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v " RBSTRACT - - .

- The. notlon of an a,symptotnc tree ls 1ntroduced a.nd studled wnthm the frame-

‘work of Banach spwces with, a Schauder ba.sxs Thls concept is related to the

: geornetrxc and renormmg properties of certain Banach spaces. In pdrtlcula.r, we

*>
demonst;a.te that spaces renorma.ble unlformly asymptotlcally smooth along a
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Schaudétﬂis fail to have such trees whereas they “do occur in spaces fallmg
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_NOTATION - .
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We list below seVe:r;_a.l symbc;ls which will \bé.used in thfxs'theéis..
: ~ By= the clésed 1~1nit‘:ball in fhe space Y |
B,= the»épen ball of radius r of a space X - L

B;= .t}}e opeﬁkalr of radius r for X* - |

B* (i*,r)'?.-t_the open ball centered at z* of radiu; r \‘
Bx(” N= {thel'c.lasjed unit ball of X wit!l: the norm || - || |
'£,,'= the sp;ce ‘:)f all séquences.; (z:) such that 3° |zi|P & o0 . \)\
o = ’thé}svpace of all séqgénces (z;) such that shplﬁ:;l < 0. o

co = the subspace of £ of all sequences Jonveréing to 0

%
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o . INTRODUCTION ~.
A
s '\\'
~ In his 1972 paper |7}, R.C. James forwarded the notlon of the Finite ’Free

Property and showed that a Ba.na.ch space is super-reﬂexive if a.nd only if 1t fa.lls ‘

this property James has since then used spuceu cnnttructed frorn trees as counter- ‘

exa.mples t lmporta@problems in Bana,ch space theory. Subsequentl.y varxatxons

on this tree therne have been mtroduced notabl'y the concept of an e-bush, whlch

- completely charactenzee the Radon-leodym Property

\;that,, the space has the Radon-Nikodym P¥operty precisely when it contains no.

te

‘ chaptér also gives a brief discussi‘bn of -.thé Finite Tree P‘rpper(y. -

@
2

If we conslder »the case of a Ba.na.ch space whlch 1sva dual space, then we -

\

can make a stronger statement. This important résult of Stegall (cf. [2]) states

TN

bounded e-trees. For dual spaces we also have the ‘concept of the convéx w* -point,

of contmmty property. This notion, which is stnctly weaker than the RNP (cf.

[5}) will be the focus of our attent‘o/

Our aim ‘ln this thesis is to examine the geometric and renormiing 1mpllcatlons :

)
of a new type of tree (mtroduced here) which is defined in the dual of a Banach

space with Schauder basis.

-

Chapter One presents the basic d_eﬁnitidns of the types of trees we wish to

examine\and provides examples of. spaces which contain 6;- lack these trees. This

In Chapter Two, spaces’ Umformly Asymptotlcally Smooth Along a Sehauder ™

basis (UASAS) are shown to la,ck these a.symptoﬁ trees under -all equivalent
renormings. In pa_rtxcula.r,thetdual of the Baernstein space is shown to be UASAS
thus strengthening the result in [10]. There the Baernstein space is shown to be a

reflexive uniformly Kadec-Klee space failing the Banach-Saks property.

-

, o
3.
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. We conclude: with Chapter Three where we demonstrate that spaces with a
Scha.uder basis whxch fml the Convex w'-Point of Continuity Property contain ofir

asymptatic trees. : . .

. " -
. LY .
)
" .
.
.



Chapter 1
TREES IN. BANACH SPACES -
v . ’7

)

. Il_l}hi!l chapter we concern ourselves mainly with trees in Banach spaces. After
giving examples and results concerning ordinary trees we will define asympﬁ%ii:
trees and provide examples of these. We start by stating the classical definition of

a tree.

.

1.1 Definition: Let X be a topological vector space. Then {z,}72, C X is said

to be a tree if for alln=1,2,..., - ' /

1 . o
In = '2'(?2n + Zon+1 ) §

A tree then js a sequence of pointaconstructed such that given the nth _efeTnent

\z,;j2n“‘ t.a,nd (2n +1)% elements have zKas/ﬁg(ir midpoint. We say that zj,
. 5 . .
a an+1 arenbr_a‘nches‘of Ty. ‘ » -

~
‘

1.2 It is clear that given z € X, then K{zn}ﬁ\ with £ = z,, for all n is i.trge.

In order to avoid such trivial examples we wish to seperate Ty and Zaai1, e

A}

Zan F# Top+1. TO thisfgnd we turn to-normed linear spaces and introduce the

following 3 ' /

- t
Definition: If X is a pormed linear space, then a tree {z,}3, is an e-tree if

-

[ 220 — zal| > €

3



, .
-Sincepx.. is the ‘midpoint of z3a ‘and Dan+1 , Il_mg,m - Zn|| = lzan — zal| =
%”172» ~ Zane1 || > € B

.

~ -

i . t e
P

.3 Definition: we say # tree {z,}%°, in a normed lincar space is a bounded

~
N \

N -~

Our concerns will' be with bounded e-trees.

y

1.4 The informationfound in this section is from [2]. We will be content with

defining certain properties and stating twg results which show the value of the
&~

. Finite Tree Property. We begin with a list of definitions.

-

Definition: A Banach space has the Finite Tree Property (FTP) if for each ¢,

P

0<e<l, and each positive integer n there is a finite sequence {xl,; < Ty}

in Bx such that

‘

1
L= E(zzj +23+1) and ||z — 7] 2 €

)

for j =1,2,---,2"1 1.

N

~

' Definition: A Banach space Y is finitely representable in X iffor each ¢ >0
and each finite dimensional subspace W C Y; there is a 1-1 linear operatorT :

W — T(W) C X with |T]|IT1]| < 1+ €.



R ... AT
.“, : . ! N

_ Deéfinition: X is super-reflexive if each Banach space finitely representable in
X is reflexive. I

s
(]

Deﬁmtlon- A Banach space. is umformly convex if gwen e, 0 < €

exlsts 6= 5(6) > 0 such that 1f z,Y ‘e Bx Wlth ||:c - y|| > & thpn

'»/,’.\. ) . . .'.,"
S v Ve

! . , ", n R : 1 s l :
T Yarygsieg

We are now in a posutxon to state our two results the ﬁrst is due«to R. C.-

~

James the*second was proven by P. Enﬂo - G L o

Result 1. X is super-reﬂexwe if and only if X fails the FTP

Result 2. X is super-reﬁexwe 1f and only if X has an equlvalent norm whlch*

A isumformly-convex BT i,? & | T . i ‘
These theorems show the relz—ulonshxp between trees and \the geometry of the

w
-

g spaces whlch contam them , ‘ L 2 .

L e

1 5 Wlth our small dxgqessron concluded we turn, -as prormsed to a host of ex-
: amples Our ﬁrst wrll be the prototype of the new type of tree to be 1ntroduced
Example 1 For X = Zoo, let :z:l = (1,0, ;) If ngen zg = (a;',.,. ,ak,O,---) _
where a; = :l:l t‘ = 1,2,--‘-,k, then we define :z':-z,,‘ = (o1,02; 'al;lli 0, .0 -e)
* and 3:2',,+1 = (a1, 'az-, . ak, 1 O 0; ) By mductlon thls example gwe;\ al-

™

tree contamed in the umt ball of Zoo On notmg tha.t in turn ea.ch element _in the
tree belongs to co-we can cpnclude that bounded e—trees ex1st in. t e umt ball of
€ for a;lle>0 |

Example 2: R the real number hne, can contam no bounded e—tree for any €> 0

v‘ . A o‘,\



|

[ . L e o

' Ethple 3: A well known "fesﬁmistltés that a space containing a bounded e-tree .
‘cai,lnot have the Radon—Nrkodym Property (RNP)[Z] A class of spaces havmg

thls property is the £, spaces for 1 < p < o0. As already noted in: example 1, we

cannot include the 00 case .
! .

’ Example 4 " AlL ough R ca.nnot have bounded e—trees it can accommodate long
vﬁmte trees of the type nientloned in connectlon thh the mete Tree Property. '

fHowever, R does not satlsfy the finite tree property, since the long tree need not

s

| ‘ ‘lle in the unit ball of R i.e., the 1nterval (-1, 1] ‘ s

1

. -
-

L~
)

1.8 Ha.vmg discussed these examples we now wrsh to deﬁne a new type of tree /

To thls end we first need a deﬁnitxon o o -

R ' ® o - | . /
' /
Deﬁmtlon' Let X be a banach space. A Schauder ‘basis is a set {£;}2,/€ X

1=
such that to each z € X there. corresponds a umque set of scala.rs a1 , a2 /L such
/ .

athab . e e | /o
S l_‘fg‘o =~ Za,z,” = 0. _ “ : / "
S i=1 /
, o v )
In this case we write ' ' / .
v i . ‘_ . ' . . . ,. -
= : | l. z = Za,af‘. - ,»’, . - '

If X has a Schauder‘ basis then it is natural to consider eilements' of X* re-
"stncted to ﬁmte dxmensnonal subspaces generated by the elements of thig basis.
‘Our trees, whrch will be called eztended trees, will be cha.racteqzed by restrlctlons
,.to such—subspaces Before the deﬁmtlon is unveiled, we mtroduce some notation

‘Let § = {zk}ﬁ‘_’__‘l be a S/chauder ba.sis in a Banach space X. For z =

b

4‘4
N
M.



Z:?_—l' aiTk deﬁﬁg S . | )
. N TN Pn (z Z wer.

L Then {P,,},‘__l are the basis progectlons and we deﬁne the subspace P, (X ) C X °

Ty

2

. : - - IS
. . R . ) -
h'a‘s N —— e —— . : .

P,,(X) = {:1:— Zak:ck ak =0, k> n}
' |

k=1 9
This notation reflects the fact tl}a.t P, maps X onto P,; (X )- Although not needed

at present, we can set Tn =I-P, (I bemg the identity ma.p I: XX )-and
€ ‘ . ‘ : v S

N .
. T,,( { = Z ak:z:k}
k=n+1 v
Agam this notatxon stresses the fact that T, maps X "onto ,.(X )

. v deﬁne ‘

- We-now consnder f € X * We denote the restnctl
Pi(X) by f| and set | L
| o ||f|k|| T
Slmllarly £l w1ll denote the norm of f restrlcted to TL(X ) We can now

proceed to the main deﬁmtlon.

1.7 Definition: If Xisa Ba.nach space w1th Schauder basis, we saynfis}n2) C X*

is an extended e-tree if there exists { Ir..} S N (kn mcreasmg) such that

1. fa= 2(f2n + f2n+1 )

J ”on"‘fn”>f .

oo

4. fnl’kn= on?IIc,. = f2n+i Ik,; '

L]

1.8 Example 5: In example 4 we noted that R could have a.rbltrarlly long |

bounded e-treES‘Thls is not the case 1f we con81der extended e-trees. In this case,



\

. the elements of the tree must \be equ‘e.l on the only non-trivial subspace iie. R

itself. B R _ '
‘Example 6: If X is ¢; then the standard Schauder basis is {c,}‘_l where & =

{0,0,: 0 1,0,0,- ), the 1 occuring in the i** place. Suppose {k,, Joly CNi is

- given. We have X* = £o, and Ae will model our example‘ on the'tx;ee g‘iven in

Example 1. We first set f1 = ( -++,1,0,0::+) where there.are k; 1's. We will

show how “fz,. and fan+i are found._lf fn is known To do this, we ﬁrst suppose

'that\fn = (al, *,a5,0,0,---) where.a; = +1 for ¢ = 1,2, J Now we choose
-

' fon and f2n+1 with kop41 non-zero entries all occurmg in the ﬁrst kg,H.l places

" These non-zero entries are,chosen so-that the ﬁrst J cpmcnde thh the first: J of zn

and the remé.in-ing kony1 — 7 are.all 1’s for fon e.nd al;ll‘ —1's for fonq1 . It is clear

that k2n+1 > j and so we obtain an e.xtended l-tree ’

We should note tha.t thls exa.mple does not extend to ¢ since ¢o “is not & dual s

. space.
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‘ CHAPTER TWO. . o

i

- EXTENDED TREES IN SPACES UASAS
~,

In [9], Lewis, Whitﬁeld and Wzler introdﬁced the notion of 'unifofm asymptotic
~smoothness along a Schauder basns 8 = {:z:,,},,_1 (UASAS) for a Banach space
X. This p'roperty provides a class of Banach spaces whose duals fail to contain a

I\.

- bounded e—f.ree»for any € >0. .
21 I_Deﬁnif.ion: Let X be a Banach space wi;h a Scha.uder basis S= {:c_,,}ﬁil .
We say that X is Uniform‘ly. Asymptotically Smooth Along S (UASAS) if

for eyerye'>‘0 o P e ; }*

+ c - - B - “ . “:Y .
s(e) e nf Uln: £,9 €Bi,n € N, IS —glla =0, ]If ~ gl > &} >0.

22Examplesb< | B - j _
1. In [9] co ‘and Z,,, 1 <p<ooare shown to be UASAS.

. 2.@Deﬁne the Baernstein space as the space of all real sequences z = (1,Z2," ")

such that

. N —

lzll —sup{ (i(z |zJ ) ) Gn% )€ A} < o0

k=1 jex Y

" where A is the—set.of all sequences (6;,6;,-- ) of ﬁmte subsets 6 a N such that

cardéy < min 61" and max 6; < minégy; for k = 1,2, We clalm that. the dual

- of the Baernstein space is UASAS. |

It is well known (cf.[11]) tha.t the Baernstem space is reﬂexxve and we W1ll
&

set X to be the dual of the Baernstem space. The usual basxs of the sequence

d

I I// .‘ 9

-~



- . o \I‘ . \ I‘. . \10 - .

. » .
w . e

spaces (hke £,) is g 'bam,s for both the Baernstem space and its daal. For the

Ba.ernstem space we denote this basis {e.}‘___l In [10] it is sta.ted that for the

-

Baernstem space € sp{e1 €3, " eN} and y e sp{eN+1 vt} for N 3 1 implies
Hz +yll > (l=||* + ||y|| )* But this follows since ‘ |

: l|$+y||2*sup{Z(Z|x+y I)2 (fy,.)e'x} | R - ST

k=1 jew

. m ' . ! ‘ * . .
v _Zsu'p{Z(Zl(x+y),|)2 (.a,.) E.A ma.xamgN minam+1\> N}‘

| 3 k=1 JEak ,
—tupz Z| 2} sup Z (Z|(x+y N2
_ . k.—l jeax : k=m+1 js€ax
. m 7 A
~ 7 =sup Y (D Ia5D? +sup E’(E ly;)?
. k=1 JEak k=m+1 JEW; ;
o0
= sup{Z( Y l=iD? (%) € A} + sup{z Y lyih? }
‘ - k=1 jen - k=1 JE'Yk
= el 4l . | o

We are now ready to demonstrate our claim that the dual of the Baernstein space s
Ty o
is UASAS. "

8

Proof: We will show that for e > 0 we have 6=26( >1—-(1"- i')1/2 Suppose

not. Then there exists f,g & By WI&h If =gl > &, f = g on Po(X) and 1= f|ln <
1 (= £P0 e 1 £ /% Now WAL Z Q11 + 171202 . Thas
o w- gn—nf—gu-,. - .
<Wflln + lIgl-n | |
A2 = WAI)Y2 + ol = llgll)*
<f- 1AM+ -l
2(1 - 122

—

-This contradicts ||f — g > € and our claim is true.
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"

231t should be noted that 1f Xis UASAS-&hen X satisfies an 1mportaﬁt fixed

pomt property. To make %ﬂ more preclse we mtroduce some deﬁmtlons

Deﬂnitiori:» Lt C be_a subset of a 'Banach space X. A map T :C — Cis called

" non-expansiye if | Tz —-{y“ <z —~ y|| for all z,y € C.

©

-
\\

’ Deﬁnition' A dual spwce X has the dual ﬁxed point property (FPP*) if
for every w*-compact ‘convex suBQet ccXx and for every non-expanswe map’
# T:C—-C, ’there is a pomt zeC such that fz = z. We new clarlfy our- 1n1t1a1

*.

atatement with the followmg appllcatlon

Proposition,f X is UASAS then X* has the FPP*.

e

~. - -
Before ’provihg\i;hi_s we give another

Definition: A dual space grg is said to be uniiformly w'-Kadec-Klee (UW*KK)
if for every €>0 there exlsts &> 0 such that if { f,,},,_l c'X*isa seouence

A
&

* ‘satisfying
© 2 2. |[fa — fm||>eform;én, ' ‘v : | . .. .
3. fa—fi in the w -topology of X*:. - ; | K

. then|ff<1-6. . | L

1. fa € By for n =1, 2’--- : o .

’ We can now complete the proposmon

Proof: This follows lmmedlately from [8] where X UASAS is s‘h/ n to 1mply
"UW*KK for X*, followed by the result in [4] whlch states that if X *is UW’) KK

* then X* has the FPP'.. .

-
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- 2.4 Our main aim in this chapter is to show that these”spac:;s UASAS cannot
contain bounded extended e-trees. To this effect,. we begin with an elemeptary
- observation about extended trees.
i 0 .-

Lemma. Let {zn}32; be a tree in X and let q:,- € {za}ni - If {z',,}ﬁ';l 18

bounded then there exists a subsequcnce {z;, }2

Jn-H
llw N

and [[z5, | > |z far every n. - .
‘ . . ., ¢

' - ) ’ . v / . S »
Proof: By choosing z; = z; and z;,,, astheelement in the set {z3;,, , 3, 41 }

with the larger norm,we see tl’lat‘ the desired inequalities arle satisfied.

°

2.5 We now state and prove a result concerning UASAS‘v'spaces and bounded

extended e-trees.

: Theofem. I X ca,r; be renormed b;} ‘UASAS.then fo;' every € > 0 no extended .

e-tree can live in.side the original unit b°alj of X*, ‘ . N
Proof Suppose X has an equxvalent UASAS norm [I | so: that for some

‘posxtlve constants-0 and qS, | . ’ ) ‘ N \

. “ —

o Slel Sl < Jleloze x.
ThenXX‘ has. an induced equivalent norm || - | with 0” fll <0 $'¢||b f || for all
“feX*ﬂ . | . | | B
Choose ¢ > 0. Then foBae(1- D1 1f =0l > ¢ % and If — glln = 0 lmphes‘q -
that there exists 6 = 6(¢)- > O such that 7||f + gII,, < (1 - §). E.qulvatently '
f,9¢¢Bx- (m . ||), 1f -9l > ‘fe and ||f —-gfn=0 1m1")lles there exists &"='6=(<é) >0 .
s(1-6). | | '

_ Suppose the original unit ball Bx- (|| - |}) tontains an extended £-tree {fn}7%,

. such that }|f +glla




and let ‘

w suplfal=c

Since fo € B (1 - ), Wfal < ¢ By definition, /i  funsn | 2 0 and 1fan =
fan+1 lllk,, = 0. Pick n such that '

\

o 5 . : o '. ‘
Ml >el1-3). | .
. ~ .

Now, as in lémr‘rxa,‘ichoosé {fn; }32y with fn, = fa. Find fom suchlthat

- . ' . o . ) . . . 6 . .
: R e L N
. \ < :
. ket m : ma‘x{ﬂfznm ||, Ilf2nm +1 “} and note that m S c_v g':c[‘hen' W%fz(nm)blﬂ S ¢P .

1 Satmmyot 1< 6 and | fo | < 6 and thus |

® . .

) ‘P a6 )

Zzllfnm“(;_z)g

. S >4 (1- 3~ 3)

. l gy 87 |
2> ¢(1'.‘§ )
) . 52

2¢(1-6+ .-4')
> ¢(1-96)

A4

o
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CHAPTER THREE o _ N

C‘PCP AND EXTENDED TREES

(

% ‘provide epaces
trodjice the

definition of C*PCP spaces.

) . ) »
3.1 Definition: Let X be a Banach space. We say X* has the Convex w*-
~ Point of Continuity. Property (C*PLP) if for every convex bounded C C E
and eve;y € > 0 there exists a w‘-open.set NcXxt satisfying CNN # 0/
. - o . " A
diam(C N N) < e. o L /

C

Example: RNP implies C*PCP:

L4

3.2 To e)tpress the opposite of C*PCP we will say X* fails C*PCP with C and € :
if for every w*-open set N C.X* with CNN # 9, diam(C NN)>e. |
It will be these space§ that fail C*PCP that we w1ll be interested in and whlch

will give us our desu'ed result i.e. spaces containing extended e—trees

3.3 Provmg that, spa.ces which fail C*PCP do have an abundance of extended
e-trees requlres a great deal of technlcal theory. Thus an attempt w1ll be made
to break thls long’ proof into several manageable segments. The first of these is”

.. proved in [3]. We give the prdof ;here for completeness.

14



a lmear-topologtcal apacc E with Kau U Kanyy C K, for cach'n Then therc ezwta

@ tree {:z:,‘]r,,_l m E such that zn € Ky, Jor each n. ‘ f’

Proof: Let : : : .
\ 00
Q = H Kn ‘ : S
' n=l - : oot
and for each n let
. \ A ‘
. ) \ ) .
‘An {q €Q: (q(2n) + g(2n + l)) = q(n)}.

. We will have our tr'ee if Npey An # 0. Now A, is closed for all n and by Ty-

chonoff’s Theorem Q is compact so by the finite intersection property it is sufficient

-+ Fix & and define p € Q by first choosmg p(n) € K, a.rbltrarxly for n > k.

to show that 4;n---n ,‘4;, # 0 for each k.

Then from n=kton=1we suppose that p(m) € Km has been deﬁned for
-m >n and set p(n) = 5(p(2n) +p(2n+1)). Ksp ‘and Kya41 are contained in K,
and K, is convex so p(n) € K,, By induction pe A, N --- %Qk. This completes

the proof.’

\

3.4 ’fhis next lemma is a slight éeneralizati§n of a result stated for CPCP spaces

»
(Which are defined analogously in a'space X) in [1].

——— ¢

Lemma. 2. Suppose X* faills C*PCP with A andve. If A, = A+ B}, then
“diam{A, N (z + E)) > ¢ for each z* € A, and each cofinite dimansional subspace*

E

E of X ',
Proof We wi Hhow by induction that if { € A,, E c X, codme< n andv

N is a w* -open neighborhood of z*, then dla,m(A, Nn{z* + E) NN ) > e

If n= 0, then E = X* and the con’(}htlon C*PCP gives the result.

N - . s

Y «
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Now assume that the statement is true fc';r n and let codimE = n + 1. Take’

z* € A, and N = N(x‘,:;l\,---,z,,,6) such that [ER £1 for 1 <+ <p. We will

show diam(4, N (z* + E)r; N)>e- ;1, where 0 < v < 6.

‘ There exists a subspace F C X * with codimF = n and there exists z € X of

4 D

,norm 1 such that £ = FNnkerz (where z is considered an element of X ") Clearly

z is not zero on F so taking p > 0 with B*(z,p) C A, wecanfind a > 0 such that
. {

z(FNB,) D [~a,a].
X , e

Set § = min(&%, &) where D =diamd,. Now let M = N(z*,z1, -+, Zp,Z,0).
By induction, diam(A, N (z* + F)N M) > ¢.-n addition (z* +°E) C (z* +F)
and M C N thus (4, N (z* + E)N M) C (4, N (z* + F) N N). It follows then that
- if we show dist(y*, 4, N (z* + E)N N) < 1 for all y* .E (A, 0 (z* + F)n M), tﬁen
diam(A, n(z* +‘E) N N) >e—~. Fixy*. = -
Take h* € FN B, int the followingh manner; if z(z*) > z(y*) choose h such*

. that z(h*) = a;",;if z(z*) < z(y*) choose h such that z(h*) = —a. Set . .
/ ' ‘ ‘) . -

-, -

-~

)= z(z*) — z(y*) .
z(z*) — z(v*) + z(h*)

Smcey € M and ||z|| =1, |:c(:z: ~y *)| < B and A€ 0,&].
" Finally we set z* = (1- )\)y +A(z* +h*). We claim 2z* = A, N (2! +E') ON.
! Sinc‘é" A, is convex and y*,(z* +h*)€ A;, z* € A,. To see 2z} € z* + E note t‘hat
z ~z' ¥ (1-A)(y* —z*)+Ah* € F bf convexity: It is a'routine calculatioh to
show :z:(z )j-— z(z*) which glves z* —z* € kerz. Thus z* —z* € E or 2* €z +E.
In addition, y* - 2* = Ay —Az* +h*) = Ay* — (z* +h*)) s0 ||y <
lz* — 2*|| < flz* =o' + [ly* = 2*|| < 6 which implies z* € N. Thus 2* €
(A, N (:c' + E) N N) and ly* —2*f < 32i &ields'dis‘t(y‘,A, N (z‘ +E)NnN) <1

S~

which completes the proof. 4

vt ) e
E



’ 17
S.S'We now are in a position to prove the final lemma. Thia lemma will pldy a
crucial role in the proof of the theorem which will follow and will be referred to

frequently. Throughout the lemma the quantifier ¢+ will appear. In all instances

this is to be interpreted as ¢+ = 1,2. Now to the lemma.

A
T

Lemma 3. Let X be a Banach space with Schauder basis {zn}nZ, . For U C X*

and f* € X* suppose diamU > e‘and that U = B} (1(f + E) where E is a cofinite

. ¢

dimenssonal subspace of X* and . :
.

&

E={z*e X' :z'(y) =0,y € sp{z1,22, ", Tm} }.

N{z* € X* : z*|x = 0}. :
» \\)

Then there exists z € X, ||z]| = 1 and f; € U with (f - fz)(’x) > e. If given

k < ky <k; and r; < r, then there exsst U;, each contained in U, such that M

o Ui = B;, 0 (fi + B

2 .
- - . o
with E; C E and \

E; = {-’4!:'r €X' +z'(y)=0,y€ sp{zlst"",Zm,zm_{.l\,‘\;\x‘,‘_l}»
n{z* € X* : z*|s, = 0}.
Furthcrmorc,1 ifge Uy and h € Uy then (g — h)(z) > €. .

Proof Diam U > ¢ guarantees that we can find f; in U with ||f; — f2]| > €.
Pick z € X, “f” = I-such that (fy — f2)(z) > e

First we show that the E;’s are contained in E. But this follows since we
- . TN k3 .
A\

are considering elements of X* restricted to larger sybspaces of X. In particular,
those elements belonging to E; are equal to zero on Pi(X) and sp{z;, - ,Zm}

and so belong to E. J ' ) »

\
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To show U; C U notice that the elements of (f + E) are precisely those which

-

equal / on the subspace Px(X) U sp{zy,:-+,zm} while (f; + E) is the set whoae
elements are equal to f; on Py, (X)Usp{zy, - ,ZmyZm41,°**,2;,2}. But f€ U
so f; = fvor"x\Pk(X) U sp{z), *,Zm} and it follo;vu that z* € (f; + E;) implies
r=fi=Ff on’l)’g(X) Usp{z1,+*,Zm}. This shows.(fi-Jr Eyc (f+ E) Now if
o < r then B;, C By and U; = By, 0 (fi + Ey) C U is obtained. )

: \
The last statement follows since h(z) = f3(z) and g(z) = fi(z). =,
‘ T {

3.8 We now prove the theorem.

THeorem 2. Let X be a Bunach space with a Schauder basss {zn}. If X* fails
C*PCP with the unit ball and 6, then for cvcry.O < € < b, the umit ball of X*

contains an extended e-tree. _

“Proof: Choose 0 < ¢ < 6. It‘\is'éuﬂicient to find a s_equence‘ of points

{yn}221 C X with |lya|| = 1 for every n, and non-empty, bounded, convex subsets .

"Un of X* such that
)

1. U, U&;n:l/'& Upn for every n.

2’ (g - h)(yﬂ) 2 € fOl' a’” [ € U2n, a'nd h € U2n+1 .
3. ”f”kn pn | f|| for all f € U, where p, is arbitrary and p, 1 1.
4. fe 4, h € Uy, and g € Uzpyy implies f =\g‘= h-on P, (X).

‘ LY
To see the sufficiency of these statements, we let K,, be the w*-closure of U,

‘and note that K, is no empty, convex and bounded. Since K, is w*-closed and
bounded it is w*-compa®t for all n, thus by lemma 1 there exists a trée f, € B}
such that f, € K. By :the definition of w*-closure, we see that the conditions in
2.,3.‘, and 4. hold for Kh" in place of U, so f, is an extended; e-tree.

_Our task then is to find {kn}2, , {za}2, and i[U,, }32, satisfying the above

conditions. Towards this aim we will require further that

—
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5 dxamU,.>e-j-'7forsome'7>0w1the+'y<6 A

o 6 U, '= B, n(¢n+En) where¢,.eB; ,E,.-{heX‘ f|k,,-—o}n{fe_g

S Jf "0 on sp{yl, e ,yn}}, and r,, > a S 0 for some a constant. The o' ’s and A
| _a wxll be determmed as yve progress We proceed 1nduct1vely |
Our strategy is to construct each Up in a manner that w1ll allow us to use
lerrima 2 repeatedly for the same set C Thls set will be an open ball of radlus'. L
| Ca < 1, and by. homogenelty W1ll fall C*PCP W1th the constant ba. To determlne
o plck ~ such that € + < 6 and choose @< 1 so- that bor > € + .- Now ﬁnd
1€ B} a.nd p1 <1 w1th p; |[¢4U > a. Next ChOOSe k1 such that ||¢1”k1 2 P1||¢1||" :
Let-C = B;,. o | | ‘
 Metl-a= r >0 and let El {h € X* ey, = 0}}‘»The‘n B! =C+B.-
' vLettmg U1 Bl N (¢1 + E1) we have d1amU1 >ba by lemma 2. Itis easxly seen;'
that Uy 1s nonempty, convex, bounded and satxsﬁes 3 5 and 6 L | o " o

Fo}lowlng the constructlon in [3] we now suppose that for m > i Uy k is deﬁned

' 'for 1 < Ic < 2"‘ W1th 5. and 6 true for these k and that yn is deﬁned for 1 < n<

B 2"",l so that condltlons 1 2 3 and 4 hold 1<n < 2'"" Let 2™ 1 <s< 2™

P 4 ‘ _ :
v ,and mductlvel'y suppose that yl, ‘ ,y‘s 1, k1, kzg 15 p1, “+y P28—1 ‘have.beeﬁ?ﬁ'ﬁ?:v

. found
DlamU, > €.s0 we can “apply lemma 3. As in lemma 3 choose ¢2a € U., and

¢2a+1 €U, and y.? E X lys || =1 such that
(@ —‘¢zn+l-)(ys)ﬂ*ze- el e

Since the constructlons of Uz, and. U2,+1 are nearly 1dent1cal we shall show only

Bwarm, T

e

By mducthn U, = B‘ ﬂ (45, 4 E,). Let wy, =ry — ||¢2, |] Since B;, is open

wg, > 0 Take 1 > pg, > max{l : ,,Pza—l } and ﬁnd azs and ﬁz,,‘.r such that

° a




0 < Bas < 1,‘ 0< az,'<'w‘2,dand

' 3./ . .
.o ;u '

(—-.a—.-ut—
14 d2&= = P2s

- Not_v choose k24 > kos—1 Vsuch that B . |
.||¢23 ”kg. 2> .”¢2§ “,st .

Set ros.-= ||¢2s (1 + ag,). Then ros. < o andﬁ5 we can construct Us, as in lemma |

8, with Eyy = {f €X*: hk,, —O}D{f €EX*:f =0 on sp{yl, . ,ya}}“ This

: ﬂcompletes the constructlon of Uz, We will assume U/.H ha,s been constructed in

" a similiar manner and proceed to verify condltlons 1.-6.

By lemma 3 1.,2. and 6. are satisfied, while 4. follows Tom e fact' that .

Uzs U U2,+1 (e U For 3. we need to show that ||f||k2, > p2,|]f,, far all f € Uz,

: Indeed since ||f|| <o = ||¢2a||( +aza) we havg

”f”km - ”¢23”k2. Z ”¢2s l|ﬂ2a ‘ \?

A
Tt e

\ o =S
- Do e <
We note that since Pn is chosen to be greater than 1 —'.% and greater than pp—1,

pn t1and so 3. has been estabhshed forn=2s. . . "

Once we show rz, > a we can use lemma. 2 to prove 5. for Ug, ie. dlamUz,

€. To see this note that @5 is equal to ¢; on P1 (X). Hence ||¢2, I > ||¢23“k1 >

'p1||¢1|| > a. Thus rz, >. ||¢23 > e and we have 5. venﬁed |

As 8 varies through 2'""1 < 8 < 2™, = 2 and'n = 25 + 1 'exhaust
: {n M <n< 2'"+l } and our mductlon is complete This concludes the proof.
A well kaown reSult in the hterature (cf. [6]) states that for all spa,ces X
' cOnta.mmg an. 1somorph1c copy of £y, the dua.l of X falls c* PCP with the unit

- ball and some € > 0 We thus have the following coro]lary
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Corollar&. If X is a Banach space with a Schauder bdé_ia ’dnd contaih:’ng an iso-

morAphic‘copy of le, then X* contb{ns an extended tree for some € > 0.
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