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ABSTRACT 

Ensuring road safety and efficient traffic movement through Winter Road Maintenance (WRM) 

operations is a pressing concern, particularly during harsh weather conditions. The challenge of 

accurately monitoring road friction coefficients, which play a crucial role in WRM, often leads to 

impractical and expensive solutions. To tackle such challenges, we introduce in this thesis a two-

phase methodological framework that focuses on the development and optimization of machine 

learning (ML) models for road friction coefficient estimations, thereby bridging the gap between 

theoretical research and real-world application. 

In the first phase, we concentrate on the precise estimation of road friction coefficients. Utilizing 

meteorological and geographic data from the Road Weather Information Systems (RWIS), we 

developed a Regression Tree model that achieved a high accuracy of 93.3%. To ensure spatially 

continuous friction estimations, we employed Ordinary Kriging interpolation to handle missing 

weather data. By categorizing road friction coefficients into distinct risk levels, we were able to 

provide critical insights on road surface conditions, achieving nearly 90% accuracy. 

The second phase of our research emphasizes the refinement and augmentation of our models. We 

conducted a comparative analysis of ML algorithms, including Regression Tree, Support Vector 

Regression (SVR), Random Forest, and Extreme Gradient Boosting (XGBoost). We found a 

positive correlation between complexity and accuracy with XGBoost emerging as the most reliable 

model. To provide deeper insights into these models' inner workings, we leveraged SHAP 

explainable artificial intelligence (AI). We also examined the transferability of the XGBoost model, 

and after calibrating it for a new dataset, the updated model exhibited a significant improvement 

in accuracy on the new data, thereby affirming its robustness, adaptability, and transferability. 

The framework presented in this thesis goes beyond theoretical modeling to offer tangible and 

innovative solutions that can be readily applied in the field of WRM. By utilizing meteorological 

and geographic data in tandem with advanced ML models, this research creates a pathway for 

more effective estimation and interpretation of road friction. The synergy of explainable AI, 

accurate estimation methods, and the successful transfer of models to new data sets demonstrates 

the potential of modern technology to transform traditional practices, ultimately for improved 

mobility and safety of winter travelling public.  
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1 INTRODUCTION 

1.1 Background  

Throughout human history, transportation has been essential, serving vital functions such as 

commuting, shopping, socializing, or traveling. As vehicle speeds have increased and road 

infrastructure has improved, road safety has also become a growing concern. Each year in Canada, 

traffic collisions result in about 1,800 deaths and 150,000 injuries, including almost 10,000 serious 

injuries, costing society $40.7 billion annually [1]. These statistics highlight the urgency of 

addressing traffic safety concerns that require a concerted effort. 

The urgency is especially pronounced in regions with lengthy winter seasons. Adverse weather 

conditions, such as snowfall, icing, and snow accumulation, reduce road friction, which in turn 

leads to dangerous travel and increased accident risk. During the winter months, vehicle crashes 

typically increase by 3.1-4.7% [2]. According to the National Collision Database, over 27 percent 

of collisions took place on wet, snowy, or icy roads in 2020, leading to 38,368 injuries and 508 

fatalities [3]. Research also shows that accident rates are higher in low friction conditions due to 

poor speed adaptation, thus increasing risks on slippery roads [4]. Furthermore, traffic efficiency 

can be negatively impacted by adverse weather conditions. Studies have shown that driving on 

snowy or slushy roads can reduce vehicle speeds by 30 to 40 percent [5] and can delay travel by 

up to 50 percent [6], causing congestion and reduced travel speeds. These cascading effects 

emphasize the criticality of managing traffic mobility and road safety during winter.  

Transportation agencies have recognized this challenge and have responded by implementing 

proactive measures such as timely mobilization of anti-icing operations, enhanced traffic 

monitoring, and improved early warning systems [7, 8]. These strategies are part of a broader focus 

on winter road maintenance (WRM), underlined by research that highlights its significance. 

Studies have demonstrated not only the safety benefits of proper road surface conditions (RSC) [9] 

but also the positive impact of WRM on friction, speed-stopping distance, and overall traffic flow 

[10]. Furthermore, these efforts are not merely about safety and efficiency; economic benefits of 

WRM have been shown to save road users significant costs on highway driving, thereby offsetting 

the cost involved in maintaining bare pavement conditions [11]. 
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However, WRM’s substantial benefits come with significant investment requirements. In 2021, 

more than 20 percent of Alberta government maintenance budgets, or $54.3 million were spent on 

snow and ice control operations [12]. This investment needs to be carefully weighed against 

maintenance benefits to ensure proper allocation. In this regard, accurate RSC information 

becomes vital for decision-making. 

Currently, most jurisdictions use descriptor measures like wet, snow-covered, and icy roads to 

monitor winter conditions [13, 14]. However, there is no uniform standard for these descriptions, 

which can easily lead to ambiguity in the information provided. In contrast, using friction as an 

RSC indicator offers an objective and accurate metric for WRM operations, facilitating the 

identification of high-risk road sections. But to fully capitalize on this advantage, specific tools 

and methods are needed. 

Among different types of road monitoring systems, Road Weather Information Systems (RWIS) 

have emerged as a potential solution to this challenge. There are two main types of RWIS: 

stationary RWIS (sRWIS) and mobile RWIS (mRWIS). sRWIS gathers data from environmental 

sensor stations (ESS) installed along the road network but is limited spatially while mRWIS 

continuously collects road weather data but is limited temporally. These systems offer a practical 

means of implementing the friction-based approach through each comes with its own set of 

limitations. 

The strategies and statistics detailed above underscore the complexity and importance of 

maintaining safe and efficient road conditions during winter. Traditional monitoring systems, 

while valuable, have revealed areas for improvement, such as the reliance on ambiguous descriptor 

measures. This illustrates the necessity for a more accurate and unified approach; namely, a 

friction-based RSC monitoring and estimation method. By offering an objective and accurate 

metric for WRM operations, it holds the potential to significantly enhance efficiency and safety 

for both maintenance authorities and road users.  

1.2 Problem Statement and Motivation  

As illustrated in the previous section, accurately understanding road surface conditions (RSC) is 

crucial for an effective winter road maintenance (WRM) operation. The friction coefficient, 
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recognized as one of the most objective measures of road conditions, underscores the need for an 

in-depth study on accurate friction estimation.  

Road conditions are largely influenced by weather factors. Despite this, current research on 

utilizing weather information for RSC estimation remains insufficient. Existing studies 

predominantly focus on model construction with less emphasis on practical implementation and 

efficient application. This leaves a gap in understanding how to leverage road weather and surface 

conditions information effectively and how to integrate both mobile and stationary Road Weather 

Information Systems (mRWIS and sRWIS) to optimize estimation accuracy. 

Machine learning (ML) methods present promising avenues for modeling road surface friction 

with studies employing techniques like support vector machine (SVM) and Neural Networks [15, 

16]. However, the diverse performance of ML models, which may vary depending on the datasets 

used for training [17] along with a lack of comprehensive discussion on continuous friction 

estimation models highlights key obstacles. In addition, ML models have limitations in terms of 

generalization; they can only make accurate predictions based on the data they were trained on. 

Encountering unfamiliar datasets could cause their performance to suffer. Consequently, strategies 

such as transfer learning might then be essential to broaden the models' usability, applicability, 

and adaptability. 

Another challenge lies in the complex nature of ML models. As complexity increases, 

interpretability decreases [18, 19, 20], obscuring the understanding of their inner workings. This 

complexity introduces considerable risks if the models are to be applied in real-world scenarios. 

To mitigate these risks, a rigorous examination of their reliability and the transparency of decision-

making systems may compel the incorporation of explainable artificial intelligence (AI). 

These challenges and the current gaps in research serve as the driving force behind this thesis. The 

multifaceted problem landscape — marked by the complexity of accurately estimating RSC 

friction, the shortcomings of current methods, the potential and pitfalls of ML approaches, and the 

pressing need for pragmatic solutions — calls for an in-depth exploration. A thorough 

investigation of these issues holds the key to enhancing existing RSC monitoring and estimations, 

potentially leading to breakthroughs in WRM operations, winter traffic safety, and efficiency. 
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1.3 Objectives 

Building on the challenges and gaps identified in the previous sections, the accurate estimation of 

road friction coefficients emerges as a pivotal concern for ensuring efficient real-time winter road 

maintenance (WRM) operations. The intricate interplay between weather factors, machine 

learning (ML) models, and practical application strategies reveals a complex landscape that 

existing research has yet to fully explore.  

Therefore, the primary objective of this thesis is to develop a robust friction estimation model, 

incorporating weather and geographic data, for practical use in winter road maintenance. The 

research is divided into two main phases. In phase one, a friction estimation model that outputs 

real-time, spatially continuous road friction estimation is constructed using weather and 

geographic information. In phase two, the focus shifts to comparing model performance, exploring 

the internal workings of the models through explainable artificial intelligence (AI), and 

demonstrating the transfer learning’s ability to broaden the models’ applicability. To achieve these 

overarching goals, the research has the following specific tasks: 

1) Develop a robust friction estimation model that incorporates both weather and geographic 

information and apply it to practice with geostatistical interpolation techniques to obtain 

spatially continuous road friction estimates; 

2) Generate a road risk map based on road friction estimates to assist WRM personnel in 

making timely and effective decisions and provide information to road users; 

3) Conduct a comprehensive comparative analysis of well-adopted ML algorithms to 

determine the most suitable one for accurate friction estimation; 

4) Leverage explainable AI to gain insight into the inner logic of complex ML models to 

improve model transparency and interpretability; and  

5) Enhance the transferability of the friction estimation model by employing transfer learning 

techniques to expand its application scope. 

By methodically pursuing these goals, this thesis aims to deliver a method for estimating 

continuous friction values that are accurate and intuitive. Through these concerted efforts, this 

thesis provides practical insights that could improve decision-making in WRM, ultimately leading 

to enhanced safety and efficient resource allocation. 
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1.4 Thesis Structure 

This thesis is split into six chapters. Chapter 1 introduces the motivation behind the work involved 

and the research objectives.  

Chapter 2 is the literature review section outlining existing research on road condition estimation 

methods, the factors affecting road friction coefficient, and the use of explainable artificial 

intelligence (AI) and transfer learning in machine learning (ML) models. This review serves as the 

theoretical and methodological foundation for the subsequent chapters. 

Chapter 3 introduces the principles behind the methods employed in this study, providing a 

detailed overview of ML algorithms, interpolation methods, SHapley Additive exPlanations 

(SHAP) explainable AI techniques, and the two-stage boosting algorithm designed for robust 

prediction. 

Chapter 4 presents a comprehensive description of the development process of the friction 

estimation model, including the generation of the data set, training method for the model, 

incorporation of geostatistical interpolation techniques, model application and performance 

results. Additionally, a road risk classification system is constructed to generate road friction risk 

maps. 

Chapter 5 delves into three following aspects to further enhance the efficiency of the proposed 

framework. Firstly, a thorough comparative analysis of various ML algorithms, including 

Regression Tree, Random Forest, Support Vector Regression (SVR), and Extreme Gradient 

Boosting (XGBoost), is conducted to select the optimal model for road friction estimation. 

Secondly, the intrinsic logic of the models is explored in depth using SHAP explainable AI to 

enhance its interpretability. Lastly, transfer learning techniques are applied to expand the 

application scope of the model. 

Chapter 6 concludes the thesis with a summary and discussion of the research outcomes and 

contributions. Furthermore, the chapter discusses the challenges and limitations encountered 

during the study and proposes suggestions for future research directions. 
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2 LITERATURE REVIEW 

In this chapter, we will examine previous studies on road friction estimation and the effectiveness 

of machine learning (ML) algorithms. The chapter is divided into four sections. The first section 

will cover the current methods used for estimating road friction. The second section will explore 

how weather factors affect road conditions. In the third section, we will investigate how to improve 

the interpretability of ML methods. Finally, we will provide a summary and note any limitations 

found within the reviewed literature. 

2.1 Methods for Road Conditions Monitoring and Estimation  

Monitoring and assessing road surface conditions (RSC) is crucial for improving traffic flow and 

enhancing road safety. In terms of the performance measure used to perform this operation, there 

exist several metrics: visual indicators, time to normal (or bare pavement regain time), traffic speed 

regain time, and road friction levels [21], of which the visual indicator and road friction are the 

most commonly used in monitoring RSC. 

The Finnish Road Agency [22] classified road conditions based on factors such as road friction 

level, RSC, and slipperiness classification. They separated road conditions into six categories: wet 

ice, icy, packed snow, rough ice/ packed snow, clear and wet, and clear and dry. Each category 

was discovered to correspond to a specific friction range, indicating a negative correlation between 

road condition and friction coefficient. For example, wet ice corresponds to the lowest friction 

range, while clear and dry corresponds to the highest friction range.  

Ilkka et al. [13] proposed a method based on statistical equations to model road surface friction. 

By studying the correlation between RSCs and various influencing factors, they found that the 

predictor behavior depended on the RSC itself. Consequently, models would have to be developed 

separately for each condition type. The authors did not develop models for every condition but 

instead focused on two, snow- and ice-covered roads and wet roads. They used three linear 

regression functions to estimate the effects of snow- and ice-covered roads, water-covered roads, 

and existing snow, ice, and water on friction, respectively. These models were validated and 

showed R-squared values of more than 0.8, indicating that the models performed well and were 

able to predict road friction. 
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Similarly, the RoadSurf simulation model proposed by Kangas et al. [23] estimated road friction 

separately depending on the road conditions. The road friction estimation model was divided into 

three sub-models: snowy and/or icy roads, wet road surfaces, and dry road surfaces. On dry road 

surfaces, friction was assumed to be constant (0.82), while for wet road surfaces, a model was built 

with water layer thickness being the only predictor. Lastly, the model for snowy and icy roads 

incorporated road temperature, snow layer thickness, and ice layer thickness as factors influencing 

friction.  

In recent years, due to advancements in machine learning (ML), ML has become the dominant 

method for building road friction estimation models. The advantage of this approach is that instead 

of building multiple sub-models for different situations, a comprehensive model that deals with a 

large range of conditions can be trained, which significantly simplifies the model development 

process. 

Takasaki et al. [24] developed a RSC estimation model using Random Forest techniques. They 

classified the road surface into four categories (dry, wet, slushy, and snowy) and investigated the 

relationship between road conditions and weather, traffic, and tire noise. To determine whether 

tire noise significantly affects road conditions, researchers constructed two models for comparison, 

one with and one without tire noise. The result showed that the accuracy of the two models was 

very close, 94.8% and 94.7%, respectively, indicating that tire noise had a negligible effect on road 

conditions compared to weather and traffic factors.  

Take and Duran [25] constructed a k-nearest neighbor (k-NN) model to estimate RSCs based on 

weather data. The conditions considered in this study were dry, wet, salty-wet, and icy. To assess 

the performance of the k-NN model, they compared it with other classification models such as 

logistic regression, support vector machine (SVM), naïve Bayes, decision tree classifier, and 

Random Forest classifier. The result indicated that the k-NN model performed the best, with an 

impressive accuracy of 99.71%.  

Minge [16] employed an artificial neural network (ANN) algorithm to estimate the classification 

of road friction coefficients that were classified into six categories and two categories, respectively. 

The model used both vehicle sensor data and weather data as influencing factors. To verify the 

significant effect of weather data on road friction, he built two models, one using only vehicle 

sensor data and the other with both vehicle and weather data. The results showed that adding 
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weather variables significantly improved the model's performance; the estimation accuracy 

increased by 3.7%, from 45.27% to 49.03% in the six-classification problem. And in the two-

classification problem, the model performance improved by 21.5 percent, from 54.47% to 75.97%. 

This result demonstrated the positive impact of weather data on estimating road friction.  

Linton and Fu [26] proposed a road condition monitoring system by combining vehicle imagery 

with road weather data to determine if the road condition is bare, partially snow-covered, or fully 

snow-covered. The estimation process involves using the images to get an initial estimate, 

followed by the involvement of weather data to obtain more accurate results. ML algorithms 

explored in this study are ANNs, random trees, and Random Forest. The results of the study 

showed that the accuracy of the classification results was improved by an average of 18% through 

the usage of this two-step estimation approach. Moreover, among the three models, the Random 

Forest model showed the best performance. 

As mentioned above, most of the existing studies treat road state estimation as a classification 

problem. The advantage of this approach is that it provides an intuitive interpretation of the RSC. 

However, it may lead to inconsistent measurement results due to the subjective nature of 

descriptive road condition labels. In comparison, friction coefficient is a much better measure 

because it is a device-measured value that does not require user interpretation in the collection 

process. Nevertheless, there are only a few studies that attempt to estimate friction coefficients. 

Kim et al. [27] performed one of the few studies that attempted to estimate friction. They developed 

an estimation model using an ANN with rainfall intensity, water film thickness, and road 

temperature as inputs and friction coefficient as output. To provide a simplified way of interpreting 

the outputted friction values, they labeled the samples into three categories based on their predicted 

friction value. These three classes include hydroplaning, wet, and moist road conditions, 

corresponding to 0.67-1.00, 0.34-0.66, and 0-0.33, respectively. By evaluating the confusion 

matrix classification for wet roads, the results showed an accuracy of 92% for the hydroplaning 

condition, 100% for moist, 78% for wet, and an overall accuracy of 94%. Such high accuracy 

indicated that the model is able to accurately predict the RSCs during rainy weather. The results 

of these studies demonstrate the feasibility of estimating road friction coefficients with weather 

information. 
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2.2 Factors Affecting Road Friction 

Road friction is influenced by a variety of factors, including intrinsic factors such as tires and 

pavement material, as well as external factors like precipitation that influence the amount of 

contaminants present on the roadway [28]. The independent effects of these factors will be 

explored in detail to provide a clear explanation of their influence on road surface friction. 

Weather events such as rainfall and snowfall can directly change the wetness and friction 

characteristics of the road surface. Wet road surfaces reduce the contact between the tires and the 

road surface, thus reducing friction. Do et al. [29] investigated the effect of thin water films (< 1 

mm) on road friction that occurs after rainfalls or during drizzles. The results showed that friction 

decreased significantly before the water film thickness reached 0.4 mm, indicating that thin water 

films can significantly alter the available road friction by reducing contact between the tire and the 

road. Snow-covered roads and icy roads can reduce adhesion to the surface, which further reduces 

low friction, and vehicles are more likely to slip under these road conditions. According to the 

findings of Ichihara and Mizoguchi [30], the skid resistance coefficient on ice ranges from 0.1 to 

0.2, while on fresh snow it ranges from 0.2 to 0.25, denoting that low friction is linked to snow 

and ice presence. 

Air humidity is another important factor that affects road friction. In a high-humidity environment, 

the moisture in the air interacts with the road surface to form a thin film of water, leading to a 

decrease in the friction coefficient of the road surface. On the contrary, under low humidity 

conditions, there is less moisture in the air, and the road surface is relatively dry, thereby increasing 

the friction coefficient of the road surface. In general, changes in air humidity directly affect the 

friction characteristics of the road. 

As for temperature, it mainly affects road friction through thermal effects [31]. Under high-

temperature conditions, heat is transferred to the road, promoting the melting of snow and ice 

accumulation and accelerating the evaporation of water. However, under low-temperature 

conditions, the temperature affects the properties of the road material itself, which leads to a 

decrease in the coefficient of friction. 

While geographic conditions are generally constant when compared to ever-changing weather 

conditions, they still have a significant impact on road conditions. Among the geographical factors, 
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latitude and altitude have a significant contribution to road friction, mainly through an indirect 

effect on road temperature.  

The influence of latitude on road temperature is due to the different amounts of solar radiation 

received at different latitudes. Mildrexler et al. [32] utilized satellite data to create maps depicting 

the annual maximum temperature of the Earth; it can be observed that the temperature reaches its 

highest value near the equator and shows that temperature decreases when latitude increases. At 

high latitudes, the angle of direct sunlight is lower and solar radiation is relatively weaker, resulting 

in lower road temperatures. Conversely, at low latitudes, the angle of direct sunlight is higher and 

solar radiation is stronger, resulting in higher road temperatures. Therefore, the variation of latitude 

leads to the difference in road temperature in different regions, which in turn affects the magnitude 

of road friction.  

In addition, Altitude also has a negative correlation with temperature. As altitude increases, both 

atmospheric pressure and air temperature decrease. For every 100 m increase in altitude, the 

average temperature drops by about 0.7°C [33]. Since the drop in temperature affects road surface 

temperature, altitude also has an effect on road friction. In general, the lower temperatures at higher 

altitudes make the road temperature lower as well, thus increasing the friction of the road surface. 

Conversely, higher temperatures at lower altitudes result in the reduction of road friction. 

Furthermore, traffic factors have a significant impact on road friction as well. Generally, high 

traffic load and speed can cause a decrease in road friction. Rasol et al. [34] conducted a literature 

review and found that road friction tends to decrease as vehicle speeds increase on wet road surface 

surfaces. Additionally, traffic can impact road friction through its effect on the condition of road 

coverings, such as snow and ice. Ichihara and Mizoguchi [30] observed a notable decrease in the 

coefficient of friction for roads exposed to traffic. Specifically, the coefficient of friction on newly 

compacted snow layers by traffic can be as low as 0.10 to 0.15. On frequently encountered 

compacted snow or ice surfaces, the coefficients typically range from 0.2 to 0.3. 

2.3 Improving Machine Learning Interpretability and Transferability 

This section addresses two essential aspects of machine learning (ML): enhancing interpretability 

through explainable artificial intelligence (AI) and improving transferability through transfer 



11 
 

learning. These considerations are vital in creating models that are not only transparent in their 

decision-making but also adaptable to different data scenarios, aligning with the thesis's aim to 

develop robust and reliable applications. 

Improving Interpretability by Explainable AI 

ML models have gained popularity in recent years because of their superior performance over 

traditional statistical model techniques. However, the lack of clarity on their decision-making 

process makes them difficult to incorporate due to reliability and trustworthiness concerns.  

Traditionally, the evaluation of ML models relied heavily on accuracy as a metric. However, 

Doshi-Velez and Kim [35] pointed out that solely relying on accuracy was not sufficient for 

evaluating the models. Even though some models may perform well in terms of accuracy, their 

underlying logic may not be consistent with reality. Carvalho et al. [36] indicated in their study 

that ML models could have serious consequences when supporting high-stakes decisions. 

Examples include the incorrect release of a potentially dangerous criminal [37] and misclassifying 

a dangerous situation as safe in a pollution model [38]. Because ML models lack transparency and 

accountability, the reasons behind these errors are not clearly understood.  

A notable example provided by Caruana et al. [39], referred to as “Pneumonia – Asthma”, 

illustrates the consequences and risks associated with incorrect model predictions. A ML model 

that predicts pneumonia risk incorrectly learned a rule that individuals with asthma and heart 

disease had a significantly lower risk of pneumonia-related death compared to healthy individuals, 

completely contradicting the truth. Such erroneous result was caused by the fact that pneumonia 

patients with a history of asthma were usually admitted directly to the Intensive Care Unit (ICU) 

and received effective treatment, which lowered their risk of death. Because the prognosis of these 

patients was better than average, it resulted in the model formulating the wrong relationship.  

Given the potential high risk associated with the usage of ML models, improving the 

interpretability of ML becomes essential. Doshi-Velez and Kim [35] emphasized the significant 

gap between the complexity of ML models and the practical need for interpretability. To counteract 

this problem, a systematic framework was proposed to guide the interpretation methods of ML 

models. By making the model transparent and providing reliable information, we can ensure the 
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reliability of decisions and reduce the possibility of misleading and wrong judgments, thus 

improving the reliability and acceptability of ML model applications. 

Model interpretability can be categorized into intrinsic and post hoc interpretability [18]. Intrinsic 

interpretability refers to models that have a relatively simple structure and can be directly 

interpreted, while post hoc interpretability involves applying specific methods or techniques post-

model development. Given the poor interpretability of complex ML models, there is considerable 

interest in the study of post hoc explainable models. Currently, SHapley Additive exPlanations 

(SHAP) has emerged as a powerful post hoc model that has been employed in several fields. By 

applying game theory concepts, SHAP calculates Shapley values to quantify the contribution of 

each feature to the model prediction and represent each feature's average marginal impact when 

considering all possible combinations of features [40, 41]. In addition, SHAP enables users to 

distinguish the relative contributions of different features by combining the computed Shapley 

values using a linear additive structure. The strong theoretical foundation of the SHAP model 

enables it to produce highly credible explanations of ML models. 

Currently, SHAP has been widely used in the medical field. Liu et al. [42] combined SHAP models 

with ML models to solve the problem of high dimensional feature datasets in Parkinson's disease 

diagnosis that make the models difficult to interpret. They combined four models, deep forest 

(gcForest), Extreme Gradient Boosting (XGBoost), light gradient boosting machine (LightGBM), 

and Random Forest with SHAP, then evaluated and compared their performance. The results 

showed that SHAP-gcForest performs the best, with a classification accuracy of 91.78% and an 

F1 score of 0.945. However, the computation is time-consuming because of the use of kernel 

methods. Considering both model performance and computational efficiency, SHAP-LightGBM 

was identified as the most suitable option for practical applications. Kor et al. [43] utilized the 

SHAP model to provide a visual interpretation of individual risk prediction in a chronic obstructive 

pulmonary disease (COPD) model. This approach proved to be beneficial for clinicians as it 

facilitated understanding of the contribution of each feature in the model and enhanced 

comprehension of the decision-making process of the model. Similarly, Zhang et al. [44]  

integrated SHAP into a risk model for acute kidney injury after liver transplantation, allowing for 

the interpretation of ML models at the individual level and assisting clinicians in making informed 

decisions. 
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In an effort to help the emergency department to identify patients properly, Duckworth et al. [45] 

combined the SHAP model with a machine-learning model to monitor data drift. The study's 

results illustrated that the AUROC of the model remained above 80% for two different periods, 

indicating that the model is both accurate and reliable. However, significant changes in the 

importance of features were observed through the SHAP model results. By tracking changes in 

SHAP values relative to global importance, the researchers identified a complementary measure 

of data drift, which highlights the need to retrain a predictive model. Furthermore, by observing 

relative changes in feature importance, emergency health risks were identified. 

Farzaneh et al. [46] proposed a framework combining ML, SHAP, and expert validation to aid in 

predicting traumatic brain injury prognosis risk. Initially, they developed a ML predictive model 

and then used SHAP to calculate the global contribution of each feature to the prediction. 

Subsequently, a human expert team interpreted the SHAP results based on their knowledge. This 

process ensured the credibility of the entire prediction process. The results showed that the 

machine-learning model achieved an accuracy of 0.7536. Then, with the help of SHAP, the non-

robust features that had a minimal contribution to the predictions were excluded, resulting in a new 

model with an accuracy of 0.7440. After that, via expert knowledge, 3 out of the 21 significant 

contributing features to the SHAP results were identified as unintuitive and eliminated, leading to 

a final model accuracy of 0.7488. This variation in model accuracy demonstrates the importance 

of selecting appropriate input features when using data-driven algorithms.  

In addition, SHAP has found applications in the financial field. Roa et al. [47] employed 

TreeSHAP to facilitate the interpretation of credit risk models with stochastic gradient boosting 

algorithms. Lin and Gao [48] proposed a group SHAP method to reveal the common characteristics 

of companies engaged in fraudulent financial activities by measuring the combined effect of a set 

of features. Analyzing the results generated by the group SHAP method is crucial for customer 

monitoring and investment management, as it assists financial institutions in better identifying 

potential risks and safeguarding customer interests. Xia et al. [49] conducted a comparative study 

of seven feature selection techniques to generate reliable model predictions. The study results 

revealed that the method incorporating the SHAP model outperformed the other models, and the 

generated SHAP values aligned more closely with human intuition. This suggests that the SHAP 
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model is particularly suitable for feature selection and can provide more reliable and explanatory 

model predictions. 

In some existing studies, the SHAP model has been compared with another widely used model of 

post hoc explainable AI, known as the Local Interpretable Model-agnostic Explanations (LIME) 

model. Different from SHAP, the LIME model generates only local explanations by perturbing 

data points and using simple linear regression to fit the relationship between features and the local 

prediction [50]. Gramegna and Giudici [51] evaluated the discriminative power of credit risk by 

using the SHAP and LIME methods. By comparing the bidimensional plots generated by the two 

methods, it was evident that the SHAP method was more effective in dividing the two clusters in 

space. In terms of AUC values, the mean value of the SHAP method after 50 repetitions was 0.864, 

while the mean value of the LIME method was slightly lower at 0. 839. After careful consideration, 

the researchers concluded that the SHAP was superior to the LIME in this task. 

Although the LIME model may have outperformed the SHAP model in some studies [52], overall, 

SHAP produces more stable explanations. The study by Hailemariam et al. [53] focused on the 

robustness and security of explainable AI models. They evaluated the performance of LIME and 

SHAP on two different types of datasets, tabular and image datasets. This process was done using 

Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN), two deep learning 

methods. Evaluation metrics, including interpretation invariance, identity, separability, and 

stability, were employed. The results showed that the SHAP model performed better than the 

LIME model on both tabular and image datasets in a security-sensitive domain. Another study by 

Nguyen et al. [54] evaluated three methods, SHAP, LIME and Class Activation Mapping (CAM), 

for image classification problems. The results demonstrated that the SHAP method outperformed 

the other two methods, followed by the LIME method. However, it should be noted that these 

methods came at the expense of calculation efficiency.  

Improving Transferability by Transfer Learning 

Models based on data-driven ML typically work best when the data they analyze is similar to the 

data used to train them. However, if there are changes in the characteristics of the dataset, such as 

a different location for data collection, the model's performance may suffer. This may require 

retraining the model from scratch, which can be time-consuming and resource-intensive. To speed 

up this transition, transfer learning [55] is a useful technique. This involves adding a small amount 

https://www.frontiersin.org/people/u/590184
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of new data to an existing model and allowing the new data to modify a portion of the model's 

learned relationships. 

The benefits of transferring learning were demonstrated by Dai et al. [56], who proposed a 

boosting-based algorithm called TrAdaBoost. TrAdaBoost updates an existing model by 

combining source data with a small amount of new target data. The method was evaluated on the 

support vector machine (SVM) classification problem and compared with the SVM baseline 

models. The results indicated that the accuracy of TrAdaBoost was improved by at least 5% 

relative to the SVM baseline model, highlighting the potential of TrAdaBoost in effectively 

dealing with problems involving a change in dataset characteristics.  

The study by He et al. [57] applied TrAdaBoost for mobile LiDAR classification. They proposed 

a structure that combined VoxNet and Multiclass TrAdaBoost. Evaluation results show that this 

approach not only improved accuracy but also achieved more balanced performance in each 

category. Similarly, Tang et al. [58] conducted a study comparing the effectiveness of TrAdaBoost, 

AdaBoost, and traditional negative binomial (NB) models for traffic crash prediction using four 

different datasets. The idea is to select the most valuable instances as new data for transfer learning. 

The results of the study showed that the transfer learning approach significantly outperformed the 

traditional NB model, with TrAdaBoost exhibiting the highest accuracy. This demonstrates the 

strong performance of TrAdaBoost in regression problems and its potential for addressing 

challenges arising from changing dataset characteristics. 

2.4 Summary 

This chapter provides an overview of models used to estimate road friction coefficients and 

explores the factors affecting road friction coefficients. It also discusses methods for enhancing 

the efficiency of machine-learning approaches.  

Traditionally, road condition estimation models have usually been treated as a classification 

problem, where visual indicators or risk levels are used to categorize friction coefficients. 

However, this classification approach has limitations in accurately accounting for situations that 

fall within the ambiguous boundaries of these categories. Therefore, there is a need to develop 

models that can estimate continuous road friction values more effectively.  
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To develop a suitable model with appropriate inputs, we delve into a detailed discussion of the 

factors that affect road friction coefficients, which serves as a foundation for our modeling efforts. 

In addition, as discussed, machine learning (ML) faces two main challenges: difficulties in 

interpreting model decisions and the lack of adaptability to new datasets with slightly different 

characteristics such as location. To cope with these challenges, we introduce the SHapley Additive 

exPlanations (SHAP) explainable artificial intelligence (AI) model to improve the interpretability 

of the model, and we adopt the two-stage TrAdaBoost.R2 method to improve the transferability 

of the model. Through this process, the ML models we developed can improve their reliability and 

efficiency. 
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3 METHODOLOGY 

The previous chapter highlighted the shortcomings of road friction estimation models in terms of 

their construction, application, and optimization. To address these gaps in current research, this 

thesis aims to establish a machine learning (ML)-based framework for accurate estimation of road 

friction coefficients (as depicted in Figure 3-1). The framework consists of two main phases. In 

the first phase, we develop a friction model and propose ways in which it can be practically applied. 

The second phase focuses on model optimization by comparing the performance of different ML 

algorithms, leveraging explainable artificial intelligence (AI) to improve model transparency and 

interpretability, and employing transfer learning to enhance model transferability. This 

comprehensive workflow allows us to further understand the potential of ML models in providing 

accurate road friction estimates and assess their practical feasibility. Within this chapter, we delve 

into the algorithms employed in this framework and the underlying principles behind them.  

 

Figure 3-1 Methodological Framework 
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3.1 Machine Learning Algorithms 

Machine learning (ML) algorithms serve as the foundation of the estimation model in this study. 

Among the many methods available, we select Regression Tree, Random Forest, Extreme Gradient 

Boosting (XGBoost), and Support Vector Regression (SVR) to develop our friction estimation 

model. Excluding SVR, the remaining three algorithms are all tree-based, each with unique 

characteristics and advantages. Herein, phase one will focus solely on the Regression Tree model, 

and in phase two, Random Forest, XBGoost, and SVR will be introduced for comparison purposes. 

Details of each algorithm are given below. 

3.1.1 Tree-Structured Models 

3.1.1.1 Regression Tree 

Regression Tree [59, 60], as the name suggests, models the relationship between inputs and outputs 

similar to tree growth, as shown in Figure 3-2. The dataset is separated into two subsets at the root 

node according to different conditions. Data that satisfies the corresponding condition flows to the 

following internal node, where another condition exists to split the data further. Eventually, the 

tree will stop growing because of growth restrictions. The main advantages of using a Regression 

Tree are that it is intuitive, non-parametric, and the decision criteria are visible and easy to 

interpret. 

  

Figure 3-2 Regression Tree Visualization 
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The splits of Regression Tree are determined by a traverse approach with the least square error 

criterion. The decision condition at each node, including an input feature and a split value, is 

selected by calculating the minimum residual sum of squares between observations and the mean. 

This process is expressed as Equations (3.1) and (3.2). 

𝒎𝒊𝒏𝒋,𝒔[𝒎𝒊𝒏𝒄𝟏 ∑ (𝒚𝒊 − 𝒄𝟏)𝟐

𝒙𝒊∈𝑹𝟏(𝒋,𝒔)

+ 𝒎𝒊𝒏𝒄𝟐 ∑ (𝒚𝒊 − 𝒄𝟐)𝟐

𝒙𝒊∈𝑹𝟐(𝒋,𝒔)

] (3.1) 

𝒄𝒎 = 𝒂𝒗𝒆(𝒚𝒊|𝒙𝒊 ∈ 𝑹𝒎) (3.2) 

Where 𝑗 is the split feature, 𝑠 is the split value, 𝑅1 𝑎𝑛𝑑 𝑅2 are subsets divided by condition (𝑗, 𝑠), 

𝑐𝑚 is the mean of subset 𝑅𝑚, 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖 are observations. 

Despite its many advantages, the Regression Tree has an inherent flaw; it is prone to overfitting. 

As such, model parameters should be tuned carefully to avoid this issue, which are maximum 

depth, minimum samples split, and minimum samples leaf. Maximum depth refers to the model 

complexity. The deeper the tree, the more information it captures. Minimum sample split 

determines the minimum number of samples that are required to split an internal node; a split will 

not happen if there are less than a certain number of records specified by this parameter. Finally, 

the minimum samples leaf determines the minimum number of samples at the leaf node. To 

determine reasonable values for these parameters, the grid search algorithm was applied, which is 

an exhaustive search method that iterates through all possible parameter candidates to find the 

most optimal configuration. In this study, we used r squared as the performance selection criteria 

based on prior studies. 

3.1.1.2 Random Forest 

Random Forest [61, 62] is an ensemble learning algorithm that utilizes Regression Trees as its 

base learners. It randomly selects subsets of the training data and input features to train multiple 

individual Regression Trees. Each tree in the Random Forest independently generates estimations, 

and the final output is obtained by aggregating the estimates from all the trees, typically through a 

weighted average. 

Compared to the Regression Tree algorithm, Random Forest exhibits improved robustness and 

accuracy because of its ability to mitigate overfitting by limiting the data and features used for 

each tree. However, it is important to note that the improved performance of Random Forest comes 



20 
 

at the expense of reduced interpretability. With a large number of trees and random feature 

selection, the resulting model becomes more complex and challenging to interpret compared to a 

single Regression Tree. Therefore, although Random Forest improves predictive power, 

understanding its underlying decision-making process may be more difficult due to its complex 

structure. 

 

Figure 3-3 Random Forest Visualization 

3.1.1.3 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) [63] is an algorithm designed for high execution speed and 

high accuracy. It belongs to the ensemble learning family and leverages the gradient boosting 

technique to sequentially combine multiple weak estimators.  

The XGBoost process begins with the initialization of a simple Regression Tree. It then calculates 

the residuals between the predicted values and the true values for each sample. A new tree is then 

added to model the residuals generated from the previous iteration, after which the model 

recalculates the residuals to account for the newly added tree. This cycle repeats until a stopping 

condition is met. To optimize the model, XGBoost employs the gradient boosting algorithm to 

minimize the objective function and adjust the model parameters. The objective function consists 

of two components, the loss function and the regularization. Where the loss function measures the 

prediction error of the model, while the regularization controls the complexity of the model to 

prevent overfitting, the specific formula is as Equation (3.3): 
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𝑶𝒃𝒋(𝒕) = ∑ 𝒍 (𝒚𝒊, �̂�𝒊 
(𝒕−𝟏)

+ 𝒇𝒕(𝒙𝒊)) + 𝜴(𝒇𝒕) + 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝒏

𝒊=𝟏
 (3.3) 

Where 𝑙 is the loss function, Ω is the regularization, 𝑓𝑡 is a Regression Tree, 𝑦𝑖 is the true value, 

and �̂�𝑖 is the predicted value. 

The final XGBoost model surpasses the accuracy of individual Regression Trees in sequence. 

3.1.2 Support Vector Regression Model 

Support Vector Regression (SVR) [64, 65] works differently from the aforementioned tree-based 

models. By mapping the dataset to a high-dimensional space, SVR aims to find a hyperplane that 

maximizes the margin distance between the hyperplane and the nearest data point and minimizes 

the prediction error at the same time. The objective function is shown as Equation (3.4): 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆     
𝟏

𝟐
‖𝒘‖𝟐 + 𝑪 ∑(𝝃𝒊 + 𝝃𝒊

∗)

𝒍

𝒊=𝟏

  

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐       {
𝒚𝒊 − ⟨𝒘, 𝒙𝒊⟩ − 𝒃 ≤ 𝜺
⟨𝒘, 𝒙𝒊⟩ + 𝒃 − 𝒚𝒊 ≤ 𝜺

 (3.4) 

Where ‖𝑤‖2  is the squared norm of the weight vector 𝑤 , used for regularization, 𝐶  is the 

regularization parameter, and 𝜉𝑖  and 𝜉𝑖
∗
are slack variables. 

The principle of SVR gives it an advantage when dealing with high-dimensional data and nonlinear 

relationships. However, the mechanism by which the model constructs a hyperplane leads to 

difficulties in explaining the logic behind its output predictions. 

 

As discussed above, given the varying levels of complexity, accuracy, and interpretability in these 

four models, this study's challenge lies in navigating the trade-offs among these aspects. The 

Regression Tree offers transparency at the potential expense of accuracy, while Random Forest, 

SVR, and XGBoost progressively increase in complexity and predictive power but decrease in 

interpretability. Hence, in the initial phase, the Regression Tree is chosen due to its elevated 

interpretability, providing a reassuringly intuitive understanding of the accuracy of our model's 

logic. And in the second phase, we introduce two additional tree models of different complexity  

to better explore and compare the trade-off between accuracy and interpretability. We also present 
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a SVR model to examine how algorithms based on different underlying mechanisms perform in 

the context of road friction estimation using road weather data. Through this approach, the study 

aims to provide insights that can guide the selection and utilization of machine learning (ML) 

models in transportation applications, taking into account both the predictive needs and the 

necessity for transparent and understandable models. 

3.2 Ordinary Kriging 

The goal of spatial interpolation is to estimate values at unsampled points using observed data 

points. Among the many spatial interpolation methods available, kriging has been shown to 

produce the most accurate estimates [14, 66, 67]. The kriging estimates consist of deterministic 

trends and residuals. Ordinary Kriging (OK) [68] is one variant of kriging that is considered the 

most widely employed among all the Kriging methods due to its simplicity and high accuracy. For 

this reason, OK has been selected in this study. OK assumes an unknown but constant mean over 

the area. This model can be expressed as Equation (3.5). 

𝒁(𝒔) = 𝝁 + 𝜺(𝒔) (3.5) 

Where 𝜇 is the unknown constant, and 𝜀(𝑠) is the residual. Similar to Inverse Distance Weighting 

(IDW) method, weights are needed in kriging to estimate values at unknown points. However, the 

difference is that the primary assumption of kriging is spatial autocorrelation, implying an internal 

spatial relationship between sample points. Kriging weights therefore depend on both the distance 

between observations and prediction location and the overall spatial arrangement of the 

observations. Hence, the objective of OK interpolation is to determine the optimal kriging weights 

that minimize the estimation variance. The OK estimate is calculated by Equation (3.6): 

�̂�(𝒔) = 𝝁 + ∑ 𝝀𝒊

𝑵

𝒊=𝟏

[𝒁(𝒔𝒊) − 𝒎(𝒔𝒊)] (3.6) 

Where �̂�(𝑠) is OK estimate, 𝑍(𝑠𝑖) is the observation at location 𝑠𝑖 , 𝜆𝑖  is the unknown Kriging 

weight for the observation at location 𝑠𝑖 , 𝑠 is the location for estimation, 𝑁  is the number of 

observations, and 𝑚(𝑠𝑖) is the expected values of 𝑍(𝑠𝑖). 

Semivariance represents the reciprocal of the spatial autocorrelation, which is calculated using 

Equation (3.7). 
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𝜸(𝒉) =
𝟏

𝟐
[𝒛(𝒙𝒊) − 𝒛(𝒙𝒋)]𝟐 (3.7) 

where 𝛾(ℎ) is the semivariance between sample points 𝑥𝑖 and 𝑥𝑗 in ℎ distance, and 𝑧 is the feature 

value. An empirical semivariogram is generated using Equation (3.7) to explore the spatial 

autocorrelation pattern of the observations. Afterward, several theoretical models are considered 

to fit the empirical semivariogram model. These include circular, spherical, exponential, gaussian, 

and linear models. The fitted semivariogram model provides three spatial parameters: sill, range, 

and nugget [67]. The sill is the semivariance at which the model begins to plateau, and the range 

is the lag distance where the semivariance reaches the sill, beyond which the spatial autocorrelation 

is considered non-existent. Finally, the nugget is the spatial variability at a distance smaller than 

the shortest distance between observations, often termed measurement error. 

3.3 SHapley Additive ExPlanations Explainable Artificial Intelligence 

SHapley Additive exPlanations (SHAP) [50] is a method for explaining machine learning (ML) 

predictions by quantifying the contribution of each feature. It is based on the concept of Shapley 

values from cooperative game theory. The rationale behind SHAP is to compute the importance 

of each feature by evaluating its contribution to the prediction, thus providing explanations for the 

black-box model. 

The shapely value of feature i is determined as the function defined in Equation (3.8): 

𝝋𝒊(𝒗) =  ∑
|𝑺|! (𝒏 − |𝑺| − 𝟏)!

𝒏!
(𝒗(𝑺⋃{𝒊}) − 𝒗(𝑺))

𝑺⊆𝑵\{𝒊}

 (3.8) 

Where 𝑆 is the subset of the features, n is the number of features, and 𝑣 is a characteristic function. 

One of the main strengths of SHAP is its ability to provide not only global feature importance but 

also local explanations for individual instances. By interpreting specific instances, we can 

determine how each feature value affects the estimation. The SHAP explanation of each instance 

can be represented by a linear function, shown in Equation (3.9):  

𝒈(𝒛′) =  𝝋𝟎 + ∑ 𝝋𝒋𝒛𝒋
′

𝑴

𝒋=𝟏

 (3.9) 
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Where φ0 is a constant, φj is the Shapely value of feature j, M is the number of features, z′ ∈

 [0,1]M, when equals to 1 represents a feature is observed, otherwise is 0. 

Overall, SHAP is a powerful tool for explaining complex ML models by quantifying the 

contribution of each feature to estimation and providing insights at both the global and local levels. 

In the context of this study, where interpretability and accuracy must be carefully balanced, SHAP 

provides a valuable means of exploration. By quantifying the contribution of individual features 

in the complex models employed for road friction estimation, SHAP enables to peer into the 'black 

box' of these models. Its application in this research is not only anticipated to offer precise insights 

into the workings of each model but also to contribute to the broader goal of fostering transparency 

and robustness in ML applications for transportation in general and winter road maintenance 

(WRM) in particular. This aligns with the study's commitment to understanding not only what the 

models are predicting, but also why they are making these predictions, thereby enhancing both the 

utility and credibility of the findings. 

3.4 Transfer Learning 

The two-stage TrAdaBoost.R2 [58, 69] algorithm is an extension of the Adaboost model that 

incorporates the concept of domain adaptation for transfer learning. Adaboost [70] assigns weights 

to the training dataset and iteratively generates new weak regressors while updating the weights. 

The weights are adjusted such that samples with larger residuals are assigned higher weights, 

making them more influential in subsequent iterations, while samples with smaller residuals have 

their weights decreased. TrAdaBoost, on the other hand, assigns different weights to the source 

training set and the target training set during the iterations. It increases the weights of target 

instances that are consistent with the source data and decreases the weights of target instances that 

are inconsistent. However, TrAdaBoost faces two challenges: the weights of source instances can 

sometimes be reduced to zero, and outlier instances are assigned high weights.  

To address these challenges, a two-stage TrAdaBoost.R2 has been proposed. In the first stage, the 

weights of source instances are gradually adjusted downwards until they reach a certain threshold. 

This allows for a balance between the source and target data. In the second stage, the weights of 

all source instances are frozen while the weights of target instances are updated as normal in 

AdaBoost.R2. The weights are updated as Equation (3.10). 
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𝒘𝒌+𝟏,𝒊 = {
𝒘𝒌,𝒊𝜷𝒌

𝒆𝒌,𝒊/𝒁𝒌, 𝒇𝒐𝒓 𝑻𝒔𝒐𝒖𝒓𝒄𝒆

𝒘𝒌,𝒊/𝒁𝒌, 𝒇𝒐𝒓 𝑻𝒕𝒂𝒓𝒈𝒆𝒕
 (3.10) 

Where 𝑍𝑘 is the normalizing constant, and 𝛽𝑘 is designed such that the total weight of  𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is 

𝑚

𝑛+𝑚
+

𝑘

(𝑆−1)
(1 −

𝑚

𝑛+𝑚
).  

The two-stage TrAdaBoost.R2 ensures a more accurate and robust transfer learning process, 

allowing the model to adapt to new target domains while leveraging knowledge from the source 

domain. 

3.5 Summary 

This chapter provides an overview of the algorithms used in this thesis. The machine learning 

(ML) algorithm section introduces the principles behind the Regression Tree, Random Forest, 

Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) algorithms. By 

explaining how they function, we highlight these algorithms' differences and discuss their 

strengths and limitations. It is also noted that among the tree-structured algorithms, Random Forest 

and XGBoost are considered much more complex than the Regression Tree algorithm. The benefit 

of increasing model complexity is that it often leads to higher performance, but at the cost of 

decreased interpretability. In addition to ML methods, this section also introduced Ordinary 

Kriging (OK), which is a powerful method for data interpolation.  

In an effort to understand the decision-making process behind the ML models, we then present the 

principles of explainable artificial intelligence (AI), specifically focusing on the game theory-

based SHapley Additive exPlanations (SHAP) method. Lastly, we introduce the two-stage 

TrAdaBoost.R2 algorithm for transfer learning. 

In the following two chapters, we will demonstrate the application of our proposed framework 

through case studies involving road friction estimation, followed by further improvement of our 

models. This will allow us to gain valuable insights into the practical implementation of the 

framework and contribute to enhanced accuracy in friction estimation. 

4 MODELING AND CLASSIFYING ROAD FRICTION 
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In this chapter, a case study in Alberta is used to demonstrate how road friction can be estimated. 

The chapter is divided into four parts for a comprehensive explanation. The first section provides 

an overview of the study area and how the data was prepared. The second section focuses on 

training the model using mobile road weather information system (mRWIS) data. The third section 

applies the model to stationary road weather information system (sRWIS) data and incorporates 

geographic interpolation techniques for practical use. The final section classifies the estimated 

friction values based on risk level, making it easy to understand and interpret road risk information. 

4.1 Study Area and Data Preparation 

4.1.1 Study Area 

The case study takes place in Alberta, Canada, a province located between 49° and 60° north 

latitude and 110° and 120° west longitude, covering a total area of 661,848 km2. Alberta’s 

northerly location makes it prone to Arctic weather systems, leading to extreme winter conditions. 

The movement of fronts between air masses leads to rapidly changing arctic air masses that can 

produce extreme temperatures as low as −54 °C. 

To conduct the study, RWIS data was collected from multiple highways in Alberta province 

(depicted in Figure 4-1(left)). All available mobile road weather information system (mRWIS) 

data was carefully utilized for model training. However, due to differences in time and space 

between the collected mRWIS and stationary road weather information system (sRWIS) data, a 

specific segment of the highway was chosen for model application. This particular segment allows 

for the simultaneous collection of both mRWIS and sRWIS data, ensuring that the model can be 

trained and applied using consistent and comparable information.  

This particular segment spans a distance of 127 km, running in a north-south direction from 

Valleyview to Whitecourt. Within this segment, there are four evenly deployed RWIS stations: 

AB_DOT_43-08, AB_DOT_43-10a, AB_DOT_3-06, and AB_DOT_43-14, as illustrated in 

Figure 4-1(right) below. This particular highway segment was selected as the study area for its 

high geographic variation (i.e., vegetation, terrain types, and altitude) and data distribution along 

the road segment. 
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Figure 4-1 Highway Segments with Mobile RWIS Data Collection (left) and Selected Road 

Segment with Fixed RWIS Deployment for Model Application (right) 

4.1.2 Data Preparation 

The data used in this study was collected from both mobile and stationary road weather information 

systems (mRWIS and sRWIS). The mRWIS data was gathered using a non-invasive Vaisala 

Condition Patrol DSP 310 installed in the testing vehicle. This device captured various parameters 

such as air temperature, relative humidity, dewpoint, surface temperature, water depth, snow 

depth, ice depth, and friction at 3-second intervals, along with corresponding time and location 

tags. Road surface states (i.e., layer thickness and friction) in particular, were measured by the 

remote sensor DSC111 that uses the spectroscopic measuring principle to collect road condition 

information. Since it is costly and laborious to collect mRWIS data, the data used in this paper 

were collected in one direction only during inclement weather events that occurred between 

November 2014 and February 2015, with 93,101 data points in total.  

On the other hand, sRWIS recorded its environmental data every 20 min at their respective 

locations. Environmental data collected includes air temperature, average wind speed, average 
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wind direction, dewpoint temperature, relative humidity, 1 h precipitation, 3 h precipitation, 

surface temperature, water depth, freeze point, and maximum and minimum temperatures as well 

as its station ID and data recording time. A total of 7344 sRWIS data points were collected and 

utilized in this study. Because sRWIS data are used for friction estimation, to compare with actual 

values, the data extracted from the sRWIS stations matched the date, time, and location of the 

mRWIS passing by; therefore, sRWIS data between 5 and 7 p.m. on 22 November 2014 were 

selected for model application. 

The two RWIS data sources were used for separate purposes. The mRWIS data was used to 

develop and calibrate the friction estimation model by using the collected environmental data with 

the corresponding friction outcome. The sRWIS data was then employed to evaluate the model’s 

applicability by providing weather information to spatial interpolate friction values. It is important 

to note that there are some subtle differences in the measurement values between mRWIS and 

sRWIS due to differences in measurement technique and sensor mounting locations. For example, 

sRWIS are slower in measuring changes in surface temperatures as their sensors are embedded 

into the ground, whereas mRWIS sensors are installed on the vehicle above the road surface. This 

difference results in a ±1 °C difference in recorded temperature values. Therefore, care should be 

taken to ensure data consistency when comparing mobile and stationary RWIS data. Additionally, 

only matching variables recorded by both RWIS formats were used as input model parameters. 

These variables are latitude, longitude, altitude, air temperature, relative humidity, dewpoint, 

surface temperature, and water depth. The friction value from mRWIS is used as the target variable 

in the modeling process. 

4.2 Model Development with Mobile Road Weather Information Systems 

Before calibrating the model, it is essential to select a predictor with a strong relationship to 

friction. Thus, a correlation matrix was generated with all the potential predictors to find the 

relationships between each variable pairing (see Figure 4-2). 
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Figure 4-2 Correlation Matrix of the Potential Predictors. 

From the correlation matrix, snow depth has the strongest correlation with friction at −0.73, which 

intuitively makes sense as road surface slipperiness increases as snow layers get thicker. However, 

stationary road weather information system (sRWIS) in this study area does not collect snow depth 

values, so it cannot be implemented in the model. Longitude has the second highest correlation at 

0.32, suggesting that the friction values generally increase with longitude. Relative humidity and 

latitude also have a strong but negative correlation with friction, meaning that the increase in these 

values lead to a reduction in friction, which is logically consistent. Air and surface temperature 

have a similar positive correlation with friction. Other than the factors previously mentioned, there 

are some factors with weak correlations less than 0.10: dewpoint temperature, altitude, and water 

depth. These highly correlated variables are then inputted in a stepwise manner based on the 

correlation matrix to calibrate the Regression Tree model. Since variables with low correlation 

(less than 0.1) contribute little to improving model accuracy, dewpoint temperature and water 

depth were omitted. Nevertheless, we kept altitude as it is a geographic predictor. To summarize, 

Latitude Longitude Altitude Air [C] Humidity [%] Dewpoint [C] Surface [C] Water [mm] Snow [mm] Ice [mm] Friction

Latitude 1.000

Longitude  −0.784 1.000

Altitude  −0.594 0.070 1.000

Air [C] 0.153  −0.214 0.035 1.000

Humidity [%] 0.524  −0.550  −0.124 0.280 1.000

Dewpoint [C] 0.280  −0.336  −0.010 0.966 0.517 1.000

Surface [C] 0.108  −0.174 0.041 0.928 0.342 0.919 1.000

Water [mm] 0.015  −0.049 0.020 0.022 0.050 0.033 0.048 1.000

Snow [mm] 0.080  −0.200 0.163  −0.030 0.230 0.030  −0.017  −0.029 1.000

Ice [mm] 0.050  −0.029  −0.020 0.027 0.090 0.047 0.048 0.009 0.006 1.000

Friction  −0.219 0.317  −0.079 0.185  −0.281 0.095 0.175  −0.028  −0.726  −0.172 1.000
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the model has road friction as the target variable and longitude, latitude, altitude, air temperature, 

relative humidity, and surface temperature as predictor variables. 

For model calibration, the mobile RWIS (mRWIS) data was randomly split into a training set with 

74,480 data points and a testing set containing the remaining data. After finetuning, the following 

parameters were chosen: max depth of 26, minimum samples leaf of 2, and minimum samples split 

of 7. The model’s accuracy reached 93.3%, suggesting that the model’s performance was more 

than adequate. The validity of the model was then tested by making friction estimates using sRWIS 

measured predictor values and then comparing the predictions to the mRWIS measured friction 

values. This validation process requires using friction measurements close to the sRWIS station. 

In addition, the collected data needs to satisfy temporal consistency. Otherwise, the predictor 

variable values from sRWIS may differ significantly from the mRWIS due to potential spatial 

heterogeneity. Figure 4-3 illustrates the friction estimates from the four sRWIS stations along with 

its actual measurement from the nearby mRWIS. As shown, the estimations are fairly close to the 

measured values, especially for station AB_DOT_3-06, where the estimation error is only 0.005 

with station AB_DOT_43-08’s estimation error being relatively higher at 0.14 error. 

 

Figure 4-3 Comparison Between Road Friction Measurement and Model Estimation. 
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4.3 Model Application and Kriging Interpolation 

4.3.1 Spatial Interpolation  

This step is the generation of spatially continuous friction estimates to fill in the gaps between 

stations, providing greater details on the distribution of road surface friction values. In particular, 

the proposed method takes friction values measured at a stationary road weather information 

system (sRWIS) location and interpolate friction records between each pair of sRWIS using 

previously developed tree-based friction model. In this study, spatial interpolation using Ordinary 

Kriging (OK) was performed to estimate the weather information in-between sRWIS stations. 

As mentioned earlier, the estimation results between sRWIS and mobile RWIS (mRWIS) are not 

identical. To properly evaluate the model performance and measure the estimation error of the 

model, the impact of the data inconsistency should be eliminated or at least minimized. This 

requires us to create a surrogate sRWIS by averaging the data collected from an mRWIS taken 

within a pre-defined buffer zone road surface (i.e., 400 m in our case upon reviewing the similarity 

of measured values) around an actual sRWIS. Doing so will remove the inherent measurement 

inconsistencies between the two RWIS types, allowing for more accurate and fair model 

validation. A total of 39 mobile data points were selected as testing points to evaluate the model 

and interpolation process. OK was then applied to air temperature (AT), surface temperature (ST), 

and relative humidity (RH) using Esri’s ArcGIS [71, 72, 73], which can tune the semivariogram 

parameters automatically via its built-in model optimization function. The semivariogram 

parameters from the optimized models for each weather factor are listed below (see Figure 4-4). 

The semivariogram values for each of the three environmental factors provide insight into their 

spatial autocorrelation. For AT, the nugget is zero, indicating that there is no inherent measurement 

error found, a rare but ideal outcome. The range and sill indicate that autocorrelation exists until 

43 km and the maximum semivariance is 0.604. RH also has a small nugget that is approximately 

0, a long range of almost 30 km, and a large sill of 12. As for the ST, it has a relatively large nugget 

value, a small range, and a small sill at 0.226, 240 m, and 0.433, respectively. The parameter values 

for ST make sense as they are significantly influenced by the local ground radiation, surrounding 

vegetation, solar exposure, and the amount of traffic driving over that location. The differences 

between the semivariograms are also intuitive as the atmospheric variables (air temperature and 

relative humidity) tend to be more stable over larger expanses than ground-based variables. The 
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constructed semivariogram model values were then used to estimate each weather factor along the 

highway segment. The interpolated estimates were then compared to the observed values from the 

mRWIS and plotted in Figure 4-5 and their associated descriptive statics are shown in Table 4-1. 

 

Figure 4-4 Optimized Semivariogram Parameters 

Table 4-1 Descriptive Statistics of Weather Parameters 

 Air Temperature Relative Humidity Surface Temperature 

 Measured Predicted Measured Predicted Measured Predicted 

Mean −2.49 −2.47 89.37 89.65 −3.45 −3.38 

Std. Dev. 1.05 0.93 2.10 1.33 1.36 1.18 

Min −5.00 −4.10 84.00 86.00 −9.30 −7.57 

Max 0.70 −1.40 97.00 93.00 −1.50 −2.20 

Obs. 1588 1588 1588 
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 (a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 4-5 Interpolated (Orange) and Observed (Blue) Values of Weather Information. (a) 

Air Temperature; (b) Relative Humidity; (c) Surface Temperature 
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Based on the interpolated vs. observed plots shown above, it can be asserted that Ordinary Kriging 

(OK) was able to capture general variations over large distances (20 km) with some sections having 

less accurate predictions, possibly due to inherent local variations. An example of this limitation 

is seen between 3 km (where AD_DOT_43-14 locates) and 20 km. Actual AT and ST values 

fluctuate drastically with peaks, and RH trends opposite, while their predicted values follow a 

similar trend but are much smoother. This is because kriging produces smooth estimates by taking 

an average to offset the variation between high and low values. 

4.3.2 Road Friction Estimation with Stationary Road Weather Information System 

To estimate the road friction throughout the area, the spatially interpolated weather factors and 

geographic features generated in the previous step were inputted into the Regression Tree model 

to produce friction estimates for the entire study area. Estimations were made at 20 m resolution. 

However even at high accuracy the model can hardly predict exact the same value as measured, 

so the estimates were aggregated every 1.0 km intervals on the road to reduce variance and make 

the results more realistic when plotted. A comparison plot between the estimated and actual friction 

is shown in Figure 4-6. 

 

Figure 4-6 Interpolated (Orange) and Observed (Blue) Values of Friction Over the Study 

Area 
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Figure 4-6 suggests that the estimated and measured friction curves closely resemble one another, 

especially at the 16 km to 61 km and the 111 km to 121 km segments. However, there are also 

regions with moderate differences, such as the 0 km to 11 km stretch. Minor discrepancies like 

this are likely because the input variables themselves are not measured values but estimates with 

error. The predicted air and surface temperature were lower than the actual measurements, while 

the estimated relative humidity was higher than the measured values. Since friction is positively 

correlated with temperature and negatively correlated with humidity, the estimated friction is lower 

than the actual value. The differences seen at 70 km to 76 km can be similarly explained except in 

the opposite direction. 

While most discrepancies can be explained as a product of interpolation error propagating from 

the previous step, for locations between 85 km and 94 km, the difference is quite significant and 

cannot be attributed to predictor interpolation error. Deeper scrutiny revealed that the measured 

snow depth drastically changes within this region, from 1.2 mm to 0 mm. This 1.2 mm difference 

represents a change from being snow-covered to bare pavement due to snow depth information 

being not accounted for in the modeling process as stationary road weather information system 

(sRWIS) does not collect snow depth data. The same logic can be applied to 89 km, where the 

snow depth increased by 1 mm, resulting in a sharp friction value drop. Likewise, at the 91 km to 

94 km section, where snow depth fluctuates between 0.4 mm and 1 mm, a similar friction 

fluctuation between 0.2 and 0.6 was observed. Based on these observations, snow depth 

accumulation may be a strong indicator of friction values. Nonetheless, the ordinary Kriging (OK) 

interpolation model developed has proven to capture the general road surface conditions (RSCs) 

patterns with help of just four sRWIS data points—the first of its kind in existing literature. 

4.4 Road Risk Identification 

4.4.1 Binary System 

Providing only friction values has little meaning to the general public as it is challenging for them 

to grasp the safety implications between the friction values. For this reason, we simplify our 

friction outputs by classifying them as either risky or non-risky for the purpose of creating a color-

coded risk map. Previous studies have suggested several cutoff values for when friction values are 

considered unsafe, which can range from 0.3 to 0.5 [74, 75, 76, 77]. In this study, we consider 
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three cutoffs within this interval: 0.3, 0.4, and 0.5 to categorize respective driving risks. The 

performance of the classification was then evaluated based on the confusion matrix with accuracy 

selected as the metric of focus. This choice was made because we were primarily concerned with 

global sample prediction, specifically the proportion of samples correctly classified. The results 

show that at 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3, 0.4, 𝑎𝑛𝑑 0.5,  the accuracies for road risk estimation are 

84.25%, 89.76%, 𝑎𝑛𝑑 88.98%, respectively. Regardless of the selected threshold, the accuracy 

of road risk estimation is near 90%; hence, our developed model is highly accurate. 

 

(a) 

 

(b) 

Figure 4-7 Road Risk Maps at Threshold = 0.3, 0.4, and 0.5. (a) Risk Maps Based on 

Predicted Friction; (b) Risk Maps Based on Measured Friction 
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4.4.2 Three-Category System  

The benefit of using a binary classification system is that it is easy to understand, but this benefit 

comes at the cost of reducing the amount of information presented. Although general road users 

may appreciate its simplicity, maintenance personnel may desire more detailed information. 

Hence, we increased the risk categories to three to give a more comprehensive view of Road 

Surface Condition (RSC) along the road network. The adoption of the three-category system is not 

only significant for providing a detailed understanding suitable for various stakeholders but also 

aligns with standards that are generally accepted and utilized by many transportation agencies 

including Alberta Transportation [78, 79, 80]. The three-category system is as follows: friction 

below 0.3 is high risk, medium risk is between 0.3 and 0.5, and low risk is above 0.5—intervals 

that have been generally accepted and thus used in existing literature. 

Figure 4-8 illustrates the risk warning map of measured and predicted friction under this 

classification system, with red, amber, and green representing high, medium, and low risk, 

respectively. The accuracy based on this classification is 77.95%, which was lower than the binary 

system, but the model still had acceptable performance. Most of the prediction errors (18.90%) are 

False Risky (FR), where non-risky road sections are classified as risky, implying that our model is 

conservative in its predictions, which does not compromise safety. 

The color-coded map provides a risk level along the select highway segments, which can be highly 

informative in practical applications. For instance, by providing real-time road condition 

estimations via online platforms (e.g., 511), trip makers will be able to adjust their travel plans and 

divert accordingly to avoid potential accidents and traffic delays. Likewise, this tool, once refined 

and tested with more data, can also be integrated into vehicle to everything (V2X) technologies 

[21, 81, 82] to provide real-time RSCs information for improved safety before, during, and after 

inclement weather events. Such information can also be utilized by winter road maintenance 

personnel as the maps would provide information pertaining to dangerous road sections so that 

maintenance vehicles could be dispatched in a more efficient and timely manner to perform 

location-specific and targeted maintenance operations to ensure the safety and mobility of the 

winter travelling public. 
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Figure 4-8 Road Risk Warning Map with Measured (Left) and Predicted Friction (Right) 

5 ENHANCING MODEL ACCURACY, EXPLAINABILITY 

AND TRANSFERABILITY 

The previous chapter provided a detailed overview of how winter road friction coefficients can be 

estimated. In this chapter, we will further explore the model developed by comparing its 

performance with more complex algorithms in terms of model accuracy and intuitiveness, as well 

as evaluate the best-performing model in a new dataset to explore its transferability. This chapter 

is divided into four sections. The first section provides a description of the data utilized. In the 

second section, we compare the performance of the decision model developed in Chapter 4 with 

more complex models, including Random Forest, Extreme Gradient Boosting (XGBoost), and 

Support Vector Regression (SVR). The third section involves using SHapley Additive 

exPlanations (SHAP) to evaluate the decision-making process behind each model, which serves 

as a crucial basis for selecting the best model. In the last section, we apply transfer learning 
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techniques to the best-performing model (determined based on accuracy and intuitiveness) to 

enable it to adapt to an entirely new dataset. 

5.1 Data Processing  

The study presented in this chapter focused on using mobile road weather information system 

(mRWIS) data. As mentioned earlier, the amount of data is enormous due to the high-frequency 

data acquisition of mRWIS every 3 seconds. However, the SHapley Additive exPlanations (SHAP) 

model is computationally inefficient. Generating model interpretations using SHAP becomes 

computationally expensive and time-consuming when dealing with such large datasets. To address 

this, an additional preprocessing step is implemented to aggregate the data at a one-minute interval, 

reducing computational complexity. This additional step also helps to handle outliers. In order to 

maintain consistency with the models discussed in the previous chapter, only weather and 

geographic features that are deemed important for predicting friction are considered as model 

inputs, that is, air temperature (AT), relative humidity (RH), surface temperature (ST), latitude, 

longitude, and altitude. 

We utilized two sets of mRWIS data for our analysis. The first set, introduced in Chapter 4, was 

used for model development. It spanned 21 days from 2014 to 2016 and comprised 4,704 samples. 

For training and testing the models, we used 70% and 30% of the samples, respectively. The 

second dataset was specifically collected for transfer learning purposes. It covered a 10-day period 

between January and March of 2023 on Highway 2, between Edmonton and Calgary (as depicted 

in Figure 5-1) and contained a total of 980 samples. Descriptive statistics for both datasets are 

provided in Table 5-1. By leveraging these datasets, we were able to successfully establish, 

evaluate, and optimize the road friction estimation models. 
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Figure 5-1 Road Segments with External mRWIS Data Collection 
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Table 5-1 Descriptive Statistics 

 Mean Std. Dev. Min. Max. Obs. 

Calibration 

Dataset 

AT [C] -4.526 6.293 -28.440 7.210 

4704 

 

RH [%] 84.027 10.706 40.000 101.000 

ST [C] -3.732 4.853 -21.045 5.160 

Latitude 53.643 0.957 50.979 55.237 

Longitude -115.507 1.388 -118.848 -113.233 

Altitude 825.927 112.033 490.150 1161.700 

Grip 0.675 0.219 0.119 0.820 

External 

Dataset 

AT [C] -5.656 6.287 -20.411 8.888 

980 

 

RH [%] 74.067 16.517 28.156 100.000 

ST [C] -1.985 3.520 -11.923 9.374 

Latitude 53.092 0.653 51.152 53.647 

Longitude -113.619 0.169 -114.157 -113.343 

Altitude 754.957 124.051 620.653 1172.085 

Grip 0.743 0.149 0.270 0.820 

5.2 Comparative Analysis Among Machine Learning Algorithms  

5.2.1 Model Structure 

During training, 3756 samples from the model development dataset were used to train the models, 

while 940 samples were reserved for validating model performance. To optimize the performance 

of the developed models, a grid search method was used to determine the optimal hyperparameters 

for each model. After fine-tuning, the hyperparameters that resulted in the lowest error were 

selected. The following are the optimal parameters used for model development: the Regression 

Tree model had a maximum depth of 14, a minimum sample leaf of 1, and a minimum sample split 

of 7. The Random Forest model had a maximum depth of 18, a minimum sample leaf of 1, a 

minimum sample split of 2, and 122 estimators. The Extreme Gradient Boosting (XGBoost) model 

had a gamma of 0, a learning rate of 0.1, a maximum depth of 7, 1000 estimators, and a subsample 

ratio of 0.7. Lastly, the Support Vector Regression (SVR) model had a cost of 10 and a gamma of 

100.  
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5.2.2 Model Evaluation 

Evaluation of the developed models using the test set showed performance scores of 84.17%, 

89.99%, 91.39%, and 85.83% for Regression Trees, Random Forest, Extreme Gradient Boosting 

(XGBoost), and Support Vector Regression (SVR), respectively based on r squared. Overall, all 

machine learning (ML) models exhibited good performance in accurately estimating road friction. 

Among them, the Regression Tree model obtained the lowest score due to its relatively simple 

structure, while the XGBoost model with the most complex structure achieved the highest 

performance, which is slightly higher than that of the Random Forest model. It is worth noting that 

the SVR model performed rather poorly, scoring only slightly higher than the Regression Tree 

model. These findings are in line with the model accuracy and interpretability rankings proposed 

by Herm [20]. 

To further compare and evaluate these four models, mean absolute error (MAE) and root mean 

square error (RMSE) were calculated for further comparison; the results obtained are shown in 

Figure 5-2. From Figure 5-2, we observe that Regression Tree and SVR models have similar 

estimation errors, while Random Forest and XGBoost models have significantly lower errors. This 

indicates that the friction estimation error decreases with increasing model complexity, which is 

in line with what we found previously. In terms of the SVR model, it was the second worth 

performer according to RMSE and the worst when using MAE. 

 

Figure 5-2 Model Accuracy on Test Set 
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To effectively prioritize winter road maintenance operations, we implemented a road friction 

coefficient classification system based on the relative risk level of potential traffic accidents. We 

employed a three-category system and a binary system [83], where the three-category system 

provides detailed insights by classifying the coefficient of friction into high, medium, and low risk 

levels using thresholds of 0.3 and 0.5. Friction values below 0.3 are marked as high risk, those 

between 0.3 and 0.5 are marked as medium risk, and values above 0.5 are marked as low risk. 

Additionally, we introduce a binary system with a threshold of 0.5 to quickly assess road risk by 

indicating whether it exists or not. 

Next, we generated a confusion matrix to assess the accuracy of the classification of the friction 

estimates. The accuracy is shown in Figure 5-3. As illustrated, the performance of the four ML 

models is quite similar. Among them, XGBoost stands out as the best performer, demonstrating 

its excellent ability to estimate road friction. This is followed by Random Forest model, then SVR 

and Regression Tree with slightly worser performance.  

 

 

Figure 5-3 Road Risk Classification Accuracy 

After evaluating the four models using metrics such as r squared, MAE, and RMSE, we have 

determined that XGBoost performed the best, followed by Random Forest, while SVR and 

Regression Tree exhibited poorer performance. However, except for the Regression Tree which is 
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interpretability due to their complex mechanisms. This poses a challenge when assessing whether 
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their predictions align with logical reasoning. Therefore, in the next section, we will leverage 

SHAP to explore the internal workings of the models and gain further insights. 

5.3 SHapley Additive ExPlanations Explanation 

The use of the SHapley Additive exPlanations (SHAP) model serves two purposes in this thesis. 

First, it allows us to generate simple explanations for complex models, thereby increasing model 

interpretability. Second, by examining the contribution of each input feature via SHAP, the logical 

consistency and the correctness of the model structure can be assessed. For these reasons, we 

applied SHAP to the models developed previously in this study to evaluate their intuitiveness. 

5.3.1 Global Explanation  

The summary plot generated by SHapley Additive exPlanations (SHAP) visually represents the 

relationship between SHAP values and their corresponding features. For the analysis of this plot, 

the ranking of the features on the left side of the plot indicates their absolute importance with 

respect to the model. The color of the dots illustrates the magnitude of the feature values, with red 

representing high feature values and blue representing low feature values, while their distribution 

underlines the correlation between feature values and SHAP values. Red dots on the right and blue 

dots on the left indicate positive correlations. Conversely, red dots on the left and blue dots on the 

right indicate a negative correlation. 

Figure 5-4 presents summary plots of the four models separately. By examining the diagram, it’s 

clear that all three tree-structured models function utilize the input features in a similar manner. In 

contrast, the Support Vector Regression (SVR) model is drastically different, where the 

relationship between the input features and friction is close to the opposite of the three tree-

structured models. In terms of feature importance ranking, the tree-structured models have 

identical order, i.e., longitude being the most important, followed by air temperature, relative 

humidity, latitude, surface temperature, and altitude; while the order of feature importance in the 

SVR model is longitude, latitude, air temperature, altitude, surface temperature, and relative 

humidity in the order of decreasing importance. 
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(a) Regression Tree (b) Random Forest 

  

(c) XGBoost (d) SVR 

Figure 5-4 Summary Plot of SHAP Model on (a) Regression Tree; (b) Random Forest; (c) 

XGBoost; and (d) SVR 

In addition to determining the order of feature importance for each model, the summary plot 

presented above also allows us to examine the model’s assumed relationship between the predictor 

features and friction. An example of how this analysis can be done is presented below using the 

Extreme Gradient Boosting (XGBoost) model. The other two tree-structured models should 

operate in the same manner, given how similar their summary plots are.  

● The longitude is positively correlated with SHAP values, namely the higher the longitude, 

the higher the estimated friction coefficient, implying that within Alberta, the low longitude 

area, i.e., the west, is more prone to friction loss. This can be explained by the fact that 

cities, primarily located in eastern Alberta, are more able to conduct timely winter road 

maintenance operations to prevent friction losses or restore road conditions to safe levels, 

whereas the sparsely populated western regions lack this capability. 

● There is a positive correlation between air temperature and SHAP values; an increase in 

air temperature leads to an increase in friction coefficient. This is reasonable as rising 
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temperatures will bring more heat, accelerating the melting of ice and snow on the road or 

drying out the water on the road, thereby increasing road friction. 

● Relative humidity is negatively correlated with friction estimates, meaning that high 

humidity causes low friction. Generally, high humidity causes the road surface to be moist, 

which reduces the friction coefficient. Especially in cold winter conditions, cold weather 

can cause moist road surfaces to freeze, resulting in a sudden drop in friction coefficient. 

Hence, this negative correlation makes sense. 

Unlike the three features mentioned above, the distribution of latitude, surface temperature, and 

altitude points are clumped around 0 (SHAP value), indicating that they contribute little to the 

friction estimates. Further, as there is no distinct separation between blue and red dots, it’s 

challenging to clearly understand the correlation between these features and friction. To solve this 

issue, we plotted the distribution of each feature value and its corresponding SHAP value and used 

linear regression to fit a trend line to further investigate this relationship (Figure 5-5). 

  

(a) Regression Tree (b) Random Forest 

  

(c) XGBoost (d) SVR 

Figure 5-5 Best Fit of Features and SHAP Values in four models 
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The trend line in the plot shows a slight upward trend for surface temperature, suggesting that 

higher surface temperatures contribute to higher friction estimates, which is reasonable as surface 

temperature should have a similar effect as air temperature. In comparison, the trend line for 

altitude and latitude has a negative slope, indicating that friction estimates decrease with increasing 

altitude or latitude. This observation is intuitive as temperature decreases as these features increase, 

i.e., the decrease in temperature caused by these parameters results in lower friction. That being 

said, the flatness of the line indicates that their change has little effect on road friction. To further 

understand the reason why latitude and altitude contribute very little to friction predictions, we 

generated interaction plots to investigate the joint effect of these two features on the friction 

estimates. 

(a) 

  

(b) 

  

(c) 

  

Figure 5-6 SHAP interactive plot of (a) Regression Tree, (b) Random Forest and (c) 

XGBoost with SHAP value for latitude (left) and SHAP value for altitude (right) on the y-

axis 
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Figure 5-6 showcases the interaction plot of the three tree-structed models. Through this process, 

we found that most of the data were collected in low latitude and high-altitude regions, or high 

latitude and low altitude regions; hence the collected data doesn’t have enough variation in these 

two predictors for the models to understand how they are related to friction. 

Moving on to the SVR model, the feature with the largest contribution here is also longitude. 

However, unlike the tree-structured models, it’s revealed that longitude is negatively correlated 

with friction. The second most important feature, latitude, shows a negative correlation, which is 

logical. However, the contribution of the remaining features is ambiguous as illustrated in the 

summary plot. This implies that SVR models may not be able to effectively use these features to 

produce accurate friction estimates. Therefore, such ambiguity in the feature contributions may be 

one of the reasons why SVR models perform poorly on the testing dataset. Similar to the tree-

structured models, we further examined the trendlines for each feature and found that the 

contributions of these features are logically reasonable, indicating that these features do have some 

minor influence on the friction estimates. However, the distribution of the scatterplots also shows 

a more random distribution compared to the tree models, especially for air temperature and relative 

humidity. Therefore, simply using linear regression for fitting is invalid, which may be related to 

the principle of SVR mapping data to high-dimensional space. 

In the global analysis, we analyzed the contribution of each feature to friction estimates for each 

of the four developed models, among which XGBoost was found to be the most robust model due 

to its intuitiveness and high performance.  

5.3.2 Local Explanation  

To ensure the reliability of the model, we expect the contribution direction of features to friction 

estimation in individual instances to match the actual situation. In particular, we expect features of 

air temperature, surface temperature, and longitude to positively correlate with road friction, while 

relative humidity, latitude, and altitude negatively correlate with road friction. Therefore, we 

generate SHapley Additive exPlanations (SHAP) local explanations to showcase the influence of 

each feature on the friction estimation in specific instances by using force plots. To avoid the 

randomness of instance selection and gain a more comprehensive understanding of the inner 
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working of the model, we randomly choose two instances from each road risk category for detailed 

analysis. 

A force plot shows the effect feature value changes have on the friction value output. The bold 

value on the plot indicates the friction value estimated by the SHAP model, with the important 

features represented by the color red and blue, red indicating an increase in the estimate, and blue 

indicating the opposite. Regarding the size of the bars, they indicate the degree of contribution of 

a specific feature, with larger bars representing greater contribution.  

By comparing feature values of specific instance with the mean feature values described in Table 

5-1, we can determine whether a feature value is high or low and assess whether the contribution 

direction of each feature aligns logically with the friction estimate. The specific instances are 

discussed in detail below. 

(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-7 Force Plot of Instance 1 (High Risk)  

A total of six instances were examined, where two instances per risk level were examined. Instance 

1 (Figure 5-7), classified as high risk, has an observed friction coefficient of 0.1265, with the 

following feature values: air temperature of -15.8°C, relative humidity of 84.35%, surface 

temperature of -13.77°C, latitude of 55.95, longitude of -117.3, and altitude of 732.9 meters. Upon 

comparing the feature values with the overall dataset, several observations can be made. The air 

temperature and surface temperature in the selected instances are notably lower than the average 
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values of -4.53 and -3.73. Both the altitude and longitude are below the average of 825.93 and -

115.51, and the latitude is slightly higher than the mean latitude of 53.64. As for relative humidity, 

it remains relatively consistent with the mean value of 84.03%, showing only a slight increase of 

approximately 0.3%. The following are the SHAP explanations for estimates generated by 

Regression Tree, Random Forest, Extreme Gradient Boosting (XGBoost), and Support Vector 

Regression (SVR) models.  

In the Regression Tree, all features except relative humidity and altitude have a significant effect 

on the reduction in friction estimate. Specifically, they led to a decrease in road friction due to 

lower values of air temperature, longitude, and ground temperature, and the higher values of 

latitude. The contribution directions of these features are consistent with their correlation with the 

road friction. Likewise, the contribution direction of each significant influencing feature in 

Random Forest and XGBoost is the same as the Regression Tree. The difference in the Random 

Forest is that the additional feature of relative humidity also has a significant contribution, with 

high values leading to a decrease in estimated friction, consistent with its negative correlation with 

friction.  

In the explanation of the SVR model, each feature makes a significant contribution to the 

estimation of friction. However, under the influence of these features, the generated friction 

estimate of 0.34 deviates greatly from the true value of 0.12, indicating a large error. In addition, 

not every feature contributes as logically expected. Specifically, longitude, air temperature, and 

altitude had opposite effects on the friction estimates. In the model, the low values of longitude 

and air temperature lead to an increased friction estimate, while a low altitude value leads to a 

decreased friction estimate. These unreasonable feature contributions are a reflection of poor 

model performance. 

Instance 2 (Figure 5-8) also classified as high risk, but the significance of its characteristic 

contribution differs from that of Instance 1. The observed friction coefficient is 0.1333, with the 

following feature values: air temperature of -11.548°C, surface temperature of -1.21°C, relative 

humidity of 94%, latitude of 53.54, longitude of -116.8, and altitude of 981 meters. In this instance, 

air temperature, latitude and longitude are below their respective means, and relative humidity and 

elevation are above the mean. Surface temperature is higher than the mean, yet below 0 degrees. 
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(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-8 Force Plot of Instance 2 (High Risk)  

In the Regression Tree, all features play an important role in friction estimation, except for altitude. 

This implies that the contributions from the other features are sufficient to bring the friction 

estimate close to the true value, while the contribution of the altitude is minimal, consistent with 

the overall feature importance displayed in the feature graph. The remaining features that have 

significant contributions largely align with our expectations, as higher altitudes are negatively 

correlated with friction, while lower air temperature and longitude are positively correlated with 

friction, leading to lower friction values. Despite the surface temperature being above the average 

(-3.73), it is still reasonable to expect lower friction since it remains below 0 degrees. However, 

the low latitude value results in a decrease in friction, which contradicts the expected relationship. 

Nevertheless, considering that the latitude value is close to the dataset's mean of 53.64 and the 

observed instability of latitude's contribution in the global interpretation, we can attribute this to 

an acceptable error. Similarly, in the Random Forest model, each feature has a significant effect 

on the friction estimate with logical direction. Additionally, in this instance, high altitude has a 

logical effect on the reduced friction estimate. When using XGBoost to estimate friction, all 

features have a significant effect except for the minimal contribution of relative humidity, and the 

contribution directions of all features align with the analysis conducted for the Regression Tree 

and Random Forest. Notably, the contribution of latitude decreases in more complex models, 

corroborating that increasing model complexity improves accuracy. Moreover, the features of the 

SVR model that have a significant impact on friction estimation are consistent with XGBoost, but 
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the direction of contribution is different. That is, the low value of surface temperature and 

longitude lead to an increase in the friction estimate, which contradicts the actual logic. 

(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-9 Force Plot of Instance 3 (Med Risk) 

Instance 3 (Figure 5-9) is classified as medium risk, with a true friction coefficient of 0.4115. The 

corresponding feature values are air temperature of 2.105°C, surface temperature of -3.465°C, 

relative humidity of 94.85%, latitude of 54.31, longitude of -116.4, and altitude of 915.4 meters. 

Of these, longitude is below the mean and the rest are above their respective means. 

In the Regression Tree model, surface temperature, longitude, relative humidity, and air 

temperature are the features that contribute most to the friction estimates. High air temperature 

increases friction estimate, while lower longitude and high relative humidity lead to lower friction 

estimate, which agrees with our expectations. Although the surface temperature is slightly above 

the mean value of -3.73, as it is still below 0 degrees, its role in reducing friction is also reasonable. 

In Random Forest and XGBoost models, all features affect the estimated friction and contribute to 

a reasonable direction. Apart from that, latitude and altitude also play an important role in these 

models compared to Regression Trees. Since the correlation between friction and latitude and 

altitude is negative, it is reasonable that high values of these features would lower the estimated 

friction. In this instance, the SVR model shows conflicting contributions and rankings compared 

to tree models. Specifically, the low longitude contributes to a higher friction, while air 

temperature above 0 leads to a lower friction estimate, which is illogical. 
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(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-10 Force Plot of Instance 4 (Med Risk) 

Instance 4 (Figure 5-10) represents a medium-risk scenario, with a true friction coefficient of 

0.4875 and the following feature values: air temperature of 0.045°C, surface temperature of -1.685 

°C, relative humidity of 95.55%, latitude of 54.39, longitude of -116.88, and altitude of 839.8 

meters. Compared with the mean value of each feature, the longitude is lower and the rest of them 

are higher. 

In the three tree models, all features except altitude have a significant effect on the friction 

estimate, and each feature contributes logically. High humidity and latitude, along with low 

longitude and surface temperature, lead to a low friction estimate, while air temperature above 0°C 

increases friction. Comparing the friction estimate generated by SHAP reveals that the estimates 

from the Random Forest and the XGBoost are closer to the observed true value than that from the 

Regression Tree. However, the SVR model differs from the tree model in several ways. First, 

surface temperature has a marginal effect on friction estimation in the SVR model, whereas it 

contributes significantly to the tree models. Second, altitude has a significant effect on the friction 

estimate in the SVR model, which is consistent with the logical expectation that a higher altitude 

would reduce friction. In addition, the contribution directions of longitude and temperature in SVR 

contradict those observed in the tree models, suggesting an unreasonable influence of them on the 

friction estimation. 
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(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-11 Force Plot of Instance 5 (Low Risk) 

The low-risk instance 5 (Figure 5-11) has a true coefficient of friction of 0.82 and the features are 

a temperature of -4.755°C, a surface temperature of -4.545°C, a relative humidity of 76%, a 

latitude of 53.57, a longitude of -113.7, and an altitude of 689.6 meters. All are below the mean 

except longitude, which is above the mean. 

In the three tree models, the contribution direction of each feature value is logical, where the 

features in the Regression Tree that contribute to the friction estimate are longitude, relative 

humidity, altitude, surface temperature, and air temperature. Among them, low altitude, low 

relative humidity, and high longitude lead to a high friction estimate, while low surface and air 

temperature lead to a low friction estimate. The Random Forest model places less emphasis on the 

effect of altitude on the friction estimate compared to the Regression Tree. Additionally, in the 

XGBoost model, the contribution of air temperature is negligible compared to the Random Forest, 

while the contribution of latitude is more prominent, with low latitude increasing the friction 

estimates, which is expected. In the SHAP force plot of the SVR model, we can see that the 

estimated friction coefficient exceeds 1, indicating that the model has the potential to produce 

over-range estimates. 

Instance 6 (Figure 5-12), marked as low risk, has a true friction coefficient of 0.82, and the features 

values are: air temperature of 2.22°C, surface temperature of -2.46°C, relative humidity of 64%, 

latitude of 51.41, longitude of -114, and altitude of 1132 meters. In this instance, air temperature, 
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surface temperature, longitude, and altitude are higher than the mean value, while relative humidity 

and latitude are lower than the mean. 

(a) Regression Tree 

 

(b) Random Forest 

 

(c) XGBoost 

 

(d) SVR 

 

Figure 5-12 Force Plot of Instance 6 (Low Risk) 

The force plot of the Regression Tree suggests that it is reasonable that high temperature, 

longitude, and low humidity increase the estimated friction, while high latitude and low surface 

temperature decrease the estimated friction. However, in this instance, a high altitude increases 

friction, contradicting our expectations and implying that the Regression Tree model may be 

flawed. Additionally, all features of the Random Forest contribute to the friction estimate in the 

same way as the Regression Tree; the most notable difference being that the contribution of altitude 

in the Random Forest is subtle and therefore can be ignored. In contrast, the importance of the 

features in XGBoost illustrates the superiority of XGBoost because high altitude helps to reduce 

the friction estimate rather than increase it like what was observed in Regression Tree and Random 

Forest. For the SVR model, the contribution direction for longitude, altitude, and air temperature 

are reasonable. However, it is irrational that low latitude leads to increased friction, and low 

humidity reduces friction. 

In the analysis presented above, we examined two instances for each risk category, where the 

feature values exhibited distinct contributions. By doing so, we avoided the randomness of 

interpretations and demonstrated that the generation mechanism of each friction estimate differs 

in local instances. The analysis of force plots for local instances reveals that the structure of the 
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SVR model is relatively weak and prone to logical misestimation. Therefore, caution is needed 

when using this model. On the other hand, in most cases, the three tree models (Regression Tree, 

Random Forest, and XGBoost) work in a similar and logical way. In some of the cases, by 

examining the internal logic of the model, we can find that the overall reliability of the tree-based 

model is ranked as XGBoost, Random Forest, and Regression Tree, which confirms that an 

increase in model complexity can improve the performance of the model. The above results show 

that force maps with local examples can help us gain insight into the model's inner workings and 

provide guidance for choosing the right model.  

As presented above, the application of SHAP models for both global and local interpretation equips 

us with tools to evaluate and fine-tune machine learning (ML) model performance. Our findings 

corroborate that the SHAP method is effective in augmenting the interpretability of ML models, 

enabling us to better understand their underlying mechanisms. 

5.4 Transfer Learning 

5.4.1 Model Generalizability on the External Validation Dataset 

A model with strong generalization capabilities is essential as it ensures it performs well on new 

and unseen datasets. To evaluate the generalization capabilities of the models, we applied the four 

models to the external dataset. This evaluation will help us determine which model can be widely 

applied in real-world scenarios, maximizing its utility.  

 

Figure 5-13 Model Accuracy on External Validation Set 
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After applying models to the external dataset, the mean absolute error (MAE) and root mean square 

error (RMSE) were calculated and shown in Figure 5-13. As the figure illustrates, the overall rank 

of model performance is consistent with the results observed in the previous section on the test set, 

though the overall accuracy dropped due to changes in dataset characteristics. Nevertheless, the 

estimation errors of the models remained low (below 0.2), signifying the robustness of the models 

developed. 

To examine if this increase in error can lead to misclassifications, we converted the predicted 

friction values into risk levels based on the previously described system. The results from this 

analysis are shown in Figure 5-14. As depicted, Extreme Gradient Boosting (XGBoost) and 

Random Forest maintained a high accuracy of around 85%, while the classification accuracy of 

the Regression Tree model dropped significantly to 80% or lower, further confirming the negative 

relationship between model accuracy and complexity. Surprisingly, the Support Vector Regression 

(SVR) model achieves the highest accuracy on the testing dataset. To explore this anomaly, we 

carefully examined the confusion matrix and found that the SVR model's estimation ability on the 

external dataset is quite poor. As Figure 5-15 suggests, the friction estimates generated by SVR 

are only in the low-risk category. It is evident that all the estimated values on this dataset are 

distributed in the low-risk region. Therefore, even though it exhibited an accuracy of 87.04%, the 

model is not trustworthy. Hence, the SVR model was rejected due to the lack of generalization 

capability. On the other hand, the other tree models were able to accurately estimate friction values 

for each risk category. 

 

Figure 5-14 Road Risk Classification Accuracy on External Validation Set 
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(a) Three-Category System (b) Binary System 

Figure 5-15 Confusion Matrix of SVR Model on Validation Set of (a) Three-Category 

System; (b) Binary System 

Based on this evaluation, we can conclude that the SVR model built in this study lacks 

generalization capabilities, while the tree-based models are much better at adapting to new 

datasets. However, the performance of the tree models can still be somewhat affected due to the 

different dataset characteristics. 

5.4.2 Transfer Learning 

After evaluating the model performance and analyzing the SHapley Additive exPlanations (SHAP) 

explanations, Extreme Gradient Boosting (XGBoost) emerged as the top-performing model with 

the most credible inner logic, making it the optimal choice for road friction estimation in this study. 

With the optimal model identified, our focus shifts to enhancing its transferability to address the 

issue of decreased model performance due to different data characteristics for broader applications.  

Given that the new dataset contains only 980 samples, which are significantly fewer than the 

93,101 samples used to train the original model, it is reasonable to expect that a new model built 

solely on this smaller dataset would underperform compared to the original. To overcome this, we 

employed transfer learning. This technique leverages a small amount of new data to update the 

existing model, thus enhancing its adaptability to new datasets and producing more reliable 

estimates. This strategy effectively solves two problems: the inapplicability of older models to new 
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datasets and the insufficiency of new data for training a completely new model with satisfactory 

performance.  

We began by splitting the external data set, which consisted of 980 samples, into a training set and 

a testing set. The training set, comprising 70% of the data, was utilized to develop the transfer 

learning model using the two-stage TrAdaBoost.R2 algorithm. Regarding the model 

hyperparameter values, 100 estimators, 15 steps, and 5 folds were selected; these values were 

obtained from parameter tuning via random search. After calibrating the model on the training set, 

it was applied to the testing set containing 295 samples for evaluation. We compared the confusion 

matrices of the primary XGBoost model and the improved XGBoost model (Figure 5-16). 

From Figure 5-16, it can be observed that the primary XGBoost model failed to identify high-risk 

road conditions in the three-category system, which is detrimental to providing accurate 

information to winter road maintenance (WRM) personnel and the general public. Misclassifying 

high-risk road conditions as lower risk can lead to complacency, leading to an increased risk of 

traffic crashes. Similarly, in the binary system, 35 out of 44 risky road conditions were incorrectly 

labeled as non-risky. As a result of the increase in mislabels, transfer learning is required to 

calibrate the model to the new dataset.  

Following transferring learning using the TrAdaBoost.R2, model performance improved 

significantly, particularly in the three-category system, where the improved model demonstrated a 

much higher rate of correct classifications for each risk level. Furthermore, the binary system 

successfully identified 32 risky road conditions, which was a drastic performance boost compared 

to the previous 35 mislabels.  

To quantify the improvements achieved through transfer learning, we compared model 

performance in terms of several error metrics (Table 5-2). The evaluation results demonstrate the 

positive impact of transfer learning. Specifically, we observed a notable decrease in the mean 

absolute error (MAE) by 0.0965, the mean squared error (MSE) by 0.0289, and the root mean 

squared error (RMSE) by 0.1159. Moreover, the accuracy for the three-category classification 

increased by 10.21%, and there was a 10.89% improvement in binary classification accuracy. 

These significant enhancements in model performance highlight the necessity and effectiveness of 

applying transfer learning techniques. 
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(a) Primary XGBoost 

 

(b) Improved XGBoost 

Figure 5-16 Confusion Matrix of (a) Primary XGBoost Model; and (b) Improved XGBoost 

Model with three-Category System (left) and Binary System (right) on Test Set of External 

Data 
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Table 5-2 Comparison of Model Performance 

 MAE MSE RMSE 
Three-category 

Classification 

Binary 

Classification 

Primary 

XGBoost 
0.1261 0.0333 0.1824 83.33% 83.67% 

Improved 

XGBoost 
0.0296 0.0044 0.0665 93.54% 94.56% 

Model 

Improvement 
-0.0965 -0.0289 -0.1159 10.21% 10.89% 
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6 CONCLUSIONS 

In this chapter, we provide a detailed summary of the work that has been done in this thesis. Firstly, 

we give an overview of the thesis. After that, we present the main findings of the study. We will 

then summarize the contributions made by this work, highlighting the progress achieved in the 

field and the impact of the research. Lastly, we discuss the limitations faced during the study and 

provide suggestions for future research. 

6.1 Overview of the Thesis 

Efficient winter road maintenance (WRM) operations are essential for enhancing traffic safety and 

efficiency during winter conditions. However, achieving this objective necessitates the availability 

of accurate road surface condition (RSC) information, which can be challenging to obtain. This 

thesis proposes a framework for estimating road friction via weather and geographic data to 

address this issue. The model incorporates Ordinary Kriging (OK) to fill in missing data, enabling 

spatially continuous estimation of road friction. Additionally, a road risk classification system is 

developed based on friction estimates, providing concise and intuitive information for WRM 

personnel and road users. 

Furthermore, efforts were made to explore more complex tree-based algorithms for predicting 

friction. Between Regression Trees, Random Forests, Extreme Gradient Boosting (XGBoost), and 

Support Vector Regression (SVR) models, the XGBoost model displayed the highest accuracy 

while also maintaining an intuitive decision-making process. Part of this process involved using 

explainable AI techniques, i.e., SHapley Additive exPlanations (SHAP), to investigate the 

underlying reasoning of the models, thereby making it more transparent and accessible to the user. 

To enhance the application scope of the friction estimation model further, transfer learning 

techniques were explored. The results from this analysis revealed that leveraging transfer learning 

allows the model to adapt to new datasets and scenarios, enhancing the model's transferability and 

utility in practical WRM operations. 
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6.2 Key Findings of the Thesis 

The key findings of this thesis encompass two main aspects of road friction estimation and model 

enhancement. In the first part, we explore the development of a friction estimation model, its 

correlation with weather and geographic factors, and the production of road risk maps. In the 

second part, we discuss the enhancement of the model through the exploration of more complex 

algorithms, interpretability, and transferability. The details are provided below. 

Road Friction Estimation and Risk Mapping 

A friction estimation model was calibrated using a Regression Tree algorithm with weather and 

geographic factors as input features. The correlation matrix suggested road friction is positively 

correlated with air temperature, surface temperature, and longitude; and negatively correlated with 

relative humidity, latitude, and altitude. The features at the decision nodes shown in the model 

visualization were in the same order as the correlation rank, indicating a correct internal logic of 

the model. With a high accuracy rate of 93.3%, the model demonstrated that road friction can be 

explained by weather and geography. To predict features at unsampled locations between 

stationary road weather information system (sRWIS) stations, Ordinary Kriging (OK), a 

geostatistical interpolation method, was applied. The OK interpolations were similar to mobile 

RWIS (mRWIS) measurements despite certain discrepancies due to the omission of snow depth 

and predictor estimation error. 

A road risk map was produced based on estimated road friction and defined risk level. OK was 

adopted to generate continuous weather information. These interpolated weather data were then 

inputted into the friction estimation model to obtain a road friction map. Risk thresholds of 0.3, 

0.4, and 0.5 were chosen to categorize friction as risky and non-risky. The validation accuracy 

reached 84.25%, 89.76%, and 88.98% for three different thresholds in increasing order. By 

increasing the number of risk categories to three, high (<0.3), medium (0.3–0.5), and low (>0.5), 

we were able to generate a more comprehensive risk map with a 77.95% accuracy. The prediction 

errors consisted mostly of False Risky (18.90%) and low False Non-risky (3.15%), indicating our 

developed model is conservative and advantageous from a safety perspective. 

The results obtained show that the proposed framework is robust and feasible. By generating a 

road friction estimation map, winter road maintenance (WRM) authorities can deliver more 
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comprehensive assessments of road conditions to road users and make their own operations more 

efficient. 

Advanced Model Analysis via Explainable Artificial Intelligence and Transfer Learning 

In order to improve the accuracy of the friction estimation model, we explored more suitable 

Machine learning (ML) algorithms and compared their performance. Four different models, 

namely Regression Trees, Random Forests, Extreme Gradient Boosting (XGBoost), and Support 

Vector Regression (SVR), were selected and trained on the aggregated mRWIS dataset with a one-

minute interval. The models achieved R2 accuracies of 84.17%, 89.99%, 91.39%, and 85.83%, 

respectively. It is evident that as the complexity of the models increased, their accuracy improved, 

with XGBoost outperforming the others and Regression Trees exhibiting the lowest accuracy. 

However, as the models became more complex, their interpretability worsened. To address this 

issue, we introduced SHapley Additive exPlanations (SHAP) to explain the complex models. 

Through SHAP global explanations, we observed that the feature contributions of the tree-

structured models were similar, with minor variations, while the SVR model was completely 

different. When we examined the direction of the contribution, it became apparent that the tree-

structured models aligned better with the real-world logic, while SVR exhibited notable 

discrepancies. To further validate this observation, we performed local explanations and examined 

selected model instances in detail. The results generated further confirmed our finding that only 

tree-based methods created intuitive models. Despite the SVR being slightly more accurate 

compared to the Regression Tree model, we rejected the SVR due to its limited interpretability. It 

is evident that although slight deviations from actual logic were observed, the tree-structured 

models demonstrated reasonable feature contributions in each specific instance. Among them, 

Regression Trees showed the greatest degree of deviation, followed by Random Forests. Only 

XGBoost consistently exhibited a reliable inner logic. By utilizing SHAP, we improved the 

interpretability of complex models and further confirmed the superiority of XGBoost for friction 

estimation. 

Finally, we applied the optimal XGBoost model to an external mRWIS dataset and utilized the 

two-stage TrAdaBoost.R2 for transfer learning. The RMSE of the model after transfer learning 

was 0.066, which represented a significant reduction compared to the RMSE of 0.182 obtained by 

applying the primary XGBoost. These findings demonstrate the success of transfer learning and 
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prove its effectiveness in helping to migrate models to new datasets, thus expanding the range of 

applications for which the models can be used. 

6.3 Contributions of the Thesis 

Through the research conducted in this thesis, significant contributions have been made toward 

the accurate estimation of road friction coefficients, enabling the provision of timely and precise 

road surface condition (RSC) information. These contributions can be broadly classified into 

methodological and practical contributions as follows: 

Methodological Contributions 

• Established an accurate estimation model of winter road friction coefficients by 

integrating stationary and mobile road weather information system (sRWIS and 

mRWIS) data. Utilizing data from both RWIS systems, the models developed in this thesis 

overcome the drawbacks of each data source, offering a practical method for real-time 

estimation of road friction across a continuous space. 

• Conducted a comprehensive comparative analysis to identify the best-performing 

machine-learning algorithm. By comparing models of varying complexity, this study 

identified that Extreme Gradient Boosting (XGBoost) model is the most accurate algorithm 

for estimating road friction coefficients. 

• Utilized SHapley Additive exPlanations (SHAP) explainable artificial intelligence (AI) 

to improve the interpretability and performance of complex machine learning (ML) 

algorithms in winter road friction estimation. The integration of the SHAP model 

significantly improves the models’ interpretability, highlighting the importance of 

combining explainable AI with ML in winter road friction estimation. 

• Adopted transfer learning techniques to extend the model's adaptability to new 

datasets, expanding its applicability. Faced with limited new data, this thesis leveraged 

the two-stage TrAdaBoost.R2 technique with existing models and a small amount of new 

data, resulting in improved model performance. These findings serve as practical guidance 

for the application of transfer learning and substantiate the potential to broaden model 

applicability and performance across varied environments. 
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Practical Contributions 

• Enhanced Operational Efficiency for winter road maintenance (WRM) Personnel. 

The methodologies developed in this thesis enable WRM personnel to prioritize 

maintenance activities based on the level of road risk, thereby maximizing operational 

efficiency. By offering the potential for real-time estimation of road friction, maintenance 

departments can deliver more targeted and timely responses to changing road conditions. 

• Improved safety and convenience for drivers during winter travel. The work 

conducted in this thesis lays the groundwork for providing drivers with real-time 

information on road conditions. This has the potential to enhance safety and convenience 

during winter travel, contributing to more informed decision-making on the road and 

potentially reducing the risk of accidents related to adverse weather conditions. 

In light of above, these methodological and practical contributions collectively advance the 

understanding and capabilities of WRM and safety, whereby offering valuable insights and tools 

that can be applied in both research and real-world settings. 

6.4 Limitations and Future Work 

While the findings of this thesis have broad implications, it is important to acknowledge that the 

study is not without limitations. The most evident limitation is the availability of datasets. The 

dataset used in this thesis does not contain parameters like snow depth, which could potentially 

contribute to improving the model performance. As mentioned in Chapter 4, the absence or 

presence of snow on the road surface has a strong correlation with road friction, meaning friction 

notably decreases with increasing snow depth and vice versa.  

In addition, there is a lack of consideration of traffic attributes, as heat from heavy traffic is known 

to increase road surface temperature and thus affect road surface conditions (RSCs) (e.g., making 

snow-covered roads slushy). Furthermore, limited sample size results in insufficient spatial 

coverage of the data, thereby restricting model performance to local areas with reduced 

transferability potential. Although geographical characteristics have been taken into consideration 

to improve the spatial representation of variables under investigation, the use of more datasets 
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covering large areas could further improve the conclusiveness as well as the transferability of the 

findings documented herein.  

Furthermore, for the comparative analysis section, only four machine learning algorithms were 

compared in this paper, while the inclusion of additional different machine learning algorithms 

could be considered in the future for a more comprehensive comparison. 

On the other hand, there are also limitations in the application of SHapley Additive exPlanations 

(SHAP). This thesis did not address the potential model flaws revealed in the SHAP model 

explanations. Additionally, another limitation is related to the accuracy of SHAP. As a simplified 

interpretation model, SHAP cannot fully elucidate the intricate inner workings of the model. 

Future research is therefore required to address the limitations mentioned above. First, the study 

area can be expanded to include more data points and more predictors, such as snow depth. It is 

also critical to implement more spatiotemporally comprehensive datasets that can capture the 

diversity of geographical and topographical characteristics. In addition, traffic volume and winter 

road maintenance (WRM) activities should be considered to account for the influence of human 

activities. Likewise, more advanced variants of kriging interpolation techniques, such as network 

kriging or regression kriging should be adopted to improve interpolation accuracy further. In terms 

of the SHAP application, addressing the model flaws identified by SHAP, such as removing 

features with illogical contributions, could improve model performance.  
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