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ABSTRACT

This thesis presents a design criterion for calculating
non-minimum time deadbeat digital controllers, for a unit
step input, which minimize the noise transfer of a sampled
data system when white noise is present. The system consisted
of a linear plant, a digital controller, a zero-order hold
and a unity feedback branch.

The non-minimum time deadbeat controllers are used in
place of the minimum time deadbeat controllers to improve
the noise performance of the system. All deadbeat
requirements are met by the non-minimum time deadbeat
controllers except that the error for a unit step input is
not reduced to zero in minimum time.

The design criterion is practical in application as
it depends only on the plant parameters and system sampling
rate. No explicit reference to the noise input is contained
in the criterion.

The non-minimum time controllers may have any number
of extra terms as the noise reduction increases with each
extra term. Beyond a certain number of extra terms, the
noise reduction becomes uneconomical because of the extra
controller complexity and slower system response time. The
length of this extension varies depending on the design
requirements of the system. In this thesis, controllers with

up to three extra terms were considered.



The non-minimum time controllers were tested using

both a hybrid and a purely digital simulation to verify the

minimum noise transfer requirement.
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INTRODUCTION

When sampled data control systems containing a
linear plant with a digital controller to give deadbeat
response to a unit step input are subjected to any noise
input, the errors which occur are rather large. This is
caused by the high gains required in the digital controller
to satisfy the deadbeat requirements for a unit step input.

These requirements are:

1. The system reaches zero steady-state error after
a minimum number of sampling periods with no
intersampling ripple.

2. The system normally should have no transient
overshoots. In some cases this overshoot is
unavoidable. Then the transient response should
pe as fast as possible, with a finite settling

time measured at the sampling instants.

The controller which satisfies these requirements
for a given system is unique. Therefore if any alterations
are made to the controller to improve the noise performance
of the system, the resulting controller cannot satisfy all
deadbeat requirements.

In this thesis, a design criterion is presented which
yields controllers that minimize the noise transfer of the

system in the presence of noise which 18 assumed to be white.



These controllers are designed to satisfy all deadbeat
requirements except the minimum response time restriction.
Therefore the predicted controllers may be called "non-
minimum time deadbeat digital controllers.”

When using this method, the plant parameters and the
sampling rate of the system are normally held constant.
Thus the non-minimum time deadbeat controller may be directly
substituted for the corresponding minimum time deadbeat
controller for a given system to achieve the maximum noise
reduction.

This method of extending the controller to improve

the noise performance of the system has the following

advantages:

1. The gains of the controller are lowered and thus
the level of the transient response is lowered.

2. Because the controller is no longer a minimum
time controller, extra degrees of freedom are
available in its design. These may be used to

minimize the transfer of noise by the system.

In effect, the predicted non-minimum time controllers
are designed to do as little as possible to the signal
passing through them. This is contrary to the more standard
approach. Usually the system loop gain is made as large as
possible to allow very rapid correction of any disturbances.
This is generally accomplished by the insertion of a network

in the feedback path to raise the loop gain without altering



the forward path.

It would be possible to insert a feedback compensator
in the deadbeat system to improve the noise performance.
However it is a more complicated problem in terms of the
system realization then is the simple addition of terms to
the controller.

1'8'9,Ackermann2 and Chang14 have

Authors such as Tou
published methods for calculating controllers which minimize
the noise transfer of a sampled data system. However these
methods do not readily lend themselves to the case when deadbeat
is an additional constraint. Some of the reasons for this
observation are discussed in Chapter 3.

To the best of the author's knowledge, no published
literature contains any specific reference to the noise
reduction problem for deadbeat systems. Therefore the design
criterion presented in this thesis is derived independently
of published methods.

The proposed criterion 18 stated in Chapter 3. This
criterion may be used to calculate controllers which have
any number of extra terms. However at some point, the
additional noise reduction becomes uneconomic when compared
to the additional controller complexity required.

The criterion presented is practical in application
and it 1s expressed only in terms of the coefficients of the
non-minimum time controller. These controlier coefficients
are functions of the plant parameters and the samplxné rate

of the system. The noise i1nput does not appear explicitly
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in the cfiterion. To allow the design criterion to take
this form, pure white noise must be assumed as it has no
cross-correlation with a unit step input. Therefore the two
signals may be assumed to be totally independent.

In Chapters 1 and 2, the form of the system
considered is presented along with other general information.
The details of a hybrid computer simulation used for the
initial tests of the non-minimum time controllers are
presented in Chapter 3. 1In Chapter 4, the details of a
purely digital test simulation used to obtain the results
presented in Chapters 5, 6 and 7 are given.

The results presented in Chapters 5, 6 and 7 are for
non-minimum time controllers with one, two or three extra
terms respectively. In Chapter 5, there is no noise input to
the system when the ramp and acceleration inputs are used.

In Chapter 7, results are presented for the case
when the sampling rate of the system is not held constant.
The sampling rates used are such that the total response
times to deadbeat for both the minimum time controllers and
the predicted non-minimum time controllers with one extra
term are the same. This approach overcomes the disadvantage
of the slow response of the non-minimum time controller while

still providing some noise reduction.



CHAPTER I
GENERAL SYSTEM CONSIDERATIONS

Throughout this thesis, some basic information on
the systems tested will be required. For each plant to be
considered, the following information is presented in this

chapter:

1. The transfer function of the plant.
2. The ;} - transform of the plant.
3. The discrete signal flow graph for the system.

4. The discrete state equations of the system.

1-1 SYSTEM CONFIGURATION

The basic system considered is a unity feedback
system with a noise contaminated input or feedback signal
as shown in FIG. 1l.1l.

In this system, the noise is shown as injected in
the feedback path. Since this is a unity feedback system,
the noise could actually be contaminating the input signal
or be introduced by the feedback branch.

The general form of the digital controller is:

o(z) = ho + hl z +h, z + ... ¢+ hpz (1.1)
-1 e B -n

1l + e, z + e, z + ... te 2
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where n is the total number of sampling periods required to
reach deadbeat for a unit step input. The zero order hold
has the transfer function:

1- e-!T
Gz(s) = s | (1.2)

where T is the sampling rate of the system. For most

calculations, the zero order hold and the plant are combined

as follows:

Gpm(') = Gz(s) Gm(a) (1.3)

where Gm(s) is the particular plant under consideration.

1-2 TYPES OF PLANTS CONSIDERED

There are several basic plant configurations which
represent the majority of system classes possible. Pour

such plants are considered. These are:

Gl(') = 1/8 (8 + =) (1.4)
Gz(" = 1/s (s + =) (s + B) (1.5)
Ga(s) - (s + «) /s (s + B) (1.6)

G (s) = /s (82 + 20w 8+ uf‘) (1.7



__»bhl Gpm(s)
R(')'\:(t) " !" - |r ——————— 1
' | |
. : | Ols) HG,(s) F—Gm(o)t C(v)
Ty T '
(R SR | | S J
BE1" () BE2" (t)

n(t) * RANDOM NOISE SOURCE
G,(s) » ZERO ORDER HOLD
Gemls) * PLANT UNDER CONSIDERATION

FIGURE 1.1 BASIC SYSTEM CONFIGURATION WITH A UNIT
STEP INPUT PLUS NOISE

(a) (b)

FIGURE 1.2 DEADBEAT RESPONSE TO A UNIT STEP INPUT
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The deadbeat responses exhibited by G, (s). Gz(s) and

G‘(s), whether for the minimum time or extended controllers,
are always as shown in FIG. 1.2 (a). However for G3(s),

it is possible for some combinations of parameters to yield
a response as shown in FIG. 1.2 (b).3 This response still

has no intersample ripple and reaches unity at nT as

specified.

1-3 7 - TRANSFORMS OF PLANTS CONSIDERED

=g

As shown in (1.3), the plant Gm(s) and the zero-order
hold Gz(s) are combined as Gpm(s). For later use, it is
necessary to calculate Gpm(z). This section contains the
calculation of Gpl(z). The transforms for the other three

plants are then listed.

Substituting (1.2) and (l1.4) into (1.3) yields:

-sT
G 1(') R | e (1.8)
P s! (8 + «)

Taking the 3 - Transform of (1.8) yields:

1 -e *T -1 1 ‘
G ,(z) = 5 * (1 - )
pL 3[ s (l+¢)] : 3[- (s+=)

-1 -«T
- (12 T 2 _ 1l -e )z (1.9)
Gpl(t) (=) [ T)—]

(z-1)2 «(z-1) (z-e



From (1.9), define the following:
-a«T

Substituting (1.10) into (1.9) yields the gsimplified

expression:

z (=T +A-1) + (1 - A - «TA)

G ,(z) =
Pl «? (z -1) (z - A)

To simplify (1.11), define the following:

Rl = («T + A -1) / «2

R2 = (1 -A- «TA) / «

Substituting (1.12) and (1.13) into (1.11), yields the

transform of Gpl(s) as:

(R1l) z + R2

Gpl(z) 7 - 7 -

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

The @ - transforms for the remaining three plants

are derived in a similar fashion.

Thus for sz(s), the 3'- transform is:

2
(z) = R7) 2~ + (R8) z + U

pe z - z ~A z -

(1.15)



where

where

Rl

R2 =

R} =

R4 =

R7

1/ =8

- 1 s« + 1 /=8?)

1 /<% (B - =)

1 /82

(« - B8)
T (R1) - R2 (1 + A + B) - R3 (2 + B) -

R4 (2 + A)

R8 = -(R1) T (A + B) + R2 (A + B + AB) +

c
L]

R3 (1 + 2B) + R4 (1 + 2A)

R1 (TAB) - R2 (AB) - (R3) B - (R4) A

rFor the plant, Gp3(s), the - transform is:

Gpl(’)

(B) z + C
: - z -

--T

10

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)



where

o

= (B (s + A -1) + = (1 -A)) /«?

= (B8 (1-A-A¢T)-¢(1-A))/“2

Pinally, the 3’- transform of Gp4(s) is:

Gp4(z)

AC2

AC3

AC4

ACS

4

n

(Al) 2% + (A2) z + A3

(z -1) (z° + (AC8) z + AC9)

wn
a -t
1/ %+ 8%
-2 ) (ach?
- AC2
- ACl - 2 (A) AC2
T (AC1)
EXP ( - AT)
B (T)
AC2 (AET) COS (BT)

((2(A2) AC1 - 1) ACl (AET) SIN(BT))/B

11
(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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AC8 = - 2 (AET) cos (BT) (1.41)
AC9 = (AET)? (1.42)
AL = ACS + AC2 (AC8 +1) + AC6 + AC7 (1.43)

A2 = AC5 (AC8) + AC2 (ACY9 - ACS8) + AC3 -
2(AC6 + AC7) (1.44)

A3 = AC9 (AC5 - AC2) + AC6 + AC7 (1.45)

Refer to Table 1.1 for the listing of Gm(')' Gpm(s)

and Gpm(z) for all cases.

1-4 THE FORM OF THE DIGITAL CONTROLLER

The pulse transfer function D(z) of the digital

controller 18 of the form:

-1 -n
h, + h, 2z + + h 2
- BE2(2) - 0 1 °c n
oz} BEI(Z) l + e, z'I + ... * e, z-" (1.46)

where BEl(z) and BE2(z) represent the g - transforms of
the input and output signals of the controller as shown in
FIG. 1l.1. Cross-multiplying in (1.46) and taking the
inverse 3- transform yields the simplified form:‘

n

n
Be2" (t) + L (e)) pE2" (t - kT) = I (h)
k=1 k=0

pe1” (1 -kT) (1.47a)
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Rearrange (l1.47a) as follows:

pE2"(t) = (h) pe1” (t - kT) -
k=0
n *
I (e, BE2' (t - kT) (1.47b)
k=]

Prom (1.47b), define the following:

yi(e) = I (hy) BE1" (t - KkT) (1.48)
k=0
N n .
ya(t) = I (e) BE2 (t - kT) (1.49)
=1

Rewriting (1.47b) using (1.48) and (1.49) yields the
simplified equation:

[ ] * | ]
BE2 (t) = yl(t) - yz(t) (1.50)

Equation (1.50) may be realized by direct digital
ptogramminq.‘ This realization is shown in FIG. 1.3. This
method of realization will be used in all cases considered.
It is used as it lends itself easily to programming on a

hybrid or digital computer.
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| T

® ® ®
8e1’(1) BE1 (1.1 BE1 (1-nT
. STORAGE 1), .. —{storace (r-nT)
h
* ¢
s o e o o
ho BEI*(1) . + yy(t)
(a)
Py ®
o, BE2°(r-T) . y,lt)
o0 0
¢ L 2
.| 2 ( P\
STORAGE STORAGE o ¢ o = STORAGE
- [ - BEZ*(1-2T) - BE2°(t-nT)
BE2°(1) 8E2°(2-T)
(b)
8E1°(1) v:(')

PROGRAM FOR

Gmm——
vy (1)
—» BE2°(1)
PROGRAM FOR v T

vy (v)

(c)

FIGURE 1.3 DIRECT DIGITAL PROGRAMMING REALIZATION
or D(z)
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1-5 STATE EQUATIONS AND FLOW GRAPHS FOR
Gllss = Iss (s + =)

In order to carry out some of the derivations and
system simulations outlined later, it is necessary to
derive the discrete state equations for the given systems.

For the plant Gl(s), the entire derivation is
presented. The signal flow graphs and discrete state
equations of the remaining systems will then be presented
without derivation.

Consider the system where Gl(s) = 1/8 (8 + =) is the
plant. The signal flow graph which represents FIG. 1.1 is
shown in FIG. 1.4.4 Applying Mason's Rule to FIG. 1.4

yields the simplified form:

BE2 (ty) 1
X, (8) = ————— + 0 Xj(ty) +
1 s° (8 + =) s "2°°0
1
s Ts + =7 %20ty (1.51)
BE2 (t ) N
X,(8) =g+ Y v Xz(to) (1.52)

Taking the inverse Laplace Transform of (1.51) and (1.52)
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gives:

. 1 - ool - )
xl(t) X, (tg) + 3 (1 - e 0') xz(to) +
Le-tp-20- e =(t = to)y) BE2(t])

) 1
xz(t) (e 0") xz(to) +

-g(t -

(1 -e to)) asz(t;)

If t = (k +1) T and ty "= KT, then the previous two equations

may be rewritten as:

X, [(k +1)T] = X, [kT] + - x,lkm) +

1 1

L r-1qa-e"T) se2lkT) (1.53)

X,((k +1)T] = (e™*T) x,[kT) + 1 1-e"T)

BE2(kT] (1.54)

Using (1.10), the following constants may be defined for
(1.53) and (1.54):

B = (L-A)/= (1.5%)

C = (T-B) /= (1.56)
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Substituting (1.10), (1.55) and (1.56) into (1.53) and

(1.54) yields the final form of the discrete state equations

for the system when Gl(s) is the plant.

Xll(k +1)T] = xllle + (B) lekT] +

(C) BE2(kT) (1.57)

le(k +1)T] = (A) xZ[le + (B) BE2([kT] (1.58)

1-6 STATE EQUATIONS AND FLOW GRAPHS FOR
GC.Ts) = Iss s + =) (S + B)

2

Applying the method of Section 1-5 to FIG. 1.5

yields the discrete state equations of the system containing

Gz(s) as follows:

Xll(K +1)T) = XllkT] + (CONS2) lekT] +

(CONS3) X3[kT] + (CONS1) BE2[kT] (1.59)

le(k +1)T] = (A) lekT) + (CONS7) X3[kT] +

(CONS3) BE2(kT] (1.60)

XJl(k +1)T) = (B) Xslle + (CONS9) BE2(KT) (1.61)

Using (1.16), (1.17) and (1.18), the constants in the
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previous three equations are defined as:

y = =+ 8 (1.62)
coNsl = Rl ((T - (R1)Y) + Rl(«?B - 82 A)/(= -B))
(1.63)
CONS2 = (1 - A) / = (1.64)
CONS3 = Rl (1 + (BA - =B) / (= =B)) (1.65)
CONS? = (A - B) / (= - B) (1.66)
CONS9 = (1 -B) / B (1.67)

1-7

STATE EQUATIONS AND FLOW GRAPHS FOR
63155 - (s + BY /s (s + =)

From FIG. 1.6, the discrete state equations of the

system incorporating G3(s) are:

Xll(k + 1)T) = XllkT] + (CONSl) lekT] +

(CONS2) BE2(kT] (1.68)

le(k + 1)T) = (A) lekT] + (CONS1)

BE2[kT) (1.69)

The output equation of the system for this case is:
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Cl(k+1)T] = (B) Xll(k+l)T] + le(k*l)Tl (1.70)

Using (1.26), the constants of (1.68) and (1.69) are

defined as:
CONS1 = (1 -A) / = (1.71)
CONS2 = (T - CONS1l) / <= (1.72)
Li STATE EQUA’I‘IONS AND FLOW GRAPHS FOR
G‘(s) = 1l/s (8" + 20 w 8 + wnz)
The discrete state equations of the system in
PIG. 1.7, which contains G4(s) are:
xlloul)'r) = xl(k'rl + (CONS1) lek'rl + (CONSC)
x3lle + (CONS2) BE2(kT] (1.73)
le(k+1)Tl = (CONS3) lekT] + (CONSB) x3[kT] +
(CONSC) BE2(KkT]) (1.74)
X3((k*1)Tl = (CONS4) lele + (CONSS) x3[le +
(CONSB) BE2[KkT) (1.75)

Using the constants defined in (1.30), (1.31), (1.32),
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(1.37) and (1.38), the constants in equations (1.73),

(1.74) and (1.75) are defined as:

6 = tan'! (-a/B) (1.76)
CONSA = (AET) CoSs (BT) (1.77)
CONSB = ((AET) SIN(BT)) /B (1.78)
CONSC = ACL (1-((AET) COS(BT + 6))/COS(¢))  (1.79)
CONS1 = CONSB + 2(A) CONSC (1.80)

CONS2 = ACl (T + 2(A) ACl (CONSA -1) +

CONSB (2(a2) ACl -1)) (1.81)
CONS3 = CONSA + (A) CONSB (1.82)
CONS4 = - wnz CONSB (1.83)

CONS5 = CONSA - (A) CONSB (1.84)
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FIGURE 1.5 FPLOW GRAPH FOR SYSTEM CONTAINING Gz(l)
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CHAPTER 11
HYBRID COMPUTER SIMULATION

In this chapter, the method of simulation, the
calculation procedure for the extended controllers, and
the testing procedure followed are detailed.

When the problem of noise reduction for the
deadbeat controllers was first considered, there was no
obvious way to predict the minimum noise transfer extended
controllers. It was also not known whether any significant
noise transfer reduction was obtainable by this extension
method.

By observing sequential sets of extended controllers
in the presence of noise, these two questions could be
answered. The first method used to perform these obser-
vations was a hybrid computer simulation. A hybrid
simulation had the advantage of using available equipment
and straight forward techniques to allow fairly rapid testing
of a variety of controllers.

For this simulation, the plant Gl(s) was considered
with one and two extra terms. Gz(s) was only considered
with one extra term.

By observing the results for these plants, infor-
mation which would lead to a criterion for predicting the

minimum noise transfer extended controllers was obtained.
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2-1 HYBRID COMPUTER SYSTEM

The computers used in the experimental simulation

were:

1. A Digital Equipment Corporation PDP-8 programmed
in FOCAL.

2. An Electronic Associates Incorporated TR-48
analog computer.

3. A Redcor Corporation Series 610 Linkage System

interface.

The PDP-8 digital computer is a 4K core memory version with
external magnetic tape drives.

FOCAL, which.is an interpretive language, was
chosen as the programming language because of the ease of
programming. Although FOCAL is much slower than machine
language, 1t was felt that the ease with which the new
values for various controllers could be inserted in the
program compensated for the slowness. The maximum sampling
rate the program could operate at was T = 0.5 second.

This was not a disadvantage as the normal sampling rate
used was 1 second.

The TR-48 was used since it has external mode
control on each integrator pair. This allows the PDP-8 to

control the operating state of any part of the simulated

system.
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2-2 HYBRID SYSTEM SIMULATION

In order to implement the problem on the hybrid
computer, it was first necessary to write a digital computer

program to simulate the D(z). This digital program was also

written to include:

1. Control of the start and duration of the
experimental runs.

2. Control of the operating state of the TR-48.

3. Control of the actual sampling rate T.

4. The zero-order hold function which is shown
separately in FIG. 1.1 as G,(s).

5. The calculation of the root-mean-square error

for the system upon completion of the experi-

mental run.

The derivation and listing of this program is given in
Appendix A.

The measuring criterion used is the root-mean-square
error of the system. Therefore it is necessary to measure
the difference between the response to a unit step with and
without the noise input. For a particular controller under
test, this may be accomplished as shown in FIG. 2.1. 1In
FI1G. 2.1, cm(t) is the desired system response to a unit
step as shown in FIG. 1l.2.

The test system shown in FIG. 2.1 is difficult to

implement as it requires duplication of the system to yield
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c'(t). It is also somewhat redundant as the value of cm(t)

is unity for all but the first n sampling periods. Therefore
it is possible to alter the hybrid realization to that shown
in FIG. 2.2. This yields the same results as the system

in FIG. 2.1.

The root-mean-square error of the system is

[ e |

[ c'(t)] . This assumes that the noise source is
the same for any controller measured. Since the noise source
may fluctuate slightly, the root-mean-square error is
redefined for this test. Using the new definition, the
root-mean-square error is actually the ratio of the root-
mean-squares of the output of the system and the noise input.
This allows direct comparison of the results obtained for

any controller.

Redefining the root-mean-square error yields:

ROOT-MEAN-SQUARE ERROR = RMSE =
- .2 - 2 '
[ c'(t)] / [ n(t)) ] (2.1)
in (2.1), | c'(t)l! and |( n(t)l: are defined as:
T
(e (012 = 2= /o [ c'(t))? at (2.2)

T
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r(N)sult) < _{o(z)unoer| | (s) Cir)
TEST pmis
C'(r):
n(t) *8 Ic(r)-Cr)
r(t)zu(t) ] ["‘ ]
+ )ﬁ o(z)unoer| 1o (1™
. TEST pm
T
FIGURE 2.1 TEST SYSTEM TO MEASURE SYSTEM ERROR
WHEN NOISE PRESENT
()20 , )ﬂ
D(z) UNDER .
{ t ) ur Goml3) - C'(1)

n(t)

FIGURE 2.2 TEST SYSTEM IMPLEMENTED ON HYBRID TO
MEASURE SYSTEM ERROR WHEN NOISE PRESENT
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T .
nlt) = oF nl(t) at (2.3)
where TT = total time of the experimental run. Substituting
(2.2) and (2.3) into (2.1) yields in simplified form:

Ty 2 Te 2 ¢
RusE = | /T [ty 1% ae 7 sg7 nf(e) at

(2.4)

In the hybrid simulation, the squaring and integration
are performed on the analog computer using the electronic
multipliers. At the end of the experimental run, the two
mean-squares are A/D converted and the division and square

root are calculated digitally.

2-3 STATE VARIABLE METHOD FOR CALCULATING MINIMUM
AND EXTRA TERM CONTROLLERS

In Chapter 1, the discrete state equations for the
four systems were developed. A method for calculating the
extra term controllers is based on these equations.

It assumed for these derivations that all state

variables have a zero initial condition. That is:
xi(O) ot o: i = 1' 2' s e 0 m v (205)
The input signals for these calculations are:

r(¢) = u(t) = 1.0 (2.6)
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n(t) = 0 (2.7)

1f the system is to reach deadbeat in n sampling periods,
then the following values of the state variables must be
reached.
xll(n +1)T] = 1.0 (2.8)
xi[(n +41)T) = 0; i = 2,3, ..., m (2.9)

The method of calculation is derived for the plant
Gl(s) = 1/8 (8 + «).

From (1.57) and (1.58), the discrete state equations
for the system containing Gl(s) are:

xll(k +1)T] = Xl[le + (B) lele + (C)

BE2 [kT)

le(k +1)T] = (A) lekT] + (B) BE2(kT)

Prom PIG. 1.5, the quantity BEl(t;) may be defined as:
+
le(to) = r(to) - xl(to) = 1 - xl(to) (2.10)
As in section 1-5, define t, = kT to allow (2.10) to be

expressed in discrete form. Thus (2.10) becomes:



The digital controller may be replaced in a
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discrete state equation by the equivalent gain during any

sampling peziod.4 This equivalent gain is defined for the

kth sampling period as:

K(k) = hy / ey

(2.12)

where hk and e, are the controller coefficients as shown in

(1.1). This equivalent gain is shown in FIG. 1.4 to FIG.

1.7. From these diagrams it may be seen that:

BE2(kT] = K(k) (BE1l[kT])
Substituting (2.11) into (2.13) yields the controller
output in terms of K(k) as:
BE2(kT] = K(k) (1 - Xllle)
Substituting (2.13) into (1.57) and (1.58) yields the
discrete state equations as:
xll(k¢l)T] = (1 - (A) K(k)) Xllle + (B)

lele + (A) K(k)

X, ((k#1)T) = -K(k) (B) X, (KT} + (A) X, (kT) +
(B) K(k)

The minimum time controller for Gl(s) reaches

(2.13a)

(2.13b)

(2.14)

(2.15)
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deadbeat at k = 1. This controller is unique and may be
calculated from (2.14) and (2.15) by use of the initial
conditions in (2.5), (2.8) and (2.9). Following is the

calculation of this controller.

The state variables at the end of the sampling

period where k = 0 are:

xllTl = (A) K(0) (2.16)
leTl = (B) K(0) (2.17)

Similarly for k = 1, the state variables are:

XIIZT] = (1 - (A) K(l))XllT] + (B)

leTl + (A) K(1) (2.18)

x2(271 = -K(1) (B) XI(T] + (A)

leTl + (B) K(1) (2.19)
Prom (2.8) and (2.9), the final values are:
X1l2Tl = 1.0

lezr] = 0 (2.20)

Substituting (2.16), (2.17) and (2.20) into (2.18) and
(2.19) yields the simplified state equations:



x,(21) = 1.0 = (A+ B2) K(0) + (A) K(1) +
2
(-a%) K(0) K(1)
‘xz"[z'r] = 0 = (AB) K(0) + (B) K(1) +

(- AB) K(0) K(1)

Solving (2.21) and (2.22) yields:
K(0) = 1/ (A (1-A) + B
2

K(1) = A/ (a2 -B%

The expression (2.11) defines the error e(t) shown in

FIG. 1.1 when n(t) = 0. From FIG. 1.1, this error in

general form is:

e(T) s BEl(T] = l-xll'r]

It can be shown that the denominator terms of a deadbeat

digital controller are the same as the system error.

Therefore e, of the controller may be written as:

e, = e(T) = 1 - xllT]

Substituting (2.16) and (2.23) into (2.26) and solving

yields:

o, = A/ A (1 - A) + B%)

34

(2.21)

(2.22)

(2.23)

(2.24)

(2.295)

(2.26)

(2.27)
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The coefficients of the minimum time deadbeat digital

controller for Gl(s) = 1/8 (8 + =) may be calculated from

(2.12), (2.23), (2.24) and (2.27) to yield in simplified

form:
hg = K(0) = 1/ (A (1-A) + B%) (2.28)

hy = e K() = A2/ (a (1 - A) + B?)

(a2 - B?) (2.29)

e, = A/ (A (1-R) + 82) (2.30)

where A and B are defined in (1.16) and (1.17).

Since the minimum time deadbeat controller is unique,
no noise reduction can be performed on it without altering
its form. The method considered involves adding extra terms
to the controller without losing the other deadbeat
characteristics. In this way, additional degrees of
freedom in the design of the controller are available. These
may possibly be used to improve the noise performance of the
system.

Because additional degrees of freedom are available
in the controller design, an infinite number of possible
controllers satisfy the extended deadbeat requirements.

Some method of predicting which controllers, if any, have
the best noise performance must be derived. This is where

the hybrid simulation is useful. The performance of various
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extended controllers may be appraised in the presence of
noise.

The deadbeat controller which is extended by one

term has the following form for the system containing

Gl(s) :

7 — (2.31)

In (2.31), e, and h2 are the extra controller terms. The
following derivation will show that it is possible to

express hg, hl' h2 and e, as functions of e,
By extending the controller by one extra term, one extra

« and T.

degree of freedom is available as e, becomes the only
unknown.

For a deadbeat controller, e, is the system error
at the end of the first sampling period. Because of the
deadbeat constraint, e, must always lie between 0 and 1.0.
All of the controllers represented by (2.31) may thus be
solved by inserting all values of e into (2.28) to (2.30).
This is of course not practical.

Instead a small number of controllers with various
consecutive values of e, will be tested on the hybrid.
Therefore extended controllers of the form (2.31) will be
solved for by "iterating"” e, over the range 0 < e, 1.0
for given values of = and T.

As for the minimum time deadbeat controller, the

discrete state equations are written for the various
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sampling periods. For k = 0, the state variables are:

xllrl = (A) K(0) (2.32)

X,(T] = (B) K(0) (2.33)

Por k = 1, the state variables are:

x,[27) = (1= (A) KN X (T] + (B)

leT] + (A) K(1) (2.34)

lezrl = <-K(1) (B) xllTl + (A)
lerl + (B) K(1) (2.35)

For k = 2, the state variables are:

X, (371 = (1 - (A) K(2)) X [2T] + (B)

X2[2T] + (A) K(2) (2.36)

X,(3T] = -K(2) (B) X,[2T] + (A)
X,[2T) + (B) K(2) (2.37)

The final values of the state variables are:

XIIJT] = 1.0

le3Tl =0 (2.38)
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Substituting (2.32) to (2.35) and (2.38) into (2.36) and
(2.37) yields in simplified form:

2

x1[3T] = 1.0 = (A + B + ABz) K(0) +

2 _ ap?)

(A + B%) K(1) + (A) K(2) + (-A
2 2
K(0) K(1) + (-A® - aB®) K(0) K(2) +

(-a2) K(1) K(2) + (A%) K(0) K(1) K(2)

(2.39)
X,(37] = 0 = (A2B) K(0) + (AB) K(1) + (B)

X(2) + (-A2B) K(0) K(1) + (-AB -B°)

K(0) K(2) + (-AB) K(1l) K(2) +

(A2 B) K(0) K(1) K(2) (2.40)

Eliminate K(2) and all its products from the above

expressions in the following manner: 3

1. MULTIPLY (2.39) by B
2. MULTIPLY (2.40) by -A

3. Adding the results of (1) and (2) yields the

simplified expression:

B = K(0) (A +B2 « AB% -A%) (B) + K(1) (A + 82 -a?)

(8) + K(0) K(1) (A2 - aB? + A%) (B) (2.41)
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Solving for K(1l) in terms of K(0) from (2.41) yields:

k(1) = (1 -K( (a+B°+ A - a3) /
(A + B2 - A%) + K(0) a3-ap? - a%))  (2.42)

K(2) may be expressed from (2.40) in terms of K(0) and K(1)

in the following form:

K(2) = (K(0) (- A%B) + K(1) (- AB) + K(0) K (1)
2 3
(28)) / (B + K(0) (- AB - BY) +

K(1) (- AB) + K(0) K(1) (a%p)) (2.43)

As stated in (2.26):

e, = 1l - xllkT) (2.44)
Substituting for k in (2.44) yields the following
expressions:

e, " ) x1[2T1 (2.46)

substituting (2.32) into (2.45) yields K(0) as the following

gunction of e,:

K(0) = (1 -e) / A (2.47)
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1f e, is iterated over the range 0 to 1, all possible

values of K(0) are obtained. These in turn allow the
calculation of all possible values of K(1) and K(2) from
(2.42) and (2.43). Substituting (2.34) into (2.46)
yields e, as a function of K(0) to K(2) which are now

functions of e,- The coefficient e, is obtained as:

e, = 1+K(0) (- -B%) + K(1) (-a) +

K(0) K(1) (a%) ' (2.48)

Table 2.1(a) lists the coefficients of the minimum
time deadbeat for Gl(s). The extended controller for Gl(l)
4
is given in Table 2.1(b). These coefficients in Table 2.1(b)
LY

can all be expressed as functions of e,-

K h, = K(k) (e) e
1 1
0 h = —5—
0 (A (1 - A) + BY)
2
1 h, = 2 A

1 ““”"’7;‘7"7‘ e = —— 3.
(A (1-A)+BI(A°-B°) (A (1-A) +B%)

TABLE 2.1(a) COEFFICIENTS OF MINIMUM DEADBEAT

CONTROLLER POR Gl(.) = 1/8 (8 ¢+ =)
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The resultant equations listed in Table 2.1(b) were
programmed in Fortran and the appropriate iteration in e,
carried out. This calculation yielded a set of controllers,

with one extra term, for simulation on the hybrid system.

2-4 z-DOMAIN METHOD FOR CALCULATING M
AND EXTRA TERM CONTROLLERS

The state variable method, outlined in Section 2-3,
is too cumbersome for higher order systems and thus another
method was used. This method is based on the z-domain
system transfer function. For a unity feedback system, the

system transfer function is of the form:

D(z) G m(z)

= (2.49)
R{(z) + D(2z Gpm z

It can be shown for a system with deadbeat response to a
unit step, that the conditions on the state variables given
in (2.8) and (2.9) are met if the following equation is
satisfied:

n

1+ D(z)-Gpm(z) s 2 (2.50)

where n is the number of sampling periods required to reach

deadbeat.s
To illustrate the use of this method, consider the

example of Gz(s) = 1/8 (8 + «) (s + 8). From (1.15), the
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3~ transform of sz(s) is:

(z) = (R7) z2 + (R8) z + U

-0 1z -A) (z -B) (1.15)

sz

Assume the minimum deadbeat controller is the following

form:

h. (z - A) (z - B)

*elz-rez

h - h.(A +B) z > + h,(AB) 2”2
0 0 0
=1 ) (2.51)
1l + e, z + e, z

Therefore the numerator coefficients of the controller are

defined from (2.51) as:

hg = ho
hy = -hg (A+B)
h, = hg(AB) (2.52)

The digital controller is assumed to be the form (2.51),
because for deadbeat to occur the D(z) must cancel all the
poles of Gpm(z) except the pole at z = -1.3

For Gz(l), the minimum deadbeat occurs at n = 3.

Substituting (1.15) and (2.51) into (2.50) yields the
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simplified form:

22(1 + hy(R2 + R3 + R4)] + 2°[hg (R1)T - ho (R2)
(1 + A+ B) - hg(R3) (2 + B) - hq (R4)
(2 + A) + (e} -1)] # z(- hy(RL)T (A + B) +
ho (R2) (A + B + AB) + hy(R3) (1 + 2B) +
hg (2A + 1) R4 + (e, - e,)] + [hg (R T (AB) -

hy (R2) AB - hg (R3)B - hg (R4) A - e, =
5 4

26 + [el -1) 27 + [e2 - ell z
lezl 23 (2.53)
Equating the coefficients of z® in (2.53) results in the
following relationships:
For n = 3:
1 + hy (R2 + R3 + R4) = 0 (2.54)
For n = 2:
hg (R1)T - hg(R2) (1 + A ¢ B) - hg(R3) (2 + B) -
ho(R4) (2 + A) + (e, -1) = 0 (2.55)
Por n = 1:
-hg(R1)T (A + B) ¢+ ho(R2) (A + B ¢+ AB) ¢+ ho(R3)
(1 + 2B) + ho(ZA + 1) R4 ¢+
(2.56)

(02 - ‘1) = 0
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For n = 0:

ho(Rl)T (AB) - ho(R2)AB - ho(R3)B - ho(R4)A

To simplify the manipulation of these equations, define the

following terms:

R5 = (R1)T (AB) - (R2)AB - (R3)B - (R4)A (2.58a)

R6 = R4 (2 + A) + R3 (2 + B) + R2 (1 + A+ B)
- (R1)T (2.58b)
Solving (2.54) to (2.57) and using (2.58) to simplify the

result yields the controller coefficients as:

"h. = 1/(RS - R6 -(RL)T (A + B) + R2 (A + B +AB)

0

+ R3 (2B + 1) + R4 (1 + 2A)) (2.59)
e, = 1 + ho (R6) (2.60)
e, = ho (RS) (2.61)

These results are tabulated in Table 2.2(a).
The controller with one extra term is derived in a
similar manner. As in Section 1-3, the value of e is

iterated between 0 and 1 to solve the extra unknown.
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Equation (2.50) when the extended controller is sought

becomes:

4
1 + D(2) sz(z) = 2 (2.62)

Assume the following controller form:

hg (z - A) (z -B) (z - C)
D(z) = =
2" +e 2" +e,z + e,

h, + nlz'l +h,z? +n
= - 7T (2.63)
1l + e, 2 1 + e, 2 2 +e, 2

where C is the additional unknown zero of D(z).

Defining the numerator coefficients of the controller from

(2.63) yields:

hz =- ho (AB + AC + BC)

h - "ho Ax ‘2-6‘)
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Substituting (1.15) and (2.63) into. (2.62) yields the

simplified result:

z‘ + z3le1 + ho(R7) -1] + 22[e2 - e + ho(Ra) -

hyg C(R7)] + zley - e, + h, (U) -

ho C(R8)] + [-e3 - hOCU] =

z8 + z7le1 - 1] + 26[e2 - ell +

zsle3 - e2] + z‘[-e3] (2.65)

Equating the coefficients of z3 yields:

el + ho(R7) -1 = 0

From this equation ho is calculated to be:

hy, = (1 - e,) / R7 (2.66)

Since e, is iterated from 0 to 1, it is now only necessary
to solve for the other coefficients in terms of hg- Equating
the coefficients of z” in (2.65) and solving yields:

C = 1 - 1/(ho(R7 + R8 + U)) (2.67)

e, = h, (U - C(R8 + U)) (2.68)

e, = -ho cu (2.69)



k x

0 h, = 1/ (R5-R6- (R1) T (A+B) +
R2 (A+B+AB) + R3(2B+1) +
R4 (2A +1))

1 h = ~hy (A + B)

2 h, = hjAB

TABLE 2.2(a)
FOR Gz(s) = 1/8(s + =) (s ¢

X Px

0 ho = (1 - el)/n7

1l h1 = -ho(A + B + 0O

2 h2 = ho(AB + AC + BC)
k] h3 - -ho(ABC)

TABLE 2.2 (b)

COEFPICIENTS OF 4 TERM DEAD
POR Gz(s) = 1/8(s + =) (s ¢+

48

1.0

e, = 1l + ho(RG)

e, = ho(RS)

COEFFICIENTS OF MINIMUM DEADBEAT CONTROLLER

8)

Oy

1.0

<

0%e, $ 1 (ITERATED)

e, = ho(U - C

(R8 + U))

« -h, CU

e 0

BEAT CONTROLLER
8) (ONE EXTRA TERM)
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These results-are summarized in Table 2.2(b). All these
coefficients are calculable using e, as the only extra

unknown.

2-5 NOISE SOURCE USED IN HYBRID SIMULATION

The random noise generator used to obtain the
experimental data is a SERVOMEX TYPE R.G. 77. The noise
spectrum of this generator is shown in FIG. 2.4. The low
frequency output of this generator is flat to d.c. according
to the manufacturer's specifications.

It is known from sampling theory that any continuous
input signal can be represented by the bandwidth -fs/Z to
fs/z after sampling, where fs is the sampling frequency.
Also the input signal must be strictly bandlimited between
-fs/z and fs/2 for the sampling process to uniquely reconstr-
uct the input.6 If the input signal is pure white noise
and is strictly bandlimited, the output of the sampler is
bandlimited white noise. The auto-spectral density is
shown in FIG. 2.5 for bandlimited white noise.’

No suitable low pass filter was available for this
experiment. There was however a Krohn-Hite 330M tunable
bandpass filter available. This filter has a slope of -80
db/decade and a tunable range from 0.2 Hz to 20 KHz. In
order to generate an approximation to low-passed white

noise, the aliasing properties of the sampling process are

used.
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1f the sampling rate of the system is 1.0 gsecond ,
the value of fs/2 is 0.5 Hz as fs = 1.0 Hz. Therefore to
keep the aliased frequencies from adding to the low frequencies
already present, the lower filter breakpoint is set at 1.0
Hz. The upper breakpoint is arbitrarily set at 10Hz. Using
this passband, the input signals at 0.5 Hz are at least 24 db
down compared to the middle of the band.

The Nyquist frequency is defined as

£ = f_ /2 (2.70)

For any frequency f where 0 S f < fc' the higher frequencies

that aliase with f are:’

(ch + £), (4fc + £), o0 (ZNfc t £), oo (2.71)

Each frequency f has an equal number of higher frequencies
aliased with itself. Since the bandwidth of 0 to 0.5 Hz is
narrow, the contributions of the aliased frequencies should
be approximately constant over this range. Therefore since
the amount of 1input signal below fc is negligible, the
resultant output of the sampler should be a usable

approximation to bandlimited white noise between 0 and 0.5 Hz.

2-6 TEST PROCEDURE ON THE HYBRID SIMULATION

The noise generated by the method outlined in Section
>5 is applied to the system shown in FIG. 2.3. Experimental

runs of 100 seconds duration were taken. A run of 100
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seconds allows the measurement of at least one complete cycle
of all frequencies above 0.0l Hz.

Every additional decade below this requires an
extra factor of 10 in the length of the run. The additional
accuracy obtained could be offset by difficulties with the
total drift and overall accuracy of the analog components.

The hybrid test procedure is as follows:

1. The minimum time deadbeat controller is tested
with a unit step to verify the deadbeat response.

2. This controller is then tested in the presence
of noise.

3. The extended deadbeat controllers are tested
with a unit step to verify the deadbeat response.

4. These extended deadbeat controllers are tested

in the presence of noise.

whenever a controller was tested, 7 to 10 runs of
100 seconds in length were taken. The mean of these runs
was calculated along with the 95% confidence limits on the
mean. These results are presented graphically in Chaoter
3. The interpretation of these results and a proposed
prediction criterion for the extended controllers are also

given in Chapter 3. The hybrid system errors are common to

both the minimum time and extended controllers and therefore
the errors tend to cancel each other when the ratio of the

noise transfers is taken.



CHAPTER III

HYBRID SIMULATION RESULTS AND THE DERIVATION

OF A DESIGN CRITERION

In this chapter, the results and conclusions
obtained from the hybrid computer simulation described in
Chapter 2 are presented. The results obtained from the
hybrid simulation are presented graphically and then some
preliminary conclusions are stated. Some details of two
criteria considered are then presented.

The final section contains the reasoning behind and
the derivation of the proposed design criterion. The
controllers derived by use of this criterion are then compared
with the controllers which minimize the noise transfer of the

system when tested on the hybrid.

3-1 SYSTEMS TESTED BY HYBRID SIMULATION

Using the methods outlined in Sections 2-3 and 2-4,
controllers with one extra term were calculated by iterating

e, - The plants considered were:

1. Gl(l) 1/s(s +1) with T = 1 second

2. Gl(l) = 1/s(s +3) with T = 1 second

3. Gl(l) 1/s(s +1) with T = 0.5 second
4. Gz(l)

1/8(s +1) (s+ 2) with T = 1 second.
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The noise transfers measured for the systems
containing each controller are plotted versus e, which is
the iterated variable. All noise transfers of the systems
using the extended controllers are normalized with respect
to the noise transfer of the system using the appropriate
minimum time controller.

Controllers extended by two terms were also considered
for Gl(s) = 1/s(s+l) with T = 1 second. In this case,
e, and e, were the unknown variables. To simplify the
problem of calculating these controllers, e, was fixed at
0.50 and then e, was iterated. The normalized noise transfers

for this system are then plotted versus e, with e, = 0.50.

3-2 GRAPHICAL RESULTS AND SUMMARY

As stated in Chapter 2, the mean noise transfer for
a given system was the average of 7 to 10 test runs. The
95% confidence limits were also calculated for this mean value.
Por each minimum time controller, the mean and confidence
limits of the noise transfer for the system are listed in
Table 3.1.

FIG. 3.1 to FIG. 3.5 present the normalized noise
transfers for the systems containing the extended controllers.
The normalized noise transfer was calculated by dividing the
mean noise transfer obtained using the extended controllers
by the mean obtained using the appropriate minimum time
controller. The 95% confidence limits were then calculated

around the normalized mean.
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This method of presentation is used to show more

clearly the actual improvement due to the extended controllers.

Plant T Mean Noise 95%
.Seconds Transfer Confidence Limits
Measured On ______0On Mean
Hybrid (%) Lower Upper
-_(%'T»IT 1.0 88.686 83.359 94.013
;-(:—*3-,- 1.0 70.982 64.853 77.112
1
O 0.5 146.18 139.47 152.89
1 95.876 84,398 107.36
s(s +1) (s +2) 1.0

TABLE 3.1 NOISE TRANSFERS AND CONFIDENCE LIMITS PFOR
SYSTEMS CONTAINING THE MINIMUM TIME CONTROLLERS

MEASURED ON THE HYBRID

A summary of the results shown in PIG. 3.1 to PIG.
3.5 is given in Table 3.2. The results are given as the
range of e, which yields the minimum normalized noise
transfer and the range of the normalized noise transfers

corresponding to the e values.
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From the summary in Table 3.2, a number of preliminary
conclusions may be drawn:
1. It is possible to minimize the noise transfer
of a system containing an extended controller
with a particular value of e,
2. The improvement is significant considering the
added controller complexity when only one term
is added. Comparing the results in FIG. 3.1
and FIG. 3.5 does not indicate if the improvement
obtained by two extra terms is significant.
3. Generally the range of values of e, over which a

minimum may occur is relatively wide.
Considering these results, it seems worthwhile to

study this method of noise improvement in more detail.

3-3 CONSIDERATIONS INVOLVED IN THE DEVELOPMENT
OF A DESIGN CRITERION FOR AN EXTENDED CONTROLLER

The results given in Section 3-2 were obtained
experimentally. This method of finding the minimum noise
transfer extended controllers is time consuming. A quicker
method would be a design criterion to predict the minimum
noise transfer extended contgollers.

As stated in the introduction, the application of
the criterion to a particular plant should be as practical
as possible. This indicates that the criterion should be

relatively simple in form. The simplest form of criterion
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would be 1n terms of the plant parameters with no direct
reference to the noise input.

1f the input noise is white, this assumption is
possible. Stationary white noise has a constant auto-spectral
density and may be assumed to have no cross-correlation with
a unit step. Providing that the noise is at least a reason-<
able approximation to white noise, it should be possible to
neglect 1t in the derivation.

Several criteria were proposed and tested. The
predicted results of each case were considered to verify the

validity of the proposal.

3-4 CRITERIA CONSIDERED

The first method considered did not exclude the

noise input as suggested in Section 3-3. This approach was
based on the work by Tou1 and corrected by Jury et 31.10-13

All calculations of the optimum controllers in the presence

of noise are carried out in the é}: domain. This means the
calculations are not simple 1in form. Since the method involves
the inverse ;;: transformation, it is difficult to write the
equations as part of a digital computer program.

Tou's method also requires a specified model response
to be incorporated in the calculations. No such'model can be
predicted for the extended deadbeat controllers. Because of
these difficulties, Tou's method is not considered further.

Another method considered is a "gtraight line"

approximation. This means that the deadbeat response
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obtained using the extended controller is given by an
output which has the minimum deviation, at the sampling
instants, from a straight line from c[0] = 0 to c(nT] = 1.0.
The values of the "straight line" output at the sampling
instants are: cg (4TI =% ;i =1, 2, ..., n-l. Thus the
errors for the "straight line" at the sampling instants are:

eigL = (- i/n); i=1, 2, ..., n-1.
For the extended controllers, the deviations from

the "straight line" approximation are given by:

Deviation at ith sampling instant = DEViSL =

(eiSL - ei) ; i=1,2, ..., n-1

Therefore the sum of these deviations must be minimized to
yield the predicted controller.

This method is considered as it should have the
smallest change in the equivalent gain of the controller
from one period to the next.

The proposed criterion was applied to some of the
plants. It was found to be a useful approximation in some
cases, but the results in general were not satisfactory.
Some instances when this is a useful approximation are
presented in Chapter 7.

The failure of the "straight line” approximation
to give general results indicates a more complicated criterion

is needed. A more general criterion is derived in Section

3-5.
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3-5 DERIVATION OF THE DESIGN CRITERION

In the system shown in FIG. 1.1, the plant parameters
and sampling rate are assumed to be fixed. This leaves the
parameters of the extended controller as the only variables.
These must then be calculated so as to minimize the system
noise transfer.

Since the plant is linear, the output of the system
at any sampling instant may be related to the output of the

controller at that instant. This relationship may be expressed

as follows:

c[(mT) = cG[mT] BE2 [mT) (3.1)

where cG(mT] is the combined equivalent gain of the plant
and zero-order hold in the mth sampling period.

This expression is arrived at by consideration of the
discrete state equations of the system. In these equations,
the plant is replaced by a matrix of values which vary with
time but are constant over any one sampling period.

Using (3.1), the mean square error of the system, as

evaluated at the sampling instants, becomes:

(c(mT)) = chlmTl BBZlmT112 (3.2)

Rewriting (1.47) as a difference equation yields the

controller output at the uth sampling instant as:
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BE2(mT] = I (hk) BEl[mT - kT)] +

k=0
m
L (ek) BE2 [mT - KkT] (3.3)
k=1
where
0o $m ¥ n (3.4)

Expanding (3.3) for various values of m yields the
following relationships.

Form = O:

BE2(0]) = (ho) BE1 (0] (3.5)
Forms= 1l:
BE2(T]) = ((hy,) BEL(T) + (h;) BEl1([0])) -
“'1’ BE2(0])) (3.6)

Por m = 2:

BE2(2T) = ((ho) BE1l(2T] + (hl) BE1l(T) +

(h,) BEL[0)) - (le;) BE2IT) -

(o)) BE2(0])) (3.7)
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Porm = 3:
BE2(3T) = ((ho) BE1([3T] + (hl) BEl[2T] +
(hz) BE1(T] + (h3) BE1(0]) -
((el) BE2[2T] + (ez) BE2[T) +

(e3) BE2(0]) (3.8)

This expansion can be similarly extended for m up to n.
These expressions may be rewritten entirely in terms of the
input BE1l(mT) in the following fashion.
Form = O:

BE2(0) = (ho) BE1(0] (3.5)
For m = 1, substituting (3.5) into (3.6) yields in

simplified form:

BE2(T) = (h, - elho) BE1([0] + (hj) BE1(T) (3.9)

For m = 2, substituting (3.5) and (3.9) into (3.7) and

simplifying yields:

2
BE2(2T) = (h, - °1h1 - ezho + elho) BE1[0] +

(h, - e,hg) BEL[T] + (hg) BEL[2T]  (3.10)
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FPor m = 3, substitute (3.5), (3.9) and (3.10) into (3.8)

and simplify to obtain:

- eh, + e 2h +

BE2(3T) = (h3 - e1h2 - ezhl 3Pg 1 Ny

2e,e.h

3
18200 ~ €1 ho) BE1([0] + (h2 - elhl -

2
ezho + e ho) BE1[T] + (h1 - elho)
BEl1([2T]) + (ho) BE1[3T] (3.11)

As shown in Table 3.3, the controller inputs BE1(0]
to BE1[3T) are acted upon by the same set of controller
coefficients. This set of coefficients is delayed for each
input BEl(mT] by mT as compared to BEl([0]. It is therefore
possible to conclude that the net effect of the controller
over all n periods is the same for BE1([0) as for any other
input.

Rewrite (3.5), (3.9), (3.10) and (3.11) considering

only the terms with respect to BE1([0] as follows:

332[01| = (ho) BE[O] (3.5)
BE1(0)
szzm| = (h, - e;hg) BEL(O] (3.12)
BE1(0]
2
382[271‘ « (h., - e,h, - e,h, + e,"h,)
BE1(0] 2 171 270 170

BE1(0) (3.13)
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BE2[3T] = (h, - e;h e, h e h, +
E1(0] 3 172 271 370
2 _ 3
e, h1 + Zelezho e,y ho)
BE1[0] (3.14)

I1f the net controller effect on any BE1l[mT) is constant,
then it should only be necessary to minimize the net effect
of the controller on BE1(0). This corresponds to minimizing
the effects of the inputs to the controller at all sampling
instants. Gince the error signal BEl[mT] contains the noise
signal, it is implied that the noise transfer through the
controller is minimized by this calculation.

This means that the "weighting sequence” BE2 [mT) of
the extended controller is minimized.

Expressing (3.1) in discrete form yields:

c[mT]‘ = cG[mTl BEZ[mT]‘ (3.15)
BE1(0) BE1[0)

The mean square error due to BE1[0] becomes:

2 2
= CG[mT] BEZ[mT]| (3.16a)

clmTl‘
BE1 (0]

BE1(0]

Ignoring the constant, (3.16a) becomes:

2 2
c(mT] - BBZ(nT]\ (3.16b)
BE1(0) BE1(0)
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where the net mean-square error of the controller to the

input BE1(0] is defined as:

2 1 n 2
BE2 [mT) = (EEITﬁT) £ (BE2[mT]
BE1(0] m=0 BE1[0]

(3.16c¢)

)

Therefore to minimize the net effect of the controller on

BE1(0), (3.16c) must be minimized.
Substituting (3.5), (3.12), (3.13) and (3.14) into

(3.16c) yields the following simplified form:

2 2 2
BE2 [mT) = 2+ (b - eh? 4
BE1(0)

2 2
(h2 - elh1 - °2h0 + e ho) +

2
(h3 - °1h2 - ezhlf e3h° + e h1 +

3h )2 + . . .+

2e e h, - ) hy
(EE%TUT)Z (BE2 [nT) )2
BE1(0])
(3.17)

This sum in (3.17) is the net controller mean-square error
due to BE1[0). Henceforth this term will be referred to by

the abbreviation NCE. This abbreviation is defined as:
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NCE =  NET CONTROLLER MEAN-SQUARE ERROR

2
TO BEl([(0]) = BE2 [mT] (3.18)

BE1(0)

The proposed design criterion, which when minimized
yields the predicted extended controllers, is obtained by

combining (3.17) and (3.18) into the following form:

2 2
NCE = (ho) + (hl - elho) + (h2 - elhl - e2h0 +
2 2 2
e, ho) + (h3 - elh2 - e2h1 - e3ho + e, hl +
3 2 1 2
2ele2h0 - e ho) + .. . * (EEITUT)
2
(BE2 (nT]) ) (3.19)

BE1([0)

This criterion is defined entirely in terms of the
parameters of the controller. These parameters, in turn, are
functions of the plant parameters and the sampling rate of the
system only.

Therefore even if a particular plant has a peak or
dip at some frequency, the extended controller predicted by
NCE .hbuld still give the minimum noise transfer for the
bandlimited white noise. This conclusion is based on the
fact that NCE may be written entirely as a function of the
plant parameters and the sampling rate. Therefore, any dips

or peaks in the frequency response of the plant will be
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considered in the calculation of the predicted extended

controller.

3-6 COMPARISON OF CRITERION RESULTS AND
HYBRID RESULTS

For the five systems considered at the start of
this chapter, the criterion of section 3-5 is used to find
the values of e, which yield the minimum values of NCE.

These results are compared in Table 3.4 to the hybrid results
listed in Table 3.2.

From the results in Table 3.4, it is apparent that
acceptable agreement exists between the hybrid and NCE values
of e, - in all cases, the value of e, predicted by NCE lies
in the middle of the range of e, values from the hybrid.

These results indicate that this proposed criterion
is worth additional consideration. To further test this
criterion, more simulation results for the predicted
controllers are required.

In Chapter 4, an experimental simulation using a

digital computer is developed to supply these additional

results.
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CHAPTER IV
DIGITAL COMPUTER SIMULATION

In this chapter, the digital computer simulation
used to test the controllers calculated by NCE is oﬁtlined.
The hybrid simulation results, with which the predictions
by the design criterion are compared in Section 3-6, are
for only two types of plants. The digital simulation is
used to test the four types of plants listed in Chapter I.
The results of these simulations are given in Chapters 5
to 7.

The digital simulation is used instead of the hybrid
simulation for the following reasons:

1. The controllers can be tested more rapidly.

2. A larger combination of plants and controller

extensions may be considered.

3. Repeatable results are obtainable wit. precisely

defined noise sources.

4. The simulation is free of the component drift

present in the hybrid simulation.

5. Accuracy of test results up to 16 significant

figures is possible if desired. The actual

calculation accuracy is 5 significant figures.

In the first section, the method of simulation is

outlined. Then the test procedure followed is given. The
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noise sources used in the test program are discussed in the

final section of this chapter.

4-1 METHOD OF DIGITAL SIMULATION

Fortran IV is the programming language used on an
IBM 360/67 computer. The systems are simulated by use of
+he discrete state equations derived in Chapter 1. |
Various noise sources are simulated by the random
number generation programs available in the IBM Scientific
Subroutine Package. Since the mean-square error of the
system is calculated only at the sampling instants, the input
noise need only be defined at the sampling instants to yield
the system noise transfer value.
The mean-square sampled error may be calculated
theoretically for systems with a noise contaminated input.
To perform this calculation, it is necessary to know the
auto-spectral and cross-spectral densities of the unit step
and noise inputs. It is also necessary to take the inverse
}»- transform of the system transfer function. The variable
8 is then replaced in the resultant function by -s and the
‘}- transform is then taken. Then a contour integral is

evaluated.

This calculation is expressed in equation form by

'l‘ou1 as:
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e (nT) = }% fo 0gg(2) 2”1 az (4.1)
- -1
where ¢ee(2) = M(z ) M(2) ¢nn(z) (4.2)

and where M(z) = C€(z)/R(2)

In this calculation, the following assumptions are made:

1. There is no correlation between the noise and
the unit step input.

2. The model system response is set equal to the
system response obtained using the extended
controller being tested. This removes the terms
from (4.2) which contain the auto-spectral density
of the unit step °uu(z)'

3. @nn(z) is the auto-spectral density of the input

noise. For white noise, @nn(z) is a constant.

These calculations are very difficult to program on
the digital computer due to the transforms and contour
integration required. Therefore the alternate approach of
using random number sets to simulate the white noise input
is used.

This method yields only an approximation to white
noise as the experiment is time limited. The validity of
any results obtained by this method may be evaluated if the
accuracy of the approximation is known. These random number

approximations are discussed in Section 4-3.
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The Fortran program consists of the following

sections:

1. A group of algorithims to calculate the various
controllers.

2. A system simulation to verify that deadbeat to
a unit step is satisfied.

3. A system simulation to test the system in the
presence of noise.

4. An algorithim to calculate the mean-square error
for the minimum time controllers and the normalized

mean-square errors of the extended controllers.

The block diagram of the simulation given by FIG. 4.1
incorporates these sections.

The diagram of the computer simulation shown in
FIG. 4.1 is greatly simplified. All details are omitted.
The program for the sections which verify deadbeat and
calculate the noise transfers is given in Appendix B.

The algorithims for the calculation of the various

predicted extended controllers are given in the appropriate

chapters.

4-2 DIGITAL COMPUTER SIMULATION TEST PROCEDURE

As shown in FIG. 4.1, there are three types of

controllers to be considered for a given system. The

computer simulation package can be run in two forms. These

are:
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a. Branches (1) and (2) compared.

b. Branches (1) and (3) compared.

Both forms begin by calculating the minimum time controller
and its corresponding noise transfer. Then in form (a), the
predicted controller is calculated and its noise transfer is
normalized.

In form (b), the error terms of the extended controller
are iterated as in Section 2-4. This yields a series of
controllers which are then tested in the presence of noise
to find the minimum normalized noise transfer controller.

This controller is called the "grid searched" controller.
This "grid search”" is similar to the test procedure used in
the hybrid computer simulation described in Chapters 2 and 3.

"Grid searched" controllers are calculated for various
combinations of plants, sampling rates and controller
extensions. These controllers are then compared with the
appropriate predicted controller. From these comparisons,
the accuracy of the prediction by the design criterion is

obtained. Results of these tests are presented in Chapters

5, 6 and 7.

4-3 NOISE SOURCES SIMULATED BY THE RANDOM
NUMBER GENERATORS

It was stated earlier that the input noise for the
system is assumed to be white. However it is not possible
in a time limited experiment to obtain wide-band white noise.

It is possible to generate noise which 18 white over some
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limited range of frequencies. This is called bandlimited
white noise.

After sampling, the noise bandwidth is reduced to 0
to ms/z where wg is the sampling frequency. If the noise in
this frequency range 1is white, the distribution of frequencies
is uniform from 0 to us/z. This occurs if the input noise
before sampling is white and tightly low-passed from 0 to
us/2. Then the output of the sampler is pure bandlimited
white noise. 1In this case, the bandlimited noise referred to
is actually low-pass noise in all cases.

It is useful to calculate the Fourier coefficients of
the sampled noise sources simulated by the random number sets
used in the digital simulation. The distribution of these
coefficients may be compared to the ideal bandlimited white
noise frequency distribution obtained after sampling.

Using a Fortran subroutine called PS301A, the real
and imaginary Fourier coefficients are calculated for the
noise sources by the Fast Fourier method. The frequencies

W
for which these coefficients are calculated are 0, (f%),

W w
S s L-1 ,
2(55), 3(55) s e e e (7E_)'s where L is the total number

of points in the random number set. At each point, the
magnitude of the Fourier coefficient is calculated in decibels
from the real and imaginary values.

Once these magnitudes are known, a comparison may be
made. The mean of these magnitudes for each noise source is
calculated. Then the variance and deviation of the magnitudes

around the mean are evaluated for each source.
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Since low-pass white noise has a uniform distribution

over 0 to ws/Z, its variance and deviation around the mean
are zero. Therefore the lower the values of the variance
and deviation for each noise source, the better the approxi-
mation.

The Scientific Subroutine Package of Fortran IV

contains two random number generation programs. These are

called:

l. RANDU

2. GAUSS

The subroutine RANDU generates uniformly distributed
random numbers between 0 and 1.0. 1In order to make this
sequence useful, 0.5 is subtracted from all values when
calculated. This results in a uniformly distributed set of
numbers with amplitudes between -0.5 and + 0.5.

The second subroutine GAUSS generates a set of
random numbers with a specified variance around a specified
mean. The amplitude distribution of these numbers is
Gaussian. For all Gaussian sets used, the mean is 0, but
the variances differ.

By varying initializing coefficients in the
subroutines, different sets of random numbers are available.
The length of the set of random numbers is variable up to
1029 numbers without repetition of values. For normal testing,
the sets generated contain 256 or 1024 numbers. The reasons

for these lengths are given in Chapter 5.
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Five different noise sources are used. These are

labeled:

1. GAUSS2A
2. GAUSS2

3. GAUSS3

which are generated by the GAUSS subroutine and

4. RANDUA

5. RANDU

which are generated by the RANDU subroutine.
Table 4.1 lists the Fourier gstatistics calculated for each

noise source by the subroutine PS301A.

NOISE LENGTH OF FOURIER COEFFICIENT
SOURCE NUMBER SET STATISTICS
MEAN DEVIATION ABOUT
(decibels) MEAN (decibels)
GAUSS2A 1024 7.6053 5.4287
GAUSS2 256 1.4664 5.2050
GAUSS3 256 1.7052 5.3203
RANDUA 1024 16.746 5.7010
RANDU 256 10.618 5.6861

TABLE 4.1 POURIER COEFFPICIENT STATISTICS FOR RANDOM

NUMBER NOISE SOURCES
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In Table 4.1, only the deviation is given as the

variance is simply the square of the deviation. From this
table, GAUSS2 appears to be the best approximation as it has
the lowest deviation. 1In all cases, the deviation is

substantially greater than zero however.



CHAPTER V
CONTROLLERS EXTENDED ONE TERM

The results of the digital simulation tests of the
controllers with one extra term are presented in this
chapter. To simplify the presentation, a controller
extended by one term is referred to as a P1C. This stands
for Plus One Term Controller.

The calculation algorithim for the P1C is derived
from NCE in the first section. In the following sections,
the test results for the four plants listed in Chapter 1

are presented.

The results for these plants consist of two parts.

1. The controllers predicted by NCE are presented
for various sets of system parameters.

2. The predicted controllers are compared to the
ggrid searched" controllers using the various

noise sources.

The responses of the minimum time deadbeat controllers

and the predicted P1Cs to ramp and acceleration inputs are
compared in the second last section. In the last section,

some conclusions obtained from the test results are given.
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5-1 ALGORITHIM USED IN THE DIGITAL SIMULATION
TO CALCULATE THE PREDICTED PiCs

The four plants defined by (1.4) to (1.7) were tested
using digital simulation. In order to test these plants,
the P1Cs must be calculated. The method presented in
Section 2-4 is used as the basis of the algorithim.

Consider the plant Gz(s). In Table 2.2(b) the
coefficients of the D(z) are expressed in terms of e,-
Since NCE is derived in Chapter 3 in terms of the
coefficients of the D(z), it is possible to rewrite NCE as
a function of e,

The calculation algorithim yields the predicted
value of e, using NCE. This allows the predicted P1C to be
calculated. Although Gz(s) is used as an example during
this derivation, the algorithim derived is general.

The digital controller coefficients listed in Table

2.2(b) may be expressed as follows:

hy = ae, + a, (5.1)
h) = aje; + a, (5.2)
h2 = age; * a (5.3)
hy = a.e, + a4 (5.4)

e, = b1°1 + b2 (5.5)
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e; = b3e1 + b‘ (5.6)

where the coefficients a, to ag and bl to b4 for Gz(s) are

defined in Table 5.1 (a).

The criterion proposed in Chapter 3 for extended

controllers with n $ 3 is

2 2
NCE = ho + (h1 - hoel) + (h2 - h,e, - h.e

181 02 *

- h.e 2

2,2 _ - _
hoe1 )4+ (h3 h.e hle2 0®3 + hlel

271

3 2
hoel + 2hoe1e2) . (5.7)

(5.7) may be rewritten in the following form:

n
NCE = I NCE, (5.8)
im0
where
NCE, = (h,)? (5.9)
0 0 .
- 2 .

NCE, = (b - hge)) (5.10)
NCE. = (h. - h.e, - he, + h.e %)? (5.11)
2 5 = hye; - hge, + heey .

2
NCE3 = (h3 - h2el - h1°2 - hoe3 + hle1 -

2
hoel + 2"0‘132) (5.12)
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For Gz(s), the P1C has n = 3. By substituting (5.1)

to (5.6) into (5.9) to (5.12), NCE may be written as a

function of e,.-

function of e

NCElO

(5.10) as:

NCEll

(5.11) as:

NCElz

(5.12) as:

NC813

Define NCE for a PlC as NCE1 which is a

Using this definition yields (5.9) as:

2 2 2
a,"e) + 2a1a2e1 + a, (5.13)

2 4 3 2
a,"e; - 2a1allel + (all - 2a1a‘)

2
e, + 2a4ane1 + a, (5.14)

26 5
a %e,® + 2a;3; )7 + (ay + 2a) ay))

4 3 2
e," + 2(ajayy + ajazle)” + (ay ¢
sa..a..)e.2 + 2a..a,.8, + 8,q° (5.15)
21223'€) 222231 * 223 .
2 8 7 2 6

‘1 °1 - 2a1a31e1 + (a31 - 2a1a32)e1 +

5 2
2(ay,8,, - 3j233)€)” + (agy" + 283,833 ~

. 3 2
2a,a  0e, " + 2(ajjay ¢ ajya5y)e;” ¢ (A ¢

2 2
Zanau)e1 + 2a33a3‘e1 + ag, (5.16)



where

Substituting (5.

simplified form:

where Ci is the
coefficients of

criterion is an

(5.19).

NCE

NC!l
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a; - a,

a, - a; - albl

ag - a, - albz - azbl
ac - a2b2

a; - a, + 2a1b1

a, -~ ag - a3p) - a,by + 2(a)b, + ayb,)
ag + 2a2b2 - a3b2 - a4b1 - °1b4 - azb3

a‘b2 - azb4 (5.17)

13) to (5.16) into (5.8) yields the following

2n+2 i n
b Cie1 = I (NCEli) (5.18)
i=0 i=0

coefficient of e:l_1 generated by summing the
e, in (5.13) to (5.16). Thus for G,(s), the

ath order linear egquation in e, as shown in

£ ci‘l (5.19)



This expression must be minimized in order to obtain the

predicted value of e,- Because of the deadbeat restriction,

e, for any valid controller must satisfy the following
conditions:
e, is real (5.20a)
0o ‘e S1.0 (5.20b)

One method for finding the minimum of an equation is

differentiation. Differentiating (5.19) with respect to e,

yields:
4  (NCE,) = g i ce, i1 (5.21)
Je; 1 - i®1 .

Set (5.21) to zero:

8
ag— (NCE)) = 0 = I i cieli'l (5.22)
1 jm1

The roots of this equation yield the values of e, which
correspond either to the local maxima or minima of the
expression NCEl.

A polynomial root solving subroutine called POLRT
is available in the Fortran Scientific Subroutine Package.
This solves for the real and imaginary parts of all the
roots of a polynomial of up to 36th order.

Any roots not satisfying the restrictions of (5.20)
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may be ignored. It was found that for every combination of
«, B and T checked, only one root of (5.21) would satisfy
(5.20) . For these cases, the calculated value of e,
corresponded to the only minimum of NCE,.

similar calculations were performed for Gl(s),

G3(s) and G4(s). For all combinations of parameters
attempted, only one value of e, was found in each case which
satisfied (5.20). 1In each case this value of e, corresponded
to the only minimum of NCEl.

The coefficients a; to ag and b, to b4 are listed in
Table 5.1(a) and 5.1(b) for Gl(s) to G4(s). These coeffi-
cients are defined in terms of the appropriate constants from
Chapter 1.

From these observations, a general algorithim for the

calculation of the predicted P1C is as follows:

1. Determine n which is the order of the P1C to be
calculated.
2. Calculate NCE, as shown in (5.18).
2n+2 i
NCE, = iEO c,ey (5.18)
3. Differentiate (5.18) with respect to e, and
set the result to zero.
- (ncE)) = 2.?*2 i cet a0 (5.23)
1 i=l
4. Solve for the roots of (5.23) and choose as

01 the root which satisfies (5.20).
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5. Substitute this value of e, into (5.1) to (5.6)

to calculate the predicted minimum noise transfer

PlC.

5-2 RESULTS FOR THE P1Cs of Gl(s) = 1/8 (s+=)

The greatest amount of work was done for this plant
as it was the first and simplest to be tested. Also any
conclusions obtained from it may be applicable to later
plants tested. The test procedure followed is outlined in
Chapter 4.

The sampling rate T and the pole = are the only
system parameters considered in NCE,. Therefore T was fixed
and successive values of = were used in testing the plants.

The first set of data collected for Gl(s) is
obtained using the GAUSS2A and RANDUA noise sources. Both
are 1024 sampling periods long. FIG. 5.1 shows the values
of e, predicted by NCE1 plotted versus <= with T = 1 second.
It is only necessary to present e, as all the other
coefficients of the D(z) can be calculated using the
relationships given in Table 5.1.

FIG. 5.2 presents the normalized noise transfers of
the systems using the predicted P1Cs when the noise sources
are GAUSS2A and RANDUA. The noise transfer is shown in all
following graphs as a fraction. This means the noise transfer
of the system containing the P1C is normalized to the noise

transfer of the system containing the appropriate minimum
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time deadbeat controller.

All calculations following are carried out for
T = 1 second as the predicted values of e, are constant for
constant values of the normalized constant =T, For
example if T = 10 seconds and = = 0.1, the e) predicted is the
same as for « = 10 and T = 0.1 second.

A grid search was then performed with both GAUSS2A
and RANDUA. The number of values of « considered is less
than for the predicted P1Cs as the computer time to perform
the grid search is much longer. Also a good indication of
the agreement should be obtained by taking a reasonable
cross-section of values. In order to further reduce the
computer time required, the value of e, was only calculated
to two decimal places. FIG. 5.3 presents the comparison
between the predicted values of e, and the values of e,
found by the grid searches.

The percentage differences between the predicted and
grid searched P1lCs are now considered. All the differences
between the D(z) error terms are calculated as a percentage
of the predicted value. The normalized noise transfer
differences are expressed as a percentage of the predicted
noise transfer.

The noise transfer difference using GAUSS2A is
- 1.5¢ at «T = 0.1 and zero at <T = 96.0. Using RANDUA,
the difference is - 3.3% at =T = 0.1 and zero at «aT = 96.0.
The comparable differences 1in e, are - 4.4% and + 2.6% from

the GAUSS2A grid search. Using RANDUA, the differences are
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- 5.5% at «<T = 0.1 and - 0.9% at =T = 96.0. This agreement
is considered acceptable.

The results obtained to this point were generated by
test runs of 1024 sampling periods. This is lengthy in terms
of computer time. Shorter runs were attempted to determine
if the results are comparable. The length was reduced to
256 sampling periods. The new noise sources are GAUSS2,
GAUSS3 and RANDU.

FIG. 5.4 is a plot of the mean of the normalized
noise transfers calculated for all the noise sources at each
value of =. The 95% confidence limits are shown with each
mean.

Using these noise sources, grid searches were carried
out. The 95% confidence limits of the mean values of e,
calculated from these grid searches are compared to the
predicted values of e; in FIG. 5.5.

Table 5.2 shows the differences for the normalized
noise transfers calculated using the different noise sources.
The differences between the calculated and grid searched

values of e, are also shown.
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e Normalized Noise
Differences Transfer Differences

Noise Source « = 0.1 « = 96.0 « = ,]1 « = 96.0
GAUSS2A -4.4% +2.6% -1.5% NIL
RANDUA -5.5% -0.9% -3.3% NIL
GAUSS2 -1.6% +6.4% -0.2% -0.3%
GAUSS3 -5.4% +2.7% -3.3% -0.1%
RANDU -6.8% +0.9% -3.7% NIL
TABLE 5.2 COMPARISON OF PREDICTED AND GRID SEARCHED

P1Cs FOR Gl(s) WITH T = 1 SECOND

From Table 5.2, it is evident that the noise sources
all give comparable results. The maximum noise transfer
difference is 3.7% and the maximum e, difference is 6.8%.
This indicates that shorter test runs are similar in results
to the longer runs. Because of this agreement, the shorter

runs are used for most of the plants tested later.

5-3 RESULTS FOR THE P1lCs of Gz(s) = 1/8(8+=) (8+8)

The PlCs of Gz(s) have n = 3 and the minimum time
deadbeat has n = 2.

For this plant, the test procedure consisted of
fixing various values of B and T and then varying « over the
range 0.1 to 96.0. The values of e, as calculated by NCE1

are plotted for the following sets of parameters:
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1. 8 = 0.1, T = 1 second in FIG. 5.6

2. B = 1.0, T =1 second in FIG. 5.6

3, B = 10.0, T = 1 second in FIG. 5.7
4. B = 100.0, T = 1 second in FIG. 5.7
5. B = 1.0, T = 10 seconds in FIG. 5.7
6. B= 1.0, T = 100 seconds in FIG. 5.7

The normalized noise transfers for the systems
containing the predicted PlCs were then calculated using
GAUSS2A. This noise source was used when calculating the
noise transfer of the predicted P1Cs. The shorter test runs
were used in the grid searches. The plants for which the

predicted normalized noise transfer is plotted are:

1. = 0.1, T = 1 second in FIG. 5.8

B
2. B =1.0, T = 1 second in FIG. 5.8
3. 8 = 10.0, T = 1 second in FIG. 5.8
8

‘.

100.0, T = 1 second in FIG. 5.8

As in Section 5.2, a grid search was carried out at
selected values of the plant coefficients to compare the
predicted and grid searched values of e,- The noise source
used was GAUSS2. The plant used had 8 = 1.0 and T = 1
second with « = .1, 1.5, 12.0 and 96.0. FIG. 5.9 shows the
values of e, compared.

The comparative results are always within 0.5% of
each other for the noise transfer calculations. Also the

agreement between the predicted and grid searched controllers
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is best at = = 0.1 for both the noise and e,- The percentage
differences for e, are -0.2% at = = 0.1 and -0.3% at = = 96.0.

These results again are considered satisfactory.

5-4 RESULTS FOR THE PlCs OF G3(s) = (8+B)/8(8+x=)

This plant was tested using the same procedures as
in Sections 5-2 and 5-3. The predicted values of e, were
calculated for fixed B8 and T with « varied. Predicted
values of e, for the P1Cs are given for B = 2.0, 5.0 and
50.0 with T = 1 second in FIG. 5.10. The normalized noise
transfers for the systems containing these controllers are
calculated using GAUSS2 and are shown in FIG. 5.11.

Following the same procedure used previously, a
grid search using GAUSS2 was done at various values of =« for
g = 5.0 and T = 1 second. The results from this are shown
in FIG. 5.12.

The differences between the e, values are -2.7% at
« = 0.1 and +7.1% at « = 96.0. For the noise transfer,
these differences are +0.3% and -0.4% respectively. Although
the e, values differ by quite large margins, the noise
transfers are very close. This indicates that the change in
the noise transfer is very slow in the region surrounding the
predicted values of e, when using GAUSS2. This experimental
agreement 1is considered satisfactory.

For some combinations of «, £ and T, these plants

exhibit an overshoot in the deadbeat response to a unit step.
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This is illustrated in FIG. 1.2(b). The minimum time

controller and the P1C both exhibit this peak. However the
P1C reduces the height of this peak and therefore is an
improvement.

As an jillustration of this improvement, the deadbeat
responses for the P1Cs and minimum controllers were calculated
for 8 = 2.0 and 5.0 with T = 1 second. The magnitudes of
these peaks are plotted versus < in FIG. 5.13. From this
graph, the peaks for the PlCs are only half as high as the

peaks for the minimum time controllers.

5-5 RESULTS FOR THE P1Cs OF G (s) = 1/8 (824

2
2 Cwn8+wn)

The fourth plant considered is G4(s) which may have
complex poles in the s - plane for particular plant
parameters. The values of ¢ normally are between 0 and 1.

To test this plant the values of ¢ and T were fixed
and w, was varied from 0.1 to 96.0. In FIG. 5.14, the values
of e, predicted from NCE, are shown for T = 1 second and
g = 0.3, 0.5 and 0.7. The normalized noise transfers of the
systems containing these plants when subjected to GAUSS2 are
shown in FIG. 5.15. FIG. 5.15 shows the predicted values of
e, for ¢ = 0.3 and 0.5 with T = 5 seconds.

A grid search using GAUSS2 was carried out for selected
values of w, at ¢ = 0.5 and T = 1 second. The differences for

e, are +0.4% at wn = 0.1 and -2.6% at «. = 96.0. The
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normalized noise transfer differences are -1.2% and -0.2%

respectively. This agreement is considered satisfactory.

5-6 RESULTS FOR THE FOUR PLANTS WHEN A RAMP
OR AN ACCELERATION INPUT IS USED

Normally when a controller which is deadbeat to a
unit step is subjected to other inputs, errors occur. In
particular, the response to a ramp or an acceleration is
very poor. The unit step deadbeat controller exhibits a
constant error to a ramp input and an increasing error to an
acceleration input.

Comparisons between the minimum time and predicted
PlCs for the four plants considered are presented in this
section. To test these controllers, the mean sgquare error
between the input and output was measured over 128 sampling
periods. The error for the predicted P1lC was then normalized
to the error of the appropriate minimum time controller.

The plants tested are

1. Gl(s) with T 1 second in FIG. 5.17.

2. Gz(s) with T = 1 second and 8 = 1.0 in FIG. 5.18.

3. 63(3) with T 1 second and B = 5.0 in FIG. 5.19.

4. G‘(s) with T 1 second and ¢ = 0.5 in FIG. 5.20.

The ramp input is

ur(t) = NT (5.24)
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and the acceleration input is

u (t) = (NT) 2 (5.25)

where N is the number of the sampling period and
o ¥ n ¢ 128.

The graphs shown in FIG. 5.17 to 5.19 are plotted
over very small ranges of =x. For Gl(S) to G3(s), the
improvement of the P1Cs over the minimum time controller
occurs only in this region. For values of « outside these
ranges, the error of the P1C was larger. In particular for
« > 1.0, the P1C responds more slowly than the minimum time
controller and therefore the normalized error rises rapidly
with «.

In FIG. 5.20, the values of w, plotted are limited
as the normalized errors are greater then 1.0 for w, outside
these values. This is similar to the results for the other
plants considered.

For the four plants tested, the maximum improvement
in the error is significant. The maximum improvement is
slightly greater for the acceleration error. The range of
plant parameters for which this improvement is obtained are

very limited in each case.
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5-7 SOME CONCLUSIONS FOR THE P1Cs

The reduction of the system noise transfer varied
from approximately 25% to 50% when the predicted P1Cs
replaced the minimum time deadbeat controllers for any of
the plants tested. These values are taken from the normalized
noise transfer curves, obtained using the noise sources
defined in Chapter 4, for the various plants tested using
the digital simulation. Similar improvements were also
observed for the minimum noise transfer controllers of the
plants tested using the hybrid simulation in Chapter 3.

The largest improvements occured for Gz(s) and G4(s)
which have 4 term P1Cs. In both cases, the response time of
the P1C was 1/3 longer than for the minimum time deadbeat.
The percentage improvement in the noise transfer was generally
numerically greater than the percentage increase in the
response time for the plants tested. For some sets of
parameters, the improvement for G4(s) was as high as 70% and
as low as 158%. However for wy < .5 and w, 2 5, the
improvements fell within the original range stated.

For Gl(s) and G3(s), the percentage increase in the
response time caused by the P1Cs was 50% as n=3 for the PlCs.
In these cases, the reduction of the noise transfer was never
numérically > 508,

Therefore increasing the response time, when using
the predicted P1lCs, gave the best noise transfer improvement
for higher order systems. However, the improvement for all

systems tested was substantial when the predicted P1Cs were
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used. Therefore the trade-off of increased response time

and greater controller complexity for improved noise

performance is justified for the predicted PlCs.

It was stated earlier that the input noise is

assumed to be white. The grid searches carried out for each

plant used the non-white noise sources defined in Chapter 4.

From these tests, two conclusions may be drawn.

l.

For all plants tested, the agreement between the
predicted and "grid searched" P1Cs was generally
very close. The noise transfer differences

were always < 3.7% and generally were < 2.08%.
The e, differences were always < 7.0% for any
noise source used. This indicates that the
predicted P1Cs are at least a good approximation
for a variety of non-white noise sources. The
results from the hybrid simulation also support
this statement.

The agreement between the predicted and "grid
searched" P1Cs was best for both e, and the noise
transfers when the GAUSS generated noise sources
were used. These have lower deviations from a
uniform frequency distribution between 0 and
w'/2 than do the RANDU generated noise sources.
This supports the assumption that the NCE
criterion is derived for a white noise input as

the GAUSS noise sources are "whiter” in terms of
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their frequency distribution than are the RANDU

noise sources.

For the plants Gl(s), G3(s) and G4(s), define the

respective dimensionless constants «T, <T and cwnT as T.
For Gz(s), define the two dimensionless constants «T and
BT as T and Ty These constants are analogous in form to

time constants.

In this chapter, all noise transfer curves were
plotted for a sampling rate of 1 second. All these curves
had one common tendency. When 1 was very large or very
small, the rate of change of the noise transfer curve for
changes in 1 was very slow. Between these two regions
there was a transition zone. The transition zone extended
from T N 0.1T to T N 10T in all cases.

One reason for this transition zone is the interaction
of the values in 1. For 1t < 0.1lT, the dominant terms are <,
w,§ or 8 depending on the plant under consideration. For
1 > 10T, T is the dominant term. 1In the transition zone,
there is no clearly dominant term.

Two constants T, and T exist for Gz(s). Either one
may cause a transition zone to exist if the other is held
constant.

Within this transition zone, the absolute maximum and
the absolute minimum noise reductions occurred for all plants
tested. For Gl(')' the maximum reduction occurred at 1 = 0.7

and the minimum reduction occurred at 1=m3.5. The appropriate
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values of 1T may also be found for the other plants tested.

Therefore a set of plant parameters exists which give
the best possible noise improvement for a specific plant
type. If the plant parameters or the system sampling rate
may be altered to any extent, the cnnstant T can be adjusted
to give the best noise reduction.

The sensitivity of a deadbeat controller is effectively
infinity as the response to a unit step is either deadbeat or
it is not. However if a small parameter variation occurred
in the plant, the difference between the ideal deadbeat
response and the perturbed response was generally not very
large. Both the minimum time deadbeat controllers and the
predicted P1Cs were tested for this error.

For the four plants, one of the parameters was varied
by * 5% and the resultant errors in the response to a unit
step were evaluated over 128 sampling periods. For Gl(s),

G, (s) and G3(s), this parameter was =. For G4(s), w, was
varied. In all cases, the differences between the errors
measured for the minimum time controllers and the predicted
P1Cs were less than 2%. Depending on the parameters, the
error could be lower for either type of controller. Therefore
the predicted P1Cs caused no degradation in this respect

when compared to the corresponding minimum time déadbeat

controller.



CHAPTER VI
CONTROLLERS EXTENDED TWO TERMS

In this chapter, the results of the purely digital
simulation of the controllers extended by two terms are
presented. To simplify the presentation, a controller
extended by two terms is referred to as a P2C. This
abreviation stands for Plus Two Terms Controller.

The algorithim used to calculate the P2Cs is derived
in the first section. This derivation is based on the design
criterion NCE. In the following sections, the results
obtained from the digital simulation of the four plants listed
in Chapter 1 are presented. These results are presented in
the same format used in Chapter 5. To compare the P1Cs and
the P2Cs, a graph showing the normalized noise transfers
obtained using both types of predicted controllers is given
for each plant tested. The final section of the chapter

presents some conclusions derived from the test results.

6-1 ALGORITHIM USED IN THE DIGITAL SIMULATION
TO CALCULATE THE PREDICTED P2Cs

In this section, the algorithim used to calculate
the predicted P2Cs is derived from NCE. It was shown in
Section 5-2, that one extra term gave one additional degree
of freedom in the calculation of the D(z). This degree of

freedom was represented by the choice of e,-
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Similarly adding two extra terms to the controller

corresponds to two extra degrees of freedom in the
calculation. The choices of e, and e, represent these two
degrees of freedom.

The controllers are calculated by the method derived
in Section 2-4. Expressing the remaining coefficients of

the P2C as functions of e, and e, yields:

h, = aje) + aye, + a, (6.1)
h) = age; + age, + ag (6.2)
h, = a)e; + age, + ay (6.3)
h3 = a0, * a),e; +a, (6.4)
hy = ajje; + a8, + ag (6.5)
e; = bye; ¢+ b,e, + b, (6.6)
e, = b‘e1 + b5e2 + b6 (6.7)

where the order of the P2C is n $ 4. These
coefficients are given in Table 6.1 for the four plants
tested. The coefficients are defined in terms of the
constants derived in Chapter 1 for each plant.

For controllers with n < 4, the form of the criterion

NCE is
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Since the coefficients defined in (6.1) to (6.7) are
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4 2
te, ho)

(6.8)

functions of e, and e, NCE may be written in the same form.

Define NCE2 as the criterion for the system with two extra

sampling periods.

NCE2 =

where

NC32°

n
f(el, ez) = iEO NCE2i
- 2
ho
= (h‘ - °lh3 - ezh2 - °3h1 - e4h° +

2

2
e

h2 + 2e.,e_ h 0

18N + 2e,e3h, e

0 2

2 3 4 2
301 °2ho - e h1 + e ho)

h -

Rewriting NCE in this form now yields:

(6.9)

(6.10)

(6.11)
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The substitution of (6.1) to (6.7) into (6.8)
yields NCE2 which contains products of the powers of e and
e,. Thus it is not possible to find the values of e, and
e, which correspond to the minimum of NCE2 by simple
differentiation as in Chapter 5.

An alternate method using the partial differentiation
of NCE2 with respect to e, for fixed values of e is derived
in the remainder of this section.

Substituting (6.1) to (6.7) into (6.8) yields in
simplified form:

2 2 2
NCE,, a,"e,” + 2a2b01e2 + bo1 (6.12)

2_ 2 2

NCE21 = b11 e,” + 2bnb12e2 + b12 (6.13)
2 4 3
NC822 = ay’e, - 2a2b21e2 + (b21 -
2a.b..)e.2 + 2b..b,.e, + b2 (6.14)
P22, 21P22%2 * P22 .
2 4 3 2
NCE23 = b31 e, + 2b31b32e2 + (b32 +
2b..b..)e.2 + 2b..b..e, + bo.? (6.15)
31P33’e; 320332 33 .

2 4 3 2
NCEz‘ = b‘1 e, + 2b‘lb‘2e2 + (b +

+ b 2

2b 42P43%2 43 (6.16)

2
41b43)e2 + 2b
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where
by, = a)e; + 3,
11 ag - 2%,
2
b12 = -ale1 + (a4 - a3)el + a6
b = (a, - a,) - (a, + ac)e, + a,e 2
21 8 9 1l 5’71 2°1
b = a. + (a, - a_)e, + (a, - a,)e 2 + a,e 3
22 9 7 61 3 4’71 171
b31 = 2a1e1 - a b2 -

2 g

by, = —azel3 + (2a, ¢+ as)el2 + (-a, - 2a1b2 +
Za3 - as)el + (a11 - ag - 2a2b3)
33 —aje)t + (3, - ape;’ + (ag - 8y - ajby)e;? +
ag - 2a,bjle, + (a,, - a,b,)

(alo

2
b41 = -3a2e1 + (al + 2azb2 + 2a5)e1 + (-aa - azbs -

asbz + a3)
b.. = a.e.d- (a. + 3a)e.> + (4a,b, - 3a, +
42 21 5 1'e: 1P2 3
2a 2

4 + as)e1 + (--a11 - a, - Za‘b2 - 2a1b5 +

2a_.b

’2.6 + 4a2b3)el + (‘14 - ag - sby - 2‘2b6)
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5 . 4 3
b43 = ae, + (a3 - a4)el + (2alb1 + a, - 35)51 +

(4a1b3 + ag -~ a,

2
b4 - ajg - aqbl)e1 +
(a13 -a;, - 2a4b3 - 2alb6 + 2a3b3)el +

(a5 - a6b3 - a3b6) (6.17)

Collecting (6.12) to (6.16) yields the simplified

expression:
ph 4 3 2
NCE, = 120 NCE,; = Dse, + Dje,” + D,e, +
D,e, + D, (6.18)
where 2 $nig4ana
D, = fi(el) ; L =0,1, ..., 4 (6.19)

For 0 < n < 1, NCE, cannot be calculated as no P2C can
exist for these values.

When D, to D, are evaluated, then (6.18) is
expressed only as a function of e,. 1f the values of e,
are known, then D0 to D4 may be calculated. One way of
obtaining these values of e, is by iteration over 0 N e,
$ 1.0 which is required for deadbeat.

For a particular value of'el, equation (6.18) may

be rewritten in simplified form as:
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NCE, = [£f(e;)) (6.20)
€

Setting the partial derivative of (6.20) with respect to e,

to zero yields:

3 INCE,) = Fg= |lf(e;)] -0 (6.21)
2 2 .
1
Substituting (6.18) into (6.21) yields:
sm.| re.3 + 30| re,2+ 2, e, +
4 2 3 2 2 2
€ € €
(0, » = 0 (6.22)

€

From (6.22), solving for the value of e, which satisfies the

deadbeat requirements:

02 S l.o (6023‘)

e, (6.23b)

yields the value of e, which corresponds to the minimum
value of NCE2 for a particular value of e,- The criterion
NCB2 may be evaluated by substituting the value of e and
the corresponding value of e, into (6.18) and (6.19).

From the values of NCE2 calculated for all e, values
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obtained by iteration, the global minimum value of NCE2 may

be selected. The values of e, and e, which correspond to

this value of NCE2 are then the predicted values for the

plant under consideration.

The method of calculation may be outlined as follows.

1.

Write NCE2 entirely as a polynominal in e,
where the coefficients are functions of e,.
Iterate e, over the range 0 to 1.0 to calculate
these coefficients.

For each e, value, take the partial derivative
of NCE2 with respect to e, and set it to zero.
Solve for the real root of e, which satisfies
(6.23).

Evaluate NCEZ at each value of e, and the
corresponding value of e, The value of NCE2

which is the global minimum yields the e, and

e, values of the predicted P2C.

6-2 RESULTS FOR P2Cs OF Gl(s) = 1/s(8 + =)

This plant was tested with its P2Cs using the same

test procedure as used for the P1Cs in Chapter 5.

The sampling rate was set at T = 1 second and <«

was varied from 0.125 to 32.0. The predicted values of e

and e, are shown in FIG. 6.1 plotted versus <.

FIG. 6.2 is a plot of the normalized noise transfers

of the systems containing the predicted P2Cs versus «. To



127

o
©

08 PREDICTED |
e
207- -
Qc
Ww
-
[ 4 06 h
(@)
("4
oL
Wost .
-
o
o4} -
PREDICTED
e
o3} L

o
[ ]
T

L

(=
~N
T

PREDICTED
1C
PR

NORMALIZED NOISE TRANSFER

06t

EDICTED
P2C

05 A A A

01 10 10.0 1000
a
FIGURE 6.1 PREDICTED e, AND e, FOR P2Cs OF Gl(s) WITH
T=]1 SEC.

FIGURE 6.2 NORMALIZED NOISE TRANSFERS USING PREDICTED
P1Cs AND P2Cs OF cl(-) WITH T=1 SEC. USING
GAUSS2



128

09 T T T
GRID SEARCHED e,
o8| Oy :
w 07}F \-) y
>3
[+ "4
w
" 06} .
o
o PREDICTED e,
& o5t ]
) GRID SEARCHED e,
o 04 o -
03 - -
1 1 ]
0651 n
o PREDICTED
w
.
(V4]
Z
g
o 060 | 4
w
v
O
4
e
54055~ n
3
2 GRID SEARCH
(< 4
O
4
050 F 2
i 1 1
01 10 100 1000

a
FIGURE 6.3 PREDICTFD e, AND e, AND GRID SEARCHED e AND
ey USING GAUSS2, FOR P2Cs OF GI(S) WITH T=1 SEC.
FIGURE 6.4 NORMALIZED NOISE TRANSFERS USING PREDICTED

AND GRID SEARCHED P2Cs OF Gl(s) WITH T=1 SEC.
USING GAUSS2



129
obtain the comparison between the P1Cs and P2Cs, the

normalized noise transfers obtained using the predicted
P1Cs with T = 1 second are also plotted on FIG. 6.2,

Next a grid search was performed using the noise
source GAUSS2. The comparison between the predicted values
of e, and e, and the grid searched values is shown in
FIG. 6.3. FIG. 6.4 shows the comparison between the
normalized noise transfers for the systems containing the
grid searched and predicted P2Cs.

The improvement of the P2Cs over the P1Cs varies
between 7% and 12% as calculated by GAUSS2 when referred to
the minimum time deadbeat. From FIG. 6.2, the greatest
improvements occur at <« N~ 0.5 and for = > 10.0.

The predicted and grid searched results in this
chapter are compared in the same way as in Chapter 5. The
e, differences are -7.0% at = = 0.125 and -5.3% at = = 32.0.
Respectively, the e, differences are -27% and +17%. The
corresponding transfer differences are -20% and -5.3%.

These noise transfer results exhibit the same
tendencies as the transfers for the PlCs. However, the

variations involved are much larger.

6-3 RESULTS FOR P2Cs OF GZ(S) = 1/8(8+x) (8+E)

For this plant, the values tested were 8 = 1.0 and

T = 1] second with = varied from 0.2 to 32.0.

FIG. 6.5 gives the predicted values of e and e, for



130
this plant. FIG. 6.6 shows the comparison between the
normalized noise transfers obtained using the predicted
P1Cs and P2Cs for a GAUSS2 input. In FIG. 6.7, the grid
search calculated values of e, and e, using GAUSS2 are
compared to the predicted values. The comparison of the
normalized'noise transfers for the systems using the
predicted and grid searched P2Cs is shown in FIG. 6.8.

A difficulty in calculating the predicted values of
e, and e, for « £ 1.0 was encountered. The solution, as
previously outlined, gave erroneous results for e,. To
overcome this problem, the values of e, and e, were both
iterated to find the minimum value of NCEz. This value then
yielded the predicted e, and e, values plotted. For values
of = > 1.0, no difficulty was encountered. To check the
results for = > 1.0, the values of e, and e, were iterated
and the global minimum value of NCE2 calculated. For the
values of « > 1.0 checked, the results of both methods
agreed.

The improvement in the normalized noise transfers
when using the P2Cs 1in place of the P1Cs is from 7% to 13%
as calculated using GAUSS2. This 18 taken from FIG. 6.6.

The e, differences from FIG. 6.7 are -2.2% at « = 0.4
and -8.3% at = = 32.0. For e, these differences are -7%
and -15.2% respectively. The noise transfer differences are
-6.8% and -3.6% respectively.

For this plant, the differences between the noise

transfers are smaller than the error term differences. This
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indicates that the rate of change of the noise transfer

with e, and e, is rather slow.

6-4 RESULTS FOR P2Cs of G3(s) = (s+B)/s(s+=)

The values considered in this case were g = 5.0 and
T = 1 second with = varied from 0.25 to 64.0. FIG. 6.9
illustrates the predicted values of e, and e,. The normalized
noise transfers obtained using the predicted P1Cs and P2Cs as
calculated for GAUSSZ2 are shown in FIG. 6.10. FIG. 6.11 and
FIG. 6.12 compare the predicted and grid searched P2Cs error
terms and the normalized noise transfers as calculated for
GAUSS2 respectively.

The actual improvement of the P2Cs over the P1C varies
from 7.0% at = = 64.0 to 11.5% at « = 0.5. These figures are
taken from FIG. 6.10.

From FIG. 6.11, the e, differences are -13.4% at
« = 0.25 and -5.5% at =« = 32.0. Similarly the e, differences
are -30% and + 28.1% respectively. The corresponding
differences for the noise transfers are -10.0% and -3.2%.

Again, there are large differences for the error
terms. However the differences for the normalized noise
transfers are substantially smaller.

6-5 )

6-5 RESULTS FOR P2Cs OF G,(8) = l/s(sz+2(,«..ns . wnz

This plant was tested for ¢ = 0.5 and T = 1 second

with “n varied from 0.25 to 64.0.
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As for Gz(s), the solution was not obtainable by use
of the calculation algorithim for some values. When W N 2,
the predicted values of e, and e, were calculated by iterating
until the minimum value of NCE, was found. For values of
w, > 2, no such difficulty existed.

FIG. 6.13 shows the predicted values of e, and e,.
The normalized noise transfers obtained using the predicted
P1Cs and P2Cs when subjected to GAUSS2 are compared in FIG.
6.14. A comparison of the D(z) error terms for the predicted
and grid searched P2Cs is given in FIG. 6.15. The final
graph, FIG. 6.16 compares the normalized noise transfers
obtained using the predicted and grid searched P2Cs using
GAUSS2.

The improvement in the normalized noise transfers
when using the predicted P2Cs instead of the predicted P1Cs
varies from essentially zero at w, X 1.5 to approximately
13% at w, = 0.25. For w, > 10.0, the improvement is greater
than 10%.

The differences in e, are -1% at w = 0.25 and -12%
at w, = 64.0. The differences for e, are -5.9% and + 1l1%
respectively as calculated from FIG. 6.15. From FIG. 6.16,
the maximum noise transfer difference is -14.7% at w = 0.5
and the minimum difference is zero for wo N 1.25. Por

w, > 4, the difference is no greater then -3%.
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6-6 SOME CONCLUSIONS FOR THE P2Cs

The reduction of the system noise transfer varied
from 25% to 70% when the predicted P2Cs replaced the minimum
time deadbeat controllers for any of the plants tested. These
percentages were calculated using GAUSS2 as the noise source.

The largest improvements occurred for Gz(s) and G4(s)
which had five term P2Cs. This represented a 2/3 increase in the
response time when compared to the minimum time deadbeat
controller. The ranges of improvements were 40% to 66% for
G, (s) and 25% to 70% for G4(s).

when the larger noise transfer reductions are
considered, the trade-off of response time would generally
be justified. However for some regions, the numerical
value of the percentage noise reduction achieved was much less
than the numerical value of the percentage increase in the
response time. In these regions, the decision must be based
on the importance of the absolute noise reduction.

For Gl(s) and G3(s), the increase in the response
time was 1008. The ranges of the noise reductions were 35%
to 45% for Gl(a) and 40% to 55% for G3(s). In both cases,
the numerical value of the percentage noise reduction was
much less than the numerical value of the percentage increase
in the response time. Therefore the decision to use these
P2Cs must be based on the importance of the absolute noise

reduction.

Again for the predicted P2Cs, a transition region
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in the noise transfer curves existed for the same values

of T as found for the P1Cs. The shape of the noise transfer
curves using the predicted P2Cs was virtually the same as for
the corresponding predicted P1Cs for all plants tested. The
absolute values of the noise reduction were the only
differences. The reasons for the shape of these curves are
the same as those given in Section 5-7.

The agreement between the predicted and "grid
searched" P2Cs was not as good as the agreement obtained for
the P1Cs. Generally the agreement between the e, values was
better than the agreement between the e, values.

The maximum difference for the noise transfers was
20% but the difference generally was < 108. For t < 0.5T,
the differences were the largest. These differences dropped
to < 5% for t > T for all plants tested.

The differences between the e, values were generally
comparable to the noise transfer differences. However, the
differences between the e, values were generally numerically
larger than the noise transfer differences.

Since GAUSS2 is not a pure white noise source, it
has some correlation with the step input. The P2C acts on
the system for a longer period of time than does the
corresponding PlC. Therefore any differences due to the
non-white noise source would be magnified by the P2C. This
is the reason that the differences between the predicted

and "grid searched” P2Cs are larger than for the Pl1Cs.
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For large values of T, the system response occurs
mostly in the first part of the controller cycle. Therefore
changes in the later terms of the controller have a lesser
effect than when T is small. This accounts for the better
agreement between the "grid searched"” and predicted P2Cs for
larger values of t. For T > T, the predicted P2Cs appear to
be an acceptable approximation of the minimum noise transfer
controllers for the non-white noise sources used. For v < T,
only Gz(s) exhibits any continuing agreement between the
predicted and "grid searched" P2Cs. The agreement for the
P2Cs is never as good as the agreement for the P1Cs for any
of the plants tested.

Again there were absolute maximum and absolute
minimum noise reductions in the noise transfer curve for all
plants tested. The same discussion used in Section 5-7 may

be applied in this case.



CHAPTER VII
OTHER EXTENDED CONTROLLERS

In the first section, the predicted controllers
extended by 3 terms for Gl(s) are presented. No grid
search calculations are presented for this case. This
controller is abreviated as P3C which stands for Plus Three
Extra Terms Controller.

In the second section, some predicted controllers
using a reduced sampling period are studied. Some results
for the straight line approximations to the predicted P1Cs
are presented in the third section.

In each section, some conclusions are presented for

the particular situation under consideration.

~
1
()

PREDICTED P3Cs OF Gl(s)

For these calculations, T = 1 second was the sampling
rate and =« was varied from 0.25 to 64.0.

Adding three extra terms to the controller results in
three degrees of freedom in its calculation. This conclusion
is reached in the same way as for the P1Ce and P2Cs. These
three degrees of freedom may be represented by e . e, and e,
in the denominator of the controller.

To calculate the predicted P3Cs, the expression for

NCE when n = 5 was written from (3.19). Using a method



143
analogous to that used in Chapters 5 and 6, the coefficients

h h h h

or Nys Par P3v h, and e, were written as functions of ey

e, and e . Using these expressions, (3.19) was rewritten
as a function of e, €, and e,.

By iterating e;, €, and e, in that order a grid
search for the global minimum value of NCE at each value of
« was performed. This approach was used rather than the
calculation algorithim used in Chapters 5 and 6 as only a
few results were taken. The programming complexity
associated with the algorithim was thus replaced by a
simpler iteration process. The values obtained for ey e,
and e, are given only to 2 significant figures. Once the
predicted values were known, the resultant controllers were
tested using the GAUSS2 noise input.

The predicted values of ey, & and e, are plotted in
FIG. 7.1. A comparison of the normalized noise transfers of
the systems containing the predicted PlCs, p2Cs and P3Cs is
shown in FIG. 7.2. GAUSS2 was the noise source used in all
cases.

only the predicted P3Cs were calculated for this
plant as these would indicate the improvement obtained when
the P2Cs are replaced by the P3Cs. Also a grid search using
GAUSSZ'is very costly in terms of computing time and therefore
was not performed.

The improvements in the normalized noise transfer
when using the P2Cs rather than the PlCs varied from 6% to

138 as taken from FIG. 7.2. The corresponding improvements
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when the P3Cs replace the P2Cs are 0.5% to 6%. These
percentages are measured with respect to the corresponding
minimum time controller.

For most situations, the advantages of the lowered
noise transfers obtained when using the P3C are outweighed
by the increased complexity, slow response time to a stop
input and the cost of realization of the P3Cs. Therefore
in general the P3Cs is not useful.

However for some particular situations, where long
term noise performance is the most important requirement,
the use of these P3Cs may be warranted. From FIG. 7.2, the
noise improvement is > 3% for « > 1.0. This is the region

where the largest noise improvement occurs as compared to

the P2C.

7-2 P1Cs WITH A REDUCED SAMPLING PERIOD

The extended controllers considered so far have used
the same sampling rate as the minimum time deadbeat controller.
The case will now be considered where the sampling rate used
with the P1C is such that the total time to deadbeat for both
the minimum time controller and the P1C is the same.

The total response time of the minimum controller is
nT. Therefore the sampling period of the P1C must be reduced
to (E%T)T, where n is the order of the minimum controller.

In this way, the total response time to deadbeat 18 constant

for both controller types.
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In some situations, it may be desirable that the
total response time of the system not be altered. However
some noise reduction may be needed. By reducing the sampling
period, an extended controller can be substituted for a
minimum time controller to improve the noise performance. 1In
this section, results of some investigations into this method
are presented.

The plants considered are Gl(s) and Gz(s) where the
sampling period with the minimum time controller is 1 second.
For Gl(s) and Gz(s) respectively, the sampling periods with
the P1Cs are 2/3 and 3/4 second.

The noise transfers obtained using the predicted PlCs
with T = 1 second and the appropriate increased sampling rate
are calculated. To allow direct comparison, both types of
P1Cs are normalized to the noise transfer obtained using the
minimum deadbeat controller with T = 1 second. By performing
the comparison in this fashion, the effect of increasing the
sampling rate should be evident.

To allow these plants to be tested using the digital
simulation, appropriate noise sources must be defined. 1In
practice, the minimum time and extended controllers do not
"“see" exactly the same noise values at the respective
sampling instants. This is due to the change in the sampling
rate. For Gl(s), the sampling instants for the minimum
time and extended controllers will only coincide every 2T

periods and similarly every 3T periods for Gz(s).
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A sequence of random numbers is generated from which
the appropriate nwises sources are taken. The total sequence
generated is GAUSSZ2A.

For Gl(s), a random number was generated every 1/3
second in the simulation. Therefore every third number was
chosen to simulate the noise source when T = 1 second.
Similarly every second number was chosen to simulate the
noise source when T = 2/3 second. The experimental run in
both cases was 256 seconds. The results for the predicted
P1Cs using both sampling rates are shown in FIG. 7.3.

For Gz(s), a random number was generated every 1/4
second in the simulation. when T = 1 second, every fourth
number was chosen. When T = 3/4 second, every third number
was chosen. Again the length of the experimental run was
256 seconds. These results are shown in FIG. 7.4.

The noise sources used in these simulations were
called GAUSSZ2AM.

From FIG. 7.3 and FIG. 7.4, the noise reduction
obtained when using the increased sampling rate predicted
P1Cs is not as great as that obtained when using the normal
predicted PlCs. For both plants, this difference is largest
for small values of =. The results for the two types of
P1Cs agree more closely as = increases. For = > 3 the

increased sampling rate predicted P1C 1s slightly better for

Gl(s).

A given plant requires that the controllers have

higher equivalent gains during the sampling period when the
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sampling rate is increased. Therefore the noise reduction
for the system containing the increased sampling rate P1C
in place of the normal PI1C is not generally as large. When
the value of the pole increases, the number of terms in the
controller has less effect on the noise transfer. A small
change in the sampling rate of the extended controllers
therefore has a smaller effect than at the lower values of
the pole.

The size of this improvement is still substantial.
Therefore for applications where the total response time is
more important'than the noise reduction of the system, this
method is useful to consider.

An example of such an application is a set-point
system where the level of the input may change fairly often.
In this case, it is important that the response time be as
low as possible. Therefore the increased sampling rate PI1Cs
may be the more useful type.

This method may be extended to the controllers with

two or more extra terms. The results should be comparable to

those obtained for the PlCs.

7-3 STRAIGHT LINE APPROXIMATIONS TO THE
PREDICTED PICs

In some situations, it is useful to consider methods
to approximate the predicted P1Cs. By using an approximation;

a more rapid method of calculation is available.
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In Chapter 3, a "straight line" approximation is

mentioned. This method was found to be useful for particular
planté. The approximation minimizes the differences between
the denominator terms of the controller and a straight line

from 0 at t = 0 to 1.0 at t = nT. The values of the straight

line at the sampling instants are:

1 2 n-1
(H) ’ (H) s o e o g (_n-) (7-1)
Therefore the "ideal" errors are:
1l 2 n-1
(1 - E)' (1 - K)' B & - (7.1a)

The differences between the "ideal” errors and the error

terms of the controller are:

1 2 n-1
(l-a-el)) (l-‘i-ez)'o'o'(l-_ﬂ_-en)
(7.2)
Using the (7.2), the following equation may be written:
Straight Line Difference = SLD =
1 2 ' 2 2
(I-H-el)"(l-a-ez)"coo*
(1-081 _e)? (7.3)

n n
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For each plant, the error terms of the controller ey ey,

. . , €, may be expressed in terms of e,- Therefore (7.3)

may be rewritten as:

SLD = f(el) (7.4)

The value of e, which yields the absolute minimum
value of SLD may be found from (7.4) by simple differentiation
as in Chapter 5. Taking the derivative of (7.4) with respect
to e, and setting the result to zero yields:

3%I (sLp] = a%; (f(ey)] = 0 (7.5)
The roots of (7.5) correspond to the local maxima and
minima of SLD. From these roots, the value of e, which
satisfies the deadbeat requirements and corresponds to the
minimum of SLD is chosen.

The other coefficients of the "gtraight line”
approximation P1lC are then calculated using this value of e,-
In FIG. 7.5 and FIG. 7.6, the predicted values of e, are
compared to the "straight line" approximations of e for
Gl(s) and Gz(s) respectively.

From FPIG. 7.5 and FIG. 7.6, it is apparent that the
approximation is most accurate for « < 1. For « > 1, the
approximation is rather inaccurate and therefore not useful.
Although the results are not shown, the approximation is also

useful for wh < 1.0 when the P1lC of G‘(s) is used.
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Similarly this approximation may be extended to the
P2Cs where the approximate ranges of usefulness are the

same as for the PI1Cs.



CHAPTER VIII
GENERAL CONCLUSIONS

In this chapter, some general conclusions and
observations based on the work performed for this thesis
are presented. Then some extensions of this work and the

use of these results in other ways are discussed.

8-1 CONCLUSIONS AND OBSERVATIONS

A design criterion for the calculation of non-minimum
deadbeat controllers which minimize the noise transfer of
linear systems has been presented in this thesis. The noise
is assumed to be white as this allows the application of the
criterion to be as practical as possible.

This approach to the noise problem is novel as the
additional constraint of deadbeat is maintained while the noise
transfer is minimized and the criterion excludes any explicit
reference to the inpuc noise. In Section 3-5, the physical
reasoning behind the criterion is presented as part of the
derivation of the criterion.

Two types of extended controllers have been

considered:

1. Controllers using the same sampling rate as the
minimum time deadbeat controllers.

2. Controllers using a higher sampling rate such
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that the response time is the same as for the

minimum time deadbeat controllers.

For the first case, controllers with up to three
extra terms were considered. As stated in Section 5-7, the
noise reduction was substantial when the predicted P1lC was
used in place of the minimum time controller. From Sections
6-6 and 7-1, the extra noise reductions obtained by using
the predicted P2C or P3C in place of the predicted P1C were
not as large as the initial reduction.

Therefore when the possible noise reduction is
weighed against the disadvantages of the increased response
time and extra controller complexity, the optimum practical
extension is one term. However for applications where the
absolute noise reduction is the most important consideration,
the longer extensions will be useful.

For the second case, only the PlCs for Gl(s) and
Gz(s) were considered. The noise reductions obtained using
these controllers were not as large as those for the first
type. However as stated in Section 7-2, the reductions were
st1ll substantial. Similar results should be obtainable with
other plants. A similar relationship should also exist
between the two types of extended controllers when other
extensions are considered. This type of extended controller
is most useful where the response time 1s the most important
consideration.

The P1Cs predicted by the design criterion are a good

approximation of the minimum noise transfer controllers for



156

various non-white noise sources. This was verified for all
plants tested. For the P2Cs predicted by the design criterion,
this approximation was generally not as good as for the P1Cs.

It was also observed that some predicted P1Cs had a
lower error to a ramp or an acceleration input than did the
corresponding minimum time deadbeat controllers.

Although only four types of plants were tested, the
conclusions reached should apply to any linear plant in a

similar system.

8-2 EXTENSIONS AND DISCUSSION

For all systems tested, the noise was injected before
the controller. If the noise is injected between the plant
and the controller, the extended controllers with an
unchanged sampling rate should cause only a slight reduction
in the noise transfer when compared to the noise transfer
obtained using the minimum time controller. Most of the
noise will be superimposed directly on the output due to the
slow controller response time. The extended controllers with

the increased sampling rate may cause slightly more improve-

ment because:

1. The response time is the same as for the
minimum time deadbeat.

2. The loop gains for the extended controllers are
lower than for the minimum time controllers.

3. The extended controllers can sense changes at the
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output more quickly, due to the higher sampling

rate, than can the minimum time controllers.

Although the calculation of a design criterion wﬁuld
be more complicated, the method should be applicable to
extended deadbeat controllers designed for ramp or acceleration
inputs when a linear plant is used. It should still be
possible to minimize the "weighting sequence" of an extended
deadbeat controller for these two inputs.

This design criterion should also be applicable to
systems containing a linear plant and a linear non-unity
feedback branch.

If an otherwise linear system contains a continuous
saturable type of non-linearity, the design criterion may be
of some use. By extending the controller, the gains are
lowered and thus the system may operate in the linear part
of the non-linearity during a greater portion of the time.
As long as the non-linearity operates in its linear region,
the noise transfer of the system will be reduced. For
non-linearities which do not contain linear regions, this

design criterion would not be useful.
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APPENDIX A
HYBRID COMPUTER SIMULATION

The methods used to simulate the plant are standard
analog techniques and therefore will not be illustrated in
this appendix. This appendix contains only the details of

the program written to realize the digital controller.

A-1 DIGITAL CONTROLLER REALIZATION

The digital program in the hybrid simulation

consisted of three sections which

1. Realized the controller
2. Realized the zero-order hold
3. cCalculated the noise transfer of the system at

the end of the test run.

The realization of the controller function was hybrid
The coefficient ho was realized on the analog computer while
all other coefficients appear only in the digital program.
A digital to analog converter acted as the zero-order hold.
The diagram of the realization of the controller and
zero-order hold is shown in FIG. A.l.

The controller was realized using the Direct Digital
Programming discussed in Chapter 2. 1t was shown that ho

operates on the present input sample to the controller. All
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other coefficients of the D(z) operate only on the delayed
information.

Therefore ho was realized on the analog computer to
make the length of the sampling window as short as possible
for the equipment used. The actual length of the sampling
window was 40 microseconds in the hybrid realization. As
shown in FIG. A.l, h, BE1l(t) was summed with the resultant
products of the delayed information and the other controller
coefficients.

The multiplications of the controller coefficients
and the delayed inputs and outputs were carried out between
samples. The resulting values were then summed and the
resultant BE3(nT) was D/A converted. Then at the sampling
instants, the instantaneous value of h0 BEl(t) was summed
with BE3(nT). The resultant was A/D converted and then
D/A converted immediately. Both the preceding and following
samplers shown with the controller in FIG. 1.1 were
simulated by the A/D conversion. The zero-order hold was
simulated by the D/A conversion. The length of the sampling
window was thus set by this A/D and D/A sequence.

To relate the FOCAL program given in Section A-2 to

FIG. A.l, the following definitions are given:

1. Nl = n-1 where n = the order of the controller
2. X(i) = -BE1*(t-iT): {i=1, 2, . « «¢o N
30 Y(l) = BEz.(t-iT); 1 bl l, 2' . . .9 n

4. H(i) = h.1 ; i=1, 2, « « «¢o D
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5- E(i).elli.l' 2' ¢ o .,n

6. 2z = BE3(nT)

The definitions of the commands used in FOCAL are:

l. 8 = SET
2. T = TYPE
3. % 4.01 = FORMAT STATEMENT (SAME AS

F 4.1 IN FORTRAN)

4. FSQT

SQUARE ROOT

5. FABS

ABSOLUTE VALUE

The command FNEW is used in FOCAL to perform a
variety of functions. These are A/D conversions, D/A

conversions and the control of the operating state of the

analog computer integrators.

An A/D conversion is specified, for example, by

S Y(1)=FNEW(1,4,0)

which means A/D convert the signal on A/D channel
4 and set the converted value equal to Y(l). The 0 is a
dummy variable and 1 defines an A/D conversion.

A D/A conversion is specififed, for example, by

S A=PNEW(2,3,Y(1))

which means D/A convert the value Y(1l) onto D/A channel 3.
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The 2 specifies a D/A conversion and A is a dummy variable.

The command

S WAIT=FNEW(5,0,0,)

is used to synchronize the program with the clock of the
digital computer. This clock sets the length of the
sampling period and also the start of the experimental run.
When the digital computer is in a wait loop, the only way
the program can proceed to the next command is by the
reception of a clock pulse which occurs at the sampling
instants.

The FNEW commands which control the operating mode
of the analog integrators are self-explanatory.

The multiplications of the controller coefficients
and the delayed inputs and outputs and the summing of the
resultant values are performed by statement 06.10.

Statement 06.10 performs both the multiplications
and the summations which yields BE3(nT). The shifting and
the time delaying of the input and output values are performed
by statements 06.50 to 06.80.

when the analog values are A/D converted in statements
07.15 and 07.20 to allow the calculation of the input and
output root-mean-square values, the divisor 2047 is used.
This divisor is the octal value in the A/D converter which
corresponds to 10 volts on the analog computer. This

division is necessary to yield the printed values of NI and
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NO in volts. These are the root-mean-square values of the

input and output noise respectively.



165

J3TTONINOD TYLIDIA FHLI J0 NOILVZITVIY QI¥EAH ~ 7°vY F4NO1J

]

(1v-4)el38-

(1Z-1)e238

L V70 | $Q/V
Q10H
43080 O¥3Z~\ 431dWVS I B B -
NOILVINWIS o A @ < —e
INV1d OL E4wa Yd/V L : O B (1) 139

()eZ38 (ev 1)



166

A-2 DIGITAL PROGRAM USED IN HYBRID SIMULATION

C-FOCAL., 1968

01.10 S H(l)=...; S H(2)=...; ...

01.20 S E(1)=..., S E(2)=...; ..
01.70 S Nl=...; S P=100; S T=1

02.10 S M=0; S 2=0; S K=0; S E1=FNEW(2,1,0)
02.15 S E3=FNEW(2,3,0); S WAIT=FNEW(5,0,0)
02.20 S OPERATE=FNEW(4,10,1)

02.30 S Y(1)=FNEW(1,4,0); S A=FNEW(2,3,Y(1))
02.32 S X(1)=FNEW(1,1,0)

02.35 FOR R=1,1,K+1; DO 6.1
02.40 S G=FNEW(2,1,2); S 2=0
02.45 IF (K-1)6.8,6.7
02.50 IF (K-3)6.6,6.5

03.10 S M=M+1l; S K=K+1; IF (P~-M)7.1,7.1
03.20 IF (N1-K)4.1l; S WAIT=FNEW(5,0,0)
03.25 GO TO 2.3

04.10 S WAIT=FNEW(5,0,0)

04.20 IF (FABS(FNEW(1,1,0))-5)5.1,5.1

04.30 S Y(1)=FNEW(1,4,0); S A=FNEW(2,3,Y(1))
04.35 S X(1)=FNEW(1,1,0); S K=0; S 2=0
04.40 GO TO 2.35

05.10 S E3=FNEW(2,3,0); S E1=FNEW(2,1,0)
05.20 GO TO 3.1



06.10
06.50
06.60
06.70
06.80

07.10
07.15
07.20
07.25
07.30

S
S
]
S
S
S
S
S
T
T

07.35 S

08.10

167

B=H (R) «X (R)+E(R) #Y (R)+2; S 2Z=B
X(5)=X(4); S Y(5)=Y(4)

X(4)=X(3); S Y(4)=Y(3)

X(3)=X(2); S Y(3)=Y(2)

X(2)=X(1); S Y(2)=¥(l); GO TO 3.1

WAIT=FNEW(5,0,0); S HOLD=FNEW(4,10,4)
NI=FSQT (10« (1/MaT) » (FNEW(1,7,0)/2047))
NO=FSQT (10« (1/MaT) « (FNEW (1,8,0)/2047))
$12.06, " IN ",NI," our ",NO,!!
$12.06, " & ",(NO«100)/N1,1!!

IC (INITIAL CONDITION)=FNEW(4,10,2)

QUIT

-or



APPENDIX B

DIGITAL COMPUTER SIMULATION

OF THE DIGITAL CONTROLLERS

The digital computer program used to simulate the
deadbeat controllers is presented in this appendix. The
program sections which contain the variables for the state
equations given in Chapter 1 and the calculation algorithms
for the minimum time and extended deadbeat controllers are
not listed. These sections are easily programmed directly

from the lists of equations given in the text of the thesis.

B-1 DERIVATION OF PROGRAM

This program incorporates three sections which

1. Verify the deadbeat response of the system.

2. Subject the controllers to the noise sources
defined in Chapter 4.

3. Calculate the noise transfer of the system
containing the minimum time deadbeat controller
and the normalized noise transfers of the

extended deadbeat controllers.

These sections are numbered in the program listing.

The systems are realized by combining the discrete

state equations with the direct digital realization of the



digital controller.

used to represent hn and e, respectively.

B-2 DIGITAL PROGRAM

0

100

101

560

CONTINUE

AIN2 AND AOUT2 ARE USED TO CALCULATE
INPUT AND OUTPUT MEAN-SQUARE NOISE
AIN2=0.0

AOUT2=0.0

SET X1(1) TO XN (1) TO ZERO

X1(1)=0.0

XN(1)=0.0

INITIALIZE OTHER COEFFICIENTS
ICYCLE=N

K=1

JJ=1

COUNT=1.0

XOUT1(1)=0.0

CONTROLLER REALIZATION BY DIRECT DIGITAL
PROGRAMMING

CALCULATE INPUT TO CONTROLLER, BE1 (JJ)
BEl (JJ)=1.0-XOUT1 (JJ)

BEAl=0.0

BEB1=0.0

DO 560 JK=1, K

BEA (JK) =AH (JK) #aBE1 (JJ-JK+1)
BEA1l=BEAl+BEA (JK) B

CONTINUE

IF(K.LT.2) GO TO 562

DO 561 JL=2,K
BBB(JL)-AB(JL).BBZ(JJ-JL+1)
BEB1=BEB1+BEB (JL)

169

In this program, AH(N) and AE (N) are



561

562

102

105

111

550

CONTINUE
CALCULATE OUTPUT OF CONTROLLER, BE2(JJ)
BE2 (JJ)=BEAl+BEBl

STATE EQNS. TO CHECK DEADBEAT (SECTION l)
X1 (K+1l)=.

XN (K+1l)=. .

JI=JJ+1

XOUT1 (JJ)=X1 (K+1)

IF (COUNT .GE.7.0) GO TO1l05
COUNT=COUNT+1.0 )
1F (K.GE.ICYCLE) GO TO102
K=K+1

GO TOl0l

X1 (1) =K1 (K+1)

XN (1) =XN (K+1)
K=1

GO TOl01
X1(1)=0.0

XN(1)=0.0

K=1

J=1

XOUT (1)=0.0

CALCULATE INPUT TO CONTROLLER, BE1(J)
WHERE YFL1(J) IS THE NOISE SOURCE VALUE
BE1 (J)=YFL1 (J) -XOUT (J)

BEB1=0.0

BEAl=0.0

DO 550 JM=1,K
BBA(JM)'AH(JH).BBl(J-JM+1)
BEA1=BEA1l+BEA (JM)

CONTINUE

1? (K.LT.2) GO TOS552

170



551

552

112

113

114

171
DO 551 JN=2,K

BEB (JN) =AE (JN) «BE2 (J-JN+1)
BEB1=BEB1+BEB (JN)

CONTINUE

CALCULATE OUTPUT OF CONTROLLER, BE2(J)
BE2 (J)=BEAl-BEBl

STATE EQNS. TO TEST SYSTEM IN
PRESENCE OF NOISE INPUT (SECTION 2)
x1(x+})-. . .

XN (K+1l)=. . .

J=J+1

XOUT(J)'Xl(K+l)

NRUN=256 OR 1024, ICYCLE=N
IF(J.GE.(NRUN+1)) GO TO1ll3
IF(K.GE.ICYCLE) GO TOll2
K=K+1

GO TOlll

X1 (1)=X1(K+1)

.
3
.

XN (1) =XN (K+1)

K=1

GO TOlll

CALCULATE THE SUM OF SQUARES OF THE
NOISE IN AND OUT (SECTION 3)

DO 114 I=1, NRUN

AIN2=AIN2+YFLL1 (I)##2
AOUTZ'AOUT2+(XOUT(I+1))..2

CONTINUE .
CALCULATE MEAN-SQUARE TRANSFER RATIO
RMSNSE-AOUTZ/AINZ

IF CHECK=0.0, RETURN TO MINIMUM TIME
CONTROLLER PROGRAM

1P (CHECK.EQ.0.0) GO TO150

CALCULATE NORMALIZED NOISE TRANSPER



0

FOR EXTENDED CONTROLLER WHERE RMSDBT
IS THE NOISE TRANSFER OF MINIMUM
CONTROLLER

RMS=RMSNSE/RMSDBT

RETURN TO EXTENDED CONTROLLER PROGRAM
GO TOl170

172



