l o l National Library

of Canada

Acquisitions and

Bibliotheéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa. Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
QOttawa (Ontario)

Your fre Aot eftrence

QOur e Notre refereinee

AVIS

La qualité de cette microforme
dépend grandement de ia qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualit¢ d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a Il'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partiaile,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Implementing Bit Data Structures in Mizar-C
BY

(o)

Kathleen Kippen

A thesis submitted to the Taculty of Gradnate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

DEPARTMENT OFIF COMPUTING SCIENCE

Edmontou, Alber:
Spring 1997

l * l National Library Bibliothéque nationale
of Canada du Canada

Acquisitione and Direction des acquisitions el
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa, Ontarno Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01616-1

Canadi

Your file Vore reldrence

Crar e Notre retdrmnee

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

UNIVERSITY OF ALBERTA

RELEASE FORM

NAMI O AUVHOR: Kathleen Kippen
TITLI OF THIESIS: Implementing Bit Data Structures in Mizar-C
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1995

Permission is nereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

)

(Signed) . (\/\ A C,’??'?‘éfw.
Kathleer Kippen
822 - 112 B Street
Edmonton, AB
T6.) 6W3

Date: \’/ ¢e 30/95]

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad
uate Studies and Research for acceptance, a thesis entitled Implementing Bit Daca
Structures in Mizar-C submitted by Kathleen Kippen in partial fulfilhient of the
requirements for the degree of Master of Science.

s //%z/o f;’ /)/

DL Hoover (Supe lwsm)
- - "

>l
”/\‘ Ju(g |

foxte ln.:l)
: I)LL‘ \L(::'(k
Dot ':.l,l(llll(fl\'l (lu:(:n,mlnvr)

o

Dr. M. Jne (Chair)

Date: ,\(:2/71 . 30/?5’
(/

Abstract

One of the main goals of computer programming is to produce compstter systems that
are correct with respect to their specifications; in other words, to produce programs
that do what they are supposed to. There are two main impediments to this goal:
the lack of comy.leteness in most program specifications, and the difficulty in verifyving
the correctness of programs, especially those that have nat been fully specified. This
thesis examines the use of constructive proofs to specify and produce correct code.
Typically, a computer program is specified, implemented, and then proven correct. in
this research a different approach is taken; the specification of the program is proven
to be true; and the code is then extracted from this proofl using the Mizar-C' system.
a natural deduction proof environment which extracts Lisp code from constructive
proofs.

The main goal of this rescarch was to define finite sequences of bit strings in
Mizar-C. The work done to accomplish this goal iz the content of this thesis. Somc
basic background to this work is given which provides a high-level overview of the
notion of extracting programs from proofs, the Mizar-C system and the basic bit
inachine underlying its extracted programs. Appendices that go into greater detail
about the systemn are provided. In order to provide the motivation for the specific
work undertaken, some intuition into the process that was followed in defining the
finite sequences is given. The work that was done to facilitate this definition is then
discussed: the implementation of some new inference rules is ontlined, a proof of
an iterator function done in Mizar-C is presented, and the definition of the finite
sequence of bit strings is given. A discussion of the feasibility of using the Mizar-C
system as a programming tool is then given in conclusion.

Acknowledgements

[would like to take this epportunity to express my sincere thanks to those who have
helped me throughout my graduate studies.

[extend my appreciation to my superviser, Dr. H. James Hoover, for all his sapport
throughout the course of this work, and to the members of my committee for then
evaluation of this thesis.

Thanks also:

to Dr. Piotr Rudnicki for all the discussions over colfee,

to Mira and Annette for keeping me sane,

to my family for their love,

and especially to my husband Kelly, whose endless support and encouragement made
all of this possible.

{Contents

1 Introduction

LI Motivation . .0 00000000
1.2 Programming with Constructive Proofs
1.3 Current Research o000 000000000
I.4 Overviewof Thesis © .00 0000000000

2 Background

2.1 Interpreting Proofs as Programs
2.2 The Mizar-C System
2.3 The Bit Machine0

3 Basic Intuition

3.1 Extending the Basic Bits Functionality
3.2 Attempting to Define New Types

4 New Inference Rules

4.1 The Choice Ruleo
1.2 Guarded Choice oo o
4.3 Definitions
4.4 Induction . ..o

5 Iterator Function

S0 Motivation . .o oL
5.2 Delining the lterator .. o0 0 oo C 0
5.3 Proving the lterator o L

5.3.1 Outlincof the Proof,
5.4 Other Properties of the lterator
5.5 Problems Encountered During Proof

6 Definition of Finite Sequences
6.1 Packets . ..o Lo
6.2 Finite Sequences oo oL L
6.3 Properties of Finite Sequences

o —

ot

..

-1

N BN = e et
Nel

b o—

LW o o B
—— 00 =1 O i

7 Conclusions 38
7.1 Mizar-C as a Programming Tool 38
7.2 Using Formal Methods 39

A Sparse Realizabilitv 41
A.l Conjunctions: (6 & ... &0,) n >t ... 11
A.2 Disjunctions: (fyor ...ov 0, \yn>1 42
A3 lImnlications: (6, implies 0,) 12
Ad Iff: (0,ifF0,). e e, 1
A.5 Universally Quantified Formulae 11
A.6 Existentially Quantified Formulae 5
AT Case Analysis L 16

B Mizar-C Inference Rules AT
B.l Constructive Inference Rules A

B.1.I Direct Rule i
B.1.2 Equality Snbstitution, ST
B.1.3 The elim Inference Rule IN
B.1.4 Universally Quantified Formulac O
B.1.5 Implicationso H
B1.6 HE . .o 5%
B.1.7T Reasoning by Cases 56
B.1.8 Existentially Quantified Formulae HN
B.1.9 Tuple Manipulation 60
B.1.10 Disjunction Manipulation 61
B.1.11 Conjunction Manipulation (3
B.1.12 Inductiono 61
B.1.13 The Choice Rule 61
B.1.14 Guarded Choice £3-1
B.1.15 Definitions L £
B.2 Non-constructive Inference Rules 65
B.2.1 Magic 6
B.2.2 Reverse Implication 65
B.2.3 Law of Excluded Middle: 66
B.2.4 Negation Introduction 66
B.2.5 Negation Elimination 67
B.2.6 Contradiction Introduction 67
B.2.7 Contradiction, 67
B.2.8 Equality Introduction. (1%
B.2.9 DeMorgan’sLaws ()
B.2.10 Conversion Between Disjunctions and Implications 69

C Basic Bit String Extensions 71

Bibliography

List of Figures

1 Sxample of Choice Rule without Content IS
2 Example of Choice Rule with Content 1o
3 Example of Guarded Choice Rule with Content]
! Definition of One to-One Binary Relation oo
5 Well-Founded Inductiono 00 23
6 Definition of Unary Naturals T
7 Iterator Theoremy 26
S Iterator Definition 2N
9 Initial Inductive Proof 2N
10 Other Iterator Property Definitions 31
11 Iterator Theorems. 3

12 Example of Equality Substitution Rule I8

13 Examples of Elimation Rule o
14 Content-Free Universal Introduction. Hl
15 Universal Introduction with Content Hl
16 Universal Elimination Example 52
17 Content-Free Implication Introduction 53
18 Type I Implication Introduction 53
19 Type 2 Implication Introduction e e ol
20 Implication Elimination Hh
21 HFlntroduction H%
22 If Elimination. 56
23 Introduction of Cases a7
24 CaseAnalysis Hs
25 Existeutial Introduction on Formula without, Content Hy
26 Existential Introduction on Formula with Content 54
27 Existential Elimination when Formula has no Content, 50
28 Existential Elimination when Formula has Content 60)
29 Exampleof Tuple Rule 6]
30 Disjunction Introduction C. 62
31 Disjunction Elimination (2
32 Examples of Conjunction Manipulation fi:

“

33 Use of Magic Inference Rule e G5

314 Examples of Reverse Implication Rule . . . 0 00 000000000 66

35 DIxcluded Middle Inference Rule . . 0 00 000000 00000 66
36 Example of Negation Introduction00 000 67
37 Exampleof Contra Rule 0000000 63
38 BEquality Introduction 000000 69
39 Examples of Demorgan Rule 000, 70

40 Conversion between Implication and Disjunction 10

List of Tables

Al
A2
A3
Ad
AD
A.6
AT

Implication Realizatious
Realizations of Implication Elimination
Realizations of HT Elimination

Voo oo oo s s

13

13
11

I

15

5

Chapter 1

Introduction

1.1 Motivation

One of the main goals of computer programming is to produce computer systems that
are correct with respect to their specifications; in other words. to produce programs
that do what they are supposed to. There are two main impediments to this goal: the
lack of completeness in most program specifications, and the difficulty in verifying the
correctness of programs, especially those that have not been fully specified. As part
of the Mizar-Ct group at the University of Alberta. I have been investigating wavs of
overcoming these problems using formal methods of program specification and vori-
fication. Specifically, the Mizar-C group is examining the use of constructive proofs
to specify and produce correct code. Typically, a computer program is specified,
implemented, and then proven correct. Our research takes a different approach; the
specification of the program is proven to be true, and the code is then extracted from
this proof. We have been developing and using Mizar-C, a natural deduction proof
environment which extracts Lisp programs from constructive proofs, to examine the
feasibility of this method of programming [29].

The rigour of formal theories is not applicable to all types of programming. The
extra programmer time, and thus cost, required to perform the formal proofs of
specifications is not always feasible. However, there are computer systems where the
cost of failure is so high as to justify the extra cost of using formal methods. Also, it
is not necessary to formally prove the specifications of programs that can be proven
by rigorous testing. Such programs have a behaviour that is defined in such a way
that all possible actions can be tested by a good test suite.

There are systems where no sucli test suite exists; for example certain protocols,
which depend upon a set of assumptions about the behaviour of the computer system.
are not possible to exhaustively test in reality, and so must be simulated. In cases like
these, formal methods can be used to prove that the protocol meets the specification
under a set of specific assuraptions. Formal methods have the added benefit of forcing
the identification of the exact assumptions being made by the developer. My own
experience using the Mizar-C system (as well as Heliner’s method of refinement [11])

tells me that this is not a minor point. It is ainazing how many assumptions a persen
brings into a given situation which formalization forces them, sometimes painfully, to
deal with. Since some programming tasks lend themselves to formal methods. while
others are better handled by good test procedures, it scems that a combination of
formal methods and thorough testing would be a good approach to improving the
quality of most systems.

1.2 Programming with Constructive Proofs

Programming in the Mizar-C' system can be scen as analogous to programining in
a high-level language. When programming in a higher-level fanguage, the bheginner
programmer usually starts by implementing the specification in the most straight

forward obvious way, which may or may not be the most efficient method. I is by
understanding something about how the higher-level code is compiled into the lower
level object code, and how the memory is utilized that the programmer can make
choices about how to implement in the higher-level language in order to effeet the
efficiency of the compiled code. In Mizar-C. often the obvions proof is not the one
that will lead to the most efficient implementation. However, by understandine the

relationship of the proof to the code that is generated. the prover can choose e proof

structure that will result in the more efficient implementation. Although hisher-level

languages are supposed to make the programming task casier by abstracting sone of

the low-level details, the programmer who wants to produce eflicient code must stil]
take those details into account. The same thing applies to an implicit programming
system like Mizar-C; if the programmer cares about the - ssmplexity of the extracted
program he must pay attention to the details of the code exiraction process.

For example, case analysis i a prool will correspond to a conditional test in the
extracted program. Inductive proofs resalt iu recursion; the use of lemmas may result
in calls to other programs. Thus the structure of the proof determines the stricture
of the extracted program. Because ! tiis, for a given specification cue prool may be
more desirable than another becaus: * vesults in a better implementation. This is no
different than how, for a specific programming task (for example sorting or scarching).
one algorithm may be preferable to another. Just as an experienced programmer
learns how to choose the algorithm that is best suited to the desired task, the Mizar-
C programmer learns how to choose the proof structure that corresponds to the hest
algorithm.

One problem with this implicit method of programming is that any reasoning
about the complexity of the extracted program must be done ontside of the Mizar-C'
system. Since the programs are not objects within the system it is not possible Lo
talk about them directly. Although the extracted programs are correet with respect
to their specifications, these specifications describe what the programs prodice as
output rather than how they produce it or what resources are consumed. Sinee the
code generated by the computer can be quite difficult for humans to follow, reasoning
about an extracted program’s behaviour is even more challenging than usnal. We

S

came across several examples of this while working in Mizar-C. Although we felt
we had a general idea of the way the program would execute, many times we were
surprised by the run-time behaviour. When a proof is quite complex it can be difficult
to see the correspondence between the proof and the program’s execution. Since a
“good” program is not only correct but alse efficient, this problem of complexity of
extracted programs must be addressed before this implicit method of programming
will be of any practical use.

1.3 Current Research

There is much research in the arca of using constructive proof methods to realize
correct computer programs. NUPRL [3] and Coq [6] are two systems that. like Mizar-
¢, perform implicit program extraction from constructive proofs. However, hoth
syvstems are based upon constructive type theories, which results in what we feel is
one of the major differences between them and Mizar-C. In type theories, a given
type is defined by its construction method and can only be dismantled in one way.
This prohibits using different methods to take apart a given data structure. The
types defined in Mizar-C are not restricted to any particular method of construction.
and thus for a given programming task, the most efficient method of access can be
implemented (see Section 5 for further discussion). Neither NUPRL or COQ appears
to have dealt with the problem of the complexity of the extracted programs. Manna
and Waldinger have done work on program synthesis using deductive-tableau proofs
and in [18] they mention the need to reason about the complexity of the synthesized
programs, although no solution is provided. Some systems, such as PX[10], allow
direct reasoning about the extracted programs. In PX, the programs exist as terms
in the object language, and can thus be reasoned about directly.

There is other research which focuses on more explicit methods for proving pro-
gram correctness. Most of these approaches use existing theorem provers to perform
program verification rather than program extraction. For example, P. Rudnicki is
using the MIZAR system to reason about programs written for a simple machine (the
SCM machine) [25]. The Boyer-Moore theorem proving system, Nqthm, has been
used to prove the correctness of a computing system known as the CLI Stack, which
includes a microprocessor design, an assembler and a higher-level language; as well a
proof of correctness for a small operating system kernel has been done [20]. HOL has
been used in the process of hardware, software and protocol verification; as an exam-
ple, it was used to partially verify the commercially-available VIPER microprocessor

[2].

1.4 Overview of Thesis

My main project was to define finite sequences of bit strings in the Mizar-C system.
Some basic background to this work is given in Chapter 2, which provides a high-level

overview of the notion of extracting programs from proofs, the Mizar-C svstem and
the basic bit machine underlying its extracted programs. Appendix A provides greater
detail into the realizability interpretation used to produce programs from proofs in
Mizar-C, while Appendix B provides a full description of the inference rules of the
system. Chapter 3 provides some intuition into the process that was undertaken in
defining the finite sequences. This chapter provides the miotivation for the work that
was done in Mizar-C to facilitate the definition, and the remainiug chapters outline
this work. Chapter 4 describes my implementation of the new inference rules that
were required to begin the definition of new types in Mizar-(!. Chapter 5 outlines
the proof of an iterator function that is used in the definition. The formal definition
of finite sequences is then presented in Chapter 6, along with a discnssion of the
theory that was proven to support the definition. Finally, a general discussion of the
feasibility of the Mizar-C system as a programming tool is given.

Chapter 2

Background

2.1 Interpreting Proofs as Programs

The goal of the Mizar-C project is to examine the use of constructive proofs of pro-
gram specifications as a programming methodology. Given a program specification. a
constructive proof of the existence of an object meeting the specification is performed.
from which the program can be extracted. For example the formula

Yz Jy st Post[x,v]

can be read as a specification for a program which, for a given x, finds a y for which
some property Post[x,v]is true. Mizar-C extracts the program from the constructive
proof using a realizability interpretation, which relates logical connectives to compu-
tation.

In order to interpret proofs as programs, there must be a relationship between
proof constructs and programming constructs. The following are some examples of
general analogies that can be made between proof steps and program steps.

Proofs Programs
Y intro: function declaration:
't a
let a f(int x){

thus P[z]

Va Plz] J
Y elim: function application:
Va Plx] £(6)
6]

Universal introduction can be viewed as introducing a function, and climinating
the universal variable is analogous to applying the function to the argument.

3 intro: results:
£ {
P[6 + g(2)]
i Pla]

return 6+g(2);

}

3 elim: assignment:
Ja P[x]
consider 1 st P[]

t = £();

Existential introduction can be viewed as creating a macro that, uses global argu
ments to compute a specific value, and the existential elimination can be viewed as
assigning the value computed by the macro to a particular variable.

= intro: use a module:
assume M #include M
thus @)
—W module Q
= elim: linking/loading:
M, M= Q

0 1d Q.o -0 G -1M

One way to view implication introduction is as follows: given a set of facts M (a
module), one can use them to produce @ (another module). hnplication climination
can be then seen as using an existing module to create another modnle.

i\

V intro: case analysis:
PR switch(?) {
Q= [1’: case P: R

PVQS R et

V elim: case execution:

PvQ,P= R, Q=R

execute above code

R

These two rules relate to a decision precedure. The first creates the code to per-
form the decision, while the second would actually execute the procedure to produce
the desired result.

induction: recul.ion:
let int f(int x) {
assu...e Thyp: .
Vy.y<az= Ply v i{x-1)
f(x-3)
thus P[x] reurn value of f(x)
Vz Plz] }

An inductive proof results in a recursive function that can use the values from
the recursive calls to compute the desired output. The structure of the proof would
determine the base case and the recursive calls to be made.

2.2 The Mizar-C System

The Mizar-C system [29] provides an environment for doing natural deduction proofs,
whare code can be extracted from the constructive parts of the proof. Mizar-C im-
plements a classical, limited second-order logic, and the language for the logic is
related to that of the Mizar-MSE language [14]. The proof-checking environment
is implemented using the Synthesizer Generator [24], which provides an interactive
syntax-directed proof editing environment. Lisp is used as the language for the real-
izations that make up the extracted programs.

The idea of realizability was first proposed by Kleene [15] as a method for making
the constructive content of arithmetical sentences explicit. The Curry-Howard iso-
morphism [4], or “propositions-as-types” principle, provided a means for interpreting

~1

constructive logic and extracting its computational content as typed lambda caleulus
expressions. The realizability interpretation of Mizar-C, called sparse realizability,
is based upon the Curry-Howard isomorphism, although sparse realizability destroys
the isomorphism since it is no longer possible to convert programs back into their
corresponding proofs.

Under a full realizability interpretation, every logical formula has an associated
computation called its realization. However, not every realization has actual compu-
tational content. Some realizations have no inputs and are thus simply constants, or
possibly expressions that require evaluation in order to produce the constant. Under
sparse realizability, realizations corresponding to the Curry-Howard isomorphism are
generated only for those formulae that have computational content. This sparse re-
alizalion of formulae results in generated code that in a seuse is optimized, since it
eliminates the expressions, and hence the need to evaluate these expressions, that do
not contribute to the overall computation.

The realizations that make up the sparse realizability interpretation are given in

Appendix A. For other work exploring methods of optimizing extracted programs sce

[16] [1] [26].

In this thesis, the following conventions are used when presenting examples of

statements and proofs done in Mizar-C:

e The type style for x being Tx holds P[x] will he used when writing examples of

Mizar-C proof text.

e The type style (LAMBDA () x) will be used in the examples of realizations of

Mizar-C proof text.

2.3 The Bit Machine

The realizability interpretation alone is not sufficient to be able to produce computa-
tion in Mizar-C. Without any other extensions, the programs extracted from Mizar-C!
using the realizations are simply functions — there are no objects to apply them to.
The system has thus been extended with a basic data type of bit strings; these bit
strings are the objects upon which all computation takes place. The axioms, along
with an implementation of the basic primitives of this simple bit machine have been
added to the Mizar-C system. The idea was to add the minimal set, of primitives such
that all other desired functionality could be derived from them within the Mizar-C:
system.

This basic data type consists of bit strings called Bits, which are essentially strings

of 0 and 1 bits.

given Bits being [Any];

{<<R-NONE:R-NONE>> }

given 0, 1, nil being Bits rby bit-0, bit-1, bit-nil;
{<<bit-0:bit-0>> <<bit-1:bit-1>> <<bit-nil:bit-nil>> }

Two length predicates are provided, one for when two bit strings are of equal
length, and one for when one bit string is shorter, or less than, in length than another
bit, string.

given bitsden It being [Bits, Bits |;
{<<R-NONE:R-NONE>> }
given bits_len_eq being [Bits, Bits |[;
{<<R-NONE:R-NONE>> }

Two primitive operations, cat and split, are provided. The cat function concate-
nates two bit strings together, while the split function divides a bit string into two
picces modulo another bit string. For example:

(cat < 11,00 >) = 1100
(split < 1101011, 1110 >) = < 1101, 011 >

given cat being (<Bits, Bits > -> Bits) rby bit-cat;
{<<"it-cat:bit-cat>> }
BA_cat: (for x, y being Bits holds
(ex z being Bits st (z = (cat <x, y >)))) rby bits-ba-cat;
{<<bits-ba-cat:bits-ba-cat>>}
given split being (<Bits, Bits > -> <Bits, Bits >) rby bit-split;
{<<bit-split:bit-split>> }
BA_split: (for x, y being Bits holds
(ex z1, 22 being Bits st ((split <x, y >) = <z1, z2 >))) rby bits-ba-split;
{<<bits-ba-split:bits-ba-split>>}
BA_split_1: (for x being Bits holds (((split <1, x >) = <1, nil >) o
((split <1, x>) = <nil, 1>))) rby bits-ba-split-1;
{<<bits-ba-split-1i:bits-ba-split-1>>}

A decider function is provided that determines if a given bit string is nil or not.

BA_nil_or_not: (for x being Bits holds
((x = nil) or (x <> nil)) rby bits-ba-nil-or-not;
{<<bits-ba-nil-or-not:bits-ba-nil-or-not>>}

A function that decides if a given bit (i.e. a bit string of length equal to 1) is a 0
or a | is provided.

BA_len_eq_1: (for x being Bits holds
(bits_len_eq[l, x | iff ((x = 1) or (x = 0)))) rby bits-ba-len-eq-1;
{<<bits-ba-len-eq-1:bits-ba-len-eq-1>>}

i

A function that, given two bit strings x and y such that = > y. determines if & > 7
or T = y is provided.

BA_len_notit: (for x, y being Bits holds ((not bits_len_lt[x, y]) implies
(bitslen lt[y, x | or bits_len_eq[x, y |))) rby bits-ba-len-not-It;
{<<bits-ba-len-not-lt:bits-ba-len-not-1t>>}

A well-founded induction rule, based upon the well-founded partial order bits_len_lt
for the Bits data type was implemented. Several other axioms are provided (see Ap
pendix C for complete listing of axioms). The remaining axioms do not have any
computation associated with them, and so did not require that any implementation
be written for them.

Combined with function abstraction, these primitives form a basis for all other
computations with Bits. For example, one can define the bitwise logical operators.
bit indexing (see Section 3.1), etc.

Chapter 3

Basic Intuition

Our goal at this point was to bootstrap from the basic Bits machine to one that was
more useful. Simply being able to handle sequences of Bits would be an improvement,
as it would let us pass variable length argument lists to functions. Complex compu-
tations cannot casily be understood without some structure on the data. and no one
wants to have to specify and prove everything at the bit level. One of the simplest
general structures is a sequence of T, where T is any available type. Once we have
sequences, we can have sequences of sequences, @ owing the creation of very gencral
structures. In order for these structures to be useful, we must be able to index them.
Since these sequences can be composed of non-uniform size pieces, we must deal with
the problem of accessing the variable-length components.

To accomplish this, we needed to implement some data structures on top of the
basic Bits data type. Before this could be done, several improvements had to be
made to the Mizar-C system itself. At this moment, there were no inference rules
that would allow new functions to be created. The system had no capabilities for
defining new types and the induction rule would not work for any type other than
Bits. These rules had to be added to the Mizar-C system before any work could be
done on implementing the bit data structures. The work done to implement these
new rules in the Mizar-C system is discussed in Chapter 4. Once the new rules were
in place, we could begin to define new data structures in Mizar-C.

3.1 Extending the Basic Bits Functionality

Since the only functionality at this point was that provided by the primitives of the
basic Bits extension, we first decided to derive some notions that provided a higher-
level view of the Bits data type itself.

For example, the Bits data type has no “natural” notion of indexing into a bit
string to retrieve the individual bits. One function that was built was an indexing
function, based upon the length of a bit string, that would provide random access to
any bit in a bit string. The following proof provided the implementation of the index
function.

11

/* This proof creates a function (index x i) that
returns the i-th bit of x if there is one.
Otherwise it returns nil. To create this function
using the choice rule, we must prove a statement
of the form:
for x, for i, ex y st IndexPropertyl[y,x,i] */

now
let x be Bits;
{<<U$R252:U$R252>> }
now
let i be Bits;
{<<U$R253:U$R253>> }

/* we know that a bit string can split into two
g p
pieces, modulo another bit string */

(ex x1, x2 being Bits st
((split <x, i>) = <x1, x2 >)) by elim[x,i](BA _split);
{<<U$R258: (R-APPLY (R-APPLY bits-ba-split U$R252 :tag ’$ELIM2256)
U$R253 :tag ’$ELIM2257)>>}
consider x1, x2 being Bits such tit
x1.x2: ((split <x,i>) = <x1, xz >) by direct(.PREVIOUS);
{<<U$R259:U$R258>>}
{<<U$R267: (R-APPLYO (R-FIRST U$R259) itag ’$EXISTC0266)>>
<<U$R265: (R-APPLYO
(R-APPLYO (R-SECOND U$R259) :tag ’$EXISTCF262)
:tag *$EXISTNO264)>> }
{<<U$R263:R-NONE>>}

/* x1 is composed of the first i bits of x, x2 the
remaining bits. €in-: se zre indexing from zero,
the i-th bit of x . tue first bit of x2. So we
split it off using . bit of length one, Ul. */

(ex y, x3 being Bits st
((split <x2, U1 >) = <y, x3>)) by elim[x2,U1]J(BA_split);
{<<U$R272: (R-APPLY (R-APPLY bits-ba-split U$R265 :tag ’$ELIM2270)
U.U1$0 :tag ’$ELIM2271)>>}
consider y, x3 being Bits such that
y: ((spiit <x2, U1 >) = <y, x3>) by direct(_PREVIOUS);
{<<U$R273:U$R272>>}
{<<U$R281: (R-APPLYO (R-FIRST U$R273) :tag ’$EXISTC0280)>>
<<U$R279: (R-APPLYO (R-APPLYO
(R-SECOND U$R273) :tag ’$EXISTCF276) :tag ’$EXISTNO278)>> }
{<<U$R277:R-NONE>>}

13

/+ y is thus the i-th bit of x */

(((split <x,i>} =<x1,x2>) & ((split <x2, Ul >) =<y, x3>))
by conj(y, x1.x2);
{<<U$R282:R~-NONE>>}
(ex x3 being Bits st
(((split <x, i>) = <x1,x2>) & ((split <x2, Ul >) = <y, x3>))
) by exintro(_PREVIOUS);
{<<U$R284: {LAMBDA () U$R279) >>}
(ex x2, x3 being Bits st
(((split <x, i>) = <xl, x2>) & ((split <x2, U1 >) =<y, x3>))
) by exintro(_PREVIOUS);
{<<U$R287:(R-LIST (LAMBDA () U$R265; (LAMBDA () U$R284))>>}
(ex x1, x2, x3 being Bits st
(((split <x,i>) = <x1, x2>) & ((split <x2, Ul >) =<y, x3>))
) by exintro(_PREVIOUS);
{<<U$R291:(R-LIST (LAMBDA () U$R267) (LAMBDA () U$R287))>>}
thus (ex y, x1, x2, x3 being Bits st
(((split <x, i>) =<x1,x2>) & ((split <x2, 177 %) =<y, x3>))
) by exintro(_PREVIOUS);
{<<U$R296: (R-LIST (LAMBDA () U$R281) (LAMBDA () U$R291))>>}
end;
{<<U$R297: (LAMBDA (U$R253)
(R-LIST (LAMBDA () U$R281) (LAMBDA () U$R291)))>>}

(for i being Bits holds
(ex y, x1, x2, x3 being Bits st
(((split <x, i>) =<x1,x2>) & ((split <x2, Ul >) = <y, x3>))
)) by direct(_.PREVIOUS);
{<<U$R303:U$R297>>}

/* the function being created returns y. Since it will
take two arguments, choice must be applied twice. x/

thus (ex f being (Bits -> Bits) st
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x,1>) = <x1, x2>) & ((split <x2, Ul >) = <(fi), x35))
))) by choice(_.PREVIOUS);
{<<U$R310: (R-LIST (LAMBDA () (LAMBDA ($C309)
(R-APPLYO (R-FIRST (R-APPLY U$R303 $C309)))))
(LAMBDA () (LAMBDA ($C309)
(R-APPLYO (R-SECOND (R-APPLY U$R303 $:5209))))))>>}
end;
{<<U$R311:(LAMBDA (U$R252) (R-LIST

(LAMBDA () (LAMBDA ($C309) (R-APPLYO (R-FIRST (R-APPLY U$R303 $C3091))))
(LAMBDA () (LAMBDA ($C309) (R-APPLYO (R-SECOND (R-APPLY U$R303 $C309))))
)))>>}
(for x being Bits holds
(ex f being (Bits -> Bits) st
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x, i>) = <x1, x2>) & ((split <x2, Ul >) = <(fi). x3>))
)))) by direct(_.PREVIOUS);
{<<U$R318:U$R311>>}
(ex f being (Bits -> (Bits ~> Bits)) st
(for x being Bits holds
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x,i>) = <x1,x2>) & ((split <x2, Ul >) = <((fx)i). x3>)
))))) by choice(_PREVIOUS);
{<<U$R326: (R-LIST (LAMBDA () (LAMBDA ($C325)
(R-APPLYO (R-FIRST (R-APPLY U$R318 $C325)))))
(LAMBDA () (LAMBDA ($C325) (R-APPLYO (R-SECOND (R-APPLY U$R318 $C325)))
)))>>}

/* give the function the n: < index */

consider index being (Bits -> (Bi:s -> Bits)) such that index:
(for x being Bits holds
(for i being Bits holds
(ex x1, x2, x3 being Bits st
(((split <x,i>) = <x1, x2>) & ((splii <x2, Ul >) = <((index x) i), x3>))

))) by direct(_.PREVIOUS);
{<<U$R327:U$R326>>}
{<<U.index$0: (R-APPLYO (R-FIRST U$R327) 1tag ’$EXISTC0334)>> }
{<<U.index$P: (R-APPLYO (R-SECOND U$R327) :tag ’$EXISTCF333)>>}

The function created, (index x i), is a function that returns the i-ih hit of x.
Many other properties of the Bits data type were also proven.

3.2 Attempting to Define New Types

The next problem was how to define new types (i.c. structures) in Mizar-C, since we
do not have the ability to give recursive structural definitions. The first new type that
we defined was that of unary naturals, called unats, which we defined as bit strings
where every bit is a 0. We can do this definition directly as:

unat(x] = for y being Bits holds bits_len_lt[y, x] implies (index x y) = 0;

If we had the capability, we could have recursively defined the properties possessed
by unats as:

unat[nil] & for x being Bits holds unat[x] implies unat[(cat <0, x >)]

Note that recursive definition of unat[x] is not required, since by using the uni-
versal quantifier in the direct definition, we can iterate the test for a 0-bit over each
bit position (after acdjusting for the length). Once we have the direct definition, we
can prove the recursive properties of unats withii the Mizar-C system.

Our next step was to try and generalize this idea to define other recursive struc-
tures. For example, to define a sequence of 2-bit chunks (instead of just 1-bit chunks),
we could first derive a 2-index function as

for x, i being Bits holds
(2-index x i) = (cat <(index x (cat < i,i >)), (index x (cat < i,(cat <i,0 >)>))>)

This function essentially computes the indices of the bits that make up the desired
2-bit chimk. The index function is then used with these indices to obtain the desired
bits, which are then be concatenated together and returned. Using this 2-index func-
tion, we can now define recursive structures made up of 2-bit chunks. For example. a
structure called an OddArray, consisting of odd value 2-bit entries, could be defined

s

OddArray[x] = for | being Bits holds
(2-index x i) = (cat <0,1>) or (2-index x i) = (cat <1,1>);

In general, we could derive a function dup where

(dupxi)= a-x---x
: —
(length i) times

This would allow us to index into arrays of elements of arbitrary (yet fixed) size
without having to create a new index function for each one. Instead, the following
function would allow us to index into any structure composed of k-bit chunks.

(k-index x i k) = (first (split< (second (split <x, (dup k i)>)), (dup 0 k)>))

This function first computes a (k * 7)-length bit string using dup. It then splits x
with this string to create a pair of bit strings <zl, z2>, where z1 is composed of the
first. (A * 7) elements of x, and z2 is composed of the remaining elements of x. The
i-th element that we want is now the first element of the bit string z2. Using dup to
compute a bit string of length k, 22 is then splii with this k-length string to create
another pair of bit strings, of which the firs: one is the desired i-th element.

The dup function can construct its rc..uit relatively quickly. Thus splitting ofl the
proper (k = i)-size chunk from the front of the structure to get immediately at the
desired location is faster than removing the k-bit chunks one at a time.

However, suppose that the chunks that make up the structure are not of a fixed
size. The above solution will no longer provide a means for indexing into the structure.
This is the problem that we face in trying to define finite sequences of Bits. In order
to tell where the first chunk (or bit string) in the sequence ends, we need a prefix code,

15

L6
and this is provided by the use of Packets to encode a bit string (see Section 6.1 for
details). In the Packet definition, the unary naturals are used as the prefix code, to
indicate the length of the bit string being encoded. This method was chosen hecanse
it was simple: it is easy to delimit a string of all 0’s using a 1-bit, and this makes it
simple to retrieve the prefix of the Packet.

A fixed length sequence of Packets is thus our finite sequence. In order to deline
the finite sequences directly, we still need some method of actually removing 1 packets
from a finite sequence. Also, we must be able to state that cach chiunk indexed is
indeed a bona-fide Packet. We must provide a method that will allow us to move
iteratively through the finite sequence structure, applying the packet-test to cach
element, similar to how the universal quantifier was used to apply the 0-bit test
to each bit position in the unary naturals. We obtain this method by proving the
existence of an iterator function, which will serve as an all-purpose indexing funetion.
The proof of the iterator function is outlined in Chapter 5. The formal definition of
the finite sequences using the iterator function is discussed in Chapter 6.

Chapter 4

New Inference Rules

As previously stated, my main project in Mizar-C was to define finite sequences of
bits. Before work on this could be started, several inference rules had to be added
to Mizar-C. In its current state, there were no inference rules that would allow new
functions to be created. All functions were disguised in the form

Ve dy...

and so the functions could not be named. The choice and guarded choice rules were
implemented to provide this naming ability. The definition inference rule was added
to allow the abbreviation of long formulae and the definition of new types (i.e. unary
predicates). The current induction rule would not work for any type other than Bits,
so a proper well-founded induction rule had to be implemented. Once these rules
were in place, work could begin on defining new types in the system. The following
sections outline the manner in which these inference rules were implemented.

4.1 The Choice Rule

The choice rule allows the introduction of a function from a proof of its specification.
Its proper form should take a statement of existence, plis one of uniqueness:

Jor a being Tz holds (cx y being Ty st Plz,y)),

Jor z being Tz holds (for y, z being Ty holds Plz,y] & P[z,z] implics y = z)
ex f being Tx — Ty st (for x being Tz holds Pfz, (f z)])

Currently realizations in Mizar-C are deterministic, so the current implementation of
this rule does not require the proof of uniqueness since the same y is produced by the
realization regardless of uniqueness. However, future versions of Mizar-C must add a
proof of uniqueness requirement to this rule and the guarded choice rule (Section 4.2),
if the underlying implementation should be changed.

There are two forms of realization for the choice rule. If the formula Pfz,y] has
content, then the realization is a list of two items:

17

18

1. the realization of the newly introduced function f, which when applied to a given
x will return the corresponding y.

2. the realization of a function that, when applied to a given x. returns the real-
ization of the formula Pfz, (fz)].

If the formula Pfz,y] does not have content, then the realization is simply that of the
new function f.

now
let x be Any;
{<<choice$R3:choice$R3>> }

(x = x) by eqintro();
{<<choice$R4:R-NONE>>)
thus (ex y being Any st (x = y)) by exintro(_PREVIOUS);
{<<choice$R6: (LAMBDA () choice$R3) >>}
end;
{<<choice$R7:(LAMBDA (choice$R3) (LAMBDA () choice$R3))>>}

(for x being Any holds (ex y being Any st (x = y))) by direct(_PREVIOUS);
{<<choice$R10:choice$R7>>}

(ex f being (Any -> Any) st (for x being Any holds (x = (I'x))))
by choice(_.PREVIOUS);

{<<choice$R14:(LAMBDA () (LAMBDA ($C13)
(R-APPLYO (R-APPLY choice$R10 $C13))))>>}

Figure 1: Example of Choice Rule without Content

Figure | illustrates the creation of an identity function. In Figure 1, since the body
of the existential expression has no content, the theorem is realized by a function thal
will compute the y that is equal to x, for a given x.

Figure 2 is a contrived example in which the postcondition of the function has
content. In Figure 2, the body of the expression has content, so the result is a list of
the two realizations as described above.

now
let x be Any; .
{<<choice$R43:choice$R43>> }

(x = x) by eqintro();
{<<choice$R44:R-NONE>>}
((x =x) or (x # x)) by disjintro(_PREVIOUS);
{<<choice$R45: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
thus (ex y being Any st ((x = y)or (x # y))) by exintro(_PREVIOUS);
{<<choice$R47: (R-LIST (LAMBDA () choice$R43)
(LAMBDA () choice$R45))>>}
end;
{<<choice$R48: (LAMBDA (choice$R43) (R-LIST
(LAMBDA () choice$R43) (LAMBDA () choice$R45)))>>}

(for x being Any holds (ex y being Any st ((x = y)or(x#y))))
by direct(_.PREVIOUS);
{<<choice$R51:choice$R48>>}

(ex fheing (Any => Any) st (for x being Any holds
((x =(fx))or(x+# (fx))))) by choice(_PREVIOUS);
{<<choice$R55: (R-LIST
(LAMBDA () (LAMBDA ($C54) (R-APPLYO
(R-FIRST (R-APPLY choice$R51 $C54)))))
(LAMBDA () (LAMBDA ($c54) (R-APPLYO
(R~SECOND (R-APPLY choice$R51 $C54))))))>>}

Figure 2: Example of Choice Rule with Content

4.2 Guarded Choice

The guarded choice rule allows the introduction of a partial function.

Jor z being Tx holds Guard[x] implies (ex y being Ty st Plz,y])
er [being Te — Ty st (for z being Tx holds Guard[z] implies P[z, (f z)])

Note that the Guard[x] defines the actual domain of the function £, yet the function
produced by this guarded choice rule is said to be defined on the entire domain type
Tz. The function freally has type Guardfz] — Ty, where Guard[z] defines a subset of
the type T'r. If the Guard[z] has no content, then this rule is safe within the system,
because the guard cannot in any way be required in the computation of the function £
Thus it is safe to consider f without the guard being true, since we actually have the
function feven without the guard. In order to be able to reason about the application
of fto z, we would have to perform implication elimination on the formula, which
requires that Guardfz] be true. This makes it impossible to use the function outside

19

of the safe context, since we cannot introduce an application without referring to
a positive occurrence of it (see Appendix B.1.3 for definition of positively occuring
terms).

Trouble arises when the Guard[z] has content. As mentioned above, it is now
possible that the guard is required as part of the computation of £, which mecans that
the function f actually requires this guard as an argument. Without the guard, no
only do we not actually have the function f, but it is not even of the type

Te — Ty
Instead, it has the type
71guard - (T.‘l‘ —3 r]‘y)

Since we cannot even state partial functions of this latter type in Mizar-', quarded
choice is only allowed on formulae where the guard has no content.,

When we allow content-free definitions to be used as types, then we will he able
to correctly type the function f, that is:

cx f being Guard — Ty st (for « being Guard holds Pfr, (f +)])

However, we still must prevent definitions with content from being used, sinee the
same problem occurs as before. In the current version of Mizar-C. only predicates
defined on the type Any can be used as types.

The realization for expressions created through the guarded choice rule are the
same as that for the choice rule.

20

now
let x be Auny;
{<<gchoice$R112:gchoice$R112>> }
assume P[x |;
{<<gchoice$R92:gchoice$R92>>}
(x = x) by eqintro();
{<<gchoice$R72:R-NONE>>}
((x = x)or(x# x)) by disjintro(_LPREVIOUS);
{<<gchoice$R73: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
thus (ex y being Any st ((x = y) or (x # ¥))) by exintro(_PREVIOUS);
{<<gchoice$R114: (R~LIST (LAMBDA () gchoice$R112)
(LAMBDA () gchoice$R73))>>}
end;
{<<gchoice$R115: (LAMBDA (gchoice$R112) (R-LIST
(LAMBDA () gchoice$R112) (LAMBDA () gchoice$R73)))>>}

(for x being Any holds (P[x] implies
(ex y being Any st ((x = y)or (x £ y))))) by direct(_-PREVIOUS);
{<<gchoice$R125:gchoice$R115>>}

(ex f being (Any => Any) st (for x being Any holds
(P[x] implies ((x = (fx)) or (x # (fx)))))) by gchoice(_.PREVIOUS);
{<<gchoice$R159: (R-LIST
(LAMBDA () (LAMBDA ($C158) (R-APPLYO
(R-FIRST (R-APPLY gchoice$R125 $C158)))))
(LAMBDA () (LAMBDA ($C158) (R-APPLYO
(R-SECOND (R-APPLY gchoice$R125 $C158))))))>>}

Figure 3: Example of Guarded Choice Rule with Content

4.3 Definitions

The define construct in Mizar-C permits the definition of new predicates in the fol-
lowing manner:

label : define Predicate Name of variable list by Formula ;

where variable list is of the following form:
variable names Deing variable type, ..., variable names heing variable type

The definition inference rule allows definitions to be expanded or contracted, accord-
ing to their specification. Definitions can be equated to macros, in that they take
parameters and deliver a formula instantiated with the given parameters. For exam-
ple, Figure 4 defines what it means for a binary relation to be one-to-one. If R is a

one-to-one: define OnetoOne of Relation being [Any, Any] by
(for x, y1, y2 being Any holds
Relation[x,y1] & Relation[x,y2] implies y1 = yv2) &
(for x1, x2, y being Any holds
Relation[x1,y] & Relation[x2.y] implies x1 = x2)

Figure 4: Definition of One-to-One Binary Relation

2-place predicate, then one-to-one[R] means that R is one to one.

The type of parameters in a definition can be dependent upon the type of other
parameters, with the restriction that the dependent type be preceded in thie delinition
by the parameter upon which it depends.

Being able to contract definitions makes the proofs easier to read, and reduces the
amount of writing to be done by the user. One problem is that the definitions are
in a sense opaque to the system; since the system does not antomatically expand all
definitions, it is not possible for it to determine whether or not the closed predicate
has computational content just vy looking at it. To overcome this, Mizar- internally
marks definitions as to their content.

4.4 Induction - .

Induction is allowed on any type using any well-founded partial order for that Lype.
A well-founded partial order is a binary relation that produces no infinite descending,
chains. A binary relation is a partial order if it is irreflexive and transitive, which
guarantees that there are 1.0 loops However, being a partial order is not sufficient. to
guarantee that recursion can be performed over the ordering, since it alone does not
prevent infinite chains.

In order to prevent an infinite descending chain, we not only necd that there are
no loops, but that for every element in the type, all sequences induced by the ordering
that start at the element lead to some minimal element. We define wminimal element
as an element of the type for which no element is “less than” it. Yon can also think
of “less than” as “simpler than” in terms of the construction of the elements. I the
case of the recursion, these minimal elements can he seen as the stopping cases (or
as the base cases of the induction).

In Mizar-C, the form of the induction rule is that of strong induction, as follows:

WellFounded[TYPE, LT],
for z being TYPE holds (for y being TYPE holds LT[y, z] implics P[y]) inplics Plzf
Jor z being TYPE holds P[z]

For this definition of induction to work, we nced at least one built-in type for which
induction holds. In Mizar-C, we know that the order bits_en_lt is well-founded over
the built-in type Bits (Section 2.3). In order to do induction over a Lype using i given

23

ordering, a proof that the order is well-founded must be provided. The definitions
and theorems sta‘ed in Figure 5 are provided in the Bits extension to Mizar-C to
facilitate this.

WellFoundedDef: given WellFounded of S being [Any], LT being [S,S];
Welll'oundedBits: WellFounded|[Bits, bits_len_It];
WelllFounded Theorem:
for I being [Any], It being [1,I] holds WellFounded(l,It] implies
(for S being [Any], f being S — I, new-1t being [S,S] holds
(for s1, s2 being S holds (new-It[s1,s2] iff It[(f s1), (fs2)])) implies
WellFounded[S, new-It]);

Figure 5: Well-Founded Induction

The WellFoundedTheorem states that, given a well-founded order /¢, on some
type Ty, for any other type Ty and order lt, if there exists a total function that maps
clements from T3 to 73 in such a way that the ordering of elements under It is the
same as the ordering of the mapped elements under {{;, then ¢, is also a well-founded
ordering. Since we have one ordering for which it is true, the WellFoundedBits, we
can prove other well-founded orderings by finding a function that maps between the
new type and the Bits type.

AR PRUG S
fnarter 5

B

Iterator Function

5.1 DMotivation

In Mizar-C, we want to be able to define recursive structures, however if we allow
recursive definitions we have to be very careful to check that the recursion used i
the definition is well-found:d. Otherwisc it is possible to write definitions that will
lead to contradictions. For example, from the following definition:

define P of x being Any by (vot P[x]);
it is possible to prove
for x being Any holds (P[x] iff not P[x]);

In systems such as Hehner’s [11], where you must explicitly imnplement the defini-
tions, this is not a real problem since it is not possible to irplement such non-sensical
definitions. In Mizar-C however, where computation is extracted from the proofs (i.c.
it is implicit), allowing such definitions can lead to extractions with dangerous he-
haviour. One solution to this problem is to require that, within a definition, all
references to the type being defined must be made on objects that are “smaller” than
the current object. It seems to be sufficient that this ordering on the objects he a
partial order with a bottom element. Thus we could allow recursive delinitions as long
as a proof of the partial order was supplied. Another solution is to define recursive
structures directly, and give an iterative test for correctness of construction. ©his ean
be seen as definition by implementation, which will prevent non-existent types from
being defined. In order to provide an iterative test for any form of recursive structure,
we need the iterator function.

The iterator is a function that takes a function f, composes f with itself n Litnes,
and applies the composition to a supplied argument x. "Thus the three arguments Lo
the iterator are:

o f- the function to compose.

24

e n - the number of times to apply the function to itself.
e x - the argument to apply the composition to.

The iterator function enables us to define recursive structures (objects) without the
use of recursion in the definition; instead the structure is defined iteratively. The
iterator function provides a mechanism for moving through the structure of the object,
allowing us to describe what the structure looks like.

As discussed in Chapter 3, this idea of having an all-purpose indexing function
occured when we were deciding how to define unary naturals in Mizar-C. The type
unat was formally defined on the Bits date. type as:

unat_def: define unat of x being Bits by
(for y being Bits holds bits_len_lt[y, x] implies (index x y) = 0);

Figure 6: Definition of Unary Naturals

In other words, a unat is defined as a bit string of all 0’s. At this point we
saw that although unats are recursive objects, that is a unat is either nil or a unat
concalenated with 0, it was not necessary for us to use recursion in order to define
them. In the definition, the universally quantified variable acts as an index into the
unat structure; thus the universal quantifier provides the mechanism for iterating
over the structure. This works fine for unats where we are defining them one bit at a
time. The problem arises in more complicated structures, where the elements of the
structure can be sequences of arbitrary numbers of bits. We wanted a general method
for using the universal quantifier to index recursive structures. Generally, recursive
structures have at least two functions defined for them: one that returns the first
clement, and one that returns what remains after the first element is removed. Thus
the iterator function provides a general method for indexing into a recursive structure
using unats as the index.

Once we have the direct definition, we can then prove the recursive properties
of the defined structure. To prove that an object meets the definition we will first
have to construct the object. Often a particular recursive structure will have more
than one possible method of construction, with each construction method providing
a different recursive property. By defining the object directly we are not prescribing
any particular construction mechanism. fustead we can prove that different methods
of construction create objects of the same type, since what matters is that once
constructed, these objects have a structure that conforms with the direct definition
using the iterative test for construction correctness. This gives us extensional equality
between the objects.

Because of this any theorems that are proven for the defined structure can be used
by any of the objects that meet the definition, regardless of how they were constructed.
This will allow us to dismantle objects in a different manner than they were originally

25

constructed. Thus the way we access the data structure can be tailored to provide
the most cfficient algorithm for a given task. The Bits data type is an example of
this (Section 2.3). It is possible to dismantle Bits one bit at a time. by splitting a
bit string x with the bit string 1 or 0. It is also possible to perform a divide-and-
conquer strategy on x, by splitting it with some arbitrary bit string v whose length is
greater than 1. Depending upon the task, one method may provide a more efficient
implementation than the other.

5.2 Defining the Iterator

The following is the theorem proving the existence of the iterator function in Mizar-(':

Tor Domain being [Any] holds
ex J being (Domain — Domain) — (Bits — (Domain — Domain)) st
for f being (Domain — Domain) holds Total[Domain.f] implics
for n being Bits holds
for x being Domain holds ((J f (U.length nil) x) = x &
(J £(U.length (cat <n, 0>)) x) = (f (J { (Ulength u) x)) J

Figure T: Iterator Theorem

The notation Tor is a non-constructive universal quantifier, and allows for quan-
tification over types in Mizar-C. The first argument [must be a function having
the same domain and range, since it is applied to its own output. For this same
reason the function must be total, and so the theorem i; guarded by the delinition
Total[Domain, {].

The second argument nr is the number of times that the function £ is to be
composed with itself. In the Mizar-C system, the base type is Bits, which are bit
strings of 0’s and 1's. All other defined types must be based upon this type. For the
iterator, we really need n to be of type unat (as defined in Figure 6). One problem
was that, at this point in the evolution of Mizar-C, il was not possible to use types
that were introduced through definitions to type term expressions. This prevented s
from defining the type of the iterator as

(Domain — Domain) — (unat — (Domain — Domain))

One solution would have been to guard the entire expression with an implication
whose antecedent is unat/n], but instead we chose to define the iterator on the length
of n. A function (length n) was proven for Bits that returns the unat that represents
length of the given bit string n. Thus the iterator is actually defined on unats. Since
unats represent the length of a bit string, the expression (length (cat <n, 0>)) gives
us the successor of the unat represenied by n.

26

[SV]
~1

5.3 Proving the Iterator
We had several goals in trying te prove the iterator function:

1. We wanted to see what it would be like to do such a large proof in the Mizar-C
system.

2. We wanted the iterator function in order to do recursive definitions without the
need for recursion.

Up until this point, most of the proofs that had been done in Mizar-C were fairly
small. Proving and extracting the iterator function would test most of the basic
premises of the system. As hap 1, attempting to do the proof pointed out some
crrors that existed in Mizar-C; .. well it helped show us some of the things that were
incomplete or needed to be added o the system. For example, we needed to add the
choice and guarded choice rules in order to create the function at all. Some of the
problems of using definitions as types was brought forward, as well we were forced to
deal with the problem of how to implement dependent types.

c)\\

-t

5.3.1 OQOutline of the Proof

An iterator function was defined as having the following properties:

IterPropDef:
define IterProp of Domain being [Any],
I being ((Domain — Domain) — (Bits — (Domain —Domain))) by

(for f being (Domain — Domain) holds Total[Domain, f] implies

(for n being Bits holds (for x being Dom:ain holds
(((((If) (U.length nil)) x) = x) &
(1) (U.length (cat <n, 0>))) x) = (f (((I f) (IL.length n)) x))))

)));

Figure 8: lterator Definition

We started out, by proving the existence of a function, which T will call the show
iterator which has the iterative properties. The only way to introduce a new function
in Mizar-C is to use the choice or guarded choice inference rules, so nsing induetion
over 1 we proved:

Tor Domain being [Any | holds
for f being (Domain — Domain) holds Total{Domain,f] implies
(for n being Bits holds (ex I being (Bits — (Domain — Domain)) st
((for x being Domain holds
(I (Ulength nil) x) = x) &
(for j being Bits holds
(bitsden_lt[j, n] implies
(for x being Domain holds
(I (U.length (cat <j, 0>)) x) = (f (I (U.length j) x)))) &
(not bits_len_It[j, n] implies
(for x being Domain holds (I (U.length (cat <, 0>)) x) = x))

)

Figure 9: Initial Inductive Proof

Mizar-C’s induction forces a least fixed point style; that is, for cach n there is an
iterator function that works for all 1n < . From this theorem we nsed chojee {0
obtain:

ex C being (Bits — (Bits — (Domain — Domain))) st
g
(for n being Bits holds ((for x being Domain holds

((((C n) (U.length nil)) x) = x)) &
(for j being Bits holds

((bitsden_It[j, n | implies
(for x being Domain holds
((((C n) (Ulength (cat <j, 0>))) x) = (f(((Cn) (Ulength j)) x))))) &
((not bitslea dt[j, n]) implies
(for x being Domain holds
((((C n) (Ulength (cat <j, 0 >))) x) = x)))
)

The result is a proof of the existence of a function (C n). but this is not quite
what we want as the function itself is dependent upon the value n. We next proved
the existence of a function I that is equal to the function (C (cat <n.0>)), for all n.
essentially renaming the function.

(ex I being (Bits — (Domain — Domain)) st
(for m being Bits holds
(for x being Domain holds

(((I'm) x) = (((C(cat <m, 0 >)) (U.length m)) x)))))

The iterator properties were then proven for this new function I and by performing
choice one more time we get:

for Domain being [Any | holds
(ex I being ((Domain — Domain) — (Bits — (Domain — Domain))) st
(for f being (Domain — Domain) holds
Total[Domain,f] implies
(for m being Bits holds (for x being Domain holds
(((((If) (U.length nil)) x) = x) &
((((11) (Ullength (cat <m, 0>))) x) = (f(((I1 1) (Ulength m)) x))))))))))

This Tanction I became the slow iterator. Because of the way that the proof of
this fur vion was done it performs some unnecessary work, mainly extra case analysis.
that results in a less efficient implementation of the iterator than is possible. When
executing I, since I was created by proving it to be equal to (C (cat <n,0>)), the first
thing that is done is that (C (cat <n,0>)) is built. This results in a very large lambda
expression being created. Also the manner in which the proof of (C (cat <n,0>))
was done causes some extra comparisons for case selection to be done when executing
(C' (cat <n,0>)). These comparisons are unnecessary from the standpoint of the
run-time execution, since the actual execution path never varies when running the
function. Although all the cases are needed (they are all at some point executed), the
order that the cases are chosen is not affected by the inputs. Because of these extra
comparisons the slow iterator has quadratic execution when creating the composition
of f, and this composition is a very large lambda expression when extracted.

We know that there is an implementation of the iterator function which would
build the composition of f in linear time. Of course, the run-time execution of
applying the composition of f to x is determined by the run-time of fin both the
slow and fast iterators. We used the fact of the existence of the slow iterator to

30

prove the existence of another function, called the fast iterator, which has the same
properties as the slow iterator, but creates the compesition in a lincar time. Using
what we know about how proofs by induction are realized in the Mizar-(* system, we
proved the existence of the fast iterator in a manner that guaranteed its lincar time
execution. The fast iterator was proven using the following induction:

(for n being Bits holds
(for m being Bits holds LT[m,n] implies
(for x being Domain holds
(ex z being Domain st (z = (((1f) (U.length m)) x))))
) implies
(for x being Domain holds
(ex z being Domain st (z = (((If) (Ulength n)) x)))))

From this we can conclude the desired theoreni:

Tfor Domain being [Any | holds
(for f being (Domain — Domain) holds Total{Domain,f] implies
(for n being Bits holds
(for x being Domain holds
(ex z being Domain st (z = (((I1) (U.length n)) x))))))

Two applications of choice, and one of guarded choice create the fast iterator as
stated in Figure 7, which is linear in n due to the manuner in which the induction wis
done over n (details of inductive proof given in Section 5.5).

31
5.4 Other Properties of the Iterator

several other properties of the iterator function were needed when using the iterator
in the definition of finite sequences. The need for the properties given in the following
definitions came to light when attempting to prove properties of the finite sequences.

IterDistDef: define IterDist of Domain being [Any],
I being ((Domain -> Domain)-> (Bits -> (Domain -> Domain))) by
(for [being (Domain -> Domain) holds Total{Domain,f] implies
(for n being Bits holds
(for x being Domain holds

((((1T) (U.length n)) (f x))=(f (((If) (U.length n)) x)))));

IterCompDef: define IterComp of Domain being [Any],
I being ((Domain -> Domain)-> (Bits => (Domain -> Domain))) by
(for { being (Domain -> Domain) holds Total{Domain,f] implies
(for n being Bits holds (for m being Bits holds
(for x being Domain holds

((((1f) (Udength n)) (((I1f) (Udength m)) x))= (((1f) (U.length (cat <n. m>))) x))))))):

Figure 10: Other Iterator Property Definitions

It was then proven that any function for which the IterPropDef (as given in
Figure 8) is true also has the above properties.

thi: (for Domain being [Any | holds
(for J being ((Domain -> Domain)-> (Bits -> (Domain -> Domain))) holds
(IterProp[Domain, J] implies IterDist[Domain, J])))

th2: (for Domain being [Any | holds
(for J being ((Domain -> Domain)-> (Bits -> (Domain -> Domain))) holds
(IterProp[Domain, J] implies iterComp[Domain, J])));

Figure 11: Iterator Theorems

5.5 Problems Encountered During Proof

It took us several attempts to be able to correctly state the theorem required for the
initial proof of the slow iterator (as stated in Figure 9). At first we did not have
the iterator function total (we missed the case for j > n). Next we realized that we
needed to prove it for (length n), whkizh required the implementation of naturals as

unary bit strings. Since we had not yet decided how we were going to implement
the type hierarchy, it was not possible to correctly type some of the terms. Qur
initial sketch of the proof was incorrect, since it required the instantiation (not just
the existence) of a particular function outside of the scope where it was defined. All
of these problems came to light when we attempted to do the proof in the Mizar-(!
system. On paper we thought we had a correct, complete proof. Not until we were
forced to deal with every detail did we see the problems with our original ideas.

If our only goal in producing the iterator function was to use it in defining recursive
structures, then it was not necessary to prove it constructively. Since the definitions
themselves do not have any content, we do not require the content of the jterator
in the definition. It is only when we prove that an object meets the definition that
we actually “construct” the object. However, since the iterator function is proven
constructively it is possible to use it when doing the actual constructions, and so it
is a very useful function to have.

It turns out that the slow iterator is not much slower in actual execution than the
fast iterator. The biggest difference between the functions is the resouree consumption
during execution, which is a result of how the induction was set up. In the slow iterator
proof, the inductive step assumed the existence of -un iterator function for k < .

assume IH: (for k being Bits holds
(LT[k, n] implies (ex I being (Bits -> (Domain => Domain)) st
((for ¥ being Domain holds ({((I (U.length nil)) x) = x)) &
(for j being Bits holds
((bitsden_lt[j, k] implies
(for x being Domain holds
(((1 (U.length (cat < j, 0>))) x) = (F((I (U.length j)) x))))) &
((not bits_len_It[j, k]) implies
(for x being Domain holds (((I (U.length (cat < j. 05))) x) = x))))))))

As mentioned before, this function Iis dependent upon the value k and, as the
inductive statement says, I behaves as an iterator function when applied to all values
J < k. Thus for a given n, the slow iterator is actually a function which constructs
a large lambda expression that is essentially an iterator for n+1, (the previously
mentioned funciion (C' (cat <n,0>))), since this function will hehave as a proper
iterator when applied to all values less than n+1 (a property stated in the above
inductive step). This expression is then applied to n. In the inductive proof of the
slow iterator, an implication which shows how to use the existence of in iterator
function for n-1 to realize an iterator function for n is used along with the above
inductive hypothesis. As a result of this, the slow iterator constructs the iterator
function (C (cat <n,0>)) in terms of an iterator for n-1, which is in turn constructed
from n-2 and so on down ‘o n = nil. The construction of this expression requires a
considerable amount of memory at run time.

In contrast, the inductive step for the fast iterator assumes the existence of an
object which is equal to the result of the slow iterztor’s compittation.

assume indhyp: (for m being Bits holds
(LT[m, n] implies (for x being Domain holds
(ex z being Domain st (z = (((If) (Udength m)) x))))));

Iu the induction on n, the fast iterator shows that applying the function fto an
object that is equal to the result of applying the slow iterator to n-1 results in an
object that is equal to the result of applying the slow iterator to n. Thus, the fast
iterator does not need to construct an iterator function for each input u; instead it
constructs a sequence of function applications

(F (1 (F

which is then applied to the base case of the induction (or bottom element of the
recursion). This lambda expression is much smaller, and requires much less memory.

than that of (C' (cat <n,0>)) consiructed by the slow iterator.

33

Chapter 6

L

Definition of Finite Sequences

Once the iterator function was proven we wanted to use it to define some reciursive
structures. We began by defining finite sequences of bit strings, since these sequences
can then be used as the basis for defining other recursive structures. The finite
sequence definition imposes a structure on a bit string. which is the basic data type
in Mizar-C; it provides a way of encoding and packaging a particular sequence of
Bits. The particular Bits that are in the sequence have no more meaning than before.
Other definitions can then be given to provide meaning for the particular bit strines
occuring in the sequence, thus defining new recursive types.

6.1 Packets

Since a finite sequence of Bits is itsell a bit string (or of type Bits), we need to he
able to determine when a bit string is a finite sequence, and we need some way of
being able to recover the individual bit strings thai make up the sequence. We nist
be able to tell where one bit string in the sequernce starts and another leaves off, To
do this, each bit string in the sequence is “packaged” in a wrapper that will separate
the bit strings in the sequence. A finite sequence of Bits is thus defined as a sequence
of Packets, where a Packet is defined as a structure consisting of a bit. string paired
with its length. A1’ bit is nsed as a delimiter hetween the length and the bit string.
For example:

e 000001xxxxx
is the Packet of the bit string xxxxx, which has length 00000.

o1
is the Packet of the nil bit string, which has length nil.

The following is the formal definition of Packet used in Mizar-(:

packet_def: define Packet of x being Bits by
(ex z1, z2 being Bits st
(((split <x, (nozab x) >) = <(nozab x), z1 >) &

34

((split <z, UUI>)=<1,22>) &
bits_len_eq[(nozab x), z2 |));

where U.Ul is the unary 1.
This definition looks quite complicated. It seems much easier to define how to

create a Packet for a given bit string than it is to define when a given bit string is
a Packet. To be a Packet, a bit string must consists of a sequence of 0’s, followed
by a | delimiter, followed by a sequence of bits that has the same length as the
initial sequence of 0’s. This is essentially what the definition packet_del says. The
function (nozab x) takes a bit string x and returns the leading 0’s of x (nozab stands
for “number of zeros at beginning”). If there are no leading Q’s. it returns nil. For

example:
e (nozab 00110000) = 00
e (nozab 111) = nil
e (nozab 000) = 000

The following is the formal statement of nozal: as pioven in Mizar-(:

nozab: (for x being Bits holds (ex z1, z2 being Bits st
U.unatf(nozab x) | &
((split <x, (nozab x) >) = <(nozab x), z1 >) &
((21 = nil) or ((split <zl, U.U1 >) =<1,22>))))

Thus in the packet definition, (nozab x) is the unary bit string of leading 0’s and
z2 is the bit string being packaged. Thus (nozab x) = (length z2).

6.2 Finite Sequences
The following is the formal definition of finite sequences used in Mizar-(":

finseq_del: define FinSeq of x being Bits by
(for n being Bits holds
(((first (((Iter rest) (U.length n)) x)) = nil) or
Packet[(first (((Iter rest) (U.dength n)} x))]))

where Iter is an iterator function defined on the Bits domain. In other words, a finite
sequence is a sequence of packets.

In order to define a finite sequence using the Iter function, the two functions
first and rest had to be defined. We need some way to move through the sequence
and retrieve the bit strings that make up the sequence. The following is the formal
statement of first and rest as proven in Mizar-C:

for x being Bits holds (ex zl, 22, 23, z4 being Bits st
(((split <x, (nozab x) >) = <(nozab x), z1 >) &
((split <z1, U.U1>) = <22,23>) &
((split <z3, (nozab x) >) = <z4, (rest x) >) &
((first x) = (cat <(cat <(nozab x), z2 >), z1>)))))

The function (first x) returns the first packet of the bit string x, if there is one,
This function is total on the domain Bits, that is, it does not require that x be a
finite sequence. (first x) returns what will be the first packet of x il x is a finite
sequence. If x is not a correct finite sequence, then the bit string returned by first is
not guaranteed to be a Packet. For example:

e (first 0011000) = 00110
Even though the argument to first is not a correet finite sequence, the bit string,
returned is a valid Packet.

e (first 100101) = |

The argument is a valid sequence, and the returned bit string is the packet of

the nil bit string.

e (first 001) = 00]
The argument is not a finite sequence, and the bit string returned is not i valil
packet.

The function rest is very similar to the above. (rest x) returns the bit string that
remains once (first x) has been removed from x. As before, rest is total on the Hits
domain: if x is a valid finite sequence, then (rest x) will be a finite sequence, otherwise
(rest x) is just some bit string. For example:

e (rest 0011000) = 00

The bit string returned is not a valid finite sequence.

o (rest 100101) = 00101
The argument is a valid sequence, and the returned bit string is the finite
sequence that is left once the first packet is removed.

o (rest 001) = nil

There is nothing left once (first x) is removed.

A finite sequence x is a bit string consisting of the concatenation of some natural
number m of packets. If you apply the rest function n times to x, when 0 < 1 = |
you will get a sub-sequence of x which is also a finite sequence by the definition of
rest. Thus first of this sub-sequence will always be a packet by the definition of
first. If n > m, then applying the rest function n times to x will remove all of the
packets from x, returning nil. Since (first nil) = nil by the definition of first, the finite
sequence definition is true for all naturals u.

37
6.3 Properties of Finite Sequences

Once finite sequences were defined, the theory of finite sequences needed to be proven.
Several theorems are nccessary to define the properties of finite sequences. One of
the most important is the finite sequence decider, stated by the following theorem:

finseq_decide: (for x being Bits holds
(fseq.FinSeq[x] or (not fseq.FinSeq[x])))

Proven constructively, this theorem provides a program that decides whether a
given bit string is a proper finite sequence, according to the finite sequence definition.

The attempt to prove this theorem outlined many sub-theorems that were useful
to have. To start with, since finite sequences are defined in terms of Packets. it was
necessary to prove a packel decider as follows:

packet_decide: (for x being Bits holds
(fseq.Packet[x] or (not fseq.Packet[x])))

It was necessary to define and prove the IterDist distributive property of the
iterator function, given in Figure 10. Also, since finite sequences are defined in terms
of the rest and first functions, it is useful to state the behaviour of these functions on
some specific bit strings, such as the empty bit string nil. For example, the fact that
the rest function returns nil no matter how many times it is applied to the bit string
nil is stated with the following theorem:

fseq2.it_resi_nil: (for n being Bits holds
((((fseq.1ter fseq.rest) (U.length n)) nil) = nil))

The fact that first returns nil only if the given input bit string is nil is stated as:
fseq2.first_nil: (for x being Bits holds (((fseq.first x)=nil) ifl (x=nil)))

Once the finite sequence decider was done, properties of finite sequences need to
be stated and proven. The first theorem proven was one re-stating the definition of a
linite sequence in its recursive form:

fseq3.finseq_thm: (for x being Bits holds
(fseq.FinSeq[x] iff
((x=nil) or (fseq. Packet[(fseq.first x)] & fseq.FinSeq((fseq.rest x)]))))

Only one other theorem was proven for finite sequences, stating that the concate-
nation of two finite sequences is still a finite sequence:

fseqd.dinseq_cat: (for x, y being Bits holds
((fseq.FinSeq[x] & fseq.FinSeq[y]) implies fseq.FinSeq[(cat <x, y>)))

Ouce finite sequences are used in the definition of some other structure, the theo-
rems about them that are useful will become evident. This happened for the iterator.
first and rest functions. When trying to prove properties of objects that used these
functions in their definitions, it was obvious which theorems would be useful.

Chapter 7

Conclusions

7.1 Mizar-C as a Programming Tool

After completing some proofs and extracting the code using the Mizar-C systen,
it became obvious to us that having a “correct” program is not always cnough, if
the definition of correctness does not take the complexity of the generated code into
account. The system must provide some tieans of reasoning about the resonree
consumption of the extracted programs. It would be preferable if this could he done
without having to look at the generated code, since this code can he quite diflicult for
humans to follow. Not only the run-time complexity of the code must be dealt, with,
but other measures of complexity such as resource consumption must be handled as
well. The slow and fast iterator proofs can be scen as an example of this. Alihough
the run-time execution is roughly the same for both programs, the slow iterator is a
much larger program and uses more memory when executing. At the moment we sce
two possible ways of dealing with the complexity of the extracted code in Mizar-C.
One method would be to attach some general complexity measure to the inference
rules themselves. This would give us an upper-bound measure on the realizations
produced through the use of these rules. Another method would be to introduce a
complexity term into each specification which is then proven along with the other
properties of the program. This method still requires that cach inference rule have
information about how it affects the complexity term.

It is the large gap between the specification language and the programming lan.
guage that makes it difficult to reason about the extracted program. I might he
easier to have the programming language as part of the term language, so that the
code can be reasoned about directly within the system. Otherwise, as in Mizar-C,
any reasoning about complexity must be done indirectly, and it remains to be scen if
anything other that rough upper-bounds can be calculated.

It would be nice to extract into some language other than Lisp, preferably one
that could be compiled for efficiency reasons.

There is definitely a need for a combination of classical and constructive reasoning.
Many theorems are ditficult to prove constructively, and if computation is not required

38

of it there seems to be no reason to force the user to come up with such painful proofs.
Some specifications require theorems that cannot be proven constructively, such as
when proving Markov’s principle. These types of reasoning require notation to allow
for non-content variables. The system should have a means for marking reasonings as
constructive or non-constructive, and should enforce that these reasonings are used
within proper contexts (see [18] and [28] for further discussion).

7.2 Using Formal Methods

After having performed many proofs on paper and then attempting to verify them
using a proof checker, I can conclude that it is worthwhile to machine-check most
proofs. Many paper proofs are incorrect in non-obvious ways, and having a machine
check the proof provides the user with increased confidence in his solution. Also,
formal environments force full specification of the problem, and this can point out
errors or insufficiencies in specifications.

One of the most difficult aspects of doing formal proofs of specifications is the
amount of detail that the user is forced to deal with. Any system whose goal is to
provide an environment for doing formal proofs must improve this for the user. In
the current version of Mizar-C, the system provides very little help in this area. The
following are some ideas which would make it easier to do proofs in Mizar-C, or for
that matter, any formal proof environment.

The implementation of schemes would help to eliminate some of the detail from
proofs. For example, in the development of the finite sequences, I needed to prove
several properties of iterator functions, given by the definitions in Figure 10. A scheme
could be used for iterator functions where, once a function is proven to meet the
iterator definition IterPropDef (Figure 8), all the other properties are automatically
true by the scheme. Right now, elimination must be performed on the theorems
in Figure 11 in order to get the other properties for a given function. Schemes
arc also uscful in adding to the power of the system, in a seuse schemes can be
scen as exteusions to the base set inference rules. For example, induction could be
implemented through a scheme instead of an inference rule, and then several different
inductive schemes corresponding to different types of induction could be implemented.
Given that the user wants to use a particular scheme to prove a theorem;, it should also
be possible for the system to produce a “form” which outlines the steps of the proof,
leaving the details for the user to fill in. For example, with an induction scheme, the
base case and the inductive step can be deduced from the theorem to be proven. The
system should be able to generate these steps for the user, reducing the amount of
writing the user must do.

Another way to eliminate the amount of detail handled by the user would be to
increase Mizar-C’s automatic theorem proving power. As an example, often when
proving theorems by cases, some of the cases are either trivial or not true. These
cases could be proved by the system, eliminating the amount of writing to be done
by the user and allowing him to concentrate on the meaningful parts of the proof.

39

Very large proofs contain many parts, or sub-theorems; once a sub-theorem has been
proven, it is not necessary for the user to see the details of the sub-proof. The cub-
theorem statement is usually all that is needed for the remainder of the proof, sinceit
is not possible to reference any of the statements within the scope of the sub-theorem
from outside of it anyway. To facilitate this, it should be possible within the system
to “close” a proof once it is done, and “open” it if the details are wanted. This would
allow a high-level outline of the proof to be more easily seen. In the case of Mizar-(',
this may help the user to see what algorithm has been implemented by his proof,
since this tends to correspond to high-level proof outline.

A different problem with detail exists when trying to use already proven theories,
or proof modules. A decent mechanism for browsing through existing prool modules
for theorems must be implemented. At the current instantiation of Mizar-Cl. the
number of proof modules (or theories) was quite small, yet trying to find a desired
theorem was already quite tedious. As more modules are created this problem will get
worse, resulting in the re-proving of many existing theorems that cannot be located or
whose existence is unknown. This problem of re-utilization of theories is encountered
by most systems that provide large libraries of modules.

40

Appendix A

Sparse Realizability

The realizability interpretation of Mizar-C, called sparse realizability, is based upon
the Curry-Howard isomorphism [4], although sparse realizability destroys the isomor-
phism since it is no longer possible to convert programs back into their corresponding
proofs.

The following conventions are used:

e The type style for x being Tx holds P[x] will be used when writing examples of
Mizar-C proof text.

e The type style (LAMBDA () 1l be used in the examples of realizations of
Mizar-C proof text.

e Let R[0 1 mean the realizat, . of formula 0.

e In Mizar-C formulae with no content are realized by R-NONE. Formulae whose
truth value is unknown in the current context are realized by R-NIL. (e.g. the
non-proven formulae introduced through disjunction introduction).

A.1 Conjunctions: (6, & ... & 0,), n > 1

Conjunctions are realized by:

e R-NONE if no 8; has content.
e R[0;] if only one 6; has content.

o (R-LIST R[f,,] ... R[#,. 1) when two or more of the conjuncts have content.
Ouly the realizations of those formulae that have content are put in the list,
thus & <n and there is a one-to-one mapping from : to p; which maps each 0;
that has content to each 6, whose realizations are elements of the list.

Conjunction elimination allows the projection of one of the conjuncts from a con-
junctive forrula. Conjunction elimination of a conjunct 8 from a conjunction ¢ is
realized by:

41

e R-NONE if has no content.
e R[] if 0 is the only conjunct of ¢ with content.

o (R-SELECT 2 R[¢]) if more than one conjunct of ¢ has content. The R-SELECT
operator projects the nth element out of an R-LIST, so 0 must he the nih
conjunc! of ¢ with content.

A.2 Disjunctions: (6, or ...or 0,), n > 1

Disjunctions are realized by:
(R-LIST (LAMBDA () R[6,]) ... (LAMBDA () R[0,1))

where R[0;] is actually R-NIL if the sub-formula is not known to be true in the current
context. Otherwise the subexpressions exist, and their realizations arce wrapped in
lambda forms to delay evaluation until it is required.

In order to perform disjunction elimination, a formula must be provided that is the
negation of one of the disjuncts. This disjunct is then removed from the disjunctive
formula. Disjunction climination of a disjunct 0,, from a disjunction @ is performed
by projecting all of the disjuncts other than 6,, out of ¢. If ¢ contains more than two
disjuncts, the projections become the elements of a new disjunction ¢, Thus the two
cases are:

e if ¢ contains only two disjuncts then the disjunction elimination of 0., 1s realized
by:

— R-NONE if the remaining disjunct has no content.

— (R-APPLYO (R-SELECT » R[¢]1)) where the remaining disjunct is the nth
element of the disjunction. The disjunict is unwrapped at this potut, since
it is no longer a disjunction, but simply a true statement.

o if ¢ contains & > 2 disjuncts, then the disjunction climination of 0, is realized
by (R-LIST (R-SELECT u R[4]) ... (R-SELECT n R[4]))
for all n where (0 <n < k) and (n # m).

A.3 Implications: (6, implies 6,)

Implications can be seen as providing a method that uses the facts of the anteccdent, Lo
produce the consequent. From this viewpoint an implication is a function that takes
the antecedent as an argument and uses it to compute the consequent,. However, if the
antecedent has no content, it has no computational “facts” to be used in constructing
the consequent. In this case, the implication no longer neceds to take the antecedent, as
an argument in order to compute the consequent, thus its realization can bhe optimized

[();xsc # [0, I 0, l Type] Realization j
| no content | no content 0 R-NONE
2 content, no content 0 R-NONE
3 no content content 1 R[6,]
1 content, content 2 (LAMBDA (x) R{0,J[R[0;] := x])

Table A.1: Implication Realizations

to climinate an unnecessary function application. Implications are realized according
to Table AT,

In cases 1 and 2, since the consequent has no computational content, the impli-
cation has none either. Although the autecedent has content in case 2, since the
consequent has no content it is not possible that the realization of the antecedent is
required for any computation (if the consequent had made use of the antecedent then
the consequent would have content). Thus it is not necessary to retain the realization
of the antecedent at all.

In case 3, since the antecedent has no content it obviously cannot be involved

in any of the compntation that is done in the consequent, so only the realization of

the consequent is necessary to realize the implication. In this case, it is most likely
that the antecedent is a guard that provides a context for executing the consequent.
Within the system, it will only be possible to use the consequent in contexts where
the antecedent has been shown to be true, so the above realization is safe.

In case 4, where both the antecedent and the consequent have content, it is possibie
that the consequent uses the antecedent’s realization in its own computation. Since
the formula is an implication, implication elimination must be done in order to be
able to use the consequent. This elimination requires that the antecedent formula be
supplied. The realization of the supplied antecedent formula is bound to the variable
x when the implication elimination is performed.

linplication elimintion on formula @y implies 8, is realized according to Table A.2.

I 0, implies 0, [Realization J
Type 0 R-NONE
Type 1 R[0, implies 6,]
Type 2 (R-APPLY R[0, implies 6,] R[6,])

Table A.2: Realizations of Implication Elimination

The type information is used by the system when performing eliminations. Im-
plications of type 0 have no content, and cannot be used as arguments to formulae
requiring coutent. Implications of type 1 do not require an antecedent with content,
while type 2 implications require a constructive proof of their antecedent, and need
to be applied to this realization.

43

14
Ad I (0 iff 6)
Iff formulae are realized by a conjunction of the realizations of the two implications

(61 implies 6;) and (6, implies), according to the rules for conjunctions.
HE eliminations are realized according to Table A.3.

L 8, iff 9, l @, implies 6,] 8, implies 6, I Arg] Realization o
no content type 0 type 0 8,018, R-NONE o
content type 0 type 1 or 2 & R-NONE |
content type 1 type 0 8, R[#, iff 0,]
content type 1 type 1 or 2 8, (R-FIRST R[f; iff 0,1)
content type 2 type 0 8, (R-APPLY R[#, iff 6,1 R[#;]1)
content type 2 type 1 or 2 0, (R-APPLY
(R-FIRST R[#, iff 6.1) RO, 1)
content type 1 or 2 type 0) R-NONE
content type 0 type 1 8, R[O, iff 6,1 -
content type 1 or 2 type 1 f, (R-SECOND R[f, iff #.])
content type 0 type 2 6, (R-APPLY R[#, iff 0,1 R[#.])
content type 1 or 2 type 2 8, (R-APPLY o
(R-SECOND R[#, iff #,]) R[#.])

Table A.3: Realizations of Iff Elimination

A.5 Universally Quantified Formulae
for x being Type holds 0

The intuition behind the realization of universally quantified formulac is the same
as that for implications. If the formula 0 that is universally quantified has content,
then it may require an argument x of the correct type in order to perform its com-
putation. Thus it can be viewed as a function that takes one argnment. However, if
0 has no content, then it can not require the argument, x as input, and its realization
can be optimized to eliminate the unnecessary function application.

Universally quantified formulae are realized according to Table A 4.

[0 l Realization]
no content R-NONE
content (LAMBDA (x) R[0])

Table A.4: Realizations of Universal Formmnlac

Universal elimination on a formula a, using a term ¢, is realized according to

Table A.5.

45

[o [Realization J

no content R-NONE
content (R-APPLY R[a] R[¢1)

Table A.5: Realizations of Universal Elimination
A.6 Existentially Quantified Formulae
ex x being Tx st 0

Existentially quantified formulae are realized according to Teble A.6.

| 0 , Realization]
no content (LAMBDA () R[x])
content (R-LIST (LAMBDA () R[x]) (LAMBDA () R[41))

Table A.6: Realizations of Existential Formulac

There are two possible interpretations for the existential statement:
e It can he viewed as capturing an explicit value x for export.

It can be seen as capturing a “procedure” for computing the value x. This
function is then evaluated when the explicit value is requested (by using the
consider statement).

Mizar-C has adopted the second lazy interpretation, and by wrapping the realization
of x in a lambda form we have delayed the compatation of the value of x until it is
explicitly requested (by unwrapping it).

In the case where 6 has no content, it is not important to retain its realization. The
realization of the existential formula is simply the function that computes the value of
the existential variable. If 0 has content, the realization of the existential statement
becomes a list of two elements: the first element is the function that will compute -
the value of the existential variable, and the second element is the computation of
the formula 0.

When an existential elimination is performed on a formula ¢, two realizations are
produced: one that realizes the value of the variable, and one that realizes 0, the
body of the existential formula ¢.

In future versions of Mizar-C, it will be possible to have no-content existential
formulae where the body 6 of the existential may have content, but the existential
variable x does not. This is necessary in order to prove, or even use, certain theorems
such as Markov’s principle, where non-constructive existence is used.

L 0 L Realization]
no content (R-APPLYO R[¢])
R-NONE

content (R-APPLYO (R-FIRST R[4]))
R-APPLY0 (R~SECOND R{41))

Table A.7: Realizations of Existential Elimination

A.7 Case Analysis

Given a disjunction 4, and some implications ¢; through . ¢ o analvsis is realized

by:

(R~CASE R[0] (R-LIST (LAMBDA () (R-LIST Type RL¢11))

.(LAMBDA () (R-LIST Type R[6,,1))))

The antecedents of the implications must correspond to the disjunets of 0, and the
consequents must all match the goal formula. The Type information indicates the type
of the implication (as described in Table A.1), which determines how the implication
elimination is performed (see Table A.2). The R-CASE function evaluates the disjuncts
of 6 to determine which one is true, and then selects the corresponding implication
to compute the goal formula. Since it is possible for more than one disjunet to he
true, the present implementation of Mizar-C uses the first disjunct found to be true.
However, this leaves open the possibility of allowing parallel evaluation and exceution
of all the true cases.

Appendix B

Mizar-C Inference Rules

Mizar-C implements a multi-sorted limited second-order patural deduction logic It

provides the following base set of inference rules:

Case Analysis

Case Introduction

Choice Rule

Conjunction Manipulation
Clontradiction
Contradiction Introduction
Deftmitions

DeMorgan’s Laws
Disjunction Introduction
Disjunction Elimination
Equality Introduction
Equality Substitution

B.1

B.1.1 Direct Rule

Synopsis: direct(Formula)

Existential Intro-duaction
Existential Elimination
Guarded Choice

Iff Introduction

Iff Elimination

IF Swap

Implication Introduction
Implication Elimination
Induction Rule
Excluded Middle

Magic

Constructive Inference Rules

Negation Elimination
Negation Introduction
Quantifier Negation
Reverse Implication
Take

Tuple

Universal Introduction
Universal Elimination

This inference rule allows previously proven results to be re-stated. It checks to see
that the reference Formula is equal to the goal formula. 1t is useful for making the
results of a now reasoning explicit. For examples of use, see the sections on Universal
Introduction, Implication Introduction or Existential Elimination.

B.1.2 Equality Substitution

Synopsis: cquality(Formula, Equalitys, ..

., Equality,,)

The Equality Substitution Rule performs term substitution in the Formula through

47

the use of term equalities. Any number of simple subsiitutions may be performed, as
long as there is an equality formula Equality; for cach substitution.

environ
given x, y, z being Any;
{<<x:R-NONE>> <<y:R-NONE>> <<z:R-NONE>> }

A:(x = y)
{<<A$P11:R-NONE>>}
B: (y = z);

{<<B$P13:R-NONE>>}

begin
exl: (x = z) by equality(A. B);
{<<eq.ex1$P:A$P11>>}

now
(x = x) by eqintro();
{<<eq$RO:R-NONE>>}
thus (ex q being Any st (q = x)) by exintro{ _PREVIOUS):
{<<eq$RS5: (LAMBDA () x) >>}
end; {<<eq$R8: (LAMBDA () x) >>}
ex2: (ex q being Any st (q = z)) by equality(_.PREVIOUS, A, B):
{<<eq.ex2$P:eq$R8>>}

Figure 12: Example of Equality Substitution Rule

In the example in Figure 12, in ex] only one substitution was performed. In ex?,
two substitutions were done: first y for x and then z for y. The substitutions are
performed in the order of the given equalitics. The realization of the goal is that of
the original Formula being substituted.

B.1.3 The clim Inference Rule

Synopsis: elim[universal substitution list] (Formudag,. .., Fomula,), n >

In Mizar-C, elim is a very powerful rule which performs universal climination, im-
plication elimination and iff elimination on the argument Formula,. Vhe universal
substitution list is used for universal quantifier elimination; it lists the variables or
terms that are to be substituted for the universal quantifiers of Formulag, in the
order of elimination. Any terms that arc being substituted must already be defined,
and their justifications (a formula where the term oceurs positively) must be provided
in the formula list.

A term t occurs positively in a formula ¢ when:

® ¢ is a predicate and t occurs inside of it (e.g. ¢[...,1,..]).

A8

49

e ¢ is a conjunction, By A ... /. 8., and t occurs positively in some ;.

Formula, through Formula, are ~ither the antecedents of the implications or iffs
in Formulay, or the justifications of terms in the substitution list. These formulae
must appear in the correct order of elimination. If an antecedent is a disjunction,
then it is sufficient for Formula; to refer to one of the disjuncts. The goal formula
resulting from the call to elim has the number of quantifications indicated by the
universal substitution list and antecedents given by Formula, through Formula,
stripped off of Formulac If after all elim:nations, the result would be a conjunction.
the goal formula can simply be one of the conjuncts. Figure 13 illustrates the many
uses of elim. These examples do not show the realizations generated for each inference.
In the sections on universal elimination, implication elimination and iff elimination
that follow, the realizations that result from the use of elim for cach case are discussed.

a0

now
assume IH: (for x being Nat holds (P[x] implies
(for y being Nat holds ((x = y)or (x # y)):
guard: P[px] by magic;
{ we can do simple universal elimination}
1: P[px] implies (for y being Nat holds
((px = y) or (px #y)) by elim[px](11);
{ we can do simple implication elimination}
2: (for y being Nat holds
((px = y)or(px # y)) by elim[]J(1.guard):
{another universal elimination)}
3: (px = py) or (px # py) by elim[py)(2);
{ or we can do the eliminations (universal and implication)
all in one step}
4: (px = py) or (px # py) by elim[px, py)(Ill, guard);
{we can also eliminate using terms, by giving the
formula where they occur positively as a jus-ification}
al: P[(fa)];
((fa) = (fa))or((fa)# (fa)) by elim[(fa), (fa)](IN, al. al. al):
{ the first reference to al is the justification of the first
substitution term,
the second reference to al is used as the antecedent of the
implication, the third reference to al is the justification of
the second substitution term. }
end;
Al: for x being Nat holds (P[x] or Q[x]) implies R[x]:
A2: Plpx];
{ we can eliminate using one of the disjuncts}
R[px] by elim[px](A1, A2);
A3: for x being Nat holds P[x] iff (R[x] & T[x]);
{ we can refer to just one of the goal conjuncts}
T[px] by elim[px](A3, A2);

Figure 13: Examples of Elimation Rule

B.1.4 TUniversally Quantified Forisulae

Universal introduction oczurs when variables have been introduced by the let con
struction within a now reasvuing. The conclusion of the now reasoning, created using
the thus statement, is the formula that is universally quantificd. The upiversal sen:
tence that is created is interesting only ii the thus conclusion references the Jof-ed
variables. Note that in the now reasoniis; where this rule is invoked, there may be
several variables introduced with et ; each variable results in a new quantification

](‘,V(!l.

now
let x,y be Any;
{<<univ$R15:univ$R15>> <<univ$R16:univ$R16>> }
thus x = x by eqintro();
{<<univ$R17:R-NONE>>}
end;
{<<univ$R18:R-NONE>>}
Resultl: for x, y being Any holds x = x by direct(.PREVIOUS):
{<<univ.Result1$P: R-NONE>>}

Figure 14: Content-Free Universal Introduction

Figure 14 shows a simple now reasoning where two variables are introduced with
a let statement. Although the thus conclusion does not reference the variable v, the
universal sentence created (the statement labeled Resultl) has two nested quantifica-
tions over both variables x and y. Since the formula being quantified has no content,
the universal sentence is realized by R-NONE.

now
let x, y be Any;
{<<univ$R19:univ$R19>> <<univ$R20:univ$R20>> }
r = by eqintro();
{<<univ$R21:R-NONE>>}
thus © = x or z # z by disjintro(_.PREVIOUS);
{<<univ$R24: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}
end;
{<<univ$R27: (LAMBDA (univ$R19) (LAMBDA (univ$R20)
(R-LIST (LAMBDA () R-NONE) R-NIL)))>>}
Result2: for x, y being Any holds x = x or x # z by direct(_.PREVIOUS);
{<<univ.Result2$P: (LAMBDA ($ALL6) (LAMBDA ($ALL7)
(R-LIST (LAMBDA () R-NONE) R-NIL)))>>}

Figure 15: Universal Introduction with Content,

Figure 15 shows the realization that is created when the formula being universally
quantified has content. In this case, universal quantification corresponds to function
abstraction. Since there are two let-ed variables a function is created that takes two
arguments. Conversely, function application corresponds to universal elimination,
which provides the arguments for the function.

Universal elimination is done using the elim rule, as shown in Section B.1.3.

A: (x = x) or (z # z) by elim[x,x](Result2);

{univ$R11: (R-APPLY (R-APPLY univ.Result2$P x) x)>>}

1: (fx) = (f x) by magic;

{<<univ.1$P:R-NONE>>}

B: (fx) = (fx) or (f x)#(f x) by elim[(f x), x)(Result2, 1);
{<<univ.R31:(R-APPLY (R-APPLY univ.Result2$P (FUNCALL f x)) x)>>}
C: (fx) = (fx) by elim[(f x), (f x)](Result!, 1, 1);

{#<univ$R8:R-NONE>>}

Figure 16: Universal Elimination Example

Since statements A and B in Figure 16 perform universal elimination on a fornmla
with content, this results in a function application. The realization of the universal
formula Result2is applied to the arguments provided. In statement I3, a term is heing,
substituted for one of the universal quantifiers which requires that a justification I
given; this is provided by the reference to statement 1. In all three cases, although the
second quantified variable y is not present in the formula body, an argument must he
provided for it anyway. In statement C, the term (f x) is being used as the argiment
for both quantifiers. A justification for each substitution is required, which resnlts in
two references to statement 1.

B.1.5 Implications

Implication introduction is similar to universal introduction in the sense that it cor-
responds to the results of certain hypothetical reasonings. An implication is created
as a result after a formula has been introduced with an assumne statement in a now
reasoning. The antecedent of the resulting implication corresponds to the assnmed
formula, and the consequent to the thus conclusion reached by the sentences after the
assume statement.

Ex1: now
assume 1: Px |;
{<<imp$R34:imp$R34>>}
thus (x = x) by eqintro();
{<<imp$R41:R-NONE>>}

end;

{<<imp$R44 :R-NONE>>}

Ux2: now
assume 1: (ex y being Any st (x = y));
{<<imp$R53:imp$R53>>}
thus P[x | by direct(A);
{<<imp$R61:4$P9>>}

end;

{<<imp$R64 :R-NONE>>}

Figure 17: Content-Free Implication Introduction

In both ExI and Ex2 given in Figure 17, since the consequent of the implication
is a formula without content, the entire implication has no content and is realized by
R-NONE.

now
assume I: P[x |;
{<<imp$R45: imp$R45>>}
thus (ex y being Any st Ply |) by exintro(_.PREVIOUS);
{<<imp$R49: (LAMBDA () x)>>}

end;

{<<imp$RS2: (LAMBDA () x)>>}

Figure 18: Type | Implication Introduction

In Figure 18, the antecedent formula P[x] has no content. However, since the
consequent is an existentially gquantified formula it does ha:e content, and so the
realization of the implication is simply the realization of the comsequent.

now
assume 1: (ex y being Any st (x = y));
{<<imp$R2:imp$R2>>}

consider y1 being Any such that yI « = yl) by direct(_.PREVIOUS):
{<<imp$R11:imp$R2>>}
{<<imp$R15: (R-APPLYO imp$R11)>>}
{<<imp$R13:R-NONE>>}
P[y1] by equality(A, v1);
{<<imp$R26:4$P9>>}
thus (ex z being Any st P[z]) by exintro(_PREVIOUS);
{<<imp$R30: (LAMBDA () imp$R15) >>}
end;
{<<imp$R33: (LAMBDA (imp$R2) (LAMBDA () imp$. >}
resultd: ((ex y being Any st (x = y)) im. Yes
(ex z being Any st P[z])) by direct(_.PREVIOUS):
{<<imp.result4$P:imp$R33>>}

Figure 19: Type 2 Implication Introduction

With all the labels expanded, the realization of the implication proven in Figiure 19
1s:

(LAMBDA (imp$R2) (LAMBDA () (R-APPLYO imp$R2)))

This is an example of an implication where the realization of the antecedent, formula is
used in the realization of the consequent. The antecedent realization will be a funetion
to compute the value of the existential variable y. Within the reasoning, this valae
is named yl. The realization of the consequent is also a function to compute an
existential variable z, and since the value of z is that of yI, the function provided by
the antecedent’s realization is used to compute it. Thus the implication is realized hy
a lambda form that takes the realization of the antecedent formut+ as an argument,

Implication elimination is performed using the elim inference rule, as described
in Section B.1.3. In order to perform implication elimination the antecedent fornmla
must be provided. If the implication requires an antecedent formula with content,
as in Figure 19, the result of the implication elimination is a realization where the
realization of the implication is applied to the realization of the supplied antecedent
formula.

In Figure 20, the realization of the implication imp.result4$? is applicd to the
realization of the antecedent imp.B$P. If the implication beirs eliminated does not
require the realization of the antecedent, as in Figure 17 and Figure 18, then the inpli-
cation is realized by the realization of the consequent; hence implication climination
does not change the realization at all.

S

55

(x = x) by eqintro();

{<<imp$R27:R-NONE>>}

B: (ex q being Any st x = q)) by exintro(_PREVIOUS);
{<<imp.B$P: (LAMBDA () x) >>}

(ex z being Any st Pz]) by elim(resultd, B);
{<<imp$R31:(R-APPLY imp.result4$P imp.B$P)>>}

Figure 20: Implication Elimination

B.1.6 Iff

The inference rule iffintro is used to introduce an iff from two implications.
Synopsis: iflintro(I'mplicationy, Implication,)

0— ¢, — 0
T g6 o0

Hnow
assume ((x = x) or (x # x));
{<<iffs$R4:iffs$R4>>}
thus ((x = x) or (x # x)) by direct(_PREVIOUS);
{<<iffs$R5:1ffs$R4>>}

end;

{<<iffs$R6:(LAMBDA (iffs$R4) iffs$R4)>>}

A:(((x = x) or (x # x)) implies ((x = x) or (x # x))) by direct(_PREVIOUS);
{<<iffs.A$P:iffs$R6>>}

B:(((x = x)or(x# x)) ifl ((x =x)or (x # x))) by iffintro(A, A);
{<<iffs.B$P:(R-LIST iffs.A$P iffs.A$P)>>)

Figure 21: HT Introduction

An ifl formula is realized by a conjunction of the realizations of the implications
used to form it. Thus the iff realization depends upon whether the implications have
content, according to the rules given for conjunction realizations in Section A.1.

Il climination is performed using the elim inference rule. as described in Sec-
tion B.1.3.

08,6 09,0
0 ¢

a6

In order to perform iff elimination, either the left or right side formula of the if
must be provided. When the goal formula has 1o content it is realized by R-NONE:
when the goal formula has content its realization is determined by the implications
that were used when forming the iff. If the left formula 0 is being eliminated, then the
first implication, (/mplicationg in the introduction of the iff), is used and implication
elimination is performed on it using # as the antecedent. If the right formula ¢ is being
eliminated, then the second implication is used (Implicationy in the introduction of
the iff). The realization that results follows the rules for implication climination as
outlined in Table A.2. Using iff formula B from Figure 21:

I: (x = x) by eqintro();

{<<iffs.1$P:R-NONE>>}

2: ((x = x) or (x # x)) by disjintro(_PREVIOUS);
{<<iffs.2$P:(R-LIST (LAMBDA () R-NONE) R-NIL)>>}
((x=x)or(x# x)) by elim(B, 2);

§<<iffs$R28: (R-APPLY (R~FIRST iffs.B$P) iffs.2$P)>>}

Figure 22: Uf Elimination

B.1.7 Reasoning by Cases

Case introduction, performed with the caseintro inference rule, allows the antecedent
of an implication to be weakened by making it a disjunction.
Synopsis: caseintro(Implicationg, Implication,, .. ., Implication,,)

¢0 — 0, ¢] - 0, “ e (/)"l - ()
(d)p(()) \% ¢p(1) V... (/)p(m)) — 0

for any permutation p: {0...m} — {0...m}.

The resulting realization is a function, which takes a disjunction for an argument,
and uses case analysis of the disjunction to determine which of the implications should
be used for the computation.

Ut
|

now
assume (x = x);
{<<case$RO:case$RO>>}
thus ((x = x) or (x # x)) by disjintro(.PREVIOUS);
{<<case$R1:{(R-LIST (LAMBDA () R-NONE) R-NIL)>>}
end;
{<<case$R2:(R-LI"T (LAMBDA () R-NONE) R-NIL)>>}
A ((x = x) implies ((x = x) or (x # x))) by direct(_.PREVIOUS);
{<<case.A$P:case$R2>>}

now
assume (X # x)
{<<case$R3:case$R3>>}
thus ((x = x) or (x # x)) by disjintro(_LPREVIOUS);
{<<case$R4: (R-LIST R-NIL (LAMBDA () R-NONE))>>}
end,;
{<<case$R5: (R-LIST R-NIL (LAMBDA () R-NONE))>>}
B:((x # x) implies ((x = x) or (x # x))) by direct(.PREVIOUS):
{<<case.B$P:casedR5>>}

I: (((x = x)or (x # x)) implies ((x = x) or {(x # x))) by cazeintro(A. B);
{<<case.1$P:(LAMBDA ($F6) (R-CASE $F6
(R-LIST (LAMBDA () (R-LIST 1 case.A$P))
(LAMBDA () (R-LIST 1 case.B$P)))))>>)

2: (((x # x) or (x = x)) implies ((x = x) or (x # x))) by caseintro(B. A);
{<<case.2$P: (LAMBDA ($F19) (R-CASE $F19
(R-LIST (LAMBDA () (R-LIST 1 case.B$P))
(LAMBDA () (R-LIST 1 case.A$P Y))))>>}

Figure 23: Introduction of Cases

Case analysis is performed using the caseanal inference rule.
Synopsis: cascanal(Disjunction, Implicationg , ..., Implication,,) m > 1

C,’J)()Vd)l V-”d)my ¢O_)0’---7¢7rl_>0
0

The antecedents of the Implications must be in 1-1 correspondence with the dis-
Junets in Disjunction. The goal formula must be the consequent of all the Implica-
tions. Using the implications A and B from Figure 23:

(x = x) by eqintro();
{<<case$R82:R-NONE>>}
3: ((x = x)or(x# x)) by disjintro(_PREVIOUS):
{<<case.38P:(R-LIST (LAMBDA () R-NONE) R-NIL)>>}
((x = x) or (x # x)) by caseanal(3, A, B):
{<<case$R89: (R-CASE case.3$P

(R-LIST (LAMBDA () (R-LIST 1 case.A$P))

(LAMBDA () (R-LIST 1 case.B$P))))>>}

Figure 24: Case Analysis

B.1.8 Existentially Quantified Formulae

The inference rule exintro is used to introduce an existentially quantified variable.
Synopsis: exintro{ Formula)

In order to introduce an existentially quantified variable with content, the existence
of an actual object must be provided. The goal formula must be the Formmla, exis
tentially quantified, with the actual object in Formula replaced with the existential
variable. The realization of an existentially quantified formula depends upon whether
or not the formula being quantified has content.

r = x by equintro();

{<<exis$RO:R-NONE>>}

A:ex y being Any st (2 = y) by exintro(_PREVIOUS j:
{<<exis.A$P:(LAMBDA () x)>>}

Figure 25: Existential Introduction on Formula without Content

The realization of the existential formula created in Figure 25 is simply the fune
tion to compute the value of the existential variable v. When evaluated, (LAMBDA () x)
returns x, which in this case is the value of y.

The existential formula created in Figure 26 is realized by the list of two elements:
the first element is the realization of the function to compute the value of the ex
istential variable y and the second element is the realization of the fornmla heing
quantified, in this case the disjunction.

z = o by equintro();

{<<exis$R2:R-NONE>>}

(z =x) or (z #) by disjintro(_PREVIOUS);

{<<exis$R3: (R-LIST (LAMBDA () R-NONE) R-NIL)>>}

B:ex y being Any st (v = y) or (z # y) by exintro(_.PREVIOUS);
{<<exis.B$P: (R-LIST (LAMBDA () x) (LAMBDA () exis$R3)>>}

Figure 26: Exisica . Introduction on Formula with Content.

In Mizar-C, the comsider statement is used to eliminate an existential quantifier
and introduce a new free identifier in the scope in which is it used. The type of the
variable introduced by the consider statement must be the same as the type of the
existential vartable, and the formula given to hold for the new variable must match
the original quantified formula. The use of the consider statement results in two
realizations:

o the computation of the value of the variable being introduced.

By considering the variable, we are requesting the value of the variable, which
must now be computed due to the lazy semantics of the realization of the
existential quantifier.

e ihe realization of the body of the existential formula.

Using existential statement A {rom Figure 25:

consider being Ary such that (q = x) by direct(A);
{<<exis$R29:exis.A$P>>}
{<<exis.q$0:(R-APPLY0O exis$R29)>>}
{<<exis$R30:R-NONE>>}

Figure 27: Existential Elimination when Formula has no Content

The first realization computes the value of the existential variable by unwrapping
the lambda expression. This is accomplished by the function R~APPLYO, which applies
the lambda form to zero arguments. Since the body of the existential formula has no
content, iis realization is R-NONE.

Using statement B from Figure 26:

consider r being Any such that ((x = r) or (x # r)) by direct(B)
{<<exis$R49::xis.B$P>>}

{<<exis.r$0: (R-APPLYO (R-FIRST exis$R49))>>)
{<<exis$RS1: (R-APPLYO (R-SECOND exis$R49))>>}

.

Figure 28: Existential Jimination when Formula has Content

To compute the value of the variable, the funtion that computes it must he ex
tracted from the list that realizes the existential statement. This is done using the
function R-FIRST which returns the first element of a list. The function is then
unwrapped as before. Since the body of the existential formula has content, its ro
alization is the second element of the list, which is extractoed using the R-SECOND
function and then unwrapped.

B.1.9 Tuple Manipulation

Synopsis: tuple[Tuple J(Formula)

The tuple inference rule provides a mechanism for accessing the components of a
tuple. If the referenced tuple is a term, then a Formula where the ternn ocenes posi
tively must be given as justification. Given a Tuple the goal formmnla is an existential
of the form

ex yl, y2, ..., yn st Tuple = <yl, y2, ..., y>

The reason for this crude manipulation is that the basic system has no builtin types
that can be used for indexing into the data structure.

6

61

environ
given U being <Any, Any, Any \verb;+;
{<<t:R-NONE>> }
given Q being [<Any, Any > |;
{<<R-NONE:R-NDNE>> }
given a being Any;
{<<a:R-NONE>> }
given f heing (Any => Any);
{<<f:R-NONE>> }
al: Q[Ra, (fa)> |;
{<<a1$PO:R-NONE>>}
begin
(ex g, r being Any st (<a, (fa)> =<q.r>)) by tuplef<a, (fa)>](al):
{<<tuple$RS: (R-LIST
(LAMBDA () (R-SELECT O (R-TUPLE a (FUNCALL f 2))))
(LAMBDA () (LAMBDA () (R-SELECT 1 (R-TUPLE a (FUNCALL f a))))))>>}

(ex x, v, z being Any st (<x.y. 2> = t)) by tupleft]():
{<<tuple$R12: (R-LIST
(LAMBDA () (R-SELECT 0 t))
(LAMBDA () (R-LIST
(LAMBDA () (R-SELECT 1 t))
(LAMBDA () (LAMBDA () (R-SELECT 2 t))))))»>>}

Figure 29: Example of Tuple Rule

1.1.10 Disjunction Manipulation

To introduce a disjunction the inference rule disjintro is used.
Synopsis: disjintro (Formulag, Formulay, ..., Formula,),m > 0
Disjunction introduction allows one to weaken a statement by adding disjuncts to it.

(v’l)(héh-”ad)m
(QoVOL V...V, |0

where | < m < nand ¢; are Formula;. All the formulae in the arguments must
be represented in the goal disjunction, but the order of each ¢; in the goal is not
important. The realization of a disjunction depends upon the realizations of cach
individual formula.

In disjunction A, the first disjunct is the one known to be true; in disjunction B3,
the second disjunct is the oue known to be true. The disjunct whose value is unknown
is represented by R-NIL in the realization.

I: =z by equintro();

{7<disj.1$P:R-NONE>>}

A:(z ==z) or (x # x) by disjintro(1):
{<<disj.A$P:(R-LIST (LAMBDA () R-NONE) R-NIL)>>}
B: (z #) or (x = x) by disjintro(1);

{<<disj.B$P: (R-LIST R-NIL (LAMBDA () R-NONE))>>}

Figure 30: Disjunction Introduction

Disjunction Elimination is performed using the inference rule disjelinm. A disjunct
can be eliminated from a disjunction when we know the disjunet to be false,
Synopsis: disjelim (Disjunction [Fermulay. Formulay.. . ., Formaula, Yo -0

Disjunction elimination requires a disjunctive formula. Disjunction, and zero or more

other argument formulae, Formula; which are the negations of the disjunets to he
eliminated. The goal may or may not he a disjunctior.

GV oy V..V ou O0pwy.... . 0p,

T+ YV armeny VoV apa) | 300

where 0 <n < m for some total 1-1 mapping P : {0,...,m} — {0..... mr}osuch that
Vl € {O. ceny 'III}, ((f)l = A/l"(i)) V ((,6' = —'()['(i)) \VZ (—\(”)‘ frt (}l'(:))'

In other words, the goal is a disjunction like the first argument. except it s missing the
disjuncts that are the negations of the formulae Opyiy, and possibly has the disjunets
are rearranged. Using disjunctive formula A from Figure 30, disjunction climination
is performed.

now
assume (X # x);
{<<disj$R1:disj$R1>>}
thus contradiction by contrintro(l, .PREVIOUS);
{<<disj$R2:R-NIL>>}

end;

{<<disj$R3:R-NONE>>}

C: (not (x # x)) by negintro(_.PREVIOUS);

{<<disj.C$P:R-NONE>>}

(x = x) by disjelim(A, C);

{<<disj$R6:R-NONE>>}

Figure 31: Disjunction Elimination

u?

B.1.11 Conjunction Manipulation

In Mizar-C, a conjunction is considered to be a “bag” of formulac where the bag
contents can be added to, subtracted from, and rearranged as long as all the formulac
are true in the current context. One inference rule, conj, is used to manipulate
conjunclive formulae.

Synopsis: conj (Formulag, Formula,. ..., Formula,,),0 < m

¢07(I")I9' -'7(/)71.
(00&',01&', .o &:()m) I 0

where 0; is a well formed formula obtained from any of the ¢ b = 1...n, and 0 s
any well formed formula which is not a conjunction, obtained from any of the ;.

I: (v =x)or (¢ # 1) by magic;
{<<conj.1$P: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NGNE))>>}
2: P[x];

{<<conj.2$P:R-NONE>>}

3 ((r=x)or (r#x)) & Plx] by conj(1,2):
{<<conj.3$P:conj.1$P>>}

A2 PIx] & ((r = x) or (& # x)) by conj(1,2):
{<<conj.4$P:conj.1$P>>}

P[x] by conj(3);

{<<conj$R5:R-NONE>>}

(x =x)or (xr #) by conj(3);
{<<conj$R6:conj.3$P>>}

Figure 32: Examples of Conjunction Manipulation

The realization of cach conjunction is dependent upon the realizations of its con-
juncts, as deseribed in Section ALl

63

B.1.12 Induction

Induction is allowed on any type using any well-founded partial order for that type.

Synopsis: induction(WellFoundedPredicate, InductionFormula)
In Mizar-C, the form of the induction rule is that of strong induction, as follows:

WellFounded[TYPE, LT],
Jor z being TYPE holds (for y being TYPE holds LT[y.x] implies Ply]) implics Plr]
Jor z being TYPE holds P[]

In order to do induction over a type using a given ordering, a proof that the order
is well-founded must be provided. The definitions and theorems deseribed in Figure f
are used to achieve this. For examples, sce Section 1.1,

B.1.13 The Choice Rule

Synopsis: choice(Formula)
The choice rule allows the introduction of a function.

Jor x being T holds (cr y being Ty st Plr.y])
ex fbeing Tr — Ty st (for v being Tr holds Ple, (f r)])

Fee Section 4.1 for further discussion. As implemented, the choice rle is inconve
nient in that is does not return the fact the £is total. This becomes a problem when
(I x) does not occur positively in P[]

B.1.14 Guarded Choice
Synopsis: gchoice(iormula)
The guarded choice rule allows the introduction of a partial function.

for x being Tx holds Guardfe] implies (cx y being Ty st Ple,y])
cx fbeing Te — Ty st (for x being T holds Guard[c] implics Plr, ([x)])

See Section 4.2 for further discussion.
B.1.15 Definitions
The define construct in Mizar-C permits the definiticn of new predicates,
label : define Predicate Name of variable list by Formula :

where variabie list is of the following form:
variable names heing variable type, ..., variable names heing variable type

See Section 4.3 for further explanation.

-1

65
B.2 Non-constructive Inference Rules

‘Ihe rules in this section are inherently non-constructive, and never produce any
formulac that have content.

B.2.1 Magic
Synopsis: magic

0

The magic inference rule allows the system to accept any well-formed formnla ¢
without references to another formula. The realization of the generated formula has
the correct shape according to the realization rules for its type, but has no computa-

tion associated with it.

(Plx] & Ply]) by magic();
{<<mag$R25:R-NONE>>}
(P[x Jor Ply]) by magic();
{<<mag$R26: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(ex 1 being Any st (r = x)) by magic();
{<<mag$R29: (LAMBDA () $EX28) >>}
(ex r being Any st ((r = x) or (r # x))) by magic();
{<<mag$R35: (R~LIST

(LAMBDA () $EX34)

(LAMBDA () (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))))>>}

IFigure 33: Use of Magic Inference Rule

B.2.2 Reverse Implication

In order to perform reverse implication elimination you must use the revimplinference
rule.

Synopsis: revimpl(Implication | Iff , Neglormula)

This rule is very similar to implication elimination, except it uses the negated conclu-
sion of the implication to conclude the negated antecedent. It is also used for reverse
I climination, where the NegFormula is the negation of cither the left or right side
of the iff formula.

0,¢—0 0,60 = ¢0
~¢ s —0

66

environ
given P, (¢ being [Any |;
{<<R-NOWE :R-NONE>> <<R-.JONE:R-NONE>> }
begin
I: (P[x] iniplies Q[x]) by magic();
{<<revimp.‘$P:R-NONE>>}
2: (not Q[x [} by magic();
{<<revimp.2$P:R-NONE>>}
3: (not Plx j; ' revimpl(1, 2);
{<<revimp.3$i>:?‘--NONE>>}
4: (P[x] iff Q[x |} by magic();
{<<revimp.4$P:[-NONE>>}
(not Q[x]) by revimpl{4, 3);
{<<revimp$R45:R-NONE>>}
(not P[x]) by revimpl(4, 2);
{<<revimp$R46:R-NONE>>}

Figure 34: Examples of Reverse Implication Rule

B.2.3 Law of Excluded Middle

Synopsis: exmiddle
The Law of Excluded Middle allow us to create a new formula:

0 or —0|=0 or 0
where 0 is any well-formed formula without any undefined variables.

(P[x]~or (not P[x])) by exmiddic();
{<<exmid$R52:R-NONE>>}

Figure 35: Excluded Middle Inference Rule

B.2.4 Negation Introduction
Synopsis: negintro(Implication)

 — contradiction

-0

Negation introduction is used along with contradiction introduction for proving i
negated formula 0, by assuming 0 and proving that a contradiction follows.

now
assume a: (X # x);
{<<negint$R60:negint$RE60>>}
(x = x) by eqintro();
{<<negint$R57:R-NONE>>}
thus contradiction by contrintro(a, .PREVICUS);
{<<negint$R65:R-NIL>>}
end; {<<negint$R68:R-NONE>>}
(not (x # x)) by negintro(_.PREVIOUS);
{<<negint$R69:R-NONE>>}

Figure 36: Example of Negation Introduction

B.2.5 Negation Elimination

Synopsis: negelim(Formula)

=)
0

Negation Elimination reduces the number of nots in f~ont of a formula by two.

B.2.6 Contradiction Introduction

Synopsis: contrintro(Formulay, . .., Formula,,) m >

O(h .. 7{)111

contradiciion

Contradiction introduction is used in now reasonings in a “proof by contradiction”
n
argument. The argument formulae must exhibit a contradictory pair of formulae; this
means that either there are two formulae 0; and f; that directly contradict cach other,
or clse one of the 6; is a conjunction where two of its conjuncis contradict cach other.
See Figure 36 for an example of use of this rule.

B.2.7 Contradiction

Synopsis: contra(contradiction)

contradiction

0

The contra rule is used to introduce any well-formed formula in the presence of

contradiction.

<y
~1

now
assume a: (x <> x);
{<<cont$R94:cont$R94>>}
(x = x) by eqintro();
{<<cont$R98:R-NONE>>}
contradiction by contrintro(_PREVIOUS, a):
{<<cont$R101:R-NIL>>}
thus P[x] by contra(_PREVIOUS);
{<<cont$R104:R-NONE>>}

nd;

<cont$R107:R-NONE>>}

Figure 37: Example of Contra Rule

B.2.8 Equality Introduction

Synopsis: eqintro(Formula)
This rule allows the introduction of a term equality. If the equality is of a variable o
defined in the current conteit, then no reference Formula is NCCESSATY.

¢o=d
The equality rule also allows the extraction of a term ¢ from a Formula 0.

0

=1t

The goal formula is then an equality of a term 1, and the referenced formnla ¢
must make explicit positive mention of the term.

N

environ
given P being [Any |;
{<<R-NONE:R-NONE>> }
given [being (Any -; Any);
{<<f:R~NONE>> } given x being Any;
{<<x:R-NONE>> }
A: Pl(fx)];
{<<A$P88:R-NONE>>}

hegin
(x = x) by eqintro();
{<<eq$R89:R-NONE>>}

((fx) = (x)) by eqintro(A);
{<<eq$R90:R-NONE>>}

Figure 3. Equality Introduction

B.2.9 DeMorgan’s Laws

Synopsis: demorgan(Formula)
The DeMorgan’s Laws included in Mizar are very much like the classical ones.
¢0\/951V'°'V¢11 ¢0A¢1A---A¢71
o) Ay A - Alpiay) = (Op(0) V Oy V -V Gy
_‘(¢0V¢Iv-'-v¢n) —'(¢0/\¢1A---/\¢n)
07,(0) /\ 0,,(1) A PN /\ 07,(71) 01)(0) \% 07,(]) V oV 0p(n)

where in cach of the above, ¢; =# Opiy or # &; = 0,3, for a permutation p :

{0...n} = {0...n}.

B.2.10 Conversion Between Disjunctions and Implications

There are two inference rules imp2disj and disj2imp that preserve the classical rea-
soning about the relationship between implication and disjunction.
Synopsis: imp2disj(Implication)
This rule transforms an implication into a disjunction.
0—0 (—¢)— 0

(@) VO[OV (=) dVO|OVS
Syunopsis: disj2imp(Disjunction)
This rule transforms a disjunction into an implication.

¢Vl (-g)Vve
(mg)—0 H—10

69

environ
given P, Q being [];
{<<R-NONE:R-NONE>> <<R-NONE:R-NONE>> }
begin
I: (not (P[]or Q[])) by magic():
{<<demorg. 1$P:R-NONE>>}
((not P[]) & (not QI'])) by demorgan(l);
{<<demorg$R30:R-NONE>>}
2: (not (P[] or (not Q[]))) by magic();
{<<demorg.2$P:R-NONE>>}
((not P[]) & Q[]) by demorgan(2):
{<<demorg$R31:R-NONE>>}
3: ((not P[]) or (not Q[])) by magic():
{<<demorg.3$P: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(not (P[] & Q[])) by demorgan(3);
{<<demorg$R33:R-NONE>>}

fige . v aaples of Demorgan Rule

((not P[]) or P[]) by magic();

{<<impdisj$R39: (R-LIST (LAMBDA () R-NONE) (LAMBDA () R-NONE))>>}
(P[] implies P[]) by disj2imp(_-PREVIOUS);

{<<impdisj$R41:R-NIL>>}

((not P[]) or P[]) by imp2disj(.PREVIOUS);

{<<impdisj$R42:R-NIL>>}

Figure 40: Conversion between Implication and Disjunetion

T

Appendix C

Basic Bit String Extensions

The following information about the basic bit string data type has been added to

Mizar- ("

given Bits being [Any |:
{<<R-NONE:R-NONE>> }
given O, 1, nil being Bits rhy bit-0. bit-1. bit-nil:
{<<bit-0:bit-0>> <<bit-1:bit-1>> <<bit-nil:bit-nii>> }
given cat Leing (<Rits, Bits > => Bits) rby bit-cat;
{<<bit-cat:bit-cat>> }
given split being (<Bits, Bits > ~> <Bits, Bits >) rhy bit-split:
{<<bit-split:bit-split>> }
given bits_len It being [Bits. Bits J:
{<<R-NONE:R-NONE>> }
given bits_len.eq being [Bits. Bits |:
{<<R-NONE:R-NONE>> }
given LT being [Bits, Bit: |:
{<<R-NONE:R-NONE>> }
BA_nil_not_1: (nil <> 1) rhy R-NONL;
{<<R-NONE:R-NONE>>}
BA nil_not_u: (nil <> 0) rhy R-NONE;
{<<R-NONE:R-NONE>>}
BA Tonot 0: (1 <> 0) rhy R-NONE;
{<<R-NONE:R-NONE>>}
B nil.or_not: (for x being Bits holds ((x = nil) or (x <> nil))
) rby bits-ba-nil or-not;
{<<bits-ba-nil-or-not:bits-ba-nil-or-not>>}
BA_len_lt _nil: (for x being Biis holds
({x <> nil) iff bits_den_ltfnil. x])) rby R-NONE;
{<<R-NONE:R-NONE>>}
BA_len lt_asym: (for x. v being Bits holds
(bits_len_Itfx. y] implies (not bits_len_lt[y, x [))) rby R-NONE;
1<<R-NONE:R-NONE>>}
BAllenlt_trans: (for x, y. z beirg Bits holds (bits_len_Itfx. y] implies

7l

(bitsden_lt[y, z | implies bits_len_ltjx. z]))} rby K-NONE:
{<<R-NONE:R-NON&>>}
BA_len_not.It: (for x, ¥ being Bits holds ((not bits_len_lt[x. v) implies
(bitsden_It[y, x] or bitsden_cq[x, v]))) rby bits-ba-len-not-t:
{<<bits-ba-len-not-1t:bits-ba-len-not-1t>>}
BA_len_eq_no_lt: (for x. y being Bits holds (bits_len_eqfx. v] il
(not (bits_len_It[x. v J or bits_len_It[v, x])))) rbyv R-NONE:
{<<R-NONE:R-NONE>>}
BA_len_eq.1: (for x being Bits holds
(bitsden_eqfl, x Jift ((x = 1) or (x = 0)))) rby bits-ba-leneq 1
{<{<bits-ba-len-eq-1:bits-ba-len-eq-1>>}
BA_len_eq_refl: (for x being Bits holds bits_leu_eq[x. x]) rhy R-NONE:
{<<R-NONE:R-NONE>>}
BA len_eq_sym: {(for x, y being Bits holds
(bits_len_eq[x, v] implies bits_len_eq[v. x])) rby R-NONI-:
{<<R-NONE:R-NONE>>}
BA len_eq_trans: (for x. y, z being Bits holds (bits_len_oqfx. v] implies
(bits_en_eqfy. z | implies bitslen_eq[x. 7]})) rhy R-NONI:
{<<R-NONE:R-NONE>>}
BA_cat_nil: (for x being Bits holds
(((cat<nil, x >) = x) & ((cat <x, nil >) = x)) rhy R-NONE:
{<<R-NONE:R~NGCNE>>}
BA_cat len.cq: (for x. y. z being Bits holds (bits_teu_eqfy. 7 | iff
bitslen_eqf(cat <x, ¥ >), (cat <x, z>)])) rby R-NON:
{<<R-NONE:R-NONE>>}
BA_cat den_lt: (for x, y, z being Bits holds (bits_len_ltjy. » | iff
bits_len_It[(cat <x, y >), (cat <x, z>)])) rby R-NONE:
{<<R-NONE:R-NONE>>}
BA _cat_bothden.eq: (for x. y being Bits holds
bits_len_eqf(cat <x, y >), (cat <y, x >)]) rhy R-NONL::
{<<R-NONE:R-NONE>>}
BA_cat: (for x, y being Bits holds
(ex z being Bits st (z = (cat <x, y >)))) rby bits-ba-cat;
{<<bits-ba-cat:bits-ba-cat>>}
BA _cat_assoc: (for x, y, z being Bits holds
((cat <(cai <x, y>).z>) = (cat <x, (cal <y.z>)>))) rhy R NONF:
{<<R~NONE:R-NONE>>}
BA_cat_split: (for x, y being Bits holds
(x = (cat (split <x, y >)))) rby R-NONI;
{<<R-NONE:R-NONE>>}
BA_ split.cat: (for x, y being Bits holds
((split <(cat <x, y >), x>) = <x, ¥ »)) rhy 8-NONE;
{<<R-WONE:R-NONE>>}
BA_split: (for x, y being Bits holds
(ex z1, 22 being Bits st {(split <x, y >) = <z1, z2°>))) rhy bits- ba-split;
{<<bits-ba-split:bits-ba-split>>}

BA_split_1: (for x being Bits fiolds (((split <1, x>} = <1, nil >) or
((split <1, x>) = <nil, 1>))) rby bits-ba-split-1
{<<bits-ba-split-1:bits-ba-split-1>>}
BA_split_eq: (for x, y, z being Bits holds (bits_len_eqfy, z | implies
((split <x, y >) = (split <x, z>)))) rby R-NONE;
{<<R-NONE:R-NONE>>}
BA _split_eq_rev: (for x, y, z being Bits holds
((not bits_len_ltx, y]) implies ((not bits_len_lt[x, z]) implies
(((split <x, ¥y >) = (split <x.z>))ifl
bits_len_eqfy, z])))) rby R-NONE;
{<<R-NONE:R-NONE>>}
BA_split_big: {for x, y being Bits holds
((not bits_len_ltfy, x) iff ((split <x, ¥ >) = <x, nil »))) rhv B-NONE:
{<<R~-NONE:R-NONE>>}
BA_LT: (for x, v being Bits holds
(bitsden_lt[x, y] ifl LT[x, v])) rby R-NONE:
{<<R-NGNE:R-NONE>>}

Bibliograph;,

[

[9]

[101

[t1]

[12]

S. Berardi. Pruning simply typed lambda-terins. Technical report. Dipartimento
di Informatica dell’Universita® di Torino (University of Tarin, Ttaly).

Avra Cohn. The notion of proof in hardware verification. Jouwrnal of Aulomated
Rrasoning, 5:127-139, May 1989.

R.L. Constable, S.I. Allen, H.AML Bromley, W.R. Cleaveland, .1 Cremer, RAV.
Harper, D.J. Howe, T.B. Knoblock, N.I". Mendler, P Panangaden. J.1. Sasaki.
and S.F. Smith. Tmplementing Mathcmatios with the NCPRL Proof De vclopure ut
System. Prentice-Hall, Englewood Cliffs. New Jersev, 1986,

Thierry Coquand. On the analogy between propositions and types. In Gerard
Huet, editor, Logical Foundations of Functional Programming, 'Vhe UT Year of
Programming Series, pages 399-418. Reading, Massachusetts, 1990. Addison

Wesley.

J. N. Crossley and J. B. Remmel. Proofs, programs and run times, . o,

1991.
G. Dowek ¢ al. The Coq Proof Assistant User’s Guide, February 1992,

P. Dybjer. Program verification in a logical theory of constructions. feclur
Notes in Computer S-ience, 201:334--349, 1985,

J. H. Fetzer. Program verification: The very idea. Communica! ons of the A€M,
31(9):1043-1063, September 1983.

J. Gallier. Oa the correspondence hetween proofs and Lumbda terms, Jamnary

1993.

Susamu Hayashi and Hiroshi Nakano. PX: A Compulational Logic. Vhe M
Press, Cambridge, Masschussets, 1989.

E. C. R. Hehner. a Praclical Theory of Programaning. Uriversity of ‘Toronto.
Denartment of Computer Science, 1992, Draft.

M. C. Henson. Realizability mcdels for program construction. Leeture Notes in
Computer Science, 375:256-272, June 1989. Proc. Math of Prog. Constr.

74

[13]

[14]

[15]
[16]

[17]

M. C. Henson and R. Turner. A constructive set theory for program development.
Leeture Noles in Computer Science, 338:329-347, 1988, Proe. 8th coni. on FST
& TCOS.

. J. Hoover and P. Rudnicki. [fuiroduction to Logic in Computing Scicncee.
tUiversity of Alberta, Department of Computing Science, 1993.

S.C. Kleene. Introduction to Mctatmathematics. Van Nostrand, 1952,

B. Kuight. Safe strict evaluation of redundancy-free programs from proofs. Mas-
ter’s thesis, University of Victoria, 1994,

P. AL Lindsay. A survey of mechanical support for formal reasoning. Software
I'ngineering Journal, pages 3-27. January 1988.

7. Manna and R. Waldinger. Fundamentals of deductive program svnthesis.
[EEE Transactions on Sofware Ingineering, 18(8):671- 7041, August 1992,

P. Martin-Lof. Constructive mathematics and computer programming. In
C.AR. Hoare and J.C. Shepherdson, editors, Mathematical Logic and Program-
ming Languages. pages 167 184, Prentice/Hall, 1985.

J.5. Moore et al. Special issue on system verification. Journal of Automalcd
Reasoning, 5:409-530, April 1939.

C. Murthy. Ertracting Constructive Content from Classical Proofs. Phl) thesis,
Cornell University, August 1990.

N. N. Nepejvoda. A bridge between constructive logic and computer program-
ming. Theoretical Computer Science, 90(1):253--270, Noveniber 1991,

M. Parigot. Recursive programming with proofs. Theorctical Compuler Seicner,
94:335--356. 1992,

Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator. Texts and
Monographs in Computer Science. Spr nger-Verlag, Berlin-Heidelberp-New York,
1989.

P. Rudnicki, Y. Nakamura, and A. Trybulec. Articles AMI_I .. AMI.A SCM_I,
Mizar Data Base, follow directions in http://web.cs.ualberta.ca/~piotr.

Y. Takayama. Extraction of redundancy-free programs from constructive natural
deduetion proofs. Journal of Symbolic Computation, 12:29-69, 1959,

ALY, Troelstra and D, van Dalen. Constructivisim in Mathematics: An Introdiue-

=1

Tt

tion, vols I and I, volume 121 & 123 of Studics in Logic and the Foundations of

Mathematies. North-Holland, Amsterdam, 1988,

TH

[28] A. Voronkov. Higher order functions in first order logics. Lecture Notes in
Computer Science, 601, May 1992.

[29] A. Walenstein, J. H. Hoover, and P. Rudnicki. Programming with constructive
proof in the MizAR-C proof environment. Technical Report 9212, University of
Alberta, 1992.

As previously stated, TNF-a is capable of eliciting both catabolic and
anabolic actions. However, the current literature which investigates the role of
cytokines, and TNF-a in particular tends to focus on the catabolic role of TNF in
the inhibition of protein synthesis or muscle proteolysis (Esperson et al, 1990;
Haahr et al, 1990; Rivier et al, 1994).

Haahr et al.,(1990) measured TNF-a following 60 minutes of submaximal
(75% \./O2 max) exercise on a cycle ergometer. Haahr et al., (1990) expected that
TNF would increase 1 hour post-exercise due to the observed increase in
monocyte counts. TNF-a did not change following exercise. The lack of change
was unexpected and Haahr et al.,(1990) state this finding is unexplainable.
Changes in TNF-a were expected to parallel the increases ¢f other monokine-
derived cytokines such as IL-1 and IL-6. These findings were not concordant with
those of Esperson et al.,(1230). Esperson and associates measured TNF-a levels 2
hours following a 5 km maximal effort run. Results indicate that increases in
TNF-a were significant, but returned to nearly normal levels within 24 hours.
Although TNF-a levels returned to resting levels, Esperson et al. (1990) suggest
that pliysical exercise can influence paramieters of the immune system resulting in
both immediate effects and permanent changes in persons who train hard daily.
Additionally, the changes in the immune system and cytokine expression in
response to exercise are influenced by hormonal factors. The exact triggering
mechanism associated with the above has not been identified. However, Esperson
et al. (1990) propose that the liberation of cytokines is initiated in response 10
minor inflammation as a result of microscopic muscle fiber ruptures associated
with intense physical activity. In agreement with the findings of Esperson et al.
(1990), Smith and Weidemann (1£90) have demonstrated increases in plasma
TNF-a and IL-1 concentrations with exercise. Levels of TNF-a and IL-1 were
significantly higher 3 - 6 hours following moderate intensity running. Smith and
Weidemann (1990) state that large increases in monokine concentrations may be

detrimenta! and affect hypothalamic \ pituitary factors which induce ACTH

76

release. Sustained release of ACTH may contribute to a decreased immune
response which is characteristic of athletes training at very high intensities. Smith
and Weidemann (1990) speculate that this may be a primary facter influencing the
interaciion betweern the immune and endocrine systems, which in turn can affect
skeletal muscie homeostasis (Smith and Weidemann, 1990). Rivier et al. (1994)
has also investigated the release of cytokines by blocd monocytes during strenuous
exercise. TNF-a levels were measured before, immediately after, and 20 minutes
after strenuous interval-type exercise in a group of young elite endurance athletes
and a group of master athletes. Findings indicated that serum TNF-a levels were
always undetectable except in one case (15 pg/ml), and levels did not increase
after exercise. TNF-a in vitrc was slightly but not significantly increased following
exercise and slightly but no® significantly decrease during post-recovery. Thus,
monocytes do not release more TNF-a before, during, or after exercise (Rivier et
al, 1994). Additionally, Rivier et al (1994) suggest that the above results may be
explained because of the correlation between TNF-a release and intensity of
exercise, and the accompanying release of adrenalin. Adrenalin is known to play
an important role in the physiological changes observed during exercise (Rivier et
al, 1994). Rivier et al., (1994) found that an injection of adrenalin induces the
same effects as excrcise on the immune system. The effects of adrenalin may
explain why the releage of TNF-a in not increased during exercise (Rivier et al.,
1994).

The above findings of Rivier et al.(1994) are concordant with those of
Haabhr et al.(1990) who indicated that exercise does not cause any changes in
TNF-a release by monocytes. However, these findings differ from those of
Esperson et al. (1990) and Smith and Weidemann (1990). The above highlights
the changes of monocyte derived cytokines in response to acute exercise.
However, the literature lacks studies investigating TNF-a and other mo:ocyte

derived cytokines in relation to chronic, long term training.

77

Exercise, Endocrine, and Immune System Interactions

Several investigators including Esperson et al. (1990); Harbour-
McMenamin and Blalock (1989); Vailas et al. (1991); Goodman (1993); Gilbert
and Payan (1991); and Wick et al (1993) have suggested that both the immune
and endocrine systems do not function in an independent manner. Rather, each
systems response, regulation, and function is dependent upon the other, as well as
upon the surrcunding environment. This new line of thinking is contrary to past
beliefs that the endocrine system and the immune system were autonomous
networks functioning to maintain a balance between the environment and the
host. The endocrine system was believed to respond to external stimuli such as
stress and the immune system to the exposure of bacteria, trauma, and viruses
(Gilbert and Payan, 1991). In the past 20 - 30 years, studies completed in the area
provide sufficient evidence to demonstrate that the endocrine system provides
some level of regulation of immune functivn indirectly via centrally controlled
hormones, or directly through the release oi' neurotransmitters (Harbour-
McMenamin and Blalock, 1989; Gilbert and rayan, 1991; Blalock, 1990). The
possibility of a direct line of communication between the endocrine and immune
systems is credible (Wicks et al., 1993; Gilbert and Payan, 1991) due to the
majority of the lymphoid tissues being innervated (Harbour-McMenamin and
Blalock, 1989). Hence, the relationship lies in both endocrine and lymphoid
tissues being stimulated neurologically. Additionally, Harbour-McMenamin and
Blalock, (1989) and Gilbert and Payan (1991) state that the line of communication
between the endocrine and immune systems appears to be bi-directional. Thus,
the function of each independent system may result in alteraticns in the ﬁznctions

of the other.

Accordingly, the importance of investigating the interaction between the
endocrine and immune systems in response to external stimuli, such as exercise is
evident (Esperson et a’., 1990; Vailas et al,, 1991). Exercise is known to result in

alterations in the homeostatic balance of the body which in turn stimulate

78

adaptation. However, if changes in the homeostatic balance are very extreme, the

body sometimes fails to fully adapt and recover (Vailas et al,, 1991).

It is well accepted that intense training sessions produce micro-trauma to
muscle fibers and minor inflammation (Esperson et al, 1990). However, under
normal conditions, recuperation and adaptation of the muscle occurs within 12 to -
48 hours. If the muscle fails to recuperate and regeneration is slowed, normal
protein synthesis may be inhibited (Vailas et al., 1991). The mechanisms
underlying this condition are not fully explained, bui research presented by Barron
et al. (1989); Vailas et al,, (1991); and Shinkai et al. (1993) suggest the lack of
recovery could be a result of altered interactions between the immune and
endocrine systems, thereby affecting musculoskeietal homeostasis. Further, it has
been hypothiesized by Barron et al. (1989) that overtrained athletes maintain a
higher level of cortiso] as well as a higher exercise-induced level of plasma
catecholamines. Increases in both parameters are known to cause immune
suppression as a result of alterations and increases in leucocytosis (Vailas et al.,
1991).

Changes of the endocrine regulated immune responses affiliated with
intense training are phasic and correspond to training volumes and recovery.
wiilas et al. (1991) state that strenuous training alters both cell mediated
:nmunity and antibody mediated immunity. Consequently, during periods of
intense training when the athlete is unable to fully recover, susceptibility to low
grade infections increase due to the sustained elevation of basel plasma cortisol
level (Vailas et al., 1991). Of even greater interest, are the effects that the altered
homeostasis has on tissue maintenance and growth. Changes in both the immune
and endocrine systems are known to control the process of tissue degradation and
remodelling (Goodman, 1993: Goodman, 1991; Vailas et al., 1991). The above has
been described as a steady-state equilibrium between tissue catabolism and

anabolism (Vailas et al., 1991). Further, Vailas et al. (1991) state the physiological

79

manifestations associated with long term intense training result in changes of the
morphologic and biochemical properties of musculoskeletal tissue. Increases in
tissue catabolism is thought to be a continual process manifested over time as a
result of changes in the levels of cortisol, catecholamines, testosterone, and
cytokines (Vailas ct al,, 1991). The net effect of the above process is to produce
alterations in the basal metabolism of musculoskeletal tissue. Gradually, there is a
shift from a balanced homeostatic state to a more predominantly catabolic state,
with a progressive increase in basal proteolytic activity in skeletal muscle (Vailas,
1991).

Goodman (1993) further supports Vailas et al.,(1991) by stating metabolic
changes in muscle tissue may be mediated in part by alterations in the
effectiveness or in the concentrations of insulin, glucagon, catecholamines, and
glucocorticoids. Further, Goodman (1993) argues that the above may be mediated
in part, or initiated by changes in circulating polypeptides released by stimulated
macrophages or lymphocytes. This group of polypeptides consists of cytokines
including TNF-a, IL-1, and IL-6. The specific role played by each of these
intercellular mediators is still not fully understood. However, it is believed that
they play a significant role in tissue proteolysis (Goodman 1993; Goodman, 1991;
Vailas et al, 1991).

Much of the research investigating the role of cytokines and glucocorticoids
in tissue degradation have utilized animal models concentrating on pathological
processes including sepsis, high grade infections, and inflammatory disorders
(Goodman, 1993). This research has important implications elucidating the
interaction between the immune and ¢ndocrine systems in exercise-related tissue
alterations. Similar to infection @ad sepsis, 2xercise also causes an increased
expression of endotoxin (Mackinnon, 1992: Bosenberg et al., 1988). Goodman et
al. (1993) have previously demonstrated that during sepsis or after the

evperimental administration of bacterial endotoxin there is a large increase in

80

muscle protein breakdown. This response may be mediated by glucocorticoids or
by various cyickines (Goodman, 1993). Goodman (1993) states the results from
current research in his laboratory suggest that glucocorticoids, as well as TNF-a
and IL-6 play role: in the enhanced muscle proteolysis. iiarris (1989) and Beulter
and Cerami (1990) a:<o agree that IL-1 plays a role in increased muscle
proteolysis. As mentione.} previously, TNF-a and IL-1 have been described as
participating in a self-augmentation network (Harris, 1989). However, contrary to
this finding, early studies (Klien et al., 1991; "“.atin, 1981) with TNF-a and IL-1
have failed to demonstrate that these cytokines can augment muscle proteolysis.
Rather, more recent studies (Klien et al, 1992; Samarel and Engelmann, 1991)
have demonstrated that these cytokines are more effective as mediators, rather

than effectors.

Serum glucocorticoids, TNF-a, IL-1, and IL-6 have been found to be
elevated in endotoxin treated rats (Goodman, 1993) and each of these soluble
mediators have been shown to be capable of augmenting muscle proteolysis
(Goodman, 1993). However, it has been suggested that each of the above play a
distinct role and are potent at disparate times. Goodman {i993) found serum
TNF-a to be elevated early, while the rise in serum IL-6 and glucocorticoids
followed. This may suggest that TNF orchestrates the muscle proteolytic response,
and that IL-6 and the glucocorticoids are the causative agents. This scheme seems
plausible since TNF-a can induce the production of IL-6 (Goodman, 1993).
Additionally, Goodman (1993) states the effects of TNF-a and of IL-6 on muscle
proteolysis are mediated indirectly and induce other mediators that trigger muscle

proteolysis.

The above demonstrates that the role and interaction of cytokines, and in
particular TNF-a are not fully clarified. IHowever, evidence presented by
Goodman (1993; 1991) eludes to cytokines and glucocorticoids as playing

important roles in proteolysis and protein turnover of skeletal muscle tissue.

81

Several implications regarding the biological interactions displayed by these
cytokines make it difficult to distinguish the exact physiological processes taking
place, particularly when exercise becomes a factor. Smith and Weidemann (1990)
have attempted to determine the effects of different types of physical exercise
affecting the endocrine and immune systems, and in turn the homeostasis of
musculoskeletal tissue. Smith and Weidemann (1990) propose the type (aerobic
versus anaerobic) and intensity of exercise play a role in the response and the
interaction between the endocrine and immune systems, and in turn skeletal
muscle homeostasis. Research conducted by Smith and Weidemann (1990)
indicates that aerobic and anaerobic modes of exercise result in disparate impacts
on both the immune and endocrine systems (Smith and Weidemann, 1990).
Additionally, Smith and Weidemann (1990) suggest low intensity exercise may act
to boost or enhance the immune system response, wiile the opposite is true with
moderate to high intensity exercise. Thus, the duration and intensity of exercise
determines the magnitude of response altering circulating levels of
catecholamines, cortisol, and the immune response. These actions may be exerted
by means of a humoral mechanism and result in a behavioral effect on cellular
immunity. Smith and Weidemann (1990) report that the depression of some
immune cell functions in response to traumatic stress shows similarity to the

changes resulting from intensive training.

82

REFERENCES

Arai K, Lee F, Mijajima A, Miyatake S, Arai N, Yokote T: Cytokines:
Coordinators of immune and inflammatory responses. In Richardson
CC, ed. Annual Review of Biochemistry Vol 59. Palo Alto,
California: Annual Reviews Inc., pg 783-836, 1990

Armstrong RB: Muscle damage and endurance events. Sports Med. 3:370-
381, 1986

Barron JL, Noakes TD, Leavy W: Hypothalamic dysfunction in overtrained
athletes. J. Clin. Endocrinol. Metab. 60:803-806, 1985

Bell GJ, Peterson SR, Quinney HA: Sequencing of endurance and high-
velocity strength training. Can. J. Spt. Sci. 13(4):214-219, 1988

Bell GJ, Peterson S, Wessel J, Bagnell K, Quinney HA: Physiological
adaptations to concurrent endurance and low velocity resistance
training. Int. J. Sports Med., 4: 384-390, 1991a

Bell GJ, Peterson S, Wessel J, Bagnall, Quinney ™ i0
endurance and low velocity resistance -
sequence. Can. J. Spt. Sci 16(3): 186

Bell GJ, Syrotuik D, Atwood K, Quinney HA o gains

while performing endurance training in Can. J. 5pt. Sci
18(1):104-115, 1993

83

Bell GJ, Peterson SR, MacLean I, Reid DC, Quinney HA: Effect of nigh
velocity resistance training on peak torque, cross sectional area, and
myofibrillar APTase activity. Journal of Sports Medicine and
Piwysical Fitness. 32(1):10-18, 1992

Beulter B, Cerami A: The biology of cachetin/TNF - a primary mediator
of the host response. Ann. Rev. Immunol. 7:625-55, 1¢89

Beulter B: Tumor Necrosis Factors - The molecules and their emerging

role in medicine. New York: Raven Press, 1992

Blalock JE: New Concepts in Endocrinology: Neuroendocrine and Immune
System Interactions. In Blalock JE, ed. Handbook of Endocrinology,
p 15-28, 1990

Bosenberg AT, Brock-Utne JG, Gaffin SL, Wells MTB, Blake GTW:
Strenuous exercise causes systematic endotoxemia. Journal of
Applied Physiology 65:106-108, 1988

Branch DR, Shah A, Guilbert LJ: A specific and rel.able bioassay for the
detection of femtomolar levels of human and murine tumor necrosis

factors. Journal of Immunological Methods 00:1-11, 1991

Brandenderger G: Cortisol responses to exercise and their interactions with
diurnal secretory peaks. In: Fotherboy K, Pal SB, ed. Exercise
Endocrinology. New York: Walter de Gruyter, 47-64, 1985

Brandenberger G, Follenius M, Hietter B: Influence of timing and intensity
of muscular exercise on temporal patterns of plasma cortisol levels.
J. Clin. Endocrinol. Metab. 40: 845-849, 1975

84

Bouchard C, Shepard RJ, Stephens T, Sutton JR, McPherson BD: Exercise,
Fitness, and Health - A consensus of current knowledge.

Champaign, Iilinois: Human Kinetics Books, 1990

Camussi G, Albano E, Tetta C, Bussolino F: The molecular action of
tumor necrosis factor-a. Eur. J. Biochem 202: 3-14, 1991

Cannon J, Kluger, M: Endogenous pyrogen activity in human plasma after
exercise. Science, 220:617-619, 1983

Cerami A, Ikeda Y, Le Trang N, Hotez PJ, Beutler B: Weight loss
associated with an endotoxin induced mediator from peritoneal
macrophages: the roles of cachectin (tumor necrosis factor).
Immunol. Lett. 11: 173-77, 1985

Chaplin DD, Hogquist KA: Interactions between TNF and Interleukin-1.
In: Beutler B, ed. Tumor Necrosis Factors: The molecules and their

emerging role in medicine. New York: Raven Press, 255-273, 1992

Clarkson PM, Tremblay I: Exercise-induced muscle damage, repair, and

adaptation in humans. J. Appl. Physiol. 65:1-6, 1988

Cohen S: Lymphokines and the Immune Response. Boca Raton, Florida:
CRC Press Inc., 166-172; 199-212; 181-197; 255-273, 1990

Cumming DC, Wheeler GD, McColl EM: The effects of exercise on
reproductive function in men. Sports Medicine 7: 1-17, 1989

85

Cumming DC, Wall SR, Galbraith MA, Belcastro AN: Reproductive
hormone responses to resistance exercise. Med. Sci. Sports Exercise
19: 234-238, 1987

Davies C, Few J: Effects of exercise on adrenocortical function. J. Appl.
Physiol 35: 887-391, 1973

de Giovine FS, Duff GW: Interleukin 1: the first interleukin. Immunol.
Today 11:13-20, 1990

Dinarello, CA: Interleukin-1 and other growth factors. In Wn Keiley et al.
(Ed.), Textbook of rheumatology 3 ™ Edition (pp. 285-299).
Toronto: WB Saunders Company, 1989

Dudley G, and Djamil R: Incompatibility of endurance and strength
training modes of exercise. J. Appl. Physiol., 69(2): 1446-1451, 1985

Enoka RM: Muscle strength and its development. Sports Med., 6: 146-168,
1988

Engel AG, Banker BQ: Myology: New York : McGraw Hill Book
Company, 1986

Esperson et al: Effects of physical exercise on cytokine and lymphocyte
subpopulations in human peripheral blood, A.P.M.L.Z., 98(5):395-
400, 1990

Fehr et al: H8man macrophages function and physical exercise: phagocytic
and histochemical studies, Eur.J.Appl.Physiol., 58:613-618, 1989

86

Flores EA, Bistrian BR, Pomposelli JJ, Dinarelloo CA, Blackburn GL,
Istfar NW: Infusion of tumor necrosis factor/cachectin promotes
muscle catabolism in the rat - A synergistic effect with interleukin 1.
J. Clin. Invest. 83: 1614-1622, 1989

Fox SI: Human Physiology 3™ Edition (pp 596-636; 278-315). Dubuque, 1A:
Wm. C. Brown Publishers, 1990

Fry RW, Morton AR, Garcia-Webb P, Keast D: Monitoring exercise stress
by changes in metabolic and hormone responses over a 24 hour
period. Eur. J. Appl. Physiol. 63:228-234, 1991

Gilbert MS, Payan DG: Interactions between the nervous and the immune

systems. Frontiers in Neuroendocrinology 12(4):299-322, 1991

Genz_me Corporation: Genzyme: The definitive standard for cytokine
testing - Predicta Tumor Necrosis Factor Alpha Kit. Cambridge,
MA, 1992

Goldtzarg AL, Baracos V, Rodemann P, Waxman L, Dinarello C: Control
of protein degradation in muscle by prostaglandins, Ca?*, and
leukocytic pyrogen (interleukin 1). Federation Proc. 43:1301-1306,
1984.

Goodman, MN: TNF induces skeletal muscle protein breakdown in rais.
Am. J. Physiol 260:E727-E730, 1990

87

Goodman MN: Skeletal muscle protein breakdown during sepis: role of
interleukin-1, interleukin-6, and tumor necrosis factor. In Bond JS,
ed. Proteolysis and protein turnover. Chapel Hill: Portland Press, pg
125-132, 1993

Gray, A.B,, Telford, R.D., Collins, M, and Weidemann, M.J. The response
of leukocyte subsets and plasma hormones to interval exercise. Med.
Sci. Sport Exerc. 25(11): 1252-1258, 1993

Guglielmini C, Paolini AR, Conconi FR: Variations of serum testosterone
concentrations after physical exercises of different duration. Int. J.
Sports Med., 5: 246-249, 1984

Haahr et al: Effect of physical exercise on in vitro production of interleukin
1, interleukin 6, tumor necrosis factor alpha, interleukin 2 and
interferon-gamma. Int. J. Sports Med,, 12 (2): 223-227, 1990

Hackney AC: Endurance training and jzstosterone levels. Sports Medicine,
8(2): 117-127, 1989

Hakkinen, K: Neuromuscular and }::ro:¢:nal adaptations during strength
and power training. The Jours:? ««f Sports Medicine and Physical
Fitness, 29:9-26, 1989

Hakkinen K, Pakarinen A, Xyrolainen H, Cheng S, Kim DH, Komi PV:

Neuromuscular adaptations and serum hormones in females during

prolonged power training. Int. J. Sports Med. 11:91-98, 1990

88

Harber-McMenamin D, Blalock JE: Neuroendocinology and the immune
system. In Collin et al., ed. Clinical Neuroendocrinology. p567-582,
1989

Harris ED: Pathologies of rheumatoid arthritis. In WN Kelley et al. (Ed.),
Textbook of rheumatology 3 ™ Edition (pp.905-936). Tornnto: WB
Saunders Company, 1989

Helle M, Brakenhoff JPJ, De Groot ER, Aarden LA: Interleukin 6 is
involved in interleukin 1-induced activities. Eur. J. Immunol. 18:957-
959, 1988

Hickson RC, Marone JR: Exercise and inhibition of glucocorticoid-induced
muscle atrophy. Med. Sci. Sport Review 21:135-167, 1993

Hickson R, Dvorak B, Gorostiaga E, Kurowski T, Foster C: Potential for
strength and training to amplify endurance performance. J. Appl.
Physiol. 65: 2285-2290, 1988

Hickson R: Interference of strength development by simultaneously
training for strength and endurance. Eur. J. Appl. Physio. 45: 255-
263, 1980

Holloszy JO, Coyle EF: Adaptations of skeletal muscle to endurance
exercise and their metabolic consequences. J. Appl. Physiol.
Respirat. Environ. Exercise Physiol. 56(4): 831-838, 1984

Hopkins SJ, Meager A: Cytokines in synovial fluid :II. The presence of
tumour necrosis factor and interferon. Clin. Exp. Immunol. 73:88-92,
1988

89

Huczel HA, and Clarke DH: A comparison of strength and muscle
endurance in strength trained and untrained women. Eur. J. Appl.
Physiol. 64:467-470, 1992

Hunter G, Demment R, Millar D: Development fs strength and maximal
oxygen uptake during simultaneous training for strength and
endurance. J. Sports Med. Phys. Fit., 27(3): 269-275, 1987

Jensen J, Oftebro H, Breigan B, Johnsson A, Ohlin K, Mecen HD, Stromme
SB, Dahl HA: Comparison of changes in testosterone concentrations

after strength and endurance exercise in well trained men. Eur. J.
Appl. Physiol. 63: 467-471, 1991

Johnson LR: Essential Medical Physiology. New York: Raven Press, 1992
Kanaley JA, Boileau RA, Bahr JM, Misner JE, Nelson RA: Cortisol levels
during prolonged exercise: The influence of menstrual phase and

menstrual status. Int. J. Sports. Med. 13:(4) 332-336, 1992

Keast D, Cameron K, Morton AR: Exercise and the immune response.
Sports Med. 3:370-381, 1988

Kimball JW: Introduction to immunology. New York: Macmillan Publishing
Cc npary, 1986

Klien I, Samarel AM, Welikson R, Hong C: Hetrotopic cardiac

transplantation decreases the capacity for rat myocardial protein
synthesis. Circ. Res. 68:1100-1107, 1991

90

Klien I, Ojamaa K, Samarel AM, Welikdon R, Hong C: Hemodynamic
regulation of myosin heavy chain gene expression. Studies in
transplanted rat heart. J. Clin. Invest. 89: 68-73, 1992

Kraemer WJ, Marchitelli L, Gordon SE, Harmen E, Dziados JE, Mello R,
Frykman P, McCurry D, And Fleck SJ: Hormonal and growth factor
responses to heavy resistance exercise protocols. J. Appl. Physiol.
69(4):1442-1450, 1990

Kraemar WJ, Fleck SJ, Dziados JE, Harman EA, Marchitelli LY, Gordon
SE, Mello R, Frykman PN, Koziris LP, and Triplett NT: Changes in
hormonal concentrations after different heavy resistance exercise
protocols in women. J. Appl. Physiol. 75(2):594-604, 1993

Kraemer WIJ: Endocrine responses to resistance exercise. Med. Sci. Sports
Exerc. 20:5152-S157, 1988

Kuoppasalmi K, Adlercreutz H: Interaction between catabolic and anabolic
steroid hormones in muscular exercise. In: Fotherby K, Pal SB, eds.
Exercise Endocrinology. New York: Walter de Gruyter, 65-98, 1985

'Kuoppasalmi, K, Naveri, H, Kosunen, J, et al. Plasma steroid levels in
muscular exercise. In: Poortmans J, Niset, G, ed. Biochemistry of
Exercise. IV-B. Baltimore: University Park Press, 1981: 149-60

Kurouski TT, Challerton RT Jr., Hickson RC: Counter effects of

compensatory overload and glucocorticoid cystol receptor binding. J.
Steroid. Biochem. 21: 137-145, 1984

91

Lin YS, Jan MS, Chen HI: The effect of chronic and acute exercise on
immunity in rats. Int. J. Sports Med., 14(2): 86-92, 1993

Mackinnnon, LT: Exercise and Immunology. Champaign, Illinois: Human
Kinetics Books, 1952

Maggio ET: Enzyme-Immunoassay. Boca Raton, Florida. CRC Press, INC.
1980

Matovani A, Dejana E: Cytokines as communication signals between
leukocytes and endothelial cells. Immunol. Today 10:370-375, 1989

Matsuda T, Hireno T, Kishimoto T: Establishment of an interleukin 6 (IL-
6)\B cell stimulatory factor 2-dependent cell line and preparation of
anti-IL-6 monoclonal antibodies. Eur. J. Immunology 18:951-956,
1988

Mayani L, Guilbert L, Sych I, Janowska-Weiczorek A: Production of tumor
necrosis factor alpha in human long term marrow cultures from
normal subjects and patients with acute myelogenous leukaemia:
Effects of recumbent macrophage colony-stimulating factor.
Leukaemia 6:1-7, 1992

McCarthy D, Dale MM: The leucocytosis of exercise: a review and model.
Sports Med. 6: 333-363, 1988

McCarthy D, Macdonald I, Grant M, Marbut M, Watling M, Nicholson §,
Deeks JJ, Wade AJ, Perry JD: Studies on the immediate and
delayed leucocytosis elicited by brief (30 min) strenuous exercise.
Eur. J. Appl. Physiol. 64: 513-517, 1992

92

MacConnie SE, Barkan A, Lampman RM, Schork MA, Beitins 1Z:
Decreased hypothalamic gonadotropin-releasing hormone secretion
in male marathon runners. N, Engl. J. Med. 315: 411-417, 1986

McDough MJN, Davis CTM: Adaptive response of mammalian skeletal
muscle to exercise with high loads. Eur. J. Appl. Physiol. 32: 139-
155, 1984

Meager, A: Biolo, ‘~al standardization of cytokine - e 20th IABS

Congress on Cytokines: Laboratory and clinical «valuation. London.
Medgenix Diagnostics: TNF-a EASIA
Medgenix Diagnostics: Cytokine - Tumor Necrosis Factor Binding Proteins

Nash MS: Exercise and immunology. Medicine and Science and Sports and
Exercise. 26(2):125-127, 1994

Neiman DC, Berk LS, Simpson-Westerberg M, Arabatzis K, Youngberg S,
Tan SA, Lee JW, Eby WC: Effect; of long-endurance running on
immune system parameters and I'>mphocyte function in experienced
marathoners. Int. J. Sports Med. 10:317-323, 1989

Nelson A, Arnall D, Loy S, Silvester L, Conlee R: Consequences of
combiig strength and endurance training regimens. Phys. Ther.
70(5): 287-294, 1990

Oppenheim JJ, Shevach EM: Immunophysiology - The role of cells and
cytokines in immunity and inflammation. New York: Oxford
University Press, 1990

93

Richardson CC, Abelson JN, Meister A, Walsh CT: Annual Review of
Biochemistry. Vol 59, Palo Alto, California : Annual Reviews Inc.,
1990

Roberts AC, McClure RD, Weiner RI, Brooks GA: Overtraining affects
male reproductive status. Fertility and Sterility, 60(4):686-692, 1993

Roitt I, Brostoff J, Male D: Immunology. London: JB Lipincott Company,
1989

Ronkainen H, Pakarinen A, Kauppila A: Adrenocortical function of female
endurance runners and joggers. Med. Sci. Sports Exerc. 18: 385-389,
1986

Rothwell NJ, Grimble RF: Metabolic and nutritional effects of TNF. In:
Beutler B, ed. Tumor Necrosis Factors: The molecules and their

emerging role in medicine. New York: Raven Press, 1992: 255-273.

Sale DG, Jacobs I, Macdougall YD, Garner S: Comparison of two regimens
of concurrent strength and endurance training. Med. Sci. Sports
Exerc., 22(3):348-356, 1990

Sale D, Macdougall J, Jacobs 1, Garner S: Interaction between concurrent
strength and endurance training. J. Appl. Physiol. 68(1): 260-270,
1990

Samarel AM, Engelmann GL: Contractile activity modulates myosin heavy
chain-beta expression in neonatal rat heart cells. Am. J. Physiol. 261:
H1067-H1077, 1991

94

Shinmeri M, Masuda K, Kikchi T, Shimomura T: Interleukin 1, tumour
necrosis factor and interleukin 6 as mediators of cartilage
destruction. Semin. Arthritis Rheum. 18(suppl. 2):27-32, 1989

Smith JA, Weidemann, MJ: The exercise and immunity paradox: a neuro-
endocrine/cytokine hypothesis. Med. Sci. Res. 18, 749-753, 1990

Starton RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE,
Hagerman FC, Hikinda RS: Strength and skeletal muscle
adaptations in heavy-resistance-trained women after detraining and
training. J. Appl. Physiol. 70(2):631-640, 1991

- Schwab RS, Johnson GO, Housh TJ, Kinder JE, and Weir JP: Acute
effects of different intensities of weight lifting on serum testosterone.
Med. Sci. Sports. Exerc. 25(12):1381-1385, 1993

Tartaglia LA, Goeddel DV: Two TNF receptors. Immun. Today
13(5):151:153, 1992

Tawa N*' Goldberg AL: Protein and Amino Acid Metabolism in Muscle.
In Engel, AG, ed. Myology. New York:McGraw Hill Book
Company, 1986

Tracey KJ: The acute and chronic pathcphysiologic effects of TNF:
Mediation of septic shock and wasting {(cachexia). In Beutler B, ed.
Tumor Necrosis Factors: The molecuies and their emerging role in
medicine. New York: Raven Press, 255-273, 1992

95

Tvede N, Kappel M, Halkjoer-Kristensen J, Galbo H, Perderson BK: The
effect of light, moderate, and severe bicycle exercise on lymphocyte
subsets, natural and lymphokine activated killer cells, lymphocyte
proliferation response, and interleukin-2 production. Int. J. Sports
Med. 14: 275-282, 1993

Vailas A, Morgan WP, Vailas JC: Physiologic and cellular oasis of
overtraining , In Leadbette (ED) Sports-Induced Inflammation (pp.
677-686). American Academy of Orthopaedic Surgeons, Park Ridge,
1. 6006, 1991

Urhausen A, Kullmer T, Kindermann V: A 7 week follow up study of the
behaviour of testosterone and cortisol during the competition period
in rowers. Eur. J. Appl. Physiol. 56: 528-533, 1987

Viru, A: Plasma hormones and physical exercise. Int. J. Sports Med. 13:
201-209, 1992

Weight LM, Alexander D, Jacobs P: Strenuous exercise: Analogous to the
acute-phase response ?. Clin. Sci. 81:677-683, 1991

Wheeler GD, Signh M, Pierce D, Epling WF, Cumming DC: Endurance
training decreases serum testosterone levels in men without change

in luteinizing hormone pulsatile release. J. Clin. Endocrinol. Metab.
72: 422-425, 1991

Wick G, Hu Y, Schwarz S, Kroemer G: Immunoendocrine communication
via the hypothalamo-pituitary-adrenal axis in autoimmune diseases.
Endocrine Reviews 14(5):539-563,1993

96

