Object-Oriented Modeling in Metaview

Yong Zhuang, Piotr Findeisen, Paul Sorenson
Department of Computing Science
University of Alberta
yongz@bnr.ca, find@cs.ualberta.ca, sorenson@Qcs.ualberta.ca

May 7, 1996

Abstract

Metaview is a metasystem that can generate automatically environments to support
software engineering activities, such as requirement analysis and design. This report
focuses on creating Object-Oriented (O-O) support environments in Metaview to help
efficiently construct reliable and maintainable software systems. Metaview’s capability
to define O-O CASE environments is described and critiqued. One innovative approach
supported in Metaview is the use of aggregation, as a mechanism for linking method
fragments. This approach is illustrated in the specification of our environment to
support Object Modeling Technique (OMT), one of the most popular O-O development
methods. OMT has been prototyped in Metaview and the results of this activity are
analyzed.

1 Introduction

The dramatically increasing complexity of many software systems has led to our current “cri-
sis” in software development. Computer-Aided Software Engineering (CASE) has evolved to
help solve this problem by providing automated assistance for development teams to manage
this complexity. An integrated CASE environment provides automated or semiautomated
support for the system development that is guided by a corresponding method. Because it
is costly to produce efficient and reliable support environments, meta system facilities, such
as Metaview [McA88, STM88, DeD91, STMOI1|, MetaPlex [CN89], MetaEdit [Smo91] and
Socrates [Ver91], are being developed to generate automatically a variety of software specifi-
cation environments to support major parts of CASE activities, such as requirement analysis
and design. Each metasystem has an underlying model framework to develop software spec-
ification environments that are defined formally and unambiguously. This approach also
reduces the time and cost of developing a specification environment significantly.

1.1 Motivation

The traditional structured methods of software development suffer from problems [KM90]
that include little or no iteration within development phases, no emphasis on reusability
and extendibility issues, and no unifying models and notation to integrate well the devel-
opment phases. The 1980s brought a major breakthrough in software engineering with the
popularization of object-oriented (O-O) approaches to system development [HS91]. These
approaches model the real world at many levels of abstraction and thereby support the
development of more comprehensible, reusable, and extendable software systems. In addi-
tion, O-O methods hold the promise of improving both the quality and the productivity of
software development.

Prior to this work, several specification environments were modeled using Metaview
[ST93]; however, an O-O environment had yet to be implemented. Although a number of
0-0O methods have been proposed, no standard has emerged and each existing O-O method
suffers from some disadvantages.

Among several candidate object-oriented methods, Rumbaugh et al's OMT [Rum9l,
Rum94, Gil94] was the first one chosen for modeling primarily because it has a relatively
complex and expressive model, and it is one of the most popular methods among those being
adopted by the industry.

Prototyping OMT as a representative O-O method using Metaview allows for some initial
exploration of the complications of modeling O-O methods and thereby provides valuable
insights into how we can improve our metasystem approach. In addition, on the basis of
OMT modeling experience, we are better able to compare and critique popular O-O methods,
propose object-oriented method enhancements, and implement them in Metaview. It is also
hoped that much of the OMT definition can be reused for any enhanced method developed.
Our explorations in enhancing O-O methods are beyond the scope of this paper, but some
initial results are reported in [Zhu94].

1.2 Outline of the Paper

The rest of this paper is organized as follows. Section 2 introduces Metaview and presents
its most important features. The OMT method is briefly described in section 3. Section 4
presents the modeling of OMT in Metaview. The use of aggregation to link method fragments
is discussed in section 5. Section 6 concludes the paper with an analysis of Metaview’s
strengths and weaknesses, and a discussion of future research. Finally, Appendix 7?7 presents
the complete EDL code for OMT as actually used within the Metaview system.

2 An Overview of Metaview

This section introduces Metaview’s fundamental concepts and architecture [STM91, Fin92a,
Fin92b, Fin93]. The modeling schema for software methods is also discussed. Metaview has

three primary advantages not always present in other metasystems:

e integrating a new environment
Metaview has mechanisms to integrate and maintain a variety of environment models;
a newly defined model can be composed with other Metaview created models rather
easily.

e defining constraints
Metaview has a strong capability for defining system constraints during the environ-
ment configuration, which makes it possible to check the system consistency and com-
pleteness automatically.

e cvolving environments
An environment definer can easily alter or extend an existing environment to gener-
ally improve a specification environment or to match the software development re-
quirements for a particular project. In addition, because of the common modeling
framework, it is easy to compare alternative environments [ST93].

2.1 Fundamental Concepts of Meta-CASE systems

In the discipline of software engineering several methods of describing software specification
are used. Many of them present the specification graphically in the form of diagrams.
There is a variety of different describing techniques, which are applicable at various stages
of software development. We will call these techniques Software Description Models (SDM).
It should be emphasized that SDMs can be used not only for software development, but for
specifying a given artifact as well. Most popular software description models include Data
Flow Diagrams or Structure Charts, used in Structured Analysis and Design, and a plethora
of object-oriented methods.

In a traditional CASE tool, the SDM (or a few SDMs) is given a priori. In contrast, a
meta-CASE system is open for an unlimited number of SDMs. This feature can be achieved
by storing not only the software specification, but also the SDM which was used to build
it. The “language” used to describe SDMs, also called the meta-model, is specific for each
meta-CASE system. The meta-model used in Metaview is EARA/GE, described in the next
subsection.

Although most of the SDMs used in practice today feature graphical representation of
the information (diagrams), it is important to distinguish between the conceptual and the
graphical information. The graphical information contained in diagrams, such as size of var-
ious elements, length of lines and the general layout, directly affects diagram readability but
is usually independent conceptually from the software artifacts represented in the diagram.
The software repository must store both aspects, since users will prefer the graphical pre-
sentation, while most, if not all information about the software artifacts is stored from a
conceptual perspective.

To be useful, a CASE tool must at least be able to check consistency and completeness

of the software specification. Most of this activity is related to the conceptual aspects. In
Metaview, the logical conditions to be satisfied by the specification are called constraints.

2.2 The EARA/GE meta-model

The meta-model defined for the Metaview system is called EARA/GE (Entity — Aggregate
— Relationship — Attribute with Graphical Extension). As the name suggests, EARA is
based on the entity-relationship data model, but incorporates significant extensions, like
specialization, aggregation and some elements of generalization.

The basic concepts used in the EARA model are entities, aggregates, relationships, and
attributes. Entities represent real-world objects. Typical entities used in SDMs are modules,
procedures, documents, data, events, states, processes, variables, actions, data stores, etc.
Relationships are associations that exist between entities and/or aggregates. For example,
the fact that one module calls another can be expressed as a relationship between these
modules. Similarly, we can use a relationship between a document and a module to indicate
that the document describes the module. The entities and aggregates that take part in a
relationship are called participants of that relationship. Relationships have roles. We assume
that each relationship can be defined as a mapping from its roles to its participants. The
roles determine the functions played by the participating entities.

To provide suitable support for complex objects, the model is capable of representing
a heterogeneous collection of entities and relationships as an aggregate. The entities and
relationships belonging to an aggregate are called components of that aggregate. Very often
the entities defined by an SDM do not have a simple, atomic structure, but rather repre-
sent complex subsystems. The subsystems can be represented by aggregates. To give the
capability of representing hierarchical systems, or presenting a software specification at the
desired level of granularity, the EARA model uses the notion of aggregation. Aggregation
is a special association between an entity and an aggregate. The participating aggregate is
called child aggregate and the entity is called parent entity. The aggregate which the parent
entity is a component of is called parent aggregate. Basically, aggregation means that the
given entity represents the aggregate, or that the aggregate describes more details of the
entity.

The child aggregate can optionally contain copies of some objects (entities and relation-
ships) from the parent aggregate. These copies are called boundary objects. The boundary
objects play a role similar to that of formal parameters in traditional programming. Map-
ping of the boundary objects to their counterparts within the parent aggregate is a part of
the aggregation. Any specific requirements related to aggregation can be expressed by the
constraints. When there are no constraints related to aggregation, and there are no bound-
ary objects, the aggregation is similar to hypertext-like links, which allow the user to merely
traverse the software specification, going from one aggregate to another.

Entities, relationships and aggregates can have attributes. The attributes represent prop-
erties of the objects and are additional means of refining software specifications.

The EARA model introduces classification of all entities, aggregates, relationships and
attributes that can exist in a software specification by defining object types. Each entity,
relationship or aggregate has a type. The objects of the same type share a lot of properties,
like aggregation capabilities for entities, roles for relationships, eligible types of components
for aggregates and the names and types of attributes. The object types can form special-
ization hierarchies. The hierarchy is formed when an object type is defined as a subtype of
another type. Subtypes inherit all the properties of their supertypes.

The EARA model allows the uniform representation of both a particular software spec-
ification and the SDM that is used to build the specification. Thus there are two levels in
the EARA repository: the method level is used to formally describe various SDMs and the
specification level is used to define actual designs, or, in general, actual software specifica-
tions. The implementation of the EARA model includes a database storing both parts of
the actual application.

The Graphical Extension (GE) adds the graphical aspects to the EARA model. The
graphical counterparts for each of the conceptual types existing in the EARA model are
defined. In particular, the graphical notation for icon, edge and diagram types are provided
as the respective counterparts of entity, relationship and aggregate types.

To provide the capability of checking the consistency and completeness of software spec-
ifications, modeled SDMs are complemented by sets of constraints, or logical predicates,
that must be satisfied by any “correct” software specification. There are also some meta-
constraints, which are applicable to all specifications, independent of the SDM used. The
constraints fall into one of the two categories:

e consistency constraints, which guard the consistency of the specification database, i.e.
check if the specification “makes sense”,

e completeness constraints, which ensure that the software specification is complete, i.e.
check if there’s no information missing.

The constraints can be related to both conceptual and graphical layer of the software speci-
fication.

Modeled SDMs can be described in a specially designed language called Environment
Definition Language (EDL) (see [McA88] or [GLM94]). The features of the language strictly
correspond to the concepts contained in EARA/GE. EDL will be used throughout section 4
in examples illustrating the modeling of OMT.

3 Object Modeling Technique

This section sketches the Object Modeling Technique (OMT), introduced by [Rum91]. The
lack of space prevents us from presenting it in its entirety, and therefore only the most
important features will be covered. Furthermore, some of the OMT details will be included
in section 4, when discussion of the actual modeling takes place.

OMT proposes to develop software systems in four stages: analysis, system design, object
design and implementation. All of these stages use to some extent the same SDMs: Object
Model, Dynamic Model and Functional Model. In this paper we entirely ignore the develop-
ment stages, or software development process, and focus on the product, or structural aspect
of the software development.

The Object Model describes the structure of object classes, various relationships between
them, and their attributes and operations. Graphically, the classes are represented by boxes,
and the relationships by arcs (lines) linking the appropriate boxes. Binary and n-ary rela-
tionships exist. The roles of relationships can be optionally named, or given multiplicity.
Several special (“built-in”) relationships exist, like specialization, or aggregation'. Their
graphical representation is different from the regular relationships and includes ornaments
drawn on the arcs.

The Dynamic Model shows the state-transition diagrams for the classes introduced in
the Object Model. A state-transition diagram contains different states in which an object of
the given class may be, and transitions between the states. The transitions are triggered by
events. The events correspond to operations defined within the Object Model. The transi-
tions may optionally contain a condition and action. Graphically, the states are represented
by ellipses, and transitions by arrows between them. The events, conditions and actions are
placed along the arrows. The state-transition diagrams can be nested, to show multi-level
activity.

The Functional Model specifies data transformation within the system. It uses a slightly
modified version of data flow diagrams. The diagrams show processes, actors and data stores
as nodes, and data flows as the arcs between them. Processes can be expanded into entire
data flow diagrams.

4 OMT Environment Modeling

4.1 The Object Model

The conceptual contents of Object Model diagrams can be presented by the aggregate type
object_model. To simplify the modeling through the use of subtyping, an abstract en-
tity type called om_entity (object model entity) and an abstract relationship type called
om relationship are defined as the component types of the aggregate. These types will be
supertypes for all entity and relationship types used within the Object Model.

AGGREGATE_TYPE object_model

COMPONENTS (om_entity, om_relationship);
ENTITY_TYPE om_entity GENERIC;
RELATIONSHIP_TYPE om_relationship GENERIC;

!These concept in OMT are different from the analogous concepts in Metaview.

Figure 1 shows an actual Object Model diagram drawn by Metaview. We will use it to
illustrate the constructions described in this section.

Figure 1: A sample Object Model diagram drawn by Metaview

Central notions in OMT’s Object Model are class and association (between classes). The
classes can be represented by EARA entities. However, it is impossible for the associations
to be represented by EARA relationships. This is because the associations in Object Model
can participate in other associations, while the EARA relationships can take only entities as
participants.

To reflect all dependencies from the Object Model, we have to map associations to entities.
Thus, each binary association binding two classes in the Object Model will be represented by
an entity representing the association itself (type binary_association), and two relation-
ships (of type binding) which bind the association entity to the corresponding class entities
(type class). Another advantage of this approach is that it allows us to easily render the
special shapes (diamond, triangle) that should appear on some of the edges. The shapes are
supported by the entities representing the associations (see Figure 4 later in this section).

One of the more complicated constructions in the Object Model is the qualified associa-
tion. It involves two classes, an association, and a qualifier. The qualifier is a special attribute
that is written in a small box (LAN address in Figure 1) at one end of the association line
and adjacent to one of the classes.

The qualifier can be represented by an entity, but its connections with the class and the
association must be also modeled at the conceptual level. We do this by introducing the
relationship type qualification that binds the qualifier and the class. Thus, the elements
needed to build a qualified association have the following EDL definition:

ENTITY_TYPE any_class IS_A om_entity;
ENTITY_TYPE qualifier IS_A om_entity;
RELATIONSHIP_TYPE qualification IS_A om_relationship
ROLES (class, qualifier)
PARTICIPANTS (any_class, qualifier);

ENTITY_TYPE association GENERIC IS_A om_entity
ATTRIBUTES (assoc_name : string);
ENTITY_TYPE binary_association IS_A association;
ENTITY_TYPE role IS_A om_entity
ATTRIBUTES (role_name : identifier);

The n-ary associations (Connects in Figure 1), OMT’s aggregation (like between Keyboard
and Workstation in the figure) and specialization (like between Computer and Workstation)
are modeled in a way very similar to that of binary associations, using the entity types
n_ary_association, part_of and is_a, respectively. The complete hierarchy of entity types
used for Object Model is presented in Figure 2.

Figure 2: The entity types used in Object Model

The binding relationship type has three subtypes: binds (like between Connects and
Workstation in Figure 1), binds many and binds_optional, which reflect the cardinality of
the association.

A similar taxonomy is applied to the relationship types aggregation from and aggre-
gation_to, which together with the entity type is_a, are used to model OMT’s aggregation.
For example, aggregation_from many is used for Disk Drive, and aggregation_from_ op-
tional is used for Mouse. Additional information about cardinality can be provided by the
multiplicity attribute (displayed as the label next to CPU in the figure). For brevity, we
show the EDL definitions for the hierarchy of bindings only. Other relationship types are
defined in a very similar way.

RELATIONSHIP_TYPE binding GENERIC IS_A om_relationship
ROLES (association, role, participant)
PARTICIPANTS
(binary_association, role, any_class | qualifier);
RELATIONSHIP_TYPE binds_optional IS_A binding;
RELATIONSHIP_TYPE binds IS_A binding
PARTICIPANTS
(n_ary_association, role, any_class);
RELATIONSHIP_TYPE binds_many IS_A binding
ATTRIBUTES (multiplicity : string);

The three roles defined for the binding relationship type (association, role, and
participant) are inherited by all its subtypes. Similarly, the set of participants defined
for this relationship type is also inherited. The vertical bar represents alternative. Thus,
the possible combinations of participants for binding include a binary_association entity
for the association role, a role entity for role, and an any_class or a qualifier for
the third, participant role. An additional combination of participants, which includes an
n_ary_association, is defined for the binds relationship type only.

The complete hierarchy of relationship types for Object Model is presented in Figure 3.

Figure 3: The relationship types used in Object Model

In the Object Model, as originally proposed in [Rum91], the names of attributes and
operations of a class are written inside the box representing the class. Again, this depen-
dency must be somehow reflected at the conceptual level. One way of doing this might be
introducing a new relationship type which would bind an attribute (or operation) to the
class. However, the current version of the Graphical Extension for Metaview is not able to
reliably place the operations and attributes within the class icon. Besides, Metaview has a
mechanism that seems to be more suitable to represent attributes and operations of a class:
aggregation.

To use aggregation for representing attributes and operations of classes, we introduce
a new aggregate type class_contents. We also define two entity types: attribute and
operation to represent the corresponding artifacts of the class. Finally, we declare class_-
contents as a child aggregate type of the class entity type.

AGGREGATE_TYPE class_contents
COMPONENTS (attribute, operation);

ENTITY_TYPE attribute;

ENTITY_TYPE operation;

The aggregation is also used to link class entities to their corresponding state-transition
diagrams (Dynamic Model). Additionally, Metaview allows the user to build a hypertext-like

9

aggregation link from an entity to an external file. We use this capability here to link the
file containing the source code of a class to the class icon?. Thus, we rewrite the definition
of the class entity type as:

ENTITY_TYPE any_class GENERIC IS_A om_entity
BECOMES class_contents, dynamic_model, source_code;
AGGREGATE_TYPE source_code IS_A file;

To be represented on the computer screen, all the conceptual types must be comple-
mented by the graphical definitions. The Graphical Extension simplifies this job by allow-
ing the user to define a hierarchy of the graphical types. For example, if binds_many and
aggregate_from many have the same graphical representation, it is sufficient to define it only
once, to be shared by both relationship types. Figure 4 shows the graphical representations
for some of the conceptual types defined for the Object Model. The names of attributes to
be displayed as labels are shown in talics.

Figure 4: Graphical modeling for Object Model

Please note, that some of these types (e.g. aggregate_to and qualification) are not
part of the OMT method as we know it. In fact, these elements usually do not show up
in Metaview diagrams either. It is, however, convenient for the Metaview users when all
conceptual artifacts are reflected in the graphical domain, too. For example, in Figure 1
aggregation_to is used to link Workstation with the icon of the part_of type. If that rela-
tionship was invisible, the user might move the part_of icon away (and even put it below
another class icon), obtaining a mismatch between the conceptual and the graphical infor-
mation. Graphical completeness constraints, which define what a “good looking” diagram
is, can aid the user in “hiding” the needless edges.

2This capability exceeds the OMT’s expressiveness as described in [Rum91].

10

4.2 The Dynamic Model

To model the dynamic behaviour of a software system, we use only one aggregate type,
dynamic_model. We define top level entity and relationship types for the Dynamic Model as
follows:

AGGREGATE_TYPE dynamic_model

COMPONENTS (dm_entity, dm_relationship);
ENTITY_TYPE dm_entity GENERIC;
RELATIONSHIP_TYPE dm_relationship GENERIC;

There are two kind of states: (regular) states and final states. Their graphical represen-
tation is different, and no transitions are allowed from the final states. Entire state diagrams
can be nested within the states. We model this by aggregation:

ENTITY_TYPE any_state GENERIC IS_A dm_entity

ATTRIBUTE (state_name : string);
ENTITY_TYPE state IS_A any_state

BECOMES dynamic_model

ATTRIBUTES (activity : string);
ENTITY_TYPE final_state IS_A any_state;

The transitions are always triggered by events. We model those as entities, while the
transitions are modeled by relationships. The optional conditions and actions are attributes
of the relationship. They are displayed as labels along the edge representing the relationship.

The initial state is modeled as a one-role relationship. More than one initial state can
be present within a diagram, if they correspond to different operations or are bound with
different conditions. Figure 5 presents the graphical representation of the elements used in
the Dynamic Model.

ENTITY_TYPE event IS_A dm_entity;

RELATIONSHIP_TYPE any_transition GENERIC IS_A dm_relationship
ATTRIBUTES (condition : string);

RELATIONSHIP_TYPE transition IS_A any_transition
ROLES (from, trigger, to)
PARTICIPANTS (state, event, any_state)
ATTRIBUTES (action : string);

RELATIONSHIP_TYPE initial_state IS_A any_transition
ROLES (state)
ATTRIBUTES (operation : string)
PARTICIPANTS (any_state);

11

Figure 5: Graphical modeling for Dynamic Model

4.3 The Functional Model

Similarly as for the two previous model, we start with the definition of the aggregate type
and the roots for the entity and relationship types hierarchy:

AGGREGATE_TYPE functional_model

COMPONENTS (fm_entity, fm_relationship);
ENTITY_TYPE fm_entity GENERIC;
RELATIONSHIP_TYPE fm_relationship GENERIC;

The primary entities used in the Functional Model are processes, data stores and actors.
Data flows between them are modeled by relationships. The flow relationships have three
roles: one of them is occupied by an entity of the additional type data.

Processes can be expanded to show nested diagrams. Again, aggregation is used here.
However, in this case we declare that all relationships in which a given process participates
should be reflected in the child diagram as the boundary objects.

ENTITY_TYPE actor IS_A fm_entity;
ENTITY_TYPE process IS_A fm_entity
BECOMES functional_model CONNECTIONS (flow);
ENTITY_TYPE data_store IS_A fm_entity;
ENTITY_TYPE data IS_A fm_entity;
RELATIONSHIP_TYPE flow IS_A fm_relationship
ROLES (source, data, destination)
PARTICIPANTS
(process, data, actor | process | data_store)
(actor | data_store, data, process);

The graphical modeling for the Functional Model is sketched in Figure 6.

The child diagram can contain multiple instances of boundary entities and/or relation-
ships which are mapped onto a single instance in the parent diagram. Therefore, aggregation
supports so called “data leveling”, in which a single data flow in the parent diagram can be
split into several flows within the child diagram.

Figure 7 shows an example of aggregation for data flow diagrams. The parent entity,
packet dispatcher, is expanded into the child aggregate. In this simple case all objects in the

12

Figure 6: Graphical symbols used in the Functional Model

Figure 7: Leveling in the Functional Model

13

child aggregate are boundary objects. Processes message reassembly and socket manager are
mapped onto the parent entity, while i/o module is mapped onto the correspondingly named
process within the parent diagram. The data elements network packet and packet header are
both mapped onto the network packet within the parent diagram.

5 Linking the method fragments

5.1 Aggregation

Aggregation links are built explicitly by the user during the software development, in agree-
ment with the SDM definition. They can be used not only for binding together two aggre-
gates, but also to navigate the software specification. Figure 8 presents the summary of the
aggregation use in the OMT modeling:

Figure 8: Aggregations in OMT

e A class entity from the object_model can be expanded into a class_contents ag-
gregate, showing the attributes and operations defined for the class.

e A class entity from the object_model can be expanded into a dynamic_model ag-
gregate, showing the behaviour of objects of the given class using state-transition
diagrams.

e A state entity from the dynamic_model can be expanded into another dynamic_model,
supporting nesting of the state-transition diagrams.

14

e A class entity from the object_model can be expanded into a file containing the
source code for the class.

e A process entity from the functional_model can be expanded into another functio-
nal model aggregate, supporting data flow diagrams leveling.

Metaview supports multiple aggregation. Figure 8 shows that there are up to three
aggregation links possible for each of the class entities. Multiple aggregation allows an
entity to be presented in several different views.

Some of the aggregation links are automatically checked by Metaview for consistency and
completeness. Such is the case of expanding processes into new aggregates. All flows related
to the process (incoming or outcoming) must be reflected by at least one matching flow in
the child aggregate.

On the other hand, some of the aggregation links are weak, like those between classes and
their source files. While in the current version of Metaview such links cannot be supported
by the boundary objects or constraints (Metaview sees an external file as a “black box”),
future enhancement to the system may include necessary tools (e.g., parser), which will take
full advantage of this form of aggregation.

5.2 Constraints

A constraint falls into one of either the consistency or completeness categories. The consis-
tency constraints are checked whenever the software specification is modified by the user. If
any is violated, the change is rejected. In contrast, the completeness constraints are checked
on the user’s demand, presumably when the user assumes that his/her work is complete.
Their violation does not entail any consequences, since it is assumed that the user will
continue the development until all the constraints are satisfied.

Some of the constraints can be related to aggregation. For example, if there’s a state-
transition diagram associated with a class, we might require (for completeness) that each
event within the diagram has a corresponding (i.e. similarly named) operation defined for
the class. In an analogous way, the actions existing within the state-transition diagram,
should be recognizable as operation names for some classes associated with the given class.
Used this way, the constraints complement the aggregation mechanism and can be used to
build sophisticated links between aggregates.

6 Conclusions

The OMT support environment has been successfully defined using Metaview. Based on
the experience of prototyping the OMT Method, the advantages and disadvantages of the
Metaview metasystem’s modeling capability are presented. Finally, we will present the future
research areas.

15

6.1 Metaview’s major strengths

e Object Types
Metaview’s EARA model supports quite well classification of objects through its object
types. As we found out, an O-O method can incorporate a relatively large number of
entity and relationship types. Many of these types share common characteristics.
Specialization makes O-O modeling efficient because subtyping can be used to define
those characteristics only once for the appropriate supertypes.

e Aggregation
The aggregation mechanism provides the means for leveling the software specification
and for partitioning it into manageable pieces. When used in combination with dif-
ferent aggregate types, it provides support for multiple views. Version control, albeit
unimplemented in the current version of Metaview, can be also based on aggregation
([McASS]).

e Constraints
One of the most important strong points of the Metaview system is the use of the con-
straints. Many diagramming techniques are imprecise. Modeling them in Metaview
enforces the method definer to define clearly which constructions are allowed, thus
providing a form of the method’s “semantics”. Since the constraints are based on first-
order predicate logic, there are virtually no restrictions as to what can be expressed
by the constraints. The constraints are particularly useful for relating together in-
formation contained in different method fragments (across-model constraints). This

capability is not commonly found in current CASE tools such as Cadre’s Teamwork
[Inc93].

e Reuse

SDMs defined in EDL can be reused. Two of the OMT’s models: the Functional
Model and the Dynamic Model are not new. They have been published and used inde-
pendently for many years. Since we had gone through the exercise of modeling them
previously, our current effort was mainly spent on incorporating minor changes to their
definitions. These changes were partially due to the specific flavour for these method
fragments as defined for OMT, and partially to the need of linking those fragments
together. In fact, most of the modeling effort goes into the constraint definitions, but
even those constraints which are entirely “embedded” in a particular method fragment,
can be reused.

e Common Transparent Repository
Metaview provides a schema to store all the analysis and design results produced in
support environments that are prototyped using Metaview. The downloading of files
and the access mechanisms of the repository are transparent to the analyst/developer.

e Fxperimental Methods
The meta-system approach allows the method designer to concentrate on the logical
aspects of the method. The appropriate support environments can be built from the

16

EDL definitions without any programming effort. This makes it easy to experiment
with the methods, refine them frequently and assess their suitability for a particular
task.

6.2 Metaview’s Limitations

Generally, the main source of the limitations of the system is the Graphical Extension (GE).
Some of the limitations stem from the current implementation of GE, but some are also
inherently buried in its design.

e Nested Elements
A major difficulty in modeling an environment is the graphical representation of nested
diagrams, or icons. The aggregation provides an alternative solution, but it is not
always a desired one.

e Aggregation
Currently there’s no way to graphically represent the aggregation, since each aggre-
gate is displayed in an individual (top-level) window. While the navigation through
the aggregates is well supported, the user can get confused when many diagrams are
simultaneously open on the screen. The problem is especially visible when a form of
aggregation with rich boundary information is used. The mapping from the boundary
objects to the objects in the parent aggregate cannot be represented graphically.

e Graphical Editor
The graphical editor used by Metaview for both introducing the specification and
displaying it on the screen, is a simple tool without all the “bells and whistles” which
often accompany commercial products. In particular, in the current version there’s no
support for grouping objects on the screen (selecting, moving, copying, collapsing to
an aggregate, or deleting groups of objects).

e Conditional Graphical Properties

Very often an environment uses very similar graphical representations for very similar
conceptual objects, like within the binding hierarchy introduced in section 4. The
only difference between the edges representing various relationships from the hierarchy
is the edge terminator. The original design of GE provides the means for defining the
graphical elements (like the terminators) based on the relationship’s attribute value, for
example. Full implementation of GE would reduce the graphical hierarchy for binding
to just one element, with a conditional definition for the terminator. Both the method
definer and the final user would benefit from this simplification.

o More Flexibility for Specifications
Currently, it is impossible in Metaview to create an instance of a relationship when not
all of the prospective participants exists. This was not seen as a major limitation during
the design of Metaview, since eventually all participants have to be defined anyway.
But this feature is not user-friendly, as we have learned. In particular, deleting a

17

participant entails deleting the relationship in which it participates. Removing this
limitation does not require modifications of EARA and should be relatively easy to
achieve.

e Approach Too Formal?
One of the goals for the Metaview design was to provide a formal background for
both the method and the software specification. As a result, while modeling a method
which lacks the necessary formalism, the modeler is forced to provide it. While it can
be argued that such a modeled method is “better” than the original one, the users of
the system may have a different opinion.

During the modeling of OMT, we encountered a number of questions or problems
which were not adequately addressed in the book [Rum91]. We solved them either by
analysing the enclosed examples of diagrams, or using our own judgement.

6.3 Suggestions of Future Research

There are several areas of future research and prototype development:

e Integrating with other CASFE tools
In the modeling of OMT we used aggregation as a “dumb” link from a class entity to
an external file. We plan to investigate the possibility of enhancing this type of link
not only to give it the full benefits of aggregation, but also to provide a mechanism for
integration with other CASE tools.

e Measuring the complexity of Models

As first noted by Rossi and Brinkkemper [RB95], a major advantage of using a meta
model as a basis for developing a specification environment is that key size measures
related to the complexity of an environment can be easily derived (e.g., number of
entity, relationship, attribute and aggregate types along with various statistics related
to constraint definitions). We have not reported these here because further work is
required to model fully the other O-O environments. Also, in the process of mod-
eling OMT we monitored the amount of effort required to create and modify model
definitions. The complexity results of this work will be reported in the near future.

e Improving Metaview’s Facilities
As mentioned in section 6.1, Metaview’s modeling limitations, such as the EDL/ECL’s
expression capability, or graphical editing function, should be improved.

e Adding Enactment Engine
Currently Metaview supports only static software specifications, i.e. diagrams. There’s
no support for automatic or semi-automatic transformations between software specifi-
cations, and no support for interpreting the specifications (in cases when the specifi-
cations are executable). Although software development processes can be modeled in
Metaview, such an activity would be rather pointless without any underlying execution

18

engine. We plan to continue our work in this direction, and to integrate our former par-
tial results into Metaview. The Enactment Engine will be ECA-rules (event - condition
- action) based [FTS95] and will support software process modeling and enactment,
transformations between software specifications and specifications execution.

e Supporting Integrated Methodologies and Integrated Environments
Previous work have been done to support multiple views for an integrated specifica-
tion environment [Zhu93| and to support transformation processes between different
structured methods [Lee92]. The challenge exists of integrating these research efforts
to explore multiple-view environments that support process transformations between

different O-O methods.

6.4 Summary

This paper has explored the modeling and implementation of an OMT specification environ-
ment using a metasystem tool Metaview. The major results from this work are:

i) Through our prototype we discovered that we can quickly develop, change, reuse and
evolve O-O models like OMT using a metasystem approach, and

ii) Links between method fragments in a method can be enhanced through the use of
multiple aggregation and constraint rules. Those aspects, when combined, provide a
powerful and unique capability for Metaview.

6.5 Metaview Implementation

The Metaview system is under continuous development at the Computing Science Depart-
ment, University of Alberta. The current prototype works on Unix platforms (Sun, IBM).
It has been implemented using Prolog and C++-.

From the CASE user perspective, the system provides Motif-based graphical user interface
and multi-access to the software database. At present, the EDL/GE implementation does
not support the constraints, which have to be “manually” encoded in Prolog. An enhanced
version of ECL, our constraint language, is currently being developed.

More information about the Metaview project is available on the Internet’s World Wide
Web at http://web.cs.ualberta.ca/“softeng/Metaview/project.html. Extensive doc-
umentation of the system is also available there.

References

[CN89] M. Chen and J. F. Nunamaker. MetaPlex: an integrated environment for orga-
nization and information System Development. Proceeding of Tenth International
Conference on Information System, pages 141-151, 1989.

19

[DeD91]

[Fin92a]

[Fin92b)|

[Fin93]

[FTS95)

[Gil94]

[GLMO4]

[HS91]

Inc93]

[KM90]

[Lee92]

[McA8S]

[RBY5]

[Rum91]

J. M. DeDourek, P.G. Sorenson, and J.P. Tremblay. Metasystems for Information
Processing System Specification Environments. INFOR, 27(3):331-337, August
1991.

Piotr Findeisen. The EARA/GE Model for Metaview. Department of Computing
Science, University of Alberta!, November 1992.

Piotr Findeisen. The Graphical Extension for EARA Model. Department of Com-
puting Science, University of Alberta!, September 1992.

Piotr Findeisen. The Metaview software. Department of Computing Science, Uni-
versity of Alberta', March 1993.

Garry Froehlich, J.Paul Tremblay, and Paul Sorenson. Providing support for pro-
cess model enaction in the Metaview system. Proceeding of the Seventh Interna-
tional Workshop on Computer-Aided Software Engineering, pages 141-151, 1995.

C. Gilliam. An Approach for Using OMT in the Development of Large Systems.
Journal of Object-Oriented Programming, pages 56-59, February 1994.

Dinesh Gadwal, Pius Lo, and Beth Millar. EDL User’s Manual. Department of
Computing Science, University of Albertal, June 1994.

Brain Henderson-Sellers. A Book of Object-Oriented Knowledge: Object-Oriented
Analysis, Design and Implementation: a New Approach to Software Engineering.
Prentice Hall, 1991.

Cadre Technologies Inc. Teamwork/OOA User’s Guide. 222 Richmond St. Provi-
dence, RI 02903-9990, release 5.0 edition, 1993.

Tim Korson and John D. McGregor. Understanding Object-Oriented: a Unifying
Paradigm. Communications Of The ACM, 33(9):40-60, September 1990.

Jesse Ka-Leung Lee. Implementing ADISSA transformations in the Metaview

meta-system. Master’s thesis, Department of Computing Science, University of
Alberta, 1992.

Andrew J. McAllister. Modeling Concepts for Specification Environments. PhD
thesis, Department of Computational Science, University of Saskatchewan, 1988.

M. Rossi and S. Brinkkemper. Metrics in method engineering. Proceeding of the
Seventh International Conference on Advanced Information Systems Engineering
(CAiISE’95), pages 200-216, 1995.

James Rumbaugh, et al. Object-Oriented Modeling and Design. Prentice Hall,
1991.

! Also available at http://web.cs.ualberta.ca/~softeng/Metaview/system/documentation.html

20

[Rum94]

[Smo91]

[STO3]

[STMSS]

[STMO1]

[Ver91]

[Zhu93]

[Zhu94]

James Rumbaugh. The Life of an Object Model: How the Object Model Changes
During Development. Journal of Object-Oriented Programming, pages 24-32,
March 1994.

K. Smolander, K. Lyytinen, V. P. Tahvanainen, and P. Martin. MetakEdit: A
Flexible Graphical Environment for Methodology Modeling. Advanced Information
System Engineering: Third Intl’l Conf. of CAiSE’91, pages 168-191, May 1991.

P.G. Sorenson and J.P. Tremblay. Using a Metasystem Approach to Support and
Study the Design Process. Workshop on Studies of Software Design, pages 168-183,
May 1993.

Paul G. Sorenson, Jean-Paul Tremblay, and Andrew J. McAllister. The Metaview
System for Many Specification Environments. IEEE Software, 5(2):30-38, March
1988.

Paul G. Sorenson, J. Paul Tremblay, and Andrew J. McAllister. The EARA/GI
Model for Software Specification Environments. Technical Report TR 91-14, Uni-
versity of Alberta, June 1991.

T. F. Verhoef, A. ter Hofstede, and G. M. Wijers. Structuring Modeling Knowledge
for CASE Shells. Advanced Information System Engineering: Third Intl’l Conf. of
CAiSE’91, pages 502-524, May 1991.

Yuchen Zhu. Multiple views for integrated CASE environments. Master’s thesis,
Department of Computing Science, University of Alberta, 1993.

Yong Zhuang. Object-oriented modeling in Metaview. Master’s thesis, Depart-
ment of Computing Science, University of Alberta, Fall 1994. Also available at
http://web.cs.ualberta.ca/ “softeng/Theses/zhuang.html.

A The EDL code

This appendix presents the EDL code describing OMT. The code contains complete concep-
tual and graphical definitions. It was compiled by an EDL compiler and the resulting object
code was then used to configure the Metaview system. The configured system was tested for
a few examples. In particular, Figure 1 on page 7 has been drawn using Metaview and the
code shown below.

ENVIRONMENT_TITLE "Object Modeling Technique";

/***

*

*

* Rumbaugh’s Object Modeling Technique. *
* Modeled for Metaview by Y. Zhuang and P. Findeisen *

21

* University of Alberta 1994, 1995 *
* *
* The OMT consists of three models: *
* - object model, *
* - dynamic model, *
* - functional model. *
* These three models have been described as independently as *
* possible in the following EDL/GE text. Additionally, concep- *
* tual and graphical element are clearly separated. *
* *

***/

/***

* *
* Object Model - Conceptual Definitions *
* *

***/

AGGREGATE_TYPE object_model
COMPONENTS
(om_entity, om_relationship);

ENTITY_TYPE om_entity GENERIC;
RELATIONSHIP_TYPE om_relationship GENERIC;

ENTITY_TYPE any_class GENERIC IS_A om_entity
BECOMES dynamic_model, class_contents;

ENTITY_TYPE class IS_A any_class;
ENTITY_TYPE derived_class IS_A any_class;

/* Associations are modeled as entities, primarily because they can
participate in other relationships (association as class). x/

ENTITY_TYPE association GENERIC IS_A om_entity
ATTRIBUTES (assoc_name : string);

ENTITY_TYPE binary_association IS_A association;

ENTITY_TYPE n_ary_association IS_A association;

ENTITY_TYPE role IS_A om_entity
ATTRIBUTES (role_name : identifier);

ENTITY_TYPE qualifier IS_A om_entity;
ENTITY_TYPE is_a IS_A om_entity;
ENTITY_TYPE part_of IS_A om_entity;

RELATIONSHIP_TYPE qualification IS_A om_relationship

22

ROLES (class, qualifier)
PARTICIPANTS
(any_class, qualifier);

RELATIONSHIP_TYPE binding GENERIC IS_A om_relationship
ROLES (association, role, participant)
PARTICIPANTS
(binary_association, role, any_class | qualifier)
(n_ary_association, role, any_class);

RELATIONSHIP_TYPE binds_optional IS_A binding;
RELATIONSHIP_TYPE binds IS_A binding;

RELATIONSHIP_TYPE binds_many IS_A binding
ATTRIBUTES (multiplicity : string);

RELATIONSHIP_TYPE association_as_class IS_A om_relationship
ROLES (association, class)
PARTICIPANTS
(association, class);

RELATIONSHIP_TYPE specialize_from IS_A om_relationship
ROLES (superclass, structure)
PARTICIPANTS
(any_class, is_a)
ATTRIBUTES (discriminator : string);

RELATIONSHIP_TYPE specialize_to IS_A om_relationship
ROLES (structure, subclass)
PARTICIPANTS
(is_a, class);

RELATIONSHIP_TYPE aggregation_from GENERIC IS_A om_relationship
ROLES (component, role, structure)
PARTICIPANTS

(any_class, role, part_of);

RELATIONSHIP_TYPE aggregate_from_many IS_A aggregation_from
ATTRIBUTES (multiplicity : string);

RELATIONSHIP_TYPE aggregate_from IS_A aggregation_from;
RELATIONSHIP_TYPE aggregate_from_optional IS_A aggregation_from;

RELATIONSHIP_TYPE aggregation_to GENERIC IS_A om_relationship
ROLES (structure, composite)

23

PARTICIPANTS
(part_of, any_class);

RELATIONSHIP_TYPE aggregate_to_many IS_A aggregation_to
ATTRIBUTES (multiplicity : string);

RELATIONSHIP_TYPE aggregate_to IS_A aggregation_to;
RELATIONSHIP_TYPE aggregate_to_optional IS_A aggregation_to;
AGGREGATE_TYPE class_contents
COMPONENTS
(class_attribute);
ENTITY_TYPE class_attribute GENERIC;
ENTITY_TYPE attribute IS_A class_attribute;

ENTITY_TYPE operation IS_A class_attribute;

/***

* *
* Object Model - Graphical Definitions *
* *

***/

CONSTANT FontH

13; /* Standard font height */

ICON_TYPE class_attribute IS_A primitive;

DIAGRAM_TYPE class_contents

PROPERTIES (x_size = 150, y_size = 240);
DIAGRAM_TYPE object_model
PROPERTIES (x_size = 640, y_size = 360);

CONSTANT ClassH
CONSTANT ClassW

3*xFontH+2; /* The height of the class icon */
80; /* Class icon width */

PICTURE_TYPE class_pic
BOX FROM (0, 0) TO (ClassW, ClassH);

ICON_TYPE any_class GENERIC
PROPERTIES (x_size = ClassW+l, y_size = ClassH+1)
LABELS
(name AT (ClassW/2, ClassH/2)

24

PROPERTIES (x_size = ClassW-1, y_size = ClassH-2))
HANDLES
(qualification.class AT ((ClassW, 0..ClassH), /* right edge */
(0..ClassW, ClassH), /* bottom edge */

(0, 0..ClassH), /* left edge */
(0..ClassW,0)), /* top edge */
association_as_class.class AT ((ClassW/2, -1)))
PICTURES
(class_pic);
ICON_TYPE class IS_A any_class;
CONSTANT DerBar = 12; /* Derived bar parameter */

PICTURE_TYPE derived_bar
LINE FROM (0, DerBar) TO (DerBar, 0);

ICON_TYPE derived_class IS_A any_class
PICTURES (derived_bar);

CONSTANT BinAscW
CONSTANT BinAscH

61; /* binary association icon width */
3*xFontH+2; /* binary association icon height */

ICON_TYPE binary_association
PICTURES (point_pic AT (BinAscW/2-2, BinAscH/2),
point_pic AT (BinAscW/2+2, BinAscH/2))
/* the pictures should get obscured by the label, if present */

LABELS
(assoc_name AT (BinAscW/2, BinAscH/2))
HANDLES
(binding.association
AT ((BinAscW/2,-1), /* above the top */
(-1, BinAscH/2), /* left of the left edge */

(BinAscW/2, BinAscH), /* bottom edge middle */
(BinAscW, BinAscH/2)))/* right edge middle */
PROPERTIES (x_size = BinAscW, y_size = BinAscH);

CONSTANT NaryAscW
CONSTANT NaryAscH

69; /* n-ary association icon width */
3*xFontH+6; /* n-ary association icon height */

PICTURE_TYPE n_ary_pic /* a diamond-like shape */
LINE FROM (NaryAscW/2, 0) TO (0, NaryAscH/2)
LINE FROM (0, NaryAscH/2) TO (NaryAscW/2, NaryAscH)
LINE FROM (NaryAscW/2, NaryAscH) TO (NaryAscW, NaryAscH/2)
LINE FROM (NaryAscW, NaryAscH/2) TO (NaryAscW/2, 0);

ICON_TYPE n_ary_association

25

PROPERTIES (x_size = NaryAscW, y_size = NaryAscH)
HANDLES
(binds.association
AT ((NaryAscW/2,0), /* top edge middle */
(0, NaryAscH/2), /* left edge middle */
(NaryAscW/2, NaryAscH), /* bottom edge middle */
(NaryAscW, NaryAscH/2)),/* right edge middle */
association_as_class.association
AT ((NaryAscW/2, NaryAscH-1))) /* above the bottom edge */
LABELS (assoc_name AT (NaryAscW/2, NaryAscH/2)
PROPERTIES (x_size = NaryAscW-1, y_size = NaryAscH-1))
PICTURES (n_ary_pic);

CONSTANT QualW
CONSTANT QualH

65; /* qualifier icon width */
2xFontH+2; /* qualifier icon height */

PICTURE_TYPE qualifier_pic
BOX FROM (0, 0) TO (Qualw-1, QualH-1);

ICON_TYPE qualifier
LABELS
(name AT (QualW/2, QualH/2)
PROPERTIES (x_size = QualW-2, y_size = QualH-2))
PROPERTIES (x_size = QualW, y_size = QualH)
HANDLES
(qualification.qualifier
AT ((0,QualH/2), /* middle of the left edge */
(QualW/2,0))) /* middle of the top edge */
PICTURES (qualifier_pic);

CONSTANT PrimW = 76; /* primitives width */
CONSTANT PrimH FontH; /* primitives height */

ICON_TYPE primitive GENERIC
PROPERTIES (x_size = PrimW, y_size = PrimH)
LABELS (name AT (PrimW/2, PrimH/2));

CONSTANT IsaW
CONSTANT IsaH

25; /% is_a icon width */
17; /* is_a icon height */

PICTURE_TYPE is_a_pic /* a triangle */
LINE FROM (IsaW/2, 0) TO (0, IsaH-1)
LINE FROM (0, IsaH-1) TO (IsaW-1, IsaH-1)
LINE FROM (IsaW-1, IsaH-1) TO (IsaW/2, 0);

ICON_TYPE is_a
PROPERTIES (x_size = IsaW, y_size = IsaH)

26

HANDLES
(specialize_from.structure
AT ((IsaW/2, 0)),
specialize_to.structure
AT ((0..IsaW-1, IsaH-1)))
PICTURES (is_a_pic);

CONSTANT PartW
CONSTANT PartH

17; /* part
17; /* part

PICTURE_TYPE part_of _pic /* a di

/* top edge middle */
/* bottom edge */
_of icon width */
_of icon height */

amond-like shape */

LINE FROM (PartW/2, 0) TO (O, PartH/2)

LINE FROM (0O, PartH/2) TO (PartW/2,

PartH-1)

LINE FROM (PartW/2, PartH-1) TO (PartW-1, PartH/2)
LINE FROM (PartW-1, PartH/2) TO (PartW/2, 0);

ICON_TYPE part_of

PROPERTIES (x_size = PartW, y_size = PartH)

HANDLES
(aggregation_from.structure
AT ((PartW-1, PartH/2), /*
(PartW/2, PartH-1)), /*
aggregation_to.structure
AT ((0, PartH/2), /*
(PartW/2, 0))) /*
PICTURES (part_of_pic);

PICTURE_TYPE point_pic

the right cusp */
the bottom cusp */

the left cusp */
the top cusp */

POINT;
CONSTANT RoleW = 51; /* Role icon width */
CONSTANT RoleH = FontH; /* Role icon height */

ICON_TYPE role
PICTURES (point_pic AT (RoleW/2, Rol
/* should be obscured by the label,
LABELS
(role_name AT (RoleW/2, RoleH/2)

eH/2))
if present */

)

PROPERTIES (x_size = RoleW, y_size = RoleH);

CONSTANT SpecD

50; /* spec

EDGE_TYPE specialize_from
NODES
(superclass AT (0, -SpecD),
structure AT (0, 0))
LINKS

ialize edge length */

27

(FROM superclass TO structure
LABELS (discriminator AT (9, 4)
PROPERTIES (x_adjust = "left")))
PROPERTIES (no_stretch = "x");

EDGE_TYPE specialize_to
NODES (structure AT (0, -SpecD), subclass AT (0, 0))
LINKS (FROM structure TO subclass);

EDGE_TYPE qualification
NODES (class AT (0, 0), qualifier AT (1, 0))
LINKS (FROM class TO qualifier
PROPERTIES (dashing = "(2,3)"));

CONSTANT SCircR
CONSTANT SBallR

]
S

/* small circle radius */
4; /% small ball radius */

PICTURE_TYPE small_circle /* for optional associations */
CIRCLE CENTER (SCircR+1, 0) RADIUS SCircR;

PICTURE_TYPE small_ball /* for multiple associations */
CIRCLE CENTER (SBallR+1, 0) RADIUS 4
CIRCLE CENTER (SBallR+1, 0) RADIUS 3
CIRCLE CENTER (SBallR+1, 0) RADIUS 2
CIRCLE CENTER (SBallR+1, 0) RADIUS 1;

CONSTANT BindD
CONSTANT RoleX1l
CONSTANT RoleYl

100; /* binds edge family length */
33; /x X location of role */
9; /*x Y location of role x/

EDGE_TYPE binds_optional

NODES (association AT (BindD, O0),
role AT (RoleX1l, RoleYl),
participant AT (0, 0))

LINKS

(FROM association TO participant

PICTURES (small_circle AT participant)
PROPERTIES (cutoff_2 = 9, no_stretch = "y"));

EDGE_TYPE binds
NODES (association AT (BindD, O0),
role AT (RoleX1l, RoleYl),
participant AT (0, 0))
LINKS
(FROM association TO participant);

EDGE_TYPE binds_many

28

NODES (association AT (BindD, O0),
role AT (RoleX1l, RoleYl),
participant AT (0, 0))
LINKS
(FROM association TO participant
LABELS (multiplicity AT (19, -9))
PICTURES (small_ball AT participant));

PICTURE_TYPE half_ellipsis
ARC CENTER (0,0) RADIUSES 8, 20 START 180 SPAN 180;

EDGE_TYPE association_as_class
NODES (association AT (0,0), class AT (0, 20))
LINKS
(FROM association TO class
PICTURES (half_ellipsis PROPERTIES (rotate = "no"))
PROPERTIES (cutoff_1 = 20, dashing = "(1,2)"));

EDGE_TYPE aggregate_from_many

NODES (component AT (BindD, 0),
role AT (RoleXl, RoleYl),
structure AT (0, 0))

LINKS

(FROM component TO structure
LABELS (multiplicity AT (BindD-20, -9)
PROPERTIES (x_adjust = "left"))

PICTURES (small_ball AT component ROTATED 180));

EDGE_TYPE aggregate_from
NODES (component AT (BindD, 0),
role AT (RoleXl, RoleYl),
structure AT (0, 0))
LINKS (FROM component TO structure);

EDGE_TYPE aggregate_from_optional

NODES (component AT (BindD, 0),
role AT (RoleXl, RoleYl),
structure AT (0, 0))

LINKS

(FROM component TO structure

PICTURES (small_circle AT component ROTATED 180)
PROPERTIES (cutoff_1 = 9));

CONSTANT AgrTo = 10; /* "aggregate to" basic length */

EDGE_TYPE aggregate_to_many
NODES (structure AT (AgrTo, 0),

29

composite AT (0, 0))
LINKS
(FROM structure TO composite
LABELS (multiplicity AT (5, -9)
PROPERTIES (x_adjust = "left"))
PICTURES (small_ball)
PROPERTIES (dashing = "(1,3)"));

EDGE_TYPE aggregate_to
NODES (structure AT (1, 0),
composite AT (0, 0))
LINKS
(FROM structure TO composite
PROPERTIES (dashing = "(1,3)"));

EDGE_TYPE aggregate_to_optional
NODES (structure AT (AgrTo, 0),
composite AT (0, 0))
LINKS
(FROM structure TO composite
PICTURES (small_circle)
PROPERTIES (cutoff_2 = 9));

/***

* *
* Dynamic Model (State Diagrams) - Conceptual Definitions *
* *

***/

AGGREGATE_TYPE dynamic_model
COMPONENTS (dm_entity, dm_relationship);

ENTITY_TYPE dm_entity GENERIC;
RELATIONSHIP_TYPE dm_relationship GENERIC;

ENTITY_TYPE any_state GENERIC IS_A dm_entity
ATTRIBUTES (state_name : string);

ENTITY_TYPE state IS_A any_state
ATTRIBUTES (activity : string);

ENTITY_TYPE final_state IS_A any_state;
ENTITY_TYPE event IS_A dm_entity;

RELATIONSHIP_TYPE any_transition GENERIC IS_A dm_relationship
ATTRIBUTES (condition : string);

30

RELATIONSHIP_TYPE transition IS_A any_transition
ROLES (from, trigger, to)
PARTICIPANTS (state, event, any_state)
ATTRIBUTES (action : string);

RELATIONSHIP_TYPE initial_state IS_A any_transition
ROLES (state)
ATTRIBUTES (operation : string)
PARTICIPANTS (any_state);

/***

* *
* Dynamic Model (State Diagrams) - Graphical Definitions *
* *

***/

CONSTANT StBallR
CONSTANT StCircR

5; /% Initial/final state ball radius */
11; /* Final state circle radius */

PICTURE_TYPE state_ball
POINT
CIRCLE RADIUS 1
CIRCLE RADIUS 2
CIRCLE RADIUS 3
CIRCLE RADIUS 4
CIRCLE RADIUS 5;

PICTURE_TYPE state_circle
CIRCLE RADIUS StCircR;

ICON_TYPE final_state
PROPERTIES (x_size = 2*StCircR+1, y_size = 2*StCircR+1)
HANDLES (*.* AT ((StCircR, StCircR)))
PICTURES (state_ball AT (StCircR, StCircR),
state_circle AT (StCircR, StCircR));

CONSTANT StateH
CONSTANT StateW
CONSTANT StArcR

4xFontH+2; /* Regular state icon height */
3*StArcR; /* State icon box part width */
StateH/2; /* Regular state arc radius */

PICTURE_TYPE state_pic
LINE FROM (StArcR, StateH) TO (StArcR+StateW-1, StateH)
LINE FROM (StArcR, 0) TO (StArcR+StateW-1, 0)
ARC CENTER (StArcR, StArcR) RADIUS StArcR START 90 SPAN 180
ARC CENTER (StArcR+StateW, StArcR)
RADIUS StArcR START 270 SPAN 180

31

TEXT "do:" AT (3, FontH+2);

ICON_TYPE state

PROPERTIES (x_size = 2*StArcR+StateW+1l, y_size = StateH+1)
LABELS (state_name AT (StArcR+StateW/2, FontH/2+1)

PROPERTIES (x_size = StateW+14, y_size = FontH),

activity AT (StArcR+StateW/2, FontH*5/2+1)

PROPERTIES (x_size = StateW+18, y_size = 3xFontH))
HANDLES (transition.* AT

((StArcR-10 .. StArcR+StateW+9, 0 .. 2*StArcR)))
PICTURES (state_pic);

CONSTANT EventH = 2#FontH; /* Event icon height */
CONSTANT EventW 4xFontH; /* Event icon height */

ICON_TYPE event
PROPERTIES (x_size = EventW+l, y_size = EventH+1)
LABELS (name AT (EventW/2, EventH/2));

PICTURE_TYPE arrowhead
LINE TO (-15, -5)
LINE TO (-15, 5);

CONSTANT TransLabOff
CONSTANT TransitionL
CONSTANT IniStatel

FontH+5; /* Transition labels offset */
160; /* Transition edge length */
70; /* Initial state edge length x*/

EDGE_TYPE transition
NODES (from AT (0,0),
trigger AT (TransitionL/3, EventH/2+5),
to AT (TransitionL, 0))
LINKS (FROM from TO to
LABELS (
condition AT (FontH, -TransLabOff)
PROPERTIES (x_adjust = "left"),
action AT to + (-FontH, TransLabOff)
PROPERTIES (x_adjust = "right"))
PICTURES (arrowhead AT to));

EDGE_TYPE initial_state
NODES (state AT (0, IniStatel))
LINKS (FROM (0, 0) TO state
LABELS (operation AT (5, StBallR+FontH)
PROPERTIES (x_adjust = "left"))
PICTURES (state_ball AT (0, 0),
arrowhead AT state ROTATED 270));

32

DIAGRAM_TYPE dynamic_model
PROPERTIES (x_size = 640, y_size = 480);

/***

* *
* Functional Model (Data Flow Diagrams) *
* - Conceptual Definitions *
* *

***/

AGGREGATE_TYPE functional_model
COMPONENTS (fm_entity, fm_relationship);

ENTITY_TYPE fm_entity GENERIC;
RELATIONSHIP_TYPE fm_relationship GENERIC;

ENTITY_TYPE process IS_A fm_entity
BECOMES functional_model
CONNECTIONS (any_flow, results_in);

ENTITY_TYPE data_store IS_A fm_entity;
ENTITY_TYPE actor IS_A fm_entity;

ENTITY_TYPE point GENERIC IS_A fm_entity;
ENTITY_TYPE split_point IS_A point;
ENTITY_TYPE replication_point IS_A point;

ENTITY_TYPE data IS_A fm_entity;
ENTITY_TYPE control IS_A fm_entity;

RELATIONSHIP_TYPE any_flow GENERIC IS_A fm_relationship;
RELATIONSHIP_TYPE control_flow IS_A any_flow
ROLES (source, control, destination)
PARTICIPANTS (process, control, process | actor)
(actor, control, process);

RELATIONSHIP_TYPE any_data_flow GENERIC IS_A any_flow;
RELATIONSHIP_TYPE data_flow IS_A any_data_flow
ROLES (source, data, destination)
PARTICIPANTS
(process, data, process | actor | data_store | point)
(actor | data_store, data, process | point)
(split_point, data, process | actor | data_store);

RELATIONSHIP_TYPE replicated_flow IS_A any_data_flow
ROLES (source, destination)

33

PARTICIPANTS
(replication_point, process | actor | data_store | point);

RELATIONSHIP_TYPE results_in IS_A fm_relationship
ROLES (creator, object)
PARTICIPANTS (process | replication_point, actor | data_store);

/***

* *
* Functional Model (Data Flow Diagrams) *
* - Graphical Definitions *
* *

***/

CONSTANT ProcessRh = ProcessRv*3/2; /* horizontal radius */
CONSTANT ProcessRv = FontH*5/2+1; /* vertical radius */

PICTURE_TYPE process_pic
ARC CENTER (ProcessRh, ProcessRv)
RADIUSES ProcessRh, ProcessRv START O SPAN 360;

ICON_TYPE process
PICTURES (process_pic)
LABELS (name AT (ProcessRh, ProcessRv)
PROPERTIES (x_size = ProcessRh*3/2+6, y_size = 4*FontH))
PROPERTIES (x_size = 2#ProcessRh+1l, y_size = 2*ProcessRv+1);

CONSTANT DStoreH
CONSTANT DStoreW

3*FontH+4; /* Data store icon height */
2*DStoreH; /* Data store icon width */

PICTURE_TYPE data_store_pic
LINE FROM (0,1) TO (DStoreW, 1) PROPERTIES (thickness = 2)
LINE FROM (0,DStoreH) TO (DStoreW, DStoreH)
PROPERTIES (thickness = 2);

ICON_TYPE data_store
PICTURES (data_store_pic)
LABELS (name AT (DStoreW/2, DStoreH/2+1)
PROPERTIES (x_size = DStoreW, y_size = 3*FontH))
PROPERTIES (x_size = DStoreW+l, y_size = DStoreH+1);

CONSTANT DataW
CONSTANT DataH

DataH*5/2; /* data icon width */
2xFontH; /* data icon height */

ICON_TYPE data

34

LABELS (name AT (DataW/2, FontH)

PROPERTIES (x_size = DataW-1, y_size = 2*FontH))
PROPERTIES (x_size = DataW, y_size = DataHl);
ICON_TYPE control
LABELS (name AT (DataW/2, FontH)
PROPERTIES (x_size = DataW-1, y_size = 2*FontH))

PROPERTIES (x_size = DataW, y_size = DataH);

CONSTANT ActorH
CONSTANT ActorW

4xFontH+2; /* Actor icon height */
ActorH*3/2; /* Actor icon width */

PICTURE_TYPE actor_pic
BOX FROM (0, 0) TO (ActorW, ActorH);

ICON_TYPE actor
PICTURES (actor_pic)
LABELS (name AT (ActorW/2, ActorH/2)
PROPERTIES (x_size = ActorW-2, y_size = ActorH-2))
PROPERTIES (x_size = ActorW+l, y_size = ActorH+1);

PICTURE_TYPE dot_pic
POINT
CIRCLE RADIUS 1
CIRCLE RADIUS 2
CIRCLE RADIUS 3;

CONSTANT PointR = 3; /* Point icons radius */

ICON_TYPE point
PICTURES (dot_pic AT (PointR, PointR))
HANDLES (*.* AT ((PointR, PointR)))
PROPERTIES (x_size = 2+PointR+1, y_size = 2*PointR+1);

CONSTANT FlowL = 200; /* Flow edge length */

EDGE_TYPE data_flow
NODES (source AT (0, 0),
data AT (FlowL/2, 20),
destination AT (FlowL, 0))
LINKS (FROM source TO destination
PICTURES (arrowhead AT destination));

EDGE_TYPE control_flow

NODES (source AT (0, 0),
control AT (FlowL/2, 20),

35

destination AT (FlowL, 0))
LINKS (FROM source TO destination
PROPERTIES (dashing = "(2, 4)")
PICTURES (arrowhead AT destination));

CONSTANT RepFlowL = 130; /* Replicated flow edge length */

EDGE_TYPE replicated_flow
NODES (source AT (0, 0),
destination AT (RepFlowL, 0))
LINKS (FROM source TO destination
PICTURES (arrowhead AT destination));

CONSTANT ResultsL = 90;

PICTURE_TYPE triang_head
LINE TO (-20, -10)
LINE TO (-20, 10)
LINE FROM (-20, -10) TO (-20, 10);

EDGE_TYPE results_in
NODES (creator AT (0,0),
object AT (ResultsL, 0))
LINKS
(FROM creator TO object
PICTURES (triang_head AT object)
PROPERTIES (cutoff_2 = 20));

DIAGRAM_TYPE functional_model
PROPERTIES (x_size = 440, y_size =340);

36

