INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

University of Alberta

PARTIAL ENCRYPTION FOR [IMAGE AND VIDEO COMMUNICATION

Howard Chi Ho Cheng @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre rélérence

Our file Notre réldrance

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette theése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-34345-6

University of Alberta

Library Release Form

Name of Author: Howard Chi Ho Cheng
Title of Thesis: Partial Encryption for Image and Video Communication

Degree: Master of Science

Year this Degree Granted: 1998

Permission is herebyv granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis. and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Howard Chi Ho Cheng
2204-111A Street
Edmonton, Alberta
Canada, T6J 4V6

Date: j—é‘-'é(? . g.j /775

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Partial Encryption for
Image and Video Communication submitted by Howard Chi Ho Cheng in partial
fulfililment of the requirements for the degree of Master of Science.

June 30,1998

ate:

A thing is obvious mathematically after you see it.
R.D. Carmichael

Abstract

The use of image and video communication has increased dramatically in recent years.
When it is necessary to securely transmit data in limited bandwidth, both compression
and encrvption must be performed. Unfortunately, encryption and decryption are
slow and so it is difficult to carry out real-time secure communication. Researchers
have combined compression and encryption together to reduce the overall processing
time {2, 3. 14, 23, 25|, but most of them are insecure.

We propose an alternative solution, called partial encryption, in which a secure
encryption algorithm is used to encrypt only part of the compressed data. Partial
encryption is applied to several image and video compression algorithms in this the-
sis. Only 2%-27% of the compressed data is encrypted for typical images and video
sequences, resulting in a significant reduction in encryption and decryption time. The
proposed partial encryption schemes are fast, secure, and do not reduce the compres-

sion performance of the underlying compression algorithm.

A cknowledgements

[wish to thank my supervisor, Dr. Xiaobo Li, for his support in the duration of
this work. Without his ideas, suggestions, criticisms, and friendship, it would not be
possible to complete this work. In addition, this work was done as part of a project on
image and video compression and encryption, and I have enjoyed working with other
members of the group. especially Charles Cruden, Jason Knipe, Joseph Modayil, and
Nicholas Roeder. Most importantly, they have often provided me with source code to
different compression algorithms, saving me the effort to write the programs myself.

I wish to thank all my friends at the University of Alberta. I especially wish to
thank Katerina Carastathis for her support and friendship for the last few years, and
for her proofreading of this thesis. Joseph Modayil also offered valuable suggestions
and advices on this work. Adam Beacham. Neil Burch, Alan Skelley, and Dr. Piotr
Rudnicki of the programming team also made my year of graduate studies exciting
and enjoyable. Of course, all the bridge players in the math lounge gave me a great
opportunity to take a break from work.

[also wish to thank my family for their support throughout the years.

This work was supported by the Motorola Wireless Data Group and the Natural
Sciences and Engineering Research Council under Grant OGP9198 and Postgraduate
Scholarship (PGS A).

Contents

1 Introduction
1.1 Motivation e e e e e e e e e
1.2 Partial Encryption Based On Decomposition
1.3 Summary of Contribution
1.4 Test Images and Video Sequences
1.5 Thesis Qutline o i i e e

2 Background Information

2.1 Cryptography
2.2 Image and Video Processing
23 Quadtree. oL e e
2.4 Image Compression

2.4.1 Quadtree Image Compression

2.4.2 Wavelet Image Compression
2.5 Video Compressiono

3 Analysis of Related Work

3.1 Concealing Adaptive Model in Huffman and Arithmetic Coding

3.2 Combined Arithmetic Coding and Encryption

3.3 Video Scrambling With Space-Filling Curves
3.3.1 A Ciphertext-Only Attack
3.3.2 Known-Plaintext and Chosen-Plaintext Attacks

3.4 Image Scrambling With Hierarchical Scan Patterns
34.1 Cryptanalysis oo

3.5 Quadtree Image Compression and Encryption
3.5.1 Key Space Reduction
3.5.2 An Attack Based on Image Histogram
3.5.3 A Known-Plaintext Attack
3.5.4 A Chosen-Plaintext Attack

3.6 SUMMATLY . « « « t ot v e e e e e e e e e e e e e e e

4 Partial Encryption for Image and Video Communication
4.1 Description o ..o
4.2 Advantages of Partial Encryption
4.3 Evaluation of Partial Encryption Schemes

4.4

Potential Applications

5 Partial Encryption of Images

3.1
3.2

Qr
Qv =

Transform-based Algorithms
Quadtree Compression Algorithms
5.2.1 Leaf Values Ordering
5.2.2 Properties of Quadtrees
523 FileSizes
5.24 Security« o i i e e e e
5.2.5 Implementation Issues and Complexity
Wavelet Compression Algorithms Based on Zerotrees
5.3.1 FileSizes e e
5.3.2 Security
5.3.3 Implementation Issues and Complexity
Summary of Proposed Schemes

Other Image Compression Algorithms

6 Partial Encryption of Video Sequences

6.1
6.2
6.3
6.4
6.5
6.6

Motion Compensation
Residual Error Coding
File Sizes o o o e e e e e e e e e e e e e e e e e
Security . . - e e e e
Implementation Issues and Complexity

Other Video Compression Algorithms

7 Conclusion

7.1
7.2

Limitations
Future Directions

Bibliography

46
46
49
a0
52
33

35
65
65
67
69
73
73
74

75
(6]

{

L dord

7
79
30
81

82
83
84

85

List of Figures

[S1 N1}

o
o

Qt O Ot

o oo oo

N =

OV e W

© 00~ O

—

Example test images. oo
First frame of each test video sequence.

The four output bands of the wavelet filters.
The hierarchy of wavelet coefficient bands.
The trees of wavelet coefficients.

A space-filling curve on an image of dimensions 16 x 16.
Some SCAN letters and their scan patterns on 4 x 4 images.
The SCAN pattern defined by L4#R2 on an 8 x 8 image. Also shown
is the lowest level at which each pixel becomes a drive point.
The effect of quadtree image compression and encryption on a binary
image. e
Reconstructed image from the quadtree in Figure 3.4 using a fixed
scanning order.o .o

A comparison between (a) the traditional approach to secure image
and video communication and (b) the proposed approach.
A comparison between (a) the traditional approach to secure image and
video communication and (b) the proposed approach when public-key
encryption can be applied directly to the important part.

The encrypted DCT coefficients (shaded) with N=7..
Reconstructed images (after contrast enhancement) using only the un-
encrypted high-frequency coefficients.
Quadtree decomposition of an image.o
An example quadtree for a binary image.
The spatial locations of the blocks at each level of the quadtree in
Figure 5.4. o e
Plots of log, ax 4 for various valuesof A.
A quadtree havingarun oflength 14.
The encrypted pyramid levels for an 128 x 128 image.
Reconstructed images using only the first k£ encrypted bits.

Residual error (after contrast enhancement) for frame 2 of the “claire”
SEQUENCE. .« « o v v e
Sensitivity of quadtrees to the placement of a moving object.

17
18
19

26
28

29

41
47
48
50
51

51

72

List of Tables

1.1 Test images used in the experiments. 7
1.2 Test video sequences used in the experiments. 7
3.1 Number of distinct SCAN patterns for an n x n image [2]. 30
3.2 Summary of related algorithms., 37
5.1 Approximate upper bounds on the relative quadtree size in lossless
quadtree compression on b-bit images.o 35
5.2 Relative quadtree size in lossy quadtree compression. 56
5.3 Values of h and k for various images. 59
5.4 Number of quadtrees for the “lena” image given the number of leaf
nodesateachlevel. o 60
5.5 The size of important part in the SPIHT algorithm. 70
5.6 Summary of proposed partial encryption schemes. 74

6.1 The size of important part of the residual error in the “football” sequence. 78
6.2 The size of important part of the residual error in the “claire” sequence. 78

Chapter 1

Introduction

1.1 Motivation

The use of image and video communication has increased dramatically in recent
vears. The World Wide Web and video conferencing are two examples. When com-
munication bandwidth is limited, data is often compressed before transmission. If
there is a need to protect the transmission from eavesdroppers. the transmission is
also encrypted. For example, a wireless network often has limited bandwidth and its
network traffic can easily be intercepted. As a result, transmissions over a wireless
network need to be compressed and encrypted. Traditionally. an appropriate com-
pression algorithm is applied to the multimedia data and its output is encrypted by
an independent encryption algorithm. This process must then be reversed by the
receiver.

Unfortunately, the processing time for encryption and decryption is a major bot-
tleneck in real-time image and video communication. For example, a fast software
implementation of the IDEA encryption algorithm [18, 19] given in [33] can encrypt
or decrypt at a speed of 3.2 megabits per CPU second on a Pentium 150 processor
running the Linux operating system. In addition, we must also take into account the
processing time required for compression and decompression, for processing the asso-
ciated audio data, and for other processing such as video capture and display, contrast

adjustment, and so on. In the case of MPEG-1 compression, the bit rate may be up

to 1.5 megabits per second, while MPEG-2 compression may produce output at a
bit rate of 10 megabits per second or higher [26]. Compression algorithms for high-
quality video sequences may give even higher bit rates. Encryption and decryption
algorithms are too slow to handle the tremendous amount of data transmitted.

In many cases, the compression and decompression algorithms can barely keep up
with the required bit rate even when they are accelerated by hardware. The additional
processing required by encryption and decryption often makes it impossible to perform
real-time secure video communication. The problem described above is also present
in secure image and video storage. In this case, the “communication channel” is
the storage device. The overhead for encryption and decryption may make real-time
image and video processing infeasible. While hardware acceleration for encryption
exists, software implementations are cheaper and more flexible. This is especially true
for small, portable devices such as hand-held “videophones.” Extra hardware may
increase the cost of production, the size, and the power consumption of the device.
A reduction in encryption and decryption time is important for these devices. Of
course, a reduction in processing time is also important for more powerful computers.

Other researchers have also found inadequacies in the current state of the art in the
area of secure image and video communication. Matias and Shamir [25] argued that
standard crvptographic techniques are inadequate for video signals for the following

reasons:

1. the transmitted signal is analog;

(V]

. the transmission rate is very high;
3. the allowable bandwidth is limited.

While the first reason is no longer applicable as digital video has become feasible, the
other two reasons remain valid. Both compression and encryption must be performed,

and it is difficult to perform them quickly as recently noted by Chang and Liu [3].

[S]

They proposed an algorithm that combines image and video compression with en-
crvption. The overhead of encryption and decryption is negligible in their algorithm,
and they argue that it is fast and secure. Many researchers have examined the possi-
bility of combining compression and encryption into a single process (2, 3, 14, 23, 25)].
Inadequacies of these approaches are shown in this thesis.

In this thesis. we propose an alternative approach, called partial encryption, to
reduce encryption and decryption time in image and video communication. In our
proposed approach, only part of the compressed data is encrypted. This approach
was first applied to quadtree image compression by the author in [4, 22]. In this
thesis, we provide a more detailed analysis of the approach, introduce an application
of partial encryption to wavelet compression algorithms. and extend our approach to

video compression. In the next section, a general overview of our approach is given.

1.2 Partial Encryption Based On Decomposition

Image and video compression algorithms often decompose their input into logical
parts. Some of these parts may be important, in the sense that they provide a signifi-
cant amount of information about the original data. On the other hand, the remaining
parts may not give much useful information by themselves. We propose that only the
important parts are encrypted, and we call this approach partial encryption. Secure
encryption algorithms such as IDEA [18, 19] can be used to encrypt the important
parts. We use the term “information” loosely in this thesis, not referring to the con-
cept of information defined mathematically by information theory. If a part can be
used to reconstruct, approximate, or recognize the original data, we say that the part
provides a significant amount of information.

When the size of the important parts is small compared to the size of the total
output, a significant reduction in encryption and decryption time is achieved. As we
have seen, encryption and decryption are bottlenecks in real-time secure image and

video communication. Partial encryption may make real-time secure communication

3

feasible. In particular, the processor may be idle when the communication channel is
saturated, so that the important parts can be encrypted in parallel while the unim-
portant parts are transmitted. Thus, encryption can be carried out at a negligible
cost. Decryption, on the other hand, may not be as easy to parallelize because the
important parts are usually needed by the decompression algorithm before the unim-
portant parts. However, compression algorithms are often much slower than their
corresponding decompression algorithms, so it is important to speed up the encoding
process as much as possible.

In secure communication, a secret-key encryption algorithm is typically used to
encrypt the transmission, and the secret key is encrypted by a public-key encryption
algorithm such as the RSA algorithm (30]. The use of public-key encryption solves the
problem of key exchange. However, public-key algorithms are too slow for encrypting
a large amount of data. As a result, public-key algorithms are only used to encrypt
the keys used in secret-key algorithms. If the important part is so small that public-
kev algorithms can be applied directly to the important part, secret-key encryption
is unnecessary. The implementation and operating costs of secret-key encryption are
completely eliminated.

We have examined several existing image and video compression algorithms, and
found that those based on quadtrees {15, 22, 36, 37, 38, 39] and those based on
zerotrees of wavelet coefficients [7, 15, 16, 32, 35] are suitable for partial encryption.
In this thesis, we first examine image compression, and extend our results to video
compression. It will be shown that the proposed schemes have several desirable

properties:

Small important part. The important part in quadtree compression algorithms is
13-27% of the total output for all but one test images. The upper bound of
the size of the important part is approximately 57%. The important part in

the SPIHT algorithm based on zerotrees [32] is typically less than 2% of the

total output for images of dimensions 512 x 512. Consequently, a significant
reduction in encryption and decryption time is achieved. The important part
in the SPIHT algorithm is so small that public-key encryption algorithms can

be applied directly to the important part.

Simple implementation. Partial encryption can easily be applied to these two
tvpes of compression algorithms. The overhead in separating the important
part from the unimportant part is negligible. It is also simple to combine the

two parts together for decompression.

Uncompromised compression performance. The compression performance of
the partial encryption schemes is the same as that of the original compression

algorithms.

Security. There are no known attacks on these schemes. Furthermore, the schemes

have properties that make them difficult to cryptanalyze.

1.3 Summary of Contribution

The contribution of this thesis includes:

Analysis of related algorithms. We examine a number of related algorithms that
can be applied to secure image and video communication. We focus on the
security provided by each proposed algorithm, and show that many of these

algorithms are insecure.

A new view of data decomposition. Multimedia compression algorithms often
decompose the input into multiple parts. The goal of many compression al-
gorithms is to produce statistically uncorrelated parts. Each part can then be
quantized independently, resulting in efficient compression. In addition to the

criteria above, we also look at decomposition from an encryption perspective.

We examine the amount of information provided by each part, and argue that

some parts need not be encrypted.

Application of partial encryption. The applicability of partial encryption to a
number of existing image and video compression algorithms is examined. We
examine the decomposition performed by these algorithms, and design partial
encryption schemes for them. We study the security of each of our proposed
schemes. Furthermore, analyses and experiments are performed to study the
reduction in encrvption and decryption time as well as the computational com-

plexity of the proposed schemes .

The partial encryption schemes proposed in this thesis can be used in various
applications that require image and video data to be compressed and encrypted before
transmission. Real-time video conferencing and multimedia databases are examples

of applications that may benefit from partial encryption.

1.4 Test Images and Video Sequences

Throughout this thesis, test images and video sequences are used to obtain experi-
mental results. The test image set consists of 25 gray scale images that are frequently
used by other researchers in image compression. For each image, the name, dimen-
sions, and a short description are given in Table 1.1, and a few sample images are
shown in Figure 1.1. Smooth images are those that contain large regions in which the
intensity changes are gradual. Other images are usually dominated by fine details.
Two video sequences are used in the experiments. The two sequences are chosen
so that one has relatively little motion, and the other one has a significant amount of
motion. They are listed in Table 1.2, and the first frame of each sequence is shown
in Figure 1.2. We only show the experimental results for the first ten frames of each

sequence, as the remaining frames give similar results.

Table 1.1: Test images used in the experiments.

Image | Dimensions | Description
airfield 512 x 512 fine details
airplane | 512 x 512 smooth
barbara | 512 x 312 fine details
bay 256 x 256 smooth
bird 256 x 256 smooth
boat 512 x 512 smooth
bridge 256 x 256 fine details
camera 256 x 256 smooth
couple 512 x 512 smooth
crowd 512 x 312 fine details
festung | 512 x 512 smooth
goldhill | 512 x 512 fine details
io 512 x 512 fine details
lax 512 x 512 fine details
lena 512 x 512 smooth
man 512 x 312 smooth
mandrill | 512 x 512 fine details
peppers | 9512 x 512 smooth
sailboat | 512 x 512 smooth
shepherd | 512 x 512 fine details,
pencil drawing
sunset 256 x 256 smooth
washsat | 512 x 512 fine details,
low-contrast
womanl | 512 x 312 smooth
woman2 | 512 x 512 smooth
zelda 512 x 512 smooth

Table 1.2: Test video sequences used in the experiments.

Video Sequence | Dimensions Description
claire 360 x 288 head-and-shoulder,
little motion
football 720 x 496 sports,
large amount of motion

(b) camera

(a) barbara

rill

(d) mand

(c) lena

images.

xample test

E

1.1

igure

F

(a) claire

(b) football

Figure 1.2: First frame of each test video sequence.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, we define concepts and terminology
commonly used in cryptography and compression. Then, in Chapter 3, we analyze re-
lated work by other researchers and demonstrate the inadequacies of these approaches.
The proposed partial encryption approach is discussed in Chapter 4. This is followed
by the application of partial encryption to image and video compression in Chapter 5

and Chapter 6, respectively. Finally, concluding remarks are given in Chapter 7.

10

Chapter 2

Background Information

In this chapter, we introduce concepts and terminology that are used in this thesis.
It is by no means complete, and the reader is encouraged to consult [33] and [11] for

more information on cryptography and image processing, respectively.

2.1 Cryptography

Cryptography is the study of keeping messages secure. When a message is to be
transmitted in a hostile channel, the message can be encrypted to maintain privacy.
The original message is called the plaintezt, while the encrypted message is called
the ciphertext. Encryption refers to the transformation from plaintext to ciphertext,
and decryption refers to the inverse transformation. The encryption and decryption
processes depend on a secret key, so that only those with the secret key can perform
a successful decryption. The set of all possible keys in an encryption algorithm is
called the key space.

Secret-key, or symmetric, algorithms use the same key for both encryption and
decryption. On the other hand, public-key, or asymmetric, algorithms use different
keys for encryption and decryption. The encryption key is easily derived from the
decryption key, but it should be computationally infeasible to obtain the decryption
key from the encryption key. The public encryption key is published and the mes-

sages encrypted with this key can be decrypted only by the corresponding decryption

11

key. Public-key encryption algorithms eliminate the need of a secure channel for
key exchange. However, they are much slower than secret-key algorithms when a
large amount of data needs to be encrypted. Therefore, they are often used only to
exchange the key used in secret-key algorithms.

Cryptanalysis is the study of breaking encryption algorithms. It is assumed that
the cryptanalysts have full access to the description of the algorithms, as well as full
access to the insecure channel in which a message is transmitted. There are a few

types of attacks:

Ciphertext-only attack. The cryptanalyst has access to the ciphertext of several
messages encrypted with the same key. The cryptanalyst attempts to recover

the corresponding plaintext or the encryption key.

Known-plaintext attack. The cryptanalyst has access to the ciphertext and the
corresponding plaintext for several messages encrypted with the same key. The
cryptanalyst attempts to recover the key or to design an algorithm to decrypt

any messages encrypted with the same key.

Chosen-plaintext attack. In this case, the cryptanalyst is allowed to choose the
plaintext that is encrypted, and observe the corresponding ciphertext. The

cryptanalyst’s goal is the same as that in a known-plaintext attack.

Exhaustive key search. The cryptanalyst tests each of the possible keys one at a
time until the correct plaintext is recognized. This attack is infeasible if the
number of possible keys is at least 2'?® [33]. This attack can be combined with

any one of the three previous attacks to reduce the number of possible keys.

In practice, exhaustive key search and ciphertext-only attacks can usually be per-
formed. Known-plaintext attacks can often be performed because many messages
have known parts (eg. the header in a particular file format). Chosen-plaintext at-

tacks may also be possible when the cryptanalyst has access to the encryption device.

12

Secure encryption algorithms should withstand all of the attacks described above

provided that the key is not revealed.

2.2 Image and Video Processing

A b-bit (gray scale) image of dimensions m x n can be viewed as a two-dimensional
function whose domain is the rectangular grid {0,... ,m —1} x {0,... ,n — 1}, and
whose range tyvpe is the set of gray levels, or intensities, {0, ... ,26 — 1}. Each pixel
is indexed by its spatial coordinates, and is denoted by f(r,c). We also call f (r,c)
the pizel value of the pixel at row r and column c. While this definition is made for
gray scale images, a similar definition can be made for color images by changing the
range type of f. A video sequence is simply a sequence of images, {f:}, where ¢ is an
index to the frame in the sequence.

Two pixels at p; = (r1,c1) and pa = (72, ¢c2) are 4-neighbours if and only if (ra,c2) €
{(ri£1,c1), (r1,c1£1)}, or equivalently, p; is the north, east, south, or west neighbour
of p;. The 4-distance between p; and ps, denoted Dy(p1,p2), is defined as the length
of the shortest path from p, to p, such that two adjacent pixels in the path are

4-neighbours. Equivalently,
Dy(p1,p2) = |ri —r2} + et — . (2.1)

We define the image histogram of an image to be the frequencies of each of the
gray levels in the image. In other words, it is a discrete function A : {0,..., 261} —
N, where h(k) is the number of times intensity k occurs in the image. The image
histogram can be used to obtain information such as the average intensity of the

image.

2.3 Quadtree

A quadtree is a rooted tree in which every node has 0 or 4 children, while a 4-ary

tree is a rooted tree in which every node has at most 4 children. Nodes with children

13

are called internal nodes. while those without any children are called leaf nodes. Tree
nodes having a common parent are called sibling nodes.

For each node in a tree, we define its level to be the number of edges in the
shortest path from the node to the root. The height of the tree is defined to be the
maximum of the levels of its nodes. Thus, a node at a low level is close to the root.
It is important to observe that in the normal way of drawing trees, nodes at a high

level are actually drawn below those at lower levels.

2.4 Image Compression

Image compression is the process by which an efficient representation is computed for
an input image. Decompression is the process by which the image is reconstructed
from its representation. In most cases, only the compression algorithm is described,
as the decompression algorithm is a straightforward consequence.

Image compression algorithms can be classified into two categories. In lossless
(or reversible) compression algorithms, the decoded image is the same as the original
image. On the other hand, the decoded image in lossy (or irreversible) algorithms is
only an approximation to the original. In general, lossy algorithms produce file sizes
smaller than lossless algorithms. File sizes are generally measured in terms of bits per
pizel (bpp), which is the average number of bits used to represent each pixel. The bits
per pixel measure is also known as the bit rate of the algorithm. For a b-bit image,
the uncompressed representation uses b bits per pixel for transmission and storage.

Most image compression algorithms published in the literature compress only
gray scale images. It is usually straightforward to apply an algorithm to color images
by separating a color image into three gray scale component images. As a result,
we will only study algorithms that compress gray scale images. In addition, many
compression algorithms compress only images of dimensions of 2" x 2" for some integer
n > 0. If the input image does not have the required dimensions, pixels having the

same gray level can be added to “extend” the image. Since the extended pixels form a

14

large homogeneous region, the compression performance is not significantly affected.

We will always assume that images have the appropriate dimensions.

2.4.1 Quadtree Image Compression

Many variations of quadtree image compression algorithms exist [15, 22, 36, 37, 38,
39]. We only describe the basic concept here. Although more powerful compression
algorithms exist, the computational complexity of quadtree compression is low and
it performs better than the algorithm by the Joint Photographic Experts Group
(JPEG) [29] at low bit rates [15].

In the lossless version, the algorithm starts with a tree with one node. If the entire
image is homogeneous, the root node is made a leaf and the gray level describing the
entire image is attached to the leaf. Otherwise, the image is partitioned into four
quadrants and four corresponding children are added to the root of the tree. The
algorithm then recursively examines each quadrant, using each of the four children as
the root of a new subtree. This process must terminate as quadrants of dimensions
1 x 1 are homogeneous. Thus, the image is represented by a quadtree and the gray
levels at the leaf nodes. An image can be compressed if there are large homogeneous
regions. Lossless quadtree compression works best on computer graphics or line art
with large homogeneous regions. It can also be used on medical images in which any
information loss is unacceptable.

The lossy version is similar to the lossless version, but the test for homogeneity
of a square block is replaced by a test for similarity. The similarity of the pixels in
a block can be measured by the variance of the pixel values, texture information,
and other kinds of statistics. The values attached to the leaf nodes are parameters
that describe the block. Some examples of the parameters are average gray level and
parameters for a first-order model [38]. Lossy quadtree compression works best on
photographic images.

Quadtree compression can be implemented in either a top-down or a bottom-up

15

fashion. The description given above corresponds to a top-down implementation. In
a bottom-up implementation, the algorithm starts with a complete quadtree that
corresponds to a decomposition consisting of only individual pixels. The highest level
of the quadtree is first examined, and four sibling leaf nodes are merged if they are
homogeneous or similar. This is repeated at the next highest level until there are no
leaf nodes at a level, or if the root is reached. In practice, a bottom-up implementation

is often preferred because it is more efficient.

2.4.2 Wavelet Image Compression

In this section, we describe the basic concept of wavelet transforms. This is followed
by a description of the Set Partitioning in Hierarchical Trees algorithm [32], which is a
member of a class of wavelet image compression algorithms based on zerotrees [7, 15,
16, 35]. Details are given to facilitate the discussion of the proposed partial encryption
schemes.

We first introduce the one-dimensional wavelet transform, and extend it to the
two-dimensional wavelet transform. Given a one-dimensional input sequence CcO,
the wavelet transform of C® can be viewed as the application of a pair of filters H
and G to C© and the filtered output. The filter H is a low-pass filter and the filter
G is a high-pass filter. The frequency ranges of the output sequences are at most
half of that of the input sequence, so that the filtered output can be subsampled by
a factor of two. Two output sequences C!) and D) are produced from C® by H
and G, respectively. The process is then recursively applied to CW. In general, if *

denotes the convolution operator and S denotes the subsampling operator, we have

ct*) =S (H «CY) (2.2)
D) =S5 (G CY), (2.3)

where the recursion stops when the length of C® is less than some threshold. Fur-

16

LL LH

HL | HH

Figure 2.1: The four output bands of the wavelet filters.

thermore, there exists a pair of filters H* and G* such that
CH = H*x U (CW*V) + G" « U (DY), (2.4)

where U is an upsampling operator which increases the number of samples by a factor
of two. As a result, the original sequence C(® can be reconstructed from the sequences
cW pW pt-u . DM where | is the number of times the filters are recursively
applied. The values in the sequences CV, DW, DU=1 .. D) are called the wavelet
coefficients of C0.

The two-dimensional wavelet transform of an image can be performed by the one-
dimensional transform on the columns, followed by the one-dimensional transform on
the rows. Each application of the filters creates four bands in the image, labelled LL,
LH, HL, HH in Figure 2.1. The first letter in the label corresponds to the frequency
range (low or high) in the vertical direction, and the second letter corresponds to the
frequency range in the horizontal direction. The label is sometimes called the orien-
tation of the coefficient band, as it indicates the direction of the features represented
by the band. The transform is recursively applied to the LL band until its dimensions
are smaller than some threshold, resulting in a hierarchy of bands, sometimes called a
pyramid decomposition, as shown in Figure 2.2. The number in the band label is the
pyramid level of the band. The inverse transform is carried out in the reverse order
of each operation.

For most natural images, the wavelet coefficients in the high-frequency bands are

usually small. In addition, there is often a correlation between coefficients that are

17

LL3{LH3
LH2
HL3|HH3
LH1
HL2 | HH2
HLI HHI

Figure 2.2: The hierarchy of wavelet coefficient bands.

in different pyramid levels of the hierarchy. For example, the coefficients in HL2 are
correlated to those in HL3. We now describe the Set Partitioning in Hierarchical
Trees (SPIHT) algorithm [32], which takes advantage of these properties to improve
compression performance. We follow the notation and development of the algorithm
as presented by Said and Pearlman in {32].

We define the only LL band to be the root level. For each 2 x 2 block of coefficients
in the root level, three trees of coefficients are defined such that each coefficient outside
the root level has four children in the band with the same orientation, but at a lower
pyramid level. This is shown in Figure 2.3. Note that the trees are grown in the
opposite direction of the pyramid levels. We denote the coefficient at (3,7) as cij-

The following sets of coefficients are defined:
e (O(i.7): the set of coordinates of the children of the coefficient at (i,7);
e D(i,j): the set of coordinates of all descendants of the coefficient at (i,7);
e 7: the set of coordinates of all coefficients in the root level;
o L(i,§) =D(%j) — O j)-

Given a threshold T = 2", a set of coefficients S is significant if there is a coefficient

18

L1
=
-1

Ny

Figure 2.3: The trees of wavelet coefficients.

in S whose magnitude is at least 7. We define the function

S.(S) = 1 if S is significant with respect to T = 2",
"7 710 otherwise.

For convenience, S,({(¢,7)}) is simply denoted as S, (i, j). Three lists are maintained
by the algorithm: the list of insignificant sets (LIS), the list of insignificant pixels
(LIP), and the list of significant pixels (LSP). The LIS contains two types of entries.
Type A entries represent the sets D(i, j) and type B entries represent the sets L(Z,7)-
The LIP is a list of insignificant coefficients that do not belong to any of the sets in
the LIS. The LSP is a list of coefficients that have been identified as significant.
The SPIHT algorithm encodes the wavelet coefficients by selecting a threshold
such that T < maxj|cijl < 2T, where (i,7) ranges over all coordinates in the
coefficient matrix. The significant coefficients are identified and moved to the LSP
from the LIS or the LIP. All coefficients in LSP that have been identified as significant
in previous passes are then refined in a way similar to binary search. The threshold is

decreased by a factor of two, and the above steps are repeated. The encoding process

19

stops when the desired bit rate is reached. The output is fully embedded, so that the
output at a higher bit rate contains the output at all lower bit rates embedded at
the beginning of the data stream. As a result, the decoder may stop receiving bits
at any point and decode the image. The compression performance of the algorithm
depends mainly on its ability to represent large sets of insignificant coefficients with
only a few bits. The term zerotree refers to a set of insignificant coefficients grouped
into a tree.

The algorithm described by Said and Pearlman is now presented [32[:

1. Wavelet transform: perform wavelet transform on image so that the root

level has dimensions 8 x 8.

o

Initialization: output n = |log, (max(;) |ci;l)]; initialize the LSP as an
empty list, and add the coordinates (i,j) € H to the LIP, and only those

with descendants also to the LIS, as type A entries.
3. Sorting pass:

(a) for each entry (¢,7) in the LIP do:

i. output S,(2,7);

ii. if S,(¢.7) = 1 then move (z, j) to the LSP and output the sign of ¢; j;
(b) for each entry (¢,7) in the LIS do:

i. if the entry is of type A then
e output S,(D(i,7));
e if S,(D(i,7)) =1 then
— for each (k,!) € O(i, j) do:
+ output S,(k,!);
% if S, (k,l) =1 then add (k,!) to the LSP and output the sign

of Ck 1y

if Sp(k.l) = 0 then add (k,!) to the end of the LIP;
— if £(i,j) # ¢ then move (i, j) to the end of the LIS, as an entry
of type B; otherwise, remove entry (7, j) from the LIS:
ii. if the entry is of type B then
e output S,(L(%,7));
o if S,(L(¢,7)) =1 then
— add each (k,!) € O(i,7) to the end of the LIS as an entry of
type A;

— remove (i.7) from the LIS.

4. Refinement pass: for each entry (i, j) in the LSP, except those added in the

last sorting pass, output the n-th most significant bit of |c; j;

5. Quantization-step update: decrement n by 1 and go to Step 3.

2.5 Video Compression

Video compression algorithms take advantage of the correlation among successive
frames to compress video sequences. These algorithms generally consist of two parts—
motion compensation and residual error coding. In motion compensation, a frame is
segmented into objects or blocks. The movement. or motion vector, of each object
or block between successive frames are transmitted. The decoder uses the previous
frame and the motion vectors to predict the current frame. However, some prediction
error may exist. The residual error of the prediction is the difference between the
current frame and the predicted frame. The residual error must be transmitted as
well.

The first frame of a video sequence is compressed by an image compression al-
gorithm, and subsequent frames are encoded by the motion vectors and the residual

errors. The prediction by the motion vectors is not accurate if there are dramatic

21

changes from one frame to the next, such as a change of scene. In addition, the qual-
ity of the prediction tends to degrade over time. Thus, video compression algorithms
usually treat frames at fixed intervals as intraframes and encode them without any
prediction. The algorithm effectively restarts the encoding at every intraframe. In
this way, degradation in the quality of the image frames do not accumulate.

Motion compensation is typically performed by segmenting an image frame into
blocks and determining the motion vector for each block. Exhaustive search in a
small neighbourhood is used to find a block in the previous reconstructed frame that
matches best with the current block. Because of the exhaustive search, the encoding
process is slow. On the other hand, the decoder only has to perform the prediction
specified by the given motion vectors, and so it is much faster than the encoder.

If the prediction by motion compensation is accurate, the magnitudes of residual
error are small. As a result, the residual error has low entropy and tends to be highly
compressible. The residual error can be treated as an image, so that any image

compression algorithm can be used to encode the residual error.

22

Chapter 3
Analysis of Related Work

In this chapter, we examine related work by other researchers in this area. There
have been a few proposals on the combination of image compression and encryption,
and these proposals are often insecure. In this chapter, we summarize each proposal
and point out its shortcomings. Unless otherwise stated, the attacks presented are

original work of this thesis.

3.1 Concealing Adaptive Model in Huffman and
Arithmetic Coding

Huffman coding [11, 12] and arithmetic coding [11, 41] are two lossless algorithms for
compressing arbitrary data. Both algorithms use statistics of the input data in the
encoding process. In particular, the probabilities of the input symbols are used by
many implementations of these algorithms. If the statistics are not known, we may
collect the statistics in one pass and perform the encoding in the second pass. The
statistics must be stored with the compressed file for decoding, and the overhead in
storing the statistics may offset the space reduction obtained by compression.
Adaptive data modelling can be used to solve the above problem. Instead of
using a static probability model of the input, statistics are gathered and updated
as symbols are coded. Both the encoder and decoder start with the same initial

model. Each symbol is encoded using the statistics gathered from the beginning of

23

the data stream up to, but not including the current symbol being encoded. After a
symbol is encoded, the encoder updates its probability model. On the other hand, the
decoder decodes each symbol using only the statistics gathered so far, and updates
its probability model based on the symbol decoded. As long as both the encoder and
the decoder start with the same initial model, the compression can be reversed.

Jones [14] proposed algorithms that use modified splay trees to maintain the
probability models for Huffman coding and arithmetic coding. Splay trees are self-
balancing binary search trees that are adjusted after every search. When a symbol
is encoded in Huffman coding, the path from the root of the tree to the symbol is
modified by “semi-rotations” about the nodes on the path, so that the path length is
halved. If a symbol is encountered many times, the path length to that symbol, and
hence its code length, becomes small. A similar representation can be used to store
symbol frequencies needed by an arithmetic coder.

In adaptive Huffman coding and arithmetic coding, errors in the first few bits of the
encoded data may destroy the synchronization between the encoder and the decoder,
making the remaining data unrecoverable. Based on this observation, Jones suggested
that the adaptive compression algorithm can also be used as an encryption algorithm
if the initial model is kept secret. The encryption key is a string of symbols that
is encoded before the encoding or decoding of the actual message. Thus, the initial
model is updated based on the symbols in the encryption key. On Jones’ World Wide
Web home page [13], it is stated that this scheme is vulnerable to chosen-plaintext
attacks. According to Jones, there are sequences of input symbols that can expose
the current state of the model. This security of the algorithm could be strengthened
by inserting random data periodically, where the period must be sufficiently small to
break the chosen plaintext into short segments [13]. However, the insertion of random

data may reduce the compression performance of the algorithm.

24

3.2 Combined Arithmetic Coding and Encryption

In arithmetic coding, the entire message is represented by some interval of real num-
bers. To each source symbol, we assign a subinterval whose length is proportional
to its probability in the source. When a symbol is coded, we choose the appropriate
interval and subdivide the chosen interval. In an adaptive algorithm, the probabilities
are updated after a symbol is coded. A probable symbol does not reduce the current
interval as much as a less probable symbol. As a result, if many probable symbols are
coded, the final interval is large. Since large intervals can be coded with relatively
few bits. data compression is achieved.

Liu et al. [23] recently proposed an algorithm that incorporates encryption into
arithmetic coding. Unlike the scheme described in Section 3.1, this scheme does more
than simply making the adaptive model secret. Its main feature is that when an
interval is chosen for the encoded svmbol, small secret adjustments are made to the
interval. The low end of the interval is increased by multiplying by a secret multiplier
of the form 1.0*** and the high end is decreased by multiplying by a secret multiplier
of the form 0.9%**. In fact, two pairs of secret multipliers are available, and the choice
of the pair depends on a separate bit string.

The authors claim that the algorithm has many desirable properties for security,
such as diffusion and the randomness of output. No cryptanalysis is known for the
algorithm at this time. However, their experimental results show that the algorithm is
approximately twice as slow as the original arithmetic coding algorithm by Witten et
al. [41]. In addition, the compression performance is 2% worse than that of the

original algorithm.

3.3 Video Scrambling With Space-Filling Curves

Matias and Shamir [25] proposed a video encryption algorithm in which each frame

in the video is scrambled by a secret space-filling curve. A space-filling curve is a

25

ar

B

Figure 3.1: A space-filling curve on an image of dimensions 16 x 16.

continuous curve that visits every pixel exactly once. An example of a space-filling
curve is shown in Figure 3.1. A space-filling curve specifies a bijective mapping
from a two-dimensional image to a one-dimensional array such that two consecutive
pixels in the array are 4-neighbours in the original image. As a result, much of the
spatial correlation in the original image is preserved, and algorithms are available for
compressing images scanned by space-filling curves [27, 28, 40]. Furthermore, there
are approximately 2%-3373" space-filling curves available as secret keys for an n X n
image [25]. making exhaustive key search infeasible. The authors suggested that the

space-filling curve should be changed occasionally for successive frames.

3.3.1 A Ciphertext-Only Attack

Using correlation among successive frames, Bertilsson et al. [1] were able to cryptan-
alyze the encryption algorithm, recovering many pieces of the original image frame.
Suppose there is little or no motion in several consecutive frames. If a different space-
filling curve is used for every frame, the same image portions are scanned by many
different space-filling curves. A cryptanalyst can take advantage of the information
obtained from multiple scans.

The number of pixels between two pixels z and y in the scanned array is an upper
bound on Dy(z,y) in the original image. Let up;, up. be unique pairs of adjacent
pixels appearing in the scanned arrays, and n;(up),ups) be the number of pixels

between the two pairs in the scanned array of the i-th frame. Then, the maximum

26

possible distance between the two unique pairs in the original image, dmax(up1, up2),

is
dmax(up1, ups) = min n;(up1, upa)- (3.1)

Most false unique pairs that are not unique in the original image frame can be
detected if many scans are available [1]. Once unique pairs are identified, some of the
pixels around each unique pair may also be recovered, giving many small pieces of
the frame. Using dmax(up;. up2) on the unique pairs within the pieces. the maximum

possible distance between two pieces p; and pz, Dmax(p1,P2), is

Dmax(p1,p2) = min dmax(upy, up2)- (3.2)

up1€p1

up2€p2
Pieces that have small distances among each other can be joined or put close together.
In this way, large pieces of the image can be recovered. Consequently, Bertilsson et
al. [1] concluded that space-filling curves are not suitable for encrypting sequences of

images.

3.3.2 Known-Plaintext and Chosen-Plaintext Attacks

The scrambling scheme can be viewed as a transposition cipher that uses space-
filling curves to specify the permutation applied to the plaintext. Consequently, it is
vulnerable to known-plaintext and chosen-plaintext attacks.

In a known-plaintext attack, the scrambling effect on pixels with unique gray
levels can be determined. As a result, the number of possible space-filling curves
that can be used to encrypt the image is restricted. This technique can be extended
to study the effects of unique pairs to further reduce the number of possible space-
filling curves. In general, the number of possible space-filling curves decreases as more
plaintext-ciphertext pairs are available.

In a chosen-plaintext attack, we construct input images with many unique pixels.
If each image is of dimensions n x n and has m unique pixels, then n?/m encryp-

tions are needed to completely determine the space-filling curve. For example, an

27

R C A
T maBlnN 2‘?
] |__F [__l o
g L L i

-l ~—11 -
B L X

Figure 3.2: Some SCAN letters and their scan patterns on 4 x 4 images.

8-bit image of dimensions 512 x 512 has at most 255 unique pixels. In this case,
only 5122/255 =~ 1028 encryptions are required. The space-filling curve encryption

algorithm is insecure against the chosen-plaintext attack.

3.4 Image Scrambling With Hierarchical Scan
Patterns

Bourbakis and Alexopoulos [2] proposed another image encryption algorithm that
scrambles an image using hierarchical scan patterns defined by the SCAN language.

The SCAN language is a context-free language in which every string is of the form
wy = Liny#Lono# - - - #Lene,

where L; is a symbol in the alphabet set, n; is a power of 2, and ¢ is the length of the
string. For an image of dimensions n x n, it is required that _n; =n.

The alphabet set contains 15 letters that describe scan orders defined in the lan-
guage. Examples of the scan orders for 4 x 4 images are shown in Figure 3.2. A
string w, in the SCAN language defines a hierarchical scan pattern. The image is
first decomposed into n? square blocks of dimensions (n/n;) x (n/n1), ordered by the

scan pattern specified by L,. Then, each block is decomposed into na x na blocks

28

— d tf2]t{2|1l2]1]2
2121212]2(2]2}2

< o t{2t]2]t({2]1]2
~ | 4= 21212121212(2]2
1127t f2]1f2)1]2

A 21221212]212}2

L | | < tf2lt]2]1]2]1]2
— | B [B~ [~ 21271212]21212]2

Figure 3.3: The SCAN pattern defined by L4#R2 on an 8 x 8 image. Also shown is
the lowest level at which each pixel becomes a drive point.

ordered by the scan pattern corresponding to L,. This process is repeated ¢ times
and the last decomposition results in blocks of dimensions 1 x 1. We define drive
points to be pixels at which scan patterns begin. For convenience, we define a trivial
scan pattern on 1 x 1 blocks, so that every pixel in the image becomes a drive point
after some levels of decomposition. Once a pixel becomes a drive point, it remains a
drive point at higher levels of decomposition. An example of a scan pattern and the
lowest level at which each pixel becomes a drive point is shown in Figure 3.3.

We now describe the SCAN image encryption algorithm. Given a b-bit image
of size n x n. the encryption key is a pair (wv) where w; is a string from the
SCAN language, and v = (v, va,...,v) € {0,1,... ,2° — 1} is an additive noise
vector. The encryption is carried out by scanning the image with the specified SCAN

pattern, followed by substitutions of the pixel values defined by

t
E(p)=|p+ Z v; mod 2°, (3.3)
i=k(p)

where k(p) is the lowest level at which p becomes a drive point. An image is de-
crypted by putting the scanned pixels into a two-dimensional array and reversing the
substitutions.

Bourbakis and Alexopoulos also suggested that the algorithm can be used as an
image compression algorithm by representing homogeneous image regions by their

sizes and intensities. One possibility is to search for homogeneous regions during the

29

Table 3.1: Number of distinct SCAN patterns for an n x n image [2].

n | Number of distinct SCAN patterns

2 15

4 237

8 3753

16 59433

32 1022475

64 1.562473 x 107
128 2.599637 x 108
256 4.027959 x 10'°
512 6.617867 x 100
1024 1.036039 x 102
2048 1.687737 x 10'3

decomposition process—if an image block is homogeneous, no further decomposition
is performed on that block. As shown in Figure 3.3, SCAN patterns are not necessarily
continuous, and large image regions may be decomposed into many small blocks. This
may reduce the compression performance. Unfortunately, the authors discussed this

as part of their future research, and no experimental results were given.

3.4.1 Cryptanalysis

Bourbakis and Alexopoulos stated that “the power of the SCAN encryption scheme
is mainly based on its transposition part” [2]. The number of distinct SCAN patterns
is also stated in [2] and is presented in Table 3.1. Even for n = 2048, the number of
distinct SCAN patterns is only 1.687737 x 10'3, which is less than 2*. Without the
substitutions, the encryption algorithm is vulnerable to exhaustive key search [33]. In
addition, the SCAN encryption scheme is a transposition cipher without the substi-
tutions, and the same known-plaintext and chosen-plaintext attacks for space-filling
curve encryption can be used.

The substitutions performed on the image pixels are image-independent. That

is, the same substitution is performed on each pixel location regardless of the image

30

content. We can take advantage of this property to remove the substitutions in a
chosen-plaintext attack. We construct an input image in which every pixel has inten-
sitv 0. The encrypted output, Eg, of this image gives the effect of the substitutions on
the entire image. For every image encrvpted with the same key, we simply subtract
each pixel in the scanned array by the corresponding pixel in Eq. The effect of the
substitutions is completely removed, and the encryption algorithm can be attacked
by exhaustive key search, known-plaintext attacks, and chosen-plaintext attacks. In
addition, the substitution on each pixel depends only on the lowest level at which the
pixel becomes a drive point. Consequently, we may discover ¢ and n; as well.

The authors suggested that more complicated substitution schemes can be used in
place of the one proposed. However, the security of the SCAN encryption algorithm
would depend more on the substitution part, which contradicts the authors’ intention
that security should depend mainly on the transposition part. The authors did not
provide an analysis on the relative importance of the two parts of the algorithm, and
it is not clear if a stronger substitution scheme will make the resulting algorithm

secure.

3.5 Quadtree Image Compression and Encryption

Chang and Liu [3] recently proposed an image compression and encryption algorithm
based on lossless quadtree image compression. When a square block is partitioned
into four quadrants, four children are added to an internal node in some order. Each
ordered child corresponds to a quadrant in the partition, and the correspondence
determines the scanning order in which the quadrants are examined. If the order is
different at every internal node, then it may be difficult to recover the image without
knowing the orders used at each internal node. This is the basis of Chang and Liu’s
quadtree image compression and encryption algorithm. For an image of dimensions
2" x 2" the encryption key is a “scan word” of the form W = WyW;... Wn_,,

where W; specifies the scanning orders for the nodes at level z. Each W; has the

31

9

Level 0 l

Scanning |41} 3 [S
Order 201t 2]3 213
Legend)
Internal Node O
Leaf Node oa
/

Figure 3.4: The effect of quadtree image compression and encryption on a binary
image.

Level 0 1 2
Scanning 112 1{2 2
Order 3j4) {3]4] (3]s

Figure 3.5: Reconstructed image from the quadtree in Figure 3.4 using a fixed scan-
ning order.
form W; = L,L,...L,, in which ¢ = 4* and each L; denotes one of the 4! = 24
scanning orders of the quadrants. The key completely specifies the order in which
the four quadrants are to be examined at each internal node. The operation of the
compression and encryption algorithm is illustrated in Figure 3.4. For simplicity, the
same scanning order is used for each node at the same level. The scrambling effect
of the encryption algorithm is shown in Figure 3.5, in which we naively decode the
image using the same scanning order for every internal node.

From the experimental results shown in {3], it is clear that the compression per-
formance of the algorithm is poor for photographic images (only 1% reduction in

file size). In fact, the only image in the test set that is compressed significantly

32

is a binary image with large homogeneous regions. Furthermore, the length of the
key is at least [log,(24)(4™ — 1)/3] bits, which is exponential in n. Although the
compression performance can be improved using a lossy quadtree compression al-
gorithm [15, 22, 36, 37, 38, 39|, the exponential key length makes the algorithm
unsuitable for practical use.

Chang and Liu argued that the number of possible keys is large, and exhaustive
search is computationally infeasible. Furthermore, they argued that the original image
cannot be recovered without the encryption key. We now show that the effective key
space can be significantly reduced for many images, and that some information about
the image can be obtained without the encryption key. We will also show that the
algorithm is vulnerable to known-plaintext and chosen-plaintext attacks. As a result,

this algorithm should not be used in transmitting images over an insecure channel.

3.5.1 Key Space Reduction

For an image of dimensions 2" x 2", Chang and Liu (3] showed that the number of
possible keys is 24" x 4™"~1/2_ However, the calculation presented was incorrect
as the number of choices on independent decisions were added, not multiplied. The
number of keys should be 24¢"~Y/3 which is much larger than that stated by the
authors.

Although the number of keys is extremely large, the number of effective keys can
be reduced dramatically. That is, different keys may give the same ciphertext on a
particular image. Suppose an internal node has four children that are not all distinct,
so that there are at least two identical quadrants. Since there is repetition in the
objects being permuted, the number of scanning orders is reduced by a factor of at
least two. In the worst case, all four quadrants are identical and there is no effective
scanning order at that internal node.

There are other kinds of scanning orders that are not suitable for use. For example,

many scanning orders at the root node simply rotate or reflect the image. The number

33

of these kinds of scanning orders at other nodes depends on the scanning orders used
by ancestor nodes. We will not attempt to determine the number of these kinds of
scanning orders.

It should be noted that the scanning order specified for a node is applied only if the
node is an internal node. If significant compression on a particular image is expected,
many nodes in the complete quadtree will not be examined in the algorithm—their
ancestors are leaf nodes. In particular, most of the nodes corresponding to small block
sizes will not be examined. In a complete quadtree, the number of nodes at each level
grows exponentially, so that the majority of the nodes in a complete quadtree are not
examined. It follows that a more accurate upper bound on the number of effective
keys is 24™, where m is the number of internal nodes in the quadtree. It is difficult
to make general comments about this quantity as m depends on the input image.

Although the effective key space is reduced significantly, exhaustive search still ap-
pears to be computationally prohibitive. With today’s technology, exhaustive search
is computationally infeasible if m > 28 [33], and most nontrivial images have more
than 28 internal nodes in their quadtree representations. Next, we examine an attack

to reduce the search space even further.

3.5.2 An Attack Based on Image Histogram

The histogram of an encrypted image can be recovered without the encryption key.
Since the leaf nodes in the encrypted representation have exactly the same intensities
and sizes as those in the unencrypted representation, the number of pixels having each
of the possible intensity levels can be calculated. This observation is demonstrated
in Figures 3.4 and 3.5.

The image histogram can be used in an attack in the following manner. The
average intensity of an image represents a very low-resolution approximation of the
original image, and is easily calculated from the histogram. Assuming that the scan-

ning order of the root node is known, we can obtain the histograms of each of the

34

four quadrants; hence an image with twice the resolution in each dimension can be
obtained. By applying this technique repeatedly, we can obtain an approximation of
resolution 2% x 2% using the average intensities of the blocks at level &, provided that
the scanning orders used at levels 0,1,... .,k — 1 are known. A reasonable approxi-
mation can be obtained with £ = 5 in most cases. Although the number of internal
nodes with level < 4 can still be large (at most (4° — 1)/3 = 341), the search space
is reduced significantly. For example, if the image size is 512 x 512, then the upper
bound on the size of the search space is reduced from 24578! to 243! Further re-
duction may be obtained when combined with the key space reduction by ineffective

scanning orders. Unfortunately, exhaustive search may still be infeasible.

3.5.3 A Known-Plaintext Attack

One undesirable property of the quadtree image encryption algorithm is that pixels
in the same quadrant in the original image are also in the same quadrant in the
encrypted image, as shown in Figures 3.4 and 3.5. This property can be used in a
known-plaintext attack to reduce the number of possible keys, making an exhaustive
search more efficient.

Given an encrypted image as well as the corresponding original image, we first
compute the quadtree representation of the original image using a fixed scanning
order at every internal node. We call this the canonical quadtree representation of
the image. At each level, we try to find a leaf node having a unique gray level with
respect to the other leaf nodes at the same level. The location of this leaf node in
the encrypted quadtree also gives the locations of all ancestor nodes in the encrypted
quadtree. With this information, we can restrict the scanning orders at the ancestors
of this leaf node by fixing the order of the branch. If there is one such unique leaf
node in three of the four quadrants, the scanning order at the root node is completely
determined.

The above technique can be generalized as follows. Suppose we are given the

35

canonical quadtree and encrypted quadtree representations of the image. For each
subtree rooted at an internal node, we compute a signature that is permutation-
invariant—a signature that remains the same regardless of the scanning order used
at each internal node of the subtree. One example of such a signature is the number
of each type of nodes at each level. The types of nodes considered are internal nodes
and the different types of leaf nodes classified by their associated gray levels. An
attack can be carried out by matching the four branches of the canonical quadtree to
the corresponding branches in the encrypted quadtree at each node, starting at the
root. The matching is done by comparing the signatures of the branches. If all four
signatures are different, the scanning order at the node is completely determined. If
some signatures are identical, we can only restrict the number of possible scan orders
at the node. Unless all four signatures are identical, there will always be a reduction
in the number of possibilities at each internal node.

If we are given multiple plaintext-ciphertext pairs, each pair can be used to deter-
mine a set of possible keys and the actual encryption key must belong to the intersec-
tion of the sets. By applying our known-plaintext attack on each plaintext-ciphertext

pair, the search space is reduced. This may make exhaustive search feasible.

3.5.4 A Chosen-Plaintext Attack

The known-plaintext attack can be converted into an efficient chosen-plaintext attack.
In this attack, we create input images such that the signature of each quadrant is
different. By applying the known-plaintext attack to the encrypted output, we can
completely determine the encryption key.

Suppose the quadtree image compression algorithm takes 2k-bit images as input,
and that we want to recover the key used to encrypt an image of dimensions 2" x 2".
If n < k, we construct an input image in which each pixel has a different gray level.
The signature of each branch must be different, and the entire encryption key can be

determined. If n > k, we construct an input image consisting of blocks of dimensions

36

Table 3.2: Summary of related algorithms.

Compression

Authors Overhead Attacks Performance
Jones [14] negligible | chosen-plaintext | unaffected
Liu et al. [23] twice as slow unknown 2% worse
Matias and Shamir [25] negligible ciphertext-only | unaffected

known-plaintext
chosen-plaintext
Bourbakis and Alexopoulos [2] | negligible | chosen-plaintext | unknown

Chang and Liu (3] negligible ineffective keys | unaffected
known-plaintext
chosen-plaintext

on—k x 97—k arranged in an array of dimensions 2% x 2F. By assigning each block a
distinct gray level, the scanning orders of the first & levels of the tree are completely
determined. We can recursively apply the attack on each of the subtrees having a
root at level £k —1 by subdividing each block into at most 22k blocks, with unique gray
levels within the parent block. Each encryption allows us to determine the scanning
orders used for the internal nodes on k levels, so that [n/k] encryptions are needed to
completely determine the encryption key. For 8-bit images of dimensions 512 x 512,
we have n = 9 and k = 4, so that only three encryptions are needed. Consequently,
the chosen-plaintext attack is very efficient. In fact, only one encryption is needed to

reconstruct an approximation of resolution 2% x 2%.

3.6 Summary

We summarize several proposals related to the work done in this thesis in Table 3.2.
Jones’ proposal on concealing the adaptive model in Huffman coding or arithmetic
coding is vulnerable to chosen-plaintext attacks. The combined arithmetic coding and
encryption algorithm by Liu et al. appears to be secure but is twice as slow as arith-
metic coding alone. Image or video scrambling algorithms based on scan patterns,

such as that proposed by Matias and Shamir, and that by Bourbakis and Alexopou-

37

los, are vulnerable to different attacks. Finally, the quadtree image compression and
encrvption algorithm by Chang and Liu is vulnerable to many forms of attacks. We
can conclude that none of the proposals satisfactorily solves the problem of reducing

the overall compression and encryption processing time.

38

Chapter 4

Partial Encryption for Image and
Video Communication

In this chapter, we describe the proposed approach to secure image and video com-
munication. This is followed by a discussion on the advantages of this approach and
evaluation criteria for partial encrvption schemes. Finally, a list of potential applica-
tions of partial encryption is given. The idea of partial encryption was first proposed

by the author in [4, 22].

4.1 Description

Many compression algorithms for multimedia data decompose their input into a num-
ber of different logical parts. Run-length encoding produces the run lengths and the
parameters describing each run. Region-based image and video compression produces
the shapes and locations of the regions as well as the parameters such as intensities or
textures describing the regions. Transform coding algorithms such as those given by
the Joint Photographic Experts Group (JPEG) [29] and the Moving Picture Experts
Group (MPEG) [26] produce coefficients corresponding to the chosen basis functions
that represent components of different frequencies.

These algorithms all have important parts that provide a significant amount of
information about the original data. The remaining parts may not provide much

information without the important parts. If this is the case, the remaining parts

39

I ;
Compression ! Compr@————
7 5
| :
|
i
i

- Encryption ﬁmportnnt Partj @nimponant Parg
. \.

Encryption |
: —_—d
Channel I Channel
(@) : ®)

Figure 4.1: A comparison between (a) the traditional approach to secure image and
video communication and (b) the proposed approach.

are called the unimportant parts. For simplicity, we consider all important parts as
one important part. The remaining parts are grouped into one unimportant part,
provided that it does not provide significant information about the original data.

In run-length encoding, the run lengths provide information on how the signal is
partitioned and so it is important. On the other hand, the parameters describing
the runs may not reveal much information about the original signal. We can only
determine the runs that are present in the signal, but the lengths and the locations of
the runs may still be unknown. In region-based compression, the shapes and locations
of the regions are important while the parameters describing the regions may not be
important. In transform coding, the low-frequency coefficients are important but the
high-frequency coefficients may not be as important.

Since it is difficult to obtain information from the unimportant part alone, we
propose a partial encryption approach in which only the important part is encrypted.
A secure encrvption algorithm is chosen to encrypt the important part. When the
important part is small compared to the total output of the compression algorithm,
a significant reduction in encryption and decryption time can be achieved. Figure 4.1

illustrates the difference between the proposed approach and the traditional approach,

40

Input (Input l
N— :
l Compression l Fmportant Pﬂ-———{Compr&sﬁon I

Secret Key — gec"e"k,“y [Unimportant Part
ncryption :

Public Key g:::‘y‘ptz . (Public Key ;:::;‘p';ﬁfl
A

Channel Channel

(a) E 1))

Figure 4.2: A comparison between (a) the traditional approach to secure image and
video communication and (b) the proposed approach when public-key encryption can
be applied directly to the important part.

in which the entire output of the compression algorithm is encrypted.

4.2 Advantages of Partial Encryption

The proposed approach has several advantages. First, it reduces the encryption and
decryption time in the communication process. Without the reduction, the overhead
for encryption and decryption often makes real-time secure video communication im-
possible. If the important part is encrypted while the unimportant part is transmitted
in parallel, the encryption time may become negligible. Although the important part
must be decrypted before decompression can take place, the total decryption time is
reduced. Since the encoder is often much slower than the decoder in many multimedia
compression algorithms, our approach can be used to help the encoder maintain the
transmission rate that can be handled by the decoder.

The important part may be so small that public-key encryption algorithms such

as the RSA algorithm [30] can be applied directly to the important part, as illustrated

41

in Figure 4.2. The important part takes the role of the secret key in the traditional
approach. Since secret-key encryption is not necessary, the implementation and op-
eration costs for secret-key encryption are completely eliminated.

Partial encryption can also be viewed as a way to prioritize information, with the
additional constraint that the unimportant parts alone do not reveal much information
about the original data. We may allocate more bandwidth for the important part
or pay more attention to the important part in error-detection or error-correction
coding. This approach may also be used for progressive transmission, such that the
important part is transmitted first and the unimportant part is transmitted only if
necessary.

Partial encryption must be secure, such that it is computationally infeasible to
recover the original data even when the unimportant part is known. Compression
algorithms generally attempt to decompose their input into statistically uncorrelated
parts to facilitate efficient encoding. If we separate the important part and the unim-
portant part based on these decompositions, the two parts will be almost uncorrelated.
Although the two parts may still be statistically dependent, it may not be easy to
take advantage of the dependence in an attack. As a result, if the encrypted im-
portant part and the unimportant part are known, ciphertext-only attacks on our
scheme may not be significantly easier than ciphertext-only attacks on the chosen
encryption algorithm. Known-plaintext and chosen-plaintext attacks on our scheme
are as difficult as those on the chosen encryption algorithm because the knowledge of
the unimportant part does not alter the probability of a key being the correct one.
Part of this work has been published for two years [4, 22], and no attacks have been
found.

Finally, the proposed approach is a technique that can be applied to many com-
pression algorithms. As compression technology advances, we may apply this tech-
nique to the new algorithms proposed. Our approach is general, and it is not limited

by the current technology in compression.

42

4.3 Evaluation of Partial Encryption Schemes

To evaluate each of our proposed partial encryption schemes, three aspects are ex-

amined:

Reduction in encryption and decryption time. Each scheme is evaluated by
the amount of reduction in encryption and decryption time. Equivalently, each
scheme can be evaluated by examining the size of the important part relative
to the total output of the compression algorithm. The smaller it is, the more

we save by encrypting only the important part.

Compression performance. Compression performance of the chosen compression
algorithm must not be significantly affected by our scheme. Otherwise, the
increase in transmission time may offset the reduction in encryption and de-
crvption time. We will compare the compression performance of the original

compression algorithm and that of the modified algorithm.

Security. Some justification on the security of each proposed scheme is provided.
Unfortunately, it is often difficult, if not impossible, to prove that a scheme is
secure. We will try to give some possible attacks and countermeasures, or show
some properties that make our schemes difficult to cryptanalyze. This is by no
means a proof of security. However, the only acceptable way to test the security
of our schemes is to publish them and invite others to cryptanalyze it as others

have done.

4.4 Potential Applications

Partial encryption and decomposition from an encryption perspective may have ap-
plications in addition to the reduction of encryption and decryption time in image

and video communication. We list a few potential applications below.

43

Secure storage. Clearly, the partial encryption approach for secure communication
can be applied to secure storage. Instead of transmitting encoded data in a
communication channel, the encoded data is written to files. The files can later
be decoded. The processing of encrypted images and video sequences requires
the decryption of the stored data and possibly the encryption of the results.

Partial encryption may reduce processing time significantly.

Other types of media. While this thesis focuses on image and video communica-
tion, partial encryption may also be applicable to other types of media such as

text and audio.

Distributed image and video retrieval. The important part may be used to
identify an image or a video sequence in a database, and the unimportant
part can be transmitted on demand. The collection of the important parts of
the available images forms a catalogue that is stored in each local computer.
The catalogue is relatively small, so that it can be stored locally. When a par-
ticular image or video sequence is desired, the user requests a server to send
the remaining parts unencrypted. Without the catalogue, eavesdroppers can-
not decode the data. Only subscribed users have access to the catalogue, so
unauthorized access is effectively denied. The implementation and operating
costs of encryption and decryption are avoided. Since the remaining part is not
required until a complete reconstruction is desired, data transmission can be

totally eliminated when the user browses through the catalogue.

Secure broadcasting. In secure broadcasting, it may be necessary to encrypt the
transmission to each user using a different key. For example, when the cost
of the service is determined by the amount of time the service is used, sepa-
rate encryption keys prevent users from subscribing for a short time simply to
obtain the key for decrypting the transmission to another user. In this case,

the broadcasting server has to encrypt a large volume of data, and this type

44

of “personalized” encryption is infeasible without the reduction in encryption

time offered by partial encryption.

Progressive transmission. In a progressive transmission scheme, a low-quality ap-
proximation is first transmitted and the quality of the approximation gradually
improves. The user is given the opportunity to stop the transmission as soon
as the quality is sufficient. If the important part can be used to construct a
low-quality approximation of the original data, partial encryption can be used

in progressive transmission by transmitting the important part first.

Chapter 5

Partial Encryption of Images

In this chapter, we examine the applicability of partial encryption to several image
compression algorithms. We examine transform-based algorithms, quadtree algo-
rithms, and wavelet compression algorithms based on zerotrees. Finally, we discuss

the applicability of partial encryption to other image compression algorithms.

5.1 Transform-based Algorithms

In this section, we discuss one obvious decomposition of the transform coefficients
in transform-based image compression algorithms. We use the image compression
algorithm by the Joint Photographic Experts Group (JPEG) [29] as a specific ex-
ample, but a similar argument can be applied to other transform-based compression
algorithms [5].

The JPEG algorithm divides an image into 8 x 8 blocks, each of which is treated
as a 64-dimensional vector. A change of basis transformation is applied so that the
resulting vector contains the coefficients for expressing the input as a linear combi-
nation of the basis vectors. In JPEG, the discrete cosine transform (DCT) is used,
and the basis functions correspond to two-dimensional functions of various spatial
frequencies. The coefficient of the lowest frequency is called the DC coefficient, and
the other coefficients are called the AC coefficients. Each coefficient is quantized in-

dependently before coding, and most of the high-frequency coefficients are small after

46

DC Coefficient .
i

01234567

—
NN E WY —O

Figure 5.1: The encrypted DCT coefficients (shaded) with N =7.

quantization. The discrete cosine transform has a decorrelation efficiency of 98.05%
on each row and column of the block [5]. As a result, the coefficients are almost
uncorrelated.

The low-frequency coefficients can be used to construct a blurred approximation
to the original image, and so they must be encrypted. On the other hand, high-
frequency coefficients only contribute to the fine details of the image. It may be
possible to encrypt only the low-frequency coefficients. We need to determine the
frequency cut-off between the important part and the remaining part.

Let {fi}__, be an increasing sequence of frequencies, and ¢;; be the coefficient,
where 0 < i,j < 8, corresponding to the basis function with horizontal and vertical
frequencies f; and f;, respectively. Since we must encrypt the low-frequency coeffi-
cients, we propose that the coefficient ¢;; should be encrypted whenever 7 +j < N,
where 1 < N < 2 x (8 = 1) = 14. This is illustrated in Figure 5.1.

While the unencrypted high-frequency coefficients provide little information about
the original 8 x 8 block, they indicate the presence of high-frequency components
in the block. When the image blocks are considered together, the high-frequency
coefficients alone often show the outline of objects in the image, as illustrated in
Figure 5.2. Another problem is that most of the high-frequency coefficients are small,
so that the number of bits required to represent the low-frequency coefficients is much

higher than that required to represent the high-frequency coefficients. As a result,

47

(e) N=6 (f) N=7

Figure 5.2: Reconstructed images (after contrast enhancement) using only the unen-
crypted high-frequency coefficients.

48

the encrypted important part is much larger than the unencrypted part.

Although the important part and the remaining part are almost uncorrelated, the
decomposition of coefficients by frequency is not suitable for partial encryption. The
important part is too large and it reveals too much information about the original
image. An important point is that having almost uncorrelated important part and

remaining part is not enough to ensure security in a partial encryption scheme.

5.2 Quadtree Compression Algorithms

In quadtree image compression, two logical parts are produced—the quadtree and the
parameters describing each block. We focus on the case in which the only parameter
used to describe each block is the average intensity. Similar arguments apply to other
types of parameters, and comments are made as necessary.

If the quadtree is known, we can reconstruct the quadtree decomposition to obtain
outlines of objects in the original image, as illustrated in Figure 5.3. On the other
hand. having only the intensity of each block does not allow us to learn much about
the original image, as the location and size of each block are unknown. We propose
a partial encryption scheme in which only the quadtree structure is encrypted, and
the block intensities are left unencrypted. We refer to the block intensities as the
leaf values, as each intensity corresponds to a leaf node in the quadtree. Clearly,
the compression performance is unaffected because we are simply decomposing the
output. The total size of the output remains the same.

The quadtree partial encryption scheme can be used for both lossless compression
and lossy compression. In lossless quadtree compression, each leaf value is represented
by the same number of bits. In lossy compression, however, the number of bits used
to represent each leaf value is different. When a block is large, it is important to
accurately represent its intensity. Thus, the leaf values corresponding to leaf nodes
at a lower level are often represented by more bits than those corresponding to leaf

nodes at a higher level. In this thesis, we concentrate on the bit allocation used by

49

i | P+
LI _*i T ++
H i umii u
: iiedss i =
i F s
2] n
H i
HH . MR
1
al i
a H
tru u
i iime
u: BT O |
. it
. +:.
H 0 y
-:: : . n L]
2 d 1iiiim 2o E:
(a) Original image (b) Quadtree decomposition

Figure 5.3: Quadtree decomposition of an image.

Shusterman and Feder {36]:

2
b = 3 log (%"—) , (5.1)

where b; is the number of bits used to represent each leaf value at level 7, o7 is the
variance of the leaf values at level i, Ly is the total number of leaf nodes in the
quadtree, and D is a constant specified by the user to control the bit rate. It is
important that the decoder also has the b; values in order to separate the individual
leaf values, but the other parameters can be discarded once the bit allocation is
computed. Since the bit allocation can be represented by very few bits, it is also

included in the encrypted part.

5.2.1 Leaf Values Ordering

The leaf values must be transmitted in some order, and we now introduce two order-
ings of the leaf values. It will be shown that the ordering is crucial to the security
of the partial encryption scheme. The quadtree in Figure 5.4 is used to illustrate the
orderings in the description below. We assume that the four branches of each node
in the quadtree correspond to the NW, SW, SE, and NE quadrants in this order. We
also assume that a black leaf node has a leaf value of 1, and a white leaf node has a

leaf value of 0.

50

Figure 5.4: An example quadtree for a binary image.

? ?
?
Level 0 Level 1 Level 2 Level 3
. The block’s color is stored at a
A white block ? higher level.

The block’s color is stored at a
- A black block . lower level.

Figure 5.5: The spatial locations of the blocks at each level of the quadtree in Fig-
ure 3.4.

The first leaf values ordering, Leaf Ordering [, is induced by the inorder traversal of
the quadtree [17]. In this ordering, the leaf values are encoded as 0010011011110010.

In Leaf Ordering II, the leaf values are encoded one level at a time. At each level,
the blocks corresponding to the leaf values are ordered by the raster scan—each row
of blocks are ordered left to right, and the rows are ordered from top to bottom. The
leaf values are ordered according to the order of the corresponding blocks. This is

illustrated in Figure 5.5, and the leaf values are encoded as:
Level 0: empty

Level 1: 01

Level 2: 011001

Level 3: 11110000

The leaf values of the levels are concatenated, and no special encoding is needed
to separate each level if the quadtree is also known. We concatenate the leaf val-
ues from the highest level to the lowest level. Thus, the final encoded output is

1111000001100101.

5.2.2 Properties of Quadtrees

Several properties of quadtrees are needed in the analysis of the quadtree partial en-
cryption scheme. Many of these results are generalized from the results and exercises
for binary trees given in Section 2.3 of [17]. A proof of each statement is also given

here.

Lemma 5.2.1 A non-empty quadtree has 4k + 1 nodes where k is a non-negative

integer. In addition, it has k internal nodes, and 3k + 1 leaf nodes.

Proof. Any non-empty quadtree can be constructed from a single root node by
repeatedly adding four children to an appropriate leaf node. Therefore, the quadtree
has 4k + 1 nodes where k is the number of times four children are added to any leaf
node. Each addition converts one leaf node to an internal node. Thus, there are k

internal nodes, and hence 4k + 1 — k = 3k + 1 leaf nodes. O

Theorem 5.2.2 There is a one-to-one correspondence between quadtrees having 4k +

1 nodes and a height of h + 1 and 4-ary trees having k nodes and a height of h.

Proof. Let T be a 4-ary tree having k nodes and a height of h. To any node having
fewer than four children, we add an appropriate number of leaf nodes as children to
make the resulting tree, T', a quadtree. Each of the k£ nodes in T are internal nodes
in 7. By Lemma 5.2.1, T" is a quadtree with 4k + 1 nodes. It is clear that the height
of T'is h + 1, and that T’ is unique.

Conversely, given a quadtree T having 4k +1 nodes and a height of 2 +1, we remove
all leaf nodes of T to obtain another tree T'. Clearly, T" is a unique 4-ary tree of

height h. Only the internal nodes of T remain in 7", and hence T" has & nodes. O

32

The following corollary is a straightforward consequence of the above theorem.

Corollary 5.2.3 The number of quadtrees having 3k + 1 leaf nodes and ¢ mazimum
height of h+1 is the same as the number of 4-ary trees having k nodes and a marimum

height of h.

Let a; » denote the number of quadtrees having 3k +1 leaf nodes and a maximum
height of h + 1. The following theorem provides a way to calculate agx, and it is

similar to the analysis of general trees found in [8].

Theorem 5.2.4 Let gn(z) = >, arpz* be the generating function of axn for a fized
h. Then,

_J1+z ifh=0, -
9(z) = {1 + z(gh_1(2))* fh>0. (5:2)

Proof. By Corollary 5.2.3, ax s is also the number of 4-ary trees having k nodes and
a maximum height of h. It suffices to prove the theorem by considering 4-ary trees.
For h = 0, it is clear that ag, = a;» = 1 and agp = 0 for £ > 1. Now, suppose
that A > 0. A non-empty 4-ary tree can be formed by adding to a root node four
independent branches of maximum height A — 1. Thus, the factor z in the second
term corresponds to the root node, and the factor (ga—1(z))* corresponds to the four
branches. The first term is added for the unique empty 4-ary tree. It follows that the

theorem holds. a

5.2.3 File Sizes

The size of the important part must be small relative to the total output for the
encrvption and decryption time to be significantly reduced. We first give an analysis
of the size of the quadtree relative to the leaf values for both lossless and lossy quadtree
compression. It is followed by experimental results on the quadtree compression

algorithm by Knipe [15].

Each node of the quadtree is either an internal node or a leaf node. Thus, a
quadtree may be represented by one bit per node. In fact, nodes corresponding to
1 x 1 blocks need not be represented at all because they must be leaf nodes. To
simplify the calculations, we will assume that the quadtree is represented by one bit
for each node, even for the leaf nodes corresponding to 1 x 1 blocks. In this way, we
obtain upper bounds on the quadtree size.

We have seen that a quadtree has 4k + 1 nodes for some k£ > 0. The size of the
quadtree is 4k + 1 bits, 3k + 1 of which correspond to leaf nodes. In the case of lossless
compression on a b-bit image, the total size of the leaf values is b(3% + 1) bits. Upper
bounds on the relative size of the quadtree are given in Table 5.1 for various values
of b. For example, when b = 8, the size of the quadtree relative to the total output is

at most

4k +1
8(3k+1)+4k +1
4k + 1
(dk+1)+2

—14.3%. (5.3)

For lossy compression, the situation is more complicated because the number of
bits used for each leaf value is different. The bit allocation for leaf values at a lower
level is higher than that for leaf values at a higher level. Thus, the relative quadtree
size is smaller if there are many leaf nodes at low levels. Hence, an image that is
easily compressed should have a relatively small quadtree. It is difficult to analyze
the size of the quadtree without the knowledge of the bit allocation as well as the
distribution of leaf nodes among the different levels. Instead, results were collected
from experiments performed on test images, using an implementation of the quadtree
compression algorithm by Knipe [15].

The results are shown in Table 5.2. The results show that the relative quadtree size

54

Table 5.1: Approximate upper bounds on the relative quadtree size in lossless
quadtree compression on b-bit images.

Quadtree Size (%)
57.1%
40.0%
30.8%
25.0%
21.1%
18.2%
16.0%
14.3%
12.9%
11.8%

D © 00~ O U W N o

of all but one image is between 13%-27%. The only exception is the “washsat” image,
which has a relative quadtree size of 56.1% (highlighted in Table 5.2). The reason
is that “washsat” is a low-contrast image, so that the values o? in Equation (5.1)
are small. Hence, many leaf values are represented by only one bit. This is also the
reason for the low bit rate achieved by the compression algorithm. Note that if each
leaf value is represented by at least one bit, then the relative quadtree size is at most
57.1% as shown in Table 3.1.

The analysis is similar when other parameters are used to describe the blocks
associated with the leaf nodes. For example, Strobach [38] used the three parameters
a,b,c to describe each block by the first-order model f(z,y) = a + bz + cy. The
number of bits used to represent each set of parameters can be used to predict the
quadtree size. It is shown in [38] that at approximately 0.5 bpp, the quadtree size is

11.7% for the “boat” image, and 8.4% for the “lena” image.

5.2.4 Security

The security of the quadtree partial encryption scheme is now examined. We first
discuss the infeasibility of attacks based on exhaustive tree enumeration. Next, we

present attacks on lossless and lossy quadtree compression using Leaf Ordering I

55

Table 5.2: Relative quadtree size in lossy quadtree compression.

Image | Dimensions | bpp | Quadtree Size (bytes) | Quadtree Size (%)
airfield 512 x 512 1.323 6244 14.4%
airplane | 512 x 512 | 0.530 3601 20.7%
barbara | 312 x 512 1.210 5524 13.9%
bay 256 x 256 | 0.933 1371 17.9%
bird 256 x 256 | 0.370 643 21.2%
boat 512 x 312 | 0.673 4352 19.7%
bridge 256 x 256 1.826 2178 14.6%
camera | 256 x 256 | 0.877 1035 14.4%
couple | 512 x 512 | 0.956 5064 16.2%
crowd 512 x 512 | 0.813 5232 19.6%
festung | 512 x 5312 | 0.6535 3922 18.3%
goldhill 512 x 512 | 0.631 4825 23.3%
io 512 x 512 | 0.784 4188 16.3%
lax 512 x 512 1.155 6331 16.7%
lena 512 x 512 | 0.547 3537 19.7%
man 512 x 512 0.852 4974 17.8%
mandrill | 512 x 512 | 1.913 8168 13.0%
peppers | 512 x 512 | 0.516 3388 20.0%
sailboat | 512 x 512 | 0.671 4621 21.0%
shepherd | 512 x 512 1.502 7083 14.4%
sunset 256 x 256 | 0.542 859 19.4%
washsat | 512 x 512 | 0.132 2420 56.1%
womanl | 512 x 512 | 0.757 4186 16.9%
woman? | 512 x 512 | 0.296 2290 23.6%
zelda 512 x 512 | 0.344 3027 26.8%

96

Finally, we discuss the difficulties in cryptanalyzing partial encryption based on Leaf

Ordering II.
Attacks by Tree Enumeration

Suppose we know that the dimensions of the image is 2" x 2", then the maximum
height of the quadtree is n. In the case of lossless compression, the number of bits
used for each leaf value is fixed. Hence. the number of leaf nodes in the quadtree can
be obtained. In the case of lossy compression, the number of leaf nodes may not be
known exactly, but we may be successful in determining a range of possible values.

Given the number of leaf nodes, L, and the maximum height, n, of the quadtree,
a cryptanalyst may devise an algorithm that generates all possible quadtrees with the
specified parameters, and match each tree with the leaf values until the correct image
is found. The number of such quadtrees is a; where k = ([. —1)/3and h=n —1.
The values log, ax s can be computed by the recurrence relation in Theorem 5.2.4,
and are plotted for h = 4,3, 6 in Figure 5.6. The plots show that unless k is very small
or verv large, the number of possible quadtrees is very large. As a result, exhaustive
tree enumeration is infeasible unless the quadtree is almost empty or almost complete.
In Table 5.3, we show that this does not occur for typical images. The results are
obtained using lossy quadtree compression, and kmax is the value of k for a complete
quadtree.

Suppose now that we also have the knowledge of the number of leaf nodes at
each level. Then, we may reduce the number of possible quadtrees by examining the
locations of the leaf nodes at each level. Let [; be the number of leaf nodes at level ¢,

and m; be the number of possible leaf locations at level i. Then
1 i
n — yih 1,920

92(n—1)

i—-1
= 2% =) ;22077 (5.4)
-

m; =

o7

Number of Quadtrees of Maximum Height 5
300 T T T T T T

log,ars+ 150 —

50 -
0 _1 I 1 1 ! \

L
0 50 100 150 200 250 300 350
k

Number of Quadtrees of Maximum Height 6
1200 T T T T T T

—
(o]
(=]
o
!
1

log,ars 600 - 1

0 ! 1 ! 1 1 !
0 200 400 600 800 1000 1200 1400
k

Number of Quadtrees of Maximum Height 7

4500 T T T T T
4000
3500
3000
2500 | -
2000 .
1500 .
1000 4
500 =
0 1 1 i 1 !
0 1000 2000 3000 4000 500G 6000

k

T

log, a6

Figure 5.6: Plots of log, a, for various values of h.

58

Table 5.3: Values of h and k for various images.

Image | Dimensions | h k kmax
airfield 512 x 512 | 8 | 23551 | 87381
airplane | 512 x 512 | 8 | 12310 | 87381
barbara | 512 x 512 | 8 | 24839 | 87381
bay 256 x 256 | 7| 5246 | 21845
bird 256 x 256 | 7| 1798 | 21845
boat 512 x 512 | 8 | 14533 | 87381
bridge 256 x 256 | 7 | 8680 | 21845
camera 256 x 256 | 7| 4129 | 21845
couple 512 x 512 | 8 | 16811 | 87381
crowd 512 x 512 | 8 | 16237 | 87381
festung 512 x 512 | 8 | 12931 | 87381
goldhill | 512 x 512 | 8 | 13697 | 87381
io 512 x 512 | 8 | 13864 | 87381
lax 512 x 512 | 8 | 26455 | 87381
lena 512 x 512 | 8 | 10274 | 87381
man 512 x 512 |8 | 15174 | 87381
mandrill | 512 x 512 | 8 | 39837 | 87331
peppers 512 x 512 | 8| 9891 | 87381
sailboat | 512 x 512 | 8 | 15724 | 87381
shepherd | 512 x 512 | 8 | 25507 | 87381
sunset 256 x 256 | 7 | 2230 | 21845
washsat | 512 x 512 | 8| 5524 | 87381
womanl | 512 x 512 | 8 } 13942 | 87381
woman?2 | 512 x 3512 | 8| 4902 | 87381
zelda 512 x 512 | 8| 6752 | 87381

Table 5.4: Number of quadtrees for the “lena” image given the number of leaf nodes
at each level.

il L m; | log, ()
0 0 1 0

1 0 4 0

2 0 16 0

3 0 64 0

4 1 256 8

d 115 1020 o214
6| 1511 | 3620 3542
7| 4747 | 8436 8333
8111525 | 14756 | 11182
9 | 12924 | 12924 0
Total 23579

The number of possible quadtrees is then

(7

Table 5.4 shows the number of possible quadtrees for the “lena” image. Even with

(3.3)

the extra information on [;, the number of possible quadtrees is approximately 227

Other images give similar results. We conclude that it is computationally infeasible

to attack our partial encryption scheme using exhaustive tree enumeration.
Attacks on Lossless Compression Using Leaf Ordering I

The partial encryption scheme based on lossless quadtree compression using Leaf
Ordering I has two properties that facilitate cryptanalysis. First, the leaf values for
sibling nodes are close together in the encoded leaf values. Moreover, the number of
bits used for each leaf value is fixed, so that it is easy to separate the encoded data
into individual leaf values.

Let us assume that the four branches of a node correspond to the NW, SW, SE,
and NE quadrants. It follows that the first leaf value corresponds to a block containing
the NW corner of the image, and the last leaf value corresponds to a block containing

the NE corner of the image. Thus, two pixels are revealed.

60

Figure 5.7: A quadtree having a run of length 14.

A run, or a sequence of identical leaf values, in the encoded data can be used in a
crvptanalysis. An important property of the encoded data is that four leaf values in
a run cannot correspond to sibling nodes; otherwise, they would have been merged
into one single node. As a result, long runs reduce the number of quadtrees that need
to be examined in an exhaustive search. In Figure 5.7, a quadtree having a run of
length 14 is shown. If we examine the levels of the leaf nodes in this run, it does not
change direction (decreasing or increasing) many times. This follows from the fact
that we must encounter four sibling leaf nodes in order for an increase to be changed
into a decrease, and these four sibling leaf nodes cannot occur within the run.

Long runs may be used to recover homogeneous regions if the run starts at a NW
leaf node. Suppose we have a run of length k starting at a NW leaf node of some
subtree, and let r be the leaf value appearing in this run. A homogeneous region may

be recovered as follows:

1. Set i = 1, and set (z,y) to the coordinates of the NW pixel of the block

represented by this subtree.
2. Whilei < k do

(a) Write r into the image location at (z,y).

(b) If (z,y) is a NE corner of some quadrant, then the values in the quadrant
should be merged. If the dimensions of the merged quadrant is 2™ x 27,

then set 2 =1 — 3m.

(c) Set (z,y) to the next image location using the ordering NW, SW, SE,

61

NE. That is, the next pixel location visited by an inorder traversal of the

complete quadtree.

(d) Seti=1¢+1.

A similar procedure can be given for runs that end at a NE leaf node. Wkile it may
not be easy to classify the leaf nodes corresponding to the start and the end of a run
in general, we may apply the above procedure to the runs at the beginning and the
end of the encoded leaf values.

This procedure can also be used in a known-plaintext attack. If a known non-
homogeneous image portion is located within some quadrant, quadtree compression
can be performed on this portion to obtain the leaf values. The leaf values of the
image portion would then be a substring of the leaf values of the entire image. The leaf
value immediately following the substring is a NW leaf node, and the one immediately
before the substring is a NE leaf node. Consequently, the above procedure can be
used on long runs before and after the substring to extend the known image portion.

Although the start and the end of a run may not be classified, we may still obtain
information about the leaf values in a run. Assume that we are given a run of length
k. Then, we can determine the minimum dimensions of the blocks represented by the

leaf values in the run as follows:
1. Set i=k. 7 =0.
2. Whilez > 0 do

(a) There are min(,6) leaf values in the run corresponding to blocks of mini-

mum dimensions 27 x 27.
(b) Seti=1:—6,j=7+L
The only situation in which we obtain the true dimensions of the blocks occurs when

the quadtree is skewed both to the left and to the right, but is empty in the middle.

62

An example is given in Figure 5.7. The statistics obtained from this procedure may
be used to estimate the image size, the compression ratio, and the image histogram.

Although the above attacks cannot be used to obtain the entire image, we do
not recommend using Leaf Ordering I for lossless compression. In particular, many
computer generated images have a uniform background that includes the corners of
the image. Long runs may be used to obtain homogeneous regions at the corners and

may reveal the shapes of foreground objects.
Attacks on Lossy Compression Using Leaf Ordering I

When Leaf Ordering I is used with lossy compression, it is more difficult to use attacks
based on long runs. First, the leaf values are represented using variable number of
bits, so that it is difficult to obtain the individual leaf values. Moreover, it is more
difficult to recognize a run as it may not contain identical leaf values.

In the case of lossy compression, however, it is crucial that the leaf values cannot
be separated without the quadtree. Suppose that we have obtained the individual
leaf values, and that the non-zero bit allocation for each level is distinct. After adding
enough zeros, we obtain the values b; (¢ =0, ... ,n) in some order. Since n < 12 for
most images, we need to examine at most 12! < 2% orderings of the b; values to obtain
the actual bit allocation. This is certainly feasible with today’s technology. Once the
correct order is obtained, the level at which each leaf value is located is also known.
This information can be used to completely determine the quadtree. The level of the
first leaf value gives complete information on the leftmost branch of the quadtree.
The level of the second leaf value gives the information on the branch that follows
immediately after the first one in inorder traversal. This can be applied successively
to each leaf value until the quadtree is completely determined. Note that this attack
is only possible if the non-zero bit allocation for each level is distinct.

As a result, we should ensure that no separators are inserted between the leaf

values, and that the leaf values are not transmitted individually. Together with the

63

undesirable property of Leaf Ordering I that the leaf values of sibling nodes are
close together, we conclude that Leaf Ordering I should not be used in our partial

encryption scheme for lossy compression.
Leaf Ordering II

Leaf Ordering II is more secure when used in either lossless compression and lossy
compression. In the case of lossless compression, leaf values of sibling nodes may be far
apart. In fact, the number of leaf values between the leaf values of two sibling nodes
may be as many as the number of possible blocks in a row. Thus, it is more difficult
to use the property that four sibling nodes must have different leaf values. The first
and last leaf values do not correspond to fixed pixels in the image. Furthermore, the
compressed output of a known image portion is generally not a substring of the leaf
values of the entire image, so that the known portion cannot be extended.

In the case of lossy compression, Leaf Ordering II allows the individual leaf val-
ues to be separated without compromising security. The same attack based on bit
allocation only gives the number of leaf nodes at each level. We have already seen
that the number of possible quadtrees is very large even with this extra information,

making exhaustive search computationally prohibitive.
Other Comments

Given a quadtree, there are many possible sets of leaf values that match with the
quadtree. In particular, we can assign many different sets of intensities to each
block provided that four sibling blocks do not have identical or similar gray levels.
Conversely, given a set of leaf values, there are many possible quadtrees that match
with the leaf values. If the distribution of the block sizes are the same but the block
locations are changed, we can generate quadtrees that match with the same leaf
values. In fact, the security of our partial encryption scheme depends on the last

property. This many-to-many relationship between quadtrees and leaf values may be

64

crucial to the security of our partial encryption scheme.

The raster scan used to define Leaf Ordering II may also be substituted by any
other permutation of the blocks at each level, provided that it is difficult to determine
whether any two given leaf values correspond to sibling nodes. We may wish to use
a secret permutation to add more complexity to the cryptanalysis of the partial en-
cryption scheme. However, the security of our partial encryption scheme still depends

mainly on the hidden quadtree.

5.2.5 Implementation Issues and Complexity

Since Leaf Ordering I is not secure, only Leaf Ordering II is discussed below. Leaf
Ordering II can easily be used in a bottom-up implementation of the quadtree image
compression algorithm. At each level, the leaf nodes are examined for merging in
the spatial order described by Leaf Ordering II. If a leaf node is not merged with its
siblings, then the leaf value is transmitted. Since the algorithm must examine the leaf
nodes at each level in some order, there is little computational difference among the
different orders when a look-up table is used to specify the order. Thus, the overhead

of using Leaf Ordering II is negligible.

5.3 Wavelet Compression Algorithms Based on
Zerotrees

Wavelet compression algorithms based on zerotrees generally transmit the structure of
the zerotrees in addition to the significant coefficients. For example, the Set Partition-
ing in Hierarchical Trees (SPIHT) compression algorithm [32] introduced in Chapter 2
transmits the significance of the coefficient sets which are trees of coefficients. This is
similar to quadtree compression as it indicates whether a set needs to be decomposed
further. Instead of homogeneity, insignificance is the factor for deciding whether a set
is partitioned. In this section, we propose a partial encryption scheme for compression

algorithms based on zerotrees. We will use the SPIHT compression algorithm in the

65

discussion, but other algorithms based on zerotrees can also be used [7, 15, 16, 35].

The SPIHT algorithm uses the significance information of sets to determine the
tree structures, and the execution of the algorithm depends strongly on the structure
of the zerotrees. Even if a small amount of significance information at the beginning
of the encoded data is incorrect, the algorithm cannot decode the image correctly [6,
32]. The compression algorithm produces many different types of bits—sign bits,
refinement bits, significance of pixels, and significance of sets. The decompression
algorithm must interpret each bit under the correct context. Incorrect significance
bits may cause future bits to be misinterpreted, while incorrect sign bits or refinement
bits do not.

The SPIHT algorithm produces two parts in the output—the significance infor-
mation and other information related to coefficient magnitudes. We propose a partial
encryption scheme that encrypts only the significance information related to pixels
or sets in the two highest pyramid levels. as well as the parameter n that deter-
mines the initial threshold. Formally, we encrypt the significance information S, (3, 7),
S.(D(i,j)), and Sp(L(4, 7)) if and only if (3, 5) is in the two highest pyramid levels.
If the root level has dimensions 8 x 8, then the significance information is encrypted
if and only if 0 < i,j < 16. Figure 5.8 shows the encrypted pyramid levels for an

128 x 128 image. Clearly, the compression performance of the algorithm is unaffected.

We do not encrypt all significance information because the pixels and sets in other
levels are produced by decomposing sets in the two highest pyramid levels. The states
of the three lists LIP, LIS, and LSP are constantly updated by the algorithm, and the
significance information is used to determine the way in which the lists are updated.
If the states of the lists are incorrect at the beginning of the algorithm, it is difficult
for the algorithm to recover from the error. Our goal is to encrypt enough of the
significance information so that it is difficult for the cryptanalyst to determine the

meaning of each unencrypted bit.

66

Figure 5.8: The encrypted pyramid levels for an 128 x 128 image.

This partial encrvption scheme is similar in one aspect to the combined com-
pression and encryption algorithms by Jones [14] and Liu et al (23] described in
Chapter 3. All three algorithms conceal their initial states. If the initial states are
incorrect, it is difficult to correctly decode the data. Our partial encryption scheme
differs from the other two in that the initial states cannot be chosen freely. In our
case, the initial states are completely determined by the input image. As a result,
the initial states must be encrypted. This partial encryption scheme is also similar to
the quadtree partial encryption scheme proposed earlier. Instead of encrypting the
entire tree structure, only the lowest levels of the trees are encrypted. The remaining
information on the tree structure is mixed with the leaf values in the unencrypted

part.

5.3.1 File Sizes

We now give some analytical results on the size of the encrypted important part. This
is followed by some experimental results on our test images.

In the SPIHT algorithm, the size of the encoded data is directly controlled by
the bit rate. The encoder stops the transmission as soon as the desired bit rate is
reached. The bit rate also indirectly affects the number of sorting passes performed

on the wavelet coefficients. If a pixel or a set in the two highest pyramid levels is

67

considered for m sorting passes, then m bits are transmitted for its significance. From
this, we may establish an upper bound and a lower bound on the size of the important

part.

Theorem 5.3.1 Let m be the number of sorting passes performed by the encoder,
including the last one that may not be completed. Then, the size of the important part

is at most 496m + 240 buts.

Proof. In the worst case where each coefficient in the two highest pyramid levels
is 0. S, (i.j) is transmitted for each ¢;; in the encrypted pyramid levels during each
sorting pass. There are 256 coefficients in the two levels, so the significance of these
coefficients gives at most 256 bits during each sorting pass. It follows that an upper
bound on the number of bits contributed by the significance of the coefficients is
256m.

To complete the proof, we observe that for any coordinates (7,), the LIS cannot
contain entries for both D(¢, j) and L(i,) at the same time. Once the L(3, j) entry
is added to the LIS, the D(¢, j) entry is removed. During Step 3(b) of each sorting
pass, the encoder processes at most one of D(i, j) and L(3, j) except for the pass when
the set D(i,j) is identified as significant, in which case boti entries are processed.
At most one bit is transmitted for each entry processed. Consequently, each (i, j)
in the two highest pyramid levels may contribute up to m + 1 bits for Sa(D(3, 7))
and S,(L(i,j)). There are 240 coefficients in the two highest pyramid levels with
descendants, and hence the number of bits contributed by S,(D(i, j)) and Sa(£L(7, 7))
is at most 240(m + 1).

Thus, an upper bound for the size of the important part is 256m + 240(m + 1) bits,

or 496m + 240 bits. 0

Theorem 5.3.2 If at least two sorting passes are performed by the encoder, then the

size of the important part is at least 160 bits.

68

Proof. We first determine the contribution to the important part by Sn(z, j), where
(¢,7) is in the highest two levels of the pyramid. During the first sorting pass, 64 bits
are always encrypted regardless of the significance of the root level coefficients. If all
the root level coefficients are significant with respect to the highest threshold, there is
no output corresponding to the significance of the root level coefficients in the second
sorting pass. Consequently, a lower bound on this part is 64 bits.

We now consider the contribution from S,(D(4, j)) and Sp(L(3, j)) where (i,) € H.
At least one bit is transmitted for S,(D(z,j)) in Step 3(b)i of the first sorting pass,
where c; ; is a coefficient with descendants in the root level. If D(i,]) is significant,
then £(4, j) would be processed and an additional bit is contributed to the important
part. If D(,) is not significant, another bit is transmitted for S,(D(¢,j)) during the
second sorting pass. In either case. at least 2 bits are transmitted during the first 2
sorting passes. Since there are 48 root level coefficients with descendants, at least 96
bits are contributed to the important part.

Therefore, the size of the important part is at least 64 + 96 = 160 bits. a

In most cases, 6 to 10 sorting passes are performed when the images are compressed
at 0.80 bpp, giving an upper bound of 5200 bits on the important part. In practice,
the actual size of the important part is usually much smaller. Table 5.5 shows the
results obtained at various bit rates. The size of the important part is less than 2%
of the total output for each image of dimensions 512 x 512, and less than 7% for each

image of dimensions 256 x 256.

5.3.2 Security

Without the significance information of the two highest pyramid levels, the initial
changes to the three lists LIS, LIP, and LSP are not known. By Theorem 5.3.2,
at least 160 bits of significance information must be known to correctly decode the
image. Thus, an exhaustive search would require testing at least 2160 possibilities. The

embedded nature of the algorithm may allow fewer bits to be used to construct a low-

69

Table 5.5: The size of important part in the SPIHT algorithm.

0.80 bpp 0.60 bpp 0.40 bpp

Image | Dimensions | Bits | % | Bits | % | Bits [%
airfield 512 1653 | 0.8% | 1653 | 1.1% | 1642 | 1.6%
airplane | 512 1710 | 0.8% | 1704 | 1.1% | 1680 | 1.6%
barbara | 512 x 1722 | 0.8% | 1716 | 1.1% | 1709 | 1.6%
bay 256 x 1594 | 3.0% | 1556 | 4.0% | 1471 | 5.6%
bird 256 x 256 | 1895 | 3.6% | 1830 | 4.7% | 1717 | 6.6%
boat 512 x 512 | 1841 | 0.9% | 1835 | 1.2% | 1805 | 1.7%
bridge 256 x 256 | 1509 | 2.9% | 1487 | 3.8% | 1478 | 5.7%
camera 256 x 256 | 1752 | 3.3% | 1724 | 4.4% | 1656 | 6.3%
couple 512 x 512 | 1634 | 0.8% | 1624 | 1.1% | 1617 | 1.5%
crowd 512 x 512 | 1674 | 0.8% | 1670 | 1.1% | 1670 | 1.6%
festung 512 x 512 | 1770 | 0.8% | 1744 | 1.1% | 1720 | 1.6%
goldhill 512 x 512 | 1741 | 0.8% | 1729 | 1.1% | 1726 | 1.6%
io 512 x 512 [1730 | 0.8% | 1724 | 1.1% | 1720 | 1.6%
lax 512 x 512 | 1561 | 0.7% | 1561 | 1.0% | 1535 | 1.4%
lena 512 x 512 | 1684 | 0.8% | 1676 | 1.1% | 1670 | 1.6%
man 512 x 512 | 1570 | 0.7% | 1566 | 1.0% | 1566 | 1.5%
mandrill | 512 x 512 | 1533 | 0.7% | 1516 | 1.0% | 1510 | 1.4%
peppers | 512 x 512 | 1647 | 0.8% | 1647 | 1.0% | 1647 | 1.6%
sailboat | 512 x 512 | 1748 | 0.8% | 1741 | 1.1% | 1734 1.7%
shepherd | 512 x 512 | 1596 | 0.8% | 1596 1.0% | 1590 | 1.5%
sunset 256 x 256 | 1769 | 3.4% | 1761 | 4.5% | 1723 | 6.6%
washsat | 512 x 512 | 1435 | 0.7% | 1435 | 0.9% | 1435 | 1.4%
womanl | 512 x 512 | 1658 | 0.8% | 1657 | 1.1% | 1651 | 1.6%
woman?2 | 512 x 512 | 1884 | 0.9% | 1884 | 1.2% | 1883 | 1.8%
zelda 512 x 512 | 1808 | 0.9% | 1808 | 1.2% | 1805 | 1.7%

70

quality approximation, but experiments show that at least 160 bits of the important
part must be known to give a very coarse approximation. This is illustrated in
Figure 5.9, in which the decoder stops as soon as k encrypted bits are received.

Our experiments have shown that if the number of 1 bits in each sorting pass
is correctly determined, the algorithm may still interpret the meaning of each bit
correctly. While the locations of significant subtrees may be moved, the number of
each type of entries in the three lists remains the same. This results in some distortion
in the reconstructed image, but the image is still recognizable. However, it is difficult
to take advantage of this property in an attack because the number of 1 bits and the
total number of bits produced in each sorting pass are unknown.

It is difficult to cryptanalyze this partial encryption scheme for several reasons:

1. The unimportant part contains different types of bits that are mixed together.
Without the significance information, one type of bits cannot be distinguished

from another.

[AV]

The bit at which a sorting pass or a refinement pass starts in the unimportant
part is difficult to locate. It is difficult to identify the step at which each bit is

produced in the algorithm.

3. The order in which the coefficients are examined in the refinement pass depends
on the state of the LSP. If the initial updates to the LSP are not known, it is

difficult to determine the order in which the coefficients are refined.

4. The encrypted significance information may span multiple sorting passes, mak-
ing it difficult to infer the number of 1 bits in the first few sorting passes from

the size of the important part.

5. There is a many-to-many relationship between the important part and the unim-
portant part. Given an important part, there are many unimportant parts that

match with it. Namely, we may change the signs and all but the most significant

71

(a) Original image (b) k=100

(c) k = 120 (d) k = 140

(e) k = 160 (f) k = 180

Figure 5.9: Reconstructed images using only the first & encrypted bits.

bit of the coefficients and obtain the same important part. On the other hand,
we may generate multiple important parts that match a given unimportant part

by translating the significant branches.

6. The important parts of two similar images may be dramatically different. Sub-
stituting the important part of one image into another does not give a mean-

ingful approximation of the original image.

5.3.3 Implementation Issues and Complexity

It is straightforward to add our partial encryption scheme to the SPIHT algorithm.
We simply perform an additional comparison before each significance bit is transmit-
ted. The comparison is performed on the coordinates (4, j) to determine whether the
significance information is encrypted. In our experiments, we have not been able to

detect any increase in running time due to the additional comparisons.

5.4 Summary of Proposed Schemes

We summarize the properties of the proposed partial encryption schemes in Table 5.6.
In this table, QT-PE is the proposed quadtree partial encryption scheme, and SPIHT-
PE is the proposed SPIHT partial encryption scheme. The “Amount Encrypted”
column refers to the total amount of data that is encrypted by an independent en-
crvption algorithm for typical images. The “Overhead” column indicates the impact
on running time due to the additional processing for separating the important part
from the unimportant part. The “Compression Performance” column indicates the
impact on compression performance when partial encryption is used. In both cases,
there is little effect in the compression performance and complexity of the compres-
sion algorithm. In addition, a relatively small amount of the total output needs to be
encrypted. No attacks are known at this time, and the author feels that the partial

encryption schemes are secure.

73

Table 5.6: Summary of proposed partial encryption schemes.

Lossy or Amount Compression
Scheme Lossless Encrypted Overhead | Performance
QT-PE both 13-27% negligible | unaffected

SPIHT-PE | lossy | 2% (512 x 512) | negligible | unaffected
7% (256 x 256)

5.5 Other Image Compression Algorithms

We have examined the application of partial encryption to three different image com-
pression algorithms. We conclude this chapter with a discussion on the applicability
of partial encryption to other image compression algorithms.

Many region-based algorithms use tree structures to represent the regions of the
image, and leaf values to represent the properties of the regions. For example, adap-
tive tree-structured segmentation [42] and B-tree triangular coding [9] both use binary
trees to represent the regions. If we apply partial encryption to these algorithms and
encrypt only the tree, we may apply similar analysis to obtain the file sizes and se-
curity of the resulting schemes. The low branching factor of binary trees affects the
file sizes and the security of the partial encryption schemes. We have not examined
these region-based compression algorithms in detail in this thesis.

There are also compression algorithms that use wavelet packets [31]. These algo-
rithms differ from wavelet compression algorithms in that wavelet decomposition is
not always performed recursively on the LL coefficient band. Any coefficient band
may be chosen for decomposition. Since this decomposition can be represented by a
variable tree structure, we may ask whether it is possible to encrypt only this tree.
Unfortunately, the tree is very shallow and exhaustive search is easy to perform. In
addition, we can often examine the coefficient matrix to determine the tree. It is not

clear how partial encryption can be applied to wavelet packets algorithms.

74

Chapter 6

Partial Encryption of Video
Sequences

The application of partial encryption to video communication is discussed in this
chapter. The tremendous amount of data involved in video communication provides
a strong motivation to reduce processing time for encryption and decryption. We will
examine motion compensation and residual error coding separately. It is assumed that
one of the partial encryption schemes for image compression introduced in Chapter 5

is used for intraframe coding.

6.1 Motion Compensation

The motion vectors must be encrypted in any secure video application. Otherwise, a
crvptanalyst having access to an image frame may reconstruct good approximations
to many successive frames, provided that the motion vectors are accurate. This is
especially important if encryption is activated after the video transmission has started,
so that the initial frames are available.

Typical motion compensation algorithms divide the current frame into blocks
of fixed size, and compute a motion vector for each block. However, multiple blocks
belonging to the same object may have identical or similar motion vectors, and it may
be more efficient to code these motion vectors together. Schuster and Katsaggelos [34]

proposed an algorithm that computes the motion vectors for fixed-sized blocks and

75

Figure 6.1: Residual error (after contrast enhancement) for frame 2 of the “claire”
sequence.

merges the blocks using a quadtree. The advantage is that fewer motion vectors
need to be transmitted and the overhead for transmitting the quadtree is low. The
dimensions of the initial blocks are usually 8 x 8, so that an image frame of 2" x 2"
has a quadtree of maximum height n — 3.

Quadtree partial encryption for images can be adapted to encode motion vectors.
The leaf values are the motion vectors instead of image intensities. As in the case of
images, the quadtree decomposition is encrypted while the motion vectors are not.
Instead of using a Hilbert curve to encode all the motion vectors at the same time as

in [34], we encode the motion vectors one level at a time using Leaf Ordering II.

6.2 Residual Error Coding

The residual error often provides outlines of moving objects that are not perfectly
predicted by the motion vectors, as shown in Figure 6.1. As a result, it is insufficient
to encrypt only the intraframes and the motion vectors; the residual error must be
encrypted to provide security. Since the residual error is simply an image frame,
many video compression algorithms use standard image compression algorithms to
compress the residual error. Both quadtree compression (34, 37, 39] and wavelet com-

pression [24] have been used in video compression algorithms for residual error coding.

76

Strobach [37] suggested that quadtree compression is appropriate for residual error
coding as the residual error often contains high intensities concentrated around the
edges of objects. Wavelet compression may also be appropriate because of its excellent
compression performance on still images. In Chapter 5, we have already discussed
partial encryption schemes for both quadtree and wavelet image compression. These

schemes can be applied directly to residual error coding.

6.3 File Sizes

The relative size of the quadtree of motion vectors can be predicted from the number
of bits used to represent each motion vector. This is done in the same way as in
the case of lossless quadtree image compression. For example, if the motion vectors
belong to the set {(z,y) € Z*| — 4 < z,y < 4}, there are 81 possible vectors and 7
bits are needed for each motion vector. In this case, the quadtree is at most 16.0%
(Table 5.1) of the total output produced by the motion compensation step. Note that
entropy coding may reduce the number of bits needed for each motion vector.

The relative size of the important part of the residual error is similar to the
case of image compression. The results on the test video sequences are shown in
Tables 6.1 and 6.2. In these experiments, motion compensation is performed on
blocks of dimensions 8 x 8 initially. The relative sizes of the important parts in the
quadtree partial encryption scheme are slightly larger than those in the case of still
image compression. An explanation is that when the prediction by the motion vectors
is accurate, most of the magnitudes of the residual error image are small. Therefore,
the variance of the leaf values is small, so that the number of bits used to represent
each leaf value is small. The size of the important part in SPIHT partial encryption
is similar to the case of still image compression. As it is difficult to precisely control
the bit rate of the quadtree compression algorithm, the results obtained for quadtree

partial encryption and SPIHT partial encryption are not directly comparable.

(4

Table 6.1: The size of important part of the residual error in the “football” sequence.

Quadtree SPIHT
Frame | Bytes| % |Bytes| %
2 1808 | 28.8% | 146 | 0.6%
3 2232 129.6% | 140 | 0.5%
4 2124 |29.0% | 143 | 0.5%
d 2270 | 27.4% | 152 | 0.6%
6 2425 | 27.8% | 149 | 0.6%
7 2459 | 28.1% | 144 | 0.5%
8 2473 | 24.0% | 135 | 0.5%
9 2365 | 27.5% | 133 | 0.5%
10 2646 | 27.9% | 137 | 0.5%

Table 6.2: The size of important part of the residual error in the “claire” sequence.

Quadtree SPIHT
Frame | Bytes % Bytes | %
2 90 27.0% | 141 | 2.2%
3 162 |26.0% | 141 |2.2%
4 201 | 26.7% | 140 | 2.1%
G) 190 | 28.0% | 156 |2.4%
6 212 |26.9% | 141 | 2.2%
7 211 |285% | 137 | 2.1%
8 226 | 28.8% | 140 |2.1%
9 224 |[30.7% | 140 |2.1%
10 256 | 28.0% | 136 | 2.1%

78

6.4 Security

One property possessed by both the motion vectors and the residual error is that large
homogeneous regions exist in both cases. The motion vectors for the blocks belonging
to the same object tend to be identical or similar, and all static objects have the same
motion vector—the zero vector. In the case of residual error, large regions of small
magnitudes exist when the prediction by motion compensation is accurate.

[t is important to ensure that the partial encryption schemes for both motion
vectors coding and residual error coding are secure even if there are large homogeneous
regions. In Chapter 3, we saw that large homogeneous regions may produce long runs
in quadtree partial encryption if Leaf Ordering I is used. Consequently it is critical
that Leaf Ordering II is used in quadtree partial encryption of video sequences. In the
case of SPIHT partial encryption on the residual error, cryptanalysis is not facilitated
by large homogeneous regions. It is still difficult to correctly decode the image frame
without the initial updates to the internal states of the algorithm. It is possible for
the residual error to have very few large intensities, and this can be detected in both
quadtree partial encryption and SPIHT partial encryption. However, it only indicates
that the motion compensation is accurate; the current frame cannot be reconstructed
without the motion vectors and the previous frame.

The security of the partial encryption schemes for video depends not only on
the security of the corresponding schemes for images, but also on the inability of a
cryptanalyst to take advantage of the temporal correlation among consecutive frames.
Experiments have shown that although the motion vectors and the residual error are
often predictable from those of the previous frames, much of the correlation among
consecutive frames are lost in both the important part and the unimportant part. In
the case of motion vectors coding, the quadtrees for consecutive frames are drasti-
cally different because quadtrees are highly sensitive to the placement of the moving

objects [37], which is illustrated in Figure 6.2. Similarly, the quadtrees for residual

79

Figure 6.2: Sensitivity of quadtrees to the placement of a moving object.

coding differ significantly among consecutive frames. When SPTHT partial encryption
is used for residual error coding, the algorithm produces drastically different output
for consecutive frames because the zerotrees, like quadtrees, are highly sensitive to
the placement of moving objects in the residual error.

The author feels that it is difficult to make use of temporal correlation in the
cryptanalysis of partial encryption schemes. Nevertheless, it is possible that an attack
exists. It remains an open question whether temporal correlation can be used to

recover any information about the original video sequence.

6.5 Implementation Issues and Complexity

The overhead of separating the important part from the unimportant part is negligible
as in the case of image compression. Since quadtree compression is used for encoding
the motion vectors, a similar version can also be used to perform residual error coding
if we wish to reduce implementation time or reduce program size. In addition, the
encryption of the important part can be performed in parallel to the transmission
of the unimportant part. Consequently, the encryption time may become negligible
despite the large amount of data transmitted. However, the receiver cannot parallelize
the decoding process because the important parts are needed before the unimportant

parts.

80

6.6 Other Video Compression Algorithms

Many image compression algorithms can be extended to perform compression on
three-dimensional signals. For example, quadtree compression algorithms can be
extended to octree [10] algorithms, and two-dimensional wavelet compression algo-
rithms can be extended to three-dimensional algorithms [20]. In both cases, it is
straightforward to extend our partial encryption schemes for images to schemes for
video sequences. We simply group multiple consecutive frames together and perform
three-dimensional compression on the entire group.

There are also other video compression algorithms that have not been examined
in this thesis. For instance, model-based algorithms [21] use a model to describe the
content of each frame and transmit only the parameters of the model. For example,
a model can be the human face, and the parameters may specify the movements of
the various points on the face. These algorithms can achieve a tremendous amount
of compression at the expense of lower video quality. Since the amount of data

transmitted is small, it is not clear if partial encryption is useful in this case.

81

Chapter 7

Conclusion

We have examined several existing algorithms aimed at combining compression and
encryption and found that they are inadequate. Instead, we proposed a partial en-
cryption approach to reduce the encryption and decryption time in image and video
communication. The output of an existing compression algorithm is decomposed
into the important part and the unimportant part, and only the important part is
encrypted. We showed how to perform secure partial encryption in image communi-
cation using quadtree compression and wavelet compression based on zerotrees, such
that a relatively small proportion of the output is encrypted. We have also proposed
extensions to video communication.

For image communication, typically 13%-27% of the total output is encrypted in
quadtree partial encryption. We have also shown that it is difficult to cryptanalyze
this scheme. On the other hand, less than 2% of the total output is encrypted for
images of dimensions 512 x 512 in wavelet partial encryption based on zerotrees,
and this partial encryption scheme also appears to be secure. The computational
overhead in these schemes is negligible, and the compression performance of the chosen
algorithms is not affected.

The encryption and decryption time for the tremendous amount of data involved
in video communication is the main motivation for this work. We have shown that

quadtree partial encryption and SPIHT partial encryption can easily be extended to

video compression. Quadtree partial encryption can be used on the motion vectors,
while either quadtree or SPIHT partial encryption may be used on the residual error.
The computation overhead is also negligible, and the relative size of the important
part is comparable to that in the case of image compression. Thus, the processing
time for encryption and decryption is significantly reduced. Partial encryption is
feasible because it can easily be implemented and it is computationally simple. We
conclude that partial encryption is useful in making real-time secure image and video

communication practical.

7.1 Limitations

The partial encryption approach has two major limitations. First, since the unim-
portant part is unencrypted, it is theoretically less secure than encrypting both the
important part and the unimportant part. In practice, however, we have seen that it
may still be computationally infeasible to cryptanalyze the partial encryption scheme.
Moreover, a different partial encryption scheme has to be designed and analyzed for
each type of compression algorithm. We do not have general techniques that work
with all types of compression algorithms.

We have seen that if the quadtree is almost empty or almost complete, the number
of possible quadtrees is small. Thus, quadtree partial encryption cannot be used on
images that are too simple or too complex. In the first case, the image is highly
compressible and little time is required for encryption or decryption, making partial
encryption unnecessary. On the other hand, most of the images with almost complete
quadtrees are likely filled with noise. As we have seen, natural images generally do not
have almost complete quadtrees. For SPIHT partial encryption, cryptanalysis may
be feasible for very simple images. However, very complex images do not facilitate

the cryptanalysis of the partial encryption scheme.

83

7.2 Future Directions

Some of the possible directions to pursue in future research are listed below:

Region-based compression. Many other region-based compression algorithms also
use tree structures to represent the locations and shapes of the regions. It may

be possible to apply partial encryption to these algorithms.

Model-based compression. Model-based compression algorithms can be used to
achieve a very high compression ratio. It is not clear whether thereis a need for
partial encryption, and if so, whether it is possible to apply partial encryption

to these algorithms.

Human visual system modifications. Some researchers attempt to modify exist-
ing compression algorithms to incorporate the human visual system (HVS) into
the design, so that the quality of the decoded images or video sequences is
perceptually good. If HVS modifications are done to quadtree or SPIHT com-
pression, it is not clear whether it is easier to cryptanalyze the corresponding
partial encryption scheme. For example, HVS modifications may make one type

of quadtrees occur with a higher probability.

General design and analysis techniques. It is useful to develop techniques or
principles for the design and analysis of partial encryption schemes, so that we

do not need to consider each type of compression algorithms separately.

84

Bibliography

[1] M. Bertilsson. E. F. Brickell. and I. Ingemarsson. Cryptanalysis of video encryp-
tion based on space-filling curves. In J.-J. Quisquater and J. Vandewalle, editors,
Advances in Cryptology—EUROCRYPT ’89 Proceedings, number 434 in Lecture
Notes in Computer Science, pages 403-411. Springer-Verlag, 1990.

[2] N. Bourbakis and C. Alexopoulos. Picture data encryption using scan patterns.
Pattern Recognition, 25(6):567-381, 1992.

[3] H. K.-C. Chang and J.-L. Liu. A linear quadtree compression scheme for image
encryption. Signal Processing: Image Communication, 10(4):279-290, Sep 1997.

(4] H. Cheng and X. Li. On the application of image decomposition to image com-
pression and encryption. In P. Horster, editor, Communications and Multimedia
Security II, pages 116-127. International Federation for Information Processing,
Chapman & Hall, 1996.

[5] R. J. Clarke. Transform Coding of Images. Academic Press, 1985.

[6] C. D. Creusere. A new method of robust image compression based on the em-
bedded zerotree wavelet algorithm. I[EEE Transactions on Image Processing,
6(10):1436-1442, Oct 1997.

(7] E. A. B. da Silva, D. G. Sampson, and M. Ghanbari. A successive approximation
vector quantizer for wavelet transform image coding. [EEE Transactions on
Image Processing, 5(2):299-310, Feb 1996.

(8] N. G. de Bruijn, D. E. Knuth, and S. O. Rice. The average height of planted
plane trees. In R. C. Read, editor, Graph Theory and Computing, pages 15-22.
Academic Press, 1972.

[9] R. Distasi, M. Nappi, and S. Vitulano. Image compression by B-tree triangular
coding. IEEE Transactions on Communications, 45(9):1095-1100, Sep 1997.

[10] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 2nd edition, 1990.

[11] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,
1992.

[12] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(2):1098-1101, Sep 1952.

[13] D. Jones. Data compression and encryption algorithms. World Wide Web.
http://www.cs.uiowa.edu/~ jones/compress/.

85

[14]
[15]

[16]

[17]
[18]

[19]

[29]

D. Jones. Applications of splay trees to data compression. Communications of
the ACM, pages 996-1007, Aug 1988.

J. Knipe. A comparison of improved spatial and transform domain compression
schemes. Master’s thesis, University of Alberta, 1996.

J. Knipe, X. Li, and B. Han. An improved lattice vector quantization based
scheme for wavelet compression. IEEE Transactions on Signal Processing,
46(1):239-243, Jan 1998.

D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison-Wesley, 3rd edition, 1997.

X. Lai. On the Design and Security of Block Ciphers, volume 1 of ETH Series
in Information Processing. Konstanz: Hartung-Gorre Verlag, 1992.

X. Lai and J. L. Massey. A proposal for a new block encryption standard. In
Advances in Cryptology-EUROCRYPT ’90 Proceedings, number 473 in Lecture
Notes in Computer Science, pages 389-404. Springer-Verlag, 1991.

A. S. Lewis and G. Knowles. Video compression using 3D wavelet transforms.
Electronic Letters, 26(6):396-398, Mar 1990.

H. Li, A. Lundmark, and R. Forchheimer. Image sequence coding at very low
bitrates: A review. IEEE Transactions on Image Processing, 3(5):589-609, Sep
1994.

X. Li, J. Knipe, and H. Cheng. Image compression and encryption using tree
structures. Pattern Recognition Letters, 18(11-13):1253-1259, Nov 1997.

X. Liu, P. G. Farrell, and C. A. Boyd. Resisting the Bergen-Hogan attack on
adaptive arithmetic coding. In M. Darnell, editor, Cryptography and Coding:
6th IMA International Conference, number 1355 in Lecture Notes in Computer
Science, pages 199-208. Springer-Verlag, 1997.

S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang. A zerotree wavelet
video coder. IEEE Transactions on Circuits and Systems for Video Technology,
7(1):109-118, Feb 1997.

Y. Matias and A. Shamir. A video scrambling technique based on space fill-
ing curves. In C. Pomerance, editor, Advances in Cryptology— CRYPTO 87
Proceedings, number 293 in Lecture Notes in Computer Science, pages 398-417.
Springer-Verlag, 1988.

J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video:
Compression Standard. Chapman & Hall, 1996.

J. Modayil, H. Cheng, and X. Li. An improved piecewise approximation algo-
rithm for image compression. To appear in Pattern Recognition.

J. Modayil, H. Cheng, and X. Li. Experiments in simple one-dimensional lossy
image compression schemes. In Proceedings of the IEEF International Conference
on Multimedia Computing and Systems, June 3-6, 1997, pages 614-615, 1997.

W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard. Van Nostrand Reinhold, 1993.

86

[30] R.Rivest, A. Shamir, and L. Adleman. A method for obtaining digitial signatures
and public key cryptosystems. Communications of the ACM, 21(2):120-126,
1978.

[31] N. Roeder. Image compression and quality assessment: An investigation explor-
ing wavelet packets and human visual system characteristics. Master’s thesis,
University of Alberta, 1997.

[32] A.Said and W. A. Pearlman. A new, fast, and efficient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems
for Video Technology, 6(3):243-250, Jun 1996.

[33] B. Schneier. Applied Cryptography: protocols, algorithms, and source code in C.
John Wileyv & Sons, second edition, 1996.

[34] G. M. Schuster and A. K. Katsaggelos. Rate-Distortion Based Video Compres-
sion: Optimal Video Frame Compression and Object Boundary Encoding. Kluwer
Academic Publishers, 1997.

[35] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41(12):3445-3462, Dec 1993.

[36] E. Shusterman and M. Feder. Image compression via improved quadtree decom-
position algorithms. IEEE Transactions on Image Processing, 3(2):207-215, Mar
1994.

[37] P. Strobach. Tree-structured scene adaptive coder. I[EEE Transactions on Com-
munications, 38(4):477-486, Apr 1990.

[38] P. Strobach. Quadtree-structured recursive plane decomposition coding of im-
ages. IEEE Transactions on Signal Processing, 39(6):1380-1397, Jun 1991.

[39] G. J. Sullivan and R. L. Baker. Efficient quadtree coding of images and video.
IEEE Transactions on Image Processing, 3(3):327-331, May 1994.

[40] E. Walach and E. Karnin. A fractal based approach to image compression.
In [EEE International Conference on Acoustics, Speech and Signal Processing,
volume 1, pages 529-532, Apr 1986.

[41] L. H. Witten, R. Neal, and J. G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30:520-540, Jun 1987.

[42] X. Wu. Image coding by adaptive tree-structured segmentation. IEEFE Transac-
tions on Information Theory, 38(6):1755-1767, Nov 1992.

87

N
.,% g W eo\\
NS s \
W//\\ N ,v\\/
N
V4
z"
=S
35
Sg
S
4
—
A

& &Vv ,v,v.,v,v 6/////
N &

I

I
I
.

: 716/288-5989

B EEE

i | ﬁm—w_.,.._m_u.._.m

] hester,
one: 716/482-0300

L4

D = IMAGE. Inc
in Str

150mm

.25

© 1993, Applied Image, Inc.. All Rights Reserv

APPLIE

