. For the case when K  is stable, SISO (Sec. 2 .1 .2 ) or MIMO 

(Sec. 2.1.4), it is shown that Kbt converges to Kd in l p induced norms as the sam­

pling period tends to zero for every 1 <  p < oo. Furthermore, Kbt converges to 

Kd in the graph metric as the sampling period tends to zero no m atter whether 

K  is stable or not (Sec. 2.1.3). Thus, internal stability and performance recovery 

properties for Kd in the literature can be translated to those for Kbt (Sec. 2 .2 ).
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2.1 A sym ptotic behavior of K d — Kbt

Given an analog system K (s), the step-invariant (the ZOH equivalent) and bilinear 

transformations are denoted by discrete-time systems Kd(z) and Kbt(z), respec­

tively. In terms of state-space data, take a minimal realization for K(s), namely, 

(A,B,C,D),  and assume A  €  R mXm, B  6 R mxp, C S R«xm, D €  R ?xp; Kd(z) has 

a  corresponding state-space model (Ad, Bd, C, D) with

Ad = eA\  B d = f k eArd r B , (2.1)
Jo

where h is the sampling period; and Kbt (-) has a state-space model 

(.Abt,Bbt,Cbt,Dbt) with

h A -1 /  h \  _  h i ,  h
a u =  S t  =  2 { I ~ 2 A)  B ' (2'2)

Cbt =  C { I  +  A*) =  2 c ( i - ± a )  \  Dbt =  D +  ^ c ( l - ^  ' B.

Note that K d and K bt are the most commonly used discretizations [41]. In this 

section we will prove the following: the ip norm of K d[h) — K bt[h) converges to zero 

as h tends to zero for all 1 <  p <  oo when K  is stable; and K d(h) — K bt(h) converges 

to zero in the graph metric even if K  is unstable.

2.1.1 Convergence in l v induced norms

In this subsection, assuming tha t K  is stable and SISO (single-input-single-output), 

we investigate the convergence properties between K d and K bt in terms of l p induced 

norms when the sampling period h goes to zero.

Letting {an}^ l0 and {bn }™= 0  denote respectively the impulse responses of K d 

and K bt, we have

_  f D, n  = 0,
0,1 “  \  C ^ - ^ f g ^ d r B ,  n  >  1,

f D + ± C { I - ± A ) - l B,  n  = 0,
[ hC ( I -  |  A) -(n+1) ( I  +  |  A)n_1 B, n  > 1.

Define Cn =  an — bn. I t  follows easily that |co| —»■ 0 as h —> 0. When n  > 1,

Cn = C  £  eATdr - h ( l -  ^  ^  ^  ( l +  =  CcLnB,
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where , .
rh /  h \  -h*-1"1) f  h \ n_1

eArd T _ h ^ I _ { ^ Aj  (_I + - A )  . (2.3)

Therefore |cn| <  HCH • ||dn|| • \\B\\, where the norm ||-|| on a  matrix M  e  RTOXr is

defined as S i S j  lm vi> which is a matrix norm. Thus looking a t the 1-norm of

Kd — Kbt, we have
OO OO

IIK d -  t f 6t|li :=  £  |c«| -  0, as h -  0 if £  |K | |  -  0, as h -> 0. (2.4)
n = 0  n = l

The following lemma is crucial in the succeeding development.

L em m a 2.1 Assume that K  is SISO and stable and the matrix A  is diagonalizable 

with all real eigenvalues. Then lim^_o+ ||Kd — AttHi =  0.

P ro o f. Under the assumptions above, without loss of generality, we suppose that 

A  is in the form A  =  diag (aj)i=lv..im with Oj <  0. Then we have

eA(n-l)h f h eArdr  = diag f  ̂  ~  1 eM n -l)h \
JO \  Oi /  t= l , . . . ,m

2  > v  2 )   „

According to Eq. (2.3),

U )  -  =  e^ - 1)t  ( e . ) -  i  =  1 m

where {dn)i denotes the i-th diagonal element of the matrix dn, and

;= ̂  (i - H "+1 - (x + ■

Thus, for all n , (dn)i >  0 is equivalent to (en)i > 0.

Next we will use induction to prove that (en)j >  0,Vn >  1, if h < l/|o*|. For 

n  =  1,

eai/l- l  /  h \ 2 , 1 /  . h2 2 \ ^ a f h n

^  ( -n )  a?/in+1 1 ^  a?+1hn + 2

=  E  {K i y .  + 4 ^ - ^ —
7 1 = 1  V ' 7 1 = 1

— ^ h 2 °i 1,3 I V  n ~ 2 Qit~r I |.n+2
4 -3  4 ^ 4 - ( n  +  2) n! '

7 1 = 3
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Since under the condition h <  1/ |a*|,

(2fc+l)-2 1 i(2fc+l)+l L(2fc+l)+2 ,  .
4-((2fc+l)+2) (2fc+lJ! I°»l  2fc -  1 2fc +  4  1

(2fc+2)—2 l u.i(2fc+2)+l h(2k+2)+ 2  ~  2 k 2 k +  3 { } |a{| h ' ~  '
4-((2fc+2)+2) (2fe+2)! I®11

we have

V  1 k n - > 0
^ 4 - ( n  +  2) n! “

Furthermore,

1,2 -  t k h 3 = { e + -“ V  -  ° ' “ h <  r

Thus

(ei)^ >  0 for h <  1/ |a i | .

Suppose (efc)i >  0 for h < 1 / |oi|.

« -> ■  -
k- 1

—he~(k~1'>hai ^1 +  e-/lQi ^1 +

By the above assumption, 

e'
^  1 ( X ~  f a i)  A+1 ~  he~ik~1)hai ( :  +  fc 1 -  ° ’ for <  ] ^ f ;

(ejn-i)i >  0 **  ( l  -  ^  e_/iai +  \ “*) •

f ( h ) : = l - ^ a i - e - ^ ( l  + ^ .  (2.5)

Then / (0 )  =  0, and / ( h )  >  0 for h > 0, thus (efc+Oj >  0 for h <  l / |o j | .  By 

induction, (en)i > 0 , Vn >  1, if h  <  so is (dn)*• Therefore,

(H

therefore

Define

£ w  =  E E W i = E
n = l  n = l  i = l  i = l

(  h \  ea</l - 1  1 h i

V
Oj 1 -  e<*ft (x  _  I q . ) 2 1 _  l + j f o

l-ofli .

=  V  +  - — L — | ^  0 as h -  0. 
* - i \  (H di i - f e t*=1 V. * 2 ° i  j

By Eq. (2.4), the lemma is proven.
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According to the discrete-time version of Theorem 9.1.2 in [11], for all 1 <  p <  oo,

||Kd — Kbt\\(p < ||Kd — ATfttlli, the left hand side being the £p induced norm (the right 

hand side \\Kd -  Ait Hi is actually \\Kd -  Kbt\\ioo)- Thus we conclude the following.

Theorem 2.1 Under the same assumptions as in Lemma 2.1, we have

lim \\Kd — K bt\\e ~  0
/i—o+ p

fo r  all 1 <  p  <  oo .

2.1.2 Convergence in the graph metric

In this subsection, we remove the assumption th a t K  must be stable. Thus Kd and 

Kbt may be possibly unstable. For convergence of unstable systems, norm metrics 

are not suitable, we hence adopt the graph metric introduced by [101]. It is easy to 

find two unstable digital systems converging to each other under the graph metric, 

whereas induced norms are unbounded as the sampling period approaches zero. 

Therefore, the graph metric is more suitable in measuring the “closeness” between 

two unstable systems. We also comment that here K  can be M M O (multi-input- 

multi-output).

Some preliminaries are necessary for the development.

Lemma 2.2 Assume that the pair (A, B ) is stabilizable. Then there exists a com­

mon constant matrix F  such that A  +  B F  and A  4- 2B F  are both stable.

Proof. Since (A , B ) is stabilizable, it is well known th a t there exists a positive 

definite matrix P  such that A 'P + P A  — P B B 'P  < 0. Define F  = — | B 'P . It can be 

verified that (A +  B F )' P + P  (A  +  B F ) = A 'P + P A - P B B 'P  <  0, (A +  2B F )’ P +  

P {A  + 2B F )  =  A ’P  4- P A  — 2P B B 'P  <  0 . By the Lyapunov theorem, A +  B F  

and A +  2B F  are both stable. ■

Lemma 2.3 I f A + B F  is stable (in continuous time), both Ad+BdF and Abt+BbtF 

are stable (in discrete time) for sufficiently small h.

We omit the proof of Lemma 2.3. Now we have set up for the main result.

Theorem 2.2 In the graph metric, Kd — Kbt converges to zero as the sampling 

period h goes to zero.
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P ro o f. By Lemma 2.2, there exists a matrix F  such that A + B F  and A + 2 B F  are 

stable simultaneously. By Lemma 2.3, both Ad 4- BdF  and A bt +  2B btF  are stable 

for h sufficiently small. Define

Md (z)
N d (z)

Ad +  B dF B d 1
F I

C  + D F 0

M bt (z) 
N bt(z)

A bt +  2 BbtF B bt
2 F I

C + 2DF 0

Then K d =  N dMd and K bt =  N btM bt are right coprime factorizations [115]. Thus

M d(z) -  M bt(z) = F { z I - ( A d + BdF ) } ' 1 B d -  2F \ z l  ~  (Abt + 2BbtF ) } ~ 1 B bt.

Substituting in the expressions for A d and B d in Eq. (2.1), and A bt and B bt in Eq. 

(2.2), and simplifying a  bit, we have Md(z) — Mbt(z) =  F T ( z )B  with

rh -i_1 rh.
T(z)  := z l - I - f  eMd t (A  + B F )j ^  eMdt (2 .6)

_o
- l

I  + - ( A  + 2BF)
- l - l

Let z  =  e J'e, 9 € [—7r, tt). If 9 =  0, z =  1, then 

T  (1) = 1 ~ (7 + Jo eMdt ̂  + BF))] Sg e dt

- 0

=  - ( A  + B F ) - 1 - h  

=  - ( A  + B F ) ~ 1 + (A + B F ) ~ 1 = 0 .

- l
7 +  | ( A  +  2 B F ) ) |

-1

I - Z A - ( I  + ^ ( A  + 2 B F )S)
- l

If 9 ^  0, z =  e-je  #  1. According to Eq. (2.6), lim/l_ 0+ T  (z) =  0. Thus we 

conclude that

lim \\Md ( z ) - M bt(z)\\00= ] i m  sup ||Md(e_:’9) -  M6t(e_-J0)|| =  0.
fc—0+ fc—0+ —7r<0<7T

Similarly, we can show that lim^^o+ ll-^d (2) ~  -N&t (2)lloo =  0- ^  follows then that 

K d — K bt converges to zero in the graph metric. ■

If K  is stable, both K d and K bt are stable. In this case the graph metric induces 

the same topology as that induced by the Hoo norm. We have:

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C oro lla ry  2.1 I f  K  is stable, lim/,_0+ IIK<l{z ) — Kbt{z)lloo =  0-

According to Corollary 2.1, for the H x  norm (& induced norm), the assumptions 

in Theorem 2.1 can be relaxed. In fact, Corollary 2.1 holds for all norms induced 

by unitarily invariant matrix norms [74].

2.1.3 Convergence in ip induced norms revisited

In this subsection we will remove the assumptions in Theorem 2.1, thus obtaining a 

general result for the Convergence of \\Kd — Kbt\\ in tv induced norms as h goes to 

zero.

Let P  and Q denote the controllability and observability Gramians of K(s)  

respectively. Then

A P  + PA! + B B '  =  0,

and

A'Q + QA + C'C =  0.

Define

Then following the technique in [28],

A-btP-^bi — P  + BbtB'bt X
(X -  ^ A j  (A P  +  P A ' +  BB')  ( i  -  ^A '^j

- l

4
0.

Similarly, since

i.e.
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2
- l

Consequently,

I  -  ^  (A'btQ Abl - Q  + C'btA bt) ( i  -  ^ A  

= hA'Q + hQA + AC'C 

= 4 {A'Q + QA + C'C) =  0.

Therefore, K(s)  and K bt(z) have the same Hankel singular values, denoted by <jh  =  

{(7i, • • • , ujv}, where cr\ > ■ ■ • >  &n  >  0.

Based on Corollary 2.1, we have

Theorem 2.3 Assume K  is stable, limft_ 0+ \\Kd — KbtWe =  0 for  all 1 <  p  <  oo.

Proof. Observe that

r Af 0 B d
K d{ z ) - K bt(z) = 0 Abt B bt

. c - c bt - § c { i - % a ) - 1 b \

Let

Then

Ad 0 Bd '
Kd (z) := 0 Abt Bbt

L c -C bt 0

- l

By Corollary 2.1,

K d( z ) - K bt(z) =  K d (z) + Dd .

lim H^C^Iloo =  0.
ft,—*0"t"

Suppose the Hankel singular values of K d (z) are =  {ct]\ ■ ■ ■ , u^-} where 

> 0. According to the discrete-time counterpart of Theorem 7.8 in

[115], we have
N
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As a  result,

lim JtfcK z)!!, =  0.
ft—*0̂

Obviously Dd —► 0 as h —*■ 0. Therefore

lim | |# d(z) -  K bt(z) ||i =  0.
ft—‘O'*-

Furthermore, according to the discrete-time version of Theorem 9.1.2 in [11],

\\Kd -  K u h p <  \\Kd -  K u h  , for all 1 <  p <  oo.

■

R e m a rk  2.1 The above theorem is applicable to MIMO systems. Also the restric­

tion of “A” being diagonalizable with all real eigenvalues is removed. Thus it is 

a generalization of Theorem 2.1. In this way, along with Theorem 9.4.1 in [11], if 

the step-invariant or bilinear transformation is applied to  analog systems, internal 

stability as well as other performance specifications of the analog system can be 

recovered as the sampling period tends to  zero. This is the topic of the next section.

2.2 Performance recovery

In this section, we discuss an application of Theorem 2.3. It is well-known that 

internal stability of an analog control system can be recovered if the controller is 

implemented via the step-invariant transformation. Similar results can be proved 

for other types of performance specifications. More concretely, consider the feedback 

system ^  in Figure 2.1 where P  and K  are finite-dimensional, LTI and strictly 

causal, and W  is finite-dimensional, LTI, strictly causal and stable, introduced as 

a pre-filter before the sampler for later digital implementation. This closed-loop 

system is said to be internally stable [11] if the mapping

I  p ' - 1 r z
- K  I d u

is bounded £ 2  (R+) —* £ 2  (R+).

Do a digital implementation as in Figure 2.2, denoted usiHg K d obtained 

by the step invariant transformation. We first have the following properties.
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Figure 2.1: Analog system 22i

Figure 2.2: Digital system 2^2 yia the step-invariant transformation

Proposition 2.1 Suppose 22i is internally stable and satisfies sup[|r||̂ <1 ||z||p < e, 

for some e > 0. Then

(a) 2 internally stable as h —* 0;

(b) furthermore, ifK  is strictly causal and stable, then sup^n^ ||.z||p < e as h —> 0.

The proof of (a) was given in [11], and (b) can be proved in a similar way. Here, 

we give another intuitive interpretation, though being not a rigorous proof. To this 

end, we need the following result.

Proposition 2.2 [10] If F is finite-dimensional, LTI, strictly causal and stable, 
then HSF converges to F as h —̂ 0 in the Cp(R+)-induced norm for every 1 < p < 

oo.

According to  this proposition, HSW —* W , HSK —> K  as h —► 0; therefore for 

any given u 6 £j,(E+ ), let z = (K — HKdS)Wu,

||z|| = \ \ ( K - H K dS )W u \\< \\(K -H K dS)W\\-\\u\[

= \\{K-SHKSH)W\\-\\u\\

< ||KW -  KHSW\\ ■ ||u|| +  ||KHSW -  SHKSHW\\ ■ |M|

< p r i l l K I  -  HS)W\\ ■ ||u|| + ||(7 -  HS ) iq \\HSW\\ - ||u|| -  o as h -  0.

Thus, as h —► 0, HKdS in Figure 2.2 can be regarded as a  very good approximation 

of K, therefore it is natural to assume that Proposition 2.1 holds. Next, we will 

show that HKbtS has the same desirable property.
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If we replace K d in Figure 2.2 by Kbt, we get another digital system as shown 

in Figure 2.3. We have the following result which is the counterpart of Proposition 

2 .1 .

Figure 2.3: Digital system £ 3 via the bilinear transformation

T h e o rem  2.4  Suppose ^  is internally stable and satisfies supy,.^^! ||z||p <  e, for  

some e >  0. Then

(a) J33 is internally stable as h —* 0 ;

(b) furthermore, i fK  is strictly causal and stable, then su p i^ u ^  ||z||p <  e as h  —► 0.

In order to prove this theorem, we first note the following: Suppose G is a stable, 

finite-dimensional, LTI, discrete-time system, then

l |G L < l |G | l i ,  V p e N U o c , (2.7)

where ||G||P is the ^-induced norm of G.

P ro o f  o f  T h eo rem  2.4. First we reconfigure the system iu th e way as shown 

in Figure 2.4. The system G\ can be viewed as a perturbation to the system under

Gi
• * K d

K u
w i I?

W — S  -L*Kd ~ x5— H

Figure 2.4: The equivalent system of ]T)3 

it, which is exactly the system YI2 iQ Figure 2.2. Therefore, if the norm from u> to £
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tends to zero as h  —► 0, then according to the small gain theorem, we can ascertain 

that the system is internally stable. Hence the problem is reduced to showing 

property (b) for the system ^ 3. For this and in view of Eq. (2.7), it is sufficient to 

show lim/l_o ll^iHi =  0, which is given by Theorem 2.3. ■

R e m a rk  2.2 Digital controllers obtained via the bilinear transformation have sim­

ilar closed-loop properties as those obtained via the step-invariant transformation. 

However, if the analog controller K  is minimum-phase, so is Kbt', whereas Kd may 

be non-minimum-phase if h is sufficient small [2].

In the following, we will illustrate Theorem 2.4 with a simple example.

E x am p le  2.1 Consider the analog system in Figure 2.1 and its digital implemen­

tation via the bilinear transformation in Figure 2.3 with W  =  I, d =  0, and

p , , =  20 =  s2 +  10.42s +  20
{S) s ( l  +  s/10 )(l +  s /5 0 )’ {8) s2 +  32.44s +  20'

(This example was used by [80] and [90] in the optimal digital redesign.) Figure

2.5 is the closed-loop step tracking for different values of h. We see that the step 

response of y  of the digital system in Figure 2.5 converges to th a t of the analog 

system as h —*■ 0.

2.3 Conclusions

In this chapter, some limiting properties of digital implementations of analog con­

trollers via the bilinear and step-invariant transformations have been studied. It is 

shown proved tha t the ^-induced norm of Kd{h) — Ku{h)  converges to zero as h 

tends to zero for all 1 <  p <  oo when K  is stable; and Kd{h) — Ku{h)  converges 

to zero in the graph metric even if K  is unstable. Hence all results involving the 

digital controllers obtained for the step-invariant transformation can be translated 

to those obtained via the bilinear transformation.
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Figure 2.5: Step response simulation
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Chapter 3

A new network data  
transm ission strategy

W ith the rapid development of communication networks, more and more control 

systems are constructed in the framework of networks. Besides the advantages 

of connecting system components with communication channels, time delay and 

packet loss are two of the biggest problems induced by networks. Various network 

protocols and control methods have been proposed to deal with these problems. 

In this chapter, a new network data  transmission strategy is proposed to  reduce 

network traffic so as to  avoid large time delays and high percentages of data loss. 

Stability of the resulting nonsmooth dynamical system is analyzed briefly. The 

effectiveness of this strategy 

will be the main topic of the

38

is illustrated via simulations. Its dynamical behavior 

following several chapters.
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3.1 A  new networked control technique

Consider the feedback system shown in Figure 3.1, where G is a discrete-time system

of the form:

Figure 3.1: A standard feedback system

x(A:-l-l) =  Ax(k)  + Bu(k),  

y(k) = Cx{k),

(3.1)

with the state  x  e  R", the input u £ Rm, the output y e  Rp; C  is a stabilizing 

controller:

x<i(k + 1) =  AdXd (k) +  Bde[k), 

u{k) =  CdXd{k) +  Dde(k), 

e (fc) =  r ( k ) - y  {k) ,

with its state Xd E and the reference input r  € R p. Let £ =  

closed-loop system from r  to e can be modeled by

A -  B D dC BCd 
—B dC  Ad 

e{k) =  [ - C  0 ]Z{k)  +  r{k).

(3.2)

€ (*  +  1) = £(*) +
B D d
Bd

x
Xd

r[k).

Then the

(3.3)

Now we add nonlinear constraints on both u and y. Specifically, consider the 

system shown in Figure 3.2. The nonlinear constraint Hi  is defined as: for a given 

£i >  0, let v(—l) =  0; for k >  0,

-w( fc - l ) l l oo  ><J1’

Similarly H 2 is defined as: for a given <52 >  0, let z (—1) =  0; for k > 0,

z(k) = H 2 (ye ( k ) , z ( k - l ) )  =
Vc(k),  if ||2/c (fc) - z ( k -  1)11  ̂ >  <52, 
z(k  — 1), otherwise.

39

(3.4)

(3.5)
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r— ?:

Figure 3.2: A constrained feedback system

It can be shown that, for the SISO case, i.e., p  =  m =  1, ||-ffi||, the induced norm 

of equals 2, so is H-Efel!-

In a  networked control system, there are normally computer networks along the 

routes from the controller C  to the system G and from G to C. These networks 

(usually shared by other clients) will introduce time delays into the closed-loop 

system. It it quite appealing to compensate this adverse effect. If we regard Hi 

as a  component of C  and # 2  of G, G (resp. C) contains the previous version of 

v  ( resp. z), then there will have no signal transmission from C  to G and (or) from 

G to  C  if the inequalities in Eq. (3.4) and (or) Eq. (3.5) are not satisfied, suggesting 

th a t we are reducing network traffic. We expect this will benefit the overall system 

connected by the common networks. One example will be given in Sec. 3.3 to 

illustrate this point.

Similar work is done in [71] where adjustable deadbands axe proposed to reduce 

network traffic. In  that formulation, the closed-loop system with deadbands is 

modeled as a perturbed system; then its exponential stability follows that of the 

original system based on the perturbation theory [39]. The constraints proposed 

here are fixed (specified <5i and fe), we will see that stability of the system in Figure

3.2 is quite complicated (e.g., only local stability result can be obtained). However, 

the advantage of fixed deadbands is that they will reduce network traffic more 

effectively. Furthermore, the stability region can be scaled as large as desired. This 

is one advantage of our proposed scheme. Moreover, we find out that the system in 

Figure 3.2 has rather complex dynamics — it appears chaotic. As is known chaotic 

behavior will in general provide more system dynamics, namely, more information 

of the underlying system, therefore we hope we can achieve better control in the 

framework of Figure 3.2. We will address this problem more rigorously in Chapter 

9.
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For the “constrained” system in Figure 3.2, let p  denote the state of the system 

G, and pd denote th a t of C, then

p(k  +  1) =  Ap(k) +  Bv{k), 

yc{k) =  Cp{k),

and

Pd{k +  1) =  AdPd{k) +  Bdec(k), 

uc(k) = CdPd(k) + Ddec(k): 

ec(k) =  r(k) — z(k).

then the closed-loop system from r to e isV
Vi

Let p =

77( fc+l )  =
’ A  O ' ' B 0 v(k) '  0  ‘

.  0  A d .
r]{k) +

0 B d _ . ~ z(k) .

+
.  Bd .

r(fc), (3.6)

ec{k) =  [ —C  0  ] 7j(k ) + r(k), 

where v  and 2  are given in Eqs. (3.4)-(3.5).

3.2 Stability analysis

In this section, Stability of system (3.6) is addressed. Firstly a  sufficient condition 

ensuring local exponential stability is derived. Secondly a positive invariant set is 

constructed. Finally it is proven th a t the Lebesgue measure of the set of trajectories 

converging to a certain fixed point is zero if either the system G or the controller C  

is unstable.

Letting r =  0, system (3.6) becomes

v(k)
—z(k)

v(k )
-z(fc)

, k >  0 .

We have the following result regarding local stability.

L em m a 3.1 I f  both the system G and the controller C  are stable, the origin is 

locally exponentially stable.

rj(k +  1) =

1 
1

0 
rj?0

1 
1

y{k) + ' B  
0

uc{k) 
. Vc (k)

=

0 
0

1 
1

rj{k) + '  0 
0

u(fc) H i(u c {k ) ,v (k  --1))
~ z (k) _ - H 2 (yc (k ) ,z (k - 1 ) )

(3.7)
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P ro o f. Define

A  =

101

, c  =
' 0  c d '

L 0 Ad J J v-/ o  0

Since both G and C  axe stable, p(A) < 1 where p (M) is the spectral radius of a 

square m atrix M . Then for any given e >  0 satisfying p(A) +  e < 1, there exists a

m atrix norm such that < p{A) +  e [29]. Furthermore, this matrix norm 

satisfies ||MJV||„ <  ||M ||, | ] f o r  any two matrices M  and N  of dimension n  + n c. 

In this spirit, for a  vector x  of dimension n  +  nc, one can define a  vector norm |x |, 

such th a t |M x |, <  ||M ||, |x |,. One way to define such a norm is the following. Let 

O denote the zero vector of dimension n  +  n c, define

XL := x, O,- , o
n+nc—1 .

Then

|M x \m =  ||[M r, O, • • • , 0 ] ||. <  ||M ||, \\[x, O, ■ ■ ■ , 0 ] ||.  =  ||M ||, |a :|..

For a  vector w of dimension v  < n  +  n c, denote by O the zero vector of dimension

n + n c — v. Define |u | . := [ a /  O' , then |-I, is a norm on the vector space 

RI/xl. We trea t a matrix of dimension less than  n  +  n c in the similar way.

Let ll-llj be the induced matrix norm of the vector norm IHI^,, then there exist 

positive constants ci and co such that c\ ||M ||, <  HM^ <  c<i ||M ||, for any matrix 

M  S Mn+”c. Let 6  :=  min{<5x, $>}, then HMHj <  <5 if ||M||„ <  8 fc 2 ■ Hence, in the 

sequel we concentrate on the matrix norm ||-||„ and the upper bound 5 /c 2- Now we 

are ready to derive local stability of system (3.7). We claim th a t the stability region 

contains a  ball centered a t the origin with radius

l :=  mm • Si 82

C2 _ ° c d

denoted 53 (0 , t).

Suppose 177(0 ) |,  <  t, by Eq. (3.7),

C2 C  0
(3.8)

l 2 / c (0) | ,< | | [C 0 ]  11X0)1. < 82

0 2 ’

then

\\ycm\oo < <52, 
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hence

Accordingly

indicating

and

Therefore

2  (0) =  H 2 (yc (0), z(k  -  1 ) ) = z  ( -1 )  =  0.

M 0 ) | , < | | [ 0  cd] 11.1*7(0)1. < £ ,
C2

IMoJIloo < f t ,

V  (0) =  Hi (Ue (0), v{k - l ) ) = V  ( -1 )  =  0. 

77(1) =  Atj(0).

Similarly,

|jfe(l)l* <  || [ C  0 ] | | j 7 7( l) |,  =  | | [ C  0 ] | | .  A  Jr7(0)|,

62 
c2

lbc(l)!leo <  fc,

H2 (yc(l),z(0)) = z(0) = 0.

Moreover,

indicating

and

M l ) | .  <  II[ 0  Cd ] 11.177(1)1. =  | | [ 0  Cd ] \ l  A  JT7(0)|, 

^  II [ 0  ^  ] | | . ( p ( A ) + e ) | 77(0 ) | , < ^ ,

K  (l)!!,* < * i ,  

v  (1) =  Hi (uc (1), u(0)) =  v (0) =  0.

Then

t?(2) =  At){1 ) = A 2t)(0)

implying there is no updating for the inputs to G  and C. Following this process, 

see

7?(fc) =  Afc77(0) 

converges to zero as k  tends to 0 0 .

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R e m a rk  3.1 Though the origin is locally exponentially stable, it is hard to find 

the exact stability region except for a scalar system controlled by a static feedback. 

However, even in this scalar case, the system may have very complex dynamics. We 

postpone this interesting topic to the next chapter.

R e m a rk  3.2 It is worth pointing out that in this chapter u ( - l )  and z{—1 ) are 

always assumed to be 0. The origin will not be the only fixed point if this condition 

is relaxed. This problem will be discussed in the following chapters.

Now we return to our analysis of higher dimensional systems in Figure 3.2. We 

will find a  positively invariant set for this system. For simplicity, let Dd = 0. Define

A :=

Since the controller C  is stabilizing, the closed-loop system in Figure 3.1 is 

asymptotically stable. As a result, there exists a Lyapunov function v(£(k)) =
' P i  P2 ~

A B C d ' , B := ' B  O ' , B  := B C  = 0 BC d '
. - B dC Ad . 0  - B d . - B dC 0

£'(fc)P£(fc) with P  =
Pi P$

> 0 such that

Au(S(k)) =  ? (k  + l)PS{k + l ) - ? { k ) P & k )  

=  ? { k ) { A 'p A - p ) a k )

=  - ||$ (* )ll | for all €(*).

Correspondingly, define vc(ri(k)) =  r)'(k)Prj(k); then

A u c (i7 ( fc))  =  rf(k  +  l)Prj(k  +  1 )  -  Tj'(k)Pr)(k)

=  V\ k )  { A 'P A -P )r ,{ k )

+2 rj'(k)A 'PB
\ l _  ^ 2  \ yc  w  —

+  ( ,k ) , v(k  -  1 )) j _  I" uc (k) j y  g '' H i(u c ( k ) , v ( k -  1 )) ‘ uc {k)
. H 2 {yc (fc), z{k ~  1 )) . . Vc (fc) .

'  P i ( u c ( f c ) , u ( k - 1 ) )  ‘ u c ( k )
. H 2 ( y c ( k ) , z { k -  1 ) ) . Vc ( k )  .

P B
\  L " 2  u /c  w  , Z { K  -  L) )  j

< -  \\r)(k)\\l +  2 \\V(k) \ \2 • WA’PBW ^  • 7  • 6  +  ( 7  • ~5) 2  ■ \\B 'PB\ 

where 7  =  y/m  + p and 8  =  max {5 i , 52}- Hence A vc(r](k)) <  0 if

||77(fc)||2 > 1 -5 \\A 'P B \\oo+ 1 -5 ^ \\A 'P B \\lo + \\B 'PB \\
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For convenience, define

n  := 7  • I  P ' P S I L  + 1  +  P ' ^ L .

r- ■= P L ^  +  P I L * ’
then we have

Theorem 3.1 The set Cl defined by

9. :=  {7? \ri{k)Pr}{k) < max {a  (P ) r \, a  (P) r f } }

is a ‘positively invariant set, where a  (P ) is the largest singular value o f P .

P ro o f. We need only to show that for each 77 (0) €  9 , 77 (k) S 9  for all k > 1.

Suppose for some integer ko > 0, we have |]77(^0 )U2 ^  r i> aad ||r?(fco + 1 ) ||2  >

r i .  Because A v c(r)(ko +  1)) <  0, T)'(ko + 2)Prj(ko 4- 2) <  7j'(fco +  l)Pr?(fco +  1)- 

Furthermore, it is easy to show that the trajectory will eventually fall into the set 

{77 \rj'(k)Pr](k) < a  (P ) r \  }. Therefore it suffices to show 77(^0 + 1 ) S fl. Observing 

that

IWfeo +  i ) l ! 2 < P L ' - i  +  p | | 00J,
one has

T]'(ko 4- 1)Pt7(A:o +  1) <  o (P) r | ,

which gives rj(ko +  1 ) € Cl. ■

The preceding result ascertains the existence of a positively invariant set for the 

system shown in Figure 3.2; the system behavior inside this invariant set may be 

very complex (however we will save the discussion on it for the succeeding chapters). 

The next result gives an upper bound for all fixed points (to be addressed in the 

next chapter) of system (3.7).

Defining

r I  - C d i l - A d T 'B d  + D i 1
$  : = -

then we have:

C o ro lla ry  3.1 For system (3.7), supposing both G and C  are stable, i f  the ma­

trix (Cd (I  — Ad ) - 1  Bd — D dj C  (I  — A ) - 1  B  has no eigenvalue at —1 + jO, then

I ( j  — B  • | | $ - 1  ||j_ 6  is an upper bound fo r  all fixed points of this system.
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P ro o f. Suppose x  is a fixed point of system (3.7), then there are an integer 

K  >  0 and some vector w  such that

77 (k +  1) =  Arj (k ) +  

for all k  > K . Letting k —► 0 0 , we get

B  0 
0 B d ZZ (3.10)

x  = A x  + B  0 

0 B d ■a,

then

and

- 1 r  B  0
0 Bdx = ( 7 - A ) - ‘ [

|^+[o ? ] H

C7,

Because the matrix (cd (I -  A d) 1 B d -  C (I  -  A) 1B  has no eigenvalue a t 

—1 -t-j'0, is invertible. Furthermore, because

0 DdC x + 0 0 ZJ — Zu < 8,

an d

we have

4 " 1 L5. (3.11)

Since x  is arbitrarily chosen, the result follows. ■

In particular, assume we have a scalar system with a static state feedback:

x  (k +  1 ) =  ax(k ) + bv (k ) ,

u{k) = - f x ( k ) ,  (3.12)

v(k )  =  H \ {u(k) ,v (k  — 1 )),

where |a — bf\ < 1 . Then following the above procedure, one has

| 5 | < ( W I ) / ( l - | a - V | ) ,

where x  can be any fixed point.

An upper bound has been found for all fixed points. Will any of these fixed 

points be stable if either G or C  is unstable? We have a result reminiscent of that 

of [16].
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T h eo rem  3.2 Assume either G or C is unstable, and A  is invertible. Then the set 

of all initial points 770 whose closed-loop trajectories tend to a fixed point as k  —> 0 0  

has Lebesgue measure zero.

P ro o f. Denote this set by U. Let E s be the generalized stable eigenspace of 

system (3.7). Then the Lebesgue measure of E s is zero for system (3.7) is unstable. 

Suppose 77(0 ) € U, following the process in the proof of Corollary 3.1, there exist 

K  > 0 and some vector to such that

and Eq. (3.10) holds for all k > K . Since A  is unstable, 77 (k ) G E s for all k > K .

Due to the uniqueness of the state trajectory of system (3.7), note also that this 

system is essentially a system with a unit time delay, the trajectory starting from 

( 7 7  (—1 ) =  0,77 (0)) is identical to that starting from (to, 77 [K)). Define a mapping F  

as

where 77 (0) and 77 (K ) satisfy Eqs. (3.13) and (3.10), then F  is injective. Therefore

3.3 An exam ple

In this section, one example will be used to illustrate the effectiveness of the scheme 

proposed in this paper. In this example, the networked control system consists 

of two subsystems, each composed of a system and its controller, the outputs of 

the controllers will be sent respectively to controlled systems via a  communication 

channel (see Figure 3.3). For the ease of notation, we denote the two systems, their 

controllers and their outputs by Gd 1, Gd2 , Cdi, Cd2 , Vi and 7/2 respectively. Here 

two transmission methods will be compared. One is just to let the outputs transmit­

ted sequentially, i.e., the communication sequence is [ui(0), 7x2 (0 ), 171(1 ), 710(1), - • - 

Another method is to add the nonlinear constraint H i to the subsystem composed

(3.13)

Furthermore, the invertibility of A  implies that vo is uniquely determined by 77 (K ).

F  : U (3.14)

77(0 ) — >77(10 ,

the Lebesgue measure of U is zero.
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Figure 3.3: A networked control system

of Gdi and CdV, if the difference between the two adjacent signals is greater than 

52 =  0.01, then this subsystem gets access to  the network; otherwise the other gets 

access. Here, we will compare the tracking errors produced under these two schemes 

respectively. For convenience, we call the first method the regular static scheduler 

and the second the modified static scheduler.

The controlled system Gdi is:

x \ [k +  1) =

21 (k) 

yi (&)

1.0017 
0.0500 
0.2000 

-0.0034

0.0050 
0.0991 

-0.0052 
-0.1155

0.1000
1.0000

-0.0003
-0.2103

0.0250
0.5000
1.0000

-0.0517

0.0009
0.0259
0.1052
1.1034

x i (fc)

i 0 0 0
i 0 - 1  0

i 0

1oo

0 0 1 0

w (k ) +

xi (fc)+  

x i (k );

-0.0050 -0.0000 
- 0.1000  - 0.0001 
0.0000 -0.0005
0.0103 -0.0105

- 1
0 w { k ) ,

u i (k) ,
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and Gd2  is:

X2 (fc +  1) =

+

Z2 (fc) =  

1/2 (*0 =

1.0000 
0.0005 
0.0200 

-0.0000
0.0000 
0.0100 

- 0.0001 
- 0.0102

0 
0

0

0.0100
1.0000

-0.0000
- 0.0201

w (fc) +

0.0002 
0.0500 
1.0000 

-0.0005

-0.0000 
- 0.0100 
0.0000 
0.0001

0.0000
0.0003
0.0101
1.0100

x 2 (fc)

-0.0000
-0.0000
-0.0000
- 0.0010

U2 (fc) ,

0 0
- 1  0

0 0
1 0

x 2 (fc) +

X 2 (fc),

- 1
0 w (k ) ,

where w  is a unit step, z\ and z2 axe tracking errors. Controllers Cdi and Cd2  can 

be obtained using the technique in [11]. One state space realization of Cd\ is:

xid{k  + 1 )  =

+

0.4172 
1.9913 
0.0678 

-0.6959 -0.1471

0.6226 0.1845
-1.1792 
0.1272 
0.5128

0.0760 -0.1735
0.5206 -3.3773
0.0004 0.1875

0.2780

0.0515
1.0386
0.1008
0.9112

zid(fc)

3.5968
0.8106

-0.3390

2/1 ( f c ) ,

ui(fc) =

and th a t of Cd2  is: 

x 2d{k +  1) =

+

+

+

-25.5750 4.7948 34.7746 -10.1349
114.8615 -1.2995 -183.9153 8.3132

17.9463 -31.9727 ' 
_ -105.2714 187.5488 2/1 (fc);

0.3810 0.0097 -0.0075 0.0007 '
0.9331 0.9454 -1.8171 0.1305

X2d0.0059 0.0000 0.3608 0.0100
-0.7141 -0.0182 -0.1263 0.9999

'  0.6195 0.0077 ‘
-0.8259 1.8477

2/2 (fc),‘ 0.0140 0.6392
0.7027 0.1220 _

-143.7379 5.4551 215.1570 -13.0276
1082.1 -1.3339 1713.7 8.8012

' 133.0660 -213.2245 ‘
2/2 (fc).-1071.9 1717.6

x i d(k)

X2d(k)
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The simulation results are shown in Figure 3.4 and Figure 3.5.

Under regular static scheduler
1 i ------------------ 1------------------ 1------------------1------------------1------------------1------------------i--------------- 1-------------------- 1------------------1------------------

... z1 
 22

°.S  ■ .

s '  s v/ "* s
0 -' /■•-.../ ---------------------------t

/
/

- 0 .5 -  /  . . .
/

/

.<1 »■- -  i - _________t i____________ > » * t _ . i _____________ | t

0 100 200 300 400 500 600 700 800 900 1000

Under modified static scheduler

1

0.5

0

-0.5

t
’  0 100 200 300 400 500 600 700 800 900 1000

Figure 3.4: The first elements of z \ and zo

From these two figures, one sees th a t the tracking error approaches zero faster 

under the modified static schedular than  under the regular one. Note that both Gdi 

and Gd2  are unstable. If one of the two systems is stable, one can expect better 

convergence rates under the modified static scheduler. In essence, our scheme is 

based on the following principle: Allocate access to the network to  the systems with 

faster dynamics first, then take care of the systems of slower dynamics. In this way, 

we hope we can improve system performance.

3.4 Conclusions

In this chapter, a  new networked control technique is proposed and its effectiveness 

is illustrated via simulations. The dynamics of the system in Figure 3.2 will be 

discussed in the next several chapters. More discussions on the controller design 

based on this transmission strategy will also be discussed later in Chapter 9.
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Under regular static schedular
1.5

... z1

0.5

-0.5
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Under modified static schedular
1.5

0.5

700 900 1000800100 200 300 400 500 600

Figure 3.5: The second elements of z \ and zi
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Chapter 4

Chaos: one-dimensional case I

The behavior of the system shown in Figure 3.2 will be studied in considerable detail 

in this and several successive chapters. This chapter concentrates on the scalar 

case. I t  turns out that this nonlinear system exhibits very interesting dynamical 

behaviors: in addition to local stability, its trajectories may converge to a non­

origin fixed point or be periodic or just be oscillatory. Furthermore this system 

shows sensitive dependence on initial conditions — an indication of chaos.
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4.1 Exam ples

To get a flavor of the complexity that the system shown in Figure 3.2 may exhibit, 

let us first look at a simple one-dimensional case:

x (k  +  1) =  ax(k ) -I- bv(k), (4.1)

uc{k) =  x(k),

with v(—1) €  R  instead of fixing it to be 0; and for k > 0 ,

. « = *  k  w  ■ 1}, j ^ -  - - 1)1 > * •

where 51 =  0.01. System (4.1) is a  static state feedback system with the feedback 

gain equal to —1. Note that in this example there is no constraint on the output of 

the system G. Now let a =  9/10 and b =  —3/10. By choosing different initial values 

(u (- l) ,x (0 )) , Figures 4.1-4.2 are obtained. In these two figures, the horizontal

x10-> v(-1)=0, x(0)=1/200

10040

v(—1)=1/500. x(0)=1/200
6
4

2

0
■2

-4

•6
100

Figure 4.1: Two trajectories converging to different fixed points

axis stands for the iteration time fc, and the vertical axis denotes the value of x. It is 

clear from these two figures that different initial conditions give rise to significantly 

different types of trajectories: the first converging to the origin while the second 

converging to a non-origin point and the last just oscillating. Furthermore, system

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.2: An aperiodic trajectory

(4.1) is actually able to  exhibit “chaotic” behavior, namely, sensitive dependence on 

initial conditions. Figure 4.3 reveals this phenomenon clearly. Is the trajectory in 

the lower part of Figure 4.3 aperiodic? Figure 4.4 is its spectrum produced using 

the function “pmtm” in Matlab. One can see th a t this trajectory contains a broad 

band of frequencies.

Next let a =  1 and b =  —3/10, and one gets Figures 4.5-4.6 where the horizontal 

axis denotes v(k  — 1) and the vertical axis stands for x(k). The first two (in Figure

4.5) are eventually periodic orbits of different periods, the third one (in Figure 4.6) 

is aperiodic.

The complicated behavior of the system shown in Figure 3.2 is due to its non- 

linearity induced by the switching law. To some extent, invariant sets provide some 

measure of how complex the dynamics of a system is. According to the above exam­

ples, the invariant sets of system (4.1) may consist of not only the origin, non-origin 

fixed points (Figure 4.1), but also periodic (Figure 4.5) and aperiodic orbits (Figure

4.6). Furthermore, it may contain a  strange attractor if chaos is indeed present in 

the system. In the rest of this chapter, we will analyze the dynamics of this system. 

We always assume th a t |a +  £>| <  1 which guarantees the boundedness of trajectories
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.x  10

-10.

0.01

- 0.01

v(—1 )=0.0025, x(0)=(1-a)*v(-1 )~1/10,12

200 400 600 800 1000
v(-1 )=0.0025+1/1012, x(0)=(1 -a)*v(-1)-1/1012

0.005

0 200 400 600 800 1 000

Figure 4.3: Sensitive dependence on initial conditions

of the system.

4.2 The case w ith  |a| < 1

For convenience, define

£(*0 ==

then system (4.1) can be written as

? (*  +  !) =
1 0 
b a

u  (fc — 1) 

x  (fc)

£ (fc) +
- 1  1 
- b  b m

where

:= (A +  skB )  f  (fc) :=  F  (£ (fc)), Vfc >  0,

Sfc =  1 if |r  (fc) — v  (fc — 1)| >  5; 

Sk =  0 if \x (fc) — v (fc — 1)| <  5.

(4.2)

(4.3)

Based on this representation, the fixed points of the system constitute a line 

segment:

x  =
I —a v-, (4.4)
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PSD of v -
Oi---------- 1----------1---------- 1---------- 1----------1---------- r

PSD of x

.2001---------- 1----------1---------- i---------- i----------1---------- 1----------
0 0.5 1 1.5 2 2.5 3 3.5

Figure 4.4: Spectrum of an aperiodic orbit

which lies in the region:

|x — u_|<<5. (4.5)

(Note th a t v~ indicates that v is one step behind x.) For local stability of fixed 

points, we have the following result.

P ro p o s itio n  4.1 For system (4-2) uuith |a| <  1, a local stability region, denoted by 

Rioc C l 2, of its fixed points is the region encircled by

\x — v_\ =  8 , (4.6)

and

<«>

P roof. Given an initial point (v (—1), x  (0)) 6 Rioc, we have

x  (1) =  ax (0) +  bv (—1).

In general,
fc-1

x  (k ) =  akx  (0) + y~' atbv (—1), (4.8)
i= 0
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v(-1)s1/1000,x(0)sQ periods!5
0.01

0.005

-0.005

- 0.01 0.002 0.004 0.006 0.008 0.01-0.01 -0.008 -0.006 -0.004 -0.002

v(-1)=2/1000.x(0)=0 period=24

0.01

0.005

-0.005

0.002 0.004 0.006 0.008 0.01-0.01 -0.008 -0.006 -0.004 -0.002

provided that

Figure 4.5: Two periodic orbits

|x (fc) — v (—1)| <  Vfc >  0.

Now we show that Eq. (4.9) indeed holds.

Note that
fc-i

x (fc) — *y(—1) =  akx  (0) 4-y^V fo; ( -1 )  -  v (-1 )

b  c l — 1
i=0

(4.9)

one has

I* (fc) - 1, (-1)1 <  |afc| |x (0) -  v ( -1 ) | +  ( l  -  ak)  1 |v (-1)1 •

If 0 <  a < 1, then

< aH + ( l  -  a*) 1 ^  t <■
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v(-1)=5/1000x(0)=0 a period

0.008

0.002

0.002

0.006

-0.008

-0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

Figure 4.6: An aperiodic orbit

If — 1 <  a < 0 and ak >  0, then

<  (a fc+ ( l - a * ) ) *  =  $. 

If —1 <  a <  0 and ak <  0, then

.. .  . .. ur (  A  1 — (a + b) 1 +  a
: ( f c ) -w ( -1 ) |  <  —a <5 +  ( l  — a )  l _ a l _  —(a +  b)

1 +  a -  2 ak
1 — a

S.

Therefore it suffices to show that

1 +  o — 2a
1 — a

< 1.

However, Eq. (4.10) is equivalent to

a < ak,
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which certainly holds for —1 <  a <  0 and ak < 0. By taking limit in Eq. (4.8) with 

respect to k , (v (k — 1), x  (k)) converges to a fixed point defined by Eqs. (4.4)-(4.5). 

The proof is completed. ■

Having identified a local stability region, next we will study the following prob­

lem: Can the exact stability region of the fixed points be larger than the region

given in Proposition 4.1? We will see that this problem is actually a difficult one in

th a t it depends on system parameters in a  complicated manner. Before doing so, we 

first concentrate on the “one-dimensional case” , namely, the dynamics of x  instead 

of both x  and v, and get one of its global attracting regions.

P ro p o s itio n  4 .2 A global attracting region o f x  is given by

M <  ;— r — (4-n )1 1 l  -  |a +  b\

Furthermore, it is positively invariant.

P ro o f. According to Eq. (4.1),

x  (1) =  ax (0) +  bv (0) =  (a +  b) x  (0) 4- b (v  (0) — x  (0)),

x  (2) =  ax (1) +  iw (1)

=  (a -I- b) 2 x  (0) +  (a +  b) b (v (0) — x  (0)) +  b (v (1) — x  (1)),

fc-i
x(fc) = (a +  b)k x  (0) +  y ;  (a +  b) 1 b (v (fc — 1 -  i) -  x  (fc — 1 -  i ) ) ,

i=0

hence

I* (n)| <  |a +  6|n \x (0)| +  \b\ 6 , Vn > 1. (4.12)
1 — la +  o|

By taking limit  on both sides, one gets a  global attracting region given by Eq. (4.11). 

Moreover, if

then

M ” )l ^

implying th a t the region given by Eq. (4.11) is positively invariant. ■

Based on this observation, we are ready to derive a global positive invariant set 

for system (4.2).
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T h eo rem  4.1 For system (4-2), if

|b| > 1 — |a|
1 — |cz -h b| 1 — (g, +  b)

then the region defined by

M S ir f h i* '
and

1*1 X\v-\ <
1 — [a +  6j

is a global positively invariant set. Otherwise, the region defined by

Irl -  T
W S  1 -  (a +  fe)

and
i 1 - 1 0 1  -i> - < 1 — (c +  b)

is globally attracting, which indicates that the set o f fixed points given by Eqs. (4-4)-

(4 -5 ) is the unique invariant set of the system (For convenience, we call such a

system a generic one).

P ro o f. It readily follows from Propositions 4.1 and 4.2. ■

R e m a rk  4.1 I t is easy to show that Proposition 4.2 and Theorem 4.1 hold for all 

systems of the form of Eq. (4.1) satisfying |a +  6| <  1.

The following result is an immediate consequence of Theorem 4.1.

C oro lla ry  4.1 I f  system (4-2) satisfies either of

•  a > 0 and b > 0;

•  a <  0 and b < 0,

then it is a generic system.

P roo f. Suppose a > 0 and b > 0. Then

|6| _  b 1 — a _  1 — |o|
1 — |n + 6| 1 — (u + b) 1 — (o +  6) 1 — (o + b)
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Hence the system is generic. On the other hand, given a <  0 and b < 0,

|6| _  - b  1 — |a| _  l  +  a
1 — |a +  6| 1 +  (a +  b) ’ 1 -  (a +  b) 1 — (a +  b)

Observe that
—b l  +  a

1 +  (a +  b) 1 -  (a +  b)

is equivalent to

a2 <  1 +  b2,

which says
|6| <  1 -  |a|

1 -  |a +  6| 1 — (a +  b)

therefore, the system is generic.

Theorem 4.1 tells us that, in order to have complex dynamics,

W >  _ + + ! _  (4.13)
1 — \a +  b\ 1 — (a +  b) 

must be satisfied. However, this is not a sufficient condition. For the case when

_  _9_ , = __3_ 
a  1 0 ’ 1 0 ’

(which satisfies Eq. (4.13)), we have already known th a t the system exhibits com­

plicated dynamics (see Figures 4.1-4.4). However, for the case when

= !  h = - ~
°  10 ’ 10 ’

which also satisfies Eq. (4.13), there is no complex dynamic behavior, i.e., the 

system is generic. The following argument provides a  simple interpretation for this 

specific system.

Given (v (—1), x  (0)) satisfying

| x ( 0 ) - u ( - l ) |  > 6 ,

one has

x  (1) =  (a +  b) x  (0), 

v (0) =  x  (0).
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Suppose

then

and

If

and

|x ( l )  -  v(0)| > 5,

x ( 2 ) =  (a +  6)x ( l )  =  (a +  6)2a:(0), 

v (1) =  x  (1) =  (a +  b )x ( 0 ) .

\x (2) — u (1)| < 8 , (4.15)

then the trajectory will converge to  some fixed point. Meanwhile,

<««>

Note th a t Eq. (4.15) naturally holds if Eq. (4.14) is satisfied. Therefore, only

* <  - 1 7*a *,M 1 (4-17)1 — (a +  b) 1 — (a +  b) |a  +  6| 

is required. Moreover, Eq. (4.17) is equivalent to

- 6  <  1. (4.18)

Systems with

« =  =  ( « S )

and

- s - ‘ — a -  (4-20)
both satisfy Eq. (4.18). However, for a sufficiently large time k. any trajectory

(v (k — 1) , x  (k)) governed by Eq. (4.19) will satisfy

\x (k ) — v (k — 1)| >  5,
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and

Consequently, in view of the foregoing discussions, it will converge to a certain fixed 

point. On the other hand, some trajectories (v (k — 1), x  (k)) governed by Eq. (4.20) 

violates these two conditions, predicting complex dynamics, see Figure 4.9 for one 

trajectory of this system.

We have already analyzed three cases:

•  a > 0 and b > 0;

•  a < 0 and b < 0;

•  a > 0 and b < 0.

W hat about the case th a t a <  0 and b > 0? Next we will prove th a t such a system 

is generic. It is easy to see th a t the transition matrix of the system in Eq. (4.1) is 

some combination of (a +  b)k and (am +  azbj with the scalar multiplication 

as the involved operation, where k  > 0 and m  > 1. Because |a +  6| <  1, if

for all m  > 1, the state x  will tend to the origin unless it reaches another fixed point. 

In th is case, the system is generic. A direct calculation shows th a t Eq. (4.21) is 

equivalent to

771— 1

am + ') T a ib <  1 (4.21)

(4.22)

Given a < 0 and b > 0, define

f ( m )  - ( 1 - 0  b\  V m > l ,
1 — a

then

/ ( m )  > 0, Vm >  1,

and

/  (3) =  max /  (to) .
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However,

/  (3) — 2 =  (1 - a 3) 1 ^ - - - 2

=  ( l  +  a +  a“) (1 — (tt +  £>)) 2

< 0.

Hence, Eq. (4.22) (then Eq. (4.21)) holds for all m  > 1, indicating the system is 

generic.

'Mh.

Figure 4.7: Diagram for the case when a =  0.9 and b =  —0.3

In the rest of this section, we will concentrate on a specific system and study its 

complex dynamics. For the ease of presentation, we rewrite system (4.1):

x (k  + 1) =  ax(k) + bv(k), 

uc(k) =  x(k).

(4.23)

Fix a =  9/10, b =  —3/10, v (—1) 6  R, and for k >  0, 

u(A:) =  H i {uc {k) , v(k -  1)) =  j  ^  *
if \uc { k ) - v { k ~ l ) \  > 
otherwise.
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We make the following definitions (Figure 4.7):

L a *  :=  { = ,t’- '  -  T ^ i ^ r t r 5} •

L xk-  := {(v-’iq W ):M£lH ^ 4 ’ 
Lvb* :=

Lvb- := (  ( z, i~ T T ^ X)  '• lx l ^  i nT7TT<5|  ’1 — In +  6| , J 11 1 — |o +  b\

Lva+ '•= 

L va- '■= 

L  :=

{ ( l - ( «  +  6){’ I ) : W - l - ( «  +  i>)'5} ’

{ ( . - , , ) €  A : M  <  <  T r ^ « } .

Lo

Ls+

LS-

Lis+

x) € Ia : x  =    v -1 — a
=  { ( v - , x )  e  If,: X - V - =  6 }  ,

= {(t>_,:r) e If , : x  — V-  = — 5},

= < (t>_, x) G If , : x  = (a + b) v v -  >
1 -  lol

1 — (a +  b)

L is -  ■= { ( « - , x) € h  : x =  (a +  b) v - ,  t>- <  - 1 ^  ^  j  ■

Clearly, L 0 is the set of fixed points, Ia is a local stability region of L0, and 

Ib is a  global attracting region and is also positively invariant. Denote the two 

endpoints of L 0 by E + and E~, namely, E + =  ~ ^  +

Defi“

E s :=  L 0\{ E + ,E ~ }  = { ( v - , x ) e L 0 : {v -,x )  £  { E +,E ~ } }  .

Then each point in Es is stable in the sense of Lyapunov, however it is not asymp­

totically. As for the stability of E + (resp. E ~), each trajectory starting from a 

point in Ib on the line u_ =  — (resP- the line v -  =  will converge

to E + (resp. E~). What about trajectories starting from points in h \ I a which
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are sufficiently close to E + (resp. E~)?  More generally, can a trajectory starting 

within h \ I a  somehow wander off into I a, thus converging to a certain fixed point on 

L0? It turns out this will never happen. Therefore the two fixed points E + (resp. 

E~) are not stable. To wit, we need some preparations.

For convenience, we regard system (4.23) as a map, i.e., adopt the notation 

defined in Eq. (4.2):

€(fc +  l) =  F’(C(fc)).

Given a set fi C /&, define

pren (ft) :={(»_,  a) €/& : F 1 (fy_,x)) CO .}, Vn >  0, (4.24)

where F°  ((u_,x)) := (u_,x): iteratively

F n ((u_,x)) =  F 11-1 ((u_,x)) for n  >  1.

Then it is easy to show that

^ { ( r r ^ ir ^ - * ) }  c pre2(tl5->'

Based on this observation, one has

F  ( h \  {L va -  u  Lva+Y) C h \  {L va-  U I-Va-i-} >

i.e., Ib\ {L va -  U Lva+} is positively invariant. As a consequence, in particular, 

trajectories starting from points in Ib\ {L va-  U L y a+}, no m atter how close to E + 

(resp. E ~) initially, will not converge to E + (resp. E ~), indicating th a t neither 

nor E~  is locally stable.

Moreover, for a given set fi C Ib\ {L va-  U L v a+}- define

Img*(fi) :=  { F 1^ ) } ,  

tf(fl)  :=  U ~ 0Imgn (f2).

Then it is easy to verify that

F  ( * ( £ « + ) )  C * ( £ « + ) ,

F ( * ( L U-))  C t f ( £ w_) ,
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which furthermore imply all trajectories starting within I ( \  { W a-  U L y a+} will 

eventually move along the line segments (L15+) =  'F (£ 15-)■ For a  point £ €  h \Ia ,  

let u  (x ) denote its oj—limit  set. Define

w (IbVa) ■= U€e/,t\ i aw ( 0  ,

then

u  (€  Ib\ I a) C  ® (L w +) .

Obviously

u (Ia )  = L 0.

Thus we get a  characterization of the u —limit sets of system (4.23). However, 

we have to  admit that this characterization is crude because all trajectories start­

ing within Ib \Ia will eventually move along merely a  part of each line segment in 

'F (Lis+) instead of the whole line segment. Figure 4.8 given later will visualize this 

observation. Now the problem of finding the exact ui—limit sets of the system is 

still under our study. Nevertheless, adopting the argument on pp. 24 in [85], it is 

easy, though not straightforward due to  the nature of the map F, to  show that these 

u —limit sets axe indeed invariant. Based on extensive simulations, it is speculated 

th a t these w—limit sets are also topologically transitive. However, up to now there 

still lacks solid theoretic background to  support this conjecture.

Based on the above analysis, it is fair to  say that the dynamics of system (4.23) 

is remarkably complicated: It indeed exhibits the feature of sensitive dependence 

on initial conditions, this sensitivity locates only on U£L0 (pren [Ls~) U pren (£$+)), 

a  subset of U£L0 (pren {L is-  U ^ 15-f))- Hence it is weakly chaotic. Next we will 

calculate its generalized topological entropy discussed in [40] and [25].

Denote by Ibinv+ the region encircled by the lines L v a+, Lvb~--. L\s+ and Img1 (L^_). 

Similarly denote the region encircled by the fines L v a-> Lvb-, L \s -  and Img1 (!/§+) 

by Ibinv— ■ In view of the foregoing argument, we have the following claim:

C la im  4.1 The steady state  of the system will settle in the region Ibinv—

This claim is a  straightforward application of the preceding analysis, however it 

plays an important role in the calculation of the topological entropy of the system.
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For the definition, of the topological entropy for piecewise monotone maps with 

discontinuities, please refer to  [40]. Now we will give a  construction in order to 

compute the topological entropy for our system, which is clearly piecewise monotone 

(under some metric defined on the system rather than under the usual Euclidean 

metric; however, this is not essential.) with discontinuities.

Pimjr(l ) := {L  : L f lP in iF  (0) =  <t>, F  (L) C Pim p (0)},

PimF (m) := {L  : Lf l  ( u ^ P i m p  (0)) =  (L) C PimF (0)} , m  > 1,

where <j> stands for the empty set. Note th a t the elements in each Pirnp (m) are line 

segments.

Denote by #  (Pimp (m)) the number of elements in Pirnp (m ).

Before calculating the topological entropy, one has to pay a  bit more attention 

to the map F. Clearly, according to Figure 4.7 there exists a positive integer M  

such that

In fact, each set of intersections contains exactly one element (one line segment). 

For each given integer n  >  0, define

Define

Pim F (0) :=  {L S- ,L s+ } , (4.25)

preM+'(L5+)nL15_ #  4>, 

preM+i( i {_)nL1{+ #  4>, VI >  1.

(4.26)

71

# F (n )  :=  ^ 2  #  (PimF (m )) ,
m=0

and define the topological entropy of F  as

(4.27)

which turns out to  be well-defined (see the proof below). Then we have

T h eo rem  4.2  For system (4-23), the following statements hold:

• For m  < M ,

#  (PimF (m)) =  2. (4.28)
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For m > M,

and

#  (PimF (m)) =  2 +  2 • (m -  M ) , (4.29)

N (F) =  0. (4.30)

P ro o f. Eq. (4.28) is self-evident, Eq. (4.29) follows from Claim 1 by restricting 

#  (Pimp (m)) on i&nu+U Ibinv- for m  > M  and the analysis above. Then for 

sufficiently large n (n >  M ),

# F W  =  2 (M  +  1 ) +  2 (" - M )(" - -.^ -+ 1 ) ,

thus

K(F) :=
n —oo n

log (2  (M +  1 ) +  (n — M ) (n — M  +  1 ))
=  lim ----------------------------------------------------

71—00 n
=  0.

The proof is completed. ■

R e m a rk  4.2 In light of this result, from the perspective of topological entropies, 

our system is weakly chaotic.

The above discussion is mainly for the case that \b\ < a. For example, given 

a =  0.9 and b = —0.3, Figure 4.8 plots the steady state of a trajectory, namely, its 

asymptotic behavior, where the horizontal axis is v -  and the vertical one stands for 

x. Now consider the case that a = 0.8 and b = —0.9, hence |i>| >  a, and we also 

draw its asymptotic behavior, as shown in Figure 4.9, starting from the same initial 

point as the above. We observe that their asymptotic behaviors are vastly different. 

The underlying reason is still unclear up to now.

Having done the above analysis, maybe it is time now to pose some problems.

P ro b le m  4.1 Given a, b and 5, how to find the exact lj—limit set of system Eq. 

(4.1)?

P ro b le m  4.2 Why are the asymptotic behaviors of the systems with |6 | <  a and 

|6 | >  a dramatically different?
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Figure 4.8: The asymptotic behavior of a trajectory for |6 | <  a

4.3 The case w ith  a  =  1

Let a  =  1. Then system (4.1) becomes

x (k  +  1) =  x{k) -j- bv(k), (4.31)

uc{k) =  x{k),

where |1  -j- 6 | <  1. Let v(— 1) £ M, and for k  > 0,

= H l( u , « , , ( * - d ) = { 1)1 >

In this case, Figure 4.7 is now Figure 4.10. We note that here the two lines L \5+ 

and L\s— merge a t the origin. L 0, the line segment of fixed points, coincides with 

the vertical axis, so do L y a+ and L y a--

Figures 4.S-4.6 show th a t the dynamics of system (4.31) can be fairly com­

plicated. The rest of this section studies the problem when the system will have 

periodic orbits. From now on, assume

- 1  <  b < 0 .

Define

Tin ■= {(u_, x) € 7b : -  u_| <  5}, (4.32)
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Figure 4.9: The asymptotic behavior of a  trajectory for |6 | >  a

and

Tex :=  Ib\Tin- (4-33)

The following is a  necessary condition for the existence of periodic orbits.

T h e o rem  4.3 I f  system (4-31) has periodic orbits, then there exist an even integer 

n > 0  and integers K i>  0  such that

J J  (1  +  Kib) =  1 . (4.34)
i=l

W ithout loss of generality, we only prove the case when n  =  2. The following 

Lemma is used in the proof of Theorem 4.3.

L em m a 4.1 Suppose £o € Tex is a point on a periodic orbit at time K q, it will be 

inside Tin at K q +  1.

P ro o f. Let £o =
V -

x . Then

Si =
ui
Xl

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s -

\ s -

•m-

Figure 4.10: Diagram for the case of a =  1

where

xi =  (a +  6) x ,

vi =  x.

Hence

\xi -  ui| =  |1  -  (a +  6)| |x| =  |6 | |x | .

Since [ v -  x  ] is a periodic point, in view of Remark 4.1, one has

\b\ 6
a < =  6 .

Consequently,

1 — (o +  b)

| i i  -  vj| =  |1  -  (a +  6)| |x| <  |6 | 5 < 6 ,

i.e., S Tin- H

Note th a t Lemma 4.1 is nontrivial because there are systems such as the case 

th a t a =  3/10 and 6 =  —9/10 violating this property.

P ro o f  o f  T h e o rem  4.3. W ithout loss of generality, suppose there is a  periodic 

orbit starting from £o € Tex. By Lemma 4.1,

€i =  -Alfo € F,n, 
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where
0 1
0 1 +  6Ai =

Assume after a time K \  the state

£2 =  ( ^ 1  +  A2)*1_1£x

is in Tex, where

Then

After a time Ko the state

returns to £q. Hence

A 2  =
1 - 1  

b - b

£4 =  (-^l +  A2)K2 1 £3

(Ax +  A2 ) * 2- 1 Ax (Ax +  As) * 1" 1 Ai£ 0 =  &•

By straightforward algebraic computations, one gets

dcx =  x , 

dx =  u_,

where

Since £0 €

d =  1 +  A2 6 , c — 1 +  K\b.

\x — u_| >  5.

According to Eq. (4.37), note that c ^  0, d 5̂  0,

cd =  1 .

Given a =  1,

K 1 +  K 2 = K 1K 2 ( -b ) ,  

which is equivalent to Eq. (4.34) for n = 2.

(4.36)

(4.37)

(4.38)

(4.39)
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R e m a rk  4 .3 Theorem 4.3 provides a necessary condition for having periodic orbits. 

Interestingly for the case when n =  2, extensive experiments imply that there are 

periodic orbits of period K\ +  Ko if K\ and Ko satisfy Eq. (4.34), and there are no 

periodic orbits if there are no such K \ and K.2 - Based on this observation, Theorem

of periodic orbits will be given in Sec. 4.5 with resort to  first return maps, which 

generalizes Theorem 4.3.

Following the previous analysis, one immediately has

C oro lla ry  4.2 Suppose a is rational and b is irrational in Eq. (4-2), then there are 

no periodic orbits.

P roof: Following the proof above, it suffices to show that

has no positive integer solutions for any given even number n > 0. This can be

Though the above result is simple, its significance can not be underestimated: 

If a system has periodic orbits, then it is not structurally stable.

Now suppose a system has periodic orbits, how to determine their periods? To 

give a partial answer to that, let us first consider an example.

E xam ple  4.1 In the case that a =  1 and b =  —3/10, there are two types of periodic 

solutions (refer to Figure 4.5). One is of period 24 corresponding to K\ =  4 and 

K 2 =  2 0 , the other is of period 15 corresponding to K\ =  5 and K 2 =  1 0 . Observe 

that

Based on this observation, we propose a necessary condition for Theorem 4.3 for the 

case that n — 2.

4.3 is not severely conservative. A necessary and sufficient condition of the existence

(4.40)

easily verified.

3 3 ____ p
10 2 -5  91 • 92 ’

where p =  3, 91 =  2, q2 =  5, interestingly, one has
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T h e o rem  4.4  Given
Pa 1 and b — .
Q

Suppose positive integers p and q satisfy l < p < q ,  pj ^2 (p =  2 is a trivial case),
and gcd(p,q) =  1 , i.e., the greatest common divisor of p and q is 1. Define

A := {qi : qi is a prime number, qi\q} . (4-41)

Then i f  p\ (qi + 1), where qt 6  A,

(qi + 1 q qj +  1 \  
i  P 9i’ P  )

is a solution to Eq. (4-34)-

Proof. Obviously, given p\ (qi +  1), 2ip "^) is a solution to Eq. (4.34).

Now we show how the set A is constructed in the above way. Given qi € A. If there 

are two positive numbers m  and n  satisfying

-  +  -  =  £ ,  (4.42)m n qi

then is a  solution to Eq. (4.34). Hence we need only to focus on solutions

to Eq. (4.42). Suppose (m, n) is a solution of Eq. (4.42), then either gcd (m, qi) =  1 

or gcd (n, qi) =  1 (otherwise, p = 2 or does not exist). For convenience, and with no 

loss of generality, we always assume gcd (m, qi) =  1 . According to  Eq. (4.42),

m +  n _  p 
nm qi

i.e.,

(m + n)qi= pmn.

Then q^pmn. Since gcd (p, qf) — gcd (m, qf) =  1, qi\n. Let

n =  kqi, (4-43)

which leads to
l i p  

 b T  •m kqi qi
Consequently,

m (pk — 1) =  kqi,
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hence m \kqi. Since gcd (m ,qi) =  1, m \k. In light of Eq. (4.43), one has

n = m l for some interger I >  0 .

Substituting it into Eq. (4.42), one has

l i p
 1------- 7 =  — 5m  ml qi

equivalently,

mpl =  qi (I +  1 ) ,

indicating that qi\mpl, i.e., qi\l. Similarly, l\qi (I +  1 ). Hence I =  qi. As a  result,

qi + 1

If p\ (qi +  1), then 

solves Eq. (4.42), and

m  =
V

Qi +  1 Qi +  1
5 Qi

V P 

Qi +  1 Q Qi +  1
p  Qi p

is a solution to Eq. (4.34). ■

The above theorem provides a  construction for the solutions to Eq. (4.34). 

Unfortunately it is not always effective. For example, for a  =  1 and b =  —3/7, the 

set A is empty. There are no positive integers satisfying Eq. (4.34) for n  =  2 either. 

This is good for us. However for a  =  1 and b =  —3/(2 - 5 • 11), we have the following 

observations (Table 4.1):

Table 4.1: Some periodic orbits
(u_,x0) (innn>0 ) ( nioo > 0 ) ( iono’0 ) ( 2000’®)
Periods 165 147 243 480

OHr ( Mio) ( 2000’ sfffio) (aSio> sB5o) ( 3(555’0)
Periods 264 480 243 1083

Periods 165, 264 and 480 can be obtained via Theorem 4.4, however, others can 

not. Actually there are more periodic and aperiodic orbits (Table'4.2).
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Table 4.2: More periodic orbits and aperiodic orbits
(v_,x0) I  5 (a-rb)6 \  

(lOOO’ 1000 j
/  5 (a+ 6)5\ 
\,100’ 100 )

/  5 (a+6)5 \  
( l 0 ’ 10 )

/  25 2(a+6)5\ 
V10 ’ 10 ;

Periods 4107 264 243 165

(v_,so)
(  45 4(a-r6)5 \  
( l 0 ’ 10 )

/  95 9(a+6)5\
V 20’ 20 )

/  55 5(a+fc)5 \
V1 0 ’ 10 )

(65  6(a+6)5\ 
( l 0 ’ 10 )

Periods aperiodic aperiodic 147 aperiodic

(i>_,x0)
/  75 7(a+6)5  ̂
V.10’ 10 )

(  85 8(a+6)5 ̂  
V10’ 10 j

(  95 9(a+6)5 \  
\ 1 0 ’ 10 J

(  105 10(0+5)5^
V 10 ’ 10 )

Periods 165 165 243 4107

Furthermore, we observed that there are a t least 55 solutions to Eq. (4.34) for 

n  = 4.

The foregoing analysis tells us:

•  There may exist periodic orbits of very large periods.

•  There are always aperiodic orbits.

Inspired by the proof of Corollary 4.2, especially by Eq. (4.40), now we attempt 

to construct systems with |o| <  1 that have periodic orbits. First choose n  =  2, 

a =  9/10, K \ =  15 and K 2 =  7. Then

9015229097816388767119
41428905812371212328810

solves Eq. (4.40). Surprisingly the trajectory starting from

=  ( i r ^ b j - i f 0)

will become a periodic orbit of period 22(= K \  +  K 2 ) after some iterations, i.e., it 

is an eventually periodic orbit. It can be shown that this periodic orbit is locally 

stable. However, a  trajectory starting outside the stability region, say, from

(t7_,z0) = ( 3. _ (a, _j_6| ~ Yds)

is aperiodic. For the case when |a| >  1, suppose a =  11/10. choose K \  =  7 and 

K 2 =  5. Then
2138428376721
5792012767210
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solves Eq. (4.40). And the trajectory starting from

, (  5 (a + b )* 6 \( w _ , s 0 ) -  (^105> 1 0 s  J
is an eventually periodic orbit of period 12(= K \  +  Ko). It can be shown this 

periodic orbit is also locally stable and nearby are aperiodic orbits too.

R e m a rk  4.4 Prom this construction, one finds out th a t most systems with |a| <  1 

or |a| >  I will be unlikely to have periodic orbits.

4.4 The case w ith a  > 1

This case is analogous to that of |a| <  1 except that all the fixed points are unstable. 

In this case, Figure 4.7 is now Figure 4.11. Figure 4.12 is a plot of the steady state

J L X

’Vb+

i<y-

'v&-

Figure 4.11: Diagram for the case of a > 1

of one trajectory.

4.5 First return maps

To simplify the following discussions, suppose th a t the system G  shown in Figure 

3.2 is a scalar system, the controller C  is simply —1 , there is no Ho involved, and
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Figure 4.12: The asymptotic behavior of a trajectory for a >  1

r  =  0. T hat is, in this part we consider the following simplified system:

x (k  +  1) =  ax(k) +  2w(fc), (4.44)

with v(—l)  €  R, and for k > 0,

v(k)  =  H\  (x (k) , v  (k — 1 ))
f x{k ) ,  i£ \ x { k ) - v { k - l ) \ >  5, , .
\  v (k — 1 ) ,  otherwise,

where |a 4 - 6 | < 1 and 6  is a positive number.

For the system composed of Eqs. (4.44)-(4.45), Theorem 4.3 gives a necessary 

condition for the existence of periodic orbits. We now generalize it and provide a 

necessary and sufficient condition and give a characterization of periodic orbits based 

on it. This analysis is important: To achieve good control, a  nonlinear system may 

be desired to work near an equilibrium point or a  limit cycle. In the case that a limit

cycle is preferred, this result will reveal under what condition limit cycles may exist

and starting from where a trajectory may converge to the desired limit cycle. In the 

case that an equilibrium is desirable, this result will provide the designer with some 

information as how to design controllers to prevent trajectories from being stuck 

into a  limit cycle. Hence, this analysis will provide useful insights into the design
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'V b -

'15- ■'6 -

Figure 4.13: Diagram for the case 0 <  a <  1 and b < 0

of control systems under the data  transmission strategy proposed in Chapter 3. We 

now investigate this important problem case by case.

4.5.1 Case 1: 0 < a < l ,  b < 0

For convenience, we present Figure 4.13 which is obtained by adding one typical 

trajectory to Figure 4.7. Assume that an initial condition (uo,zo) is located on the 

line L\s+ satisfying

xq = (a +  b)v o-

Moreover, suppose tha t the trajectory starting from it does not converge to a fixed 

point (see Sec. 4.2 for details). Hence, the successive iterations are given by

x \  =  axo + bvo — (a2 4- ab +  b) no =  ^a2 +  ^  vq,

Vi = v0,

=  ax i +  bvo =  ^a3 +  ^  a%̂ jX2

vo =  no,
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Accordingly,

V m - x m =  (1  -  am +1  -  j r  a l 6 j v0.
i= o

As indicated in Figure 4.13, the orbit moves downward following the line v =  vo on 

the right part of the region. In this way, there will exist a value of m  such that the 

trajectory crosses the line segment Lg~, i.e.,

\xm vm\ >  <5j 

and note that such an m  always exists. Thus

(4.46)

i= 0

(1 -  a) 5 
(1  -  (a +  b))vo

<  l - a :TO+l

am+1 <  1 -
(1  — a) 5

(1  -  (a +  b))vo 

- 1.

In ( i  _ (1—(a+6))tio J
In a

Hence, the smallest m  is given by

^  ( 1 ~
In a

m  = - 1, (4.47)

where [r] is the least integer bigger than r. Note that

2-m-rl = (fl +  6) Xvi,

^m-rl =  ®m-

Since xm <  0, this point is located on the left part of Figure 4.13, and also

|^m+l ^m-rl I < S.

Hence

2 Q̂ c 7n+i “I- bVfyi — I n  “I- c*6 j XjTh
V i= 0  J%m-r:

% + 2  =  ^rn-

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



  2-7715

Zm+n Vm-ru — "F  ̂ \ o>b 1̂  Xm-

The orbit now moves upward along the line v =  xm (see Fig 4.13). Then, there will 

exist a value of n  such that the trajectory crosses i.e.,

Note that

Then

71—1

I2J771+71 2?m+7i| $-

W771+71 — 2Jj7j <C 0.

77—1

an +  ^  alb — 1 Xm —
i=0

an +  ] T  a{b -  1J  ^  ^  J  *o> 6

(1  -  a) 8
\  i=o

«=> 1 -  an >
(o + 6 - l)  ((l-o«+i)s±|=i + l) wo

In 1

n >

___________ (l-<Qg
(a+6-l)((l-a"*+i)2±fe=i+l5^

In a

Hence, the smallest n  is

n =

\ ( . ____________(1—q)<?  \
y  (a+ 6 - i) (( i-^ m + i)a ± £ = i+1) MB J

In a
(4.48)

The switching law (Eq. 4.45) provokes th a t the new iteration point

2?m-rn+l =  (fl +  i>) Xm-i-ni  

W771+77+I =  Z m - r m

returns to the zone where the trajectory was originated. In particular, if

( ^ 7 7 1 + 7 7 + 1 5 2 - 7 7 7 + 7 1 + 1 )  =  ( D O ,  X q )  ,
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then one gets a closed orbit. This motivates us to define the first-return map

<p : L \  —> L \ (4.49)

v >-> ^an +  ^ 2  ^am+1 +  ^ 2  0,1

where L\ is the projection of L\s+ onto the v axis, and m  and n satisfy Eqs. (4.47)

and (4.48) respectively.

Definition 4.1 (Type 1 periodic orbits) A periodic orbit starting from (vq, xo) £ 

I<1 5 + is said to be of type 1 i f

<p (V0 )  =  V0 , (4.50)

where ip is defined by (4-49), and m  and n  satisfy Eqs. (4-4V and (4 -4 8 ), respec­

tively. In  this case, the period of this orbit starting from (vo, xq) is m - r n  + l-

Remark 4.5 A periodic orbit is of type 1 i f  it forms a closed loop right after the first 

return. There are possibly other periodic orbits that become closed loops after several 

returns. These orbits can be studied in a similar way, but it is more computationally 

involved.

The following result follows immediately from the foregoing discussions.

Theorem 4.5 The trajectory starting from (vo,xq) is periodic o f type 1 i f  and only 

i f  Eq. (4-50) holds.

Actually, we can find all periodic orbits of type 1: If Eq. (4.50) holds, i.e.,

<P (uo) =  VO,

then

+ E “'6)  ( “m+1+ E 1a‘b) =

( f 1 -  + ( ( 1 "  °” +I) + x )  = 1 ( 4 ' 3 1 )

for some m, n  > 0. Given that 0 < a < l ,  6 < 0  and |a +  b\ < I, m  and n  satisfying 

(4.51) are both  finite. Hence, all periodic orbits of type 1 can be found.

R e m a rk  4 .6  If (v , x ) leads to a periodic orbit of type 1, according to Eqs. (4.47) 

and (4.48), there exists a  neighborhood of (v,x)  on Lis+ such th a t each point of 

which will lead to a  periodic orbit of type 1 , so all such orbits together are dense.
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4 .5 .2  C a s e  2: a =  1

Assume th a t an initial condition (u, x) satisfies

Then

x  =  (1  +  b) v, v > 0 .

x i  = x Jrbv = (l  + 2 b)v, 

vi  = v,

Suppose that

Then

xm =  ®i + bvi =  (1 +  (m +  1) b) v,

=  V.

vm - x m = -  {m + l)bv > 8.

5TO+ 1 >

Hence, the least m  is given by

Moreover,

771 =
(—6) v

- 1.

^m-pl — (1  ~b 6) Xm)

^m+1 =  ^  0 ,

Suppose that

Xfjx-i-Ti ( l  “1“ 72.6) 2̂ 771:

Vm-i-n =  ■

^n+m ^n+rn =  nbxm ^  & 
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n > bxm b (1 +  (m 4-1) b) v '

Hence, the smallest n  is given by

b (1  +  (to +  1 ) b) v

Define

<p : L \  —► L\

v i—► (1  4* nb) (1  +  (m +  1 ) b) v,

(4.52)

If
ip (u) =  v,

then

(4.53)

T h eo rem  4.6 The trajectory starting from (v, (1 +  b)v) is periodic of type 1 i f  and

R e m a rk  4 .7  This result is a generalization of Theorem 4.3, where the condition is 

only necessary. For example, given a = 1 and b =  —1/2, the origin is the unique 

invariant set. It is obvious tha t p  =  q =  4 is a solution to

However, there are no periodic orbits. This indicates that the necessary condition 

given by Theorem 4.3 is not sufficient.

Next we find all periodic orbits of type 1 for the case of a =  1. For convenience, 

here we use m  instead of m +  1 in Eq. (4.53). Suppose

where p  > 0, q > 0, gcd (p, q) =  1. According to  Eq. (4.53),

only if  v  is a fixed point of the first-return map defined in Eq. (4-52).

1  ̂ 1 pn — q
m
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i.e.,

m =
qn 

p n - q '

Obviously,

m >  — .

Furthermore, m  is a decreasing function of n. By symmetry, let

no =

Then
Y < m < qn0

p p n o - q

Y < n <
qrriQ

p pm  o -  q

mo =

 ̂
1*

0
>

Similarly,

where

Based on this analysis and Theorem 4.6, all periodic orbits of type 1 can be deter­

mined.

4 .5 .3  C a se  3: a = — 1 a n d  |a  +  &| <  1

For this case, each trajectory is an eventually periodic orbit of period 2.

4 .5 .4  C a se  4: a > 1

This is similar to the case of 0 <  a < 1. The only difference is

in ( i  -  (1l \ ”25Jw) 
m  <  — *    -  1 ,

due to In a > 0. The least m  is

In a

m  —

111 ( 1 (l-(a+jf))y)
lna

- 1.
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4.6 Conclusions

In this chapter, focused on the scalar case, the dynamics of the system induced by 

the network data transmission strategy proposed in Chapter 3 is investigated in 

detail. Though appears simple, the system possesses very rich dynamics. More on 

this type of dynamical systems will be discussed in successive chapters.
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Chapter 5

Chaos: one-dim ensional case II

This chapter continues the study of the chaotic dynamical systems discussed in 

Chapter 4. Sec. 5.1 discusses why traditional methods for proving chaos fail as 

well as difficulties involved in analyzing this type of systems. Though there is no 

a universally agreed definition for chaos, a  chaotic map normally should have an 

invariant set on which it is topologically transitive and has sensitive dependence on 

initial conditions. Hence Sec. 5.2 demonstrates topological transitivity and sensitive 

dependence on initial conditions via numerical examples.
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5.1 W hy traditional approaches fail?

5.1.1 Traditional m ethods to  prove chaos

The most rigorous way in proving th a t an autonomous dynamical system is chaotic 

is to show that there are Smale horseshoes [93, 26]. Clearly, there will be infinitely 

many periodic orbits if there axe Smale horseshoes. Unfortunately, the systems that 

we axe studying here generally do not possess periodic orbits. As a result, this way 

to prove chaos does not promise much, if any.

A chaotic system normally is ergodic. For a given map, if it is expensive, then 

it is possible to prove ergodicity with resort to Perron-Frobenius operators [47]. For 

example, ergodicity of an unstable quantized scalar system is intensively studied in 

[16]. In essence, results obtained there depend heavily on the affine representation 

of the system by which it is piecewise expanding, i.e., the absolute value of the 

derivative of the piecewise affine map in each interval is greater than 1. Based 

on this crucial property, the main theorem (Theorem 1) in [55] and then that of 

[56] axe employed to show that there exists a unique invariant measure on which 

the affine map is ergodic. Therefore, ergodicity is established for scalar unstable 

quantized systems. However, this is not the case for the system we axe studying. 

Though these maps are piecewise linear, they axe s ingu lar with respect to the 

Lebesgue measure and, furthermore, the derivative of the system along the lines 

L \s -  and L\s~  is (a +  b), whose absolute value is strictly less than  1 . Consequently 

the results in [55] and [56] axe not applicable here. Another approach to proving 

ergodicity is by means of the Markov transition. For a  piecewise linear map, say 

T, suppose one subinterval, Ti, contains a subset of the image of another interval, 

To, th a t is, Ti fl T (T2) is not empty, then it is required that Ti C T (T2). If this 

relation holds for all subintervals, then the Markov transition can be used to study 

the ergodicity of the map. Unfortunately, systems studied here do not satisfy this 

condition. Therefore, this method is not applicable either. We comment tha t a 

critical point in the existing approaches of proving chaos is that the system or map 

involved is of some hyperbolic structure [17]. Apparently, systems discussed here 

lack this key property.
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5 .1 .2  A n a ly s is  o f  d iff ic u ltie s  in v o lv ed

In this part, the complexity of systems studied in the previous chapter is investigated 

from the point of view of numerical approximations and computational precision. 

For convenience we define

Xo  (fc) : = v ( k  — 1) ,  k > 0 .

Then the original system defined in Eqs. (4.44)-(4.45) is equivalent to

x\  (fc +  1 ) 
xo (k  +  1 )

a + b 0  

1 0  

a b 
0  1

Xl ^  , if |a:i (k ) — xo (fc)| >  6 ,
x o  (k ) 

xi  (k )
x 2 (fc)

where |a +  b\ < 1. Define 

Ai =
a + b 0 

1 0
, M =

a b 
0  1

otherwise,

, C  =  [ 1 - 1  ],

(5.1)

then, system (5.1) can be rewritten as

(5.2)x { k  + 1) =  | ( A i  +  A2)a:(fe) +  ^ (A 1 - i 42) ( l -u ( f e ) )x ( f c ) ,  

y(fc) = C x ( k ),

u  (fc) =  1 -  sgn (y (fc) sgn (y (fc)) -  6 ).

Figure 5.1 is the plot of u  as a function of y. Clearly, there are two discontinuous 

points: one is at —8  and the other is a t 8  here 5 =  1). Next, we use two different 

forms to approximate this function u. The first coming to mind is polynomials. We 

attem pt to approximate the discontinuity at the point y =  1 up to  degree 2. Hence, 

the polynomial to be used is

P (y ) := CL3V3 +  CL2y2 +  aiy +  a0 (5.3)

with ai, i =  0, • • • ,3 to be determined. Choose a small interval, [1 — 7 , 1  +  7 ], where 

7  =  1 / 1 0 3, and set

P (l +  7 ) = 0 ,  P ' ( l  +  j ) = 0 ;

P(  1 - 7 ) =  1, P ' ( l - 7 )  =  0.
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u

2
1.5

1 

0.5 
0

- 2 - 1 0  1

Figure 5.1: u  has two discontinuous points: one is a t —5 =  — 1 and the other is at 
5  =  1

Then, we get the polynomial as

P(y)  = 500000000?/3 -  1500000000y2 +  1499998500?/ -  499998499, (5.4)

whose plot a t [1 -  7 ,1 +  7 ] is Figure 5.2 and a t [1 — 7  — 1/1000,1 +  7  +  1/1000] 

is Figure 5.3. It is evident that the polynomial P(y)  defined in Eq. (5.4) is a  bad 

approximation because its parameters are very big, thus very prone to perturbations 

(that’s why Figure 5.3 is quite different from that of the original system). Notice that 

by using a  polynomial approximation we get a continuous function approximating 

the original discontinuous function.

Another way to approximate u  is to use hyperbolic tangent functions. In fact, 

u  can be approximated by

u(y)  =  <

2 , - 5 + p < y < 6 - p ,
Tanh {ry) , 5 - p < y < 5  + p ,
0 , y > 5 +  p,
Tanh (r y ) , - 5  -  p < y  < - 5  +  p,
0 , y < - 5 - p,

(5.5)

where p should be sufficiently small. Now, we test the effectiveness of this approx­

imation. First, choose r  =  2 * 106, use the function (5.5) to replace the original 

u, and then plot a trajectory as shown in Figure 5.4. Then choose r  =  3 * 106, 

following the same procedure, we get another trajectory, shown in Figure 5.5. The
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p y

1.5

0.5

y
0.998 0.999 1.001 1.0021

Figure 5.2: One plot of polynomial Eq. (5.4)

second trajectory is consistent with that of the original system. So, to get a good 

approximation, r  will have to be very big.

R e m a rk  5.1 When p is small enough, the system composed of Eqs. (5.2) and (5.5) 

behaves like the original system. However, no m atter how small p is, the modified 

system still has discontinuities, indicating that this approximation is not of much 

help. Even worse, to get a faithful approximation, r  must be very large, which will 

inevitably leads to large numerical errors.

Next we consider the problem of numerical precision. In our study we normally 

use Mathematica to get the exact orbits for each case. The reason to do this is to 

avoid numerical errors. This is best illustrated by the following examples. Suppose

9 3*1.4142135623730950 1
a _ 1 0 ’ “  10  ’ “  1 0 0 ’

in Eq.(5.1), with initial condition

Using Mathematica, we get the result shown in Figure 5.6. Now, modify b to be

3 * 14142135623730950
b = —

1017

and fix the numerical precision to be 200 decimal points (the original one was 17). 

And we get Figure 5.7. Which plot is a  faithful representation of the exact plot? By
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p y

1.5

0.5

y
0.999 0.9995 1.0005 1.0011

Figure 5.3: Another plot of polynomial Eq. (5.4)

using the exact value of b =  — 3- 4i42i35623730950 to produce the true trajectory, we 

find it corresponds to  Figure 5.6. Now, we see the difficulty: by increasing numerical 

precision, the result becomes less precise! So, we conclude that one has to be very- 

careful when dealing with this type of systems because of its bewildering complexity.

5.2 Evidence o f chaos

In this section, we illustrate the chaotic behavior of system (5.1). Though there is 

no universally agreed definition of chaos, a chaotic map typically has an invariant 

set on which it is topologically transitive and has sensitive dependence on initial 

conditions. So, we first demonstrate the topological transitivity of the map via 

numerical examples.

Fix parameters to  be

Choose a  trajectory xi(z), i =  1 ,..., N , starting from

5 1.0
Xl(0) =  2 +  l0*

with N  = 5* 106. Here, the numerical precision is set to be 32. Then, choose several 

points along this trajectory and check the points within each interval of length e 

centered a t each of these chosen points (except itself). The computational result is 

summarized in Table 1.
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x10"3
5.5069

5.5069

5.5069

5.5069

5.5069

5.5069

5.5069

5.5069

5.5069

5.5069

5.5069 L  
-1 .5 0.5-0 .5

x.2

Figure 5.4: A trajectory with r  =  2 * 106

Table 5.1: Recurrent behavior of x\
val £ number
£ 1 (90000) IQ-iU 1

£ 1 (1000006) IQ-iU 0

£ 1 (1000006) 10~^ 14
£l (N  -  1 1 ) 1 0 -tU 135
£ 1  ( N  - 1 1 ) 10" i:i 0

£ 1  (N  -  1 1 ) 1 0 - n 1

We clearly see the recurrence of the trajectory to itself. Next, we choose another 

orbit, X2 (&), starting from
2 * 8  1.0 

*2(0) =  —  + W

Accordingly the following points are obtained:

£2(1000006) =  0.005478247409168660668943840211631603889702611599158266702, 

x 2{ N -  11) =  0.005507833414434384965183963494955909879041106961617575674, 

£2(300006) =  0.005411439540349742303466366471586072486903229411453756781.

We then check the number of points of £i(fc) inside each point above. Table 2 

summarizes the result.
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Figure 5.5: A trajectory with r  =  3 * 106 

Table 5.2: x\  around zo
val £ number
£ 2 (1000006) 1 0 “ a 13
x2(1000006) 1 0 -h) 0

x2{ N  -1 1 ) 1 0 -iu 2

£2(300006) 1 0 -iu 2

£2(300006) 1 0 " 13 0

We find that within each small neighborhood of each chosen point in £2 , there 

are always points of x \. (Note that the occurrence of 0 in these two tables is 

due to the limited amount of data we have. By choosing N  bigger, e, namely, the 

neighborhoods, can be smaller.) Since £i and X2 are chosen arbitrarily, it is plausible 

to infer that there must be an invariant set within which almost all the orbits are 

dense. Such a set, say A, can be approximated as

A =  lim{a;i(/;)}, (5.6)

where x j  is an oscillating orbit of the map, the outer overline denotes the closure, 

and lim means the upper limit. It is worth pointing out that here the uniqueness 

of an invariant set in the oscillating region is implicitly assumed. Our extensive
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x10

x, o

-2

-4

-6

' '
-8  -6  -4  -2

x 10

Figure 5.6: One trajectory generated via Mathematica

simulations strongly support this conjecture. Clearly A is closed and compact. 

Moreover, Table 1 tells us th a t each point in A is an accumulating point. As is 

known, dissipative chaos is always closely related to some Cantor set. To make A a 

Cantor set, we need to show that A is nowhere dense, which can be guaranteed if 

the map involved is dissipative. For a continuously differentiable dynamical system, 

its dissipativity can be verified quite easily. However, for a  nonsmooth dynamical 

system, there still lack effective tools to do so. We have to admit th a t it is extremely 

hard to find the invariant set A analytically. This is best demonstrated by Figure 

5.6, where it is hard to find any explicit pattern.

P ro b le m  5.1 How to determine i f  system (5.1) is dissipative?

Next, we study the sensitive dependence on initial conditions, a defining nature 

of chaos. Fix

=  — b = ~ —  5 =  —  
a  10 ’  10 ’  100 '

We then check the maximal distance between two initially-nearby trajectories. In

Table 3, there are 4 rows of data. In each row, the first and second columns are the

initial points of two trajectories, denoted “tra j l” and “traj2” , respectively. The third

column contains the maximal distance between these two trajectories. The initial
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Figure 5.7: Another trajectory generated via Mathematica

differences are tiny, a t levels of 10~6, 10-7 , 10-8 , 10-10, respectively. However, the 

maximal distances are all around 0.0043888, so the sensitive dependence on initial 

conditions is clear. As commented before, topological transitivity on an invariant 

set and sensitive dependence on initial conditions are two characteristic features of 

a chaotic map. Based on our forgoing simulations, the system discussed here does 

show chaotic behavior. It is our strong belief th a t a map is chaotic if it has a Cantor 

set as an invariant set and on which the map is topologically transitive.

Table 5.3: Sensitive dependence on initial conditions
tra j l tra j2 maximal distance
5 I 2*5 . {—6—1+a^ 
2 1 ' i o f I l - ( a + 6) I

5 * 3*5 . ( — b— 1-l-a \ 
2 10^ \ 1—(a+ 6) I 0.004388827490502198

5 i 2*5 / —b— l + a \  
2 I(F I l-(a -fb ) I

S t 3*5 , / —6—l- r a \  
2 W  * I 1—(a+ 6) 1 0.004388810010553412

5 , 2.5 . / —6—l- r a \  
2 108 V, l - ( a + 6 ) )

5 i 3*5 , f — b— l - r a \  
2 “*■ 10» *  ̂1—(a-t-6) ) 0.004388807107462013

5 i 2*5 . f-b-l-ha\ 
2 + TO1** ' 1, 1—(a+ 6) )

5 i 3*5 ( — b— I4*a \ 
2 10^  \  1—"(a-i-6) ) 0.004388806797374203
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5.3 Conclusions

In this chapter, extensive simulations have demonstrated the chaotic behavior of 

system (5.1). Difficulties involved in analyzing this class of systems has also been 

discussed. Problem 5.1 will be one of our future research lines.
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Chapter 6

Structural stability

In Chapter 4, it is proved that given a =  1, system (4.1), if there are periodic 

orbits, then the system is not structurally stable. Loosely speaking, a dynamical 

system is structurally stable if a slight perturbation of its system parameters will 

not change its phase portrait. In this chapter it is shown that the condition of 

a =  1 is actually unnecessary. Sec. 6.1 proves tha t the system is not structurally 

stable by introducing a line of systems. Sec. 6.2 contains a study of local region 

of convergence. Sec. 6.3 discusses the phase transition of the above-mentioned line 

of systems. Sec. 6.4 investigates the eigen-structure of the line of systems near a  

particular parameter point.
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6.1 Structural stability

Loosely speaking, a nonlinear system is structurally stable if a slight perturbation of 

its system parameters will not change its phase portrait qualitatively. In Chapter 

4, we proved that given a =  1 in system (4.44), if there are periodic orbits, then the 

system is not structurally stable. In this section, we will show that the condition of 

o =  1 is actually unnecessary.

Xj i I

►

Figure 6.1: A global attracting region of a type-1 generic system

We begin with the simplest case, namely, a generic system, whose unique attrac­

tor is the line segment of fixed points. Even such a  simple case can still be classified 

into a t least two categories. We proved in Chapter 4 th a t if the parameters of the 

system defined by Eqs. (4.44)-(4.45) satisfy

1 -  M I&I rfi n
l - ( o  +  6) 1 —|a +  6 | K 1

with ]a +  6 | <  1 and |a| <  1 , then it is generic. One of whose global attracting 

regions is shown in Figure 6.1, where Ia is the line segment of fixed points, which 

runs from the point (x2 , 2 i) =  Wfo+Sj) 011 ^  to P°iQt

( x 2 , %i )  =  ( iL^l+a)»~ on right. A trajectory will converge vertically 

to a  certain point on Ia. On the other hand, we proved th a t the system with 

parameters a =  ^  and b =  — ̂ jj, which do not satisfy Eq. (6.1), is also generic, 

whose typical trajectories axe like that shown in Figure 6.2 (the trajectory starting 

from (0.005,0.005) around converges to a fixed point close to (0.0004,0.004) after
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x l

0 .0 0 7 5

0 .0 0 5

0 .0 0 2 5

-0 .0 0 2 5

-0 .0 0 5

-0 .0 0 7 5
- 0 .0 0 7 5 0 .0 0 5 0 .0 0 2 5  0 0 .0 0 2 5  0 .0 0 5  0 .0 0 7 5

Figure 6.2: A global attracting region of the generic system with a =  0.3 and 
b = -0 .9

several oscillations). Till now, we have not found a third type of generic systems. 

Apparently the first generic system is simpler than the second. Hence, we first 

investigate the structural stability of the first type of systems. For convenience, we 

call such systems type-1 generic systems, or generic systems of type 1 . Observing 

th a t each type-1 generic system has a global attracting region as shown in Figure 

6 .1 , thereby we focus on its behavior in this region.

The following result asserts that two generic systems of type 1 are ‘identical’ in 

the sense of topology:

P ro p o s itio n  6 . 1  Two type-1 generic systems are homeomorphic, i.e., there exists 

a bijective map form one to the other, which is continuous and has a continuous 

inverse.

P ro o f. For convenience, define

X2 (fc) :=  v (fc — 1 ) ,  fc >  0 .

Then, the original system defined in Eqs. (4.44)-(4.45) is equivalent to system (5.1)
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presented in Chapter 5:

x i (fc +  1 ) 
xo (fc +  1 )

a +  b 0  

1 0  

a b 
0  1

x i  (fc) 
Xo (fc) 

Xl (fc)
Xo  ( f c )

, if |xi (fc) — X2 (fc)| >  S, 

otherwise.

Consider the following two type-1 generic systems whose global attracting regions

Figure 6.3: Global attracting regions of systems S i and S 2 

are shown in Figure 6.3:

S i : x(fc +  1 ) =
B\X  (fc), if |xi (fc) -  X2 (fc)| >  5, 
A \x  (fc), otherwise,

Box (fc), if |y\ (fc) -  y2 (fc) | >  6, 
otherwise,

in which

x = Xl
X2

y  1 
2/2

, Ai —
di h  
0  1

, Bi — cii + bi 0  

1 0
* =  1, 2.

Next, define a map h from Ix to I y by 

h  : Ix * Iy ,

bi

(6 .2)

1 — ai
X 2 ,  X o

l-|Q2l l-lazl
0 2  l - ( a 2 -!-6 2 ) l-(Q2-!-i>2) _

* 2  s n_u. 1 x 2
1 - 0 2  _ J d £ i U  1 — l « x l

l - ( a i - r b i )  l - ( a i + i > l l

Clearly, h is one-to-one, onto and has a continuous inverse. 

Next, define

h : S i — * S 2 , 

(xi, X2 ) >-*

(6.3)
bo 1 |a21 1—I0 2 I

l-~a2 1—(Q2+/>2) _ l-(a2-i-&2) _
1—|ai I Xli 1-lail X2 1 ‘

1—ai i_(Ql.j.&i) 1—(aj+61)
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It is easy to  see that the projection of h on I x is exactly fc, and furthermore h is a 

homeomorphism. Actually system S 2 can be obtained by stretching (or contracting) 

system E i, therefore they are topologically equivalent. ■

Two remarks are in order.

R e m a rk  6.1 It is hard to  apply the foregoing method to other types of generic 

systems because they may not have such simple global attracting regions.

R e m a rk  6 . 2  As can be conjectured, this method is probably not applicable to non­

generic systems that have some complex attractors besides the line segment of fixed 

points (see Chapter 4 for details).

Before investigating the structural stability of generic systems, we first discuss 

their w-stability. A dynamical system is w-stable if there exists a homeomorphism 

from its non-wandering set (here it is I0) to  that of the system obtained by per­

turbing it slightly [93]. Hence, a structurally stable dynamical system is necessarily 

unstable, but the converse may not be true. Because there always exists a homeo­

morphism between two given line segments, it seems plausible to  infer that a generic 

system is unstable. Unfortunately, it is not true. Observe that Proposition 6.1 holds 

upon the assumption that two given systems are generic, some other “unusual” 

types of perturbations may lead to  a  system that is not generic, thus destroying the 

w-stability of generic systems. To that end, a  new point of view is required.

Define a family of systems:

where

xx (k  +  1 ) 
x2 (fc + 1 )

Ai =

Ai

A2

a -f- b 0  

1 0

Xl (fc)
x 2 (fc)
Xl (fc)
x 2 (fc)

A2 =

if |x i ( f c ) - x 2 (fc)| >5, 

otherwise,

c l +  Ab  (1 — A) b  

A ( 1 - A )

(6.4)

(6.5)

Note that when A =  1, A2 =  A i, and that the resulting system is a stable linear
a bsystem. When A =  0, A2 =

A 6  [0,1], one gets a family o:

It is easy to verify the following result:

0  1 
systems.

, giving system (5.1). Hence, by introducing
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T h e o rem  6.1 For each A 6 (0,1], system (6.4)  has a unique fixed point (0,0).

Consider a perturbation of a system in the form of (5.1) by choosing a  A suf­

ficiently close to but not equal to zero. Theorem 6.1 tells us th a t the new system 

has a  unique fixed point. Clearly, there are no homeomorphisms between these two 

systems since there exist no one-to-one maps from a line segment to a  single point. 

Moreover, a non-generic system also has a fine segment of fixed point. So, we have 

the following conclusion:

T h e o rem  6 . 2  System (5.1) is not u-stable.

The following is an immediate consequence.

C oro lla ry  6 .1  System (5.1) is not structurally stable.

R e m a rk  6.3 The above investigation tells us that the system with A =  0 is a rather 

ill-conditioned one. Will a system with A ^  0 be w-stable (or even structurally 

stable)? We are convinced tha t this generally holds, but till now we have been 

unable to prove it.

R e m a rk  6 .4 For a generic system, no m atter it is of type 1 or not, its non­

wandering set is just a line segment of fixed points, therefore its w-stability is pre­

served if a perturbation is on a and b, while not destroying the structure shown in 

Eq. (5.1). Consider the discussion in Chapter 3, the system composed of (4.44)- 

(4.45) is proposed for a  new data transmission strategy, hence the perturbation of a 

and b is reasonable, while the perturbation of the form (6.4)-(6.5) induced by A does 

not make sense physically. Based on this, we can say tha t w-stability is “robust” 

with respect to uncertainty which is meaningful (The same argument is proposed in 

[84] for structural stability). However, it is pretty “fragile” with respect to such rare 

uncertainty as that in Eqs. (6.4)-(6.5). In other words, it is robust yet fragile. It 

is argued in [18] th a t ‘robust yet fragile’ is the most important property of complex 

systems.

I t is evident that there is clearly a transition process in the family of systems 

defined by Eqs. (6.4) and (6.5) as A moves from 1 to 0. Obviously this transition
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is very interesting. Next we will demonstrate this transition process by examples 

in the hope of pinning down the inherent dynamics and thereby learning something 

about this type of nonsmooth dynamical systems.

In the following, we concentrate on the case th a t

a  =  9/10, b =  —3/10, (5 =  1/100.

6.2 The region of converging orbits

According to Proposition 6.1, there is a neighborhood around the origin (0,0), each 

orbit starting within which will converge to the origin. One question is: Is it possible 

to determine this local stability region analytically? This problem turns out to be 

difficult. For example, assume A =  16/100. Starting from an initial point (—10,10), 

the orbit is oscillating (see Figure 6.4). Based on this, one may guess that each

x10'3

x.'1

-2

-4

-2-6 -4
x 10-3

Figure 6.4: An oscillating orbit starting from (-10,10)

orbit starting from an initial point further away from (0 , 0 ) than  (—1 0 , 1 0 ) will 

be oscillating. However, this is not true. In fact, the trajectory starting from 

(—100,870) converges to the origin (see Figure 6.5). This example tells us that the 

set of converging orbits is hard to find analytically, even if it is possible. Clearly, 

this problem is closely related to the problem of computational complexity (see [4] 

and some references therein).
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-1

* ,-1 .5

-2

-2 .5

- 3

Figure 6.5: A converging orbit starting from (—100,870)

6.3 Phase transition

In  this section, we study the transition process as A moves from 1 to 0. Here, we 

fix an initial point (—10,10) and study the evolution of its orbits as A varies. To be 

precise, we use Mathematica to find these analytic orbits instead of using numerical 

ones, for the reason has already been given in chapter 5. We start from A =  165/104. 

I t is found that the orbit is converging. So, we reduce A (we expect that the smaller 

the A is, the more unstable the system will be) by choosing A =  162/104, and the 

orbit oscillates. Then, we choose a bigger A, A =  163/104, but in this case the orbit 

converges to the origin. We then reduce A again by choosing A =  1625/105, and the 

trajectory is oscillating. However, for A =  1626/105, it converges.

At A =  1, we have a  stable linear system. When A is slightly less than 1, the 

system is nonlinear, but is still globally asymptotically stable. As A goes further 

toward 0 , the nonlinearity becomes more and more prevalent and ends up with chaos 

a t A =  0.

We are now in a position to pose two questions:

P ro b le m  6.1 Assume •parameters a, b, 5 are given in  the system composed of Eqs. 

(6-4)-(6.5). As fa r  as a particular orbit is concerned, fo r instance, the one starting
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from  (—1 0 , 1 0 ) in the example studied above, is there a Xo € (0 , 1 ) such that the orbit 

converges to the origin for all 1 >  A >  Ao, whereas it oscillates fo r all 0 <  A < Ao ? 

I f  so. what behavior will the orbit starting from  (—10,10) run into: converge to the 

origin or a periodic orbit, oscillate or be periodic?

P ro b le m  6.2 Is there a Xi e  (0,1) such that all orbits will converge for all 1 >  

A >  Aj, whereas there is at least one oscillating orbit fo r each 0 <  A < Ai ? Again, 

i f  so, for this X\, what will trajectories end up with?

Another interesting question is: Is there any continuous function of A as it 

goes from 1 to 0? The first candidate coming to mind is, of course, the system 

trajectories. However, they are unlikely. For example, is a linear stable system, 

and systems with A very close to 1 also have the origin as the unique global attractor, 

whereas S u has an oscillating region. Hence, as A decreases, aperiodic orbits come 

into being, which disqualify the continuation of trajectories as a function of A. The 

same argument asserts tha t neither the system attractors nor structural stability 

are continuous with respect to A. Then, what about dissipativity? (Here we define 

that a system is dissipative if the volume of its attractors has Lebesgue measure 0.) 

One may disprove this by saying that there are dense periodic orbits in the case of 

a =  1 and b =  —3/10 (please refer to Chapter 4 for details). However, our argument 

here is that systems with periodic orbits are not typical in this type of systems. As 

proved in Chapter 4, an extremely slight perturbation will perturb the parameter b 

from being rational to being irrational, and as a result there are no periodic orbits 

a t all. Our analysis and extensive simulations strongly support that dissipativity 

is invariant (hence continuous) as a function of A. Putting dissipativity into the 

context of phase transition gives rise to  the following problem:

P ro b le m  6 .3  It is obvious that the system composed o f Eqs. (6.4)-(6.5) is dissipa­

tive at X around but less than 1. How will it change as X moves from 1 to 0? Is it 

invariant?

If the system is dissipative, following Sec. 5.2, the system £ u with a =  9/10 and 

b =  —3/10 has a  Cantor set as an invariant set on which the system is topologically 

transitive, hence it is truly chaotic.
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At A =  1, we have a stable linear system, when A is slightly less than 1, the 

system is nonlinear, but is still globally asymptotically stable. As A moves further 

toward 0 , nonlinearity becomes more and more prevalent and ends up with chaos 

at A =  0. Our speculation is that it seems unlikely for periodicity to come into play 

in this process; if this were true, what bifurcation would be expected? This process 

might be fraught with bifurcations, how to discern the underlying patterns?

Up to this point, some comments of Feigenbaum [21] come to our mind, “..., 

while a vague impression of what one wants to know is sensibly clear, a  precise 

delineation of many of these quests is not so readily available. In a state of ignorance, 

the most poignantly insightful questions are not yet ripe for formulation. Of course, 

this comment remains true despite the fact that, for technical exigencies, there are 

definite questions that one desperately wants the answers to.”

6-4 Eigen-structure near A =  0

In fact, one can go further by relaxing the restriction of A on [0,1] to (—oo, oo). The 

following result guarantees the existence of a bounded global attracting region of 

the system.

T h eo rem  6.3 For each given A 6  (—0 0 , 0 0 ), system (6 .4 ) has a bounded global 

attracting region.

P ro o f. By Eq. (6.4), one has

xi (fc +  1) =  (a +  b) x i  (k ) +  Sk (A -  1) b (xi (fc) -  X2 (fc)),

where

1 otherwise.

W ith this observation, one obtains

|xi(fc +  l) | <  |a +  6 | |xi (fc)| 4- |A — 1 | \b\5

<  ]a +  b\M  |x! (0 )| +  1 ± l 0 ^ 1 IA ~  1 | \b\ 5,

hence
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for sufficiently large k. As a result, for each given A 6  (—0 0 , 0 0 ), there exists a 

bounded globally attracting region. ■

Now we will show that for A less than but sufficiently close to 0, there always 

exists an eigenvalue which is strictly greater them 1 .

The two eigenvalues of system (6.4) are

1 -f* ci — A +  bX -p ^ —4 (u — oA) -j- (—1 — cl -p A — 6A)

2  '

It turns out that one of these two eigenvalues is enough for the following develop­

ment.

Define

f  (A) :=  — ^1 +  a — A +  bX +  —4 (ci — czA) +  (—1 — cl +  A — 6A)-^ .

6.4.1 Case I: |o| < 1

In this case,

/  (0 ) =  -  (1  +  a +  |1  -  a|) =  1 ,

/ ( 0 ) =

=  ,  {b 4- a  — 1) <  0
1 — a

Hence there exists A* < 0 such th a t /(A) >  1 for A € (A*, 0).

6.4.2 Case II: a > 1 

In this case,

/  (0 ) =  2 ^ 1 +  a  +  l1 _ a ^

=  2 ^  +  a  — *
=  a >  1 .

Due to the continuous dependence of eigenvalues on system parameters, there exists 

5 > 0 such that /(A) > 1 for A 6  (—6, £).
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6.4.3 Case III: a =  1

In  this case.

Hence

/  (A) =  ± ( 2  -  A +  bX -  y/4  (A — 1) +  (2 -  A +  b X f'j  

/ ( 0 ) =  1 ,

and for all A ^  0,

/ '  (A) =  |  (6 - 1) +
2 +  (2 — A +  6A) (& - 1)

(6 .6)
^ 4 ( A - l )  +  ( 2 - A  +  6A) 2

Noting th a t 6 <  0, one has

2 +  (2 — A +  6A) ( 6 - 1 )  < 0

for A sufficiently close to 0, i.e.,

/  (A) < 0

for A sufficiently close to 0. As a consequence, there exists A <  0 such that /(A) >  1 

for AG (A,0).

6.5 Conclusions

In this chapter, we have proved that system (5.1) is not structurally stable by 

introducing a parameter A to get a  line of systems. Problems 6.1, 6.2 and 6.3 

axe the threads of our future research. We believe these problems are common in 

nonsmooth dynamical systems induced by state-dependent switchings. Therefore 

we hope the family of systems discussed here can serve as a model in this field of 

research.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Chaos: two-dimensioned case

The aim of this chapter is to study higher dimensional systems under the switching 

law specified in Chapter 3. Sec. 7.1 contains two motivational examples, one of 

which reveals the contracting and stretching nature of this class of systems; the 

other shows the evolution of attractors as some system parameter varies. System 

analysis constitutes Sec. 7.2, together with an example illustrating the rich dynamics 

in these systems.

I l l
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7.1 Exam ples

In this section, two examples are used to illustrate the qualitative behavior of a 

higher dimensional system, the former reveals the contracting and stretching feature 

of this type of systems and the latter show the variation of attractors as some system 

parameter varies.

E xam ple  7.1 Suppose the system G shown in Figure 3.2 is given by

x ( k  + 1 ) =  2 x(fc)-t-3u(fc), 

yc{k)  =  x(k) ,

and the controller C  is given by

Xd (k +  1) =  - 2 Xd{k) + 1.5ec(fc), 

uc{k) =  Xd(k),  

ec(fc) =  r  (fc) -  2  (ft),

where v(k) and z  (ft) are outputs of Eqs. (3.4)-(3.5) respectively. Set r = 0, fix 

5 = 1/100 and denote the resulting system by £ 0. It is easy to see that the closed- 

loop system without the constraints H i and H i is asymptotically stable. Under 

Hi and H i, starting from an initial condition, the asymptotic behavior of a trajec­

tory is drawn in Figures 7.1-7.3. The first is for (v (k  — 1 ), x  (ft)), the second for 

(z (k — 1) ,Xd{k)) and the last for (x (k),Xd(k)). Clearly the trajectory is formless.

Next nonlinear data analysis techniques will be employed to analyze the chaotic 

behavior of system E0. The first to be demonstrated is of course sensitive dependence 

on initial conditions. Choose an initial condition

[w(—1 ), x(0 ), z ( - l ) ,  xd(0 )] =  [ - 1/ 1 0 0 0 , 1 / 1 0 0 0 , 2 / 1 0 0 0 , - 1 / 1 0 0 0 ],

set the iteration number to be 6  * 105, then one gets a trajectory of x. Perturb 

the initial condition above slightly to [—1 / 1 0 0 0 , 1 /1 0 0 0  + 1 / 1 0 13, 2 / 1 0 0 0 , —1 / 1 0 0 0 ], 

under the same iteration, another trajectory of x is obtained. Figure 7.4 is the 

difference between these two x's of the last 1200 iterations. According to this 

figure, one can easily see sensitive dependence on initial conditions. In general, the
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Figure 7.1: Plot of the asymptotic behavior of (v (k — 1 ) , x  (k))

spectra of a  chaotic orbit will be continuous. Figure 7.5 contains the spectrum of x  

starting from [ - 1 / 1 0 0 0 , 1/ 1 0 0 0 , 2 / 1 0 0 0 , —1 / 1 0 0 0 ], which confirms our conjecture.

As is well-known, a chaotic system normally has the geometric feature of con­

tracting and stretching, hence the following development concentrates on the dy­

namics of the system in Example 7.1 geometrically. To simplify the discussion, 

suppose there is no constraint Ho in Figure 3.2, i.e., v(k) =  uc(k). The fixed points 

of the system E0 are given by

| ( x , x d, 2 .) (7.1)

Define

x :

T  :=  0 1
0 0 1

x  :=  [ x  id  z .  ] =  Tx. 

Then the system under the new coordinates is

E„i : x  (k +  1 ) =  - 1  - 2  - |  x(fc),
. 1 0 1 .
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under

and

under

Figure 7.2: Plot of the asymptotic behavior (z (fc — 1) ,x<f (fc))

\x — z .| >  <5;

S n 2 : x  (fc +  1) =

(7.2)

2 3 0 
0 - 2  0 
0 0 1

x(fc),

\x — z -1 <  6. (7.3)

For convenience, denote this system by £ n. I t is easy to see th a t the fixed points of 

£ n are

{(0,0, z .)  : |5L| <  2(5}. (7.4)

Some comments are appropriate here:

•  The subsystem £ ni is a stable system.

•  If Eq. (7.3) is satisfied, a trajectory (governed by £ „ 2 ) will move on a  surface

z -  =  7
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Figure 7.3: Plot of the asymptotic behavior (x (k ) , x d{k))

for some 7  G [-25,25]. Such a  surface is denoted fly. The point (0 ,0 ,7 ) is the 

origin of S n 2 on fly. Furthermore, the line

FSt7 : x =  0, 5_ =  7  (7.5)

is the stable manifold of £ „ 2  on fly and similarly, the line

r Ul7 : x d =  0, =  7  (7.6)

is the unstable manifold of En 2 on fly.

Suppose a  trajectory T of the system E n starts from a point p  and is governed by 

S n2 - If p  G r U)7 (or in general p  £ r 5i7) on some surface fly , then the trajectory will 

contract along the x^—axis and stretch along the x —axis. Due to Eq. (7.3), after 

some iterations, T will move according to the stable subsystem E„i. At this moment, 

T will leave the surface fly , and move toward the origin (0,0,0). By Eq. (7.2), after 

some iterations, it will move again onto some surface fly  for some 7 ’ G [—25,25]. If 

it is not exactly on the line <, it will once more contract along the x^—axis and

stretch along the x—axis and repeat the above behavior. So normally a trajectory 

never settles down. This contracting and stretching nature indicates the intriguing 

behavior system En.
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Figure 7.4: Sensitive dependence on initial conditions

E xam ple  7.2 Consider the following system:

Aix(fc), if |xi (fc) -  X3 (fc)| > 1, 
A%x (fc) , otherwise,

(7.7)

where
'  1 - e  1 0  

A i =  - e / 2  1 0  , A 2 =
1 0  0

1 - e l  0 

0  1 - e / 2  .
0  0  1

The variations of the trajectory, starting from (1, 1/105, — 1) as e varies, are 

plotted in Figures 7.6-7.7. One can see the phase transition process vividly from 

these figures.

Figures 7.6-7.7 reveal the rich dynamics of a 3-d system governed by the switching 

law, which will be our future research topic.

7.2 System  analysis

This section analyzes a two dimensional system with emphasis on its fixed points 

and periodic orbits. Consider the following system:

X\ (fc + 1 ) =  a ix i (k ) +  biX2 (fc), 

X2 (fc +  1 ) =  0.2X2 (fc) +  h.v (fc),
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where

Introduce a new variable

Figure 7.5: Sensitive dependence on initial conditions

\  v (fc — 1 ) ,  o

X3 (fc) =  v (fc -  1 ),

if |xi (fc) — u (fc — 1)| > 5, 
otherwise.

and define

’ ® 1 " ’ ai bi 0  ‘ ■ ai bi 0  ‘
X = x2 . M  = b2 02 0 , A2 = 0 0-2 b2

. x3 . 1 0 0 _ 0 0 1 _

then
if \x\ (fc) — xz  (fc)| > <5, 

\  Aox (fc), otherwise.

7.2.1 Fixed points and switching surfaces

Suppose that {x\,X 2 ,xz) is a fixed point of system (7.8). Then

x i =  aixj  +  &1X2 ,

X2 =  CL0X2 +  boXz- 

2 3  =  ^ 3 .
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Figure 7.6: Attractors in 3-d:I

If a i 7̂  1 and ao r  1,

where

X2
i>2

1 —  02 

l»sl ^

X3 , X l =
&1 &2 _

1 — C l 1 — 02

10

5

•5
1

£ =  10/100

(7.9)

(7.10)

For this case, the switching surfaces of this system are

x i — X3 =  ±5:

hence the two intersecting points of the line segment of fixed points and the switching 

surfaces are
±  | - ± - i ) .

,fci — 1 ’ 1 —0 2 ^ 1  — 1 ’ ki — 1 

where ki =  They are symmetric with respect to the origin.

If a\ 7̂  1 and 0 2  =  1,

and

-  n -  61 -X3  =  U, X l =    X2
1 — Ol

(1  - o i ) 5
Isal < bi

(7.11)

(7.12)
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Figure 7.7: Attractors in 3-d:II

If ai =  1 and 02  #  1,

X 2 =  0, X3 =  0, (7-13)

and

|*i | < 6 .  (7.14)

In  all the three cases, fixed points constitute a line segment in R 3. Note that the

case of a i =  1 and <22 =  1 is contained in the case composed of Eqs. (7.13)-(7.14).

7.2.2 A nother exam ple

In  chapter 6 , a line of two dimensional dynamical systems is studied with empha­

sis on their phase transition, now we discuss a three dimensional case. Here, the 

discussion is purely descriptive, for which we just present an example.

E x a m p le  7.1 Consider the following system:

W t - u n - /  ^ ( f c ) ’ if l*i(fc)-*3(*)l >1> /7 1 = 1

+  A 2x ( k ) ,  otherwise, (7’lo)

where
' ai 61 0  ‘ Ol bi 0

A i  = 62 02 0 IICl Xb2 02 (1 — A)i>2
1 0 0 X 0 1 - A
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When A =  1, A2 =  Ai. When A =  0,

' a  i h 0

Ai — 0 ao bi
_ 0 0 1

Fix

& 1  —  b \  —  1 ,  oo  —  1 5 bo

we plot the variation of the trajectory starting from

(1 , 1 / 1 0 5, - 1 )

as A varies (see Figures 7.S-7.9); one can view the phase transition process vividly 

from these figures.)

200,

-200

-20 -50 
A. = -100

20 ,

-20
50

-5

-2  -5

1 0

0.5
5

Figure 7.8: Attractors in 3-d:I
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Figure 7.9: Attractors in 3-d:II

7.3 Conclusions

This chapter has discussed higher dimensional cases of the systems governed by the 

same switching law as those studied in the preceding chapters. The chaotic behavior 

manifests itself more clearly in these higher cases. Finally we have to  mention that 

first return maps for higher dimensional systems are hard to construct, indicating 

tha t their analysis will be more involved than those in Chapters 4-6.
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Chapter 8

Continuous case

This chapter studies a continuous-time system composed of two first-order ordinary 

differential equations with a piecewise constant input. This system is the counter­

part of those studied in Chapter 7. As is expected, it also possesses very intricate 

dynamics: sensitive dependence on initial conditions, coexisting attractors, among 

others.

The chaotic behavior of this type of systems has a t least two sources: The first 

one is th a t the piecewise constant input destroys the geometric structure required 

by the well-known Poincare-Bendixson Theorem, hence this two-dimensional sys­

tem may have dynamics which do not exist in a planar system consisting of two 

autonomous first-order ordinary differential equations. The second is th a t the solu­

tion of the system, namely, two exponential equations, involves an unstable mode. 

On the one hand, this unstable mode brings in complicated dynamical behavior; on 

the other hand, it gives rise to nontrivial numerical problems.
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8.1 System  settin g

Consider the following system:

*i(£) =  aia;i(t) +  6iX2 (t)i 

±2 (t) = a2X2 {t) +  b2v(t),

(8.1)

where the matrix A  = is stable, and the switching law is given by

v
if |x i(t) — v(t-)\ > 5, 
otherwise,

(8 .2)

in which 6 is a positive scalar.

As can be observed, the system governed by Eqs. (8.1)-(8.2) is the continuous­

time counterpart of system (7.8). Note that the system consists of two first-order

system is autonomous. Moreover, due to the switching nature of the system, the 

vector field of this system may not be continuous for some set of parameters, not 

to mention differentiability. This suggests that the well-known Poincare-Bendixson 

theorem might not be applicable [30], i.e., besides equilibria and periodic orbits, the 

U/'-limit set of this system may contain other attractors. This turns out to be true 

as shown by the following simulations. However, before doing that, let us first state 

a general result regarding the system composed of Eqs. (8.1)-(8.2).

T h e o rem  8.1 The trajectories o f the system given by Eqs. (8.1)-(8.2) are bounded. 

Moreover, they converge to the origin as 5 tends to zero.

P ro o f. For the ease of presentation, we focus on the following system parameters:

ordinary differential equations. Furthermore, if we fix u(0_) to be 0, then the above

a i =  —1 , &i = 2 , a2 — —2 , 62 =  —2 . (8.3)

Since

±i (i) =  a i^ i (t ) + biX2 (t ) ,

x 2 (i) =  a2X2 (t ) +  b2V (t )

=  a2 X2 (t ) -1- 622:1 (f) +  62 (v (t ) -  x i  (t )),
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where

Let

then

K O  - * i  (0 1  ^  5-

x ( t ) =

(8.4)

xi ( 0  

*2 ( 0

i ( t )  =  

For convenience, let

a i bi 
&2 02

A =

x(i)-
0

62
(u ( 0  -  xi  (0 ). (8.5)

’ a  1

1

rH
rO

,  B  =
'  0  '

& 2 ° 2  .

5
.  ^ 2  .

Substitute them into Eq. (8.5), we have

x (t ) =  A x  (t ) + B ( v  (t ) -  xi ( t ) ) . (8 .6 )

Solving this equation we get

x (t ) = eAtx  (0) 4- [  eA^~T^B (v (r ) -  xi (r)) dr.
Jo

Note th a t the m atrix A  is a stable matrix. To show the boundedness of the trajec­

tory, it suffices to show that

y (t ) := f  eA(J~T)B  {v (r) -  xx (r)) d r  (8.7)
Jo

is bounded. Partition the matrix and substitute (8.3) into it, we obtain

4e- 3 (£- T)/2 sin
*

*

'/lB
_ ^ e - 3 ( t - r ) / 2  ^!5 cos ^  (t  -  r ) j  — 15sin (t _  r ) ^

A\ Ai 
A 3 A4

Substituting the above into Eq. (8.7), one gets

y{t) =
Jo A2b2 (v (r) -  xi (r)) dr 
Jo Aib2 (u (r) -  xi (r)) dr

Vi ( 0  
2/2 ( 0

„ rt 4c- 3(," 'r)/2 sin ^ ( t - r )  . . . .
~ 2 So----------- TTs------------ (v (T) “  Xl (0 ) dr

(8 .8)

- 2  f g  e ~ 3^ ~ r ) / 2  (cos (2 (t -  r)) -  sin (t -  t ) ^  (v  (t) -  X i  (r)) dr

Obviously both yi (t ) and yo (t) are boimded, so is x (t). Meanwhile, according to 

Eqs. (8.4) and (8 .8 ), x (t ) converges to the origin as 5 goes to  zero. ■
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FCN

Figure 8.1: A continuous-time switching system

8.2 Simulations

Consider the Simulink model shown in Figure 8.1. The system G  and the controller 

C  are modeled by the first and the second equations in Eq. (8.1), respectively. The 

function FCN, modelling the switching function (8.2), is defined by

f ( u ) :=  ui +  uo — U2 * (|ui — U2 I > 5) — u \*  (|ui — uo\ <  6 ) . (8-9)

Thus, by letting
U \u = ,
U2

one has
„ : = / ( « )  =  (  Ul' if 1-1 -  «!=>«. ( s . 1 0 )

\  U2 , otherwise.

Is the block FCN, the function / ,  well-defined? It suffices to verify the case a t time 

0. Firstly, choose |xi (0)| <  5. Then ui =  X\ (0). By simulation, it is found that

v =  0. Secondly, choose |s i (0)| >  5. Then u\ =  x \  (0). Simulation shows that

v = x i  (0). To simplify the notation, denote U2 a t time 0 by v  (0_). Summarizing 

the above, one has

u(0_)  =  0,

wro) = { 11 if l̂ i (°)_  ̂ C°-)l > ^
'  \  v (0 _ ), otherwise.
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Similarly,

„ w  =  ( * i ( ‘ ) .  i f M O ) - » ( 0- ) l > « ,  f o r ( > 0
( v ( t_ ) , otherwise, 

where v  (f_) is either some previous value of the state x i,  say x i (t — to) for some to 

satisfying 0 <  to <  t, or v (0_) =  0. Hence, the block FCN is well-defined.

Next, we find the equilibria of the system. As expected, the equilibria of the 

system constitute a line segment, just as in the discrete-time case. The equilibria 

are given by

A = l L =  ^ - v , x 2 =  - — v, v \  : \v\ < ----- - 7 T - }  • (8-11)
\  o.ia2  a2 J  1 — ^ 2.

V. “102 )

For the system composed of Eqs. (8.1)-(8.2), an interesting question is: Given 

an initial condition *(0), will x(t)  settle to a certain equilibrium or converge to a 

periodic orbit or have more complex behavior? There are two ways of tracking a 

trajectory x ( t ): one is to solve Eqs. (8.1)-(8.2) directly, and the other is by means of 

numerical methods. To get an analytic solution, one has to detect the discontinuous 

points of the right-hand side of Eq. (8.1). We first show that the number of the 

discontinuous points within any given time interval is finite.

S tart a t some time to >  0 and assume that (xi (to), x2 (to)) and v (to-) =  %i (to) 

are given, without loss of generality. Suppose th a t the first jump of v is a t instant 

to +  T . To be specific in the following calculation, let to =  0. Then

rT
X\ (T) = eaiTXi (0) 4- /  eai(-T~r^bix2 (r) dr,

Jo

x 2 (T) =  ea2Tx 2 (0) +  [  ea2 r̂ -T ^ 2Xi (0) dr
Jo

=  ea2Tx 2 (0) +  f  ea2Udub2 x \  (0) .
Jo

Consequently,

*2 (0 )+  %»!((>) 
<Z2 — ai

(8.12)

As T  —* 0, eaiT — 1 —*■ 0, and eazT — eaiT —► 0. Moreover, we have already shown 

the boundedness of solutions, so there exists a T* > 0 such that

|z i (T) -  v  (0)| =  |xi (T) -  x i  (0)| <  <5 (8.13)
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for all T  < T*. Thus, the finiteness of the number of the discontinuous points within 

any given time interval is established.

Based on this result, theoretically one can find the analytic solution of the  sys­

tem. However, it is difficult since the condition in Eq. (8.13) has to be checked 

all the time to determine the switching time T. Moreover, this process depends on 

the initial point, (21  (to) ,2 2  (to)), which is hard due to the impossibility of finding 

the exact T  satisfying |xi (T) — v (0)| =  8 . This problem will be addressed in more 

details in Sec. 8.3.

Another route to study this type of systems is by means of numerical analysis. 

In the following, some simulations will be shown to analyze the complexity of the 

system depicted in Figure 8.1. In all the following trajectory figures, the horizontal 

axes stands for 2 1  and the vertical one is 2 2 -

8.2.1 Converging to  som e fixed point

0.6

0.5

0.4

0.3

0.1

- 0.1

- 0.2

-0.3
X.0 0.05 0.1 0.15-0.15 -0.1 -0.05

Figure 8.2: Converging to an equilibrium other than the origin

Fix those parameters shown in Figure 8.1 to be:

ai =  —1, i>i =  2 , a2 =  —2, 62 =  —2 ,

and choose an initial condition (10, —10). Then, we get simulation results shown in 

Figure 8.2. One can see that this trajectory converges to a point specified by Eq. 

(8.11), which is close, but not equal, to the origin.
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8 .2 .2  S e n s itiv e  d e p e n d e n c e  o n  in it ia l  c o n d it io n s

First, fix system parameters as

ai =  1 , b\ =  2 , 02  =  —2 , bo — - 2 , 6  =  1 , 

and note th a t there is an unstable pole in the system G , namely, suppose

(8.14)

®i(0) =  2, *2(0) =  1,

and

xi (0) =  2 -  10“ 10, x2 (0) =  1.

Then, we get the simulation result shown in Figure 8.3, where the first two axe

?'.?895 -1.189 -1.1885 -1.188 -1.1875 -1.187 -1.1865 -1.186 -1.1855 -1.185

2542 2543  2544 2545 2546 2547 2548 2549 255 2551

Figure 8.3: Sensitive dependence on initial conditions

trajectories from those two sets of initial conditions given above and the third one is 

their difference. Clearly, one can see the sensitive dependence on initial conditions.

8.2.3 Coexisting attractors

Adopt the system parameters as in Eq. (8.14). then, we have simulation results 

shown in Figure 8.4, where the largest initial differences of any two such trajecto­

ries is 10-3 . These attractors are all alike; however, they are located in different 

positions; that is, they are coexisting attractors.
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Figure 8.4: Several coexisting attractors (the horizontal axes is x \  and the vertical 
stands for 2:2)

8.2.4 A  periodic orbit

Now, choose

01  =  -1 1 , 61 =  1/4, a2 =  10, 62 =  1/4 -  (01  -  a2 f ,  5 = 1. (8.15)

Simulations show that most trajectories behave like the th a t shown in Figure 8.5, 

which is periodic.

Having observed various complex dynamics possessed by the system shown in 

Figure 8 .1 , one may ask the following question:

Is the complexity exhibited by the system due to numerical errors or is the system

truly chaotic?

We received the following warning during our simulations using Simulink: Block 

diagram A continuous-time switching system” contains 1 algebraic loop(s). This 

warning is due to the fact that one of the output of the function block FCN is its
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Figure 8.5: A periodic orbit

own input. Certainly, this may lead to numerical errors. So, a transport delay is 

added to rule out this possibility. This consideration leads to the following scheme 

(Figure 8.6):

x' = Ax+Bu 
y = Cx+Du

System

x' = Ax+Bu 
y = Cx+Du
Controller

UPh f{U)

Fcn1
Transport

Delay

► ou£2 

To Workspace

□
Scope

Figure 8.6: A modified continuous-time switching system 

To correctly implement Eq. (8.2), the transport delay T must be small enough.
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Here, it is fixed to be T  =  5 * 10~2. Suppose that system parameters are given 

by Eq. (8.14) and choose two sets of initial conditions, (2,1) and (2 — 10-6 ,1). 

Then, we get Figure 8.7. According to the upper part of this plot, two trajectories

0.5

-0.5

-1.5
0.5 1.5-0.5-1.5

0.5

-0.5
0.2 0.4 0.6- 0.2- 0.6 -0.4- 0.8

Figure 8.7: Sensitive dependence on initial conditions

almost coincide; however, the lower plot clearly reveals sensitive dependence on 

initial conditions.

For a sufficiently small transport delay T, many simulations show th a t the com­

plicated attractor is unique, but sensitive dependence on initial conditions still per­

sists. Apparently, this phenomenon needs further investigations.

8.3 Com putational com plexity

We have visualized some complex behaviors of system (8.1)-(8.2), but we have not 

answered the question posed above. In this section, we study this problem in some
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details.

Consider the following system:

i i  (t ) =  a ix i (f) +  61x2 (t ), (8.16)

X2 (t) =  aox2 (f) +  bop,

where

ai =  1, b\ =  2, <22 =  —2 - 62 =  —2, S = 1 , 

and p  is a scalar. At t  =  0, let

x i (0 ) =  p, x2 (0 ) =  q.

Then, a direct calculation gives

x i( t)  =  2p -  (p -  2g) -  | e _2j (p +  g ) , (8.17)

X2  (t) = ~P + e~2t ip +  Q) ■

Suppose p 7̂  2q. Then, there exists an instant to >  0 such that

Ip — 2 1  (to) | =  1 . (8.18)

Set

p =  x  1 (t0) .

And then solve equations (8.16) starting from (xi (to), X2 (to)) at time to- Repeat 

this procedure (update p whenever Eq. (8.18) is satisfied) to  get an analytic solution 

of the system starting from (xi (0 ) ,  X2 (0 )) =  (p,q)-

Now, it is easy to realize th a t the complexity may probably be due to the fol­

lowing reasons:

• There is an unstable mode in x i(i) in Eq. (8.17).

• I t  is hard to  find the exact switching time, e.g., to in Eq. (8.18), even numer­

ically. Because of this, numerical errors will accumulate and be exaggerated 

from time to time by the unstable mode. Rorther research is required to study 

the effect of the accumulated errors on the dynamics of the system.

• Sec. 8.2.4 tells us the first item alone can not guarantee complex behavior.
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8.4 Conclusions

This chapter investigates the qualitative behavior of a type of continuous-time 

switching systems which is the counterpart of those discrete-time ones studied in 

Chapter 7. Simulations in Sec. 8.2 reveal the bewildering behavior of numerical 

solutions of this category of systems. Sec. 8.3 tells us the exact analysis of this type 

of systems is very difficult.

According to the well-known Poincare-Bendixson theorem, the attracting sets of 

a  planar system can only be equilibria or limit cycles. However the systems studied 

in this chapter do not satisfy the condition of continuous differentiability of the 

vector fields, therefore indicating that the complexity may be possible, instead of 

ju st a  computer artifact. This consideration gives rise to the following problem.

P ro b le m  8.1 Is the behavior of the class o f two-dimensional systems studied in 

this chapter indeed chaotic? To put it in another way, Are those strange attractors 

genuine properties of these systems or just computer artifacts?
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Chapter 9 

Control

This chapter will take a closer look at the control problem under the network data 

transmission strategy proposed in Chapter 3. Sec. 9.1 addresses the chaotic control 

problem. In Sec. 9.2 a  simple example is used to illustrate that some modification 

of the underlying control law can improve the performance of both the network and 

the control system. Sec. 9.3 discusses how to convert the control problem to an 

optimization problem. Sec. 9.4 contains some discussions on limited information 

control.
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9.1 Chaotic control?

The complex dynamic behavior of the system shown in Figure 3.2 has been studied 

in detail in the foregoing chapters. Compared to the standard control scheme such 

as that shown in Figure 3.1, whose dynamics can only be either converging to the 

origin, or being periodic or unbounded trajectories, the scheme adopted in Figure

3.2 provides much more dynamical properties. This provides a control engineer 

with more flexibilities a t his/her disposal, which is particularly attractive from the 

viewpoint of multi-purpose control. This may be one of the main merits that the 

control scheme proposed here can provide. In this section, the following problem 

will be addressed: Given a control performance specification, can we achieve it by 

possibly adjusting the system parameters? The following discussions concentrate on 

two control specifications:

(1) The system has only one operating point and it is desirable tha t the system

operates around this point.

(2) A periodic orbit is desirable.

For item (1), without loss of generality, assume th a t the desirable unique operating 

point is the origin. If the parameter a in system (4.1) satisfies |a| <  1, then asymp­

totic stability with respect to the origin can be achieved by adjusting the nonlinear 

block H \. According to Figure 4.7, it suffices to let the value v (k — 1) stored in H i 

be 0 when \x (A:)| <  5 (This feature is illustrated in Figures 4.8-4.9). Then the tra ­

jectory will move along the x —axis toward the origin, i.e., the asymptotic stability 

of the origin is achieved. If the parameter a in system (4.1) satisfies |a| >  1, one can 

not expect asymptotic stability of the origin because it itself is unstable. However, 

the trajectory can be kept arbitrarily close to the origin after some iterations, by 

adopting the following scheme. Suppose it is desirable to  keep the trajectory within 

the distance e around the origin. Then choose 5 small enough so that x  (k *) satisfies 

\x (fc*)| <  e/|o |2 at some time instant ft* (this can be realized, see Figure 4.12). Set 

v  (k* -  1) =  0. If M =  Ij then the trajectory will stay a t (0, x  (k *)) forever. The goal 

is achieved. On the other hand, assume a > 1. If x  (h*) > 0, first let the trajectory 

move along the x —axis, then one gets x  (k * +  1) <  e /|a | a t time k* + 1. Now choose
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v  (fc*) satisfying e/|6| <  v(k*) <  e /(a2|f>|). In this way (x (fc* +  1) ,v  (A:*)) is below 

the line segment of fixed points ( (x (k* +  1), v (fc*)) will hence move downward at 

the next step) such that

x  [k* +  2) >  0,

and

x  (fc* +  2) =  ax  (k* +  1) +  bv (k") < e/ar.

(Note this is guaranteed by the property of the vector field of the system.) Then 

let v (k* +  1) =  0, and repeat the above procedure. Similarly if x  (k*) <  0, all we 

need to do is choose a suitable v  (k*) <  0 such tha t (x  (k* + 1), v (k *)) is above 

the line segment of fixed points, then follow the above procedure. In this way we 

can keep the trajectory within the distance e of the origin. Based on the above 

analysis, we observe th a t the instability of the parameter a poses a difficulty for 

implementing our scheme. The foregoing discussion is reminiscent of Proposition

2.2 in [16], however our scheme is better since the K \  in tha t paper can be oo here. 

Moreover, our algorithm is simpler too.

For the item (2), suppose it is desired that the system operates on a periodic 

orbit T of periodic T. If a =  1, according to Theorem 4.4, by suitably choosing b, a 

periodic orbit of period T  can be built. If a ^  1, then following the discussion after 

Theorem 4.4, it is also possible to construct a periodic orbit of period T. Then the 

real question is: Can one really find an initial condition which produces or converges 

to  the desirable periodic orbit T? If T is within a strange attractor, then from almost 

all initial points, trajectories will be within an arbitrarily small neighborhood of T 

at some time k; this is the property of a stranger attractor. So one can simply 

pick up such an initial condition, let the system run automatically first, and apply 

control similarly to the case in item (1) when the trajectory is sufficiently close to 

T, and keep it remain within a small neighborhood of F. Therefore the problem 

boils down to constructing a  strange attractor containing I \  This is still an open 

problem. Note tha t the chaotic systems studied seem different than many known 

chaotic systems, which have strange attractors within which there are periodic orbits 

of any periods. However in light of Corollary 4.2, there may be no periodic orbits at 

all when a is rational and b is irrational. This annoying fact may probably be due 

to  th a t the scheme we are proposing involves discontinuities. I t  has already been
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illustrated th a t there may be a great variety of dynamics this scheme can produce, 

which brings more freedom to a control engineer, and especially suitable for multi­

purpose controller design. However in order to make the proposed scheme more 

useful, a  more thorough study of this scheme has to be conducted.

9.2 A  sim ple exam ple

In this section a simple tracking problem is investigated. Suppose the controller 

C  has been designed for the system G shown in Figure 3.1 so that the output y 

tracks the reference signal r; how does the nonlinear constraint Hi and Ho affect 

this tracking problem? We will investigate this problem via a simple example.

E xam ple  9.1 Consider the following discrete-time system G:

0 .0 0 5 Z -1 +  0 .0 0 5 z-2  
1 -  2z - 1 +  z - 2  '

Note that this system is unstable. Suppose we have already designed a controller K  

of the form
37.33  -  3 3 .7 S Z -1 

1 — O .llllz -1 ’
which achieves step tracking. First, we check the data  transmission strategy by 

simulating the system shown in Figure 3.2, with r = 1 but without Ho involved 

therein. Choose $i =  1. Then, the tracking error is plotted (the * line in Figure 

9.1). After that, we modify the control law as follows:

where £i € R, £2 €  Rlx2 are to be determined. Here, we assume th a t the state  x  

of the system G is available. When there is no transmission from C  to G , instead 

of simply using the previously stored control value v(k  — 1), s iv (k  — 1) +  £22: (k ) 

is used. The reason is th a t by adjusting £1 and £2 sensibly we may achieve better 

control performance. By selecting

£1  =  0 .8 6 , £2  =  [ - 0 .2 1  0 .2 1 ] ,

the tracking error is plotted (the dotted line in Figure 9.1). In this simulation, 

iteration time is 350, so the dropping rate can also be obtained: the former is
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Figure 9.1: Tracking error with <5i =  1

85.14% and the latter is 96.57%. Hence, the modified control law is more efficient 

in reducing data traffics. The steady-state error shown in Figure 9.1 under the 

modified control law is around 0.0774. Next, we choose <5i =  1/2, and get the result 

shown in Figure 9.2 following the same procedure. The dropping rates axe 83.14% 

for the original and 96.29% for the modified. In this case the steady-state tracking 

error for the modified system is around 0.0079. So, by modifying the control law, 

we increased the dropping rate therefore reduced the data traffics, and at the same 

time improved the performance of the control system.

9.3 An optim ization problem

In the above example, it is shown that for simple control systems it is possible to 

improve the performance of both the network and the control system by modify­

ing the underlying control law. Clearly, it is more mathematically involved when 

one confronts a more complex system. We next transform this problem into an 

optimization problem.

Define c =  77 — £, and &r ~  ec — e. By subtracting the system in (3.3) from that
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Figure 9.2: Tracking error with 5\ = l /2

in (3.6), we get

c(fc +  1) =  A s(k ) +

&r(k) = [ - C  0 ]s{k)  + z { k ) - y c (k).

B  B D d ' ( ' H i ( u c { k ) , v ( k -  1)) ' uc (k)
0 B d I . H 2 {yc ( k ) , z ( k - 1 )) . Vc (k)

(9.1)

Then, the tracking error ec of system (3.6) can be obtained via tracking error e of 

system (3.3), which is a  standard feedback system.

To study the tracking error er, we employ the Zoo-norm of signals [3]. According 

to  (9.1), we have

Ik lL  < z ' 1! - A - B D dC BCd ' v 1 B  BDd '
—BdC Ad ) 0

I  (9.2)

and

= 7 - 1 1 0 0  — [ - C 0 ]  ( z - 1!  - A  — BDdC BCd 
- B dC Ad

- l B BDd 
0 Bd

H i ( u c ( k ) , v { k - 1 ) )
H 2 {yc { k ) , z ( k - 1 ))

uc (k) 1
. Vc (AO J ■ 52

< 5 [ - C 0 ]  ( z - 1!  - A - B D dC BCd
—BdC Ad ])

- 1  r B BDd 
0 Bd

(9.3) 

+  6 2 -
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Figure 9.3: An £\ minimization problem

R e m a rk  9.1 Eq. (9.3) gives an upper bound of the difference of the tracking error 

for the systems shown in Figs. 3.1 and 3.2. In light of (9.2) and (9.3), with dj and 

62 fixed, m i n i m i z i n g  the size of an attractor and the tracking error can be converted 

to the problem of designing a controller K  that achieves step tracking in Figure 3.1 

and minimizes HziH^ in Figure 9.3 simultaneously, with

‘ A B B  '
C?2 = - C 0 0

- C 0 0 .
K  = Ad Bd ]

L Cd Dd J > IN Iloo  ^  M o o  <  1-

For this multiple-objective control problem, LMI techniques can be applied. More 

specifically, by parameterizing all stabilizing controllers, the step tracking problem 

has an equality constraint for the Z1control problem shown in Figure 9.3, which can 

be modified as an LMI minimization problem (see [13] and [11] for more details).

9.4 Farther discussions

Interestingly, one application of this network data transmission strategy is the so- 

called limited communication control in control and coordination of multiple sub­

systems. One example is: A single decision maker controls many subsystems over 

a communication channel of a  finite capacity, where the decision maker can control 

only one subsystem a t a time. Let us consider the following situation: Suppose there 

are several systems sharing a common communication channel, where a t each trans-
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mission time only one system can send a signal. Is it possible th a t each subsystem 

adopts the transmission strategy proposed here so th a t the whole system can achieve 

some desired control performance? Note that under the proposed transmission stra t­

egy, each system just send “necessary” signals, leaving communication resources to 

the others to use. Thus, if we design the transmission sequence carefully, the whole 

system might perform well. A similar but essentially different problem was dis­

cussed in [31], which is an extension of the work of [7]. The problem studied therein 

is: Given a  set of control systems controlled by a single decision maker, which can 

communicate with only one system at a  time, design a  communication sequence so 

that the whole network is asymptotically stable. Using augmentation, this problem 

can be converted to a mathematical programming problem for which some algo­

rithms are currently available. Here, under the proposed transmission strategy, the 

communication strategy depends severely on the control systems. Hence the commu­

nication sequence depends explicitly on all subsystems, adding more constraints to 

the design of the communication sequence. This important yet challenging problem 

will be our future research topic.

P ro b le m  9.1 Under the network data transmission strategy proposed, how to de­

sign controllers to guarantee satisfactory control performance? Is this transmission 

strategy practically realizable?

To pu t the proposed network data transmission strategy into practical applica­

tions in the limited information control, this problem must be investigated thor­

oughly.
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Chapter 10

Future research directions

In  this thesis, a type of nonsmooth dynamical systems is studied from the perspec­

tive of its dynamics as well as its possible applications. The intriguing complexity 

inherent in this class of systems has been addressed in some depth. It is hoped 

that this study can shed some light on the common nature of nonsmooth dynamics, 

which are apparently more common than smooth dynamics in the real world.

This study evolves originally from the consideration of networked control sys­

tems; simulations show the effectiveness of the proposed data transmission strategy. 

We hope it is of some use in practical applications.

We have posed several problems in various chapters, which will constitute our 

future research directions. For clarity, we re-list them here and append one more. 

However we have to admit that probably the most essential problems still lurk 

somewhere. Mother Nature knows better.
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1. P ro b le m  4.1. Given a, b and 6 , how to find the exact oj-limit set of system 

Eq. (4.1)?

2. P ro b le m  4.2. Why axe the asymptotic behaviors of the systems with |6| <  a 

and \b\ > a dramatically different?

3. P ro b le m  5.1. How to determine if the system in Eq. (5.1) is dissipative? 

If this can be resolved, then the dissipativity of the family of systems in Eq. 

(6.4) may be determined in the same way.

4. P ro b le m  6.1. Assume parameters a, b, 5 are given in the system composed of 

Eqs. (6.4)-(6.5). As far as a particular orbit is concerned, for instance, the one 

starting from (—10,10) in the example studied above, is there a Ao € (0,1) 

such th a t the orbit converges to the origin for all 1 >  A >  Ao, whereas it 

oscillates for all 0 <  A <  Ao? If there is, what behavior will the orbit starting 

from (—10,10) run into: converge to the origin or a periodic orbit, oscillate or 

be periodic?

5. P ro b le m  6.2. Is there a Ai €  (0,1) such th a t all orbits will converge for all 

1 >  A > Ai, whereas there is a t least one oscillating orbit for each 0 <  A <  Ai? 

Again, for this Ai, what will trajectories end up with?

6. P ro b le m  6.3 It is obvious that the system composed of Eqs. (6.4)-(6.5) is 

dissipative a t A around but less than 1. How will it change as A moves from 1 

to 0? Is it invariant? This problem echoes Problem 5.1 listed above.

7. P ro b le m  8.1. Is the behavior of the class of two-dimensional continuous 

systems studied in Chapter 8 indeed chaotic? To put it in another way, Are 

those strange attractors genuine properties of these systems or just computer 

artifacts?

8. P ro b le m  9.1. Under the network transmission strategy proposed here, how 

to design controllers to guarantee satisfactory control performance? Is this 

transmission strategy practically realizable?

9. Based on the discussions in previous chapters, one finds tha t the qualitative 

behavior of this type of nonsmooth dynamical systems is rather hard to analyze
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analytically. As is well-known th a t time series analysis is a very common 

and effective tool in the analysis of chaotic systems. For instance, it is now 

customary to define a  strange attractor to be one that is fractal. Hence this 

perspective may provide us some insight. However the difficulties given by non­

smoothness may still persist in this context. For example, many chaotic data 

analysis algorithms are based on the space reconstruction technique, which is 

obvious inappropriate for a nonsmooth dynamical system. This tells us that 

there are much more to be done more rigorously.
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