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abstract: For populations having dispersal described by fat-tailed
kernels (kernels with tails that are not exponentially bounded), a-
symptotic population spread rates cannot be estimated by traditional
models because these models predict continually accelerating (a-
symptotically infinite) invasion. The impossible predictions come
from the fact that the fat-tailed kernels fitted to dispersal data have
a quality (nondiscrete individuals and, thus, no moment-generating
function) that never applies to data. Real organisms produce finite
(and random) numbers of offspring; thus, an empirical moment-
generating function can always be determined. Using an alternative
method to estimate spread rates in terms of extreme dispersal events,
we show that finite estimates can be derived for fat-tailed kernels,
and we demonstrate how variable reproduction modifies these rates.
Whereas the traditional models define spread rate as the speed of an
advancing front describing the expected density of individuals, our
alternative definition for spread rate is the expected velocity for the
location of the furthest-forward individual in the population. The
asymptotic wave speed for a constant net reproductive rate R0 is
approximated as m yr�1, where T is generation time,1/2(1/T)(puR /2)0

and u is a distance parameter (m2) of Clark et al.’s 2Dt model having
shape parameter . From fitted dispersal kernels with fat tailsp p 1
and infinite variance, we derive finite rates of spread and a simple
method for numerical estimation. Fitted kernels, with infinite vari-
ance, yield distributions of rates of spread that are asymptotically
normal and, thus, have finite moments. Variable reproduction can
profoundly affect rates of spread. By incorporating the variance in
reproduction that results from variable life span, we estimate much
lower rates than predicted by the standard approach, which assumes
a constant net reproductive rate. Using basic life-history data for
trees, we show these estimated rates to be lower than expected from
previous analytical models and as interpreted from paleorecords of
forest spread at the end of the Pleistocene. Our results suggest re-
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examination of past rates of spread and the potential for future
response to climate change.

Keywords: extreme events, fat-tailed kernels, forest dynamics,
Holocene, migration, seed dispersal.

To simplify the problem of tree migration, Skellam (1951)
made some assumptions that continue to influence how
ecologists analyze invasions. His diffusion model includes
a net reproductive rate, R0, a mean squared dispersal dis-
tance, a, which determines the abundance and distribution
of offspring, and the average length of a generation, T.
For oaks invading Europe at the end of the Pleistocene,
Skellam used an example of trees that produce 9,000,000
acorns scattered in a Gaussian pattern, with a generation
lag of 50 yr. The rates of spread at the end of the Pleistocene
(up to 103 m yr�1) required values of a much larger than
those inferred from modern dispersal studies. Although a
diffusion model did not work well in this instance, suc-
cessful applications helped popularize these models
through the 1990s (Skellam 1951; Lubina and Levin 1988;
Andow et al. 1990; van den Bosch et al. 1990; Turchin
1998).

Growing appreciation that a single, constant value of a

may not adequately describe dispersal has fostered recon-
sideration of how variability affects population spread.
More complex models, described by dispersal kernels with
additional parameters (Kot et al. 1996) or by mixtures
(Clark 1998; Clark et al. 1999), can better describe the
leptokurtic scatter of offspring, and these models change
the predictions of spread. Leptokurtic dispersal kernels
describe more short- and long-range dispersers than does
a Gaussian kernel having comparable mean and variance.
Not only do leptokurtic kernels predict higher spread rates
than does a Gaussian kernel with the same variance, but
the leptokurtosis in the distribution also produces greater
distinction between short- and long-range dispersal events.
For example, most acorns fall close to the parent, but jays
move some acorns several kilometers (Johnson and Webb
1989). Thus, leptokurtic kernels result in the establishment
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of remote subpopulations, which become foci for addi-
tional dispersal.

Weinberger (1982) showed that a broad class of models
predict that spread rate eventually approaches a constant
value, provided that the kernel is exponentially bounded
(i.e., has a tail that approaches zero at least as fast as
exponential). The value of the constant spread rate de-
pends on the shape of the kernel, more leptokurtic kernels
typically yielding a larger value for the constant (Kot et
al. 1996). Fat-tailed (exponentially unbounded) kernels
result in rapid and patchy expansion that frustrates both
field study and analysis (Mollison 1972, 1977). Recently,
Kot et al. (1996) used an integrodifference equation pop-
ulation model to approximate the rate of spread when the
dispersal kernel is fat tailed. This rate is extremely sensitive
to the shape of the tail. In contrast to diffusion, spread
accelerates over time. By neglecting the tail when fitting
kernels to data, previous studies probably underestimated
the potential rate of spread.

Clark (1998) demonstrated that the rate of spread is
especially sensitive to the net reproductive rate R0 when
the tail is fat, and the fatter the tail, the greater the sen-
sitivity. The high rates predicted after several generations
(for some species, 110 m2 yr�1) were comparable to paleo-
evidence for early Holocene spread of forest trees, but
stochastic simulations predicted slower spread than the
integrodifference equation model.

These new results accommodate some of the variability
(i.e., the rare, long-distance events) that Skellam’s early
analysis ignored, but there are at least two reasons why
they may still not provide useful predictions. First, the
insights provided by integrodifference equations do not
fully translate to data. Although real dispersal may be lep-
tokurtic, unlike some models, data are always bounded.
Parametric kernels that best fit data may be fatter than
exponential (Taylor 1978; Portnoy and Willson 1993; Tur-
chin 1998) and even lack finite moments (Kot et al. 1996;
Clark et al. 1999). But the data themselves are always
bounded and have all moments finite. These qualities hold
even for data that are simulated from unbounded kernels
that lack finite moments. Thus, the unbounded acceler-
ation predicted by parametric models cannot apply to fi-
nite offspring. Although Clark (1998) found reasonable
agreement with simulation results during early stages of
Holocene expansion, the integrodifference equation model
with a fat-tailed kernel produces no constant asymptotic
wave speed that might be compared to data.

Second, high sensitivity to fecundity suggests that use
of mean reproduction (a single value for R0) may result
in poor estimates if reproduction varies. Variability among
individuals in fecundity can be extreme, not least due to
variable life span. For instance, the importance of a re-
motely dispersed seed depends on the odds of future suc-

cess. We might follow Skellam’s (1951) example and as-
sume that from this new arrival will emanate 9,000,000
more. However, against this expectation of the mean life-
time reproduction, we balance the knowledge that 99.9%
of such arrivals will fail to survive to reproductive age
(e.g., Clark et al. 1998b). If mortality rates are high, then
the bulk of these events amount to naught. Faced with
the importance of extreme dispersal, how do we gauge the
impact of these rare dispersal events when reproductive
variability is high?

Here, we provide a solution to the problem of spread
that incorporates fat-tailed dispersal and variance in R0.
Our alternative approach is motivated by two observations
from previous efforts. First is the fact that the fatter the
tail the more extreme become the distances between the
remote colonists and the population interior (Mollison
1972; Kot et al. 1996; Lewis 1997). Second is the dominant
role assumed by net reproductive rate as the tail becomes
increasingly flat (Clark 1998). As the tail flattens, the den-
sity of propagules at distance tends to scale directly with
R0.

Our approach helps resolve the contradiction between
infinite moments of kernels fitted to data and the finite
moments of the data themselves, and we integrate the
variability that results from differential longevity (and,
thus, R0). We demonstrate how spread based on extreme
dispersal events can accommodate the dominant effect of
R0 without resorting to the details of population growth.
We fit parametric models to data as the basis for this
analysis, but we focus on moments of extreme events and
those that can be generated by discrete sampling from
these distributions. Our method is based on sample sizes
used by organisms themselves (i.e., R0). Finally, we deter-
mine how the variability in R0 that results from variable
life span affects the velocity of spread. Based on this anal-
ysis, we suggest that Holocene spread of trees may have
been less rapid than previously predicted by models, and
we discuss why.

Theoretical Development

Estimating spread when individuals interact both non-
linearly and stochastically (as they do in the real world)
is one of the fundamental challenges to population theory.
A finite asymptotic velocity for the location beyond which
a fixed density of individuals lies (the “expectation veloc-
ity” of Mollison [1977]) results from nonlinear determin-
istic models if the tail of the dispersal kernel is exponen-
tially bounded. For a nonlinear stochastic process, a finite
velocity of furthest-forward individuals (the “furthest for-
ward velocity” of Mollison [1977]) obtains if the kernel
has finite variance (Mollison 1972). Between these two
conditions lie a large number of fat-tailed dispersal kernels
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Figure 1: Spread from the frontier of a population (A) and, later, by remotely dispersed individuals (B)

that yield an asymptotically infinite velocity for a deter-
ministic nonlinear model (Kot et al. 1996) but a finite
furthest-forward velocity for a nonlinear stochastic pro-
cess. Here, we propose a method, based on invasion by
“extreme events,” that corresponds to changes in the lo-
cation of the furthest-forward individual. The example that
follows this background theory uses dispersal kernels fitted
to seed rain data that are both fat-tailed and possess infinite
variance.

Spread by Extreme Dispersal

The difference between theoretical moments of distribu-
tions and those of data result in qualitatively different
predictions of population spread. Exponentially bounded
kernels can behave like the data used to fit them (Clark
et al. 2001): they have all moments finite, and, when em-
bedded in population models, they predict a traveling wave
of advance. Fat-tailed kernels and kernels for which some
moments do not exist may not behave like the data fitted
to those kernels, in the sense that the data have empiri-
cal moment-generating functions and finite moments,
whereas the fitted kernel does not. This section provides
a means for estimating the velocity of spread that results
from dispersal patterns that are best fitted by fat-tailed
kernels that may possess few finite moments (as few as
one).

We define the net reproductive rate, R0, as the number
of offspring that can be expected from an individual at
the time of seed release. It can sometimes be convenient
to define R0 as the number of offspring expected following
some (density-independent) mortality of juveniles. This is

simply a matter of bookkeeping. Because dispersal is typ-
ically estimated from seed (rather than seedlings or sap-
lings), our definition of R0 based on seed is most readily
applied to dispersal data. Our model assumes linear pop-
ulation growth up to some finite maximum density, and
thus is comparable to traditional (diffusion, integrodif-
ferential, and integrodifference) models of spread. Our
application of the model is cognizant of the fact that mi-
grations usually take place in the presence of other species.
Our estimates of R0 are based on field estimates of fe-
cundity and survivorship in a competitive environment.
R0 can be much greater than 1 during an initial advance,
as the population increases from low density. Thus, the
model has broad relevance to invasion problems, and the
specific application here accommodates the measured ef-
fects of mortality in actual stands of trees.

Consider a parent that produces an average of R0 off-
spring over its lifetime with dispersal described by kernel
f(x). If the kernel is sufficiently fat-tailed, and the net
reproductive rate, R0, is sufficiently large, the population
can spread as a series of remote subpopulations established
by extremely placed offspring (Davis 1987; Lewis 1997;
Shigesada and Kawasaki 1997; fig. 1B). The distribution
of leaps forward might be approximated by the sum of
random variates drawn from the distribution of furthest-
dispersing propagules, that is, extremes. With a fat tail,
there is a good chance that the extremely placed individual
will find itself distant from the population frontier or even
from the next closest disperser. This dislocation means that
the extremely placed individual becomes the basis for ad-
ditional spread. Unlike a diffusing population, the ex-
panding “front” is not supported by a large, nearby pop-
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Figure 2: The relationship between the dispersal kernel f(x) (dashed line, eq. [10]) and the density of extreme dispersers p(x; 1) for three different
net reproductive rates: (A), (B), (C). The vertical dashed line marks the expected extreme disperser (eq. [12]).R p 2 R p 20 R p 2000 0 0

ulation (e.g., a traveling wave). To estimate spread, we can
avoid the complexity of previous approaches by concen-
trating on the extremes. Here, we derive this distribution
of extreme dispersal for a parametric kernel as basis for
estimating rate of spread.

Let p dx be the probability that the furthest-(x; N)
dispersing individual from a group of N evenly spaced
parents settles on the interval [ ]. The probabilityx, x � dx
density function (PDF) for a seed that arises from a single
parent is the product of the events that a seed settles at x
and all other seeds from the parent settle closer to the
source:

R �10x

p(x; 1) p R f(x) f(y)dy � � ! x ! �, (1)0 �[ ]
��

where f(x) is the dispersal kernel (also a PDF). The factor
R0 in equation (1) is the number of ways in which we can
obtain a given outcome (any one of R0 total offspring can
be the extreme case). The “1” in p( ) refers to extremex; 1
dispersal from a single parent plant to distinguish this
distribution from one derived for the edge of a continuous
population (see below).

We arrive at the same density starting from the prob-
ability that the extreme disperser lies to the left of a point
located distance x to the right of the parent, that is, the
cumulative distribution function (CDF):

R0x

R0P(x; 1) p f(y)dy p [F(x)] , (2)�[ ]
��

where F(x) is the CDF for the dispersal kernel f(x). Dif-
ferentiation yields the PDF for the furthest-forward dis-
perser:

R �10p(x; 1) p R f(x)[F(x)] , (3)0

which is equivalent to equation (1). The development of
equations (1)–(3) can be viewed as an application of order
statistics, with P( ) being the sampling distribution ofx, 1
the R0th quantile (e.g., Stuart and Ord 1994).

The density of extremes incorporates the contributions
of both the dispersal kernel and the net reproductive rate,
R0 (fig. 2). Net reproductive rate has a dramatic effect on
the extremes. With , extreme dispersal does notR p 20

much exceed the kernel itself (fig. 2A). With ,R p 2000

the extremes extend well beyond the dispersal kernel (fig.
2C).

Extremes Derived from the Continuous Population

Upper and lower bounds on population spread per gen-
eration, c, can be derived under differing assumptions on
distribution of the parent population. Spread by leaps from
one extremely placed colony to the next (fig. 1B) approx-
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imates migration far from a population center. A lower
bound c� comes from assuming that the only possible
parent for the furthest-forward individual is the furthest-
forward individual from the last generation. Initially,
spread could commence from the edge of a continuous
population, supported by the large nearby seed source (fig.
1A); fat-tailed dispersal subsequently shifts the process to
spread by extremes (fig. 1B). As discussed below, an upper
bound c� comes from assuming that the possible parents
for the furthest-forward individual occupy a closed stand
at density 1/h (fig. 1A) for crown size h. Abundant seed
means that the initial spread from a continuous population
can be more rapid than the rate that prevails later, when
spread is perpetuated by scattered individuals. If we as-
sume that spread commences from the edge of a contin-
uous population (fig. 1A), and that fat-tailed dispersal sub-
sequently shifts the process to spread by extremes (fig. 1B),
then c� and c� suggest initial and asymptotic spread rates
for the population. This interpretation in terms of initial
and final spread rates is not proved mathematically. Here,
we derive the initial spread depicted in figure 1A. As shown
below, our estimates for “initial” rates and “eventual” rates
give upper and lower bounds for population spread rate.

Consider a transect perpendicular to a population fron-
tier, where seed source is distributed more or less evenly
to the left of the front at (fig. 1A). The populationx p 0
spreads to the right at an initial rate determined by off-
spring that can originate from parents located anywhere
to the left of (i.e., ). Density dependence isx p 0 x ≤ 0
implicit because the continuous population is constrained
to have an upper limit on seed production (and canopy
coverage) at density 1/h. The parameter h can be viewed
as the distance between individual trees, and Nh is the
linear extent (width) of the population. Seed produc-
tion is distributed at locations along the transect
( ).�x , … , � x , 0Nh h

Assuming that individuals each produce R0 offspring,
the probability that the extreme disperser travels no further
to the right than x is the CDF

N

R0P(x; N) p � [F(x � x )] .hk
kp0

Note that equation (2) is the special case where .N p 1
The corresponding PDF is

N

p(x; N) p p (x; N), (4)� k
kp0

where

R f(x � x )P(x; N)0 hkp (x; N) p .k F(x � x )hk

Here, each pk( ) is associated with the event that thex; N
individual at location �hk produces the extreme offspring.
To see this more clearly, observe that

R �10p (x; N) p R f(x � x )[F(x � x )]k 0 hk hk

N

R0#� [F(x � x )] .hj
j(k

The first part of this expression is equation (3), describing
extreme dispersal from location xhk. The product series
that follows is the cumulative probability that offspring
deriving from all other locations do not travel be-N � 1
yond x. Note that, for , equation (4) collapses toN p 1
equation (3).

As expected, a large population center has greater ex-
treme dispersal distances than does an isolated individual.
The dispersal kernel for Acer rubrum (dashed line, fig. 3A)
has a density of extremes ( in fig. 3A) with a meanN p 1
value of 230 m per generation. This increases to 430 and
530 m per generation for and , respectively.N p 5 N p 10

Velocity of Spread

If spread is controlled by extreme dispersal estimated as
a parametric kernel, then the distribution of rates of spread
is the sum of random draws from p( ). The mostx; N
straightforward solution to the distribution of sums ob-
tains from characteristic functions. Unfortunately, char-
acteristic functions for many fat-tailed densities (including
one applied to seed dispersal below) cannot be inverted,
and many (also including ours) possess infinite moments.
Thus, while the density (eq. [1] or [4]) provides a de-
scription of extreme dispersers, it may not help us estimate
spread; the fitted model may lack finite moments, whereas
the data have all moments finite.

Although we may be unable to evaluate moments for
a parametric kernel, equations (1), (3), and (4) provide a
simple tool for estimating moments of data fitted to a
parametric kernel f(x). Indeed, this is the typical problem
faced when estimating spread: dispersal data are sum-
marized and reported from a fitted parametric model, and
we wish to estimate how fast the population might expand
given the true number of offspring produced, that is, R0.
A distribution of extremes is readily constructed from the
most distant propagule that arises from a random sample
of size R0 drawn from the parametric kernel (fig. 4). Thus,
equations (1), (3), and (4) provide for simulation that
accommodates both the kernel shape and the sample size
employed by the parent, that is, R0.
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Figure 3: A, Acer rubrum dispersal kernel f(x) (dashed line) and densities of extreme dispersal p(x; N) for three values of N. B, Maximum and
minimum rates of spread for different resident population sizes from equation (6). Population extent is equal to the number of trees N times the
distance along the transect (fig. 1A) per tree (taken here to be m). The upper bound approaches an asymptote with increasing populationh p 5
extent. The minimum value (for ) is plotted for reference, bounding a potential range of rates that might prevail over time.N p 1

An upper bound on the rate of spread c� follows from
the assumption that possible parents for the furthest-
forward individual are packed at maximum density (crown
size) h (fig. 1A). A lower bound c� follows from the as-
sumption that spread proceeds from one furthest-forward
individual to the next (fig. 1B). Migrations such as those
of temperate forest trees following the rapid warming at
the end of the Pleistocene potentially commence from con-
tinuous populations, implying a large nearby seed source
(fig. 1A). Fat-tailed dispersal subsequently shifts the pro-
cess to spread by extremes (fig. 1B). Although c� and c�

may approximate initial and asymptotic spread rates for
the population, we have not proved this.

The mean rate of spread is the expectation of C, where
, that is, an extreme value for X scaled by gen-C p X/T

eration time T. The density of C is

dx
g(c; N) p p(x; N) p p(cT; N) # T, (5)F Fdc

that is, the density of extreme distances scaled by gener-

ation time. We calculate two expectations. A high and
transient rate c� is associated with spread from a contin-
uous front (fig. 1A) and obtains from equation (4). A lower
rate c� is approached as the pattern shifts to one of ex-
tremes (fig. 1B), obtained from equation (3). We expect
the eventual “asymptotic” spread rate to lie between c�

and c�, but close to c�. The expectation is

� �
1

E[C; N] p xp(x; N)dx p cg(c; N)dc. (6)� �T �� ��

The lower bound for spread is [ ], and the upper�c p E C; 1
bound is [ ].�c p E C; �

The dispersal kernel for A. rubrum (dashed line, fig. 3A),
with a mean value of 230 m per generation, translates to
a rate of spread of 40 m yr�1 (fig. 3B). A small population
that might occupy, say, a riparian zone (five to 10 crowns
wide; fig. 3A) has an average rate of spread of 70–90 m
yr�1 (population extent of to to 50,Nh p 5 10 # 5 p 25
fig. 3B). The mean rate approaches 100 m asymptotically
as N becomes large (fig. 3B). Thus, potential rates of spread
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Figure 4: Estimating spread from extreme dispersers. A fat-tailed parametric kernel (eq. [10]) is fitted to Acer rubrum dispersal data (Clark et al.
1999). A random sample of R0 seeds is given by the histogram in (A) and compared with the fitted density. Repeated draws from f(x) of size R0,
each time recording the extreme individual, provides a histogram corresponding to p(x; 1), but, unlike p(x; 1), the discrete sample has all moments
finite (B). Although the parametric kernel in B cannot be used to estimate variances, the random sample can.

suggested by the dispersal kernel range from 40 to 100 m
per generation, the high value being a closer initial esti-
mate, and the low value expected later on.

Reproduction as an Extreme

The foregoing analysis follows tradition in that it treats
reproduction as a fixed value. For many organisms, the
very act of reproduction is extremely unlikely. Even for
populations experiencing positive population growth rates
( ), the vast majority of individuals may contributeR 1 10

no offspring to the next generation. Examples include most
plants (Clark et al. 1998a), birds (Lande 1987), and sea
turtles (Crouse et al. 1987). Thus, R0 represents an average
over a large number of zeros and a small minority that
do indeed produce offspring. The zeros are those individ-
uals censused at seed or seedling stages that do not survive
to reproductive age. Here, we recast the standard life-
history equation to accommodate this reproductive vari-
ability among individuals, and we propagate that varia-
bility to the density of dispersal distances. In other words,
we translate reproductive variability into variability in
spread. To insure that we do not exaggerate the impact,
we use a highly conservative estimate of variance. We in-
clude only the variance implicit to the standard life-history
equation itself, that is, that which results from variable life
span described by the survivor function. In practice, there
will be many more sources of variance in R0 than we
include here.

Let R be a random variable representing the reproduc-
tive rate with PDF . The many individuals that failq (R)R0

to reproduce represent a class at , and those thatR p 0
do reproduce comprise the “tail” of this density. This den-
sity of R values controls population spread because the
probability that a seed travels far increases nonlinearly with
offspring production (eqq. [1], [3], and [4]). For this anal-
ysis, we focus on the situation in figure 1B ( ). Equa-N p 1
tions (1) and (3) are now conditional densities, and the
density of extreme dispersers is obtained by integration:

�

R�1p(x; 1) p Rf(x)[F(x)] q (R)dR. (7)� R0

0

Because we restrict variability to that caused by differ-
ential longevity, net reproductive rate is fully determined
by age of death. An individual that dies at age a p d

produces offspring

d

R(d) p b(a)da, (8)�
0

where b(a) is the fecundity schedule. Age of death is de-
scribed by f(d)dd, the probability that death occurs on the
age interval , and is the derivative of thed ! a ! d � dd

survivor function S(a). The density of net reproductive
rates is obtained with the variable change

dd f(d)
q (R) p f(d) p . (9)R F F0 dR b(d)

The effect of this variable reproduction on rate of spread
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can be determined using the integral equation (7) along
with equations (5) and (6).

Methods

Using the Fitted Kernel

To illustrate how variability influences model predictions,
we examined the effects of extreme reproduction and dis-
persal on potential rate of spread using demographic data
from southern Appalachians trees. Data sets and parameter
estimates are obtained from long-term monitoring and
experiments (Clark 1998; Clark et al. 1998b, 1999). Use
of this data set is not intended as a full analysis of dispersal
and invasion; a broader description of dispersal and life
history for these species is contained in Clark (1998). The
dispersal kernel is a bivariate Student’s t (2Dt), which
Clark et al. (1999b) derived as a continuous mixture of
Gaussian densities with dispersal parameter distributed as
inverse x2. It fits dispersal data better than do the tradi-
tional exponential or Gaussian kernels. With Clark et al.’s
(1999b) shape parameter of , the marginal densityp p 1
in one dimension is

1
f(x) p . (10)2 3/2x�2 2u 1 �( )2u

The mean is finite, but all higher moments are not. For
the estimates that follow we assume that and, con-R k 10

sequently, that R0/2 seeds move to the right. This as-
sumption allows us to change the lower integration limit
in equation (1) from �� to 0, thus permitting an analytical
solution for rate of spread. This is a close approximation
for large R0 because the chances that the farthest disperser
to the right is less than is small. Conditioned onx p 0
the event that a seed travels to the right (positive x), the
expected dispersal distance is . If R0 is large,1/2E[X] p (2u)
then approximately R0/2 seeds move to the right (positive
x) with density

(R /2)�10R x0p (x; 1) p , (11)2r x (R /4)�10R /40u 2 �( )u

and the lower bound on the spread rate is �c p
xpr( )dx. With the substitution�E[C; 1] p 1/T x; 1 z p∫0

/2u, we can write this integral in terms of a beta function2x

�� (R /4)�1/20uR 0 z
E[C; 1] p dz� (R /4)�102T (1 � z)0

�uR 0 R 1 10p B � , (12)( )2T 4 2 2

R 10�2puG �( )4 2 1 puR 0p ≈ ,�
R 0 T 2T G( )4

where and are beta and gamma functions,B (7,7) G( 7 )
respectively. The variance and all higher moments are not
finite. The approximation used in the last step of equation
(12) comes from the asymptotic relationship

R 10 G �( )4 2 R 0lim r . R 0 2R r�0 G( )4 

In fact, this limiting result, if approached rapidly, provides
useful estimates for values of R0 as low as 5.

Relaxing the assumption that one-half of all seeds move
to the right still permits a solution for the PDF (i.e., using
eq. [2]):

R �10x
1

p(x; 1) p R f(x) � f(y)dy0 �[ ]2 0

2�x � 2u � x 
R �10 p R f(x) , (13)0 2�2 2u � x 

but we were unable to obtain a solution for the mean rate
of spread. Provided R0 is not small, numerical solutions
are approximately equal to equation (12).

To determine variances on rates of spread and to eval-
uate our estimates based on parametric assumptions (i.e.,
eq. [13]), we sampled directly from equation (10). To sim-
ulate spread in one dimension, we rescaled and integrated
the 2Dt model fitted to two-dimensional data (Clark et
al. 1999b). We drew R0 random t variates from a standard
one-dimensional t distribution with degrees ofn p 2p
freedom. We then set sample distances 1/2x p (u/p) # ti i

to obtain one-dimensional spread scaled to our parameter
estimates (recall ).p p 1

Figure 4 shows f(x) and p( ) for Acer rubrum data.x; 1
The sample in figure 4A of size has an extremeR p 1170

disperser at approximately 200 m. A large number of sam-
ples of size R0 produce a distribution of extreme values,
represented as a histogram in figure 4B that is compared
with the parametric p( ).x; 1
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Figure 5: Simulated spread from extreme dispersal for Acer rubrum. A,
Cumulative distance traveled over successive generations for 10 simu-
lations. B, Distances traveled by generation for the 10 simulations in A.
C, Comparison of distribution of extreme dispersal events from B (shaded
bars) and the long-term (100 generations) distribution of rates g(c) (step
curve). The dashed line in B and C is the expectation from equation (12).
The distribution of extreme events is skewed, as predicted by equations
(1) and (11). The distribution of rates approaches normality with in-
creasing numbers of generations. The distribution of rates has a mean
of m yr�1 with 95% of values on the interval (36.1, 64.2).45.4 � 7.70
Units in C (m yr�1) are obtained by scaling for generation time (eq. [6]).

Variable Reproduction

The effect of variable reproduction was evaluated using
data sets and the approach of Clark (1998). Assume that
trees grow with an approximately constant annual di-
ameter increment g and that seed production is propor-
tional to (b times as great as) basal area (Clark et al. 1998,
1999b; Wyckoff and Clark 2000). Then the fecundity
schedule is , and net reproductive rate is2b(a) p pb(ga/2)
obtained from equation (8), ,2 3 3R(d) p (pbg /12)(d � t )1

where t1 is maturation age.
Mortality is summarized by a survivor function S(t1)

that determines a probability of surviving to maturation
age t1 and a constant mortality rate r thereafter. The den-
sity of deaths is

1 � S(t ) d ! t1 1

.�r(d�t )1S(t )re1{ d 1 t1�rt21 � e

The density of reproductive rates is obtained using equa-
tion (9):

1 � S(t ) R p 01

q (R) p ,R0 4S(t )r exp {�r[D(R) � t ]}1 1{ ( )0 ! R ! R t 22 �rt2pb[gD(R)] (1 � e )

(14)

where is the inverse function2 3 1/3D(R) p [(12R/pbg ) � t ]1

R�1(d). The combined effects of extreme dispersal and
variable reproduction were determined by substituting
equations (11) and (14) in equation (7) and integrating
numerically.

Results

The Effect of Extreme Dispersal

Our approach predicts a pattern of spread that might be
viewed as a hybrid of previous methods. The example
using parameter values for Acer rubrum shows a constant
average rate (fig. 5A, 5B), as occurs with simple diffusion
models. The pattern differs from diffusion in that spread
proceeds as a series of irregular leaps (fig. 5B). These most
extreme dispersers are peak values in figure 5B and rep-
resent the formation of distant centers for additional
spread. Although the long-term rate of spread approaches
a constant expectation, which is predicted by equation (12)
(dashed line, fig. 5B, 5C), that rate is much greater than
would occur by diffusion. The mean spread rate of 40 m
yr�1 in figure 5 contrasts with 10 and 20 m yr�1 predicted
by Gaussian and exponential dispersal kernels, respectively,

fitted to the same data. Whereas the fitted kernel used to
simulate spread in figure 5 has infinite variance, the sim-
ulations provide a finite variance for a distribution of rates
that is asymptotically normal (fig. 5C). This distribution
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Figure 6: Densities of extreme dispersers for animal-dispersed (A) and wind-dispersed (B) types from equation (11). Note different scales for
horizontal axes.

corresponds to g( ) in equation (5). Moreover, the av-c; 1
erage rate of spread from simulation agrees with the mean
of the distribution of extremes; the estimate from equation
(11) is shown as a dashed line in figure 5B and 5C. We
prove this rate to be finite for all relevant assumptions in
the appendix.

Although net reproductive rate has a minor effect on
the rate of diffusion (for a Gaussian kernel, the rate is
proportional to the square root of the log of R0), the den-
sity of extremes captures its dominant effect on fat-tailed
spread. For a species with low R0 and short dispersal dis-
tances, such as Carya, the most extremely placed seed only
reaches 5–50 m (fig. 6A). By contrast, wind-dispersed types
produce many small seeds, and the extreme disperser
might travel 102–104 m (fig. 6B). In the case of Betula, the

extreme disperser is predicted to always exceed 500 m. The
densities of extreme dispersal (fig. 6) predict rates of spread
that range over two orders of magnitude (fig. 7). Wind-
dispersed types (Betula, Acer, Liriodendron) have highest
rates (30–80 m yr�1); animal-dispersed types (Cornus,
Nyssa, Carya) have low rates (0.1–1 m yr�1), depending
on N.

The Effect of Variable Reproduction

Variable reproduction slows rates of spread using our par-
ameterizations for tree populations. Figure 8A shows a
typical density (A. rubrum) of net reproductive rates. The
density is represented on a log-log plot because the tail
would otherwise be obscure. The assumption that 1 in
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Figure 7: The ranges of spread rates plotted against rates of increase
/T estimated from dispersal and life-history data for southern Ap-ln (R )0

palachian trees. A range is given for each taxon that has upper and lower
bounds that are numerical estimates. The interior tick mark is the an-
alytical result from equation (12).

Figure 8: Density of net reproductive rates (A) and comparison of ex-
treme dispersal kernels for constant and variable R0 (B). The upper curve
in B assumes the mean value for R0, and the lower curve in B integrates
the full density of R0 values shown in A. Parameters are for Acer rubrum.

1,000 seeds reach reproductive age is within the range we
observe in modern forests (Clark et al. 1998). This high
juvenile mortality is represented by the bulk of the density
(99.9%) at the low extreme of figure 8A. The remaining
tail contains 0.001 (the probability of at least some
reproduction).

The two densities of extreme dispersal in figure 8B dem-
onstrate the effect of variable recruitment. The upper curve
is the density that results from a constant R0 (eq. [11]).
The lower curve is the density that accommodates variance
in R0 (eq. [7]). This density is lower than that for constant
R0 because it includes a large zero class corresponding to
the bulk of the R0 values that equal zero (for clarity, this
zero class is not shown). The large zero class means that
the overall expectation of extreme dispersal is much lower
than predicted for a constant R0. Thus, although both

densities assume the same mean R0, variation of the type
caused by high juvenile mortality slows the rate of spread.

For juvenile survivorship of 0.001, variable R0 pro-
foundly limits the rate of spread estimated from our dis-
persal data. We found that invasion progressed two orders
of magnitude slower for variable R0 than it did for constant
R0 (fig. 9B). Poorly dispersed species are predicted to
spread on the order of meters per century. Increasing the
rate of spread requires much higher juvenile survivorship
(S(t1) in eq. [14]), which results, in turn, in higher R0.

Application to Contemporary Spread

There are few examples of contemporary tree invasions
for which estimates of life history, dispersal, and invasion
rates are available. Dispersal estimates and invasion rates
for two spruce (Picea) species in Alaska allow for model
application. We combined dispersal estimates obtained
from a remnant white spruce stand into a surrounding
clearcut with rates of Sitka spruce spread into Glacier Bay.

This content downloaded from 129.128.046.156 on March 28, 2019 08:28:19 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



548 The American Naturalist

Figure 9: Comparisons of spread rates. A, Simulation results (vertical axis) agree with the analytical model (horizontal axis) summarized by the
mean (eq. [12]). B, Rates of spread that include the full density of R0 values from equation (7) (horizontal axis) are consistently lower than are
those that assume the mean R0 (eq. [6]). Both axes are log values.

Fastie (1995) found that the rate of spread into deglaciated
terrain depended on distance to the closest seed source,
with rates averaging from 300 to 400 m yr�1. To estimate
a dispersal kernel, we used seed trap data from transects
emanating from the remnant stand (S. Rupp, unpublished
manuscript). Our maximum likelihood approach assumes
a seed source that is everywhere constant within the stand,
and seeds are dispersed in all directions according to a
2Dt kernel (Clark et al. 1999). The mean of the Poisson
sampling distribution is given by the 2Dt kernel integrated
over the source area. Dispersal parameters from nine tran-
sects averaged m2. Because we lack fullu p 5,531 � 3,024
life-history data, we considered the range of R0 values
(5,000–50,000) we obtain for tree species having wind-
dispersed seed and having fecundity rates similar to those
estimated here (Clark 1998). The geometric mean value
for this range is 16,000. We further assume yrT p 50
(Fastie 1995), the maximum likelihood estimates for u
from our nine transects, no covariance in u and R0, and
a standard error on R0 of 1,000. We bootstrapped spread
rates using equation (12). The bootstrap is thus parametric
in R0 and nonparametric in u.

The distribution of bootstrapped estimates straddles
Fastie’s (1995) estimate based on stand reconstruction (fig.
10). The skewed pattern of spread rates results from a
limited number of u parameter estimates with uncertainty
resulting from a limited number of sample years. The
broad range of estimates is consistent with the prediction
of highly variable rates, yet the central tendency is close
to the observed rate. Our data underestimate the rate of
spread, but we expected an underestimate because we used

the lower estimate of c�, and some seed might travel from
distant, continuous stands.

Discussion

Spread predictions that ignore variance contain order of
magnitude bias. Our solution to the problem of spread
that results from fat-tailed dispersal provides two new in-
sights that depart from former views. First, we demonstrate
that spread is intermediate in character and in rate between
simple diffusion and fat-tailed dispersal predicted by pre-
vious models. Second, we show that reproductive varia-
bility can have a profound effect on the rate of spread.

Dispersal Is Discrete

Previous results showed that velocities predicted from
mean dispersal distances (i.e., diffusion) are qualitatively
and quantitatively inaccurate (Mollison 1972; Kot et al.
1996; Lewis 1997; Clark 1998), but analyses from fat-tailed
kernels produce no asymptotic estimate; spread just ac-
celerates indefinitely (Kot et al. 1996). By acknowledging
that individuals are discrete, we obtain estimates of spread
that are faster and noisier than diffusion but still finite
(fig. 5). Our simulation method that uses the same “sample
size” as a parent (i.e., R0) allows calculations of means,
variances, and so forth. The analytical calculation for the
mean agrees with simulation (fig. 9A). The simple ap-
proximation represented by equation (12) provides a rule
of thumb that can be readily estimated from a fitted kernel.
The approach can be implemented in the common situ-
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Figure 10: Estimates of spread (A) bootstrapped from the fitted dispersal
kernel f(x) shown for the mean value of parameter u in B. The corre-
sponding extreme density in B uses a value of .R p 16,0000

ation where a fitted kernel is available, and raw data are
not.

Our contribution here is about analyzing data, not about
fitting them. Spread rates estimated by our method are no
better than the data used to fit them, and kernel tails are
hard to estimate. However, once we have dispersal infor-
mation, we have had no way to use it, nor have we had
ways to analyze consequences of dispersal scenarios that
might have prevailed in the past or will in the future. There
are many situations where data are available (examples in
Kot et al. 1996; Clark et al. 1999) or where there is need
to explore the implications of a dispersal scenario. Our
approach permits a direct analysis, whereas previous meth-
ods do not.

Any invasion by leptokurtic dispersal is sensitive to the
shape of the tail (Kot et al. 1996; Clark 1998). Because the
tail cannot be adequately characterized, assuming a par-
ametric, fat-tailed kernel makes for speculative interpre-
tation. However, unlike traditional models, our solution
does not “blow up.” Our method is much less susceptible
to errors in the tail because a random sample of size R0

from a kernel fitted to data produces a simulated data set
much like the original data (fig. 4). The infinite tail that
controls the predictions of parametric models does not
contribute to the discrete samples drawn from such den-
sities. By acknowledging that propagules are discrete, we
avoid the extreme sensitivity to tail shape that makes tra-
ditional models unsatisfactory.

The effect of R0 can be appreciated by comparing the
order of spread rate. With traditional diffusion (dispersal
distance x has the Gaussian kernel ( )), the ve-2x ∼ N 0, j

locity has order O . A fat-tailed kernel that fit-1/2(ln R )0

ted dispersal data of Clark (1998; dispersal kernel 1/4x ∼
( )) has velocity ( )2, where t is time in2N 0, j 2t # O ln R 0

generations. In addition to increasing over time, the order
shows high impact of fecundity. The extreme value ap-
proach applied here shows spread of order O (eq.1/2(R )0

[12]). Not only does it not accelerate, but fecundity effects
are intermediate between classical models of diffusion and
fat-tailed spread.

Variable Reproduction Slows Invasion

We did not include in our analysis all sources of variability
in offspring production, because we focus on the situation
where most of the rare, long-distance dispersers fail to
reproduce. Previous analyses simply apply the mean net
reproductive rate uniformly to all individuals. By focusing
on the variability that results from longevity, we include
only the variance that is implicit to any calculation of R0

(eqq. [8], [9]). In other words, we do not assume the
process to be more variable than do previous analyses; we
just include the variance previous models imply.

Velocities based on mean reproduction are importantly
biased because there is huge variance among individuals
in their reproductive output, and velocity is very sensitive
to offspring production (eq. [2]). For instance, high mor-
tality between seed release and reproductive age means
that Skellam’s (1951) assumed R0 of 9,000,000 new seeds
emanating from each seed arrival averages over a distri-
bution having several orders of magnitude more seed in
a zero class and rare individuals that produce far more
than 9,000,000. Abiding the variance in reproduction
vastly lowers the predicted velocity. Because many pop-
ulations are characterized by high juvenile mortality and
potentially long life (Crouse et al. 1987; Lande 1987), our
results have broad application.
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How Does Variability Alter Predictions of Tree Spread?

Clark (1998) used parametric kernels to demonstrate that
tree invasions of several hundred meters per year cannot
be rejected on the basis of modern dispersal data. However,
these highest rates were not obtained by all species due to
low fecundity and restricted dispersal. These rates were
consistent with predictions of integrodifference equation
models after several generations for species that produce
large quantities of well-dispersed seed, but the integro-
difference model predicts continued acceleration.

Those simulations and results presented here point out
that many species may not be capable of such rapid spread.
We can never completely rule out the possibility that oc-
casional seeds are transported long distances by birds, thus
providing for the remarkably high rates of spread implied
by interpretations of fossil pollen data (Davis 1981). But
some taxa (e.g., Carya) have no known long-distance dis-
persal vectors, so rapid migration is less plausible. By fo-
cusing on the extremely placed seeds, we still obtain rates
of spread near 1 m yr�1 for Carya (fig. 7). Including the
variance in R0 reduces the prediction still farther (fig. 9B).
Assuming juvenile survivorship substantially greater than
today still does not predict rates as high as 10 m yr�1, far
lower than inferred from fossil pollen data. Although there
may have been unknown dispersal vectors in the past,
Carya nuts are accessible primarily to rodents, few of
which would be expected to transport nuts long distances.

The rates of spread we predict should lead to reconsid-
eration of the notion that Pleistocene true populations may
have been more extensive than previously thought. Bennett
(1987) suggested that low pollen percentages can derive
from scattered tree populations that occupied sites farther
north than those used to infer rapid spread. Even relatively
small populations in protected sites could support rapid
initial spread (fig. 3), and there would have been far less
distance to cover if such populations extended to higher
latitudes. Increasing evidence that the North American ice
sheet blocked winter intrusions of frigid Arctic air (e.g.,
Wright 1992) means that the minimal low temperatures

that control modern northern range limits (Sakai and
Weiser 1973; Larcher and Bauer 1981) may not have been
so extreme as to completely exclude these taxa. If popu-
lations were further north in eastern North America than
previously thought, the rates of spread needed to accom-
plish Holocene spread are closer to the estimates we pro-
vide here.

Conclusions

Our results demonstrate that two common kinds of var-
iability in dispersal limit the progress of invasion. One
kind of variability (the rare, long-distance kind) does not
provide for the unlimited rates of spread that parametric
models predict. Once we acknowledge that offspring are
discrete, our method provides a means for calculating
spread, and it is intermediate between diffusion and par-
ametric fat-tailed spread, both in velocity and in character.

The second kind of variability (the reproductive kind)
can profoundly slow rates of spread. By incorporating only
the variability implied by the standard R0 calculation, we
demonstrate that differential longevity described by the
survivorship schedule predicts slower spread than the as-
sumption that all individuals have identical longevity and
produce the mean R0.

New insights provided here apply to all organisms char-
acterized by iteroparous life histories and/or rare, long-
distance dispersal. The example we use (tree expansions
at the end of the Pleistocene) suggests dramatic effects of
these types of variability and suggests reexamination of
Pleistocene distributions and subsequent spread.
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APPENDIX

Here, we prove dispersal by fat-tailed kernels with infinite moments produces finite rates of spread, provided there
are discrete (finite) offspring. We begin with the case depicted in figure 1B (spread from isolated individuals). We then
consider spread from a continuous front (fig. 1A).

Spread from Isolated Individuals

Assume offspring disperse to locations , where R is the number of offspring. The extreme disperser lands ah , … ,h1 R

distance from the parent
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y p max h .i
1≤i≤R

Further assume that are independent, and the [ ] and R are independent. Let f(x) be the densityh , h , … h , i ≥ 11 2 i

( , the distribution function) of hi.
x ′ ′F(x) p f(x )dx∫��

Claim: If , and , then . If , and , then .E[R] ! � E[h ] ! � E[y] ! � E[y] ! � Pr {R p 0} ! 1 E[h ] ! �1 1

Proof: For the sake of simplicity, we assume that . Then the distribution function of y (i.e., eq. [3]) ish ≥ 0i

kP(x; 1) p Pr max h ≤ x p F (x).i{ }
1≤i≤k

Thus,

� �

R RE[yFR] p xdF (x) p [(1 � F (x)]dx,� �
0 0

and, therefore,

� 
R E[y] p E [1 � F (x)]dx .� 0

Note that, by the mean value theorem,

k�1 kkF (x)[1 � F(x)] ≤ 1 � F (x) ≤ k[1 � F(x)].

Assume that and . ThenE[R] ! � E[h ] ! �1

� �   
R   E [1 � F (x)] ≤ E R [(1 � F(x)] p E[R]E[h].� �   0 0

Assume further that . BecauseE[y] ! �

k1 � F(x) ≤ 1 � F (x),

we have

R1 � F(x) ≤ 1 � F (x), if R p 1, 2, … ,

and, therefore,

� � �� 
R k [1 � F(x)] ≤ E [1 � F (x)]dx p [1 � F (x)]dx # Pr {R p k}�� � �

kp1 0 0 0

� �

≥ [(1 � F(x)]dx Pr {R p k}��
kp10

p Pr {R 1 0}E[h ].1

On these conditions: if , no offspring; if , for some constant c, then for any R,Pr {R p 0} p 1 h ≤ c
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max h ≤ c,i
1≤i≤R

so ; if , then the “edge” is moving with a constant velocity, which is exactly E[y].E[y] ! � E[y] ! �

Spread from a Continuous Front

Let X� be the extreme dispersal distance from a population front (fig. 1A) with CDF . The expectation canP(x; N)
be written as

�

�E[X FR, N] p [1 � P(x; N)]dx,�
0

where is the CDF corresponding to equation (5). Noting that , ifP(x; N) P(x; N) ≤ F(x)

�

[1 � P(x; N)]dx ! ��
0

with probability 1, and , thenPr {R p 0} ! 1

�

[1 � F(x)]dx ! �,�
0

that is, the dispersion of each individual has a finite mean.
Now, if , we can assume, without loss of generality, thatF(1) 1 0

� 1 �

[1 � P(x; N)]dx p [1 � P(x; N)]dx � [1 � P(x; N)]dx� � �
0 0 1

�

≤ 1 � [1 � P(x; N)]dx.�
1

Because , we havex1 � x ≤ e

N N 
 0 ≤ 1 � P(x; N) p 1 � exp R ln F(x p x ) ≤ R [(� ln F(x � x )],� �kh kh kp0 kp1

and, therefore, by change of variable, we have

� � �N

[1 � P(x; N)]dx ≤ R � ln F(x � x )dx ≤ RN � ln F(x)dx.�� � kh �
kp11 1 1

If , then1 ≤ x ≤ �

1
0 ! ln [1] � ln {1 � [1 � F(x)]} ≤ [1 � F(x)],

F(1)

and, therefore,
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� �
RN

[1 � P(x; N)]dx ≤ [1 � F(x)]dx.� �F(1)1 1

First, if (there are some offspring), then (i.e., the extreme disperser from any one�Pr {R p 0} ! 1 E[h ] ≤ E[X d R]1

parent cannot exceed the extreme distance for all N parents) on the set andR 1 0

�E[h ] Pr {R ≥ 1} ≤ E[X ].1

Hence, if , then .pE[X ] ! � E[h ] ! �1

Second, there is a constant (F) such thatc p c

�E[X d R] ≤ cRN E[h ].1

Thus, if , and , then . (Note: If N is a random variable, then , , and�E[h ] ! � E[R] ! � E[X ] ! � E[N] ! � E[R] ! �1

, implying that .)�E[h ] ! � E[X ] ! �1
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