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Abstract 

 

The main objective of this thesis was to assess the capabilities of an Unmanned Aerial System 

(UAS) equipped with a multispectral camera at the Santa Rosa Environmental Monitoring Super 

Site, Guanacaste, Costa Rica (SR-EMSS). Nowadays, available solutions for processing UAS 

multispectral imagery consist of end-user solutions that are mostly composed of commercial 

software that follows predefined processing chains. In many cases, these processing changes are 

created without an understanding of the effects its various steps might or will have on final data 

quality. As such, this thesis is divided into four chapters. Chapter One of this thesis explored the 

gaps and opportunities regarding the use of UAS in environmental monitoring and research at the 

SR-EMSS. Chapter Two compared the error at the band-level as well as spectral vegetation 

indexes (VI) generated from at a grass-covered firebreak using two methods to calibrate the 

surface reflectance at four different acquisition altitudes. Chapter Three of this thesis quantified 

the extension of dead woody components using a multispectral UAS and machine learning (ML) 

techniques in five temporary plots of a secondary tropical dry forest. Chapter Four synthesised 

the main challenges of this thesis, as well as discussed future paths and scientific gaps on topics 

related to work presented here.  Results from Chapter Two demonstrated that using at least three 

reference materials for the calibration of the observed UAV surface reflectance; it can be 

possible to increase the accuracy of those values associated to a given spectral band. However, 

differences between calibration methods were statistically significant only for bands on Blue, 

Red, Red Edge, and NIR spectrum of light; no significant differences were observed for the 

Green band. Chapter Two also demonstrated that spectral errors associated to a given band can 

be up to 10% when compared with information derived from a field spectrometer. The 

comparison of ten Vegetation Indexes (VIs) generated from the multispectral camera and those 
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from a field spectrometer, indicated that seven out of ten camera derived VIs were lower than 

those derived from the field spectrometer. In the context of Chapter Three, this thesis 

demonstrated the advantages of using Machine Learning (ML) techniques to conduct UAV 

derived land cover classification tasks associated to the determination of dead woody 

components (e.g. dead trees). Ten ML techniques were tested and compared. Results indicate 

that neither of the ten algorithms used and tested (with a single set of parameters) overperformed 

all others in all situations. In this study multispectral UAS proved to be a useful tool to develop 

monitoring programs aimed to estimate the extent of tree mortality in a tropical dry forest 

environment. The use of future hyperspectral and thermal cameras integrated into UAVs, as well 

as their integration with both terrestrial and drone base LiDAR technologies, provide new 

emerging opportunities towards the monitoring of the impact of climate change in tropical 

regions. 

 

 

Keywords: Machine Learning, radiometric transformation, tropical dry forests, Unmanned 

Aerial Systems, Unmanned Aerial Vehicle. 
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Definitions 

 

Multispectral sensor Referred as a sensor that captures radiance values in a small number of 

discrete and broad spectral bands across some regions of the 

electromagnetic spectrum. 

Spectral band Measured as the sections of a wavelength of light captured by optical 

sensors. 

Spectral signature Measured as the response of the reflectance across the electromagnetic 

spectrum. 

Spectral index Referred as a mathematical expression that combines two or more 

spectral bands to express a trait of an observed target. 

Spatial resolution The measure of the pixel size as a projection of a detector element into 

the ground. 

UAV Referred to an aircraft remotely piloted by a human pilot. 

UAS 

 

Referred as an encompassing description that encapsulates the aircraft 

(UAV), the ground-based controller, and system communication that 

connect them. 
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1. Chapter One – Introduction 

1.1. Introduction 

 

Tropical Dry Forests (TDFs) have been described as an ecosystem with the highest structural and 

physiological diversity of life forms in the world (Sánchez-Azofeifa et al. 2013). TDFs are 

forests with a pronounced seasonality in rainfall distribution and several months of drought 

(Portillo-Quintero and Sanchez-Azofeifa, 2010). As a consequence of this long dry season, the 

common phenological response for most of the woody species is deciduousness, with almost 

50% of trees present being drought deciduous (Kalacska et al. 2004). However, the number of 

species and individuals with this response varies strongly with successional stage and topography 

(Hilje et al. 2015; Kalacska et al. 2004). The mean annual temperature is >25 °C, the total annual 

precipitation ranges between 700 and 2000 (Portillo-Quintero and Sanchez-Azofeifa, 2010), and 

the potential evapotranspiration exceeds the precipitation (Van Bloem, Murphy, and Lugo 2004). 

Furthermore, TDFs are considered the most endangered and threatened ecosystems in 

comparison with others tropical forests (Sánchez-Azofeifa et al. 2013). As of today, there has 

been a loss of almost 60% of their original total extent, and the remaining forests are 

experiencing high levels of forest fragmentation (Portillo-Quintero and Sanchez-Azofeifa, 2010). 

Nowadays the Neotropical dry forests exist as fragments of a once large forest that reached from 

Mexico to Northern Argentina (Portillo-Quintero and Sanchez-Azofeifa 2010).  

In 2003,Sanchez-Azofeifa et al. (2003) foresaw remote sensing research priorities in the TDF for 

a better understanding of this ecosystem. These priorities included: i). the development of 

techniques for the identification and characterisation of tropical dry secondary forests and ii) the 

development of baseline spectral data and tools for the characterisation and detection of single 

tree species. These priorities led to a series of studies to: i) understand the relationships between 

the spectral reflectance observed by Landsat TM and forest structural characteristics of dry forest 

succession in Costa Rica (Arroyo-Mora et al. 2005), ii) use  MODIS surface reflectance imagery 

at 500m resolution to assess the extent of Neotropical dry forests (Portillo-Quintero and 

Sanchez-Azofeifa 2010), iii) use EO-1 Hyperion hyperspectral satellite imagery for mapping 

structure and floristic diversity as a way of assessing a regional ecological fingerprint (Kalacska 

et al. 2007). In addition, short-wave infrared information (SWIR, 1000 to 2500 nm) and a 
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multiple criteria spectral mixture analysis was used to study the structural variability of different 

successional forests (Cao et al. 2015). 

More recently Sanchez-Azofeifa et al. (2017a) reviewed trends in remote sensing technologies 

for the conservation and the study of tropical forests. In this review, six emerging trends where 

highlighted in relation to: i) passive remote sensors, ii) passive hyperspectral and multi-angular 

sensors, iii) light detection and ranging sensor (LIDAR), iv) near-surface remote sensing, v) 

ground-based observatories, and vi) sensor fusion. Ensuing publications that include Sánchez-

Azofeifa et al. (2017b) have examined how the abundance of liana affects the prediction of 

Terrestrial Laser Scanner and Hemispherical Photos in detecting the level of a succession of a 

given forest stand. Li et al. (2017) pursued the identification of tropical dry forests and their 

succession,  and the determination of their extent via the use of machine learning techniques and 

fusion of LiDAR and hyperspectral imaging data. As well as, Li et al. (2018) that quantified the 

relative coverage of dead trees, liana-infested, and non-liana-infested trees, using multispectral 

UAS data and ML techniques.  

This thesis aims to contribute to the development of near-surface remote sensing at the Santa 

Rosa Environmental Monitoring Super Site (SR-EMSS). The main objective of Chapter Two 

was to evaluate the impact on the error values of two radiometric transformations used to 

translate digital numbers to reflectance values of a MicaSense RedEdge 3M multispectral camera 

onboard an UAS at SR-EMSS’s grass-covered firebreaks. The primary objective of Chapter 

Three was to detect and quantify dead stand trees, fallen trees and decaying trees with dead 

structures using a multispectral UAS and ML techniques at SR-EMSS’ secondary dry forests. 

Though there has been significant remote sensing research of TDF, under humid conditions, the 

application of optical remote sensor data can suffer constraints as a consequence of the high 

humidity (Sanchez-Azofeifa et al. 2017).  For example, Kalacska et al. (2016) on the “Quality 

Control Assessment of the Mission Airborne Carbon 13 (MAC-13) Hyperspectral Imagery from 

Costa Rica” reported a spectral misalignment in some flights attributed to the acquisition of data 

under extremely humid conditions. Specifically, Kalacska et al. (2016) highlighted that in 

consultation with the sensor manufacturer that the issue was not previously reported. 

Near-surface remote sensing has been rapidly evolving through the use of Unmanned Aerial 

Systems (UAS). It has been claimed that UAS offer timely and cost-effective solutions to gather 
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data at large-scales, low-altitude and high spatial resolution, with little atmospheric interference 

(Anderson and Gaston 2013; Colomina & Molina, 2014;  Ballesteros et al., 2014).  However, 

available solutions for processing UAS imagery consisted of end-users solutions that follow 

predefined processing chains in commercial software; that only allows the use of a single white 

reference panel in the radiometric calibration. In this context, chapter Two compared the relative 

error of reflectance values at the band-level as well as spectral vegetation indexes (VI) from a 

MicaSense Red Edge TM 3 multispectral camera onboard of a Draganfly XP-4 helicopter at the 

SR-EMSS’ grass-covered firebreaks. This was done using two radiometric transformations and 

four acquisition altitudes. The first transformation, named as single-point, only considers the 

values of a single-white reference panel as suggested by Ahmed et al. (2017). The second 

transformation suggested by Smith and Milton (1999) and Pozo et al. (2014) is the empirical line 

method that was developed with three reference panels. 

UAS have been used in many fields such as, estimation of canopy attributes (Chianucci et al. 

2016), quantification of  tree high (Bendig et al., 2015;  Panagiotidis et al., 2016;  Zarco-Tejada 

et al., 2014), vegetation structure (Cunliffe, Brazier, and Anderson 2016; Panagiotidis et al. 

2017), and biomass (Li et al. 2016).  UAS has also been contributing to the monitoring of 

wildfires (Yuan, Zhang, & Liu, 2015; Ambrosia et al., 2011), and ecological restoration 

monitoring (Knoth et al., 2013; Zahawi et al., 2015).  

There is growing evidence suggesting that many forests could be increasingly vulnerable to 

extensive tree mortality triggered by drier and hotter climatic conditions (Anderegg, Kane, and 

Anderegg 2012). These conditions are causing tree mortality to become a dominant driver of 

forest aboveground carbon turnover (Carvalhais et al. 2014).  

Severe and recurrent widespread mortality events can have long-term impacts on a wide range of 

populations, communities, and ecosystems (Zeppel, Anderegg, and Adams 2013). Tree mortality 

can also impact biodiversity, and ecosystem functions such as nutrient and carbon cycling, 

ecosystem services, and biophysical and biogeochemical climate feedbacks.  

In general, ML has become a significant component of remote sensing data analysis, mainly 

because, a computer algorithm can acquire knowledge from existing data using specific 

inference strategies such as induction or deduction (Ghamisi et al. 2017; Maxwell, Warner, and 

Fang 2018; Plaza et al. 2009). A number of studies have found that these methods tend to 
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produce higher accuracy compared to traditional parametric models (Kuhn and Johnson 2013; 

Maxwell et al. 2018). For instance, on the identification of the extent and succession of tropical 

dry forests at SR-EMSS using ML and hyperspectral data (Li et al. 2017), and a multiple criteria 

spectral mixture analysis and SWIR data (Cao et al. 2015). On the quantification of the relative 

coverage of dead trees, liana-infested, and non-liana-infested trees in a temporary plot at SR-

EMSS using multispectral UAS data and ML techniques.  

Chapter Three contributed to the quantification of dead woody components in a gradient of 

secondary tropical dry forests at the SR-EMSS, using a broadband multispectral UAS and  

machine learning (ML) models. Ten state-of-the-art machine learning algorithms in remote 

sensing were used: Averaged Neural Network (ANN), Conditional Inference Tree (CIT), C4.5-

like Trees (C45), Deep Neural Network (DNET), Gradient Boosting Machines (GBM), Random 

Forest (RF), Neural Network (NNT), Support Vector Machines with Linear Kernel (SVML), 

Support Vector Machines with Polynomial Kernel  (SVMP), and Support Vector Machines with 

Radial Kernel  (SVMR). 
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2. Chapter Two – Effect of acquisition altitude and radiometric transformation of 

multispectral data acquired with an Unmanned Aerial Vehicle on Vegetation Indexes at 

SR-EMSS. 

2.1. Keywords 

Tropical grasslands, radiometric transformations, near remote sensing, vegetation index, 

unmanned aerial system. 

2.2. Introduction 

With the increasing accessibility and payload versatility of Unmanned Aerial Vehicles (UAV), 

many researchers are now exploring scientific applications to study ecosystems that would 

otherwise be difficult or impossible to achieve using satellite or airborne data. Small and low-

cost UAV with multispectral, hyperspectral and infrared imaging sensors are particularly well-

suited for addressing current issues in remote sensing of tropical ecology and conservation 

(Sanchez-Azofeifa et al. 2017a). It has been suggested that Unmanned Aerial Systems (UAS) are 

a viable option for mapping canopy structure even under cloudy conditions (Aasen et al. 2018; 

Sanchez-Azofeifa et al. 2017a; Dandois, Olano, and Ellis 2015).  

Multispectral data can provide information about leaf properties from leaf reflectance by making 

use of absorption features associated with foliar organic compounds. Vegetation in the visible-

near infrared (VNIR, 400 – 1000 nm) and  shortwave infrared (SWIR,1000 to 2500 nm) presents 

five spectral absorption regions, as a result of electron transitions in chlorophylls and the 

bending/stretching of the Oxygen-Hydrogen bond in water and other chemicals (Curran 1989). 

However, the radiance or reflectance measurement at one single band cannot be used as a metric 

for chemicals concentrations (Gamon and Surfus 1999) because absorption features are 

broadened by the scattering within the leaf, resulting in interference between adjacent bands 

(Harris et al. 2014). Besides, some organic compounds absorb at similar wavelength regions, 

distorting many absorption features (Sánchez-Azofeifa et al. 2009). In consequence, a single 

band is never uniquely related to a specific chemical (Banninger 1988; Curran 1989).  

Spectral vegetation indexes (VI) are mathematical combinations of different spectral bands 

mostly in the VNIR region of the electromagnetic spectrum. The main purpose of VI is to 

enhance the information contained in spectral reflectance data, by extracting the variability due 
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to vegetation characteristics while minimizing soil, atmospheric, and sun-target-sensor geometry 

effects (Viña et al. 2011). Comparisons of VI with extracted pigment concentrations suggest that 

in vegetation, there are broad and species-specific relationships between VI and leaf pigments 

and leaf structural components (Castro-Esau, Sánchez-Azofeifa, and Caelli 2004; Harris et al. 

2014). In general, high values of NDVI are associated with healthy photosynthetic foliage  result 

of high water and pigments concentrations (Rullan-Silva et al. 2013). Contrary to senescence 

foliage that is associated with a drop in NDVI values (Dash et al. 2017). 

Though significant research in remote sensing in tropical environments, under humid conditions, 

has resulted from the use of remote optical equipment, such equipment can suffer constraints in 

the application of the data (Sanchez-Azofeifa et al. 2017a). This is because of the interference 

from aerosols, water vapour and clouds that can restrict the extent to which the imagery acquired 

from a UAS can be immediately used as a management tool (Dunford et al. 2009; Sanchez-

Azofeifa et al. 2017). Kalacska et al. (2016) detected a significant spectral misalignment in a 

number of flights, which was attributed to the acquisition of data under extremely humid 

conditions because atmospheric constituents such as water vapour can vary significantly over 

short distances (Gao, Goetz, and Zamudio 1991). On the other hand, to acquire multispectral or 

hyperspectral data compensation for differences in illumination during the acquisition time must 

be made. In a field collection even with a remarkably uniform cloud cover, the uniformity of the 

downwelling illumination is questionable which can could cast doubt on the accuracy of the in-

scene calibration results.  Therefore, observed reflectance obtained under diffuse conditions 

could differ from those observed under illumination conditions dominated by a direct 

illumination which in turn would impact any spectral component.  

As the commercial use of multispectral sensors from UAS grows, tools for processing UAS 

multispectral imagery have become more accessible. However, those tools consist of commercial 

end-users software such as PIX4D or Agisoft-photoscan that follow predefined processing chains 

without a complete understanding of the effects that various steps might have on data quality. In 

these programs, the radiometric transformation of digital numbers (DN) to reflectance values 

only considers the values from a single white panel (single point method). On the other hand, in 

remote sensing there have been other methods which use at least three reference panels, also 

known as the empirical line method  (Smith and Milton 1999; Pozo et al. 2014). 
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The single and multiple points methods let to measure of radiance (W·m−2· sr−1· nm−1) for any 

pixel from a single image in a particular camera and channel. However, both methods rely on 

assumptions that need to be recognized to interpret  results accurately. These  assume that there 

are no differences in illumination across the image; consequently, changes in radiance due to 

clouds, shadowing or topography could be ignored (Smith and Milton 1999). Also, they assume 

that the Earth's surface consists of Lambertian reflectors, and the effects of the atmosphere are 

uniform across scenes (Smith and Milton 1999). The use of UAS can solve some of those 

assumptions, for instance, the flight time of a UAV is limited to 10 to 15 min, in consequence, 

the chance of changes in illumination and radiance are diminished. Therefore, the relatively low 

acquisition altitude can reduce the effects of the atmosphere and clouds shadowing. This study 

compared the relative error of reflectance values at the band-level as well as spectral vegetation 

indexes (VI) from a multispectral camera onboard of an UAV at the SR-EMSS’ grass-covered 

firebreaks. Using two radiometric transformations and four acquisition altitudes. 

2.3. Materials and methods 

2.3.1. Study site 

The study area is located at SR-EMSS, Guanacaste, Costa Rica (Figure 2.1). The mean 

temperature is 25 °C, and the annual rainfall ranges from 900 to 2600 mm. The dry season lasts 

for a minimum of 5–6 months, it usually extends from late December to mid-May (Sánchez-

Azofeifa et al. 2017b). Historically, Jaragua grass (Hyparrhenia rufa) from East Africa was 

introduced around 1940 (Janzen 2000) to create grass pastures for cattle as part of an intense 

deforestation process, traditionally associated with anthropogenic fires. Santa Rosa was 

extensively managed as a cattle ranch until the mid-1960s when a significant portion of the ranch 

was expropriated and subsequently transformed into a national park. Nowadays, the landscape 

comprises a mosaic of pastures and forests in various stages of regeneration that once suffered 

from anthropogenic fires and intense deforestation (Cao et al. 2015; Sánchez-Azofeifa et al. 

2017b). Specifically, the data collection was conducted in grassland areas dominated by Jaragua 

grass that are used as firebreaks. 
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2.3.2. Data collection and processing 

2.3.2.1. Panel calibration and instrument optimization  

Instrument optimization and reflectance reference measurements were performed prior to sample 

measurements. Two UniSpec spectroradiometers (PP Systems, USA), two ASD Illuminator 

lamps, and  a MicaSense RedEdge TM 3 camera were used to collect directional-directional 

reflectance. The MicaSense RedEdge TM 3  provides five separate 16-bit GeoTIFF images, each 

covering a specific spectral range. The blue band (B1) is centered at 475 nm, the green band (B2) 

is centered at 560 nm, the red band (B3) is centered at 668 nm, the red edge band (B4) is 

centered at 717 nm, and the NIR band (B5) is centered at 840 nm (Table 2.2).On the other hand, 

the UniSpec spectroradiometers (Table 1) are capable of measuring continuous reflectance from 

310 to 1100 nm (Harris et al. 2014).  

The spectral signatures and images of the manufacturer calibrated white panel that is used only 

in laboratory activities (Spectralon, LabSphere, North Sutton, NH, USA), the Spectralon white 

panel the MicaSense's halon panel (As a grey panel), and a black presentation cardboard were 

collected in laboratory with controlled illumination, temperature, and humidity. Specifically,the 

spectral signatures were adquired following the protocol of Castro-Esau, Sánchez-Azofeifa, and 

Rivard (2006). A dark scan was taken for every ten sample measurements. The integration time 

was adjusted with the fibre-optic exposed to white reference conditions, in order to the spectrum 

would peak but not saturate. A white reference measurement was taken prior to each panel 

measurement. The white reference measurements were obtained with the lamps directed toward 

the laboratory reference panel. In all cases, reflectance spectra were obtained by determining the 

ratios of data (Equations 1 and 2) acquired for a sample (an average of 10 scans) to data acquired 

for a laboratory white reflectance panel. 

The UniSpec spectroradiometers are available in two configurations, for a single channel 

(UniSpec-SC) and dual channel (UniSpec-DC). In this study, a UniSpec-DC was used in the field 

to collect spectral signatures of the reference materials. However, before using the UniSpec-DC 

in the field, it was cross-validated at laboratory conditions with the Unispec-SC to verify the 

precision of its recorded values. The UniSpec-DC was equipped with an upward looking sensor 

head fitted with a cosine diffuser that simultaneously measured solar irradiance and target 

reflectance to minimise the impact of changes in the atmosphere on reflectance measurements.  
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During the laboratory acquisition, the upward sensor was located next to the sampled panels and 

the same altitude. In consequence, the reflectance from the UniSpec-DC was obtained by 

applying equation (1).  

𝑅𝐷𝐶 =  
𝑅 𝑡𝑎𝑟𝑔𝑒𝑡

𝐼 𝑑𝑜𝑤𝑛𝑤𝑒𝑙𝑙𝑖𝑛𝑔⁄

𝑅 𝑝𝑎𝑛𝑒𝑙
𝐼 𝑑𝑜𝑤𝑛𝑤𝑒𝑙𝑙𝑖𝑛𝑔⁄

  (1) 

In equation (1) RDC is the corrected reflectance, R target / I downwelling is the raw reflectance 

factor and R panel / I downwelling is the cross-calibration function. Using the laboratory white 

reflectance panel, dedicated only to laboratory activities, as the R panel and the three reference 

panels as R target. On the other hand, the readings the UniSpec-SC (equation 2), RSC is the 

corrected reflectance, R target is the radiance from the three reference panels, and R panel is the 

radiance from the white reference panel that is dedicated only to laboratory activities. The 

UniSpec-SC required measures of the laboratory white reference panel after every collected 

sample.   

The MicaSense data was acquired in the same laboratory conditions with controlled illuminated 

conditions. 80 multispectral images were acquired from the four reference panels. Precisely, 20 

samples from the laboratory white Spectralon panel, 20 samples from the white Spectralon 

panel, 20 samples from the Mica Sense’s halon panel, and 20 samples from the black 

presentation cardboard were collected.  

A Pearson correlation analysis was performed to cross-validate the reflectance values (RDC and 

RSC) from the Unispec spectroradiometers. Comparing 10 datasets of 15 spectral signatures per 

calibrated panel, for a total of 150 spectral signatures of the three calibrated panels. Because of 

the differences in spectral resolution and wavelength coverage between the MicaSense camera 

and the UniSpec-DC spectroradiometer, the UniSpec values were resampled to match the 

spectral resolution of the MicaSense bands (Table 2.2), using the spectral resampling process 

available in ENVI (Exelis Visual Information Solutions, Boulder, Colorado, EEUU, v.5.3). 

𝑅𝑆𝐶 =  
𝑅 𝑡𝑎𝑟𝑔𝑒𝑡

𝑅 𝑝𝑎𝑛𝑒𝑙
 (2) 
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2.3.2.2. Dark signal noise correction  

Previous studies of calibration of remote sensing data pointed out that instruments are 

susceptible to the readout noise and thermal noise related to sensor temperature and integration 

time, which is known as the dark signal noise (Aasen et al. 2018). Practical approaches for dark 

signal noise removal include i). acquired closed shutter images; ii). thermal characterization of 

the dark signal non-uniformity in the laboratory at multiple integration times and iii). measures 

of “black pixels” within the image using no illumination (Aasen et al. 2018; Babey and Soffer 

1992). In this study, the dark signal noise from the field spectrometer was acquired while the 

shutter was closed, while for the camera it was measured using 30 images of a black panel 

acquired under no illumination in the laboratory. 

2.3.2.3. Field acquisition 

From June 2017 through July 2017, 12 UAS flights missions were performed at six sites located 

within the SR-EMSS (Figure 2.1a). Each location was situated in a firebreak patch with a ground 

surface cover composed of a mixture of Jaragua grass and exposed bare soils, which belong to 

the orders Inceptisols and Entisols according to the USDA soil taxonomy (Figure 2.1b, 2.1c, 

2.1d). A total of 180 samples delineated with polyvinylchloride (PVC) square frames were 

collected with a multispectral UAS and field spectrometer (Figure 2.1b, 2.1c), adapting the 

protocols of Smith and Milton (1999) and Miura and Huete (2009). The UniSpec-DC 

spectrometer (Table 2.1) mounted in a tripod at 0.75m from the ground was used to collect 

spectral signatures of vegetation and soil samples delineated by PVC frames of 0.5 m by 0.5 m. 

On each site were spread 30 PVC frames in a linear orientation with a distance between frames 

of 0.5 m (Figure 2.1b, 2.1c, 2.1d).  

The UAS multispectral data were obtained using a MicaSense RedEdge TM 3 camera onboard a 

Draganflyer X4-P (Table 2.3 and Figure. 2.2b). The field data collection was limited  to clear 

and sunny conditions, to mimic the reflectance acquired during the laboratory calibration, 

bidirectional reflectance. The 30 UAS multispectral samples per site were collected on two flight 

missions (with a time difference of less than 10 min.), acquiring 15 PVC frames per flight 

mission. On each flight mission, three to five images were systematically acquired at four 

different altitudes from the ground: at 100 m, 75 m, 50 m and 25 m to investigate any effect of 
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the acquisition altitude in the MicaSense reflectance values. To perform a radiometric 

transformation, immediately before and after each UAS’s flight mission five multispectral 

images at 1.5m from the ground (Figure 2.2d) and 30 spectral signatures of the three calibrated 

reference materials were acquired with the UniSpec-DC spectrometer and the MicaSense camera, 

adapting the calibration framework of  Miura and Huete (2009) and Smith and Milton (1999). 

Specifically, that calibration data was acquired following the protocol of Miura and Huete 

(2009); however, in this study was used three reference materials following the findings of Smith 

and Milton (1999). Because of  Miura and Huete (2009) only considered white reference 

materials. 

A spectrally independent angular correction factor of 0.95 was applied to the dark reference 

panel, following the suggestions of Kalacska et al. (2016). In the case of the white and grey 

(MicaSense panel) panels this factor was not applied because the material of both panels is  

barium sulphate, hence, those panels are lambertian surfaces. 

2.3.2.4. Data processing 

As previously pointed out available commercial solutions for processing UAS multispectral 

imagery such as PiX4D or Agisoft follow predefined processing chains mostly designed to end 

user. The supporting material of those solutions does not provide enough technical information 

to fully understand the effects that various processing steps might have on data quality. 

Preliminary products from those solutions provided unusual and useless values when the 

radiometric calibration was applied to the mosaicking process. Because at the time of the field 

collection, MicaSense released a firmware update that negatively affected the performance of the 

MicaSense's Downwelling Light Sensor (DLS). Consequently, an alternative framework to 

transform MicaSense raw values or Digital Numbers (DN) to sensor radiance (W·m−2· sr−1· 

nm−1) and reflectance at surface values was implemented. This framework consisted of a 

radiometric transformation, vignetting correction, mosaicking, and bands co-registration. 

Two radiometric transformations on raw-individual MicaSense images to transform MicaSense 

DN to reflectance at the surface were performed. The first transformation, named single point 

method, used a reflectance factor from a single white panel such as Miura and Huete (2009), 

Candiago et al. (2015), Ahmed et al. (2017), and Li et al. (2018).On the other hand, the second 
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transformation, called the empirical line method, required the use of three reference panels such 

as Smith and Milton (1999) and Pozo et al. (2014).  

Vignetting is an effect of radial falloff of intensity from the centre of the image that occurs in all 

digital cameras (Goldman and Jiun-Hung 2010). Vignetting carries problems for a wide variety 

of applications due to its effects when sequences of images are combined (Goldman and Jiun-

Hung 2010). Consequently, a vignetting correction was performed on R program (R Foundation 

for Statistical Computing, Vienna, Austria, v 3.2.1), applying equation (3) to all single images. 

Based on the principles of Goldman and Jiun-Hung (2010). 

𝑃𝑥,𝑖 = 𝑅 (𝑡𝑖𝑓𝑑,𝑓𝑀(𝑟𝑥,𝑖)) (3) 

In Equation 3 R is the camera response curve provided by the camera manufacturer,  

M is the image as a matriz of x rows and i columns, rx,i is the radiance value at any point in the 

image,  ti is the exposure time of frame i,and 𝑓𝑑,𝑣 is funtion of the observation distance and the 

field of view of the camera. Assuming that the vignetting was radially symmetric about the 

centre of the image and in a given sequence of images. 

The MicaSense camera provides five separate GeoTIFF, each covering a specific spectral range 

and a FOV. Those differences in position and FOV, result of the MicaSense imager, imply that 

the five bands are not inherently co-registered, and each band covers a different area. 

Consequently, the generation of mosaics from MicaSense images means that each band provides 

a single band mosaic with a specific spectral range and covered area. In this study the 

mosaicking process was performed in Image Composite Editor (ICE, Microsoft Research 

Computational Photography Group, v.2.0), employing three to five MicaSense images per 

altitude level. For each flight mission, five single band mosaics were generated for four different 

altitudes including 100 m, 75 m, 50 m and 25 m. 

An orthorectification and an image-co-resgistration were applied to the mosaics generated with 

ICE because the mosaics generated had no geographical coordinates. Each blue mosaic was 

orthorectified in ENVI, using five ground control points acquired with a Trimble GeoXT6000 

differential GPS with a Hurricane antenna (average precision of 0.5 m horizontal and 0.75 m 
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vertical). Then, an image-to-image co-registration to the four remaining band mosaics (RMSE 

0.6191 ± 0.1482) was performed, using as a based image the orthorectified blue mosaics. A 

minimum of 60 ground control points per mosaic or tile were selected, employing the corners of 

all PVC frames within each tile as reference points. The spatial resolutions of all mosaics were 

homogenized within the altitude levels, and as a result, all tiles acquired at 100 m altitude were 

resampled to a pixel resolution of nine cm, those at 75 m to seven cm, those at 50 m to 4.5 cm, 

and those at 25 m to 2.5 cm. 

The reflectance values from all mosaics were extracted with a sequential model on ModelBuilder 

of ArcGIS (Environmental Systems Research Institute, Redlands, CA. v. 10.3). First, centroid 

points in all PVC targets were created using the ground control points generated during the co-

registration process. A buffer zone of 15cm in radius was created for all centroids to coincide 

with the area sampled with of the UniSpec-DC radiometer. Finally, the reflectance values from 

all mosaics were extracted, using the tool extract from raster available in ArcGIS.  

2.3.3. Vegetation Indexes 

Ten common VI were calculated using the estimated average reflectance from all delineated 

targets (Table 2.4), making use of 4 of the 5 MicaSense channels from the two radiometric 

transformations. Likewise, the same VI were estimated using the resampled values of the field 

spectrometer, in order to estimate an approximation error between the camera and spectrometer 

values.   

2.3.4. Comparison of radiometric transformations and statistical analysis 

The effects of the two radiometric transformations and acquisition altitudes on reflectance values 

of the multispectral camera were assessed by estimating the relative error from every single band 

and the vegetation index estimated. Using in equation (4) the values from the field spectrometer 

as the expected values and the values from the MicaSense camera as observed values. 

𝑒𝑟𝑟𝑜𝑟𝑟 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

100
  (4) 
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The statistical analysis was performed in R program. A Shapiro-Wilk normality test was 

performed to estimate the normality of the error distribution from the transformed bands and 

their derived vegetation indexes. Likewise, a repeated measures ANOVA analysis was performed 

to compare the camera reflectance values estimated by the two radiometric transformations and 

the four adquisition altitudes, following equation (5): 

𝑒𝑟𝑟𝑜𝑟𝑏𝑎𝑛𝑑,𝑉𝐼  ~ height ∗ trans + Error (fid
height ∗ trans⁄ )  (5) 

In equation (5) errorband, VI referred to the relative error value in percentage (Equation 5) of each 

band and each vegetation index; height referred to the altitude from the ground at which the 

image was acquired; trans refers to the transformation method used to estimate reflectance, and 

fid refers to the number of samples or PVC frames.  

2.4. Results 

2.4.1. Instruments validation and panel calibration 

A strong correlation between UniSpec-DC and UniSpec-DC instruments was found using five 

resampled bands to match the MicaSense spectral resolution (Figure 2.3). The Blue band showed 

a R2 = 0.9820, Green band R2 = 0.9930, Red band R2 = 0.9920, RedEdge band R2 = 0.9820, and 

NIR band R2= 0.9980. Likewise, a strong linear correlation between MicaSense raw values and 

UniSpec-DC reflectance for all bands was found: Blue band R2 = 0.9935, Green band R2 = 

0.9931, Red band R2 = 0.9919, RedEdge band R2 = 0.9863, and NIR band R2 = 0.9746 (Figure 

2.4). 

The three panels showed a relative uniform reflectance in laboratory and field conditions (Figure 

2.4f).  Although some absorption features were observed for the black and white panels near 950 

nm (Figure 2.4f), those absorption features did not affect our data because the MicaSense camera 

does not cover that spectral region.  

2.4.2. Comparison of radiometric transformations and acquisition altitude on multispectral 

bands 

In general, the two transformation methods at the band level showed maximum error values 

close to 10%. The distribution of error values displayed differences in their grouping patterns 
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(Figure 2.5). Disregarding the acquisition altitude, the Blue, Green, and Red bands show a 

normal distribution, contrary to bands RedEdge and NIR (Figure 2.5e). A Shapiro-Wilk 

normality test confirmed that the distribution of the data for the Blue (W = 0.96743, p-value = 

0.1091), Green (W = 0.66743, p-value = 0.1021, and Red (W = 0.96743, p-value = 0.1091) bands 

were not significantly different from a normal distribution as opposed to the Red Edge (W = 

1.00743, p-value = 0.0051) and NIR (W = 1.16773, p-value = 0.0121) bands.   

In regard to the effect of acquisition altitude on the error distribution, the error of the MicaSense 

bands changed distribution as altitude changed. However, these changes were more evident in 

some bands than others (Figure 2.5). For instance, for the green band the error distributions at 25 

m (Figure 2.5a) and the general distribution (Figure 2.5e) were similar; however, the distribution 

at 50 m (Figure 2.5b), 75 m (Figure 2.5c), and 100 m (Figure 2.5d) were different. Similar 

patterns were observed on the other four bands, which revealed some changes in their error 

distribution as a result of the acquisition altitude (Figure 2.5). 

The repeated measures ANOVA indicated that the bands’ reflectance between transformation 

methods had some significant differences (Table 2.5). The Blue (f= 8.98, p-value = 0.01), Red (f 

= 41.41, p-value = 0.0000), Red Edge (f = 14.76, p-value = 0.000) and NIR (f = 3.33, p-value = 

0.05) bands showed significant differences in their distribution in contrast to the Green band (t = 

53.02, p-value = 0.5125). Thus, the error distribution shows that for the multiple panel approach 

all bands are nearer to zero than the single panel method (Figure 2.5). This indicates that the 

multiple panel values were closer to that of the field spectrometer than those generated by the 

single panel transformation. Furthermore, the repeated measures ANOVA indicates that there 

was no link between the transformation method and the acquisition altitude (Table 2.5). 

2.4.3. Comparison of radiometric transformations and acquisition altitude on vegetation indexes 

The vegetation indexes displayed larger error values than single bands, reaching error values of 

up to 20%. The results showed that the indexes for six of the ten images were lower than the 

indexes obtained with the field spectrometer suggesting that our field measurements have a 

degree of inaccuracy and generally under-estimated the reflectance and that errors can behave in 

a multiplicative way instead of an additive way. Specifically, DVI, GDVI, GNDVI, IPVI, MSR, 

and NDVI aggregate below the zero-value because the estimated values (transformed reflectance 
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values) were lower than the expected values (field spectrometer). Instead, GRVI, NLI, and SR 

values aggregated above zero. NLI also had a high number of negative error values (Figure 2.6 

e).  

At the VI level, the transformation method did not affect all indexes equally. DVI, GDVI, 

GNDVI, GRVI, and NLI showed significant differences as a result of the transformation method. 

On the other hand, the vegetation indexes that did not report changes on their error distribution 

as a result of the transformation method were EVI, IPVI, NDVI and SR (Table 2.5).  

The Repeated measures ANOVA indicated that not all VI changed their distribution as the 

acquisition altitude changes. The indexes DVI, GDVI, GNDVI, GRVI, MSR, and SR reported 

significant differences, at the 95% level of confidence, in the error distribution as a consequence 

of the acquisition altitude. On the other hand, EVI, IPVI, NDVI, NLI had no significant 

differences in their distribution caused by acquisition altitude (Table 2.5). The same test 

indicated that at the index level most of the indexes did not show a significant interaction 

between the transformation method and the acquisition altitude. Specifically, DVI, EVI, GNDVI, 

IPVI, MSR, NDVI, NLI, and SR reported no significant interactions between the transformation 

method and the acquisition altitude. This is contrary to GNDVI and GRVI that showed 

significant interactions at the 95% level of confidence (Table 2.5).   

2.5. Discussion 

2.5.1. Panel calibration and Instrument validation 

The values from both UniSpec spectroradiometers and the MicaSense camera showed high 

correlation, indicating that those instruments can capture spectral in the five spectral regions; 

blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and NIR (840 nm). The 

upward looking sensor of the UniSpec-DC minimises the impact of changes in the atmosphere on 

reflectance measurements, thus facilitating the field acquisition. However, the same upward 

looking sensor increase the complexity in the setup of the instruments at laboratory conditions.  

Kalacska et al. (2016) on the Quality Control Assessment of Hyperspectral Imagery from Costa 

Rica they recognized that the direct illumination is the dominant component at Santa Rosa field 
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conditions. Consequently, the upward looking sensor from the UniSpec-DC was able to capture 

most of the solar irradiation. 

The white reference panel used as a white reference in the field was not a perfect Lambertian 

surface in the whole spectral region from 310 to 1100 nm, because of the presence of some sharp 

features around 450 and 950 nm in the spectral signature of the panel. The grey and black panels 

showed an increasing reflectance from 450 to 950 and a strong absorption feature around 950 

nm. However, the all analysis performed in this study were not affected by those issues, because 

the absorption features and increasing reflectance occurred outside the spectral boundaries of 

MicaSense bands (Figure 2.4). In consequence, those issues were solved during the spectral 

resampling process, performed to match the MicaSense spectral resolution (Table 2.2). 

2.5.2. Comparison of radiometric transformations and acquisition altitude on multispectral 

bands and vegetation indexes 

 

Our results indicated that the radiometric transformation method used to translate DN to 

reflectance had a direct impact on both the derived band reflectance and spectral indexes values. 

The use of multiple reference panels in the transformation method significantly reduced the error 

values at the band level, in four of five bands (Blue, red, red edge, and NIR). The use of multiple 

calibration panels during the image acquisition provides better results than only using a single 

white reference panel. However, the statistical analysis indicated that the radiometric 

transformation not affected the green band.  The same statistical analysis indicated that all five 

bands had significant changes in the distribution of errors as a function of the acquisition 

altitude. Those changes for Green, Red Edge, and NIR bands were attributed to the contributions 

of vegetation and soil in relation to variations of the spatial resolution, which generates a spectral 

mixture within the pixel. Because most clumps of grass would not provide 100% coverage of the 

sampled area, also even if it did it would have to be at least five leaves thick to be optically thick. 

Consequently, under field conditions, the soil spectra become an important contributor to 

consider, even when pure vegetation samples were collected.  

In VI such as the DVI, IPVI, MSR, NDVI, NLI, and SR, the index values are mostly driven by 

photosynthetic activity in the red band and by water absorption in the NIR region. Other factors 

can also influence the response of vegetation in the NIR region. For example, NIR reflectance 
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increased slightly with increasing mesophyll thickness as a result of photon scattering within the 

spongy leaf mesophyll (Sánchez-Azofeifa et al. 2009). Instead, mature or senescing older leaves 

tended to have a higher NIR reflectance than younger leaves. VI such as GDVI, GNDVI, and 

GRVI were developed using the NIR band, but they use the Green band instead of the Red band. 

Consequently, it can be expected that for those indexes the NIR band has a more significant role 

than the red band because the Green band did not show differences due to the transformation 

method. The EVI and SR indexes showed a tighter distribution than the other indexes, although 

these indexes are very different in their formulas. In the case of EVI, it depends on three bands, 

using the blue band as a compensation factor. On the other hand,  SR only considers a single 

ratio between two bands. 

2.5.3. Uncertainties and sources of error 

Several factors can increase the error during the field sampling collection; some are explicitly 

associated with the instrumentation used. Some are very variable and cannot be controlled such 

the ambient conditions and solar illumination. In this study, predefined protocols were followed 

to avoid or at least diminish the systematic errors in the measurements in the laboratory and field 

data. Likewise, the cross-validation of the instruments was performed to discard the existence of  

instrumentation issues.  

Even with a calibrated reference panel and the upward looking sensor from the UniSpec-DC, it 

cannot be expected that the spectral values recorded in a laboratory entirely coincide with 

spectral values collected in field conditions due to several factors such as the aerosol column in 

the atmosphere, viewing angle, meteorological conditions. The surface calibration it has been 

used for decades in the remote sensing field providing high quality results (Babey and Soffer 

1992; Leblanc et al. 2016). 

Flying at low altitude from the ground can help to diminish the effect of atmospheric aerosols. 

However, it also can create or exacerbate some radiometric constraints related to water 

absorption features. When flying at low altitude, the transmittance of the atmosphere can rapidly 

change a result of absorption features by water vapour, because the atmospheric water vapour 

concentrations decrease with height (Gao et al. 1991). Especially, when flying above tropical 

forests, because the canopy transpiration that releases huge amounts of water vapour to the 
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atmosphere. Consequently, even if the data from an UAS are not affected by the whole 

atmospheric column like a spaceborne sensor or some airborne systems, these could suffer some 

restrictions result of water absorption features from vapour water (Sánchez-Azofeifa et al. 

2017a).  

The use of small UAS could mean reduced platform stability caused by winds and thermals, 

limited GPS accuracy, and more compressed exterior orientation data. Small digital consumer 

cameras used in UAS have considerably more distortions than traditional mapping cameras used 

on traditional piloted aircraft. As a consequence, the processing of the UAS imagery is more 

problematic than that of imagery obtained from more stable platforms provided by bigger aircraft 

(Laliberte 2009). Mostly the geometric rectification, not the radiometric correction  as the path 

lengths from the center pixel vs border pixels is not substantially different at low altitudes, not 

enough to generate errors of concern in the derivation of at surface reflectance. 

Even with the acquisition of data at noon, Kalacska et al. (2016) demonstrated the necessity to 

account for a spectrally independent angular correction factor to correct for illumination angles. 

Consequently, in this study, the acquisition time at noon and the use of the halon panels as 

Lambertian surfaces to calibrate the data helped to avoid this step in two calibration panels; 

however, the dark reference required a calibration factor of 0:95. The decision to avoid the 

acquisition of information at lower illumination angles is because, if the images are acquired at 

lower illumination angles than 45° illumination angle-0 degree view angle, a cross-calibration 

process to generate a specific spectrally independent angular correction factor is required 

(Kalacska et al. 2016).  Likewise, the use of UAS on sunny days at the early morning or late 

afternoon with low solar angles could decrease the contrast between classes as a result of no 

direct lighting  increasing the number of shadows (Dandois et al. 2015).  

2.6. Conclusions 

This study demonstrated that using at least three reference materials for the calibration to at 

surface reflectance can increase the accuracy of reflectance estimated values. The error at the 

band level stretched values up to 10% that we expect are dominated by random errors because 

the instrument calibration and the protocols used to mitigate the synthetic errors. Likewise, the 

vegetation indexes reported error values close to 20%. Suggesting that the error could behave in 
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an additive way. The error distribution of vegetation indexes exhibited an underestimation in 

comparison with indexes generated with a field spectrometer. 

Finally, we point out that our vegetation indexes come from grass-like vegetation. Consequently, 

for further uses or comparisons with these data, it should be considered that throughout the VIS 

spectral region, grass species have consistently higher reflectance values than woody species 

(Asner 1998). Therefore, because of the broadband channels of the camera used, many small 

absorption features or second overtones could be hidden because of the low spectral resolution of 

the multispectral camera used. Also, it is strongly recommended to acquire ‘pure’ and mixed 

spectra of the grass and the background that allow knowing an average spectrum and its standard 

deviation, which could facilitate the data interpretation and processing. 
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2.8. Figures and Tables 

 

Table 2.1. Technical specifications of UniSpec SC/DC spectroradiometers (PP Systems) used at 

SR-EMSS and in laboratory conditions. 

PP Systems UniSpec SC/DC 

Specifications Value 

Wavelength range (nm) 310–1100 

FWHM (nm) 10 

Sampling interval (nm) 3.3 

Downward FOV (°) 20 

Operative temperature range 

(*C) 0 - 50 

 

Table 2.2. Technical specifications of MicaSense RedEdge 3M camera used at the SR-EMSS and 

in laboratory conditions. 

MicaSense RedEdge 3 M  

Specifications Value 

Focal Length (mm) 5.5 

FOV (°) 47.2 

Imager Size (mm) 4.8 x 3.6 

Imager resolution (pixels) 1280 x 960 

Capture rate/ second 1 

Band Name Center Wavelength (nm) FWHM (nm) 

Blue (b1) 475 20 

Green (b2) 560 20 

Red (b3) 668 10 

Red Edge (b4) 717 10 

Near IR (b5) 840 40 
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Table 2.3. Technical specifications of the airframe Draganfly XP4 used at SR-EMSS and in 

laboratory conditions. 

Draganfly X4ES airframe  

Specifications Value / units 

Maximum Takeoff Weight  2.50 kg (88.2oz)  

Maximum payload weight 800 g (28.2oz)  

Empty Weight 1.7 kg (59.9oz) 

Climb rate 393.7 ft/min (2m/s) 

Descend rate  393.7 ft/min (2m/s)  

Maximum operating speed  26.9 knots (50km/hr)  

Manoeuvring speed  26.9 knots (50km/hr) 

Maximum endurance  25 minutes 

Maximum Attitude angle  34 degrees  

Max turn rate (yaw)  90 degrees/sec 

Max Rotor RPM 5000 RPM 

Yaw Torque limit  0.25N.m (Newton Meters) 

Sound at 1 meter  72db 

Sound at 3 meters 62db 

Width  87cm (34.4”) 

Length   87cm (34.4”) 

Height 29cm (11.6”) 

Top diameter  106cm (42.0”) 

Service Ceiling 2438m (8000ft) ASL 

Maximum controller signal 

range  1 km (0.62miles)  

Accelerometer Three Axes 

Magnetometer Three Axes 

Gyrostabilizer Three Axes 

Luminous flux navigation lights  40 lm 

Operating Temperature  

-25C to +38C (-13F to 

100.4F) 

Max Wind speed  up to 35km/hr (21mph) 

Relative humidity  0% to 90% non-condensing  
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Table 2.4. List of Spectral Vegetation Indexes (SVI) estimated across six firebreak patches 

covered by Jaragua grass at the SR-EMSS, Costa Rica.  

Index Acron. Formula Reference 

Difference Vegetation Index DVI 𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker 1979) 

Enhanced Vegetation Index EVI EVI = 2.5 ∗
(NIR − Red)

(NIR + 6RED − 7.5Blue + 1)
 

(Huete et al. 

2002) 

Green Difference Vegetation 

Index 
GDVI 𝐺𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛  

(Sripada et al. 

2006) 

Green Ratio Vegetation Index GRVI 𝐺𝑅𝑉𝐼 =
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 

(Sripada et al. 

2006) 

Infrared Percentage 

Vegetation Index  
IPVI 𝐼𝑃𝑉𝐼 =  

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Crippen 1990) 

Green Normalized Difference 

Vegetation Index 
GNDVI 𝐺𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

(Gitelson and 

Merzlyak 

1998) 

Modified Simple Ratio MSR 
𝑀𝑆𝑅 =

(𝑁𝐼𝑅
𝑅𝑒𝑑⁄ ) − 1

(√𝑁𝐼𝑅
𝑅𝑒𝑑⁄ ) − 1

 (Vescovo et al. 

2012) 

Normalized Difference 

Vegetation Index 
NDVI 𝑁𝐷𝑉𝐼 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Gitelson and 

Merzlyak 

1998) 

Non-Linear Index 

 

NLI 

 
𝑁𝐿𝐼 =  

𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅2 + 𝑅𝑒𝑑
 

(Goel and Qin 

1994) 

Simple Ratio SR 𝑆𝑅 =  
𝑁𝐼𝑅

𝑅𝑒𝑑
 

(Birth and 

McVey 1968) 
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Table 2.5. F -values of some Repeated measures ANOVA on error values of bands and 

vegetation spectral indexes using a MicaSense RedEdge in Jaragua grass at SR-EMSS, Costa 

Rica. 

Bands 

  Blue (b1) Green (b2) Red (b3) Red Edge (b4) NIR (b5) 

Treat (T) 8.98** 0.59 41.41*** 14.76*** 3.33* 

Height (H) 103.46*** 53.02*** 11.57*** 4.22** 41.10*** 

T*H 0.8 0.25 0.69 0.59 1.53 

Indexes 

 DVI EVI GDVI GNDVI GRVI IPVI MSR NDVI NLI SR 

Treat (T) 11.29*** 1.73 60.80*** 85.99*** 50.41*** 1.09 0 0.85 9.09** 0.24 

Height (H) 2.68* 0.45 24.04*** 32.99*** 33.44*** 0.92 2.86* 0.99 1.92 6.01*** 

T*H 2.13 1.63 3.01* 0.09 3.06* 0.07 0.06 0.06 0.04 0.08 

Where the Significance is represented by these codes:  0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 

‘’ 1. 
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Figure 2.1. (a) Study area at the SR-EMSS, Costa Rica; (b) Soil dominate sample collection; (c) 

Vegetation dominated sample collection; (d) overview of field data collection; (e) reference 

panels white (50 cm) and grey (25 cm). 
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Figure 2.2.(a) Example of a multispectral image acquired at 25 m of altitude from the ground 

with an UAS. (b) Draganfly X4ES airframe at SR-EMSS. (c) Example of field acquisition 

conditions at SR-EMSS. (d). Example of panel calibration acquisition during the field campaign. 

(e) Example of data acquisition in laboratory conditions at the Centre for Earth Observations 

Sciences of the University of Alberta, Edmonton, Canada. 
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Figure 2.3. Correlation matrix between UniSpec-DC and UniSpec-SC spectroradiometers, using 

ten averaged data sets acquired at laboratory conditions in the Centre for Earth Observations 

Sciences of the University of Alberta, Edmonton, Canada. 
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Figure 2.4. Linear relation between field spectrometer reflectance (y axis) and multispectral 

camera radiance (x axis) based on three reference panels acquired at laboratory conditions in the 

Centre for Earth Observations Sciences of the University of Alberta, Edmonton, Canada. 

Specifically, the axis y refers to measures from an UniSpec-DC spectrometer, and the axis x 

refers to measures from MicaSense RedEdge TM 3. 
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Figure 2.5. Error at band level for two radiometric transformations of MicaSense RedEdge 

bands across patches covered by Jaragua grass at SR-EMSS, Costa Rica. Obtained using a 

MicaSense RedEdge TM 3 camera onboard a Draganflyer X4-P at (a) 25 m, (b) 50 m, (c) 75 m, 

and (d) 100 m from the ground level. Therefore, (e) represent the aggregated values from all 

bands disregarding the acquisition altitude. 
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Figure 2.6. Error distribution of 10 vegetation indexes from two radiometric transformations of 

MicaSense RedEdge bands across firebreak patches covered by Jaragua grass at SR-EMSS, 

Costa Rica. Obtained using a MicaSense RedEdge TM 3 camera onboard a Draganflyer X4-P at 

(a) 25 m, (b) 50 m, (c) 75 m, and (d) 100 m from the ground level. Therefore, (e) represent the 

aggregated values from all bands disregarding the acquisition altitude. 
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3. Chapter three – Detecting dead woody components using an Unmanned Aerial 

System and Machine Learning techniques at the tropical dry forest of Santa Rosa National 

Park, Costa Rica 

 

3.1. Keywords 

Costa Rica, forest mortality, machine learning, tropical dry forests, unmanned aerial systems.  

3.2. Introduction 

Increasing emissions of greenhouse gases are widely acknowledged by the scientific community 

as a significant cause of increases in the global mean temperature and changes in hydrological 

cycles. Even under conservative scenarios, future climate changes are likely to include further 

increases in mean temperature with significant drying in some regions (Seager et al. 2007); 

increases in frequency and severity of extreme droughts, and heat waves (Sterl et al. 2008).  

Field long-term studies have reported that in forests, mortality occurs in response to prolonged 

drought or after exposure to previous droughts that initiate a growth decline (Poorter et al. 2016; 

Breshears et al. 2009; McDowell et al. 2008; Clark 2004). Likewise, it has been observed that 

trees predisposed to dying have lower mean growth rates or greater growth sensitivity to climate 

in the years preceeding mortality (Williams et al. 2013). 

Anomalously long or intense mortality events can have long-term impacts on a range of 

ecosystems and populations (Zeppel et al. 2013). Mortality can impact biodiversity, and 

ecosystem functions such as nutrient and carbon cycling, and biophysical and biogeochemical 

climate feedbacks. For instance, a mortality event can cause the increased growth of understory 

vegetation, thus possibly altering successional pathways with feedbacks to productivity and 

surface hydrology (McDowell et al. 2008). Therefore, tree death can both relieve competition 

and reduce facilitation in other plant communities, leading to counteracting forces on understory 

plants (McDowell et al. 2008). Mortality also reduces photosynthetic uptake, causing ecosystems 

to become a source of CO2 for some time periods (Clark 2014). 
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Numerous hypotheses to explain mechanisms of survival and mortality have been generated via 

theoretical, and experimental analyses. For instance, the hydraulic-failure hypothesis forecasts 

that reduced soil water supply coupled with high evaporative demand causes xylem conduits to 

become air-filled, thus stopping the flow of water and desiccating plant tissues to a complete 

cellular death (McDowell et al. 2008; Rowland et al. 2015). On the other hand, the carbon-

starvation hypothesis predicts that plants starve as a result of continued metabolic demand for 

carbohydrates and stomatal closure to prevent hydraulic failure (McDowell et al. 2008). This 

process may be exacerbated during drought by photo inhibition and increased respiratory 

demands associated with elevated temperatures (McDowell et al. 2018). Therefore, hydraulic 

failure occurs if drought is sufficiently intense that plants run out of water before they run out of 

carbon (Bretfeld, Ewers, and Hall 2018). It has been suggested that in tropical forests, mortality 

is most likely triggered by hydraulic processes, which lead to a hydraulic deterioration and rapid 

limitations in carbon uptake (Rowland et al. 2015).  

Over the years machine learning (ML) has become a significant focus of remote sensing studies 

(Maxwell et al. 2018; Sanchez-Azofeifa et al. 2017a; Ghamisi et al. 2017; Plaza et al. 2009)  

showcasing computer algorithms than acquire knowledge from existing data, using inference 

strategies such as induction or deduction. A wide range of such studies has found that these 

methods tend to produce higher accuracies compared to traditional parametric classifiers 

(Maxwell et al. 2018, Li et al. 2018;  Vargas-Sanabria and Campos-Vargas 2018;  Li et al. 2017; 

Kuhn and Johnson 2013). ML algorithms can model complex classes, accept a variety of input 

predictor data and do not make assumptions about the data distribution (Maxwell et al. 2018). 

Furthermore, ML can process vast quantities of data from a variety of different sources. The 

state-of-the-art machine learning algorithms in remote sensing are divided into Artificial Neural 

Networks (ANN), Boosting Machines (BM), Decision Trees (DT), Deep Learning (DL), and 

Support Vector Machines (SVM).  

The use of ANN for remote sensing data analysis has been motivated by the assumption that the 

human brain and artificial intelligence can associate elements in one set of data with elements in 

a second set. However, when ANN are applied to classification tasks, they only focus on the 

association of data from feature space to class space (Atkinson and Tatnall 1997). DL is similar 

to  ANN however, DL is about deeper neural networks that provide a hierarchical representation 
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of the data by means of various convolutions, thus providing larger learning capabilities and 

higher precision (Kamilaris and Prenafeta-Boldú 2018). DL algorithms are one promising avenue 

of research into the automated analysis of complex data (Li et al. 2017) because DL develop a 

layered, hierarchical architecture of learning and representing data, where more abstract (higher-

level) features are defined regarding less abstract (lower-level) features (Najafabadi et al. 2015).  

DT are amongst the most intuitively simple classifiers thanks to their flexibility, intuitive 

simplicity, and computational efficiency (Ghamisi et al. 2017). The DT models create a recursive 

split of the input data into smaller subdivisions, based on a set of decision tests defined at each 

branch (or node) in the tree and their leaves (set of terminal nodes). Each node in a decision tree 

has only one parent node and two or more descendant nodes (Friedl and Brodley 1997). On the 

other hand, Random Forest (RF), a specific DT, is a classification model that produces multiple 

decision trees, using a randomly selected subset of training samples and variables. Specifically, it 

uses a set of classification and regression trees to make a prediction, where the trees are created 

by drawing a subset of training samples through replacement (Belgiu and Drăgu 2016). In other 

words, in RF the same sample can be selected several times, while others may not be selected at 

all. Likewise, BM models are created by generating an ensemble of weak (shallow) decision 

trees, where each successive tree is fitted with the remaining residuals from the previous 

combination of trees, a process known as ‘boosting’(Maxwell et al. 2018). BM incorporate both 

bias and variance reduction, in an attempt to minimise the errors of the previous trees (Vaughn et 

al. 2018).  

SVM has often been used in remote sensing because they make no assumptions on the 

underlying data distribution and their ability to handle high dimensional data with a limited 

number of training samples (Mountrakis, Im, and Ogole 2011). SVM proceed by defining an 

optimal separating hyperplane (the class boundary) within a multidimensional feature space that 

differentiates the training samples of two classes; where the best hyperplane is the one that 

leaves the maximum margin from both categories (Ghamisi et al. 2017).  

Unmanned Aerial Systems (UAS, also known as drones) are well-suited tools for addressing 

current issues in remote sensing of tropical ecology and conservation (Sanchez-Azofeifa et al. 

2017a). Particularly, small remote sensors onboard low flying unmanned  aerial vehicles (UAV) 
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can collect a wide variety of plant canopy measurements, including broad and narrowband 

vegetation indices, chlorophyll fluorescence, and thermal stress, and enable the estimation of 

biomass, and assessment of carbon stock (Zarco-Tejada et al. 2014). Li et al. (2018) 

demonstrated that with a multispectral UAS and machine learning techniques can be quantified 

the relative coverage of dead trees, liana-infested, and non-liana-infested trees in a temporary 

plot at the SR-EMSS. However, that study was exploratory and was conducted only in a single 

plot with just two ML models. This paper wants to detect and quantify dead woody components 

such as stand and fallen death trees using a multispectral UAS and 10 machine learning models 

in five temporary plots that cover a gradient of secondary tropical dry forests at the SR-EMSS. 

3.3. Materials and methods 

3.3.1. Study site 

The study area is located at the Santa Rosa National Park Environmental Monitoring Super Site 

(SR-EMSS), Guanacaste, Costa Rica (Figure. 3.1a). In this area, the mean temperature is 25 °C, 

and it receives an average annual rainfall of 1500 mm that ranges from 900 to 2600 mm. The dry 

season lasts for a minimum of 5–6 months, and it normally extends from approximately late 

December to mid-May (Sánchez-Azofeifa et al. 2017b). The landscape comprises a mosaic of 

forests in various stages of regeneration that once suffered from intense deforestation (Sánchez-

Azofeifa et al. 2017b). The extent of the secondary tropical dry forests at SR-EMSS is not related 

to a deterministic forest regeneration process but rather, to a continuous stochastic process driven 

by wind and vertebrates combined by fire control efforts (Li et al. 2017).  

In this study, a gradient of secondary tropical dry forest was sampled (Table 3.1) following the 

findings of Li et al. (2017). In general terms,  the more early forests are composed of patches of 

woody vegetation, which include several species of shrubs, small trees, and young trees with a 

maximum height of approximately 6–8 m, that loose nearly all their leaves during the dry season 

(Sánchez-Azofeifa et al. 2017b; Kalacska et al. 2004). The early forests are dominated by species 

well adapted to open habitats like Silk cotton tree (Cochlospermum vitifolium), Madero negro 

(Gliricidia sepium) and Yayo (Rehdera trinervis), as well as  also sun-loving species 

(heliophytes) that have anemochory and autochory dispersal syndromes (Hilje et al. 2015). The 

intermediate and more advanced stages show significant differences in structure and 
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composition. These differences are in general driven by species turn-over which in turn cause a 

very dynamic structure and forest species composition (Cao et al. 2015). These successional 

stages have two vegetation layers. The first layer encompasses fast-growing deciduous tree 

species that reach a maximum height of 10–15 m. The second layer is below the canopy and is 

composed of lianas (woody vines) along with adults of more shade-tolerant evergreen species 

and juveniles of many species (Hilje et al. 2015; Kalacska et al. 2004). 

3.3.2. Field acquisition 

From May to July 2017 five temporary plots at the SR-EMSS (Table 3.1) were surveyed by field 

geolocation and a UAS multispectral capture. (Figure 3.1a, Figure 3.2). Although this study 

focusses on the detection of dead woody components, in the field and in the data processing was 

also accounted for two complementary classes, understory and live-healthy components, in order 

to facilitate and complement our analysis. Specifically, the dead woody components included i) 

dead stand trees, ii) dead fallen trees, iii) non-photosynthetic woody components within the tree 

crown of live-not healthy trees, and iv) dead woody components from lianas (woody vines). The 

understory class included i) understory vegetation such as shrubs, small trees, and young trees 

located under the canopy, ii) canopy gaps with grass-like vegetation, wines, shrubs and, small 

trees, iii) exposed rocks and soils, and, iv) shadows. The live-healthy class included i) healthy 

canopy trees, and ii) healthy lianas within the tree crowns.  

On each plot of 200m x 100m, geolocation of True Class Points (TCP) was performed for 50 

dead woody components, 50 understory components, and 50 live-healthy components (Figure 

3.1c, 3.1d). The geolocation was conducted using a field census across the five plots, and 

systematically surveying each plot with transects every 25m along the short side of the plot 

(Figure 3.1c, Figure 3.1d). A compass and a Trimble GeoXT6000 differential GPS with a 

Hurricane antenna (Figure 3.1b) with an average precision of 0.5 m horizontal and 0.54 m 

vertical were used. This practice is similar to that conducted in inventories  in tropical forest 

management.  

The UAS multispectral data were obtained using a MicaSense RedEdge TM 3 camera onboard a 

Draganfly XP-4, operated at 120 m height from the ground. The MicaSense RedEdge TM 3 

camera had five lenses with a focal length of 5.5 mm, the lens field of view was 47.2°, and the 
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image encompassed 1280 x 960 pixels. Each lens provided a separate 16-bit GeoTIFF image, 

each centered on a specific wavelength: blue at 475 nm (with a Full Width at Half 

Maximum (FWHM) 20 nm), green at 560 nm (FWHM 20 nm), red at 668 nm (FWHM 10nm), 

red edge  at 717nm (FWHM 10 nm), and near-infrared at 840 nm (FWHM 40 nm). The 

Draganfly XP-4 is a quadcopter with a three axes electronic gimbal. The airframe was equipped 

with three axes gyrostabilizer, magnetometer, and accelerometer. 

Spectral signatures and multispectral images  of  three calibrated (at laboratory conditions) 

reference panels (a white SpectralonR panel, a grey MicaSense-halon panel, and a flat black 

presentation cardboard) were collected prior to each flight and after each flight, to perform a 

calibration to at surface reflectance. Specifically, at each site, 20 MicaSense images (at 1.5m 

from the panel) and 20 spectral signatures (at 0.75m from the panel) of every reference materials 

were collected following the protocol of Kalacska et al. (2016). The spectral signatures were 

acquired with a UniSpec-SC spectrometer (PP Systems, Spectral range 310 – 1100nm; Raleigh 

resolution of < 10 nm, and a Bin size of 3.3 nm). The dark signal noise removal was performed 

by taking a dark scan for every ten sample measurements, while the instruments shutters were 

closed. The integration time was adjusted with the fibre-optic exposed to white reference panel 

every 10 samples. A white reference measurement was taken prior to each panel measurement. 

In all cases, reflectance spectra were obtained by determining the ratios of data acquired for a 

sample (an average of 10 scans) to data acquired for the white reflectance panel. 

3.3.3. Data Preprocessing 

An image preprocessing workflow was implemented in three steps: radiometric calibration, 

mosaicking, and data reduction and transformation. 

3.3.3.1. Radiometric correction and mosaics generation  

To radiometrically correct at surface reflectance the MicaSense imagery, the empirical line 

method suggested by Smith and Milton (1999) and Kalacska et al. (2016) was mplemented. 

Specifically, an equation for each MicaSense band (TIFF 16 bits) was generated, based on the 

comparison of values from three reference panels acquired with a MicaSense RedEdge TM 3 and 

a UniSpec-SC spectrometer. The extraction of the values from the MicaSense imagery was made 
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using the tool Extract from Raster of ArcGIS (ArcGIS Desktop, Redlands, CA: Environmental 

Systems Research Institute, v10.3). An average of all pixels in the panel, with the exception of 

the pixels in the borders of the panel, was estimated. For the UniSpec reflectance spectrum of 

each panel, the spectrum was resampled to the MicaSense bandpasses using ENVI (Exelis Visual 

Information Solutions, Boulder, Colorado, v5.3). 

The generation of ortho-mosaics was performed in Pix4Dmapper (Pix4D Pro, Lausanne, 

Switzerland, v3.3.29). However, in this program, the radiometric correction step was skipped,  

because it was previously performed with the empirical line method. Five single band mosaics 

were obtained, one mosaic per MicaSense band. To orthorectify the mosaics 7-10 ground control 

points (GCP) distributed across each plot were used  (Figure. 3.1c). Each GCP was geolocated 

using the Trimble GPS described in the TCP collection (Figure 3.1b).  

3.3.3.2. Data transformation 

Though multispectral sensors present advantages in comparison with RGB technology, their use 

means a substantial increase in data volume and data manipulation. Numerous methods have 

been developed to improve the separability between classes by highlighting useful information 

and removing data redundancy. In this study, three transformation methods were applied to the 

multispectral mosaics (Figure 3.2): Principal Components Analysis (PCA), Tasseled Cap (TC), 

and Texture Analysis (TA). A PCA was performed using all five multispectral band mosaics, 

retaining the first three PC from all 5 band mosaics. Likewise, a TC transformation was 

performed using the five multispectral bands to highlight the vegetation classes. However, the 

only component retained from the TC was the third TC component (known as the Yellow Stuff 

structure) because the first two TC define a plane very similar to the first two PCA, providing 

features essentially equivalent (Crist and Kauth 1986). 

The texture components of high-resolution remote sensing data have been proven to be useful for 

the quantification of forest structure and biomass (Bastin et al. 2014), and in the estimation of the 

extension and succession of tropical dry forests (Li et al. 2017). In this study a linear filter named 

“Gabor filter” was used to derive texture features from the multispectral mosaics, using as input 

the five bands calibrated at surface reflectance. The Gabor filter searches for elements in a 
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localised region of an image with specific frequency content in particular directions (Bovik et al, 

1990). The Gabor filter used was restricted to a maximum of five scales and ten directions.  

 

3.3.4.  Classiffication Models 

The “No Free Lunch” theorem of computing sciences states that, without having substantive 

information about the modelling problem, there is no single model that is better than other 

models (Wolpert 1992). Wolpert (1996) specified that, for any two algorithms ‘A’ and ‘B’, there 

are ”as many” targets for which algorithm ‘A’ has lower expected errors than algorithm ‘B’ and 

vice versa. In other words, there are “as many” targets for which any learning algorithm can get 

confused by the data, and performs worse than random guessing. In this context,  Kuhn and 

Johnson (2013) suggested to try a wide variety of classification models, to determine which 

model performs better. Consequently, this study used 10 ML classification algorithms in remote 

sensing: Averaged Neural Network (ANN), Conditional Inference Tree (CIT), C4.5-like Trees 

(C45), Deep Neural Network (DNET), Gradient Boosting Machines (GBM), Random Forest 

(RF), Neural Network (NNT), Support Vector Machines with Linear Kernel (SVML), Support 

Vector Machines with Polynomial Kernel  (SVMP), and Support Vector Machines with Radial 

Kernel  (SVMR). This approach covers most of the available classification models of Support 

Vector Machines, Decision Trees, Boosting Machines, and Artificial Neural Networks (Table 

3.2). 

3.3.4.1. Creation of training and validation datasets 

The implementation of the 10 ML models was performed using 450 pixel-samples per mosaic 

(scene), representing a total of 2250 samples acquired from the MicaSense camera and validated 

in the field. This data set was divided in two datasets, training and validation. The training 

dataset was used in the model implementation, while the validation dataset was used to estimate 

the performance of the trained models.  

To obtain those data sets the following steps were followed: i) created a geospatial dataset from 

the TCP collected in the field, ii) extracted the values from the MicaSense mosaics using as 

reference the TCP acquired in the field, iii) divided the geospatial dataset in to training and 

validation sets. Specifically, the pixel-samples were created in QGIS using the geolocated TCP 
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collected in the field with the Trimble GPS. On each of these points, a sampling window of 3 x 3 

pixels was created on QGIS, extracting the values from the transformed MicaSense mosaics 

(Figure 3.2.b). Thus, providing a data set with three classes: Dead woody components (Fallen 

and stand dead trees), healthy-live vegetation and gaps and understory vegetation. In the case of 

leafless crowns, care was taken to select pixels from central regions of crowns, and that the tree 

branching was dense enough to ensure that the class of interest would dominate the collected 

spectra. Because the signal from understory vegetation can have a significant impact on observed 

spectra. Therefore, this dataset was exported to R program, on which it was randomly divided 

onto a training dataset (70%) and a validation dataset (30%), using the function 

‘createDataPartition’ of the package “raster” in R program.  

3.3.5. Classification Models implementation 

The best number of training samples to avoid overfitting in the classification models was 

estimated using the resampling technique bootstrap “632 method” contained in the “Caret” 

package. The “632 method” creates a performance estimate that is a combination of the simple 

bootstrap estimate and the estimate from re-predicting the training set (Efron and Tibshirani 

1983).  Bootstrap error rates tend to have less uncertainty than other methods such as k-fold 

cross-validation, especially, if the training set size is small (Kuhn and Johnson 2013). Likewise, 

the estimation of the optimal tune-up parameters for all models was performed with the functions 

‘expand.grid:caret’ and ‘tuneGrid:caret’ using several combinations of values and parameters 

(Table 3.3).  

Two kind of classification models were generated to quantify the extent of mortality across the 

five temporary plots, due to the complexity of scenes: 5 plot-specific models and a general 

model. Following the findings of  Miltiadou et al. (2018), that found that the generation of a 

model with all possible training samples and possible patterns from all sampled plots can provide 

better results than a model generated from a single sampled-plot with less number of samples.  

The specific models refer to five models that were trained only with the data from one particular 

temporary plot. For example, the specific model one, only used data (trainig and valition) from 

samples collected in the plot one, the specific model two used only data from the temporary plot 

two, etc. On the other hand, the general model refers to a model that was trained and validated 

with the data from all five temporary plots.  
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3.3.6. Model validation and selection 

The model validation and selection were assessed by considering the values of accuracy, kappa, 

and the time required to run each clasiffication model. The accuracy and kappa values were 

estimated on a per-pixel basis, rather than per crown or trunk basis because the classification was 

performed by pixels rather than by objects. Specifically, those metrics were estimated with the 

function ‘confusionMatrix:caret’, using the validation dataset, which corresponds to the 

remaining 30% of the values, which were previously separated. However, to compare the 

classification models was accounted for the accuracy, kappa and time values of only the best 

candidate models from each model type (Table 3.3) because on each model was tested several 

tune-up parameters. Consequently, the same model can provide different accuracy values even 

with the same training data, because of changes in the tune-up parameters. (Figure. 3.3, Figure. 

3.4, Figure. 3.5, Figure. 3.6). For instance, Table 3.4 shows the highest accuracy values for every 

classification model used in Table 3.2. Three indicators were considered to select the best 

classification model accuracy, kappa and time because all classification models provided similar 

accuracy values. In consequence, to corroborate if there was any statistical difference in the 

model performance, an ANOVA was performed (Table 3.5). 

3.3.7. Differences in the extension of dead woody components between plots 

The coverage of the dead woody area and other complementary classes (m2) were estimated by 

extracting the values from the five classified mosaics, using the results from the five specific 

models and the General model. Specifically, on QGIS all classified mosaics were cropped to a 

window frame of precisely 200 m x 100 m, in order to promote fair comparisons between plots. 

Then, all cropped mosaics were transformed from raster to vector using QGIS, on which was 

estimated the class area (m2) of all classes from all classified mosaics.  The differences in the 

coverage of dead wood components between plots were analized with an ANOVA and a Tukey 

test. The ANOVA and Tukey test were performed on R program, comparing the extension of 

dead wood components between plots. 
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3.4. Results 

3.4.1. Effect of tuning parameters on the accuracy values 

Our data showed that neither of the algorithms and set of parameters overun the others in all the 

situations, especially, in the quantification of dead woody components across the different 

successional stages of TDF forest at SR-EMSS (Figure. 3.3, Figure. 3.4, Figure. 3.5, Figure. 3.6). 

However, the wide range of available parameters and models used helped to choose the ideal set 

of models and parameters to classify dead woody components and others complementary classes 

such as live vegetation and understory.  

The effects of the tuning parameters in all candidate models tested suggest that some of the 

classification models used were more sensitive to the tuning parameters than others. In general 

terms models such as RF (Figure. 3.3a), CIT (Figure 3.3b), SVML (Figure 3.3d), NNET (Figure 

3.3f), ANNET (Figure 3.4a), SVMP (Figure 3.4b),  GMD (Figure 3.5), and DNET (Figure 3.6) 

reached their maximum accuracy values at some point and then remain stable as the values of the 

driver parameters increased. Contrary to models such as SVMR (Figure 3.3c) and C45T (Figure 

3.3e) reached their maximum accuracy values at some point and then their accuracy decreased as 

the values of the driver parameters increased (Figure 3.3e).  

In regards the used tuning parameters values, it was observed that the models displayed a 

heterogenous selection of available parameters. For instance, models such as CIT, C45T, RF, 

SVML, and SVMR required a maximum of two tuning parameters while models such as SVMP, 

GBM, ANNT, and DNET required three or more tuning parameters, and even more complex 

settings like learning rates for GBM and DNET. Although models such as ANNET (Figure 3.4a) 

and GBM (Figure 3.5) required a more complex implementation than the others models (Table 

3.3), they did not beat the other models in all temporary plots 

DNET reported the lowest accuracy values in comparison with the others nine models (Table 

3.4). It provided accuracy values lower than  95% in all models including the plot specific and 

the general models (Figure 3.6) likely as a consequence of the low number of hidden unit in the 

three layers and the relatively low number of training samples. In the case of plot Two  (Figure 

3.6b), plot Four (Figure 3.6b), and the General model (Figure 3.6f) the accuracy values were 

even lower, with considerable differences within models. The number of hidden units in Layer 1 
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and Layer 3 had no effect on the accuracy values (Figure  3.6). However, in plot Two, a small 

change in the patterns of the Layer 1 with ten hidden units in the Layer 2 was noticed. 

3.4.2. Model selection 

GBM, RF and SVMR reported the highest accuracy values in the classification of dead woody 

components across the five temporary plots while the lowest accuracy values were reported by 

CIT, DNET, and SVML  (Table 3.4). The SVMR had the highest accuracy value with 0.982, 

followed by RF with 0.980 and GBM with 0.977. On the other hand, the processing times 

showed significant differences betwwen models and plots. SVMR reported the highest time 

(4689.9 min), followed by GBM, (2839.3 min) and RF (1523.2 min). SVMR showed higher 

accuracy values than RF; however, it also showed that it was very time consuming and its 

processing times can drastically vary across implementations (Standard deviation of 8735.6 

min). The Neural Networks (ANNET, NNET and, DNET) were the most time-consuming 

models (Table 3.4 and Figure 3.7). The ANNT was the most time-consuming model, followed by 

NNET and SVMP. The most efficient models in term time were CIT, C45T and SVML, 

respectively.  Consequently, the model RF was chosen to run the final classification because it 

had the highest accuracy and the lowest processing time (Table 3.4 and Figure 3.7).  

The Repeated measures ANOVA showed that the averages of the processing times were 

significantly different among them with a confidence of 95% (Table 3.5). However, the same test 

also indicated that the differences in the averages of accuracy and kappa values, and in the 

interaction of the variables were not statistically different. 

3.4.3. Mortality extension 

The coverage of dead woody components in the five-temporary plot at SR-EMSS was estimated 

to range from 4.8% to 16.1% dependent on the site (Figure 3.8). The General model displayed 

higher areas covered by dead woody components in comparison with those estimated by each 

specific model (Figure 3.8 and Figure 3.10). 

The lowest coverage of dead woody components was reported for plot Two, a secondary early-

intermediate forest patch, followed by plot Three a secondary intermediate-intermediate forest 

patch with a high liana infestation. In those plots, the values from the General and specific 
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models (Figure 3.8) coincided, contrary to plot One, a secondary intermediate-late forest patch, 

and Five, a secondary intermediate-intermediate forest patch that showed differences in the 

results from the general and specific models. Moreover, plots One and Five inversely mirror each 

other in terms of coverage of dead woody components (Figure 3.8).  

The highest coverage of dead woody components was reported for plot Four, a secondary early-

early forest patch  (Figure 3.8 and Figure 3.10). However, this plot showed the lowest accuracy 

values for both the General and specific models. Because this plot is in a very early successional 

stage the canopy cover is rare, the gaps are large, and grass such as Jaragua grass is present  

which could mimics the response of dead vegetation.  

The repeated measures ANOVA showed, with confidentiality of 95%, that the averages of the 

processing times values were significantly different among models (Table 3.5). Likewise, the 

same test also indicated that the differences in the averages of accuracy and kappa values, and in 

the interaction of the variables were not statistically different. On the other hand, a Tukey test 

showed that the plots were clustered into three groups based on the mortality coverage. The first 

group, composed of plots Four, One and Five has the highest mortality coverage. A second group 

was composed of plot Three, and a third group by plot Two (Figure 3.9). 

3.5. Discussion 

3.5.1. Effect of tuning parameters on the accuracy values and Performance of selected models 

This paper examined the effect of tuning parameters on the accuracy values of the classification 

of dead woody components. Though the best three classification models reported accuracy 

values higher than 0.97, these models with the worst set up parameters showed accuracy values 

close to 0.8. Thus, suggesting that ML should not be used as a black-box that provide an 

omnipotent straightforward answer to everything, because a reductionist and synthetic answer 

might not even exist (Castelvecchi 2016). 

All ML models provided very high classification accuracy values for detecting dead woody 

components, understory and live-healthy vegetation thanks to the three classes were highly 

distinguishable between them. However, the results provided by RF, SVMP, and GBM 

highlighted because these three models provided higher accuracy and kappa values, and 

relatively shorter processing times than the other models tested. 
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Our results concur with other similar studies, such as Li et al. (2018) who discriminated between 

liana infested trees, non-liana infested trees, and dead trees using Deep Learning and SVM 

algorithms in a single plot at the same study site. Vaughn et al. (2018) who ensembled  SVM and 

GBM to map individual dead trees in a Hawaiian island using high-resolution digital imagery. 

Meddens, Hicke, and Vierling (2011) that evaluated the potential of high-resolution multispectral 

imagery to map tree mortality in Colorado, EEUU; and Garrity et al. (2013) who quantified tree 

mortality in an EEUU southwestern woodland affected by drought, bark beetle outbreak, fire, 

and ecological restoration treatments. 

Similar than Miltiadou et al. (2018) who demonstrated that increasing the number of training 

samples increased the accuracy of the detection of dead standing Eucalyptus camaldulensis in a 

native Australian forest. It was found that the increase in the number of samples and possible 

training patterns with the generation of a general model generally increased the accuracy values.  

However, in one of the plots (Plot Four) even with an increase in samples, the accuracy values 

remained lower than the others four  plots, suggesting the necessity to include in the early 

successional forest stages, an extra class that accounts for bare soils and no woody dead 

materials such dry Jaragua grass.  

3.5.2. Dead woody components and its ecological implications 

This study demonstrated that it is possible to detect and quantify dead woody components in a 

gradient of the secondary tropical dry forest at SR-EMSS, Costa Rica. The coverage of dead 

woody components in the five temporary forest plots at SR-EMSS range from of 4.8% to 16.1%, 

with an overall accuracy of 98%, and a kappa value of 0.958. 

Even though the coverages of the dead woody components are lower than 16.1%, this percentage 

could be relevant because according to Greenwood et al. (2017) about 70% of tree species could 

be operating in narrow hydraulic safety margins and are at high risk of embolism and related 

mortality if drought severity increases. Likewise, Poorter et al. (2016) found that in deciduous 

and arid habitats the recovery and loss of biomass were driven by water availability and stand 

age. 

The impact of drought on forest functions and structure depends on which trees are most 

adversely affected. Worldwide, drought has consistently shown more detrimental impacts on 
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larger trees, causing significant decreases in woody growth and associated carbon sequestration 

in forests (Bennett et al. 2015). In forests, large trees play keystone ecological roles, by creating 

unique microenvironments which many plants and animals depend on for nesting cavities and 

substrate for epiphytes (Hilje et al. 2015). Furthermore, large canopy trees account for a more 

significant proportion of ecosystem-level transpiration than smaller trees, and their drought-

related decline could create detrimental canopy transpiration contributions to cloud formation 

(Wullschleger, Hanson, and Todd 2001).   

In TDF, other growth forms such as lianas (woody vines) can be abundant and play an important 

role in forest dynamics and mortality. In temperate and tropical forests Lai et al. (2017) found 

that lianas reduce growth and survival of host trees. Likewise, Tobin et al. (2012) pointed out 

that lianas have a greater competitive effect on canopy trees during the dry season than do trees 

of similar biomass because of the unique morphology of lianas. This is because lianas reach the 

canopy and deploy a crown with less investment in support tissues than trees leading to a more 

significant competitive impact on canopy trees than competing trees with similar biomass  

(Tobin et al. 2012). It has been suggested that in neotropical forests, liana coverage is increasing 

as a result of  higher CO2 concentration, increased disturbance and decreased precipitation 

(Kalacska, Bohlman, et al. 2007; Phillips et al. 2002; Schnitzer 2005; Wright et al. 2004). 

3.5.3. Uncertainties and Sources of error  

In an image of a tropical forest, there is a high complexity of shapes, textures, illumination 

conditions that increase the potential occurrence of false detections. Consequently, to reduce 

false-positives in the classification of this type of images, all potential error sources should be 

considered. Vaughn et al. (2018) noticed that as viewing angle and solar angles approach nadir, 

green undergrowth beneath a thin, leafless crown had a more dominant effect on reflectance, 

leading to a decreased detection of targets. This assumption contradicts the findings of Meddens 

et al. (2011) who argued that vegetation self-shadowing, standing position, and tree crown 

orientation might play different and critical roles in relatively high and medium resolution 

remote sensing. However, at a very high spatial resolution, as provided by an UAS, this might 

not be the case due to the increased probability to sense pixels corresponding to illuminated and 

shadowed parts of tree crowns (Meddens et al. 2011).  
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3.6. Conclusions 

This study demonstrated that it is feasible to detect and quantify dead woody components such as 

dead stand and fallen trees at SR-EMSS using a multispectral UAS and ML techniques. The 

UAS allowed access to the canopy forest at such high resolution that dead woody components 

within a tree crown could be detected. The coverage of dead woody components in the five 

temporary forest plots at SR-EMSS range from of 4.8% to 16.1%, with an overall accuracy of 

98%, and a kappa value of 0.958. 

Even though the best candidate model of the ten classification models tested provided similar 

accuracy values. The effects of the tuning parameters in the candidate models tested suggest that 

some of the classification models used were more sensitive to the tuning parameters than others. 

Likewise, it was found that the tested models displayed a heterogeneous selection of available 

parameters. Consequently, a wide range of available parameters should be tested in the 

classification models used to obtain the best classification results possible. The generation of a 

general model increased the accuracy values at the plot level, thanks to the increase of  the 

number of samples and possible training patterns; however, it can not be argued that that model 

provided better results than the plot specific model. 
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3.8. Figures and Tables 

 

Table 3.1. Description of the five temporary forest plots surveyed on the estimation of dead 

woody components at SR-EMSS, Costa Rica. 

Plot Secondary 

succession 

Description Figure 

One Intermediate-

late 

Forest patch contiguous to an old-grow forest patch; 

however, this patch is also surrounded by early forests. The 

soils in this patch are shallow with large exposures of 

volcanic rocks. 

3.1 a 

Principe 

Two Early-

intermediate 

Forest patch composed for grasses, shrubs, small decidudus 

trees, and some large evergreen trees of a Mesoamerican 

oak that grows from Mexico to northern Costa Rica. This 

patch is located in a particular soil which enhance the 

abundance of Quercus oleoides (White oak tree). 

3.2 a 

Guacimo 

Three Intermediate-

intermediate 

Forest with a high liana infestation (Woody vines) which is 

located next to a firebreak. In consequence, this patch was 

affected in the past by several wildfires. 

3.4 a 

Phenology  

Four Early-early Forest patch with a low recovery, large gaps, high 

abundance of grasses,  shrubs and small trees. The 

maximun height of the trees is approximately 6–8 m. 

3.3 a 

Fire 

Five Intermediate-

intermediate 

Forest patch surrounded only by similar successional 

stages, with deep soils. Historically intensively used as 

cattle pasture during the Hacienda epochs from 1600 s to 

1960. 

3.5 a 

Perros 
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Table 3.2. Models implemented and their available and selected input parameters in five 

temporary forest plots at SR-EMSS, Costa Rica. 

Model Package Method Parameter Descriptor Reference 

Support Vector 

Machines with 

Linear Kernel 

kernlab 

‘svmLinear’ Cost Cost 
(Karatzogl

ou, 

Smola, 

and 

Hornik 

2016) 

Support Vector 

Machines with 

Polynomial Kernel 

 Degree Polynomial degree 

‘svmPoly’ Scale Scale factor 

 C Cost 

Support Vector 

Machines with 

Radial Kernel 

 C Cost 

‘svmRadial’ Sigma Distance value 

Random Forest 
‘random

Forest’ 
‘rf’ Mty Number of trees 

(Breiman 

et al. 

2018) 

Conditional 

Inference Tree 
‘party’ 

‘ctree’ maxdepth Max. depth of the tree (Hothorn 

et al. 

2017) 
 mincriterion 

Value of statistic (1-p 

value) 

C4.5-like Trees ‘rWeka’ ‘J48’ 
C  Pruning confidence (Hornik et 

al. 2018) M  Min. instances/leaf 

Gradient Boosting 

Machines 

  n.trees Number of iterations 

(Ridgewa

y 2017) 

  interaction.depth Complexity of the tree 

‘gbm’ ‘gbm’ shrinkage Learning rate 

  n.minobsinnode 

Min. number of 

training samples in a 

node 

Neural Network 

‘nnet’ 

 Size Hidden units (Ripley 

and 

Venables 

2016) 

‘avNNet’ Decay Weight decay 

Averaged Neural 

Network 

 Size Hidden units 

‘nnet’ Decay Weight decay 

 Bag Bagging  

Deep Neural 

Network 

  layer1 Hidden units 

(Rong 

2014) 

  layer2 Hidden units 

‘deepnet

’ 
‘dnn’ layer3 Hidden units 

  hidden_dropout Dropout rate 

  visible_dropout Bagging 

 

 

 

 

 

 

 

https://cran.r-project.org/web/packages/kernlab/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/party/index.html
https://cran.r-project.org/web/packages/gbm/index.html
https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/deepnet/index.html
https://cran.r-project.org/web/packages/deepnet/index.html


62 
 

Table 3.3. Machine Learning models implemented and their selected and available input 

parameters in five temporary forest plots at SR-EMSS, Costa Rica. 

Model Acron 
Tune up 

parameters 

Avail. Plot 
Gen 

Values 1 2 3 4 5 

Support Vector 

Machines with Linear 

Kernel 

SVML cost c(1:100) 55 56 19 1 3 62 

Support Vector 

Machines with 

Polynomial Kernel 

SVMP 

degree c(1:10) 3 4 1 6 5 5 

scale seq(1,10,100) 1 1 1 1 1 1 

C c(1:100) 2 10 14 6 1 24 

Support Vector 

Machines with Radial 

Kernel 

SVMR 
C seq(1,10,100) 1 6 1 8 3 2 

sigma c(0.5:100) 1 1 1 1 1 1 

Random Forest RF mty c(1:100) 1 1 60 2 4 2 

Conditional Inference 

Tree 
CIT 

maxdepth c(1:100) 3 9 4 16 2 13 

mincriterion c(0.01:0.99) 0.01 0.01 0.01 0.01 0.01 0.01 

C4.5-like Trees C45T 
C  c(0.05:1) 0.05 0.05 0.05 0.05 0.05 0.05 

M  c(1:100) 1 1 3 1 1 1 

Gradient Boosting 

Machines 
GMB 

n.trees c(1:100) 56 97 31 97 97 96 

interaction.d

epth 
c(1:10) 10 10 6 10 1 10 

shrinkage seq(0.1,0.5) 0.1 0.1 0.1 0.1 0.1 0.1 

n.minobsinn

ode 
c(5,7,10) 10 10 5 5 5 10 

Neural Network NNET 
size c(1:100) 3 8 5 13 2 4 

decay c(0.5: 0.1) 0.5 0.5 0.5 0.5 0.5 0.5 

Averaged Neural 

Network 
ANNT 

size c(1:100) 16 41 62 12 33 28 

decay 
seq(0.01, 0.1, 

0.5) 
0.01 0.01 0.01 0.01 0.01 0.01 

bag seq(T, F) T T T T T T 

Deep Neural Network DNET 

layer1 c(1:10) 3 10 7 4 2 10 

layer2 c(1:10) 1 8 9 5 10 6 

layer3 c(0:10) 8 2 0 1 0 6 

hidden_drop

out 
seq(0, .1) 1 1 1 1 1 0 

visible_drop

out 
seq(0, 0.01) 0 0 0 1 0 0 
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Table 3.4. Average values of Accuracy, Kappa, and Processing times from the best candidate 

models across five temporary forest plots at SR-EMSS, Costa Rica. 

Model 

Accuracy Kappa Time 

Average StaDev Average StaDev Average StaDev 

ANNT 0.968 0.035 0.955 0.050 69307.830 20306.710 

C45T 0.967 0.032 0.950 0.045 373.777 56.677 

CIT 0.958 0.036 0.948 0.047 173.878 119.465 

DNET 0.945 0.005 0.955 0.021 4970.447 3550.205 

GMB 0.977 0.023 0.970 0.031 2839.378 2195.188 

NNET 0.955 0.054 0.940 0.075 9271.333 5272.399 

RF 0.980 0.020 0.958 0.034 1523.245 989.001 

SVML 0.950 0.056 0.938 0.069 595.568 1066.373 

SVMP 0.977 0.024 0.972 0.031 8188.283 11149.980 

SVMR 0.982 0.021 0.977 0.024 4689.915 8735.645 

 

Table 3.5. Analysis of variance with repeated measures ANOVA of three performance variables 

(Accuracy, Kappa, and Time) across five temporary forest plots at SR-EMSS, Costa Rica. 

Variable F- value Significance   

Time 82.963 0.000 *** 

Accuracy 2.236 0.209  
Kappa 12.719 0.174  
Interaction 1.045 0.365  

 

Table 3.6. Analysis of variance with a repeated measures ANOVA of  the extension of dead 

woody components across five temporary forest plots at SR-EMSS, Costa Rica. 

Variable  F- value significance   

Plot  3.296 0.246  
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Figure 3.1. (a) location map of the SR-EMSS; (b) ground reference point and GPS; (c) dead 

stand tree from UAV R: band red, G: band green B: band blue; (d); dead stand tree viewed from 

ground  
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Figure 3.2. Color composites for each site. Top row R: band red, G: band green B: band blue. 

Bottow row: Transformation composite  R: Tasseled Cap – Yellow Stuff structure, G: First 

Principal Component, B:Texture Mean Band blue. Column labels:  (1) Intermediate-late, (2) 

Early -intermediate, (3)intermediate-intermediate (4) Early- early, (5) Intermediate-intermediate,  
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Figure 3.3. The accuracy of validation samples for six machine learning algorithms using the 

Bootstrap 632 method in five temporary forest plots at SR-EMSS, Costa Rica. (a) Random 

Forest, (b) Conditional Inference Tree, (c) Support Vector Machines with Radial Kernel, (d) 

Support Vector Machines with Linear Kernel, (e) C4.5-like Trees, (f) Neural Network. 
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Figure 3.4. Accuracy of validation samples by two classification algorithms using the Bootstrap 

632 method in five temporary forest plots at SR-EMSS, Costa Rica. (a) Averaged Neural 

Network with Bagging (TRUE, FALSE)’, (b) Support Vector machine with polynomial kernel. 
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Figure 3.5. Accuracy of training samples by Gradient Boosting Machine using the Bootstrap 632 

method in five temporary forest plots at SR-EMSS, Costa Rica. (a) plot One, (b) plot Two, (c) 

plot Three, (d) plot Four, (e) plot Five, (f) General model. 
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Figure 3.6. The accuracy of training samples by Deep Neural Network using the Bootstrap 632 

method in five temporary forest plots at SR-EMSS, Costa Rica. (a) plot One, (b) plot Two, (c) 

plot Three, (d) plot Four, (e) plot Five, (f) General model. 
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Figure 3.7. Accuracy, Kappa and processing times values of ten machine learning models for 

classification across five temporary forest plots at SR-EMSS, Costa Rica.  
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Figure 3.8. Class coverage of five secondary dry forest temporary plots at SR-EMSS, Costa Rica 

using five plots and a specific and a general classification model.  
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Figure 3.9. Tukey test results of mortality coverage in five secondary dry forest temporary plots 

at SR-EMSS, Costa Rica. Where (a), (b), and (c) represent possible the groups. 
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Figure 3.10. Classification results of mortality extension in five secondary dry forest temporary 

plots at SR-EMSS, Costa Rica, using Random Forest algorithm. Using a plot specific model (a), 

and a general model (b). 

 

 

  



74 
 

4. Chapter four – Conclusions 

The main objective of this thesis was to assess the capabilities of a multi-spectral Unmanned 

Aerial System (UAS) at the Santa Rosa Environmental Monitoring Super Site, Costa Rica. Two 

studies were conducted, the first one, contained in Chapter Two, compared the relative error of 

reflectance values at the band-level as well as spectral vegetation indexes (VI) from a MicaSense 

Red Edge TM 3 multispectral camera onboard of a Draganfly XP-4 helicopter at the SR-EMSS’ 

grass-covered firebreaks using two radiometric transformations and four acquisition altitudes. 

This chapter contributed to the understanding of how to handle multispectral information 

acquired with an UAS beyond the use of end-user solutions that follow commercial processing 

chains. The second study, contained in Chapter Three, quantified the extension of dead woody 

components and live and understory vegetation using an UAS and Machine Learning techniques 

at the Tropical Dry forest of the Santa Rosa National Park Costa Rica. This study contributed to 

the understanding of techniques to quantify the extension of  mortality at TDF and other tropical 

enviroments and combined two leading edge technologies namely UAS and Machine Learning. 

4.1. Synthesis of significant contributions 

Von Bueren et al. (2015) argued that multispectral cameras have the potential to be deployed 

within UAV only if the shortcomings of the radiometric calibration are addressed. The results 

from chapter Two demonstrated that using at least three reference materials (White panel, grey 

panel, and black panel) for the calibration to at surface reflectance provide better results than 

using a single white panel. A repeated measures ANOVA indicated that the differences between 

transformation methods were statistically significant only in Blue, Red, Red Edge and NIR 

bands, and not in the Green band. Consequently, it can be argued that the calibration to at surface 

reflectance by the empirical line method solved the shortcomings of the radiometric calibration 

at SR-MESS. The error at the band level stretched values up to 10%, attributed to random errors 

because the instrument optimization and the protocols used mitigated the appearance of synthetic 

errors. Likewise, the vegetation indexes reported error values close to 20%. Seven of the ten 

vegetation indexes (DVI, EVI, GDVI, GNDVI, GRVI, IPVI, MSR, NDVI, NLI, and SR) showed 

an underestimation in comparison with values derived from field spectrometer measurements.  
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The results from chapter Three demonstrated that multispectral UAS and Machine Learning are 

viable technologies to quantify the extent dead woody components such as dead stand and fallen 

trees at the SR-EMSS, Costa Rica. This study found that the coverage of dead woody 

components in the five temporary plots at SR-EMSS ranges from 4.8% to 16.1%. Chapter Three 

illustrated the “No Free Lunch” theorem of Wolpert (1992), who stated that without having 

substantive information about the modelling problem, there is no single model that is better than 

another model. Chapter Three showed that neither of the ML models with a single set of 

parameters could outperform in accuracy values the others ML models in all plots. Even though 

the best candidate model of the ten classification models tested provided similar accuracy values. 

Some classification models tested were more sensitive to the tuning parameters than others. 

Likewise, it was found that the best candidate models displayed a heterogeneous selection of 

available parameters. Consequently, a wide range of available parameters should be tested in the 

classification models used to obtain the best classification results possible. Similarly, to select a 

final classification model, it is required to consider factors such as the assumptions of the model 

chosen, the number and complexity of setting up parameters, the accuracy values, the kappa 

coefficient and processing times. 

In synthesis, both chapters of this thesis showed the potential of a multispectral UAS as a 

research tool at the SR-EMSS. To calibrate the multispectral data used to at surface reflectance 

the empirical line method with three reference panels provided better results than using a single 

white reference panel, even though the camera manufacturer recommends the use of a single 

white reference panel. The UAS allowed access to the forest canopy at high resolution enabling 

the detection of dead woody component within a tree crown . 

4.2. Challenges and considerations 

The toughest challenge faced during this thesis was the learning process related to the operation 

of the UAS used during the field campaign. The operation of a UAS requires several skills and 

certifications.  Similarly, there was a learning curve in regards to the computer code required to 

implement the Machine Learning models in chapter Three. The learning curve of the R program 

was overcome with the help of online courses, support groups, and code libraries. Another 

challenge of this thesis was the deletion of individual images during the mosaic generation on 
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PIX4D. Specifically, for no clear reason, PIX4D discarded many images in the mosaicking 

generation, only displaying a message that indicated that the images were not calibrated resulting 

in mosaics with large gaps or no information. Consequently, to fill those gaps missing images 

were added and replaced with images acquired at the same time period. 

Sandbrook (2015) in “The social implications of using drones for biodiversity conservation” 

calls for self-regulation and mitigation of possible social impacts of using drones, including 

effects on safety, privacy, psychological well-being, and data security. Consequently, good 

ethical practices must be accounted to avoid negative social impacts and an undermining of the 

relatively good perception of drones in society in the long term. 

4.3. Future Research  

Further climate scenarios are likely to include significant increases in mean temperatures, 

carrying increases in frequency and severity of extreme droughts, and heat waves (Sterl et al. 

2008).  Tree mortality related to extreme drought has been reported worldwide; however, the 

triggering factors and susceptability vary across ecosystems, life forms and even within species. 

Large trees suffer most during a drought in forests worldwide (Bennett et al. 2015) while Lianas 

reduce growth and survival of host trees in temperate and tropical forests (Lai et al. 2017). 

In this context, a further research path could be to fully scale-up the work of Li et al. (2018) by 

detecting dead trees, liana-infested, and non-liana-infested trees in a gradient of secondary dry 

forests at SR-EMSS. Another future path could be to locate emergent dead trees individually 

adapting the work of Alexander et al. (2018) who located emergent trees in a tropical rainforest 

using data from an UAS. However, to pursue an analysis with 3D information a high-resolution 

RGB camera or lidar should be considered because of the MicaSense RedEdge TM 3 not 

provides good 3D products. Sanchez-Azofeifa et al. (2017) proposed the fusion of thermal, 

VNIR, and hyperspectral sensors providing new opportunities for the discrimination of life form 

or species, and the analysis of biochemical and functional traits at canopy levels at very high 

spatial resolution. 

The use of UAS, in general, carries some uncertainties that must be compensated to successfully 

obtain valuable data including platform movement that was minimal here due to stable flight 

conditions (minimal wind) and the compensation of any small platform instabilities by camera 
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gimbals. There are remaining uncertainties about whether the UAV cameras is truly pointing to 

the target at nadir, although the UAS is equipped with gyro-stabilization mechanisms such as 

GPS, IMU units, and camera gimbals (Von Bueren et al. 2015). The fusion of VNIR and SWIR 

sensors with thermal sensors intrinsically creates an operational constraint. because according to 

Mulero-Pázmány et al. (2014) the best time for the use of optical cameras is from late morning to 

midday. Thermal cameras, on the other hand, may have requirements for optimal results that 

span a larger time period. Likewise, there are other uncertainties related to the sensor viewing 

directions and possible differences in FOV between cameras.  

Finally, another piece of research could be the estimation of canopy attributes using RGB 

images, adapting the work of Chianucci et al. (2016), or quantifying the spatial gap patterns in 

the TDF at the SR-EMSS, adapting the work of Getzin et al. (2014). However, the work with 

RGB images should be based on object-base and segmentation analysis because the images 

acquired with RGB technology have a low radiometric resolution. Consequently, RGB 

technology provides very high-resolution information but can store energy levels lower than 8  

bits. 
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Appendices  

 

Appendices chapter Two 

 

Appendices 2.1. Example of error values at band and index level acquired at 25 m of altitude. 
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1 2 

h2

5 -5.8 -6.3 -5.2 -8.3 -7.3 

-

12.1 

-

15.3 -11 -11.6 -12.8 -2.7 -6.4 -15.8 -12.5 

-

17.4 

-

4.4 

2 2 

h2

5 -5.5 -6.1 -5.6 -8.2 -6.8 

-

11.2 

-

15.1 -10.7 -11 -11.6 -1.8 -5.8 -14.9 -11.5 

-

16.2 

-

2.7 

3 2 

h2

5 -5.4 -6.3 -5.7 -8.3 -6.8 

-

11.1 

-

16.1 -10.5 -10.7 -11.5 -1.4 -5.7 -14.8 -11.4 

-

16.2 

-

2.6 

4 2 

h2

5 -5.3 -6 -4.8 -8.1 -6.5 

-

11.7 

-

14.5 -10.5 -10.7 -12 -1.3 -6 -15.2 -11.8 

-

16.2 

-

3.3 

5 2 

h2

5 -4.6 -5.9 -5.9 -8.2 -7 

-

11.1 -0.5 -11.1 -11.5 -11.5 -2.7 -5.8 -14.8 -11.4 

-

16.4 

-

2.7 

6 2 

h2

5 -7 -7.6 -7 -8.6 -7.7 

-
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-

12.2 -10.1 -10.2 -11.3 -0.4 -5.7 -14.3 -11.2 -17 

-
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5 -7.5 -8.4 -8.5 -8.9 -8.6 

-
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-

11.5 -10.2 -10.7 -10.3 -1.3 -5.2 -12.9 -10.3 

-

17.7 

-

0.7 
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5 -7.7 -8.5 -8.3 -8.4 -8 -9.7 -8.5 -9.5 -8.6 -9.2 3.3 -4.6 -12.7 -9.2 

-

16.2 1.8 

10 2 

h2

5 -7.9 -8.4 -8.4 -9.3 -8.6 

-

10.2 -11 -10.2 -10.7 -10.7 -1.3 -5.3 -13.1 -10.6 

-

17.8 

-

1.3 

11 2 
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5 -7.4 -8.8 -8.5 -9.1 -7.9 -9.4 -0.6 -9.1 -7.3 -8.3 7.5 -4.2 -12.3 -8.2 

-

15.5 4 

Note: The total data set it is not provided because it requires 1744 rows to be displayed.
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Appendices chapter Three 

 

Appendices 3.1 Tukey test results of 10 classification models according to (a) Time and (b) 

Accuracy average values. 

 

 

Appendices 3.2. Tukey test results of five specific models and a general model at SR-EMSS. 
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Appendices 3.3. Tukey Test of an ANOVA with a significance level of 0.95 across five 

temporary forest plots at Costa Rica. 

Models diff lwr upr p adj 

C45T-CIT 199.8983 -15330.8 15730.56 1.000 

SVML-CIT 421.69 -15109 15952.35 1.000 

RF-CIT 1349.367 -14181.3 16880.02 1.000 

GMB-CIT 2665.5 -12865.2 18196.16 1.000 

SVMR-CIT 4516.037 -11014.6 20046.69 0.993 

DNET-CIT 4796.568 -10734.1 20327.23 0.989 

SVMP-CIT 8014.405 -7516.25 23545.06 0.786 

NNET-CIT 9097.455 -6433.2 24628.11 0.643 

ANNT-CIT 69133.95 53603.29 84664.61 0.000 

SVML-C45T 221.7917 -15308.9 15752.45 1.000 

RF-C45T 1149.468 -14381.2 16680.13 1.000 

GMB-C45T 2465.602 -13065.1 17996.26 1.000 

SVMR-C45T 4316.138 -11214.5 19846.8 0.995 

DNET-C45T 4596.67 -10934 20127.33 0.992 

SVMP-C45T 7814.507 -7716.15 23345.16 0.809 

NNET-C45T 8897.557 -6633.1 24428.21 0.671 

ANNT-C45T 68934.05 53403.4 84464.71 0.000 

RF-SVML 927.6767 -14603 16458.33 1.000 

GMB-SVML 2243.81 -13286.8 17774.47 1.000 

SVMR-SVML 4094.347 -11436.3 19625 0.997 

DNET-SVML 4374.878 -11155.8 19905.54 0.995 

SVMP-SVML 7592.715 -7937.94 23123.37 0.833 

NNET-SVML 8675.765 -6854.89 24206.42 0.701 

ANNT-SVML 68712.26 53181.6 84242.92 0.000 

GMB-RF 1316.133 -14214.5 16846.79 1.000 

SVMR-RF 3166.67 -12364 18697.33 1.000 

DNET-RF 3447.202 -12083.5 18977.86 0.999 

SVMP-RF 6665.038 -8865.62 22195.7 0.915 

NNET-RF 7748.088 -7782.57 23278.75 0.816 

ANNT-RF 67784.59 52253.93 83315.24 0.000 

SVMR-GMB 1850.537 -13680.1 17381.19 1.000 

DNET-GMB 2131.068 -13399.6 17661.73 1.000 

SVMP-GMB 5348.905 -10181.8 20879.56 0.978 

NNET-GMB 6431.955 -9098.7 21962.61 0.930 

ANNT-GMB 66468.45 50937.79 81999.11 0.000 

DNET-SVMR 280.5317 -15250.1 15811.19 1.000 

SVMP-SVMR 3498.368 -12032.3 19029.03 0.999 

NNET-SVMR 4581.418 -10949.2 20112.08 0.992 

ANNT-SVMR 64617.92 49087.26 80148.57 0.000 

SVMP-DNET 3217.837 -12312.8 18748.49 0.999 

NNET-DNET 4300.887 -11229.8 19831.54 0.995 
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ANNT-DNET 64337.38 48806.73 79868.04 0.000 

NNET-SVMP 1083.05 -14447.6 16613.71 1.000 

ANNT-SVMP 61119.55 45588.89 76650.2 0.000 

ANNT-NNET 60036.5 44505.84 75567.15 0.000 

 

Appendices 3.4. Accuracy, kappa and processing time of ten Machine learning models across 

five temporary forest plots at SR-EMSS, Costa Rica. 

mid Model Accuracy kappa Time (min) Plot 

1 RF 0.99 0.99 661.73 plot 1 

1 RF 0.98 0.97 1751.45 plot 2 

1 RF 0.99 0.98 734.74 plot 3 

1 RF 0.94 0.92 2100.5 plot 4 

1 RF 0.99 0.98 765.54 plot 5 

1 RF 0.99 0.91 3125.51 plot 6 

2 C45T 0.99 0.98 308.79 plot 1 

2 C45T 0.95 0.93 430.07 plot 2 

2 C45T 0.99 0.99 304.32 plot 3 

2 C45T 0.91 0.87 366.45 plot 4 

2 C45T 0.97 0.95 408.21 plot 5 

2 C45T 0.99 0.98 424.82 plot 6 

3 CIT 0.99 0.98 104.67 plot 1 

3 CIT 0.95 0.94 183.62 plot 2 

3 CIT 0.98 0.98 97.17 plot 3 

3 CIT 0.89 0.86 164.19 plot 4 

3 CIT 0.97 0.95 88.92 plot 5 

3 CIT 0.97 0.98 404.7 plot 6 

4 GMB 0.99 0.99 1488.44 plot 1 

4 GMB 0.98 0.97 2770.14 plot 2 

4 GMB 0.99 0.99 1408.78 plot 3 

4 GMB 0.93 0.91 2248.28 plot 4 

4 GMB 0.98 0.97 1919.75 plot 5 

4 GMB 0.99 0.99 7200.88 plot 6 

5 SVML 0.99 0.99 72.82 plot 1 

5 SVML 0.96 0.94 128.61 plot 2 

5 SVML 0.99 0.99 103.16 plot 3 

5 SVML 0.85 0.81 396.28 plot 4 

5 SVML 0.99 0.98 113.64 plot 5 

5 SVML 0.92 0.92 2758.9 plot 6 

6 SVMP 0.99 0.98 750.32 plot 1 

6 SVMP 0.97 0.97 2747.55 plot 2 

6 SVMP 0.99 0.99 917.91 plot 3 

6 SVMP 0.93 0.91 27437.53 plot 4 

6 SVMP 0.99 0.99 1125.25 plot 5 
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6 SVMP 0.99 0.99 16151.14 plot 6 

7 SVMR 0.99 0.99 658.36 plot 1 

7 SVMR 0.98 0.97 1933.04 plot 2 

7 SVMR 0.99 0.99 732.28 plot 3 

7 SVMR 0.94 0.93 1573.6 plot 4 

7 SVMR 1 0.99 752.65 plot 5 

7 SVMR 0.99 0.99 22489.56 plot 6 

8 NNET 0.99 0.99 5291.85 plot 1 

8 NNET 0.92 0.89 10203.23 plot 2 

8 NNET 0.99 0.99 4862.61 plot 3 

8 NNET 0.86 0.81 9885 plot 4 

8 NNET 0.98 0.97 6405.29 plot 5 

8 NNET 0.99 0.99 18980.02 plot 6 

9 ANNT 0.99 0.99 51439.75 plot 1 

9 ANNT 0.96 0.94 91222.38 plot 2 

9 ANNT 0.99 0.99 49492.1 plot 3 

9 ANNT 0.9 0.86 79925.06 plot 4 

9 ANNT 0.98 0.97 52601.26 plot 5 

9 ANNT 0.99 0.98 91166.43 plot 6 

10 DNET 0.94 0.94 3468.43 plot 1 

10 DNET 0.94 0.96 3755.14 plot 2 

10 DNET 0.95 0.95 3392.74 plot 3 

10 DNET 0.95 0.96 3855.23 plot 4 

10 DNET 0.94 0.99 3152.38 plot 5 

10 DNET 0.95 0.93 12198.76 plot 6 

 


