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ABSTRACT

The long term objective of this research is to develop a novel formulation of 

interleukin-2 (IL-2) that improves its therapeutic index. In this study, physical 

entrapment of IL-2 in core-shell type nanoparticles of methoxy poly(ethylene 

oxide)-Woc&-poly (D, L-lactide) (MePEO-6-PDLLA) and covalent linkage o f IL-2 

to human serum albumin (HSA) nanoparticles were assessed. Size exclusion 

chromatography showed that there was no significant encapsulation o f IL-2 within 

the core-shell type nanoparticles. For HSA nanoparticles, IL-2 loading efficiency 

was > 90 %  and a significant decrease in the number of free thiol groups on 

nanoparticles (from 6.27 to 3.99 mol thiol per mol HSA) was observed. The HSA 

conjugated IL-2 was functionally active as evidenced by cytotoxic T lymphocyte 

line (CTLL-2) bioassay. The results of this study points to a potential for HSA 

nanoparticles as IL-2 delivery systems.
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Chapter 1 

INTRODUCTION
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1.1 General features of cytokines

Cytokines are proteins or glycoproteins secreted by a variety of cells. They 

may exert autocrine or paracrine action i.e, bind to receptors on the membrane of 

the same cell that has secreted them or attach to receptors on a target cell in 

proximity to the cytokine secreting cells. After binding to receptors, they initiate 

signal transduction to the interior o f the cell. Thus, cytokines act as intercellular 

messengers [1],

Initially, cytokines were named based on their cellular source and 

function. Some cytokines were referred to as interleukins to indicate that they 

mediate communication among leukocytes. Cohen introduced the term cytokine as 

a general name for substances that activate the immune system [2], The numerous 

source and effects of each cytokine has frustrated the attempts to develop a 

systematic nomenclature.

Cytokines are multifunctional with frequent overlapping functions. The 

message that a cytokine communicates to a target cell may vary depending on the 

cytokine, the target cell and other cytokines present. They may communicate to 

target cells to mature, to proliferate or differentiate, to undergo cell death or to 

secrete antibodies or other cytokines. Cytokines may have different effects on 

different target cell, i.e, be pleiotropic. When more than one cytokines m ediate the 

same function, they are said to be redundant. Cytokines can also be synergistic or 

antagonistic to each other [1, 3, 4],
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1.2 Interleukin-2

Interleukin-2 (IL-2) is a pleiotropic cytokine that controls the 

proliferation and differentiation o f the cells o f the immune system. It was initially 

termed T cell growth factor [5]. It is synthesized and secreted primarily by T 

helper lymphocytes. This glycoprotein allows the in vitro expansion o f antigen or 

mitogen activated T cells. In vivo it functions as a signal in lymphocyte 

mitogenesis and has importance in immune responses to tumor antigens. A t this 

level IL-2 acts as an autocrine factor driving the expansion of antigen-specific 

cells. It also acts as a paracrine factor influencing the activity of other cells like B 

cells [6] and natural killer (NK) cells [7]. IL-2 promotes B and T cell proliferation 

and differentiation, and stimulates a cytokine cascade that includes various 

interleukins, interferons and tumor necrosis factors. For all these activities, IL-2 

has attracted extensive attention and in the last two decades, scientists have been 

exploring its therapeutic potential.

Studies which point out the role of IL-2 in the treatment o f solid tumors 

have generated an interest in its potential clinical use [8, 9]. Low levels of 

production o f  IL-2 by T cells from patients with acquired immune deficiency 

syndrome has also been reported [10]. Partial restoration of T cell function in these 

patients was obtained by exogeneously given IL-2 [11]. All these studies suggest 

that IL-2 has a promising role in immunotherapy.

1.2.1 Protein characteristics

IL-2 is a protein o f 133 amino acids with a molecular weight (MW) of

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15,000-18,000 Da. It is clinically approved for the treatment of renal cell 

carcinoma (RCC) and metastatic melanoma. It was first characterized 

biochemically from Jurkat cells, a human T cell leukemic line. Murine and human 

IL-2 display a homology of 63 percent [12], IL-2 is synthesized as a precursor 

protein of 153 amino acids with the first 20 amino terminal amino acids 

functioning as a hydrophobic signal sequence. The signal sequence is cleaved to 

produce the mature protein [13].

The amino acid sequence of IL-2 is given in figure 1.1. The protein 

contains three cysteine residues located at amino acid positions 58, 105 and 125. 

Two cysteines (Cys), Cys-58 and Cys-105 are involved in intramolecular disulfide 

bridging to form a biologically active IL-2 molecule [14]. The form ation of 

disulfide bond is essential for biological activity [15-17]. Natural IL-2 is O- 

glycosylatyed at threonine at position 3 [18]. Varying degrees of glycosylation 

account for the observed range of MW. However, glycosylation is not essential for 

biological activity [19]. It promotes elimination o f the protein by hepatocytes. 

Therefore, the removal of the entire carbohydrate component may improve the in 

vivo half-life o f the molecule, as has been demonstrated for interferon [20].

The structure of IL-2 is important in order to understand its activity. 

Studies by Schrader et al have shown that IL-2 and granulocyte/macrophage 

colony stimulating factor (GM-CSF) share significant degree of sequence identity 

[21]. However, x-ray-derived structure appears topologically different. Hence a 

three dimensional structure was elucidated for IL-2 which consists o f  five a  

helices and tw o short [3 strands [22], The helices are designated A, B-B’, C and D

4
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in figure 1.2. There is a short helical segment designated as a . The cysteine 58/105 

disulfide link is between helix B and C-D loop. Mutation of cysteine 125 to serine 

can cause an increase in activity. This may be due to increased stability o f the helix 

by eliminating a sulfur atom or because cysteine 125 is chemically reactive [23],

1.2.2 Biological activity

The biological activities o f IL-2 are mediated by the binding of IL-2 to its 

receptor (IL-2R). The IL-2R is multimeric, consisting of IL-2-specific IL-2Ra 

(CD25) and IL-2RP (CD122), and the “common IL-2Ry” (CD132) chain [24-26], 

The IL-2Ry is shared by receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Only 

IL-2 and IL-15 have been found to date to utilize the IL-2/15Rp [27, 28],

IL-2Ra is a 55 kilo Dalton (kDa) glycoprotein having 251 amino acids. It 

has a short 13 amino acid cytoplasmic tail. This subunit has low affinity for IL-2 

(Kd = 1 0  nM) and it forms the low affinity receptor. This receptor subunit has no 

signal transducing ability [29]. Cells, which express alpha chains, include activated 

CD4+ and CD8+ T cells [30, 31], activated B cells [32], glioblastoma cells [33], 

activated monocytes [34], kupffer cells, macrophages and langerhan cells [35, 36] 

and tumor cells [37],

IL-2RP is a 70-kDa glycoprotein having 525 amino acids. It has a large 

286 amino acid cytoplasmic region. This receptor subunit binds IL-2 (K d = 100 

nM) and has signal transducing ability. Cells that express beta chain include 

activated CD56+ (NK) cells, CD8+ and CD4+ T cells, activated B cells and 

neutrophils [38].

5
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IL-2Ry is a 64-kDa glycoprotein having 347 amino acids. It has an 86 

amino acid cytoplasmic region. IL-2Rp and IL-2Ry interact through their 

cytoplasmic domains to transduce an IL-2 signal [29], Cells known to express 

gamma subunit include monocytes [39], neutrophils [40], CD4+ and CD 8+ T  cells, 

NK cells and B cells [41].

The existence of three distinct subunits allows for multiple subunit 

combinations. The alpha-beta-gamma subunit combination forms the high affinity 

receptor (Kd = 10'!1 M). Beta-gamma subunit combination forms the intermediate 

affinity receptor (Kd = 10'9 M). The isolated alpha subunit forms the low  affinity 

receptor (Kd = 10"8 M). The intermediate and high affinity forms o f  the IL-2 

receptor can internalize IL-2 and mediate its biologic activity [42-44], The IL-2Ra 

and IL-2RP have shown to interact with different regions o f the IL-2 molecule. 

The binding interface between IL-2 and IL-2Ra involves amino acids 33-56 and 

that with IL-2RP involves amino acids 11-20 [26]. The interaction surface o f  IL-2 

with IL-2Ry is composed of small contact patches. The first one involves IL-2 

residues serine 127 and 130 and the second is around residue glutamine 126 [45], 

The interaction of IL-2 with its receptor leads to a series o f signaling 

events. These include activation o f the Janus kinase (Jak) as well as signal 

transducer and  activator of transcription (STAT) pathways [46]. IL-2 induces 

dimerization o f the beta and gamma chains, leading to phosphorylation and 

activation o f  Jak-1 and Jak-3. Stat proteins like Stat la ,  Stat 1 p, Stat 3 an d  Stat 5 

are thereby phosphorylated and translocate to the nucleus where they bind to

6
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specific DNA sequences, which leads to transcriptional activation of genes [47]. 

The knowledge of the signalling complexes gives understanding on T cell and NK 

cell activation and such processes as immunodeficiency states and lymphoid 

malignancies. It has emerged that mutations in the genes encoding both IL-2Ry and 

Jak-3 result in severe combined immunodeficiency (SCID) [48-50], Therefore it is 

conceivable that immunosuppression might result if  IL-2Ry/Jak-3 interactions or 

Jak-3 itself is targeted. This gives a new direction that can be explored for therapy. 

Such a drug might be useful in the treatment of transplant rejection or 

autoimmunity.

1.2.3 Mechanism o f IL-2 activation

IL-2 displays anti-tumor activity by inducing the proliferation o f antigen 

activated T cells. The activation o f a T cell occurs when it recognizes a foreign 

peptide bound to a major histocompatibility complex (MHC) molecule on the 

surface o f an appropriate target cell. For helper T cell, this appropriate target is an 

antigen-presenting cell [51]. Also, to activate a helper T cell, the antigen- 

presenting cell must provide two signals. Signal 1 is provided by foreign peptide 

bound to class II MHC molecule on the surface o f antigen presenting cell. Signal 2 

is provided by a co-stimulatory molecule such as B7 [52]. The activated T cells 

secrete IL-2 and synthesize receptors for IL-2. The secreted IL-2 serves as signal 3. 

It binds to the receptors, which stimulates the T cells to proliferate as shown in 

figure 1.3. Moreover, IL-2 causes the activation of NK cells. NK cells differ in 

several ways from T cells. They are fewer in number than T cells and they do not

7
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express antigen-specific receptors. However, they constitutively express IL-2R. 

About 90 % of NK cells express IL-2 receptor that has a lower affinity for IL-2, as 

most o f them lack a  chain of the IL-2 receptor [31]. NK cells activated by IL-2 can 

kill cancer cells by antibody-dependent cell-mediated cytotoxicity. They combine 

through their Fc receptors with the Fc region of immunoglobulin G (IgG) 

antibodies. The antibodies bind by their Fab region to cancer cell surface antigen 

[53], Perforins and granzymes released by NK cells cause the lysis of the target 

cell. Furthermore, IL-2 can induce the production of secondary cytokines like 

tumor necrosis factor-a (TNF-a), TNF-(3 and interferon-y (IFN-y) [54], T N F -a  and 

TNF-P has cytotoxic effects. IFN-y increases the activity of cytotoxic T 

lymphocytes (CTL) and NK cells [1],

1.2.3.1 In vitro activity o f  IL-2

(a) T  cells - The T cell growth activity of IL-2 has been used to  maintain 

the long-term growth of T cells in vitro. The generally used assay for estimating 

IL-2 activity measure its ability to cause dose depended proliferation of T  cell lines 

[55], IL-2 causes the proliferation o f mitogen activated primary T lymphoblasts, 

cytotoxic T cells, helper T cells [56], and T regulatory cells [57], It has shown to 

facilitate the generation of both murine and human specific CTL responses [58]. In 

addition, it can stimulate the production of IFN-y, TNF and more IL-2 [59-61].

(b) B  cells - Activated B cells can express receptors to IL-2. IL-4 or IL-5 

can induce IL-2R expression by B cells with resultant proliferation [62], I t can also 

increase the IgG-producing ability o f antigen-specific B cells in vitro [63]. With

8
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IL-2 stimulation, antigen-activated B lymphocytes progress through cell cycle and 

differentiate into antibody-secreting cells [64]. IL-2 may also regulate 

immunoglobulin E (IgE)-committed B cells, as they are able to respond to  IL-2 

[65].

(c) Monocytes-macrophages - IL-2 augments the cytotoxicity o f  human 

monocytes [66], Monocytes activated by lipopolysaccharide or interferons express 

surface IL-2 receptors [67]. Macrophages can be stimulated by IL-2 to secrete TNF 

in vitro and in vivo [68]. Moreover, IL-2Ra has been found on cells of monocytes- 

macrophage series, including cultured monocytes, Langerhan’s cells o f  the  skin, 

Kupffer cells of the liver, cultured lung macrophages and on intestinal lamina 

proprial macrophages in inflammatory bowel disease [36, 69],

(d) N K  and LAK cells - IL-2 augments the proliferative and cytolytic 

activity o f murine and human N K  cells. It activates NK and Lymphokine 

activated killer (LAK) cells to secrete cytokines like IL-1, IFN-y, and TN F [43, 

70, 71]. Thus IL-2 is involved in both innate host responses mediated by  N K  cells 

and macrophages and antigen-specific immunity mediated by T cells. In animal 

models, adoptively transferred LAK cells have shown to mediate regression o f 

hepatic and pulmonary metastasis when IL-2 is administered concomitantly [72, 

73]. Although IL-2 can induce LAK cytotoxic activity, the intensity o f  the 

response can  be regulated by other cytokines including TNF. The failure o f  low 

dose IL-2 to  induce LAK activity has been shown to be related to their inability  to 

induce TNF production [74],

(e) O ther cells - IL-2 has been found to have effects on other cell types.

9
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The presence of IL-2 binding sites and IL-2-like immunoreactive material in the 

adult rat brain has been described [75], IL-2 causes the in vitro proliferation and 

differentiation of rat oligodendrocytes and brain glial cells [76], It also activates 

osteoclasts in vitro to increase acid production and osteoclastic activity [77]. 

Human m ast cells and basophils also express IL-2 receptors [78],

1.2.3.2 In  vivo activity o f  IL-2

(a) Cellular effects - The in vivo effects o f human recombinant IL-2 have 

been assessed in animals and humans to evaluate its role in immunotherapy. There 

does not seem to be much species specificity to its bioactivity. Recombinant IL-2 

administered to mice causes the proliferation o f T lymphocytes and enhances the 

activity o f endogenous NK or LAK cells [79, 80], The i.v. injection of L A K  cells 

with recombinant IL-2 in mice with established B16 melanoma led to a marked 

decrease in lung metastasis and thereby improved survival [81].

The pharmacological effects of IL-2 in humans are numerous. One 

frequently noticed cellular effect o f IL-2 in cancer patients is eosinophilia. This 

may be due to the eosinophil colony stimulating factor (Eo-CSF) activities of 

various components, including IL-5 and GM-CSF, and chemotactic factors for 

eosinophils induced by IL-2 [82], IL-2 also causes lymphopenia that occurs within 

1-2 days after initiation of therapy [83], post-treatment increase in lymphocytes 

with an increase in NK activity and induction o f LAK activity [84, 85].

The study of effects of in vivo administration of IL-2 on hematopoiesis 

showed that the numbers of circulating erythroid, myeloid and multipotential

10
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progenitor cells strongly increased, reaching a maximum after 5 days [86], 

Multiple weekly cycles of recombinant interleukin-2 treatment increased 

peripheral blood granulocyte-macrophage colony forming units (CFU-GM), 

ranging from 14 to 57 times the baseline values [87],

IL-2 increased the percentage of lymphocytes with the NK phenotype. 

However, within 10-15 min after the start o f an IL-2 infusion, a complete 

disappearance of all NK lymphocyte subpopulations (including both CD3- CD56+ 

and CD3+ CD56+ cells with either alpha/beta or gamma/delta T-cell receptor) was 

observed from peripheral blood of patients. In contrast, the number of T 

lymphocytes without NK activity (CD3+ CD56-) remained the same. This may be 

due to the increased adherence o f NK and NK-like lymphocytes to the activated 

endothelium, induced by IL-2 alone or in combination with IL-2 induced TNF-a 

[88].

Sondel et al reported that consecutive weekly cycles of human recombinant 

IL-2 by intravenous infusion to patients with cancer have shown increase in 

lymphocyte number and augmented their in vitro antitumor reactivity [89]. 

However, others have shown that not all cancer-bearing hosts respond to  IL-2 and 

LAK cell immunotherapy. It is suggested that IL-2-activated cytotoxic T cells 

compete w ith LAK cells for IL-2 and thereby suppress LAK cell responses [90], 

Caligiuri et al investigated the consequences of continuous infusions of 

recombinant interleukin-2 to patients at concentrations that saturated only high 

affinity IL-2R. They have reported that low dosage regimens can selectively 

expand hum an NK cells with only minimal toxicity [84],
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(b) Cytokine effects - IL-2 is capable of inducing various secondary 

cytokines in vivo. Significant augmentation o f the levels of IL-6 and IFN-y was 

seen after IL-2 therapy [91]. The levels of IFN-y did not correlate with the dose of 

IL-2. In some other studies IFN-y has been undetectable [92]. Also, the induction o f 

TNF-a and TNF-P has been observed by some investigators but not others [91, 93], 

The greatest increase in circulating cytokines has been found in patients receiving 

IL-2/LAK therapy [94], Daily intrapleural injection of IL-2 has shown to  increase 

the levels o f  IL-6 and IFN-y within the compartment [91], Injection into the 

cerebrospinal fluid of patients also showed similar response [95].

(c) Other effects - Administration of recombinant IL-2 may cause antigenic 

effects like induction of antibodies specific to IL-2. This may affect the efficacy of 

repeated therapy. However, studies have shown that development of antibodies did 

not affect the clinical responses in most patients. Although antibodies were 

detected in serum samples of almost 50 % of 217 patients in clinical trials, 

antibodies w ith neutralizing activity were found only in 7 % of patients. Also, the 

generation o f  antibodies did not affect the duration of clinical responses in  these 

patients [96].

IL-2 may cause adverse effects on the humoral immune system. Gottlieb et 

al found that patients receiving IL-2 infusion did not show primary antibody 

responses to antigen challenge and also reduced secondary response. T here was 

lack of response up to 7 weeks after therapy suggesting that this was n o t due to 

capillary leakage, which occurs during treatment by IL-2 [97], Exacerbation of 

autoimmunity by IL-2 has been reported in one patient, where autoantibodies
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against erythrocytes were found [98], Reports on the effects of IL-2 in patients are 

varied and sometimes conflicting.

1.2.4 Pharmacokinetics o f  IL-2

After intravenous injection, IL-2 preferentially accumulated in  liver 

and spleen. Uptake by liver was rapid and a peak concentration was obtained 

within 5 minutes [99]. One quantitative estimate of drug distribution is its volume 

of distribution (Vd). This is a useful parameter in clinical practice because it 

provides an overall numerical estimate of the extent of drug distribution. After 

bolus or 2 h i.v infusion of IL-2, the Yd in patients ranged between 6.3 and 7.9 L. 

This was approximately equal to the total calculated extravascular space [100, 

101]. Administration of repeated high doses o f IL-2 appeared to increase the Vd. 

This may be attributed to an increase in the number of IL-2 target cells during the 

treatment [102].

IL-2 is eliminated by the kidney. Renal catabolism occurs in the following 

steps: filtration by the glomerular sieve, reabsorption by proximal tubules 

accompanied by peritubular uptake, degradation in tubular cells and elimination of 

proteolytic fragments [103], Cathepsin D, a renal acid protease, is responsible for 

the degradation of IL-2. Pepstatin A, an acid protease inhibitor, inhibits the 

degradation o f IL-2. As a result of in vivo pepstatin treatment, renal cathepsin D 

activity was greatly inhibited, which in turn reduced the degradation o f circulating 

IL-2, and prolonged serum half-life [104].

After intravenous bolus administration, the level of IL-2 initially
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decreased with a half-life of 13 min, followed by a slower phase with a half-life of 

85 min [101]. A 1 h infusion also showed similar characteristics [105], In 

comparison of administration of IL-2 by bolus versus continuous intravenous 

infusion, the National Cancer Institute Biological Response Modifiers Program 

reported that continuous intravenous infusion resulted in higher lymphocytosis and 

number o f  LAK cells [106], Intravenous administration of 16.7 pg/m2 o f  body 

surface area o f recombinant IL-2 manufactured by Amgen Corporation resulted in 

plasma concentration that decayed for approximately 45 minutes. IL-2 

administered subcutaneously in the same dose has subsequent decay at a ti/2 o f 2.8 

hs. Thus, subcutaneous administration is preferable to intravenous administration, 

because it allows plasma IL-2 concentration sufficient to bind more than half of 

receptors expressed by antigen activated T cells [107].

1.2.5 Toxicity o f  IL-2

The clinical use of IL-2 is limited by systemic side effects that m ay lead 

to organ dysfunction and failure. The toxicities o f IL-2 therapy are dose and 

schedule related. Specific adverse effects of IL-2 include systemic, dermatologic, 

cardiopulmonary, renal, gastrointestinal, neuropsychiatric, hematological and 

endocrinological toxicities.

Systemic effects include fever and chills. IL-2 was unable to induce 

prostaglandin E2 synthesis in hypothalamic cells or fibroblasts in vitro. This 

indicates that IL-2 is not pyrogenic by itself. It causes fever by inducing release of 

pyrogenic cytokines, in particular TNF-a [108]. Dermatologic effects manifest as
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macular ery them a. This occasionally became generalized (i.e., erythroderma) 

[109], C a rd iac  toxicities include arrhythmias, ischemia, myocarditis and 

hypocontractility. Supraventricular tachycardia and atrial fibrillation w as reported 

in 10 % o r  m ore of patients [110]. Renal effects include oliguria accompanied by 

low so d iu m  excretion and high plasma rennin activity. Generally, renal 

dysfunction reversed after the therapy was discontinued [111]. Gastrointestinal 

effects inc lude  nausea, vomiting, and anorexia. Intrahepatic cholestasis with 

elevations o f  bilirubin to 2-7 mg/dL range was observed in most patients [112], 

Neurologic toxicity includes hallucinations and seizures. Patients m ay become 

agitated, com bative and disoriented [113]. These effects can be caused due to 

cerebral edem a. Hematologic effects are very common and include anemia, 

lymphopenia, eosinophilia, and thrombocytopaenia. The reason for this 

hematopoietic suppression may be due to the induction of IFN-y and T N F  which 

suppresses progenitor cells [114]. Endocrinologic effects include increased levels 

o f cortisol, corticotropin, prolactin and growth hormone [115], The reason for this 

physiologic response is not known.

One important toxicity of IL-2 administration is capillary leak syndrome. 

The reason may be that IL-2 itself has a direct influence on blood vessels. Another 

cause is IL-2 activated lymphoid cells that mediate damage to vascular 

endothelium. Capillary leak syndrome has also been reported in mice treated with 

recombinant IL-2 [116].

The mechanism of toxicity induced by IL-2 therapy involves many 

factors. It is generally due to physiological changes that result from initiation of
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inflam m atory response mediated by other cytokines [117]. NK cells are stimulated 

by IL-2 to  secrete a series of cytokines including IFN-y, TNF-a and GM-CSF. 

These cy tokines are activators of macrophage. The activated macrophages secrete 

IL-1 and IL -6. These secondary cytokines activates vascular endothelium and 

increases i t s  permeability. As well macrophages activated by cytokines begin to 

express h ig h  levels of nitric oxide synthetase, which causes the production o f  nitric 

oxide. N itric  oxide increases vascular permeability [118]. Furthermore, activated 

neutrophils bind to endothelial cells and they synthesize and release thromboxane 

inducing vasodilatation. Neutrophils also release lysosomal enzymes and  oxygen 

radicals resulting in endothelial injury [119]. The complement proteins C3a and 

C5a also m ediate vasodilatation and increase vascular permeability [120]. All these 

factors lead to damage of endothelial cells. This damage causes leakage o f  plasma 

proteins and fluid from the vascular compartment into the interstitium. The fall in 

intravascular volume results in tachycardia, hypotension and accumulation o f  fluid 

in the interstitial space which causes other adverse effects. Approaches to reduce 

toxicity include neutralizing antibodies to secondary cytokines produced, different 

routes of administration, schedules of administration, doses of drug and delivery 

systems.

1.2.6 Therapeutic uses o f IL-2

An estimated 36,000 new cases o f RCC and 59,000 new cases of 

melanoma will occur in United States in 2005 [121]. Many of these patients may
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develop m etasta tic  disease. The median survival time for metastatic RCC patients 

after d iag n o sis  is 8 to 12 months [122]. Surgery and radiation therapy are  mainly 

for pa llia tion  and to improve quality of life. Thus, effective therapies a re  limited 

for both d iseases.

Interleukin-2 has shown some promising results for the treatm ent of 

RCC and melanoma. Accordingly, Food and Drug Administration approved it for 

use in th ese  malignancies. A long-term survival update of 255 patients w ith  RCC 

treated w ith  high-dose i.v. infusion recombinant IL-2 showed that the treatm ent is 

highly effective. Objective responses were noted in 37 of 255 patients (15 %) with 

17 complete responses (7 %) and 20 partial responses (8 %). Median survival time 

for all 255 patients was 16.3 months. 10 to 20 % of patients remained alive 5 to 10 

years after treatment with high-dose IL-2 [123], Similar response rates have been 

observed for low-dose IL-2 regimens [124], Treatment with subcutaneous IL-2 at 

low doses in combination with IFN-a was found to be as effective as high-dose i.v. 

bolus IL-2 [125-127], For RCC patients with pulmonary metastases, who have no 

other treatment option available, the use of IL-2 by inhalation in combination with 

low dose subcutaneous IL-2 was efficacious and safe. Inhalation of IL-2 can cause 

dose-dependent cough due to local toxicity, but hardly any systemic adverse 

effects were found [128, 129].

For melanoma, a long-term survival update of 270 patients treated with 

high-dose i.v. bolus recombinant IL-2 reported that tumor responses were seen in 

16 % of patients, with complete responses in 17 (6 %) and partial responses in 26 

(10 %). Median follow-up time for surviving patients exceeded 7 years [130].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These d a ta  indicate that IL-2 therapy produces lasting responses in some patients 

with m etasta tic  melanoma. IL-2 has also been studied in the treatm ent of 

colorectal, ovarian and bladder cancers, non-hodgkin’s lymphoma and acute 

myeloid leukem ia  [131]. The majority of studies have been done with RCC and 

melanoma patients where IL-2 has shown a definite role in therapy. Nevertheless, 

further c lin ical research is needed to get a clear understanding of its efficacy in 

other malignancies.

1.2.7  C urren t understanding o f IL-2 function

IL-2 was originally thought to be a straightforward T cell growth 

factor. Therefore, the IL-2 deficient mice was expected to be profoundly 

immunodeficient. However, it was a surprise to find out that IL-2 deficient mice 

developed massive lymphoproliferation and lethal autoimmunity [132-134], 

Between 4-6 weeks of age, IL-2 and IL-2Ra-deficient mice showed massive 

enlargement o f peripheral lymphoid organs due to polyclonal expansion o f T and 

B cells. Between 8-20 weeks, many of these mice died from severe anemia. The 

rest d ev e lo p e d  an inflammatory bowel disease that is similar to ulcerative colitis in 

humans [132, 135]. These findings suggested that IL-2 is not only a T cell growth 

factor, but also essential for regulating self-tolerance.

One mechanism by which IL-2 functions to regulate T cell response is by 

activation induced cell death. T cell response to antigen involves two phases -  an 

activation phase and a proliferation phase. The activation phase leads to the 

production of IL-2 and its high affinity receptor [136], In the proliferation phase
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IL-2 binds to its receptor and causes cell cycle progression. Once the T cells are 

driven to late G1 or S phase of cell cycle, they are susceptible to apoptosis [137, 

138]. Studies have shown that both CD4 and CD8 T cells exposed to IL-2 are 

susceptible to apoptosis after antigen receptor stimulation [139], Thus IL-2 

provides a feedback regulatory mechanism by inducing apoptosis in T cells. This 

limits T cell expansion when the antigen is repeatedly encountered.

T cell apoptosis takes place by the expression of death cytokines, 

particularly Fas ligand (FasL) [140, 141], In resting T cells, the genes for FasL is 

weakly induced by T-cell receptor (TCR) stimulation, but in IL-2 activated T  cells, 

it is dramatically increased [142], Cell death is mediated by FasL/Fas interactions. 

Thus, one mechanism by which IL-2 potentiates Fas-mediated apoptosis is by 

enhancing the transcription and surface expression of FasL. Furthermore, IL-2 

suppresses the transcription and synthesis of a protein, designated FLIP, which is 

an inhibitor o f apoptosis [143], Hence, the ability of IL-2 to raise the expression of 

a pro-apoptotic molecule, FasL, and to suppress an inhibitor of apoptosis, FLIP, 

probably explains its function in enhancing T cell apoptosis.

1.2.7.1 IL-2, T regulatory cells and tolerance

In vivo studies of IL-2Ra-deficient T cells have shown reduced 

expansion in response to antigen. However, effect on T cell apoptosis w as intact 

[144]. Furthermore, mice expressing IL-2R(3 in the thymus but not in the periphery 

where activation induced cell death occurs did not develop autoimmunity [145], 

These observations suggested that activation induced cell death may not be the
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main mechanism by which IL-2 regulates self-tolerance.

Recent studies indicate that IL-2 is involved in the development o f  CD4+ 

CD25+ regulatory T cells (Tregs). CD4+ CD25+ Tregs develop in the thym us and 

migrate to the periphery. They constitute 5 -  10 % of peripheral CD4+ and less 

than 1 % o f  CD8+ T cells in humans and mice [146-149]. Activated T cells also 

express CD25, but this is generally of lower magnitude compared with Tregs [150, 

151]. Tregs express all of the subunits that are needed for a functional high affinity 

IL-2 receptor [152],

IL-2 promotes Treg cell growth in vitro. Also, it was found that 

administration of IL-2 or re-introduction of IL-2 producing cells to IL-2 deficient 

mice restored the production of Treg cells [153-156]. Furthermore, M alek et al 

have shown that IL-2 signaling is important for the development of Treg cells in 

the thymus [145, 152]. IL-2Rp expression in thymus but not in the periphery of IL- 

2Rp deficient mice restored development of CD4+ CD25+ Tregs and prevented 

lethal autoimmunity. Suppression of autoimmunity was also observed after 

adoptive transfer of wild-type Treg cells into IL-2RP deficient mice. A lso, there 

was clonal expansion of these donor cells. This was due to the expression of a 

functional IL-2R by donor Treg cells and IL-2 production by the host [145, 152], 

Thus, IL-2-IL-2R signaling appears to be required for the production and 

proliferation of Treg cells. These Tregs in turn generate self-tolerance. This 

strongly favors the notion that the main mechanism by which IL-2 regulates 

tolerance is by promoting the development of T regulatory cells.
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In vivo, IL-2 contributes to both tolerance and immunity. Tolerance is 

promoted by activation induced cell death and development as well as proliferation 

of Treg cells, as described above. With respect to immunity, IL-2 is more 

important at a later stage of the effector response. Studies have shown that the 

delivery of IL-2 during a viral infection was most beneficial during the contraction 

phase o f the immune response [157], Here, it increased the proliferation and 

survival of long-lived virus-specific T cells. However, IL-2 given during the 

expansion phase resulted in reduction of antigen-specific CD8+ T cells. Hence, 

excess IL-2 during the early phase o f viral infection may induce rapidly dividing 

effector CD8+ T cells to undergo apoptosis. Therefore, to enhance T cell responses 

in vivo, timing of IL-2 administration and proliferative status of T cells are vital 

parameters [157].

The new understanding of IL-2 function prompts one to re-assess its use in 

clinical settings. Administration o f IL-2 may not always result in enhanced 

immunity. IL-2 may also increase the number or effectiveness of Treg cells. This 

can limit immune responses, which is undesirable in cases where augmentation of 

immunity is the aim of treatment. In this context, depletion of CD25+ T regs using 

CD25-specific antibodies might be beneficial. Removal of immunoregulatory 

CD4+ CD25+ T cells has shown to elicit tumor immunity in mice [158], I n  contrast, 

the ability o f  IL-2 to promote the development of Tregs may be used for the 

treatment o f  autoimmune diseases. The induced or expanded population o f  Tregs 

can inhibit harmful responses against self-antigens. Thus, IL-2 therapy has the 

potential to manipulate T cell responses for evoking immunity or self-tolerance.
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1.3 Formulations of Interleukin-2

High systemic doses of IL-2 are usually given in order to  achieve 

anticancer activity. But the high doses cause severe toxicity as described above 

and the therapeutic results are limited. Hence different strategies h av e  been 

explored to formulate and deliver IL-2 to reduce its serious side effects. To 

increase therapeutic efficacy, increase half-life and to decrease the amount o f  IL-2 

exposed to healthy tissues, most formulations are designed to achieve a  localized 

or sustained mode of delivery. The major formulation approaches used to  date for 

IL-2 delivery include microspheres, liposomes, block copolymers and PEGylated 

IL-2.

Researchers have evaluated the use of biodegradable poly (DL-lactide-co- 

glycolic acid) (PLGA) microspheres for the sustained release o f interleukin-2, 

succinyl IL-2 (SIL-2) and polyethylene glycol modified IL-2 (PEG-IL-2) [159]. 

An injectable delivery system that could continuously deliver 2-3 % PEG-IL-2 

per day for over 20 days was developed. The incorporation of hum an serum 

albumin (HSA) as an excipient in the formulation prevents aggregation and 

enhances the release of IL-2 from the delivery system.

In another study, biodegradable poly lactic acid (PLA) microspheres were 

used to formulate IL-2 [160], It is believed that these microspheres degrade 

homogeneously by bulk erosion. The in vitro release o f IL-2 from the 

microspheres showed an initial rapid release for 3 days followed by an 

exponential decline in the release. The therapeutic effect of IL-2 loaded particles 

was evaluated by co-injecting the microspheres and the tum or cells
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subcutaneously into SCID mouse model. Injection of 50 pg microspheres loaded 

with IL-2 mixed with 2 x 106 tumor cells resulted in the complete suppression of 

tumor growth in eight of ten mice. In control untreated mice, tumors grew in  nine 

of ten mice. In contrast, bolus injections of poly(ethylene glycol)/IL-2 w as not 

successful in suppressing tumor growth [160], The antitumor effect o f  the 

released IL-2 was mediated by the mouse NK cells. Thus, PLA microspheres can 

be used to deliver IL-2 in a sustained release manner. One problem w ith this 

formulation is the denaturation o f the protein during the encapsulation process, 

which can lead to a decrease in the bioactivity o f  IL-2.

In a separate study, an injectable polymeric system for the long-term 

localized (intratumoral) delivery o f IL-2 was developed. IL-2 was encapsulated 

into polymeric matrices formed by the coacervation of gelatin and chondroitin-6- 

sulfate [161], Systems made using gelatin and chondroitin-6-sulfate are 

biocompatible. They can be made to encapsulate IL-2 under conditions that will 

retain its activity. Furthermore, collagenase secreted by tumor cause an increased 

rate of polymer degradation. This exposes the tumors to high IL-2 concentration 

[161]. IL-2 delivery from these microspheres protected mice from primary 

gliosarcoma and murine metastatic melanoma, brain and metastatic liver 

carcinoma. The advantage with this formulation is that protein denaturation does 

not occur during encapsulation process. Moreover, the majority of IL-2 delivered 

remains in  the organ, in which they are injected, thereby reducing systemic 

toxicity.

IL-2 delivery by liposomes have also been studied. Researchers have
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dem onstrated that compared to free IL-2, liposomal IL-2 can give increased 

therapeutic efficacy against murine tumors [162, 163], Compared to free IL-2, 

dimyristoyl-phosphatidylcholine liposomes containing recombinant IL-2 have 

shown increased survival and reduced numbers of pulmonary metastases in  mice 

bearing metastatic MCA-106 sarcoma by intrathoracic route. The enhanced 

activity o f  IL-2 via liposome delivery may be due to a sustained mode o f  IL-2 

release b y  liposomal formulation, increased half-life of IL-2 by liposomes or 

better activation of macrophages by liposomal delivery. No signs o f severe 

systemic toxicity of IL-2 were seen [163],

Furthermore, studies by Vaage and Mayhew demonstrated that repeated 

peritumor administration of IL-2 liposome-gel preparation results in both  local 

and systemic therapeutic effects in MC2 mouse mammary carcinoma [ 162]. The 

liposome preparation was effective due to the sustained release of IL-2 from  this 

formulation.

Studies have been done to investigate the mode of IL-2 association with 

liposomes. This is an important aspect to obtain stable preparations with active IL- 

2 for in vivo use. It was hypothesized that pH values below the isoelectric point of 

IL-2 and electrostatic attraction between IL-2 and negatively charged bilayers is 

enough to get high incorporation efficiencies o f IL-2 in liposomes [164], In 

addition, stable retention of encapsulated protein, clearance from the circulation 

and access to target tissues have been shown to be closely related to the size and 

composition of liposomes [165-167]. Liposomes larger than 50 to 200 nm in 

diameter are too large to pass through the walls o f normal blood vessels, but they
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can pass gaps in newly formed vessels, such as those in tumors. Liposomes 

ranging in size from 50 to 200 nm therefore have the potential to deliver the 

encapsulated drug more selectively to tumors, taking advantage of leaky tumor 

capillaries [168, 169]. Rapid disintegration of liposomes in vivo can be overcome 

by the construction of stabilized liposomes [170] in which the liposomal surface is 

coated with an inert polymer such as polyethylene glycol (PEG) covalently linked 

to the phospholipids. This makes the surface o f liposomes hydrophilic, reducing 

opsonization by plasma proteins and prolongs liposome circulation time. Kedar et 

al demonstrated that IL-2 could be successfully encapsulated in long-circulating 

sterically stabilized liposomes (SSL-IL-2) [171]. SSL-IL-2 was more effective 

than free IL-2 in increasing leukocyte number in the blood and spleen. 

Furthermore, in mice with advanced metastatic carcinoma previously treated with 

chemotherapy (cyclophosphamide), the survival was two to six times greater 

following administration of SSL-IL-2 as compared with free IL-2 [171]. Recently, 

Kanaoka et al have described a novel and simple type of liposome carrier for IL-2 

[172] with a strong association between small (30 nm) hydrophobic liposomes and 

IL-2. IL-2 remained biologically active after mixing with liposomes. After 

intravenous administration to mice, liposomal IL-2 was eliminated half as slowly 

as free IL-2 from the systemic circulation. Liposomes delivered 13 and 18 times 

more IL-2 to the liver and spleen, respectively. After subcutaneous administration 

o f liposomal IL-2 to mice, the mean residence time of IL-2 in the systemic 

circulation was 8 times more than this parameter for free IL-2. Liposomal IL-2 is 

easy to prepare and pharmaceutically convenient. Besides, liposomal IL-2 m ay be
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combined with other drugs to provide better therapeutic response to IL-2 therapy.

Block copolymers have been studied for the sustained delivery o f  IL-2. 

The commercially available block copolymer, poloxamer 407, was evaluated for 

this purpose. Poloxamer 407 was selected as the parenteral vehicle because of its 

reverse thermal gelation properties [173], It forms a semisolid gelatinous matrix 

following an increase in temperature from 8°C to 22°C. Also, it lacks inherent 

toxicity to muscle tissue following single and multiple dose injections o f  the 

vehicle to rabbits [174]. The bioactivity of recombinant IL-2 was maintained 

following incubation in poloxamer 407 (33 % w/w) at 4°C and 22°C for 72 h. It is 

considered that poloxamer 407 stabilizes the protein. The in vitro release studies 

showed that the release of IL-2 at 22°C followed zero order kinetics. W hen given 

to mice intraperitoneally no toxicity was reported either from recombinant protein 

or polymer vehicle [173]. When the formulation is injected intramuscularly, a 

depot is formed at the site of injection, which acts as a reservoir for the 

incorporated drug. Drug molecules will be released continuously from the 

reservoir at a constant rate leading to prolonged constant drug levels in blood. In 

this system, an increase in the concentration o f poloxamer increases the elasticity 

o f the gel and decreases sol-gel transition temperature. The strong concentration 

dependence o f the sol-gel phase transition is a limitation in the use o f  this 

formulation.

PEG is a hydrophilic, non-toxic polymer that has received Food and Drug 

Administration (FDA) approval as a vehicle or base for pharmaceutical, food and 

cosmetic applications. Recombinant IL-2 can be covalently modified by PEG to
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give PEG-IL-2. The bioactivity o f IL-2 is retained after PEGylation [175], 

Pharmacokinetic studies of PEG-IL-2 formulation showed higher plasma levels for 

PEG-IL-2 in comparison to free IL-2 [176], Moreover, PEG (4k -  20k) modified 

IL-2 showed decreased clearance by kidney [177], Conjugation increases the size 

o f the protein due to hydration of PEG, decreases glomerular filtration o f IL-2 by 

kidneys and leads to a longer half-life for IL-2 [176], Another reason for reduced 

clearance may be due to the fact that PEG protects the protein from hydrolysis. 

Also attachment of PEG to IL-2 reduces its immunogenicity in rabbits, m ice and 

humans [178]. PEG-IL-2 exhibited prolonged immunostimulatory effects in 

patients with human immunodeficiency virus (HIV) type 1 infection [179], A 

combination regimen of high dose IL-2 followed by low dose PEG-IL-2 w as tested 

and devised for the treatment of patients with RCC and melanoma [180], One 

limitation with PEGylation is that cytokines like interleukin-2 have few available 

sites for attachment to PEG. It is known that coupling of more number o f  low  MW 

strands o f PEG can decrease the receptor binding activity of IL-2 in vitro  [176], 

This can reduce the potency of the cytokine. Also, the formulation does no t reduce 

the toxicity o f  IL-2.

1.4 Block copolymer core-shell type nanoparticles for drug delivery

Copolymers are polymers formed from different monomer units. The 

monomer units can be arranged in different ways forming four types of 

copolymers: random copolymers, alternating copolymers, graft copolymers, and 

block copolymers. Block copolymers are further classified into three types: the AB

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



type, the ABA type and the (AB)n type, based on the alternating arrangement of 

their components [181]. The AB and ABA type are most often studied for drug 

delivery.

1.4.1 Characteristics o f  core-shell type nanoparticles fo r  drug delivery

W hen amphiphilic AB type block copolymers are placed in a n  aqueous 

solvent, they self assemble to form core-shell micelles. The hydrophobic segment 

o f the polymer forms the core and the hydrophilic segment forms the shell. The 

core usually consists of a polymer such as poly ([3-benzyl-L-aspartate) (PBLA), 

poly (DL-lactic acid) (PDLLA) or poly (s-caprolactone) (PCL) [182], T he shell is 

mostly composed of poly (ethylene oxide) (PEO). In most cases, the hydrophobic 

portion has a MW of less than 2000 g/mol and the hydrophilic PEO portion has a 

MW of 1000 -  12000 g/mol [183],

The formation of distinguished core-shell architecture by these particles 

makes them very useful for the delivery of drugs. The hydrophobic core o f the 

particle serves as a reservoir for hydrophobic drugs, which suffer from p o o r water 

solubility [183]. The hydrophilic shell facilitates dispersion, prevents interparticle 

aggregation and reduces protein adsorption and provides stealth properties 

resulting in prolonged blood circulation for the carrier, It protects the drug loaded 

inside core against hydrolysis and enzymatic degradation [184, 185], The particles 

have a small size (less than 100 nm), which prevents their uptake by 

reticuloendothelial system (RES) and facilitates their extravasation at leaky 

capillaries nearby solid tumors [186], Additionally, the small size o f  carriers
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prevents embolism in the capillaries and makes the carrier safe. The small size of 

polymeric micelles is advantageous from pharmaceutical perspective, because 

sterilization of the carrier can easily be achieved through filtration [183],

Without being sufficiently biocompatible, drug delivery systems m ay not 

be appropriate for human use. Polyesters like PDLLA have been used for long 

periods of time and evidence supports that their use in humans is safe. Other 

polyesters and polyaminoacids can be hydrolyzed or enzymatically degraded into 

biocompatible monomers [186],

Block copolymer micelles have been used to encapsulate various 

molecules for drug delivery including adriamycin, amphotericin B, 

cyclophosphamide, cyclosporin A, indomethacin, paclitaxel, lysozyme and  DNA 

[186-188], A model protein, HSA, has been shown to be entrapped in 

biodegradable nanospheres (200 nm) prepared from amphiphilic diblock 

poly(ethylene oxide)-Z>/ocA;-poly(lactic acid) [189], There can be many factors that 

influence the loading efficiency of drugs in block copolymer nanoparticles. The 

main factor identified was the compatibility between the drug and the core-forming 

block [190], Other factors that may influence drug loading are length o f  the core 

and shell form ing block and size or molecular volume of the drug [190]. N agarajan 

et al. have shown that the amount of solubilizate incorporated in core-shell type 

particles decreases with an increase in the molecular volume of the solubilizate 

[191].

The release of drug loaded inside block copolymer micelles is determ ined 

by the rate o f  drug diffusion, the degree of biodegradation of the copolym er and
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the stability of the particles. However, if the particles are stable and the 

biodegradation rate is slow, the rate of drug release will be influenced by the 

strength of the interaction between the drug and core of the polymer, the physical 

state o f the particle core, the amount of drug loaded, the molecular volume of the 

drug and the localization of the drug within the particle. As the strength o f the 

interaction between the drug and core of the polymer increases, the release rate 

will decrease. Also, drugs will move faster out o f cores that are liquid-like because 

these cores have an increased mobility compared to glassy cores [190]. 

Furthermore, when the amount o f drug entrapped increased, the release rate 

decreased as shown in the case o f methoxy poly(ethylene oxide)-WocA>poly(s 

caprolactone) block copolymer particles containing indomethacin [192], This may 

be due to increased hydrophobic interactions between the drug and core o f the 

polymer. Drugs with higher molecular volumes will show a lower release rate due 

to low diffusion coefficient [190]. Finally, the location of the drug w ith in  the 

particle, which is largely dependent on the water solubility of the drug, m ay  affect 

the rate of drug release from the polymeric micelles. While hydrophobic drugs are 

loaded in the core of the particle, hydrophilic drugs tend to be in the shell or shell- 

core interface. Due to mobility o f the shell, hydrophilic drugs are released rapidly, 

showing a ‘burst release’ immediately after contact with the release medium [190],

1.5 Protein based nano and microparticles for drug delivery

Nanoparticles are solid colloidal particles ranging in size from 1 0 to 1000 

nm. They consist of macromolecular materials in which the active principle is

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dissolved, entrapped or to which the active material is adsorbed or attached. 

Microparticles are similar particles in the size range of 1 pm to 1000 pm  [193], 

Protein nanoparticles have attracted considerable attention as potential drug 

delivery systems. In this context, albumin has been most extensively used.

1.5.1 Albumin as a biopolymer fo r  drug delivery

Albumin is a protein that is found in almost all living body tissues. 

Commercially it is obtained from egg white, bovine serum and human serum

[194], HSA is the most abundant protein in blood plasma. One of its outstanding 

properties is the unique ability to bind a variety o f ligands. For instance, fatty acids 

are insoluble in blood, but albumin binds to fatty acids and function as their carrier 

in blood. Albumin binds metabolites like bilirubin and decreases their toxicity

[195], This property of albumin would have immense therapeutic potential as it 

can accommodate a wide variety of drugs in a nonspecific fashion.

FISA is a single polypeptide chain o f 585 amino acids with a  M W  of 

66,439 Da [196], It is synthesized by liver and has a half-life of 19 days in 

circulation [195]. The protein has three domains (I, II and III) as shown in figure 

1.4. Its sequence is characterized by a unique arrangement of disulfide double 

loops that repeat as a series of triplets in the middle and third domains [195]. In the 

first domain, there are 2 disulfide double loops and 1 single disulfide bridge. Thus, 

there are 17 disulfides forming the loops. The cysteine residue at position 34 bears 

the only free thiol group of the protein [197].

The use of albumin nanoparticles in drug delivery was first suggested by
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P.A. Kramer [198], The two main techniques reported for the preparation of 

particles are emulsification and phase separation based methods [199]. In 

emulsification method, aqueous solution of albumin is emulsified in oil (e.g., 

cottonseed oil) and homogenized by sonication. The emulsion is th e n  added 

dropwise to a  large amount of preheated oil (> 120° c) while stirring. T h is  causes 

the evaporation of water contained in the droplets and denaturation o f  albumin, 

which coagulates in the form of nanoparticles. Subsequently, the particles are 

washed using organic solvents (e.g., ether, ethanol) to remove the oil. The 

disadvantages of this method includes the use o f  large amounts of organic solvents 

for purification of particles and the difficulty to obtain small nanoparticles (< 500 

nm) with narrow size distribution due to instability of the emulsion. T h e  phase 

separation method involves desolvation of the protein followed by cross-linking of 

the particles. In the method proposed by Marty et al [200], nanoparticles can be 

prepared by slow addition of a desolvating agent (e.g., ethanol) to aqueous solution 

of albumin. After a certain extent o f  desolvation is achieved, protein aggregates are 

formed. The particles are obtained by subsequent cross-linking of the aggregates 

using reagents such as formaldehyde or glutaraldehyde. The cross-linking process 

involves the formation of covalent bonds between lysine amino groups o f  protein 

and the aldehyde leading to stabilization of the particles [199].

Drugs can be bound to previously prepared empty nanoparticles by 

covalent coupling or adsorption. They may also be entrapped inside th e  particles 

physically [201]. HSA offers various target sites for covalent linkage o f drugs like 

the s-amino groups of lysine, carboxyl groups o f asparaginic and glutaminic acid,
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hydroxyl groups of tyrosine and thiol groups o f cysteine [202], In the case of 

glutaraldehyde cross-linked particles, the remaining carbonyl residues can also be 

used as potential sites for drug conjugation. Depending on the nature o f  the 

covalent bond, different drug release behaviors may be achieved. Mostly, covalent 

coupling yields a much slower release rate than adsorption [201],

Like other colloidal drug delivery systems, albumin nanoparticles are 

taken up by RES after intravenous injection. In a study by Scheffel et al [203], the 

body distribution of " mTc-labeled HSA nanoparticles after i.v. injection to  mice 

was evaluated. The percentage of the injected dose found in liver and sp leen  after 

10 min was 86 and 1.8 %, respectively. The adsorption of serum proteins to the 

particle surface strongly facilitates their uptake by phagocytic cells in R ES organs 

like liver. The coating of particles with poloxamers and poloxamines (e.g., 

poloxamer 407, poloxamine 908) or PEO-based surfactants such as polysorbates 

(e.g., polysorbate 80) may reduce their uptake by RES and increase their 

concentration in other organs and tissues as was observed for polystyrene or poly 

(methyl methacrylate) nanoparticles [199]. Furthermore, the extent an d  rate of 

carrier uptake by RES is influenced by carrier size. The dependence of 

opsonization extent on carrier size was evaluated by pretreating serum w ith  empty 

liposomes o f  various sizes The extent of opsonization and RES up take  was 

decreased w ith  a decrease in particle size from 800 nm to 200 nm, and phagocytic 

uptake was less for particles below 200 nm [204, 205],

Albumin-based drug carrier systems have extensively been used  as dmg 

delivery systems. Table 1.1 lists various drugs that have been bound t o  albumin
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and albumin nano or microparticles. Targeting of drugs to specific sites in vivo 

using the albumin particles has also been investigated. The incorporation of 

magnetic Fe30 4  particles of 10-20 nm size in diameter into albumin microspheres 

enabled the preparation of magnetically responsive particles. These particles 

loaded with doxorubicin and guided externally by a magnet to the target site (rat 

tail Yoshida tumor) have shown to achieve a significant remission o f  Yoshida 

tumors [206], Coating of albumin nanoparticles with monoclonal antibodies 

(MAb) is another approach to provide targeting ability to the albumin particles 

[207]. The MAb decorated particles showed more accumulation in the targeted 

tumoral tissue of Lewis lung carcinoma-bearing mice.

Over the past years peptide and protein drugs have been gaining 

more and more importance. In many cases these drugs are quite efficiently bound 

to nanoparticles. Studies were done to evaluate the capacity of bovine serum 

albumin (BSA) nanoparticles as carriers of IFN-y [208], For this purpose, IFN-y 

was adsorbed to the particles. The cytokine was associated with the particles 

mainly by electrostatic interactions. The adsorbed protein was able to im prove the 

priming effects of IFN-y on the nitric oxide production by macrophages. In a 

separate study, apolipoprotein E was coupled to nanoparticles made o f  HSA to 

facilitate drug delivery to brain [209]. The protein was chemically bound via 

linkers to loperamide-loaded HSA nanoparticles. The results indicate that 

apolipoprotein E attached to the surface of nanoparticles facilitate transport of 

drugs across the blood-brain barrier possibly after interaction with lipoprotein 

receptors on  the brain capillary endothelial cell membranes. Furthermore, BSA
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m icrospheres were studied for the development of implantable insulin delivery 

system [2 1 0 ] , A subcutaneous injection of entrapped insulin in th e  particles 

produced elevated blood insulin levels in diabetic rats for more than 2  months. 

The re su lts  suggest that a long-acting insulin may be produced by the entrapm ent 

of insulin w ithin a biodegradable matrix.

1.6 T h esis  proposal

1.6.1 R ation ale

Interleukin-2 is a cytokine that plays an important role in immunological 

events. H ow ever, its widespread clinical use has been limited by a narrow 

therapeutic index. The toxic effects of IL-2 are mainly due to its broad 

biodistribution arising from high plasma concentrations, whereas its therapeutic 

effects are dependent on availability at the tumor site. Novel delivery approaches 

that can lim it the systemic concentration of IL-2, while at the same time increase 

its bioavailabilty at the tumor microenvironment would enhance its therapeutic 

index. This approach can boost the efficacy of IL-2 and also overcome toxicity 

associated with its therapy. Thus, the goal of this research was to develop a  novel 

carrier for IL-2 that can limit the systemic concentration of IL-2, but enhance its 

delivery to tumor site. The potential o f polymeric micelles and HSA nanoparticles 

as tumor targeted delivery system for IL-2 was investigated in this study. We 

studied the extent of IL-2 encapsulation in polymeric micelles and IL-2 

conjugation on HSA nano-particles. The biological activity of the IL-2 conjugated 

HSA nanoparticles was also investigated.
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1.6.2 G eneral objective:

To achieve a novel formulation based on biodegradable nanoparticles for 

the delivery o f  IL-2.

1.6.3 H ypothesis:

1) M ethoxy poly(ethylene oxidc)-b/oc&-poly(D, L-lactide) (M ePEO-b- 

PDLLA) m icelles can act as efficient carriers for the physical encapsulation and 

delivery o f  IL-2 and

2) IL -2  can efficiently be conjugated to the surface of HSA nanoparticles by 

disulfide bond  formation and retain its bioactivity after conjugation.

1.6.4 Specific aims:

• To prepare IL-2 loaded micelles of MePEO-b-PDLLA and assess the

characteristics of the IL-2 encapsulated MePEO-b-PDLLA micelles.

• .To prepare IL-2 conjugated HSA nanoparticles and assess the

characteristics of the IL-2 conjugated HSA nano-particle.

• To assess the in vitro bioactivity of IL-2 incorporated nano-carriers making

comparison with the bioactivity of soluble IL-2.
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Table 1.1 Albumin-based drug carrier systems for drug delivery

Delivery system Drug Reference

Albumin conjugates
Mitomycin C [211]

Taxol [212]
Chlorambucil [213]
Methotrexate [214]
Doxorubicin [215]

Drugs bound to nano 
or microparticles

Doxorubicin [206]
5-Fluorouracil [216]

Mercaptopurine [198]
Methotrexate [217]

Metronidazole [218]
Primaquine [218]

Triamcinolone [219]
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Ala-Pro-Thr-Ser-Ser-Ser-Thr-Lys-Lys-Thr-Gln-Leu-Gln-Leu-Glu-His-Leu-Leu-Leu-Asp-

40
Leu-Gln-Met-Ile-Leu-Asn-Gly-Ile-Asn-Asn-Tyr-Lys-Asn-Pro-Lys-Leu-Thr-Arg-Met-Leu-

58  60
Thr-Phe-Lys-Phe-Tyr-Met-Pro-Lys-Lys-Ala-Thr-Glu-Leu-Lys-His-Leu-Gln-Cys-Leu-Glu-

80
Glu-Glu-Leu-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-Ala-Gln-Ser-Lys-Asn-Phe-His-Leu-

100
Arg-Pro-Arg-Asp-Leu-Ile-Ser-Asn-Ile-Asn-Val-Ile-Val-Leu-Glu-Leu-Lys-Gly-Ser-Glu-

105 120
Thr-Thr-Phe-Met-Cys-Glu-Tyr-Ala-Asp-Glu-Thr-Ala-Thr-Ile-Val-Glu-Phe-Leu-Asn-Arg-

125 133
Trp-Ile-Thr-Phe-Cys-Gln-Ser-Ile-Ile-Ser-Thr-Leu-Thr

Figure 1.1: Amino acid sequence of IL-2* 

*Figure modified from Ref. [220].
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NH, COOH

Figure 1.2: Three-dimensional structure o f IL-2* 

*Figure modified from Ref. [22],
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Figure 1.3: T cell proliferation by IL-2* 

* Figure modified from Ref. [221].
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Figure 1.4: Scheme of HSA showing various domains* 

*Figure modified from Ref. [196].
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Chapter 2

Block copolymer nanoparticles of 

methoxy polyethylene oxide-6/ocA-poly (D, L-lactide) for the delivery of

interleukin-2
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2.1 Introduction

In the context of drug delivery, drug carriers play an important role. The 

ideal situation for effective therapy is that the drug acts at the target site and have 

high specificity and activity without causing toxicity. For this purpose, researchers 

have investigated many drug carriers.

Block copolymers having amphiphilic segments can form core-shell type 

nanoparticle structure in aqueous milieu [222], The hydrophobic segment forms 

the hydrophobic core of the structure and the hydrophilic segment covers the  core 

like a shell. The structurally separated segments o f the block copolymer can 

distinctly share the functions that are required for drug carriers. The outer shell is 

responsible for interactions with biocomponents such as proteins and cells. These 

interactions may determine pharmacokinetic behavior and biodistribution o f  drugs 

[181]. The inner core serves as a microenvironment for the incorporation of 

therapeutic molecules. The drug may also be chemically attached to the core­

forming block [186]. In this context, we have looked into the possibility of 

encapsulating an immunostimulatory molecule interleukin-2  inside the core o f the 

particles. Core-shell type nanoparticles of methoxy polyethylene oxide -  block - 

poly (D, L -  lactide) were chosen as potential carrier for this purpose due to the 

biocompatibility and biodegradability of MePEO and PDLLA blocks and their 

distinct functionalities. PEO is known as an inert synthetic polymer in living 

systems and is used in protein modification to decrease RES uptake and to  prolong 

the half-life in blood. Accordingly, the outer shell, which is composed o f  PEO 

chains, is considered to contribute to the stable circulation of particles in blood
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[181]. Polyesters such as PDLLA have been widely used in biomedical 

applications such as sustained drug delivery systems and implants for orthopedic 

devices. PDLLA is amorphous compared to poly (L-lactic acid) (PLLA) and hence 

the degradation rate of PDLLA is faster than that of PLLA [223]. Thus, the 

particles made from PDLLA may be free o f toxicities resulting from long-term 

accumulation.

IL-2 is a cytokine produced by T cells, which plays a prominent role in 

immunological events. It is being investigated for its therapeutic effects in various 

cancers and immunotherapy. The primary concern with the use of high dose IL-2 

is its toxic side effects. One approach to improve the therapeutic index o f IL-2 is to 

encapsulate the cytokine in a drug carrier so that it accumulates preferentially in 

the tumor by passive targeting.

Polymeric micelles are known avoid uptake by RES and preferentially 

diffuse through leaky vasculature o f tumor [186], Tumor specific delivery o f  IL-2 

by polymeric micelles may provide sustained immune stimulation at the tum or site 

and reduce IL-2 side effects in other tissues. Besides, polymeric micelles can 

easily be sterilized by filtration [183, 222],

2.2 Materials

Recombinant IL-2 was kindly provided by Biomira Inc (Edmonton, 

Alberta, Canada). The storage condition for IL-2 was 2-8° C and the buffer system 

was 0.05 % acetic acid, 5 mg/mL mannitol. Methoxy poly(ethylene oxide) 

(MePEO), 3,6 -dimethyl-l,4-dioxane-2, 5-dione (DL- lactide), and chloroform-d
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were purchased from Sigma-Aldrich Canada Ltd (Oakville, Ontario, Canada). 

Stannous octate was obtained from ICN Biomedicals Inc (CA, USA). Distilled 

water was used throughout the study. All other reagents were of analytical grade.

2,3 Methods

2.3.1 Block copolymer synthesis

A ring opening polymerization was employed to synthesize the 

copolymer of MePEO-^-PDLLA. MePEO (MW = 5000 g/mol) was used as 

initiator (I) and stannous octate as catalyst. D, L -  lactide (monomer, M o; 2.5 g) 

was first melted in a glass ampoule. MePEO (2.5 g, M/I = 34.7) was weighed into 

the ampoule and then stannous octate (0.5 % w/w) was added. N itrogen was 

purged into the ampoule for 5 min. The glass ampoule was then heat sealed under 

vacuum using flame torch. The reaction was carried out at 140° C for 3 h. The 

MW of PDLLA was determined by proton nuclear magnetic resonance ( JH-NMR) 

spectrum at 300 MHz using chloroform-d as solvent. The polymer M W  and MW 

distribution was estimated using gel permeation chromatography (GPC). GPC 

measurements were carried out with tetrahydrofuran (THF) as the eluent (1 

mL/min) using a 4.6 x 300 mm Waters Styragel HT4 column (W aters Inc., 

Milford, MA). The elution pattern was detected at 35°C by refractive index/light 

scattering detectors (Model 410, Waters Inc., MA). The calibration curve was 

prepared using polystyrene standards.
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2.3.2 Preparation o f core-shell type nanoparticles and their characterization

MePEO-Z>-PDLLA (32.5 mg) was dissolved in 0.5 mL acetone. This 

solution was added dropwise to 3 mL water while stirring. Acetone was 

evaporated by stirring it for 3 h at room temperature. Mean diameter and 

polydispersity index of the particles was determined by dynamic light scattering 

instrument (3000 HSa Zetasizer Malvern, Malvern Instrument Ltd., UK). 

Transmission electron microscopy (TEM) was used to investigate the morphology 

of the particles. An aqueous droplet of dispersion (20 pL) with a polymer 

concentration of 0.5 mg/mL was placed on a copper-coated grid. The grid was 

held horizontally for 20 s to allow the colloidal aggregates to settle. A droplet of 2 

% solution o f phosphotungstic acid in water was then added to provide the 

negative stain. After 1 min, the excess fluid was removed by filter paper. The 

samples were then air-dried and loaded into a Hitachi H 7000 transmission 

electron microscope. Images were obtained at a magnification of 15,000 times. 

Apparent diameters of particles were measured based on at least 100 

measurements.

2.3.3 Loading o f IL-2 in MePEO-b-PDLLA nanoparticles

(a) Co-solvent evaporation method

MePEO-Z>-PDLLA (30 mg) was dissolved in 0.5 mL acetone. IL-2 (150 

pg, 550 pg/mL) was added to it. Under constant stirring this solution was added 

dropwise to 3 mL water. Acetone was evaporated by stirring it for 3 h  at room 

temperature. 100 pL of sample was taken and analyzed for free IL-2 by injecting
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into size exclusion chromatography (SEC) column (Protein Pak 300 SW  column) 

equilibrated with 0.1 M potassium phosphate monobasic, pH 7.0 at 280 nm . The 

elution was carried out at a flow rate of 0.8 mL/min. The column was calibrated 

with MW  standards: Blue dextran (2000 kDa), HSA (6 6  kDa), ovalbumin (44 

kDa), trypsin inhibitor (20 kDa), RNase A (14 kDa), and thymidine (242 Da). The 

void volume of the column was 5.0 mL and total volume was 13.0 mL.

(b) Double emulsion method

MePEO-6 -PDLLA (100 mg) was dissolved in 1 mL methylene chloride. 

Aqueous solution o f IL-2 (55 pg, 550 pg/mL) was added to it and sonicated (15 

s). 8 mL o f 5 % polyvinyl alcohol (PVA) solution was added to this em ulsion and 

sonicated (15 s) to form secondary emulsion. This emulsion was added to 17 mL 

of 1 % PVA solution and stirred for 3 h to eliminate the solvent. The particles 

were separated by centrifugation at 27,000 x g  for 30 min. The loading o f IL-2 in 

nanoparticles was calculated from the difference between the total amount used to 

prepare the formulation and the amount non-encapsulated in supernatant by 

measuring the tryptophan fluorescence at excitation wavelength of 290 nm .

2.4 Results and discussion

2.4.1 Block copolymer synthesis

M ethoxy poly(ethylene oxide)-block-poly(D, L-lactide) was synthesized 

by ring opening polymerization using MePEO as initiator and stannous octate as 

catalyst. The scheme of synthesis is shown in figure 2.1. It has been suggested

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the hydroxyl group of MePEO is responsible for initiating the ring opening 

polymerization [224]. In the reaction, the lactide ring opens and inserts into the 

initiation site to allow the growth of the polylactide chain resulting in  a diblock 

copolymer of polylactide and methoxy polyethylene oxide. The tin  atom  of 

stannous octate coordinates with the carbonyl oxygen atom of lactone. Due to 

this, the carbonyl carbon atom becomes more positive resulting in an increased 

susceptibility to nucleophilic attack by a hydroxyl group [225], The 'H-NM R 

spectrum o f  the copolymer is shown in figure 2.2. The peaks o f both PD L LA  and 

MePEO were detected in deuterochloroform (CDCI3), which is a good solvent for 

both PDLLA and MePEO. The peaks at 5 = 3.6-3.7 ppm corresponds to 

methylene protons of MePEO and those at 5 = 5.1-5.3 ppm corresponds to 

methine protons o f PDLLA. The MW of PDLLA calculated by comparing the 

peak intensity o f methylene protons of MePEO (assuming a MW of 5000 g/mol) 

to that o f methine protons of PDLLA was 4692 g/mol. The MW of copolymer 

was determined by GPC. The number-average molecular weight (M n) and 

polydispersity o f the polymer (Mw/Mn) obtained were 17570 g/mol and  1.008 

respectively as shown in table 2 .1 .

2.4.2 Preparation o f  core-shell type nanoparticles and characterization

The mean diameter and polydispersity of the particles were measured 

by dynamic light scattering (DLS). Monodisperse particles were formed with a 

mean diameter o f 67 nm and a polydispersity index of 0.16 (figure 2.3a). The 

morphology of the particles was assessed by TEM. Figure 2.4 shows that shape of
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the particles was spherical and no aggregation was observed. The particles had an 

approximate size of 6 6  nm, which was comparable to the size obtained from  DLS 

measurement.

2.4.3 Loading o f IL-2 in MePEO-b-PDLLA nanoparticles

(a) Co-solvent evaporation method

The scheme of loading o f a drug in amphiphilic block copolymer 

nanoparticle by co-solvent evaporation is shown in figure 2.5. For assessing the 

encapsulation of IL-2 in MePEO-6 -PDLLA nanoparticles, SEC was used. The 

chromatograms of (a) empty nanoparticles at 220 nm and (b) soluble IL-2 and 

MePEO-6 -PDLLA + IL-2 at 280 nm are shown in figure 2.6. There was no peak 

observed for encapsulated IL-2 in the particles. The area under the chromatogram 

curve for MePEO-6 -PDLLA + IL-2 was almost similar to the soluble IL-2 (table 

2.2). Moreover, the mean diameter of IL-2 loaded particles did not differ from the 

empty nanoparticles (figure 2.3b). Thus, there was no significant loading o f  IL-2 

inside the core of the particles. This may be due to the lack of partitioning o f  IL-2 

into the hydrophobic polymer phase. The large size and MW of the protein might 

have limited its incorporation into the small cargo space in the core of particles. A 

less loading of moderately water soluble drugs can be regarded as one o f the 

limitation o f core-shell type nanoparticle systems. The compatibility between 

nanoparticle core and the drug, the hydrophobic/hydrophilic ratio of the polymer 

and molecular volume of the drug can influence efficiency of drug encapsulation. 

Modifying the block composition of block copolymer might improve entrapment
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of IL-2. For example, a higher loading may be obtained by decreasing 

PDLLA/MePEO ratio in the block copolymer. Also, IL-2 conjugated to the 

polymer may provide a better incorporation. This may be achieved by preparing 

nanoparticles with reactive aldehyde group at the end of PEG and subsequent 

quenching of aldehyde group with cysteine. The particles may then be used to 

conjugate IL-2 by disulfide linkage.

(b) Double emulsion method

In order to quantify IL-2, the particles were separated and non­

encapsulated IL-2 was measured by fluorescence intensity. IL-2 was detected 

based on the fluorescence of the single tryptophan residue within the protein 

molecule. Analysis of IL-2 in nanoparticles could not be performed due to  high 

background reading for IL-2. This was due to the interference by mannitol in IL-2 

solution (5 mg/mL), which was added for storage purposes. Thus the analysis was 

not feasible.

2.5 Conclusions

MePEO-6 -PDLLA block copolymer could be synthesized by a ring 

opening polymerization reaction. This block copolymer self assembled to form 

core-shell type nanoparticles with a mean diameter less than 1 0 0  nm and a narrow 

polydispersity index. The particles were uniform and spherical in shape. They 

were used for assessing the encapsulation of IL-2 inside their core. The results 

suggest that there was no significant loading of IL-2 within the particles. In 

conclusion, the current study did not provide evidence of sufficient encapsulation
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of the p ro te in  to pursue further studies.
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Table 2.1. Characteristics of the prepared MePEO-h-PDLLA block copolymer

MePEO PDLLA Mo/Ib MePEO-b- MePEO-h- MePEO-Z?-PDLLA
PDLLA PDLLA polydispersity

MW M W a M „c Mnd (Mw/M „)d

(g/mol) (g/mol) (g/mol) (g/mol)

5000 5000 34.7 9692 17,570 1.008

a Theoretical molecular weight 
b Monomer to initiator ratio
c Mn is number average molecular weight; determined by 'H-NMR 
d Mw is weight average molecular weight; determined by GPC
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Table 2.2. Area under the size exclusion chromatogram curve for soluble IL-2 
and MePEO-^-PDLLA + IL-2 detected at 280 nm using Protein Pak 300 SW 
column w ith  retention times of 14.3 and 14.5 min respectively.

Type o f sample Area under the chromatogram curve (uV .m in)

Soluble IL-2 10469

MePEO-6 -PDLLA + IL-2 9551
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MePEG DL-Lactide MtPEG-PDLLA

Figure 2.1 Scheme of synthesis o f MePEO-h-PDLLA block copolymer
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Figure 2.2. 'H-NMR spectrum of MePEO-h-PDLLA block copolymer in CDCI3 
at 300 MHz; * denotes the different protons giving shifts.
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Figure 2.3. Size distributions (intensity-mode analysis) o f (a) empty MePEO-b- 
PDLLA block copolymer nanoparticles and (b) MePEO-6 -PDLLA particles after 
IL-2 loading as measured by dynamic light scattering instrument (Zetasizer 3000).
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Figure 2.4. TEM image of MePEO-/?-PDLLA block copolymer nanoparticles 
(magnification 15,000)
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Chapter 3

Human serum albumin nanoparticles for the delivery of interleukin-2
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3.1 Introduction

Colloidal drug carrier systems are advantageous for modifying 

biodistribution, enhancing cellular uptake and limiting the toxic side effects of 

drugs [226-228]. When a drug is bound to a polymeric carrier by covalent linkage, 

such a conjugate can potentially maintain constant delivery of drug to the body 

over a prolonged period of time. In the present study, we have investigated the 

chemical conjugation of IL-2 to HSA nanoparticles.

HSA nanoparticles were chosen as colloidal carrier system due to a 

number o f attractive features. HSA is a biocompatible natural macromolecule that 

has been used in several protein drug formulations. HSA appears to prevent 

aggregation and enhance the solubility and stability of IL-2 [220]. HSA offers 

several target sites for covalent linkage of dmgs like the s-amino groups o f  lysine, 

carboxyl groups of asparatic and glutamic acid, hydroxyl groups o f tyrosine and 

thiol groups of cysteine. Thus, it has been shown to be amenable to particle 

engineering and surface modification [202, 228]. It also lacks toxicity and is 

readily available.

Weber et al has shown that it is possible to introduce thiol groups on the 

surface of HSA nanoparticles using dithiothreitol (DTT) [202], Moreover, IL-2 has 

a free cysteine residue at amino acid position 125 [14]. We devised a m ethod of 

conjugating IL-2 to HSA nanoparticles through formation of disulfide bonds 

between the free thiol groups generated on the nanoparticles using DTT and free 

thiol of cysteine-125 of IL-2.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Materials

Recombinant interleukin-2 (IL-2) and cytotoxic T lymphocyte line 

(CTLL-2) cells were kindly provided by Biomira Inc (Edmonton, Alberta, 

Canada). HSA, glutaraldehyde solution (25 %) and L-cysteine were purchased 

from Sigma-Aldrich Canada Ltd (Oakville, Ontario, Canada). Iodine-125 was 

purchased from Amersham Biosciences (Quebec, Canada). Iodogen, 5, 5’-Dithio- 

bis-(2-nitrobenzoic acid) (Ellman’s reagent) and DTT were purchased from Pierce 

Biotechnology (Rockford, IL, USA). RPMI 1640 (Roswell Park Memorial 

Institute) medium and other cell culture supplements were provided by Gibco 

Invitrogen Corporation (Ontario, Canada). Distilled water (Milli-Q system, 

Millipore, USA) was used throughout the study. All other reagents were of 

analytical grade and used as received.

3.3 Methods:

3.3.1 Radioiodination of IL-2

A 13 x 75 mm glass test tube was plated with 10 pg Iodogen solution 

in chloroform. The solvent was evaporated by running a steady stream o f  nitrogen 

gas into the tube until fully dry. To another test tube, 20 pL phosphate buffer (0.5 

M, pH = 7.1) and 5 pL I25I (0.5 mCi) were added together. IL-2 (30 pg) in 

phosphate buffered saline (PBS) was added to the Iodogen tube. The phosphate 

buffer - 125I mixture was then transferred to the Iodogen tube. The sample was 

incubated for 30 min at room temperature. The sample was removed from Iodogen 

tube and placed in a clean glass tube. To stop the reaction 70 pL sodium iodide
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(Nal; 1 M) was added. The free iodine was separated using a Sephadex PD10 

column (MW cut-off = 5 kDa; Amersham Biosciences, Quebec, Canada).

3.3.2 Preparation of HSA nanoparticles

HSA (200 mg) was dissolved in 2.0 mL double distilled water. Under 

constant stirring, desolvation of the 10 % HSA solution was achieved by  drop 

wise addition of 8.0 mL ethanol. After 10 minutes of stirring, 20 pL 

glutaraldehyde solution (25 %) was added to cross-link the particles. A fter 4 h of 

stirring, the nanoparticles were purified 3 times by centrifugation and redispersion 

in purified water. Mean size and polydispersity index of the particles were 

determined by dynamic light scattering instrument (Zetasizer 3000, Malvern, 

UK).

3.3.3 Introduction of thiol groups with DTT

Aqueous solution of DTT (50 pL, 50 mg/mL) was added to nanoparticle 

suspension (100 pL) and mixed. The samples were incubated for 2 h and purified 

by centrifugation at 20000 x g  for 20 min.

3.3.4 IL-2 conjugation to HSA nanoparticles

The purified particles were mixed with 50 pL of radiolabeled IL-2. The 

samples were incubated in a shaking water bath at 20 C for 12 h an d  24 h. 

Volume w as adjusted to 300 pL and after further shaking for 2 h the samples were 

centrifuged for 20 min at 20000 x g. The nanoparticle pellet and supernatant were
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analyzed using gamma counter (1480 Wizard 3”, Wallac). Loading efficiency of 

IL-2 was calculated as:

Loading efficiency (%) = IL-2 in nanoparticle pellet x 100
Total IL-2 added

3.3.5 Trichloroacetic acid (TCA) precipitation of IL-2

The radioiodinated pellet was redispersed in 300 pL o f purified water. 

Aliquots of the dispersion (20 pL) were treated with 20 pL of 1 M N al. The 

samples were prepared for TCA precipitation in microcentrifuge tubes as follows: 

0.5 mL of a solution of 1 % BSA in PBS was added to Eppendorf centrifuge 

tubes. 2 pL of the above treatment was added to the cold BSA. 0.5 m L o f  20 % 

TCA was added and vortexed well. The samples were cooled for 3 min in ice and 

then centrifuged for 3 min at 20000 x g. The supernatants were transferred to 

different centrifuge tubes. The tubes were placed into counting vials and the count 

rate was recorded in gamma counter.

3.3.6 Quantification of thiol groups in nanoparticles

An aliquot of HSA nanoparticle suspension (100 pL, 50 mg/mL) was 

mixed with volumes of 10, 20, 50, 100, 200, 500 pL of aqueous solution o f  DTT 

(50 mg/mL). The volume was adjusted with distilled water. The samples were 

incubated for 2 h and purified by centrifugation (20000 x g  for 20 min). L- 

cysteine standards (0-5 mM) were prepared and the number of thiol groups was 

quantitated by comparison to the standard values. The nanoparticles w ere diluted 

with distilled water so that the sample applied to the assay reaction h a s  a thiol
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concentration in the working range of the standard curve. HSA nanoparticles (100 

pL) were mixed with 1365 pL o f reaction buffer (0.1 M sodium phosphate, pH 

8.0, containing 1 mM Ethylenediamine tetra acetic acid, EDTA) and 35 pL  of 0.4 

% Ellman’s reagent solution. After 15 m in incubation, the particles were 

separated by centrifugation (20000 x g  for 20 min). The supernatant was 

spectrophotometrically assayed for 2-nitro-5-thiobenzoic acid (TNB) a t 412 nm. 

The samples were prepared for thiol quantification as follows: (a) P la in  HSA 

nanoparticles, (b) HSA nanoparticles reduced by DTT, (c) HSA nanoparticles 

loaded with IL-2 and (d) HSA nanoparticles loaded with IL-2 and reduced by 

DTT.

3.3.7 Determination of the in vitro activity of IL-2 using the CTLL-2 assay

The CTLL-2 cells were grown in the growth media (RPMI 1640 440 

mL, fetal bovine serum 50 mL, MEM-sodium pyruvate 5 mL, 2-mercaptoethanol 

100 pi, Gentamycin 100 pi). The tissue culture was divided every second day and 

the cell population was kept below 1 x 105 cells/mL with 10 IU IL-2/mL. At the 

time of the assay the cells were more than 95 % viable as estimated by trypan  blue 

dye exclusion test. Before the cells were seeded into the 96-well plates th ey  were 

washed th ree times with assay media to remove any free IL-2 from th e  culture. 

Cells then were seeded into each well of the 96-well plate (1 x 104 cells/ well). 

Test samples of IL-2 in concentrations: 2, 4, 8, and 16 ng loaded on 500 p,g HSA 

nanoparticles (each in triplicate) were added to the wells. Each p la te  also 

contained w ells with soluble IL-2, empty nanoparticles and untreated cells as
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controls. After incubation for either 24 hours or 4 days at 37°C, the cells were 

incubated with [3H]-thymidine (1 pCi in 50 pL of medium/ well) for 24 hours. 

The cells were then harvested (Harvester 96, Tomtec, Hamden, USA) on filters 

and treated with Meltilex A (Wallac, Turku, Finland) and counted (1450 

Microbeta Trilux, Wallac, Turku, Finland).

3.4 Results

3.4.1 Radioiodination of IL-2

IL-2 was radiolabeled by Iodogen plating technique. 40 fractions o f  the 

prepared sample were collected in different tubes after passing through PD10 

column (MW  cut-off = 5 kDa). The high MW of radiolabeled IL-2 allow s it to 

pass freely through the column. Labeled IL-2 eluted first followed by free  iodine 

as shown in figure 3.1.

3.4.2 Characterization of HSA nanoparticles

HSA nanoparticles were prepared by an adapted procedure based  on a 

previously reported method by Marty et al [200], Dynamic light scattering gave 

evidence for the formation of nanoparticles. The empty particles showed a  mean 

diameter o f  206 nm and a polydispersity index o f 0.04 as shown in figure 3.2A.

3.4.3 IL-2 conjugation to HSA nanoparticles

Loading efficiency of IL-2 in HSA nanoparticles was determined using
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radiolabeled IL-2. Most of the radioactivity was detected from the nanoparticle 

pellet. TCA precipitation of the nanoparticle pellet was done to determine the 

percent bound radioiodine in the sample. The activity from TCA precipitates 

showed that greater than 96 % of the radioactive iodine was bound to IL-2. After 

12 and 24 h o f incubation, IL-2 conjugation efficiency was 92 and 90 %, 

respectively (figure 3.4). The IL-2 conjugated particles showed an increase in 

mean diameter from 206 to 237 nm (figure 3.2B).

3.4.4 Quantification of thiol groups in nanoparticles

The number of free thiols available for disulfide bond formation in  HSA 

nanoparticle surface before and after IL-2 conjugation was determined by 5, 5’- 

Dithio-bis-(2-nitrobenzoic acid) (DTNB, also known as Ellman’s reagent) [229]. 

The results o f the thiol group determinations after treatment with raising amounts 

o f DTT are shown in figure 3.5.

An increase in the concentration of DTT from 44 to 2173 mol per mol 

HSA resulted in an increase in the number o f free thiol groups. At the highest 

concentration, the free thiol groups were calculated as 9.43 ± 0.05 mol per mol 

HSA. To assess the extent of IL-2 conjugation by disulfide linkage, HSA 

nanoparticles reduced by DTT (20 pL, 50 mg/mL) were incubated w ith 35.6 iig 

o f IL-2 for 12 h. The results are shown in figure 3.6. After treatment free thiol 

groups showed a significant decrease from 6.27 ± 0.14 to 3.99 ±0.18 mol per mol 

HSA (P<0.001, unpaired students t-test). This indicates a 37 ± 1.5 % reduction in 

the content o f free thiol group per mol HSA. The decrease in the number o f  free
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thiol groups after treatment with IL-2 reflects the formation of disulfide bonds 

between IL-2 and HSA. The IL-2 conjugated HSA nanoparticles were treated 

with DTT to break the formed disulfide bonds. After DTT treatment a significant 

increase in the free thiol group content from 3.99 ± 0.18 to 5.54 ± 0.2 m ol thiol 

per mol HSA was observed (P<0.001, unpaired students t-test).

The degree of decrease in the free thiol group content on HSA during 

disulfide linkage was dependent on the initial applied level of IL-2 (figure 3.7). 

When amount of IL-2 was increased from 8.9 to 106.8 pg, a decrease in the 

number o f free thiol groups from 5.2 ± 0.27 to 3.43 ± 0.54 mol per mol H SA  was

observed. Based on the results, the total decrease of thiol groups was more (13.2 x

8 8 10" moles) corresponding to the total increase o f IL-2 added (0.58 x 10’ moles).

Thus it is expected that all of the added IL-2 was conjugated to the particles.

3.4.5 Determination of the in vitro activity of IL-2 using the CTLL-2 assay

The CTLL-2 assay was established to investigate the bioactivity o f  IL-2 

conjugated HSA nanoparticles. Figure 3.8 compares the biological activity o f  IL-2 

conjugated HSA nanoparticles with soluble IL-2 after 24 h culture. The activity of 

IL-2 conjugated particles was found to be lower than soluble IL-2 during this 

period. Comparison of bioactivity over a period o f 4 days in culture is shown in 

figure 3.9. At this time, IL-2 conjugated HSA nanoparticles (at IL-2 conjugation 

levels o f 4, 8 and 16ng/500 pg of HSA) showed higher activity than the  soluble 

IL-2. At a lower IL-2/HSA conjugation content (2 ng IL-2/500 pg of HSA), no
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significant difference between the bioactivity o f soluble and HSA conjugated IL-2 

was observed (p >0.05, unpaired students t test).

3.5 Discussion

The radioiodination of proteins usually involves the electrophilic aromatic 

substitution of radioiodine for the aromatic protons of tyrosine in a protein 

molecule. Electropositive radioiodine necessary for this reaction has been 

prepared by using the solid phase reagent, Iodogen, which was first described by 

Fraker and Speck [230], Iodogen has a number of advantages over traditional 

iodinating reagents including its rapid and selective action. It is soluble in 

chloroform but insoluble in aqueous solutions. This characteristic allows a plating 

technique to be used in the iodination. After Iodogen plating to the reaction 

vessel, aqueous solution of IL-2 is added to the reaction vessel followed by 

radioiodine. The electrophilic species formed in the solid state reaction between 

iodine and Iodogen then undergo an electrophilic aromatic substitution w ith the 

dissolved IL-2.

In the present study, protein nanoparticles were made of H SA . The 

desolvation of HSA with organic solvents followed by cross-linking with 

glutaraldehyde is a commonly used method for the preparation o f  protein 

nanoparticles [200]. Glutaraldehyde was used at a minimal amount (25 %) to 

stabilize th e  particles. Glutaraldehyde forms chemical cross-links by linking  the 

free amino groups on the surface of the HSA nanoparticles [231]. HSA 

nanoparticles of approximately 200 nm were prepared using this method.
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Polydispersity index gave indication of the monodispersity of the particles and 

absence of aggregated species.

IL-2 was linked to the surface of HSA nanoparticles through disulfide 

bonds. Disulfide bonds (-S-S-) are covalent bonds formed between sulfur atoms 

of cysteine residues through oxidation.

Cys-SH + SH-Cys -► C ys-S-S -C ys 

Thiol groups (-SH) of cysteine on HSA nanoparticles were used as target site for 

the covalent linkage of IL-2. One mol of the protein HSA consists of 17 disulfide 

bonds. It has to be assumed that after the preparation of HSA nanoparticles a 

certain amount of disulfide linkages of the HSA molecules remains on th e  surface 

o f the particulate system. Free thiol groups were generated on the nanoparticles 

by reducing these disulfide bonds with the strong reducing agent, D T T  [232], 

DTT may also reduce the disulfide bonds inside the particles. The particles were 

subsequently incubated with IL-2 for formation of a disulfide bond, preferably 

through free thiol group of cysteine-125 of IL-2 as shown in the scheme (figure 

3.3).

The HSA nanoparticulate system was characterized concerning the 

number o f  available thiol groups. This was determined using Ellman’s  reagent. 

Ellman’s reagent reacts with a free thiol to yield a mixed disulfide an d  TNB. 

TNB is a “ colored” species produced in this reaction, which was quantified. The 

results o f  th iol quantification indicate that free thiols were readily available on 

HSA nanoparticle surface as well as bulk before loading and IL-2 was conjugated 

by disulfide bond formation not simple adsorption. Further investigations
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revealed that IL-2 conjugation on HSA nanoparticles is dose-dependent.

The nanoparticles loaded with IL-2 were subsequently tested in the  CTLL- 

2 bioassay to determine the effect of the covalent linkage on its biological 

activity. CTLL-2 cells are dependent on IL-2 for their growth and therefore ideal 

for determining the biological activity of IL-2 in vitro. The incorporation of 

tritiated thymidine into DNA provides a quantitative estimate of IL-2 induced 

CTLL-2 proliferation [233],

For lower IL-2/HSA loading ratios the differences in CTLL-2 proliferation 

between the conjugated and free IL-2 were not significant after 24 h or 4 days of 

incubation. When the ratio of conjugated IL-2 to HSA particles was increased, the 

cell proliferation generally increased, but the proliferative effect of conjugated IL- 

2 was usually less than that of soluble IL-2. The study suggests that IL -2 bound 

on the nanoparticles is capable o f engaging IL-2 receptors on the ta rg e t cell 

surface and induce clonal expansion of T cells but to a lower extent to free IL-2. 

Moreover, IL-2 linked to nanoparticles retained its functional activity o v e r the 4 

day culture period. Whereas free IL-2 at higher concentration have shown a 

decrease in  its bioactivity after 4 days of incubation (Figure 3.8B). T h e  higher 

activity w ith  conjugated IL-2 may be due to the slow release of IL-2 from the 

particles over the 4 day culture period.

IL-2 coupled to polystyrene beads to form a solid matrix has show n to be 

biologically active [234]. Here, IL-2 was linked to the matrix through 

carbodiimide bond. The released IL-2 was able to increase the cytotoxicity o f rat 

spleen cells in vitro. The release may be due to the gradual dissolution o f
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aggregated IL-2 bound to the bead matrix. The i.p. injection of IL-2 coupled 

beads resulted in the in vivo activation of nonspecific cytotoxic cells in  that 

compartment. However, this formulation is not safe for human use because 

polystyrene is not biocompatible.

3.6 Conclusions

In the present study, HSA nanoparticles were used to covalently attach IL- 

2 through disulfide bond formation. The resulting formulation has shown a 

reduced but prolonged biological activity in terms of CTLL-2 proliferation when 

compared to free IL-2.
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Figure 3.2. Size distributions (intensity-mode analysis) of (A) em pty HSA 
nanoparticles and (B) IL-2 conjugated particles as measured by dynamic light 
scattering instrument (Zetasizer 3000).
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Figure 3.3. Scheme of generation of thiol groups on HSA nanoparticles and 
subsequent conjugation of IL-2.
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Figure 3.5. Generation of thiol groups using DTT: number of reactive thiol 
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Figure 3.6. Quantification of the free thiol groups on HSA nanoparticle surface 
before and after treatment with DTT (mean ± S.D; n = 3).

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<
COX

6

"o
E

5

o
4

E, 3
to
CL
=3
O

2
i_cn

"o
1

I—
0

0 5 0

A m ount o f IL-2 (p,g)

100

Figure 3.7. Reduction in the quantity of free thiol groups on HSA nanoparticles 
(5 mg) with raising amounts of IL-2 (mean ± S.D; n = 3).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£ 3 0 0 0 0 0  n 

U  225000  

2  150000
hJ
^  75000

i=ie
rtl-Hoi
oIm

Pl,

0

V

V  j ; ■  I L 2  conjugated NP  

B  soluble IL-2

□ empty NP

□ untreated cells

Amount of IL-2

Figure 3.8 A. Comparison of bioactivity of IL-2 conjugated HSA nanoparticles 
with soluble IL-2, empty nanoparticles and untreated cells after 24 h culture, 
(mean ± S.D; n = 3). The amount of HSA nanoparticles was 500 pg in the 
samples. *p< 0.05

g -  120000 n

S  90000

l

E-
V

D

o
1 -1

Ph

60000 -

30000 -

V

_ *

/  /

■  IL-2 c onjugated NP 

O o lu b le IL 2  

□  empty NP 

B  untreated cells

Amount of IL-2
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General discussion and conclusions
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The main limitations of systemic drug delivery include an uneven bio­

distribution throughout the body, the necessity o f a large dose to achieve high 

local concentration and adverse side effects due to such high doses. There is now 

a growing understanding that innovative delivery systems would not only increase 

safety levels, but also improve the overall performance of drugs [235], O ne o f the 

primary objectives in the design o f novel drug delivery systems is delivery o f the 

drug to its site of action at a desired concentration for a desired time. T his site- 

specific delivery will enhance efficacy of the drug and reduce unwanted side 

effects. Among the promising systems to achieve this goal are colloidal drug 

delivery systems [201].

Our study has investigated the development of a colloidal dmg delivery 

system for interleukin-2, a clinically approved drug, which causes severe side 

effects in  addition to its therapeutic effects. IL-2 can stimulate a variety  of 

immunological mechanisms such as activation of NK cells, expansion o f  cancer 

antigen-specific T helper and cytotoxic T cells, and potentiation of their effector 

mechanisms. The therapeutic benefits of IL-2 are subject to its availability at the 

tumor site. However, the administration of high systemic doses of IL -2 causes 

various side  effects. The objective of this study was to develop a delivery system 

that can reduce the systemic concentration of IL-2 but increase the accum ulation 

of IL-2 a t tumor sites and lymphoid organs. For this purpose, first, the 

encapsulation of IL-2 in MePEO-b-PDLLA block copolymer m icelles was 

examined. The copolymer was synthesized and particles were characterized with 

respect to  size, polydispersity and shape. However, no appreciable encapsulation
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of IL-2 was observed in these particles. Next, the conjugation of IL-2 w ith  HSA 

nanoparticles through disulfide linkage was assessed. To accomplish th is , free 

thiol groups were introduced on the particles. The results demonstrate th a t IL-2 

was successfully linked to HSA nanoparticles through disulfide bond formation. 

Moreover, IL-2 showed some degree of bioactivity after conjugation to particles.

Site-specific delivery of IL-2 at the tumor site and lymphoid organs using 

the particles will result in less systemic concentration and thereby few er toxic 

effects. The lower amount of degradation of HSA-IL-2 particle will increase the 

half-life of IL-2. Future studies that involve testing o f the formulation in vivo for 

characterizing pharmacokinetics, biodistribution, in vivo toxicity and antitumor 

efficacy o f IL-2 nano-carriers are suggested.

The benefit of using HSA nanoparticles is its biocompatibility, easy 

storage, greater stability during storage and the possibilities fo r surface 

modification. Extreme care should be taken on the source of albumin. T o  reduce 

the chance o f infectious diseases or other blood related disorders, blood donors 

for albumin production has to be carefully screened [194],

The novel formulation of IL-2 conjugated HSA nanoparticles are  intended 

for intravenous administration. The leakiness of tumor vasculature enables the 

nanoparticles to enter the tumor. One obstacle against tumor targeted delivery  by 

HSA nanoparticles is their non-specific uptake by the RES. HSA particles may 

rapidly be cleared and taken up from the circulation by RES (liver and sp leen  and 

macrophages). Absorption of PEO containing polymers on the HSA surface may 

be used in  future studies as an additional strategy to prevent the uptake o f  HSA
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particles by RES.

For delivery to the tumor-draining lymph nodes, the FISA nanoparticles 

can be administered subcutaneously near the tumor. The uptake of the particle 

into the lymphatics is a passive process, occurring naturally as the lym ph is 

formed [236], To allow significant accumulation in many lymph nodes, the 

particles can be injected subcutaneously at other sites as well. Another application 

would be the use of IL-2 nanoparticles to boost the immune system o f  HIV 

patients. The toxicity can be minimized by subcutaneous injection. F o r the 

management of pulmonary metastases and primary lung cancers, the nanoparticles 

can be administered by aerosol route. Furthermore, IL-2 nanoparticles w ou ld  also 

find application in the treatment o f autoimmune diseases. In this case intravenous 

administration of the particles can cause expansion of Treg cells, which regulate 

autoimmunity.

Alternative formulations that attracted attention for IL-2 delivery include 

PEG-IL-2 and liposomes. Since PEG-IL-2 only increased half-life b u t did not 

reduce toxicity, its clinical development has been abandoned [237], Liposom es 

are promising because o f their good biocompatibility and low toxicity. Liposom al 

IL-2 have been utilized to activate the immune system with decreased toxicity 

[238], The delivery of IL-2 liposomes by inhalation was found to be w ell tolerated 

and feasible in patients with pulmonary metastases [239], No significant toxicity 

was observed in this phase 1 trial. Nevertheless, further studies o f inhalational IL- 

2 liposomes to determine its efficacy as an anti-cancer therapy is needed.
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