
SWAN: A Static Analysis Framework for Swift

by

Daniil Tiganov

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Daniil Tiganov, 2023

Abstract

Swift is an open-source programming language and Apple’s recommended

choice for app development. Given the global widespread use of Apple de-

vices, the ability to analyze Swift programs has significant impact on millions

of users. Although static analysis frameworks exist for various computing

platforms, there is a lack of comparable tools for Swift. Existing Swift static

analysis tools are either incomplete, use dynamic analysis, or are otherwise

not suitable for deeper analyses of Swift programs such as taint tracking.

Moreover, other existing tools for Swift only help enforce code styles and best

practices.

In this thesis, we present SWAN, an open-source and configurable frame-

work that allows robust program analyses of Swift programs. SWAN features

a suite of call-graph construction algorithms, support for modelling black-box

functions using its own internal representation, and can track dataflow through

libraries. The framework is also capable of traditional taint analysis, types-

tate analysis, and detecting security vulnerabilities, such as cryptographic API

misuses. We demonstrate the framework’s robustness by evaluating its core

framework runtime performance, call-graph construction precision and perfor-

mance, and ability to find cryptographic API misuses in real Swift applications.

For most of our benchmarks, SWAN parses, translates, and prepares the pro-

gram for analysis in under 5 seconds and builds a precise call-graph in less

than 13 seconds. SWAN also finds 43 real cryptographic API misuses across

13 applications that we tested.

ii

Preface

This thesis is original work by Daniil Tiganov, with the following exceptions.

Chapter 4 and Section 6.2 were joint work with Ifaz Kabir with roughly equal

contribution. Shivani Kadel and Guoze Feng assisted with manually writing

models for Swift’s standard library containers (Section 3.6) and corresponding

tests (Section 6.4.1). The work described in this thesis is subject to publica-

tion. An old version of the framework described in this work was previously

published as D. Tiganov et al., “Swan: A static analysis framework for swift,”

in Proceedings of the 28th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering.

2020, pp. 1640–1644. Despite sharing the same same title, this thesis describes

entirely new work that is only conceptually similar with the published work.

With the aforementioned exceptions, I was responsible for the conceptualiza-

tion and implementation of the framework described in this thesis. I was also

responsible for the experimental setup and evaluation of the framework. Karim

Ali was the supervisory author of this work and oversaw the development of

the framework. Karim also contributed to this work’s conceptualization, re-

quirements, empirical evaluation design, and thesis edits.

iii

Acknowledgements

I thank the Lord my God the Most High for His everlasting love and mercy.

I thank Him for the blessing of education and the opportunity to pursue grad-

uate studies. I thank the Lord for enabling me to continue my studies, for I

can do nothing without Him.

Thank you, Madeleine, my beautiful wife, whom I adore and love, for

encouraging me throughout my studies. Your never-ceasing positivity and

love ease my burdens. I am very blessed to have you as my wife and as the

mother of my beautiful daughter, Amalia, whom I cherish and for whom I am

exceedingly grateful to God.

Thank you to my parents for instilling in me an appreciation for education

and the pursuit of knowledge. Your encouragement and support helped me

and motivated me to continue my studies.

Thank you to my colleagues at the Maple Lab, with whom it was a pleasure

to work. It was great being among people with similar interests. I will miss

being a part of the lab, and I wish the Maple Lab success and all the best.

Thank you to Dr. Karim Ali, my supervisor, for your patience, enthusiasm,

generosity, and guidance. Thank you for your high standards and attention to

detail. You have cultivated my passion for static program analysis throughout

the years. I especially appreciate that you greatly care about your students.

You have given me the knowledge I need to be successful in my career.

iv

Contents

1 Introduction 1

2 Background Material 4
2.1 Static Analysis . 4
2.2 Taint Analysis . 11
2.3 Synchronized Pushdown Systems 12
2.4 Typestate Analysis . 13
2.5 Swift . 15

3 The SWAN Framework 17
3.1 Overview . 17
3.2 Building Xcode Projects and Dumping Swift Intermediate Lan-

guage (SIL) . 19
3.2.1 Building Single Swift Files 20
3.2.2 Swift Package Manager 20

3.3 Parsing SIL . 21
3.4 Translating SIL to SWAN InteRmediate Language (SWIRL) . 22

3.4.1 SWIRLGen . 25
3.4.2 SWIRLPass . 27

3.5 SPDS Integration . 33
3.6 Models . 34
3.7 Cross-Module Analysis . 36

4 Call-Graph Construction 37
4.1 Background . 37

4.1.1 Function Pointers . 38
4.1.2 Dynamic Dispatch . 39

4.2 Algorithms . 42
4.2.1 CHAFP . 43
4.2.2 VTAFP . 43
4.2.3 UCG . 44

4.3 Algorithm Comparison . 51
4.4 Implementation Details . 53

4.4.1 Entry Points . 53
4.4.2 Closures . 53
4.4.3 Libraries . 54
4.4.4 Improving the Precision of Instantiated Types 54

4.5 Summary . 55

v

5 SWAN Analyses 56
5.1 Taint Analysis . 56
5.2 Typestate Analysis . 61

5.2.1 JSON Configuration 61
5.2.2 Energy Inefficient API Misuse Analysis 63

5.3 Crypto API Misuse Detection 67
5.3.1 Crypto Misuse Rules 67
5.3.2 Misuse Detection . 68

5.4 Summary . 71

6 Evaluation 72
6.1 Processing Overhead . 72

6.1.1 Benchmark Applications 73
6.1.2 Experimental Setup . 74
6.1.3 Results . 74
6.1.4 Discussion . 74

6.2 Call-Graph Construction . 76
6.2.1 Benchmark Applications 76
6.2.2 Experimental Setup . 76
6.2.3 Results . 77
6.2.4 Discussion . 86

6.3 Crypto API Misuse in Real-World Apps 87
6.3.1 Benchmark Applications 87
6.3.2 Results . 88
6.3.3 Discussion . 92

6.4 Regression Test Suite . 92
6.4.1 Test Suite . 92
6.4.2 Annotation Tester . 94

7 Related Work 95
7.1 Analysis Frameworks . 95

7.1.1 Android Analysis Tools 95
7.1.2 LLVM-Based Analyses 96
7.1.3 Swift Analysis Tools 96

7.2 Call-Graph Construction . 97
7.3 Crypto API Misuse . 98

8 Conclusion 100

References 102

vi

List of Tables

2.1 SPDS’ supported instruction semantics. 12

3.1 SWIRL’s instructions. 23

6.1 SWAN processing (pre-analysis) overhead for each benchmark
(seconds). 73

6.2 Various characteristics of our Benchmarks Programs 77
6.3 Number of reachable nodes and edges in the call graphs com-

puted using CHAFP, VTAFP, and UCG, as well as the precision
improvement across the call graphs. 78

6.4 Number of monomorphic and polymorphic reachable call sites
in the call-graphs generated by CHAFP and how many of them
become unreachable, monomorphic, and polymorphic in VTAFP. 81

6.5 Number of monomorphic and polymorphic reachable call sites
in the call-graphs generated by VTAFP and how many of them
become monomorphic and polymorphic in UCG. 83

6.6 Median runtimes for each algorithm (milliseconds) 84
6.7 Detected crypto Application Programming Interface (API) mis-

uses in the benchmark applications. 87

vii

List of Figures

2.1 A Swift code example to demonstrate object-insensitivity. . . . 6
2.2 A Swift code example to demonstrate field-insensitivity. 7
2.3 A Swift code example to demonstrate context-insensitivity. . . 7
2.4 A Swift code example to demonstrate flow-insensitivity. 8
2.5 A Java code example to demonstrate Class Hierarchy Analysis

(CHA) analysis. 9
2.6 The CHA call-graph (CG) of the Java program in Figure 2.5. . 10
2.7 A state machine for a typestate analysis that tracks the state

of an abstract File type. 13

3.1 The general workflow of SWAN. 18
3.2 A code example showing how SwirlGen preserves the struc-

ture of a SIL program in Swirlraw. 26
3.3 How SwirlGen translates SIL’s init enum data addr instruc-

tion to Swirlraw. 26
3.4 An example showing why field alias resolution is necessary to

preserve data flow in the translation from Swirlraw to Swirlcan
during SwirlPass. 29

3.5 An example showing how SwirlPass translates the cond br
instruction from raw to canonical form. 31

3.6 An example showing how SwirlPass removes basic block ar-
guments from a Swirlraw program. 32

3.7 SwirlCFG and SpdsCFG for the Swirlcan program in Figure 3.6
(lines 147–156). 34

3.8 An example of SWIRL model for a Swift Array getter function. 35

4.1 A simplified SIL code example demonstrating function pointer
usage. 38

4.2 A generic Swift code example demonstrating polymorphic method
calling. 39

4.3 A Swift code example with a class, protocal, and method call
usage. 39

4.4 A simplified SIL code example corresponding to the Swift pro-
gram in Figure 4.3. 40

4.5 A simplified SIL value and witness tables that SWAN generates
for the program of Figure 4.2. 41

4.6 A Dynamic Dispatch Graph (DDG) for the Swift program of
Figure 4.2. 42

4.7 A Swift code example of non-trivial data flow using classes. . . 52

5.1 An example illustrating taint analysis JSON specification in
SWAN. 58

viii

5.2 A Swift program utilizing sources, sinks, and sanitizers. Fig-
ure 5.1 contains the program’s corresponding taint analysis spec-
ification. 59

5.3 Taint analysis results for the program in Figure 5.2 based on
the specification in Figure 5.1. 60

5.4 An example illustrating typestate analysis JSON specification
in SWAN. 62

5.5 A Swift program that allocates a file resource. Figure 5.4 con-
tains the program’s corresponding typestate analysis specification. 63

5.6 Typestate analysis results for the program in Figure 5.5 based
on the specification in Figure 5.4. 64

5.7 A Swift program that uses the Core Location API. Figure 5.8
contains the program’s corresponding typestate analysis speci-
fication. 64

5.8 A (partial) typestate analysis taxonomy JSON specification that
complements SWAN’s programmatic typestate configuration for
the Core Location API. 66

6.1 Plotted runtimes from Table 6.1. 75
6.2 Plotted runtimes from Table 6.6. 85
6.3 A simplified excerpt from the tlatia benchmark that contains

crypto API misuses. 89
6.4 A simplified excerpt from the SwiftBasicKit benchmark that

contains crypto API misuses. 90
6.5 A simplified excerpt from the encrypt benchmark that con-

tains crypto API misuses. 91
6.6 Two tests from SWAN’s test suite that verify SWAN can track

dataflow through Swift’s arrays. 93

ix

List of Acronyms

API

Application Programming Interface

AST

abstract syntax tree

CFG

control-flow graph

CG

call-graph

CHA

Class Hierarchy Analysis

CLI

Command-Line Interface

DDG

Dynamic Dispatch Graph

DSL

domain-specific language

FSM

finite-state machine

IDE

Interprocedural Distributive Environments [43]

IDE

integrated development environment

IFDS

Interprocedural Finite Distributive Subset [43]

IR

intermediate representation

x

IV

initialization vector

LOC

lines of code

OOL

object-oriented language

PBE

password-based encryption

PDS

pushdown system

RTA

Rapid Type Analysis [12]

SAST

static application security testing

SIL

Swift Intermediate Language. Apple’s intermediate language that it
translates Swift into and then later translates to LLVM [5].

SPDS

Synchronized pushdown systems. A novel, on-demand, and highly pre-
cise data flow analysis written by Späth et al. [48].

SPM

Swift Package Manager. Apple’s alternative project management system
to Xcode projects [3].

SSA

Static single assignment form [17].

SWIRL

SWAN InteRmediate Language. Swirlraw is SWIRL’s raw form, and
Swirlcan is SWIRL’s canonical form.

UI

user interface

VTA

Variable Type Analysis [51]

WPDS

Weighted pushdown systems. An adaptation of synchronized pushdown
systems (SPDS) where each rule has additional weights [48].

xi

Glossary of Terms

Boomerang

A SPDS query engine for making forward and backward queries.

IDEal

A SPDS query engine for typestate analysis.

regex

A regular expression that specifies a text search pattern.

UCG

SWAN’s unique call-graph construction algorithm that simultaneously
and precisely handles functions pointers and dynamic dispatch.

xii

Chapter 1

Introduction

Static program analysis reasons about the potential runtime behaviour of a

program without necessarily executing it. This technique may be used to

detect various types of defects [10], from simple bugs to security vulnerabil-

ities, optimize applications [14], and help protect user privacy [8]. Despite

the potential benefits of static analysis, there is a lack of available tools for

Swift [4], Apple’s recommended and most popular [31] choice for development

on iOS [1] and macOS [2]. In 2022, the web traffic analysis tool StatCounter

estimated that iOS devices comprised approximately 27% of mobile devices in

the world [50] and macOS devices accounted for 15% of desktop devices [49].

Therefore, the ability to analyze Swift applications has significant impact on

millions of users around the world.

Commercial static analysis tools that support Swift (e.g., Coverity [53]

and Checkmarx [16]) are impractical for academics and practitioners due to

their high cost and closed-source nature. Open-source tools that target the

Swift abstract syntax tree (AST) are mostly linters or simple checkers (e.g.,

SwiftLint [52]) that do not compute call graphs. GitHub’s CodeQL [26] is

the first commercial1 open-source framework that has (begun to add) Swift

support. However, at the time of writing, GitHub has not yet officially released

Swift support for CodeQL. Moreover, in our testing, we were not able to

analyze Swift Xcode applications using CodeQL’s Swift support.

To bridge the gap between the popularity of Swift and the lack of available

1CodeQL is open-source and free for research, but is not free for commercial customers.

1

analysis tools, we introduce SWAN, an open-source static analysis framework

for Swift. We designed SWAN to be a robust, configurable, and extendable

framework for various analyses, such as those that may detect security vulner-

abilities and API misuses. SWAN features a suite of call-graph construction

algorithms for creating call-graphs of varying precision, a configurable taint

analysis, a configurable typestate analysis, and a cryptography API misuse

analysis. SWAN’s call-graph construction algorithms consist of CHAFP, an

adapted version of CHA [18], VTAFP, an adapted version of Variable Type

Analysis (VTA) [51], and UCG, a novel algorithm that we developed specifi-

cally for precisely handling Swift’s function call semantics. Application devel-

opers and researchers may use the various analyses that SWAN offers out of

the box without having to implement their own analysis. Through its suite

of analyses, SWAN enables new directions of research for iOS and macOS

that have long existed for other platforms such as Android [8], Java [27], and

JavaScript [56]. Moreover, SWAN has a modular architecture that enables

researchers to build their own analyses on top of it by leveraging its existing

analysis infrastructure.

The primary contributions of this thesis’ are as follows, along with how we

evaluate the contribution and a summary of our results:

• An open-source static analysis framework for Swift.

Evaluation: We assess the runtime overhead of SWAN preparing a

Swift application for analysis, thereby evaluating the performance of the

“core” framework. The runtime of a static analysis framework partially

determines its practicality and ability to give relatively immediate feed-

back.

Result: SWAN prepares (i.e., parses and translates) most benchmark

applications for analysis in under 5 seconds.

• A suite of call-graph construction algorithms.

Evaluation: We evaluate the performance and relative precision of

SWAN’ call-graph construction algorithms by running them on 22 open-

2

source applications and comparing their runtimes, reachable edges and

methods, and the conversion of call sites from polymorphic to monomor-

phic.

Result: We found that CHAFP is fast but is imprecise compared to

VTAFP and UCG. VTAFP is much more precise than CHAFP but is less

performant. Lastly, UCG is slightly more precise than VTAFP but may

be less performant in some cases. For all benchmarks, CHAFP computes

its call graph in under 1 second. While UCG is slower than VTAFP for

some benchmarks, VTAFP and UCG finish their call graph analysis in

under 13 seconds for most benchmarks.

• An out of the box analysis for detecting crypto API misuses.

Evaluation: We evaluate the effectiveness of the crypto analysis by run-

ning it on 13 open-source applications with known crypto API misuses

and reporting the amount and types of misuses found.

Result: SWAN detects 44 crypto API miuses in total across all bench-

marks, with only one false-positive.

The remainder of this thesis is organized as follows. Chapter 2 discusses

background material relating to static analysis concepts, types of analyses, and

the Swift language. Chapter 3 describes the core components of the SWAN

framework. Chapter 4 describes SWAN’s suite of call-graph construction algo-

rithms. Chapter 5 discusses SWAN’s various analyses, such as cryptography

API misuse detection, and demonstrates how some of SWAN’s analyses can

be easily configured. In Chapter 6, using open-source Swift applications, we

evaluate the performance of SWAN’s processing overhead, the precision and

performance of SWAN’s call-graph construction algorithms, and the effective-

ness of SWAN’s cryptography API misuse analysis. Lastly, Chapter 7 discuses

work related to existing static analysis tools, call-graph construction, and cryp-

tography analyses.

3

Chapter 2

Background Material

2.1 Static Analysis

A static program analysis determines various properties of interest about a pro-

gram without running the program, unlike dynamic program analysis which

requires running and monitoring a program’s properties at runtime. The ap-

plications of static analysis vary from simple bug finders to deep analyses that

find sophisticated security vulnerabilities.1 This type of analysis requires using

multiple underlying analyses together that each reason about different prop-

erties of the program, but are often dependent on each other. These analyses

make up one encapsulating analysis that we refer to as a “framework,” “static

analyzer,” or simply “analyzer.”

Intermediate Representation

A static analyzer must operate on some kind of representation of the program.

It can be designed to analyze the AST of the program’s language, which repre-

sents the program in a hierarchical structure of nodes specific to the language.

However, many analyzers instead abstract away from the program’s source

language by converting it into a simplified representation called an intermedi-

ate representation (IR). There are multiple advantages to this, such as being

able to analyze multiple languages as long as the languages can be translated

into the analyzer’s IR. Another advantage is that if the language AST changes,

1For our discussion, we do not consider linters, such as SwiftLint [52] and Tailor [54], to
be true static analyzers due to their superficial nature.

4

the analyzer’s maintainer might only need to update the language translator

and not the entire analyzer.

The IR’s design greatly influences the success of the analyzer. The IR must

be designed with the source language in mind to account for various semantics

that the source language supports. An IR should ideally soundly capture all

of the source language’s semantics. However, the IR may sometimes sacrifice

precision if the IR is too simple and cannot capture the unique nuances of the

source language. In such cases, the translator should likely over-approximate

dataflow relating to problematic or difficult semantics to avoid false-negatives

downstream during analysis. If the analyzer needs to support multiple lan-

guages, then the IR’s design is even more challenging because each language

likely has its own nuances that the IR must capture. For instance, Java is a

reference-based language while C++ supports pointers. If the analysis needs

to support both of these languages using a single IR, then the IR should either

be reference-based or pointer-based, and either option would require trans-

forming a fundamental aspect of one of the input languages.

Control-Flow Graph

A static analyzer must also be able to construct a control-flow graph (CFG)

for a program. A CFG represents the intraprocedural flow of a procedure (i.e.,

a function or method) by using a graph where nodes are usually either state-

ments or basic blocks and edges between the nodes represent execution flow.

To be sound (i.e., meaning to never have false negatives), the CFG must model

all possible execution paths. If the program has conditional control flow, then a

sound CFG will draw edges to all possible paths. Some static analyzers feature

sophisticated analyses that reason about conditions and eliminate impossible

paths in the CFG (also known as deadcode elimination).

Pointer Analysis

One of the most challenging components of a static analysis framework is its

pointer analysis, which models variable dependency and dataflow. A pointer

analysis can answer questions such as, “Do variables x and y point to the same

5

1 class X {}

2

3 class Foo {

4 var a: Any?

5 }

6

7 let o1 = Foo()

8 let o2 = Foo()

9 let bar = X()

10

11 o2.a = bar

12 let baz = o1.a

13 // baz points to bar

Figure 2.1: A Swift code example to demonstrate object-insensitivity.

location in memory?” and, “Does variable x alias variable y?” To answer

such questions, the analysis must model variable dataflow. The precision of

this modelling greatly affects the precision of most types of analyses that the

framework supports.

Pointer analyses may vary in sensitivity. An object-insensitive analysis

does not differentiate between instances of a type. Therefore, if a program

creates two objects of the same type, the analysis will treat their dataflow as

shared, regardless of whether their dataflow is actually related at runtime. For

example, an object-insensitive analysis could not precisely track the dataflow

of the program in Figure 2.1. The program creates two objects of type Foo,

o1 and o2, writes bar to the b field of o2, and then reads the b field of o1 into

baz. Because the analysis cannot differentiate between multiple instances of

the same type (o1 and o2, in this case), it treats them the same. Therefore,

according to the analysis, baz points to bar at the end of the program even

though the dataflow of bar and baz are unrelated at runtime.

A field -insensitive analysis does not differentiate between fields. For ex-

ample, a field-insensitive analysis cannot precisely track the dataflow of the

program in Figure 2.2.2 The program creates an object o of type Foo with two

fields, a and b, writes bar to the b field of o, and then reads the a field of o

into baz. A field-insensitive analysis treats writing to o.b the same as writing

2The program uses the class Foo from Figure 2.1.

6

14 class X {}

15

16 class Foo {

17 var b: Any?

18 var a: Any?

19 }

20

21 let o = Foo()

22 let bar = X()

23 o.b = bar

24 let baz = o.a

25 // baz points to bar

Figure 2.2: A Swift code example to demonstrate field-insensitivity.

26 class X {}

27

28 func foo(_ x: Any) -> Any {

29 return x

30 }

31

32 var a: Any = X(), b: Any = X(), c: Any , d: Any

33 c = foo(a)

34 d = foo(b)

35 // d points to {a, b, c}

Figure 2.3: A Swift code example to demonstrate context-insensitivity.

to o.a. The same is true for field reads. Therefore, according to the analysis,

baz points to bar at the end of the program even though the dataflow of bar

and baz are unrelated at runtime.

A context-insensitive analysis does not keep a call stack for function/method

calls, and therefore the analysis merges all input dataflow to a function, thereby

greatly reducing analysis precision. For example, a context-insensitive analysis

cannot precisely track the dataflow of the program in Figure 2.3. The program

calls foo with a as an argument and writes the result to c. Then, the program

calls foo with b as an argument and writes the result to d. Even though a

and b are entirely disjoint, the analysis merges the two values (i.e., x points to

both a and b). Consequently, and after the two calls to foo, the return value

of foo will always include at least the values a and b. Therefore, according to

the analysis, d points to a and c at the end of the program even though the

dataflow of d and a/c are unrelated at runtime.

7

36 class X {}

37

38 var bar = X(), baz = X(), a: Any , b: Any

39 a = bar

40 a = baz

41 b = a

42 // b points to {a, bar , baz}

Figure 2.4: A Swift code example to demonstrate flow-insensitivity.

Lastly, a flow -insensitive analysis does not take into account the order

of statements inside a function or a block. Ignoring statement order may

reduce analysis precision because a variable may temporarily hold some prop-

erty that is later overwritten, but the analysis would still assume that, at the

variable’s deallocation/destruction, it still holds the property. For example, a

flow-insensitive analysis cannot precisely track the dataflow of the program in

Figure 2.4. The program writes bar to a, then writes baz to a, and finally

writes a to b. Because the analysis ignores statement order, the two writes to

a take place at effectively the same time, thereby making a point to both bar

and baz. Therefore, according to the analysis, b points to bar at the end of

the program even though the value of a is overwritten with baz at runtime.

In general, the more “sensitivities” a pointer analysis has, the greater its

precision. The same is generally true for any type of static analysis. Further-

more, because other analyses utilize and rely on a pointer analysis, such as

those that construct call-graphs, those analyses’ precision will also be greatly

affected by the precision of the pointer analysis.

Call-Graph Construction

A call-graph (CG) represents procedure calling semantics from call sites to

methods or functions. It serves as the backbone for any static analysis framework—

the more precise the CG, the more precise the framework’s results. A call-

graph construction algorithm must consider all language features and seman-

tics that may influence the soundness or precision of the CG, such as poly-

morphism and recursion.

Call-graph construction algorithms typically take one of two approaches.

8

43 public static void main(String [] args) {

44 Collection c = makeCollection(args [0]);

45 c.add("elem");

46 }

47

48 static Collection makeCollection(String s) {

49 if (s.equals("list")) {

50 return new ArrayList ();

51 } else {

52 return new HashSet ();

53 }

54 }

Figure 2.5: A Java code example to demonstrate CHA analysis.

The first approach, often called type-based, only looks at the types in the pro-

gram to resolve call sites. This approach may also be referred to as propagation-

based if the algorithm tracks which types the program uses and propagates

instantiated types to call sites for more precise type information. CHA [18] is

a popular type-based approach that resolves a dynamic dispatch call site to

any possible matching method using the type hierarchy. CHA first finds the

the type of the variable using declared variable type information. Then, CHA

finds the type and its subtypes in type hierarchy and resolves the method to

the type’s method as well as any sub-type methods with the same name. CHA

is fast but also quite imprecise, and does not do any type propagation.

For example, Figure 2.5 shows a Java3 program for which CHA would create

a highly imprecise CG. The program’s main() function calls makeCollection()

on line 44 and then calls the add() method on the resulting value on line 45.

The add() method in Java is implemented by all types that implement the

Collection interface. The makeCollection() function either returns a new

object of type ArrayList or of type HashSet (lines 50 and 52).

Figure 2.6 shows the CHA CG for the program in Figure 2.5. Because

CHA knows the type hierarchy of the program, it knows which types imple-

ment Collection’s add() method, such as ArrayList, HashSet, LinkedList,

3We use Java because it is commonly used to demonstrate CHA and Java analyses widely
use CHA.

9

Figure 2.6: The CHA CG of the Java program in Figure 2.5.

Stack, and Vector (among many others). CHA does not know and does not

consider which types the program actually instantiates and uses. Therefore,

CHA resolves the call on line 45 in Figure 2.5 to every Collection type with

an add() method, thereby creating primarily spurious edges. The CG shown

in Figure 2.6 should only have edges from main() to makeCollection(),

ArrayList.add(), and HashSet().add() to be maximally precise. Instead,

CHA creates a highly imprecise CG.

The second approach, often called flow-based, uses dataflow analysis to

determine the possible types that a value may hold to determine potential

call targets. VTA [51] is one such flow-based approach. VTA begins with

an initial CG, often generated using CHA, and prunes dynamic dispatch call

sites by determining possible runtime types of class objects. That is, given

any call-site, VTA knows the type of the variable on which a method is being

called, and can greatly reduce CHA’s resolutions by filtering based on the type

if the variable. To achieve this, VTA uses a pointer analysis to track variables

through the program back to their allocation sites, where their type can be

determined or inferred.

Analysis Interdependence

The various analyses that make up a static analysis cannot always be exe-

cuted without requiring information from another analysis. For instance, to

construct a whole-program pointer analysis, the analysis needs a CG for inter-

procedural dataflow information. However, the call-graph construction process

10

may also require points-to information from the pointer-analysis to determine

the type of an object upon which a method is being called. Therefore, many

static analyses go back and forth between these analyses until a fix-point [55]

is reached, meaning that the analyses have exhausted all available information

and cannot find any more properties (e.g., points-to information or CG edges).

2.2 Taint Analysis

A taint analysis determines whether there is a possibility that tainted data

from a source will flow to a sink. Sources are values (typically the return

values of specific functions) that contain user data or otherwise data that may

be manipulated by the user (or an attacker). Sinks are sensitive code that are

prone to attacks if their input data is not properly sanitized using a sanitizer.

A sanitizer verifies that the data is not harmful and alters the data if necessary

to remove potentially harmful components. A taint analysis is comprised of

pointer analysis queries, and therefore if a static analysis framework has a

pointer analysis, it is generally able to implement a simple taint analysis.

Preventing a “SQL Injection” [30] attack is a classic application of taint

analysis. In this type of attack, the program passes user data from a source

that is considered to be tainted, such as a username or password from a login

form, to a SQL query (a sink) to verify the user’s credentials without first

sanitizing user data. The user may craft a query extension such that when the

program constructs the SQL query using the user input, the query contains an

additional malicious query that may have detrimental affects, such as deleting

the entire database. For example, if the program constructs the query “SELECT

* FROM Users WHERE UserId =” to verify the username and the user inputs

“78; DROP ALL TABLES;” as their username, then the query will be “SELECT

* FROM Users WHERE UserId = 78; DROP ALL TABLES;” and will delete all

tables in the database.

A taint analysis will alert the programmer if they have any code that could

be susceptible to a SQL Injection attack by checking whether any user input

can flow to SQL query constructors. The taint analysis will not alert if the

11

Table 2.1: SPDS’ supported instruction semantics.

Instruction Notation

Allocation site x← new

Local assignment x← y

Call site y ← m(p)

Return statement return x

Static field store A.f ← y

Static field load x← A.f

Non-static field store x.f ← y

Non-static field load x← y.f

dataflow passes through a SQL query sanitizer. Taint analyses are useful for

detecting such simple vulnerabilities where it is sufficient to check for specific

dataflow paths. These are one of the most common types of analyses that static

analysis frameworks support because of their robustness in applicability.

2.3 Synchronized Pushdown Systems

Synchronized pushdown systems (SPDS) [48] is a context-, field-, and flow-

sensitive dataflow and pointer analysis. It utilizes two pushdown systems

(PDSs): one for field-sensitivity and another for context-sensitivity. Using the

results of both PDSs, SPDS answers dataflow queries with high precision and

efficiency. SPDS also provides weighted pushdown systems (WPDS), which is

an extended version of SPDS that adds edge weights to the PDSs.4 In practice,

SPDS is similar to Interprocedural Finite Distributive Subset (IFDS) in terms

of the queries it can solve, and WPDS is similar to Interprocedural Distributive

Environments (IDE) [43].5

SPDS operates on a simple program representation consisting of eight

different types of three-address code (i.e., instructions), which are listed in

4In this work, we generally use the term “SPDS” to encapsulate both SPDS and WPDS.
5We encourage our readers to read Johannes Späth’s [48] work if they are interested in

learning more about these concepts.

12

Figure 2.7: A state machine for a typestate analysis that tracks the state of
an abstract File type.

Table 2.1. These types of instructions are similar to the rules that IFDS

consumes, and therefore any program that may be converted into an IFDS-

compatible representation is also compatible with SPDS. However, converting

any non-trivial input language into SPDS rules requires dramatically simpli-

fying the input.

The authors of SPDS provide two query engines: Boomerang, which

uses SPDS, and IDEal, which uses WPDS. Boomerang can either make

forward or backward queries. Forward queries ask Boomerang to solve simple

dataflow questions such as, “does variable x flow to line 10?” Backward queries

ask Boomerang from where values flow, such as, “does variable x come from

the return value of function foo?” IDEal utilizes Boomerang to answer

dataflow queries, but also enables tracking value states. Therefore, IDEal can

answer questions such as, given a variable f that holds a file resource, “what

is the state of f at line 11—is the file resource open or closed?” Boomerang

is good for answering taint analysis queries, whereas IDEal enables a more

sophisticated kind of analysis called typestate analysis.

2.4 Typestate Analysis

A typestate analysis tracks the state of an object of a specific type to determine

various properties about the object, usually at the time of its destruction.

SPDS provides support for typestate analysis using IDEal/WPDS. To define

such an analysis, we must first define a finite-state machine (FSM) and the

identify the type that the analysis is interesting in tracking. The FSM tracks

13

the state of any instantiations of the selected type, and the state may change,

depending on the FSM, if a specified method is called on the object.

For instance, we may want to track the state of file resources in a program.

We can define a typestate analysis such that if a user opens a file resource

for instance and assigns it to a variable, the analysis will begin to track the

state of this variable. Figure 2.7 shows what a FSM for such an analysis could

look like for a generic file resource type File that has init(), open() and

close() methods. When a program creates an object of type File, it will call

the init() method and the FSM will put the object into the init state. This

state is shown as a double-circle, which means that it is an accepting state. If

the program destroys/deallocates the variable and it is in an accepting state,

then the analysis will not report an error. If the program calls the open()

method on the variable, then its state transitions to the opened state and is

no longer in an accepting state. If the program never calls close() on the

variable to put it into the closed state (an accepting state) after putting it

into the opened state, then the analysis will report an error.

IDEal’s typestate analysis is very useful for constructing analyses that go

beyond the capabilities of taint analysis. For instance, constant propagation

is a classic non-distributive problem that cannot be solved using taint analysis

because it requires tracking the value of variables in addition to their dataflow,

but IDEal is able to solve it [43]. Furthermore, we can use typestate analysis

in conjunction with taint analysis to craft more sophisticated analyses. For

instance, perhaps we want to add an extra transition condition to the FSM

by checking if the method called on an object has a tainted argument or even

has a specific state itself. Various APIs often construct and configure objects

using multiple method calls. We might want to make sure that the object is

built correctly by checking the method arguments. If a program calls a method

on the object with a tainted argument, we can put the object into an error

state. Such an analysis would not be possible with a simple taint analysis

unless we use a sequence of queries to effectively transfer taintedness from the

method argument to the object, but that is in fact similar to what IDEal does

internally.

14

2.5 Swift

Swift [4] first appeared in 2014 and quickly became Apple’s premier language

for macOS, watchOS, and iOS development. The language is multi-paradigm,

meaning that it has both functional and object-oriented elements. Swift fea-

tures protocols, which are similar to interfaces and traits, that allow for robust

class extensibility. Swift also has interoperability with Objective-C to sup-

port Objective-C libraries. The Swift compiler compiles Swift to the Swift

Intermediate Language (SIL), and then finally to LLVM [39].

SIL is a linear, pointer-based, and lower-level language that features over

180 instructions. In SIL, a module contains all information pertaining to a

compilation unit. A compilation unit typically contains an entire program,

such as a library or the user’s project code. The information inside a module

includes global variables, functions, and lookup tables for dynamic dispatch.

Functions and methods are both located at the top-level in a module—there

are no explicit classes in SIL. Rather, SIL uses lookup tables, called value (for

classes) and witness tables (for protocols), to resolve dynamic dispatch calls.

Every function in SIL consists of basic blocks. A block consists of operator

instructions necessarily followed by a single terminator instruction. An op-

erator instruction operates on data, whereas a terminator is responsible for

transferring execution flow, either interprocedurally or intraprocedurally.

Because Swift ultimately compiles to LLVM, SIL is a lower-level language

closer to LLVM than it is to Swift. It manually handles memory semantics,

such as allocation, deallocation, and reference counting. SIL’s types consist

of Swift, SIL, and Objective-C types, making its type system complex and

requiring a lot of type conversions. SIL also makes heavy use of pointers, and

uses function pointers for every function call.

Despite its low-level complexity, SIL’s dataflow semantics are fairly straight-

forward and much of the low-level semantics can be ignored for static analysis,

making SIL an excellent analysis target. SIL is a better candidate for static

analysis than Swift because, while Swift is a rapidly evolving language and its

AST is always changing, SIL generally receives less drastic changes and there-

15

fore an analysis that targets SIL is more maintainable. SIL is also already

in an expressionless (linear) form, and therefore the dataflow of instructions

can be assessed individually. Lastly, the Swift compiler outputs SIL for entire

modules, removing the need to resolve types and imports across multiple files.

16

Chapter 3

The SWAN Framework

In this section, we discuss the SWAN framework and most1 of its primary

components in detail. First, we provide an overview of the framework and in-

troduce its components and how they are related. Then, we present a detailed

discussion of each component in subsequent sections.

3.1 Overview

Figure 3.1 shows the general workflow of the SWAN framework. First 1 , a

Command-Line Interface (CLI) application, swan-xcodebuild or swan-swiftc,

builds an Xcode [7] project (or single Swift file) and dumps the SIL represen-

tation of the built program to a directory, called swan-dir A by default.

Then, SWAN processes the SIL files B inside of swan-dir using the follow-

ing steps. SWAN parses the SIL using its SIL parser 2 and saves the SIL into

data structures that capture the SIL format. Next, SWAN converts the SIL

into raw SWAN InteRmediate Language (SWIRL) (also called Swirlraw) 3 .

This representation reduces the 163 SIL instructions that SWAN supports2

into 26 Swirlraw instructions. SWAN then converts Swirlraw into Swirlcan

(SWIRL’s canonical form) 4 , which has 17 instructions. This step runs mul-

tiple passes on the Swirlraw to achieve its canonical form. Internally, SWAN

uses the SilParser for step 2 , SwirlGen for step 3 , and SwirlPass for

step 4 . SWAN finally converts the Swirlcan into SPDS rules 5 . This is a

1We discuss SWAN’s call-graph construction in Chapter 4 and analyses in Chapter 5.
2SWAN does not support all SIL instructions because many of them are not in use or

never appeared in our testing.

17

Figure 3.1: The general workflow of SWAN.

one-to-one conversion because every Swirlcan instruction corresponds to an

SPDS rule.

From this point, the user can determine what SWAN will do. If the user

wants to run a client analysis, SWAN will first need to generate a call graph.

SWAN provides multiple call graph construction algorithms from which the

user can choose. Once SWAN builds a call graph 6 , the user can run a

client analysis by specifying the type of analysis and providing an analysis

configuration file C . Alternatively, the user can use a built-in analysis that

SWAN provides, such as the Cryptographic API misuse analysis. SWAN writes

analysis results back to the swan-dir, where the user can view them D .

A SWAN distribution comes with the swan-xcodebuild and swan-swiftc

CLI executables. The distribution also comes with a driver.jar file that

executes steps 2 to 7 , which the user must run using a JVM. Therefore,

using the command line, analyzing a Swift program with SWAN is a two-step

process. We leave it up to the user to add a third step that consumes the

results D , such as a program that can display the results to the user within

their integrated development environment (IDE). We have explored what a

user interface (UI) for SWAN could look like in other work [60].

18

3.2 Building Xcode Projects and Dumping SIL

An Xcode project is the most common Swift project format. Apple provides

two methods for building Xcode projects. The first method is to open the

project using the Xcode IDE and build it via Xcode’s UI. This approach is not

favourable for external tool integration, such as SWAN, because Xcode does

not feature plugin support or any way to extract build information automati-

cally.

Apple also provides a CLI application called xcodebuild that can build

Xcode projects without having to use the Xcode IDE. The user typically only

needs to provide the application with two options to build their project: a

-project argument pointing to the .xcodeproj file (or -workspace pointing

to the .xcworkspace file) and a -scheme (or -target) argument specifying

which build scheme or target to build. For SWAN, this approach is preferable

because it does not require having to launch the IDE to configure the build set-

tings and build the project. Therefore, we wrote a wrapper for the xcodebuild

application called swan-xcodebuild, which is itself written in Swift. The user

runs swan-xcodebuild almost3 identically to how they would normally run

xcodebuild. The wrapper gives xcodebuild additional options that allow

swan-xcodebuild to extract SIL code from the Swift program. Specifically,

giving xcodebuild the following options will print SIL code for every program

module and with source information to the build output log:

OTHER SWIFT FLAGS=‘-Xfrontend -gsil

-Xllvm -sil-print-debuginfo

-Xllvm -sil-print-before=SerializeSILPass’

Apple developed SIL to be an internal IR, and Apple does not make a

program’s SIL easily accessible to the user. However, by using these options

we are able to obtain the SIL code for an Xcode project. During compilation,

xcodebuild will write the SIL code to the build output and swan-xcodebuild

will extract the SIL from the output. The wrapper does this by identifying

3The user must precede their xcodebuild arguments with ‘--’ because any arguments
before ‘--’ are specific to swan-xcodebuild, such as --swan-dir which specifies the name
of the output directory (swan-dir by default).

19

when a module (or “compilation unit”) is being compiled by the Swift compiler,

and then it extracts any SIL code that follows, thereby dividing the build

output into multiple SIL programs. The wrapper will then write the SIL

programs to the swan-dir directory as individual files.

3.2.1 Building Single Swift Files

SWAN also provides a wrapper for swiftc called swan-swiftc that can dump

SIL for a single Swift file with no external dependencies. The user runs

swan-swiftc similarly to how they would normally run swiftc to compile

a single Swift file. The wrapper calls swiftc with the same additional options

that swan-xcodebuild gives xcodebuild, but also gives the compiler frontend

the -emit-sil option, and then writes the captured SIL to the swan-dir.

While typically not very useful to users of SWAN, swan-swiftc proves

very useful when building a test suite with many Swift files, each testing a

specific language feature. Therefore, SWAN uses this wrapper extensively for

regression testing, which we discuss in Section 6.4.

3.2.2 Swift Package Manager

Many Swift apps use the Swift Package Manager (SPM) [3] instead of the tra-

ditional Xcode project or workspace format. It is possible to also dump SIL for

SPM applications by editing the SPM project’s Package.swift configuration

file. Setting the swiftSettings.unsafeFlags field, for each build target, to

the same additional options that swan-xcodebuild gives to xcodebuild will

dump SIL to the build output during compilation. However, we have found

that doing so is unstable because its success varies depending on the oper-

ating system, installed Swift/Xcode version, and the swift-tools-version

specified at the top of the Package.swift file. Furthermore, modifying a

project’s configuration file is not ideal. Instead, the user can generate an Xcode

project for an SPM application by running the command, swift package

generate-xcodeproj. Then, the user can proceed with using SWAN normally.

Alternatively, XcodeGen [64] can generate an Xcode project for multiple types

of folder structures and project specifications.

20

3.3 Parsing SIL

SWAN’s SIL parser (internally called SilParser) was originally a replica of

Swift for TensorFlow’s4 [58] SIL parser. TensorFlow implemented their SIL

parser in Swift and we replicated the parser in Scala, the primary language

in which SWAN is written.5 However, their parser only supports 49 instruc-

tions [57] (SilParser supports 163), is largely incomplete, and has numerous

parsing issues, such as not being able to robustly parse SIL types. Therefore,

Swift for TensorFlow’s parser was only a starting point for SilParser.

SIL is a linear, assembly-like language, with no expressions, whose general

structure is easy to understand. SIL has functions, basic blocks, instructions,

and some additional information, such as witness and value tables. However,

certain SIL components are challenging to parse, such as SIL types, which

make up a significant part of SIL code, and the format of instructions. The

biggest hurdle in writing a parser for SIL is the lack of consistent documen-

tation. While SIL’s documentation is extensive, it is not comprehensive and

is often not up-to-date. Therefore, much of SilParser’s implementation is

the result of reverse-engineering, ad hoc fixes, trial and error testing, and in-

vestigating Apple’s SIL parser, which was often not congruent with their own

documentation and seemingly ad hoc itself.

SilParser roughly follows the form of a recursive descent parser. How-

ever, we have optimized SilParser to not require backtracking except in one

case where SilParser checks for a type definition optionally defined in a

comment before a function definition. Consequently, SilParser backtracks

at most once per function definition and is largely a predictive parser. SIL has

a simple structure and its instructions do not use expressions, and therefore

it is usually very clear what tokens to expect next when parsing, for instance,

an instruction. We designed SilParser to immediately capture information

into structures that represent the SIL code. Therefore, SilParser does tok-

4Swift for TensorFlow is now defunct.
5In fact, the primary motivation for using Scala for SWAN was that Swift’s enums, which

Swift for TensorFlow’s SIL parser uses extensively, could be elegantly converted to Scala
case classes.

21

enization and syntactic analysis in one step.

SilParser is easy to maintain and update to support Apple’s changes

to SIL. Unlike Swift, which constantly receives new significant updates, SIL

does not experience dramatic changes in its language. Typically, Apple rarely

changes an instruction but instead removes or adds instructions. If Apple

removes an instruction, we do not remove support for it to keep backwards

compatibility with older Swift versions. If Apple adds an instruction, we look

at its documentation and add parsing support for it.

3.4 Translating SIL to SWIRL

SPDS expects a simple, reference-based language, which we refer to as “SPDS

rules.” The rules include assignment, field read/write, return, and func-

tion/method call rules (or instructions). On the other hand, SIL is a pointer-

based language and features closures, coroutines, basic block arguments, and

complex instructions, none of which SPDS supports. SWAN supports 163 of

SIL’s instructions, and therefore SWAN needs to dramatically simplify its in-

put SIL programs for them to be analyzable by SPDS. For this reason, we

developed the SWAN InteRmediate Language (SWIRL) to serve as an inter-

mediate language between SIL and SPDS rules. Once SWAN has translated

SIL to SWIRL, it can convert SWIRL to SPDS rules to enable analysis on the

input program.

SWAN translates SIL into SWIRL in two stages, SwirlGen and Swirl-

Pass, which generate raw SWIRL (hereafter Swirlraw) and canonical SWIRL

(hereafter Swirlcan), respectively. SwirlGen generates 26 instructions, and

SwirlPass simplifies those instructions into 17 instructions, resulting in SWIRL’s

canonical and final form. Table 3.1 presents all SWIRL instructions. The

“Type” column of indicates whether an instruction is an operator, which is a

non-control-flow instruction that typically operates on some data, or a termina-

tor, which is a control-flow instruction that is necessarily the last instruction

of a basic block. The table also indicates whether the instruction exists in

SWIRL’s raw and canonical forms. Many raw instructions remain unchanged

22

Table 3.1: SWIRL’s instructions.

Instruction Type Raw Canonical

new operator X X

assign operator X X

literal operator X X

dynamic ref operator X X

builtin ref operator X X

function ref operator X X

apply operator X X

singleton read operator X X

singleton write operator X X

field read operator X X

field write operator X X

unary op operator X ×

binary op operator X ×

cond fail operator X X

switch enum assign operator X ×

switch value assign operator X ×

pointer read operator X ×

pointer write operator X ×

br operator X ×

br (no arguments) terminator × X

br if terminator X ×

br if (no arguments) terminator × X

cond br terminator X ×

switch enum terminator X ×

return terminator X X

unreachable terminator X X

yield terminator X X

23

in Swirlcan. However, not all raw instructions are present in the canonical

form because SwirlPass simplifies them into other instructions, and Swirl-

Pass converts some raw instructions into their canonical form, such as br and

br if.

The new instruction allocates a new value (either on the stack or heap),

assign provides regular assignment semantics, and literal creates a value

containing a literal, which can either be an integer, float, or string. The

instructions dynamic ref, builtin ref, and function ref are all used to

reference a function. Just like in SIL, a SWIRL program must first refer-

ence a function and then apply that function reference using the apply in-

struction to call referenced function. Dynamic ref references a method of

an object, builtin ref references a SIL builtin function but behaves ex-

actly the same as function ref, which references a function normally. The

singleton read and singleton write instructions are for reading and writ-

ing to global data, and field read and field write provide access to an

object’s fields. Unary op and binary op provide operation semantics, where

unary op takes a single operand and an operation, and binary op takes two

operands and an operation. However, the operation given is irrelevant for

SWAN’s dataflow because all operands will flow to the result. In SIL, the

cond fail produces a runtime failure if the given operand (an integer) is

equal to one. We retain this instruction in SWIRL for completeness, but it

has no affect on dataflow because SWAN does not yet have any special han-

dling for runtime failures. SwirlGen translates switch enum assign and

switch value assign verbatim from SIL’s select enum and select value

instructions, respectively, because they are too complex to simplify into other

instructions at the SwirlGen stage. The pointer read and pointer write

instructions provide pointer semantics and are similar to SIL’s load and store

instructions, respectively.

The br, br if, cond br, and switch enum instructions all affect intra-

procedural control-flow by branching to other basic blocks. SwirlGen trans-

lates the cond br instruction verbatim from SIL’s cond br instruction, but is

later broken down into br and br if instructions. The return instruction

24

provides regular return semantics. In SIL and SWIRL, a return instruction

always requires an operand. Similarly to cond fail, unreachable is included

from SIL for completeness, but SWAN ignores this instruction and it has no

effect. Lastly, SIL uses yield for coroutine semantics and this instruction tem-

porarily transfers the program’s execution to the calling function. SwirlGen

retains these coroutine semantics.

3.4.1 SWIRLGen

Swirlraw can be conceptualized as being a simplified form of SIL, but without

any instructions that we have determined do not mutate or move data that is

relevant to dataflow analysis, such as low-level memory management instruc-

tions. For instance, SIL has various instructions that destroy or deallocate data

in memory, such as destroy addr and dealloc stack, and SwirlGen will

ignore those. While some analyses may be interested in such memory seman-

tics, SWAN does not support these analyses. Ignoring these semantics does

not compromise the soundness of dataflow propagation in SWIRL. However,

SWAN’s pointer analysis does not take advantage of these memory semantics,

which may negatively impact its precision. For example, if a variable’s data is

destroyed and then written to again, the pointer analysis will not know that

the old data is gone, and will therefore still say that the variable points to two

values.

SwirlGen preserves all of SIL’s structural and control-flow elements, such

as functions and basic blocks, including their arguments. Figure 3.2 shows

a SIL program and its corresponding Swirlraw representation. The SIL

program has function called foo (line 56) containing multiple basic blocks

(lines 57, 61 and 65), with arguments (variables %0, %2, and %4), and condi-

tional control-flow (line 60). The Swirlraw translation of the SIL program,

beginning on line 71, has an identical structure with only slight differences

in the instructions. For instance, SwirlGen translates the SIL alloc stack

instruction to a SWIRL new instruction (line 58 corresponds to line 73).

In SIL, the result type of an operator instruction is not always clear from

the plain-text representation of the instruction. For instance, %1 on line 58 is

25

55 // ---- SIL ----

56 sil @foo : ($Builtin.Int1) -> () {

57 bb0(%0 : $Builtin.Int1):
58 %1 = alloc_stack $B
59 // write something to %1

60 cond_br %0 : $Builtin.Int1 , bb1 (%1), bb2 (%1)

61 bb1(%2 : $*B):
62 // do something with %2

63 %3 = tuple ()

64 return %3 : $()
65 bb2(%4 : $*B):
66 // do something with %4

67 %5 = tuple ()

68 return %5 : $()
69 }

70 // ---- Raw SWIRL of the above SIL ----

71 func @`foo` : $`($Builtin.Int1) -> ()` {

72 bb0(%0 : $`Builtin.Int1`):
73 %1 = new $`B`, $`*B`
74 // write something to %1

75 cond_br %0, true bb1 (%1), false bb2 (%1)

76 bb1(%2 : $`*B`):
77 // do something with %2

78 %3 = new $`()`, $`()`
79 return %3

80 bb2(%4 : $`*B`):
81 // do something with %4

82 %5 = new $`()`, $`()`
83 return %5

84 }

Figure 3.2: A code example showing how SwirlGen preserves the structure
of a SIL program in Swirlraw.

85 SIL: %1 = init_enum_data_addr %0 : $*U, #U.DataCase!enumelt

86

87 SWIRL: %1 = new $`Any`, $`*Any`
88 %new = field_read [alias %1] %0, data , $`Any`
89 pointer_write %new to %1

Figure 3.3: How SwirlGen translates SIL’s init enum data addr instruction
to Swirlraw.

26

of type $*B (a pointer), not $B. In SWIRL, all result types of operators are

explicit, as can be seen on line 73, where both the allocation type, $B, and

the result value type, $*B, are specified. When the result type is unknown

from the SIL code (not all type information is present in plain-text SIL),

SwirlGen will use the type Any (or *Any for pointers). For instance, SIL’s

init enum data addr instruction returns the pointer of an enum’s underlying

data, but SwirlGen does not know the type of the enum’s data, so the

result will be of type *Any. Figure 3.3 shows how SwirlGen translates this

SIL instruction to SWIRL. This figure also shows a case where SwirlGen

uses SWIRL’s simpler instructions to preserve the semantics of a complex SIL

instruction. SWIRL does not have an instruction that generates a pointer

of an object’s underlying data, mostly because pointer semantics have to be

converted to SPDS’ reference-based semantics later anyway. Therefore, in this

case, SWIRL creates a new pointer (line 87), reads the enum’s data (line 88),

and finally writes the data to the pointer (line 89).

3.4.2 SWIRLPass

SwirlPass produces Swirlcan, which can easily be converted to SPDS rules

for analysis. SwirlPass uses multiple passes to transform Swirlraw so that

it conforms to SPDS rule form (see Section 3.5). These passes include con-

verting pointers to objects/references, canonicalizing Swirlraw instructions,

and removing basic block arguments. SwirlPass does not do all transforma-

tions (passes) at once because some passes depend on others. For instance,

SwirlPass first simplifies complex instructions by breaking them down into

simpler raw instructions. Later, in a separate pass, SwirlPass will convert

these instructions into canonical form, along with all the other instructions.

Pointer to References Conversion

SwirlPass converts pointers to references (or objects) using multiple strate-

gies. The simplest strategy that SwirlPass uses, if the other strategies do not

apply, is to treat pointer reads and writes as field reads and writes. SWIRL’s

pointer read and pointer write instructions are converted to field read

27

and field write instructions, respectively, by treating every pointer as an

object with a single field, which is arbitrarily called value. For example,

pointer write %0 to %1 would be converted to field write [pointer] %0

to %1, value, where [pointer] simply signifies that the field write in-

struction was originally a pointer write instruction.

The Swift compiler automatically generates SIL code, and SIL is a low-level

language. Therefore, much of SIL’s code is motivated by lower-level semantics,

such as memory management. SwirlGen translates SIL to Swirlraw instruc-

tions, which are simpler than SIL’s, and ignores some lower-level semantics.

As a result, Swirlraw pointer usage may seem verbose because the motivation

for the usage of pointers in many instances is gone. To reduce the number of

unnecessary pointer reads and writes (which become field reads and writes in

SwirlPass), and to improve both SWIRL’s readability, which is helpful for

debugging, and SWAN’s pointer analysis performance, SwirlPass will do a

pointer escape analysis and convert pointer reads and writes to assignment

statements when possible. If a pointer never leaves the function and is never

written to a field (i.e., has trivial dataflow), then SwirlPass will conclude

that the pointer can be converted to a regular (non-pointer) value.

SwirlPass’ last strategy for resolving pointers is resolving field aliases.

A field alias maps a pointer to an object and a field name for a field read

instruction. SwirlGen marks some field read instructions as aliasing a

value if the field read result is a pointer which the original SIL program

uses to mutate the data of the object being read. On line 88 in Figure 3.3,

SwirlGen marks the field read instruction as aliasing %1 because it comes

from the init enum data addr instruction, which generates a pointer typically

used for mutating an enum’s data.

Figure 3.4 presents a comprehensive example that demonstrates why field

aliasing is important for preserving dataflow. Lines 91–98 show a program

represented in Swirlraw. Lines 92–94 could be translated from SIL instruc-

tions that return a pointer to an object’s field, such as the aforementioned

init enum data addr instruction (Figure 3.3). In this program, the value %2

is a pointer that initially contains the data of %0’s mydata field (line 93). Then,

28

90 // ---- Raw SWIRL ----

91 bb0(%0 : $Data):
92 %1 = new $`String `, $`*String `
93 %2 = field_read [alias %1] %0, mydata , $`String `
94 pointer_write %2 to %1

95 //...

96 %3 = literal [string] "something", $`String `
97 pointer_write %3 to %1

98 %4 = field_read %0, mydata , $`String `
99

100 // ---- Canonical SWIRL Without Field Aliasing ----

101 bb0:

102 %1 = new $`String `, $`*String `
103 %2 = field_read [alias %1] %0, mydata , $`String `
104 field_write %2 to %1, value

105 //...

106 %3 = literal [string] "something", $`String `
107 field_write %3 to %1, value

108 %4 = field_read %0, mydata , $`String `
109 // %4 != %3, even though they should be equal

110

111 // ---- Canonical SWIRL With Field Aliasing ----

112 bb0:

113 %1 = new $`String `, $`*String `
114 %2 = field_read [alias %1] %0, mydata , $`String `
115 field_write %2 to %1, value

116 //...

117 %3 = literal [string] "something", $`String `
118 field_write %3 to %0, mydata

119 %4 = field_read %0, mydata , $`String `
120 // %4 == %3

Figure 3.4: An example showing why field alias resolution is necessary to pre-
serve data flow in the translation from Swirlraw to Swirlcan during Swirl-
Pass.

the program overwrites %2 with the string “something” on line 97. Because

the field read on line 93 aliases %1, we know that any write to %1 will in fact

write to the mydata field of %0. Therefore, in the original SIL program, we

know that the pointer write on line 97 would overwrite the mydata field of

%0.

Lines 101–108 show the corresponding program in Swirlcan, but without

any field alias resolution. Swirlcan does not have basic block arguments,

which we explain later in this section, but %0 is still present in the pro-

gram. In this case, SwirlGen converts the pointer write on line 94 to

29

a field write on line 115 with the same operands. Semantically, this means

that the field write on line 107 does not overwrite %0’s data. Therefore,

%4 (%0’s mydata) on line 108 would not equal the written string %3. Swirl-

Pass creates a dataflow gap by not correctly translating pointer writes to field

writes.

Lines 112–119 show the result of SwirlPass with field alias resolution. In

this case, SwirlPass translates the pointer write on line 94 to a field write

to %0’s mydata field on line 118 using the field alias information encoded into

the field read instruction on line 114. Therefore, when SwirlPass uses field

alias resolution, there is no gap in dataflow for this simple example.

SwirlPass’ field alias resolution is intra-procedurally limited, meaning it

does not resolve pointer writes to pointers that escape the function or have

otherwise non-trivial dataflow (e.g., writing the pointer to an object and then

later retrieving the pointer from the object). This can create dataflow gaps.

For instance, if the program would pass %2 to another function and that func-

tion would modify the value with a pointer write, that would not affect %0.

However, %2 will still contain %0’s original value, which is written on line 115,

in case the function reads the pointer’s data.

Instruction Canonicalization

When SwirlPass canonicalizes a Swirlraw instruction, it will do one of sev-

eral types of conversions, depending on the instruction. SwirlPass may

simply keep the instruction as is, which is the case for all instructions that

are listed as both raw and canonical in Table 3.1. It will also translate some

instructions into their canonical counterpart, such as br and br if. Lastly,

SwirlPass will decompose complex instructions into simpler instructions,

while preserving their semantics, which it does for all instructions listed in Ta-

ble 3.1 that have a raw representation but no canonical counterpart. For most

complex instructions, this canonicalization requires modifying the structure of

the program.

For example, Figure 3.5 demonstrates how SwirlPass translates the cond br

instruction. SwirlPass decomposes cond br (line 123) by replacing it with

30

121 // ---- Raw SWIRL ----

122 bb0:

123 cond_br %0, true bb1 , false bb2

124 bb1:

125 ...

126 bb2:

127 ...

128

129 // ---- Canonical SWIRL ----

130 bb0:

131 br_if %0, bb1

132 bb0i0:

133 br bb2

134 bb1:

135 ...

136 bb2:

137 ...

Figure 3.5: An example showing how SwirlPass translates the cond br in-
struction from raw to canonical form.

a br if instruction (line 131), which handles the ‘true’ case, and by adding a

new block (bb0i0 on line 132) to the program that contains a br instruction,

which handles the ‘false’ case. The br if instruction will make the program’s

control-flow fall through to the subsequent block (bb0i0) if its operand is false.

Omitting cond br from Swirlcan is a design decision motivated by keep-

ing Swirlcan simple. We would like to minimize the number of instruc-

tions in Swirlcan, especially if we can represent a Swirlraw instruction with

simpler instructions. This type of translation is more dramatic and neces-

sary for complex instructions, especially those with implicit dataflow, such as

switch enum assign and switch value assign.

Basic Block Argument Removal

SIL has basic block arguments to conform to static single assignment (SSA)

form [17], which requires that the program assigns any value exactly once.

However, SWAN’s pointer analysis, SPDS, has no explicit support for basic

blocks with arguments. To adapt Swirlraw to be compatible with SPDS,

SwirlPass must remove basic block arguments (but not the blocks them-

selves). There are at least two approaches to tackle this problem. The first

31

138 // ---- Raw SWIRL ----

139 bb0(%0 : $`Builtin.Int1`, %1 : $`Any`, %2 : $`Any`):
140 cond_br %0, true bb1 (%1), false bb2 (%2)

141 bb1(%a : $`Any`):
142 return %a

143 bb2(%b : $`Any`):
144 return %b

145

146 // ---- Canonical SWIRL ----

147 bb0:

148 %a = assign %1

149 br_if %0, bb1

150 bb0i0:

151 %b = assign %2

152 br bb2

153 bb1:

154 return %a

155 bb2:

156 return %b

Figure 3.6: An example showing how SwirlPass removes basic block argu-
ments from a Swirlraw program.

is to convert basic blocks to functions that take arguments. A SIL program

often has hundreds of basic blocks for a function, and therefore this approach

would bloat the IR with unnecessary functions, which furthermore do not cor-

respond with functions in the original SIL. The second approach is to assign

the value(s) given to the basic block as arguments to the argument values,

and this is what SwirlPass does. While this violates the conditions for SSA,

there is no reason that Swirlcan must conform to SSA form.

Figure 3.6 shows a program similar to the program in Figure 3.5 that uses

basic block arguments when branching using a cond br instruction. Lines 139–

144 show a partial Swirlraw program whose basic blocks have arguments. The

first block (bb0 on line 139) takes three arguments, and the first block’s ar-

guments are always identical to the function’s arguments (the encapsulating

function is not shown in this example). The cond br instruction on line 140

branches to bb1 or bb2, depending on the value of %0. The instruction will give

%1 to the true block %1 as an argument and %2 to the false block. Lines 147–

156 shows the program’s corresponding canonical form. As described earlier

in this section, SwirlPass breaks down the cond br instruction. To remove

32

the need for basic block arguments, SwirlPass adds assign instructions

(lines 148 and 151) before the branch instructions, which assign the original

argument values %1 and %2 to %a and %b, respectively. Consequently, Swirl-

Pass removes the implicit dataflow from cond br operand arguments to basic

blocks receiving arguments present in the original Swirlraw program.

3.5 SPDS Integration

SWAN uses SPDS for its pointer analysis, and therefore SPDS is the backbone

of SWAN’s analyses. Most of SWAN’s architecture serves to convert a SIL

program into a form that is analyzable by SPDS. Once the program is in

Swirlcan form, it is ready to be converted into its final representation: SPDS

form.

It was necessary for us to build our own data types that wrap the SPDS

API’s types because SPDS was originally designed for Java and was not im-

mediately compatible with Swirlcan. We designed these types to be able to

accept Swirlcan, and therefore converting Swirlcan to SPDS form is only a

matter of constructing our SPDS types with the information present in the

Swirlcan representation of the program. Every Swirlcan instruction has

a direct SPDS instruction (or rule) counterpart. SWAN converts Swirlcan

functions to SPDS methods, which each have their own CFG. In SPDS, the

program’s CG is responsible for containing the entire program, and therefore

SWAN will also create an SPDS CG, but the CG will not have any edges until

call-graph construction, which we discuss in Chapter 4.

Control-Flow Graph SwirlPass computes a CFG for every function. A

CFG in SWAN, at the Swirlcan level, encodes intra-procedural6 control-flow

information into a directed graph from basic blocks to basic blocks. We will

refer to this CFG as SwirlCFG. If a block returns a value, SwirlCFG considers

it to be an exit block. One motivation for making Swirlcan simple, especially

its control-flow instructions, is to make SwirlCFG easy to convert to SPDS’

6SWAN computes inter-procedural control-flow information using a CG, which we discuss
in Chapter 4.

33

Figure 3.7: SwirlCFG and SpdsCFG for the Swirlcan program in Figure 3.6
(lines 147–156).

CFG, SpdsCFG. Unlike SwirlCFG, SpdsCFG maps statements to statements

and has no notion of basic blocks. Using SpdsCFG, SWAN knows what state-

ment(s) execute after a given statement. A br instruction, for instance, will

simply have an edge from it to the first instruction in the block it branches

to. Figure 3.7 shows the SwirlCFG and SpdsCFG for the Swirlcan program

in Figure 3.6 (lines 147–156). The SwirlCFG only has edges between blocks,

whereas the SpdsCFG has edges between statements.

3.6 Models

Apple does not provide the source code for its APIs, and therefore Swift’s

standard library [6] consists of black-box functions (i.e., functions with un-

known implementations). In SIL, when the program needs to use one of Swift’s

built-in API functions, it will declare the function signature but provide no

implementation of the function. These API functions provide, for instance,

container operation (for Array, Set, and Dictionary) and string manipulation

34

157 func [model] @`Swift.Array.subscript.getter : (Swift.Int)

-> A` : $`@out τ _0_0` {

158 bb0(%0 : $`*τ _0_0`, %1 : $`Int`, %2 : $`Array <τ _0_0 >`):
159 val = pointer_read %2, $`τ _0_0`
160 pointer_write val to %0

161 return val

162 }

Figure 3.8: An example of SWIRL model for a Swift Array getter function.

functionality. Without the implementation of these functions, SWAN does

not know how the functions affect the program’s dataflow. To remedy this

problem, we had to build hand-crafted models that approximate the dataflow

of Swift’s black-box functions. Currently, these models only cover the most

common functions, the three Swift containers, and many builtin type functions

(e.g., Swift.String and Swift.Array related operations). Most of the Swift

standard library remains not modelled because each model needs to be man-

ually written and tested, thereby requiring significant time. SWAN’s models

are written in Swirlraw, and SWAN parses the models using its Swirlraw

parser.7 SWAN automatically includes the models into the program as a sep-

arate module. If the user wants to use additional models, they simply need to

include their own model (.swift) file in the swan-dir when analyzing their

application.

Figure 3.8 shows SWAN’s model for an Array container’s getter function.

By analyzing how programs use this function, we determined that the array’s

(%2) value at the given index (%1) must be written to the first argument (%0).

Because the return type is τ 0 0 and the array’s type is Array<τ 0 0>, we also

determined that the function must return the array’s value at the given index.

Therefore, we wrote a model to provide the required dataflow between the

argument and return values. SWAN treats all containers, including arrays,

as an object with a single field.8 First, the model reads from the array on

7SWAN does not feature a Swirlcan parser.
8Tracking values inside of arrays requires a sophisticated analysis which we do not sup-

port, but by using a single value for the array that is the union of all values written to the
array, we can still over-approximate the values as long as we do not kill the data inside the
array when writing another value to it.

35

line 159 to the value val, and then the model writes the read value to the first

argument, %0, on line 160, and lastly the model also returns val on line 161.

3.7 Cross-Module Analysis

SWAN allows analyzing multiple modules (i.e., separate programs) simultane-

ously by stitching the modules together before analysis using the Module-

Grouper. SWAN uses multi-threading to parse and translate each module

individually on a separate thread, and then SWAN groups the resulting mod-

ules on the main thread once all threads finish.

Typically, the user’s program will be contained inside one module, and

the other modules will be any libraries that the user’s program requires. If

a module requires a function from another module, it will declare that func-

tion’s signature in the program but will provide no implementation. For such

functions with no implementation, SwirlGen will generate a stub for that

function. The stub allocates a dummy value of the function’s return type

and returns that value. If another module has the implementation for a stub

function, ModuleGrouper will replace the stub with the implementation.

SWIRL has multiple function attributes that annotate a function with

extra information, primarily for debugging purposes. Functions with the

[coroutine] attribute are coroutines with a yield terminating instruction.

The [stub] attribute is for the aforementioned automatically generated stubs.

Functions annotated with the [model] attribute are hand-written models. The

[model override] attribute indicates that a [model] function replaced the

original implementation of the function. Lastly, the [linked] attribute indi-

cates that a stub function was replaced by its implementation (from another

module).

36

Chapter 4

Call-Graph Construction

In this chapter, we describe SWAN’s call-graph construction. We first intro-

duce the challenges that SIL presents for call-graph construction, and then

describe SWAN’s suite of call-graph construction algorithms, namely CHAFP,

VTAFP, and UCG. We discuss their differences in terms of precision with anec-

dotal examples (see Chapter 6.2 for empirical evaluation). Lastly, we discuss

some nuances of our implementation.

4.1 Background

Swift functions and methods are a subset of functions in SIL. A Swift func-

tion or method corresponds to at least one SIL function (except in special

cases such as inlining). Therefore, a call-graph for SIL includes a call-graph

for its Swift source code. SIL has two major features that present a challenge

for call-graph construction, especially when used together: function pointers

and dynamic dispatch. For precise call-graph construction, function pointers

require dataflow analysis, for tracking function pointers through that pro-

gram, and dynamic dispatch requires determining possible resolution types at

a polymorphic call-site. Furthermore, in SIL, dynamic dispatch call-sites also

use function pointers. We will now discuss function pointers and dynamic

dispatch, how they are related in SIL, and how they affect call-graph con-

struction. We will also discuss why existing call-graph construction strategies,

without modification, are insufficient to fully handle these features.

37

163 %0 = func_ref @foo , $T1
164 %1 = apply %0(), $T2

Figure 4.1: A simplified SIL code example demonstrating function pointer
usage.

4.1.1 Function Pointers

Function pointers hold a reference to a function, and they may flow throughout

the program to be called later. To precisely resolve a call-site, a call-graph

construction algorithm must determine which functions a function pointer may

reference. In SIL, this resolution requires determining the allocation sites of the

function pointer for regular (non-dynamic dispatch) call-sites. SIL instructions

that create regular function pointers directly reference the function by its

name, and therefore the algorithm must find where the function pointers were

created. In cases where the function pointer has non-trivial dataflow (e.g.,

passed as an argument to a call), the algorithm requires a pointer analysis.

The precision of the pointer analysis thereby also determines the precision of

the call-graph. For instance, SIL may write function pointers to fields. If

the algorithm’s pointer analysis is field-insensitive, the call-graph will be less

precise.

SIL uses function pointers by first referencing a function, writing the ref-

erence to a value, and then later applying that value at a call-site. Figure 4.1

demonstrates that case, where the program references a function called foo

(line 163) and then applies the function pointer (line 164). $T1 represents the

type of variable %0, and $T2 represents the type of the returned value %1. Sim-

ilar to this example, most SIL function reference applications typically occur

immediately after the function reference instruction. SIL also allows references

to be passed as an argument to a function or a basic block just like any other

value.

Table 6.2 lists our benchmark apps and their characteristics. In our bench-

mark apps, on average, 0.40% of non-dynamic function pointers have non-

trivial dataflow. This value may seem insignificant, but SIL uses function

38

165 protocol Parent { func foo() }

166 class ChildA : Parent { func foo() { ... }

167 class ChildB : Parent { func foo() { ... }

168

169 func bar(p: Parent) {

170 if (...) { p = ChildA () }

171 else { p = ChildB () }

172 p.foo() // which foo is called?

173 }

Figure 4.2: A generic Swift code example demonstrating polymorphic method
calling.

174 protocol Parent { func foo() }

175 class ChildA : Parent { func foo() {} }

176 ChildA ().foo()

Figure 4.3: A Swift code example with a class, protocal, and method call
usage.

pointers for nearly every function call, averaging 8,265 function pointers per

benchmark (for both trivial and non-trivial dataflow). SIL also uses function

pointers for low-level procedures that it frequently uses and which would not

be present in the source Swift code (e.g., auto-generated deallocators, setters,

and getters), thereby increasing the amount of function pointers. Further-

more, 30.78% of all dynamic function pointers in our benchmark apps have

non-trivial dataflow. Therefore, resolving function pointers for SIL programs

is necessary to construct a sound call-graph.

4.1.2 Dynamic Dispatch

Swift is an object-oriented language (OOL) and features polymorphic call-sites.

This type of semantic is often called dynamic dispatch. Figure 4.2 demon-

strates how a variable may be of two different sub-types of the same parent type

at runtime. In such cases, a sound call-graph must model the call-site p.foo()

(line 178) to target potentially both ChildA.foo() and ChildB.foo().

Lookup Tables To resolve dynamic dispatch, SIL uses witness tables for

protocols and value tables for classes. These tables contain useful class in-

39

177 %5 = class_method %4 : $ChildA , #ChildA.foo : <type

x>, $<type y>

178 %6 = apply %5(%4) : $<type y>

179 [...]

180 sil_vtable ChildA {

181 #ChildA.foo: <type x> : @$ <mangled > // ChildA.foo()

182 [...]

183 }

Figure 4.4: A simplified SIL code example corresponding to the Swift program
in Figure 4.3.

formation for resolving dynamic calls, such as which methods belong to a

class and any inherited methods from its super-classes. SIL dynamic dispatch

instructions, such as class method and witness method, use virtual lookup

tables to resolve method calls at runtime. Figure 4.3 shows a program where

class ChildA extends protocol Parent and implements method foo. The pro-

gram creates a new ChildA object and calls foo on it (line 176). Figure 4.4

shows the program’s corresponding partial SIL code. Similar to a regular

function call, SIL first references a function or a method and then applies it.

The class method instruction (line 177) finds the corresponding value table

(line 180) based on the dynamic type of its operand %4, which is ChildA, and

then looks up the given index, #ChildA.foo, in the table. Line 181 shows

the corresponding value table entry using the mangled name of the function.

Thus, the call-site on line 178 resolves to ChildA.foo() at runtime.

SIL uses witness tables for generic type method dispatch (e.g., protocols).

Method calls on protocol types require witness tables to determine which

method to resolve to and use the witness method instruction. The SIL se-

mantics for such cases are similar to how a function pointer is referenced and

called in Figure 4.4 on line 177 and line 178.

Function Pointers Dynamic dispatch in SIL utilizes function pointers. So

far, we have only given intra-procedural (trivial) examples of function pointer

usage. However, SIL often uses function pointers with non-trivial dataflow that

requires a dataflow analysis to resolve. Therefore, dynamic dispatch resolution

40

184 sil_vtable ChildA {{

185 #ChildA.foo: (A) -> () -> () : @$ <mangled > //

ChildA.foo()

186 }

187 sil_vtable ChildB {{

188 #ChildB.foo: (B) -> () -> () : @$ <mangled > //

ChildB.foo()

189 }

190 sil_witness_table hidden ChildA: Parent module test {

191 // protocol witness for Parent.foo() in conformance

ChildA

192 method #Parent.foo: <type > : @$ <mangled >
193 }

194 sil_witness_table hidden ChildB: Parent module test {

195 // protocol witness for Parent.foo() in conformance

ChildB

196 method #Parent.foo: <type > : @$ <mangled >
197 }

Figure 4.5: A simplified SIL value and witness tables that SWAN generates
for the program of Figure 4.2.

for SIL call-graph construction is a two step process: (1) find the allocation

sites of the function pointer at a call-site, and (2), for each allocation site (i.e.,

dynamic dispatch instruction), determine the types of the operand (or, for a

less precise solution, the instantiated types at that program point).

Dynamic Dispatch Graph SWAN generates a Dynamic Dispatch Graph

(DDG) for resolving a dynamic call-site given the call-site index. Whenever a

program makes a dynamic call, it looks up the statement’s call-site index along

with the statement’s operand type to resolve the call. A DDG is essentially

a traditional type hierarchy tree that includes methods and call-site indices,

and this statically emulates SIL’s runtime lookups. To build a DDG, SWAN

reverse-engineers SIL value and witness tables. As an example, Figure 4.5

shows the corresponding value and witness tables (without init and deinit

entries) for the classes ChildA and ChildB from Figure 4.2, and Figure 4.6

shows the DDG for that program. SWAN’s call-graph construction algorithms

use the DDG to find which methods a dynamic reference may resolve to, and

VTAFP and UCG can further filter these methods with type information.

To handle value tables, SWAN creates nodes for all indices (#ChildA.foo

41

Figure 4.6: A DDG for the Swift program of Figure 4.2.

and #ChildB.foo), methods (ChildA.foo() and ChildB.foo()), and classes

(ChildA on line 184 and ChildB on line 187). SWAN then adds edges from

indices to methods and from methods to classes. While not shown in the

example, in the case of inheritance, a value table may have methods from

other types. In such cases, SWAN adds nodes for the other types. SWAN

adds an edge from these types to the type indicated in the value table, thereby

inferring type inheritance.

Handling witness tables is more complicated because they may have mul-

tiple types of entries. For this example, we infer type inheritance from the

witness table definition (e.g., sil witness table hidden ChildA: Parent

module test). Therefore, we create nodes for the types involved and add

edges between them (Child1→Parent from line 190 and Child2→Parent

from line 194). Lastly, SWAN creates nodes for the method table entry func-

tions and indices and draw edges between them and the class from the table

definition.

4.2 Algorithms

In this section, we describe SWAN’s suite of call-graph construction algo-

rithms. The algorithms are: CHAFP and VTAFP, variants of CHA and VTA,

respectively, that handle function pointers, as well as UCG, which simultane-

ously handles function pointers and dynamic dispatch more precisely. We first

42

describe these algorithms and then demonstrate the differences between them

using several code examples. We later evaluate these algorithms in Chap-

ter 6.2.

4.2.1 CHAFP

Because traditional CHA does not resolve function pointers, we present CHAFP,

our adaptation of CHA, which uses signature matching to resolve call-sites with

non-trivial function pointers. To resolve a call-site, CHAFP looks at the type

signature of a call-site and then resolves that call-site to all functions with the

same type signature. This resolution results in a large number of call-graph

edges, especially for common type signatures such as (Bool)→(). Neverthe-

less, this strategy soundly over-approximates function pointers and aligns with

the sound but imprecise results of traditional CHA.

4.2.2 VTAFP

Traditional VTA can be described as a pointer analysis because VTA resolves

the types of values by tracking their dataflow back to their allocation site,

where VTA can determine their type. Because VTA does not resolve function

pointers, we present VTAFP, an adaptation to VTA [51] that, in addition to

the original algorithm, resolves function pointers by utilizing VTA’s pointer

analysis. Similar to the original VTA algorithm, VTAFP starts with a con-

servative call-graph produced by CHAFP and then prunes that graph. In

addition to resolving calls based on variable type, VTAFP also tracks function

pointer usages back to their allocation sites to resolve them. Because the ini-

tial graph is highly imprecise and VTAFP is a pruning algorithm (that is, a

non-optimistic algorithm that removes edges rather than adds edges), VTAFP

may significantly over-approximate the call-graph.

VTAFP is field-based (i.e., object-insensitive) and, therefore, does not dis-

tinguish between different objects and treats all fields as belonging to one

instantiation of a type. VTAFP’s object-insensitivity may lead to imprecision

if the program uses multiple objects of the same type in the same place be-

cause VTAFP would treat these multiple objects as the same object. Storing

43

function pointers to fields, particularly to pointers (i.e., an object with a sin-

gle field), is common in SIL due to its low-level nature and heavy usage of

pointers. VTAFP is also flow-insensitive, meaning that statements in a block

after a call may affect the types VTAFP resolves for that call. While flow-

insensitivity may lead to imprecision in the context of a taint analysis, it is

less likely to lead to imprecision for VTAFP. Flow-insensitivity may cause im-

precision if the program overwrites values, but SIL is SSA-compliant (i.e., SIL

programs do not overwrite values). Any value overwrites are only introduced

by SwirlPass to resolve basic block arguments. SWAN’s taint tracking uses

a different, more precise pointer analysis, and therefore any extra edges that

VTAFP produces are unlikely to lead to imprecision in SWAN’s taint analysis.

4.2.3 UCG

UCG is a Kleene-style worklist algorithm that collects instantiated types and

iteratively and optimistically adds edges to the call-graph. UCG uses two

types of pointer analyses: an on-demand pointer analysis for resolving function

pointers, and an optional flow-based pointer analysis for pruning instantiated

types. By default, UCG uses SPDS [48] queries for the on-demand pointer

analysis and VTAFP as the flow-based pointer analysis for pruning instantiated

types. However, these pointer analyses can be swapped for other on-demand

or flow-based pointer analyses if desired.

UCG consists of the following components:

• The instantiated types component goes through all reachable parts of

the program and collects types created by the program.

• The function pointer resolution component queries the on-demand pointer

analysis to resolve function pointer edges.

• The dynamic dispatch component optionally queries the flow-based pointer

analysis to resolve dynamic dispatch edges.

44

Algorithm 1 Compute UCG Call Graph

1: Input
2: – g is the initial Call Graph without any edges
3: – d is the Dynamic Dispatch Graph
4: procedure main(g, d)
5: Let q be a map of queried call-sites to their function ref alloc sites
6: for e ∈ g.entryPoints() do
7: Let w be a worklist of all the blocks of e
8: Let out be a map from blocks to sets of instantiated types (bit

vectors)
9: Let procin be a map from functions to sets of instantiated types (bit

vectors)
10: Let ret be a map from functions to sets of blocks
11: Let seen be a set of blocks
12: Add e to w
13: processWorklist(w, out, procin, ret, seen, q, g, d)

Type Propagation

This component of our algorithm is a fix-point style worklist algorithm that

collects and stores an out-set of instantiated type for each block and an in-set

of instantiated types for each method. UCG starts by adding the blocks of an

entry point into its worklist. UCG then processes all blocks in the worklist,

adding blocks to it by following intraprocedural and interprocedural edges.

UCG repeats the process until it processes all entry points.

Algorithm 1 shows the main procedure of UCG, which takes in a call-

graph g, to which it adds edges, and a DDG d. A DDG enables UCG to find

potential resolutions of a dynamic dispatch function reference. For each entry

point, UCG calls processWorklist() with a set of arguments: the worklist

containing the basic blocks of the current entry point (w), a map of block out-

sets of instantiated types (out), a map of method in-sets of instantiated types

(procin), a map of methods to their return call-sites (ret), a map of blocks to

successor blocks (ibs), a set of blocks (seen), and a map of call-sites to pointers

that flow to their function references (q).

The map out stores a conservative set of instantiated types at the end of the

block in any instance of the program. The map procin stores a conservative set

of instantiated types at the beginning of a method in any instance of the pro-

45

gram. If the algorithm adds a new value to the block’s outset in out, then the

successors of the block, both intraprocedural and interprocedural, were previ-

ously processed with an under-approximated input set of instantiated types.

That is, there is now new type information available to the successors. There-

fore, UCG needs to recompute their call-graph edges and out-sets. Similarly,

if UCG adds types to a method’s in-set in procin, UCG needs to revisit the

blocks of the method. The map ret tracks interprocedural control-flow edges.

The parameters seen and q are relevant in other parts, which we discuss later

in this section.

Algorithm 2 illustrates how UCG processes an item from its worklist. UCG

first pops a block c from the worklist and collects an initial set b of instantiated

types from c’s intraprocedural predecessors (Lines 14–18). This set b represents

all instantiated types that UCG knows of thus far and that the current block

c begins with. The set b does not necessarily contain all instantiated types

(unless a fix-point has been reached) because UCG may not have traversed all

of the block’s predecessors yet. UCG gathers these types by looking at the out-

sets of all of c’s predecessors and aggregates them into b. Furthermore, if c is

the entry point of a method (i.e., the first basic block), UCG adds the in-set of

the method to b (Line 20). UCG does not track interprocedural predecessors,

but instead uses an in-set in procin to track the instantiated types that would

appear from interprocedural control-flow.

UCG then goes through all operator statements in the block c, in the

order of their execution, adding any new instantiated types to b (Line 24). If

UCG finds a call-site, it gathers the targets for that call-site using getTargets

(Line 26), which uses either the DDG or the on-demand pointer analysis to find

possible targets. For each target, UCG updates the return sites (i.e., the procin

in-sets) and the set of instantiated types after the return from possible calls

(line 29). The call to invalidateCacheandRevisitSuccessors (Line 31) is

part of the function pointer resolution component of UCG, which we describe

later in this section.

46

Algorithm 2 Process Worklist of Blocks

1: Input
2: – w is a worklist of blocks with unique elements
3: – seen is a set of seen blocks
4: – out is a mapping from blocks to bit vectors
5: – procin is a mapping from functions to bit vectors
6: – ret is a mapping from functions to blocks (return sites as successors)
7: – q is a map of seen call sites, that require queries, to their alloc sites

(query cache)
8: – g is the call-graph
9: – d is the DDG

10: procedure processWorklist(w, in, out, procin, ret, q, g, d)
11: while |w| > 0 do
12: c← w.pop()
13: Let b be a set of instantiated types
14: for pred ∈ c.preds() do
15: if pred ∈ out then
16: b← b ∪ out[pred]
17: else
18: out[pred]← ∅
19: if c == m.firstBlock() and m ∈ procin then
20: b← b ∪ procin[m]

21: seen← seen ∪ b
22: for o ∈ c.operators() do
23: if o is an allocation statement then
24: b← b ∪ o.type()
25: else if o is a call site then
26: targets← getTargets(o, b, g, d, q)
27: for t ∈ targets do
28: Let added = addEdge(o, t, g)
29: processTarget(t, c, b, w, procin, out)
30: if added and t.entryBlock() ∈ seen then
31: invalidateCacheAndRevisitSuccessors(t, w, q)

32: changed← c /∈ out or out[c] 6= b
33: out[c]← b
34: if changed then
35: Add all successors of c to w
36: if c is an exit block of function m then
37: Add ret[m] to w

47

When UCG finishes going through all statements, it checks if the out-set

of the block c has changed compared to previous iterations. If the out-set has

changed, the successors now have new information that may affect their call-

graph edges. Therefore, UCG adds all successors of the current block to the

worklist, including interprocedural ones from ret. Using this approach, UCG

loops through the worklist until no new blocks are added to it, indicating that

the call-graph has reached a fix point and all information has been processed.

Function Pointer Resolution

UCG requires an on-demand pointer analysis that is monotonic with respect

to call-graph edges. Thus, for any variable, the more call-graph edges we have,

the larger the points-to sets will be for this pointer analysis. The larger the

points-to sets, the more values that pointers may have through interprocedural

data and control-flow, leading to more call-graph edges through function calls.

This process continues until UCG reaches a fix-point.

Algorithm 3 shows how UCG finds targets of call-sites. UCG easily resolves

intraprocedural function references (Line 10) if their target is readily available,

and handles dynamic dispatch indices by making queries to the DDG (Lines 12

and 21). If the function reference is an interprocedural function pointer value,

UCG queries the on-demand pointer analysis (Line 15). The query returns

a collection of allocation sites, which are either dynamic dispatch indices or

function references. UCG then uses this result to resolve b to a set of targets.

Dynamic Dispatch Resolution

UCG collects instantiated types in a control-flow sensitive manner and uses

them to make DDG queries. The instantiated types are the set of live types

at that program point and thus a dynamic dispatch must resolve to a method

of one of these types at runtime. Without the flow-based pointer analysis,

the DDG query returns methods from the entire set of instantiated types.

However, if a type is instantiated, it does not mean that it is a possible receiver

of a call. The type may never flow to the receiver argument of the call and

may only be useful elsewhere.

48

Algorithm 3 Get Targets of a Call-Site

1: Input
2: – o is a map of seen call sites, that require queries, to their alloc sites
3: – b is a set of instantiated types
4: – g is the call-graph
5: – d is the DDG
6: – q is a map of seen call sites, that require queries, to their alloc sites

(query cache)
7: function getTargets(o, b, g, d, q)
8: r ← lookup o.functionRef() in o.function.symbolTable
9: if r is a static function reference then

10: return {r.target()}
11: else if r is a dynamic dispatch index then
12: targets← query r.index() in d with instantiated types b
13: return targets
14: else if r is inter-procedural then
15: allocSites← Query(g, o.functionRef(), q)
16: targets← {}
17: for a ∈ allocSites do
18: if a is a static function reference then
19: targets← targets ∪ {a.target()}
20: else if a is a dynamic dispatch index then
21: targets← targets ∪ query a.index() in d

22: return targets

UCG mitigates the imprecision arising from propagating instantiated types

that are not possible dynamic dispatch operands. Instead of querying the DDG

using the set of all instantiated types, UCG queries the optional flow-based

pointer analysis for the types that may flow to the receiver of the call. UCG

then intersects the instantiated types with the types that flow to the receiver,

and makes the DDG query with the resulting set of types. This type pruning

is included in the queries to d on lines 12 and 21 in Algorithm 3.

Querying

Algorithm 4 shows the query to the on-demand pointer analysis. UCG uses

the query cache q to see if it has queried the same call-site before (Line 6). If

the function reference is in q, then the previous results are still valid. That

is, the results have not been invalidated by the algorithm’s revisiting logic. If

49

Algorithm 4 Get pointers for a Function Reference.

1: Input
2: – q is a map of seen call sites, that require queries, to their alloc sites
3: – r is an interprocedural function ref
4: – g is the Call Graph
5: function Query(q, r, g)
6: if r ∈ q then
7: return q[r]
8: else
9: allocSites← PointerAnalysisQuery(r, g)

10: q[r]← allocSites
11: return allocSites

Algorithm 5 Invalidate Caches for On-demand Pointer Analysis

1: Description
2: This function adds all the transitive successor blocks of a
3: target t to the worklist w and removes all call-sites in those
4: blocks from q.
5: Input
6: – t is the function to invalidate along with its successors
7: – w is a queue of blocks
8: – q is the query cache, a map of seen queried call sites, to their alloc sites
9: procedure invalidateCacheAndRevisitSuccessors(t, w, q)

10: Let s be all the transitive successor blocks of t, including t’s blocks in
depth first order

11: for b ∈ s do
12: for c in call-sites of b do
13: Remove c from q

14: Add b to w

there is a cached set of query results, UCG uses the cached results. Otherwise,

UCG makes a query to the pointer analysis, cache the results, and then use

them (Lines 9–11).

Invalidation

Algorithm 5 shows UCG’s invalidation logic, which simply involves removing

all cached successors of method t and adding the successors back into the

worklist w. To motivate invalidation, consider a function reference r at a call-

site c. We assume that the pointer analysis may produce a larger points-to

set with new information if there are new call-graph edges that precede c.

50

However, adding call-graph edges to call-sites that are strict successors of c

should not change the set of pointers that r may have because no new pointers

will flow to r. Alternatively, if UCG visits c but later adds call-graph edges

that precede c in control-flow, then the points-to sets for r may change, and

query cache q will contain an invalid set of types for r. Therefore, UCG will

invalidate the entry for c in q and revisit c so that it computes call-graph

edges with a larger points-to set that contains updated information. This new

information could result in new edges when UCG revisits c. UCG detects if

it is adding an edge to a previously visited block using the seen variable. If

such an edge is added (Line 30 in Algorithm 2), UCG invalidates entries for

all intraprocedural and interprocedural successors of that block (Line 31 in

Algorithm 2).

4.3 Algorithm Comparison

To anecdotally compare our call-graph construction algorithms and demon-

strate differences in precision between CHAFP, VTAFP, and UCG, we present

the following simple examples.

CHAFP Imprecision

Figure 4.7 shows three classes A, B, and C that implement the protocol Parent.

In the function cha imprecision() on line 204, using CHAFP, the call x.foo()

on line 208 resolves to A.foo(), B.foo(), and C.foo() because the class hi-

erarchy for Parent includes A, B, and C. However, only A and B could be

instantiated at runtime.

Because x is assigned a read from the field f, and f is only assigned to an A

in the constructor for F, VTAFP reasons that x must point to a value of type A.

Therefore, VTAFP determines that x.foo() must dispatch to only A.foo().

UCG propagates both A and B to the program point at the call to x.foo().

However, VTAFP says x may only be of type A. Since UCG uses VTAFP for

pruning, it also resolves x.foo() to only A.foo().

51

198 protocol Parent { func foo() }

199 class A : Parent { func foo() { ... } }

200 class B : Parent { func foo() { ... } }

201 class C : Parent { func foo() { ... } }

202 class F : { var f: Parent = A() }

203

204 func cha_imprecision () {

205 var aF: F = F()

206 var b: Parent = B()

207 var x: Parent = aF.f

208 x.foo()

209 }

210

211 func vtafp_imprecision () {

212 var aF: F = F()

213 var x = aF.f

214 x.foo()

215 var b: Parent = B()

216 var bF: F = F()

217 bF.f = b

218 }

Figure 4.7: A Swift code example of non-trivial data flow using classes.

VTAFP Imprecision

In Figure 4.7 on line 211, the function vtafp imprecision() demonstrates

how VTAFP’s field-based and flow-insensitive nature makes it less precise than

UCG. If we only consider lines 212–214, then x.foo() on line 214 resolves to

A.foo() using VTAFP. However, due to VTAFP’s flow-insensitivity, the state-

ments on lines 215–217 also affect what x.foo() resolves to because VTAFP is

also field-based (object-insensitive), and the field write on line 217 effectively

writes b to aF.f. Therefore, the field read on line 213 writes both aF.f (a

value of type A) and bF.f (a value of type B) to x. As a result, VTAFP not

only resolves x.foo() to A.foo() but also (incorrectly) to B.foo().

On the other hand, due to its flow-sensitivity and type propagation, UCG

resolves x.foo() to only A.foo(), even without VTAFP type pruning, because

the statements after the call have no affect. Therefore, for this example, UCG

is more precise than VTAFP. Lastly, CHAFP resolves x.foo() to A.foo(),

B.foo(), and C.foo(), giving the least precision.

52

4.4 Implementation Details

In this section, we discuss some technical details of our call-graph construction

algorithms and give further insight into how they work.

4.4.1 Entry Points

Our implementation shares some logic across all call-graph construction algo-

rithms, including the detection of call-graph entry points. Only using main()

as the single entry point is not sufficient due to lifecycle execution flow (e.g.,

callbacks from the program’s UI), which creates discontinuity in execution flow,

and because we want to analyze parts of the program that are not necessarily

called. We initially consider all functions that meaningfully contribute to the

program’s dataflow and, for UCG, non-library functions to be entry points.

That is, we ignore uninteresting functions such as deinitialization and deal-

location functions because they have no meaningful effect on the call-graph,

especially in relation to the original Swift source code. UCG ignores most

library functions because we are interested in user code and only parts of the

libraries that are reachable from the user code. However, the analysis user may

enable library analysis, which initially sets all meaningful library functions as

entry points.

4.4.2 Closures

Because SWAN does not have complete closure support and has no way of

modelling partially applied function state, our pointer analyses either make

no extra effort to resolve them or entirely ignore them. CHAFP resolves calls

to and from closures using type signature matching because type matching is

fast and resolving closures this way has minimal additional overhead. VTAFP

has no special handling for closures. For UCG, we suspect that handling clo-

sures leads to performance degradation because closures often produce com-

plex dataflow, which may cause SPDS queries to time out. Therefore, UCG

does not attempt to find the allocation sites of function pointers, using its

on-demand pointer analysis, whose dataflow goes through or from closures.

53

4.4.3 Libraries

One advantage of analyzing Swift, as opposed to other compiled languages such

as C/C++, is that we have access to the source code of all non-proprietary

libraries due to Swift’s build system. Consequently, when SWAN analyzes

an application, it has complete access to the libraries and can track dataflow

through them. This has the advantage of having all relevant dataflow available,

but may degrade performance if an optimistic algorithm starts traversing every

library, especially parts of libraries that the user code never even uses.

In our implementation, CHAFP creates a call-graph for the entire applica-

tion, including its libraries, because the analysis is fast and can analyze entire

libraries with very little additional overhead. VTAFP prunes the graph that

CHAFP creates, and therefore also produces a graph for the application and

libraries. On the other hand, UCG is optimistic and starts analyzing the appli-

cation from entry points within the user code. Therefore, UCG only explores

the libraries in so far as the user code uses them (unless the user enables full

library analysis).

4.4.4 Improving the Precision of Instantiated Types

If a program passes a dynamic function reference interprocedurally, then the

methods that the reference may refer to must be among the methods of objects

that were instantiated when the reference was taken/allocated. Therefore, as a

precision improvement and optimization when making a DDG query to draw

an edge for an application of a dynamic reference, UCG does not use the

instantiated type at the call-site. It instead uses the instantiated types of the

block where the dynamic reference was created. We have implemented the

optimization in UCG, and it required the following changes to our algorithm.

1. The procedure processWorklist() of Algorithm 1 receives an additional

argument, ibs, which is a mapping from blocks where dynamic references

are created to sets of blocks where the dynamic reference is used.

2. In line 35 of Algorithm 2, we additionally add the blocks in ibs to the

worklist.

54

3. In line 21 of Algorithm 3, we add the current block to the ibs set of the

block to which the dynamic reference belongs.

4.5 Summary

SWAN provides three call-graph construction algorithms: CHAFP, VTAFP,

and UCG. CHAFP is an extension of CHA that resolves function pointers using

simple type signature matching, which can lead to a high amount of spurious

edges if the program has many functions that share the same type signature.

VTAFP is an adaption of VTA that uses utilizes VTA’s pointer analysis to re-

solve function pointers to their allocation sites, determining the function that

the pointer references. UCG is a novel algorithm that we developed specifically

to resolve function pointers and dynamic dispatch simultaneously. UCG prop-

agates instantiated types through the program to resolve dynamic dispatch,

utilizes SPDS for its highly precise and on-demand pointer analysis to resolve

function pointers, and only revisits parts of the program when necessary. Be-

cause UCG is an optimistic algorithm, it also (optionally) utilizes VTAFP,

a pessimistic algorithm, to prune instantiated types. In terms of theoretical

precision, we expect CHAFP to be the least precise due to its fast but highly

imprecise type signature matching. VTAFP should be significantly more pre-

cise than CHAFP due to its pointer-analysis based type tracking. Lastly, we

expect UCG to be the most precise, and at least as precise as VTAFP, because

of its precise propagation of instantiated types, use of SPDS’ pointer analysis,

and type pruning using VTAFP.

55

Chapter 5

SWAN Analyses

SWAN serves as a general analysis framework for Swift and provides various

types of analyses, some of which are configurable and enable the user to write

their own analyses. SWAN offers a configurable taint analysis and typestate

analysis. SWAN also has two domain-specific and non-configurable analyses:

an analysis that detects energy inefficient configurations of Swift’s Core Loca-

tion API, and an analysis that detects cryptography misuses in the CryptoSwift

API [34]. The latter two analyses serve as examples of SWAN’s practicality

and applicability to specific problems in Swift programs. In this section, we

explain each of these analyses.

5.1 Taint Analysis

SWAN’s taint analysis utilizes Boomerang, which is SPDS’ query engine for

making simple forward and backward pointer analysis queries. To determine

whether a source flows to a sink without passing through a sanitizer, SWAN

first finds seeds representing all values that come from specified sources. A

seed requires the value of interest and a control flow edge to indicate the point

in the program from where the query begins. SWAN uses Boomerang’s for-

ward queries, and therefore it generates seeds for any values returned from any

source functions. Then, SWAN builds forward queries with these seeds and

asks Boomerang to solve the queries. The Boomerang solver will popu-

late its PDSs with reachability information representing the seed’s dataflow.

Boomerang returns the results in a table format that represents the final

56

PDS states. SWAN then checks the results to see if any seed reached a sink

function without first passing through a sanitizer function. If SWAN detects

such dataflow, it will report a defect to the user.

Using the Analysis

SWAN’s taint analysis may be configured entirely in a JSON file (hereafter

referred to as a “spec”). A taint analysis spec allows the user to configure

sources, sinks, and sanitizers.1 Every source, sink, and sanitizer must either

be the full name of a function (based on its demangled SIL function name) or a

regular expression matching at least one function (the user must set "regex":

true in this case).2 The user may also optionally specify which argument of

the sink is sensitive (e.g., one argument of the sink is a SQL query and the

other arguments are not sensitive because they are not manipulatable). The

user must provide taxonomy information, such as a description of the taint

analysis indicating what the analysis detects, a description for each source,

sink, and sanitizer, and advice for fixing the issue, if detected. Inside the spec,

the user may define multiple taint analyses, and therefore SWAN takes exactly

one spec as an argument for its taint analysis mode. To use the taint analysis

mode, the user must run SWAN with the flag -t followed by the path to the

spec.

Figure 5.1 shows an example taint analysis spec that utilizes all features

that SWAN offers for taint analysis. Lines 220–222 define the general tax-

onomy of the spec. This information is displayed to the user to assist them

with resolving defects. This spec defines one source on lines 224–227 using

the source’s full name (as opposed to using a regex). Next, the spec defines

a sink on lines 230–235 using a regex to match the full function name of the

sink. On line 232, the spec sets only the first argument of the sink function

to be considered sensitive by the analysis. Lastly, the spec defines a sanitizer

on lines 238–241. For the purposes of this example, this sanitizing function

1To use sanitizers, the user must enable experimental path tracking with -p. Path
tracking is experimental because the SPDS source code [47] has some bugs related to path
tracking that make it unstable.

2Regex does not currently work for sanitizers.

57

219 [{

220 "name": "testing",

221 "description": "what this spec detects",

222 "advice": "how to solve the issue",

223 "sources": [

224 {

225 "name": "test.source () -> Swift.String",

226 "description": "generic source"

227 }

228],

229 "sinks": [

230 {

231 "name": ".*sink.*",

232 "args": [0],

233 "regex": true ,

234 "description": "generic sink"

235 }

236],

237 "sanitizers": [

238 {

239 "name": "test.sanitizer(tainted: Swift.String) ->

Swift.String",

240 "description": "generic sanitizer"

241 }

242]

243 }]

Figure 5.1: An example illustrating taint analysis JSON specification in
SWAN.

removes any possibly malicious elements from the argument tainted.

Figure 5.2 shows a program that utilizes (toy) sink, source, and sanitizer

functions for which the spec in Figure 5.1 was written. The source function on

line 244 returns a string that we will consider to be tainted. The sink function

on line 248 takes two arguments: an argument that should not be tainted

called sensitive and another argument whose taintedness is irrelevant called

someOtherParam. The sanitizer function on line 252 takes a variable called

tainted, sanitizes it, and returns it.

The functions prog1 and prog2 on lines 257 and 263 each utilize the source,

sink, and sanitizer in different ways to demonstrate SWAN’s taint analysis ca-

pabilities. The function prog1 writes a source to the variable sourced on

line 258. Because the the spec defines the source function as a source, any

value returned by the function will be tainted, and therefore sourced is tainted.

58

244 func source () -> String {

245 return "e.g., manipulatable input";

246 }

247

248 func sink(_ sensitive: String , _ someOtherParam: String) {

249 // ...

250 }

251

252 func sanitizer(tainted: String) -> String {

253 // sanitize "tainted" ...

254 return tainted;

255 }

256

257 func prog1() {

258 let sourced = source ();

259 let sanitized = sanitizer(tainted: sourced);

260 sink(sanitized , sourced);

261 }

262

263 func prog2() {

264 let sourced = source ();

265 let otherSourced = source ();

266 let sanitized = sanitizer(tainted: otherSourced);

267 sink(sourced , sanitized); // vulnerability

268 }

Figure 5.2: A Swift program utilizing sources, sinks, and sanitizers. Figure 5.1
contains the program’s corresponding taint analysis specification.

Then, the function sanitizes sourced by passing it to the sanitizer function

on line 259. At this point in the program, sanitized contains similar in-

formation to sourced but is no longer tainted because the spec defines the

sanitizer function as a sanitizer. Lastly, the function gives sanitized and

sourced to the sink function on line 260. According to the spec, if the first

argument of the sink function is tainted, then the analysis will report a defect.

In this case, the program sanitizes the first argument to sink, and while the

second argument to sink is tainted, the analysis correctly does not report a

defect.

The prog2 function demonstrates a case where the analysis reports a gen-

uine defect. The function creates two tainted values, sourced and otherSourced,

on lines 264 and 265, respectively. Then, the function sanitizes otherSourced

using the sanitizer function on line 266, thereby leaving sourced tainted.

Lastly, the function sinks both values and passes the unsanitized value sourced

59

269 [{

270 "name": "testing",

271 "description": "what this spec detects",

272 "advice": "how to solve the issue",

273 "paths": [

274 {

275 "source": {

276 "name": "test.source () -> Swift.String",

277 "description": "generic source"

278 },

279 "sink": {

280 "name": "test.sink(Swift.String , Swift.String)

-> ()",

281 "description": "generic sink"

282 },

283 "path": [

284 "test.swift :213:3"

285]

286 }

287]

288 }]

Figure 5.3: Taint analysis results for the program in Figure 5.2 based on the
specification in Figure 5.1.

as the first argument. Because the spec defined the first argument as sensitive

and the function never sanitized sourced, the taint analysis reports a defect

on line 267.

SWAN’s taint analysis notifies the user of any defects in the command-line

output and writes defect information to taint-results.json in the swan-dir

directory. Figure 5.3 shows the taint-results.json file for the program in

Figure 5.2.3 Analysis results contain sufficient information for the user to

resolve the vulnerability, including why the defect was detected, how to resolve

it, where the vulnerability is, and where the possibly malicious information

comes from and flows to.

3The path on line 284 only contains a single node due to a limitation with path tracking.
Normally, the path contains two elements: the location of where the tainted variable was
sourced (line 264) and sunk (line 267).

60

5.2 Typestate Analysis

SWAN’s typestate analysis utilizes IDEal, which is SPDS’ query engine for

tracking object states based on a given finite-state machine (FSM) and seeds.

SWAN provides two methods for defining an FSM: either programmatically

(with corresponding JSON for taxonomy information) or solely using a JSON

configuration file. To determine seeds (i.e., values of interest), SWAN looks

for allocations of the type of interest (e.g., the type File, which represents a

file resource) within the program. SWAN invokes IDEal with the FSM and

seeds. After the analysis is complete, SWAN finds the destructing statements

for each seed, which are determined by SPDS, and reports a defect to the user

if the value is in an error state at any of those statements.

5.2.1 JSON Configuration

SWAN’s typestate analysis can be configured entirely in a JSON file (hereafter

referred to as a “spec”). The spec allows the user to configure the allocation

type of interest, a description of the analysis, advice for fixing detected defects,

and an FSM, by defining states and transitions between those states. A state

must be defined as an error, initial, and/or accepting state. A transition must

be defined from a state to another state based on a method call, which is either

the full name of the method or a matching regular expression. Inside the spec,

the user may define multiple typestate analyses. To use the typestate analysis

mode, the user must run SWAN with the -e flag followed by the path to the

spec.

Figure 5.4 shows an example spec that is based on the FSM in Figure 2.7

described in Chapter 2.4. The style field is set to 0 on line 290 to indicate that

this spec is using the JSON-only format (as opposed to 1, which indicates that

a corresponding programmatic typestate analysis exists). The type File on

line 291 indicates the allocation type of interest. The field class is set to true

on line 292 so that SWAN’s analysis will look for File. allocating init()

constructor calls, as opposed to simply looking for new instructions that allo-

cate a value of type File. Lines 293–295 define the general taxonomy of the

61

289 [{

290 "style": 0,

291 "type": "File",

292 "class": true ,

293 "name": "FileOpenClose",

294 "description": "Not closing file resources can cause

resource leaks.",

295 "advice": "Close file resources.",

296 "states": [

297 {

298 "name": "INIT",

299 "error ": false ,

300 "initial": true ,

301 "accepting": true

302 },{

303 "name": "OPENED",

304 "error": true ,

305 "message": "file left open",

306 "initial": false ,

307 "accepting": false

308 },{

309 "name": "CLOSED",

310 "error": false ,

311 "initial": false ,

312 "accepting": true

313 }],

314 "transitions": [

315 {

316 "from": "INIT",

317 "method": ".*File.open.*",

318 "param": "Param1",

319 "to": "OPENED",

320 "type": "OnCall"

321 },{

322 "from": "INIT",

323 "method": ".*File.close .*",

324 "param": "Param1",

325 "to": "CLOSED",

326 "type": "OnCall"

327 },{

328 "from": "OPENED",

329 "method": ".*File.close .*",

330 "param": "Param1",

331 "to": "CLOSED",

332 "type": "OnCall"

333 }]

334 }]

Figure 5.4: An example illustrating typestate analysis JSON specification in
SWAN.

62

335 func open_file(_ f: File) {

336 f.open(); // defect - file left open

337 }

338

339 let f1 = File("path/to/f1.txt");

340 open_file(f1);

341

342 let f2 = File("path/to/f2.txt");

343 open_file(f2);

344 f2.close ();

Figure 5.5: A Swift program that allocates a file resource. Figure 5.4 contains
the program’s corresponding typestate analysis specification.

spec. This information is displayed to the user to assist them with resolving

defects. Lines 296–313 define the FSM states. Lines 314–333 define the FSM

transitions and use regular expressions to match the corresponding method

calls of the File type. The transition fields param and type are invariables

for SWAN’s analysis and are included for completeness.

Figure 5.5 shows a program that uses file resources. The program allocates

two file resources on lines 339 and 342, opens the resources using a call to

open file on lines 340 and 343, and closes only the second resource on line 344.

The program never closes the first resource, f1, and therefore, using the spec

in Figure 5.4, SWAN’s typestate analysis reports a defect on line 336.4 The

analysis does not report a defect for f2 because the program correctly closes

f2 on line 344.

SWAN’s typestate analysis notifies the user of any defects in the command-

line output and writes defect information to typestate-results.json in the

swan-dir directory. Figure 5.6 shows the typestate-results.json file for

the program in Figure 5.5.

5.2.2 Energy Inefficient API Misuse Analysis

SWAN’s typestate analysis can also be written programmatically and sup-

plemented with a JSON file for taxonomy information. To demonstrate and

motivate this, we use an application of SWAN’s typestate analysis from our

4SWAN reports a defect on line 336 as opposed to line 340 due to a limitation with using
SPDS’ destructing statements logic.

63

345 [

346 {

347 "name": "FileOpenClose",

348 "description": "Not closing file resources can cause

resource leaks.",

349 "advice": "Close file resources.",

350 "errors": [

351 {

352 "pos": "test.swift :290:7",

353 "message": "file left open",

354 "state": "OPENED"

355 }

356]

357 }

358]

Figure 5.6: Typestate analysis results for the program in Figure 5.5 based on
the specification in Figure 5.4.

359 import CoreLocation

360

361 let locationManager = CLLocationManager ()

362 locationManager.startUpdatingLocation ()

363 locationManager.desiredAccuracy =

kCLLocationAccuracyHundredMeters

364 locationManager.distanceFilter = 4096 // inefficient

Figure 5.7: A Swift program that uses the Core Location API. Figure 5.8
contains the program’s corresponding typestate analysis specification.

previous work: an analysis that detects energy inefficient usages of Apple’s

iOS Core Location API [13].

The Location API provides various methods of accessing and monitoring

the phone user’s physical location and activity type, such as the user being

airborne or inside a car. An app may access all location and activity infor-

mation using the CLLocationManager. The app may also configure various

parameters, such as the location accuracy, minimum distance change to gen-

erate a new event, and activity type to monitor. In our previous work, we

determined that some of these parameters (or combinations of parameters)

use a significant amount of energy and are therefore inefficient and should

largely be avoided.

Figure 5.7 shows an example program that use the Location API in various

64

ways. The program allocates a CLLocationManager and then calls

startUpdatingLocation(), which starts the standard location service and

location monitoring. Then, the program sets the accuracy to 100 meters and

the distance filter to 4,096 meters. This particular parameter combination is

energy inefficient, but individually these parameters are not necessarily energy

inefficient. For instance, an accuracy of one kilometre and a distance filter of

4,096 is not considered inefficient, and an accuracy of 100 meters and a distance

filter of 16 is not considered inefficient.

This step-by-step process is an excellent application candidate for types-

tate analysis because the state of the CLLocationManager changes at every

statement, and there are many possible states for all the different parameter

combinations. After line 361, the manager is inactive and is not monitoring the

user’s location, and only begins to monitor the user’s location after line 362.

Line 363 sets the manager to a state that represents an accuracy of 100 me-

ters, and finally line 364 sets the manager to a state that represents both an

accuracy of 100 meters and a 4,096 meter filter distance.

To define an FSM for an analysis that can track such state, we must con-

sider which states and transitions we need to model. There are 20 different

possible parameter combinations (four different accuracies, and five different

distance filters), but there are in fact 40 states because until the program calls

startUpdatingLocation(), the parameters have no effect and the manager

is in an “inactive” state. Therefore, there are 20 “active” states and 20 “in-

active” states. Furthermore, there are 820 transitions between the states (400

between active states, 400 between inactive states, and 20 transitions between

active and inactive states). Writing these states and transitions manually in a

JSON typestate specification would be tedious and error-prone. Therefore, we

instead wrote a programmatic typestate analysis that generates these states

and transitions.

The programmatic aspect not only aids in eliminating tedious configura-

tion, but also in allowing the analysis to have conditional transitions which

would otherwise not be possible using a regular JSON typestate spec. The pro-

gram sets the location manager parameters through setter method calls that

65

365 [

366 {

367 "style": 1,

368 "name": "StandardLocationService",

369 "description": "Certain configurations of the Standard

Location Service are not optimal.",

370 "advice": "Use `kCLDistanceFilterNone ` (default),

`kCLLocationAccuracyKilometer `, or (filter: 16-256,

accuracy: `kCLLocationAccuracyHundredMeters `).",
371 "states": [

372 {

373 "name": "Hundred_4096",

374 "message": "Using

`kCLLocationAccuracyHundredMeters ` and a distance

filter of 4096 is nonoptimal.",

375 "severity": 2

376 },

377 [...]

378]

379 }

380]

Figure 5.8: A (partial) typestate analysis taxonomy JSON specification that
complements SWAN’s programmatic typestate configuration for the Core Lo-
cation API.

take either the accuracy or filter distance as arguments. The analysis needs

to determine to which state to transition based on these argument values, and

therefore the method name is not sufficient. The analysis uses a Boomerang

backwards query on the setter arguments to determine their value and tran-

sitions accordingly to the appropriate state. That is, if the query finds a

constant value of 16 for the distance filter argument, the typestate analysis

will transition the manager to a state that represents the distance filter value

of 16.

Figure 5.8 shows the corresponding JSON spec that includes taxonomy

information for both the analysis and error states. The spec includes a “sever-

ity” rating, which indicates how energy inefficient the configuration is. This

analysis reports errors similarly to regular typestate analysis and writes the

results to typestate-results.json in the swan-dir directory.

66

5.3 Crypto API Misuse Detection

A cryptography API provides developers with the cryptography operations

they need to secure user data and provide authentication, such as hashing,

encryption, decryption, and digital signature verification. However, these APIs

are prone to misuse because, while they provide the needed operations, using

them correctly is not trivial. Many studies have shown that developers widely

misuse these APIs. Lazar et al. [36] found that the overwhelming majority

of the cryptography-related vulnerabilities are due to developer misuse rather

than incorrect implementations of the APIs. Many other studies have shown

that crypto-API misuse is prevalent in almost all applications or is otherwise

a significant security concern [15], [22], [42].

Therefore, to provide developers with crypto API misuse detection for Swift

(iOS) apps and to demonstrate SWAN’s practicality, we developed a custom

analysis that detects crypto API misuses. The analysis supports detecting

six different types of misuses for the popular and open-source CryptoSwift

API [34].

5.3.1 Crypto Misuse Rules

Egele et al. present six rules for crypto API misuse detection [22]. These rules

have become a standard for crypto analysis tools, and therefore we based our

analysis on these rules. We list them here and provide a CryptoSwift code

example violation for each.

Rule 1: Do not use ECB mode for encryption.

try AES(key: _, blockMode: ECB(), padding: _)

Rule 2: Do not use a non-random initialization vector (IV) for CBC

encryption.

CBC(iv: "constant".bytes)

Rule 3: Do not use constant encryption keys.

HMAC(key: "constant".bytes)

67

Rule 4: Do not use constant salts for password-based encryption (PBE).

let salt = "constant".bytes

try HKDF(password: _, salt: salt, ...)

Rule 5: Do not use fewer than 1,000 iterations for PBE.

try PKCS5.PBKDF1(..., iterations: 500, ...)

Rule 6: Do not use static seeds to seed SecureRandom (i.e., an Android

function that is a psuedo-random number generator). This rule is not ap-

plicable to CryptoSwift because there is no API call in CryptoSwift that is

analogous to the Android API call for which the rule was specifically written.

Rule 7: Do not use a constant password for encryption. This rule is

not included in the original six rules, but we added it because Rule 6 is not

applicable.

let pwd = "constant".bytes

try HKDF(password: pwd, ...)

5.3.2 Misuse Detection

SWAN’s crypto analysis consists of custom dataflow queries (or sets of queries)

for the various crypto rules. The analysis queries require using forward and/or

backward queries to determine if a particular argument adheres to certain con-

straints. If an argument does not meet a rule’s constraints, then the analysis

will report a violation of that rule. We outline these constraints and logic for

each rule here.

Rule 1: For all initializers that take a block mode, the block mode argu-

ment should not come from the ECB initializer. Algorithm 6 shows the highly-

simplified logic of the analysis for evaluating this rule. Essentially, the logic is

executing a taint analysis from the initialization method of CryptoSwift.ECB

to any CryptoSwift function calls that take a block mode as an argument.

68

Algorithm 6 Evaluate Rule 1

1: Input
2: – p is the input program
3: procedure evaluateRule1(p)
4: s← p.getCallSitesWithBlockMode()
5: c← all calls to ‘CryptoSwift.ECB.init() → CryptoSwift.ECB’
6: r ← ∀i ∈ c (forward query i in p)
7: for x ∈ s do
8: a← x.arguments[0]
9: if ∃z ∈ r (z flows to a) then

10: report violation

Rule 2: For all initializers that take an IV, the IV argument should only

come from known random functions, such as Cryptors.randomIV(). Algo-

rithm 7 shows the simplified logic for this rule. Unlike Rule 1, this logic will

report a violation if the analysis does not detect dataflow from pre-defined

random generator functions to call sites that use an IV.

Algorithm 7 Evaluate Rule 2

1: Input
2: – p is the input program
3: procedure evaluateRule2(p)
4: s← p.getCallSitesWithIVs()
5: c← all calls to known random functions
6: r ← ∀i ∈ c (forward query i in p)
7: for x ∈ s do
8: a← x.ivArgument()
9: if @z ∈ r (z flows to a) then

10: report violation

Rule 3: For all initializers that take a key, the key argument should not be

constant. We only report a violation if we find a constant value. Algorithm 8

shows the simplified logic for this rule. The analysis queries any key argu-

ments to determine whether they are constant. Constant values can either be

the result of a literal instruction or the return value of a static initializer

function.

69

Algorithm 8 Evaluate Rule 3

1: Input
2: – p is the input program
3: procedure evaluateRule3(p)
4: s← p.getCallSitesWithKeys()
5: c← all static initializers
6: r ← ∀i ∈ c (forward query i in p)
7: for x ∈ s do
8: a← x.keyArgument()
9: r ← backward query a in p

10: if r is constant or r is a static initializer then
11: report violation

Rule 4: For all initializers that take a salt, the salt argument should not

be constant. We only report a violation if we find a constant value. The logic

for this rule is very similar to Algorithm 8.

Rule 5: For all initializers that take an iteration count, the iteration

count argument should be at least 100,000. The rule given by Egele et al.

states 1,000 iterations, which is the bare minimum according to the original

recommendation given in the standard from the year 2000 [29]. However, given

the increased computing power of modern machines, we decided to increase

the minimum to 100,000. If the analysis cannot detect a constant integer

value, it does not report a violation. The logic for this rule is very similar

to Algorithm 8, except that it includes the additional step of checking the

constant value, if found.

Rule 7: For all initializers that take a password, the password argument

should not be constant. We only report a violation if we find a constant value.

The logic for this rule is very similar to Algorithm 8.

SWAN’s typestate and taint analysis JSON configuration is not always ex-

pressive enough to craft certain types of analyses, such as those that require

checking specific values. SWAN’s crypto analysis is an example of how the

framework may be utilized to write custom, domain-specific analyses. Us-

ing SPDS forward and backward queries allows analysis developers to write

powerful analyses with specific constraints.

70

5.4 Summary

SWAN serves as a platform for practitioners and researchers to write their own

custom analyses for Swift. SWAN also provides built-in, configurable analyses

capable of detecting illegal dataflow from sources to sinks (i.e., taint analysis)

and incorrect usage of APIs (i.e., typestate analysis). Our framework’s taint

analysis can be configured entirely in a JSON file and can be populated with

useful taxonomy information to assist developers in resolving any detected is-

sues. SWAN’s typestate analysis can similarly be configured entirely inside of

a JSON file. However, the JSON configuration may not be expressive enough

or practical for certain types of analyses. One such analysis is detecting inef-

ficient configurations of the Core Location API because the analysis requires

a large number of states and transitions and requires adding argument value

constraints to transitions. Therefore, we wrote a custom programmatic analy-

sis for the Core Location API to serve as an example of what SWAN is capable

of as a platform. Lastly, SWAN provides a custom crypto API misuse analysis

that detects six different types of rule violations (misuses) of the CryptoSwift

API. The crypto analysis utilizes multiple queries together to detect whether

arguments given to certain API functions conform to the analysis’ constraints,

which are based on the crypto rules.

71

Chapter 6

Evaluation

In this chapter, we evaluate various components of SWAN by running SWAN

on open-source Swift applications. We evaluate the runtime of SWAN’s pro-

cessing overhead–the time it takes to process an application and prepare it for

analysis. Then, we compare the performance and relative precision of SWAN’s

three call-graph construction algorithms. We also evaluate the effectiveness of

SWAN’s crypto analysis. We run the crypto analysis on applications with

known crypto violations and report the number and types of detected issues.

Lastly, we describe SWAN’s testing system to demonstrate how we test and

evaluate SWAN’s analysis capabilities and language feature support on an

ongoing basis.

6.1 Processing Overhead

In this section, we assess the processing overhead in terms of runtime of the

“core” framework to evaluate SWAN’s general efficiency on a collection of

open-source Swift applications. That is, the amount of time from the start of

invoking SWAN until the framework is ready for analysis, but not including any

analyses, such as call-graph construction. We demonstrate that SWAN’s over-

head is small and that ultimately SWAN’s performance is determined mostly

by its analyses. We report the median time taken across the benchmarks.

SWAN uses multi-threading to parse and translate each module individually,

and therefore calculating the amount of time the parser takes, for instance,

would not be useful because each thread finishes at different times. Therefore,

72

Table 6.1: SWAN processing (pre-analysis) overhead for each benchmark (sec-
onds).

Benchmark SWAN Overhead SIL LOC SIL Functions

ZenTuner 3.04 23,747 966

github-contributions-ios 9.23 344,078 7,939

Kotoba 4.11 49,543 1,566

authenticator 4.53 88,848 2,704

FrameGrabber 8.64 235,805 7,621

Swiftagram 9.41 265,332 5,356

PGPro 5.83 135,547 3,331

daylight-ios 6.95 126,580 3,346

compositional-layouts-kit 3.20 37,123 1,246

flappy-fly-bird 4.32 67,390 2,206

swiftui-2048 3.85 56,570 1,712

FlappySwift 2.67 24,862 635

Tofu 3.81 57,674 1,723

CalendarKit 4.70 69,332 2,384

CompositionalDiffablePlayground.ios 4.34 73,891 2,624

edhita 2.79 23,185 915

watchOS-2-Sampler 3.48 33,013 1,296

iOS-Depth-Sampler 4.88 67,701 2,197

wireguard-apple 7.32 226,708 4,824

Swift-Radio-Pro 5.79 124,747 4,209

swift-2048 2.88 25,526 863

trailer 11.40 341,233 7,747

Median 4.44 68,517 2,295

we only report the total time taken until the final grouped module is ready.

6.1.1 Benchmark Applications

We evaluated SWAN on 22 open-source Swift apps, which are the non-library

apps that we were able to build from the largest collaborative collection of

Swift apps on GitHub [20]. We chose apps that have at least 100 stars, have

been recently updated within the last two years, and that built on our machine.

Table 6.1 lists the benchmarks.

73

6.1.2 Experimental Setup

We ran our experiments on an Apple M1 processor with 4 performance cores,

4 efficiency cores, and 16 GB of unified memory. We used the Hotspot JVM

to run SWAN. At the time of writing, binaries for the Hotspot JVM are only

available compiled for Intel CPUs, so there is some emulation overhead in our

runtimes. Our reported runtimes are likely greater than they would be without

emulation. However, we do not know exactly what the emulation overhead is

because we did not test without emulation on our machine. We ran SWAN

on each benchmark 11 times but we discard the first runtime to eliminate any

memory caching bias (i.e., the SIL files may be cached in memory after the first

run, which may make subsequent runs faster). To further minimize caching

bias, we ran the benchmarks in round-robin fashion until every benchmark

was run 11 times in total, as opposed to immediately running a benchmark

all 11 times and then moving on to the next benchmark. Therefore, we report

the median runtime across 10 runs1 for each benchmark.

6.1.3 Results

Table 6.1 shows the runtimes in seconds, SIL lines of code (LOC), and num-

ber of SIL functions for all benchmarks. SWAN parsed, translated, and pre-

pared for analysis most benchmarks in under 5 seconds. The longest runtime

took over 11 seconds for the trailer benchmark, which is the second largest

benchmark in terms of SIL LOC. Figure 6.1 shows a plot of the runtimes

versus benchmark LOC, along with a trend line, demonstrating that SWAN’s

runtime increases relatively linearly with LOC.

SWAN prepares most benchmark apps for analysis in under 5 seconds.

6.1.4 Discussion

Although most of our apps are not large (under 80,000 SIL LOC), SWAN

managed to achieve high performance, even with emulation overhead. In prac-

tice, large industry Swift applications are split up into many smaller Xcode

110 runs is common practice when evaluating benchmark performance.

74

0 0.5 1 1.5 2 2.5 3 3.5

·105

2

4

6

8

10

12

14

16

SIL LOC

R
u
n
ti

m
e

(s
)

Figure 6.1: Plotted runtimes from Table 6.1.

projects, such as Uber’s apps [62], thereby limiting the LOC that SWAN needs

to process. Furthermore, with caching optimizations2, the runtime of SWAN’s

processing overhead may be reduced even further. SWAN’s performance may

make it a good fit for continuous integration environments, such as merge

request pipelines [21]. However, to reanalyze an application using SWAN, it

must first be rebuilt using (swan-)xcodebuild so that SWAN can process its

updated SIL, and this will add an additional delay to the total time it takes

to reanalyze the application3. Therefore, SWAN may not be well suited for

2We have experimented with caching the canonical SWIRL representation of libraries,
requiring SWAN to re-parse only the user code during subsequent SWAN invocations. Many
applications have (sometimes significantly) more library code than user code and, with
caching, SWAN only needs to completely reprocess the user code. Such caching is currently
only experimental.

3We do not evaluate the performance of swan-xcodebuild because it is a wrapper of
xcodebuild, which is an Apple tool.

75

integration into development environments (e.g., IDEs), which require near-

immediate feedback.

6.2 Call-Graph Construction

To understand the performance and relative precision of SWAN’s suite of call-

graph construction algorithms, we evaluated them on a collection of open-

source Swift applications. We compared CHAFP, VTAFP, and UCG through

the following research questions:

RQ1. Can we increase call-graph precision by using non-propagation, type-

based call resolution for dynamic dispatch and type signature matching

for function pointers in SIL?

RQ2. Can we increase call-graph precision by using a propagation-based

and type-based call resolution approach combined with flow-based prun-

ing?

RQ3. Can we increase call-graph precision by using a flow-based call reso-

lution approach for resolving both dynamic dispatch and function point-

ers?

RQ4. How do these approaches compare in terms of running time?

6.2.1 Benchmark Applications

We evaluated our suite of algorithms on the same benchmarks for which we

evaluated SWAN’s processing overhead. Table 6.2 lists these apps and some

of their characteristics4. We treat any non-library code as being a potential

entry point to the program to over-approximate code that may be called by

the iOS operating system.

6.2.2 Experimental Setup

Our setup is the same as for evaluating the processing overhead. SWAN’s

call-graph construction is deterministic. Therefore, the only varying results

4We exclude zero values in our geometric mean calculation.

76

Table 6.2: Various characteristics of our Benchmarks Programs

Benchmark

C
a
ll

S
it

e
s

F
u

n
ct

io
n

s

A
ll
o
ca

ti
o
n

s

F
u

n
ct

io
n

R
e
fs

N
o
n

-t
ri

v
ia

l
F
u

n
ct

io
n

R
e
fs

(%
)

D
y
n

a
m

ic
R

e
fs

N
o
n

-t
ri

v
ia

l
D

y
n

a
m

ic
R

e
fs

(%
)

ZenTuner 1,633 1,079 4,123 1,600 0.94 49 40.82

github-contributions-ios 25,972 8,220 52,967 22,359 1.26 3,614 43.69

Kotoba 3,742 1,576 7,267 3,542 0.56 231 35.93

authenticator 6,956 2,706 13,283 6,823 0.56 103 32.04

FrameGrabber 17,036 7,868 37,549 15,896 0.95 1,224 32.46

Swiftagram 18,816 5,344 38,046 18,307 1.04 570 8.20

PGPro 12,626 3,334 22,487 12,150 0.27 421 27.65

daylight-ios 9,455 3,335 18,162 8,513 0.46 866 39.03

compositional-layouts-kit 3,183 1,246 6,631 2,971 0.84 243 49.79

flappy-fly-bird 5,850 2,206 11,373 5,184 0.31 594 32.71

swiftui-2048 4,361 1,713 9,953 4,334 0.30 38 10.53

FlappySwift 2,531 635 4,576 2,188 0.00 259 24.84

Tofu 5,076 1,723 10,017 4,507 0.27 486 23.72

CalendarKit 5,395 2,416 12,376 5,134 0.04 271 42.44

CompositionalDiffablePlayground.ios 6,631 2,823 13,157 6,214 0.24 413 37.53

edhita 1,920 920 4,407 1,720 0.29 188 69.68

watchOS-2-Sampler 2,447 1,296 5,244 2,258 0.31 199 52.26

iOS-Depth-Sampler 5,481 2,197 10,891 5,242 0.06 201 44.28

wireguard-apple 17,238 4,825 35,260 15,574 0.24 1,483 23.46

Swift-Radio-Pro 9,361 4,210 20,338 8,487 0.33 803 37.64

swift-2048 2,237 863 4,472 1,974 0.00 243 58.44

trailer 26,600 7,741 55,360 26,859 2.72 358 7.00

Geometric Mean - - - - 0.40 - 30.78

Mean 8,843 3,103 18,088 8,265 - 584 -

Median 5,666 2,311 11,875 5,213 0.31 315 36.73

are the runtimes. For the runtimes of the call-graph construction algorithms,

we ran each benchmark 10 times and we report the median runtime. We do

not discard the first runtime in this case because the call-graph construction

algorithms do not cache anything in memory that could affect the runtime of

subsequent iterations.

6.2.3 Results

RQ1. To answer this question, we compare the call graphs generated by

CHAFP with those generated by VTAFP, which uses a more precise strategy.

77

Table 6.3: Number of reachable nodes and edges in the call graphs computed
using CHAFP, VTAFP, and UCG, as well as the precision improvement across
the call graphs.

Benchmark

C
H

A
F
P

N
o
d

e
s

V
T

A
F
P

N
o
d

e
s

C
H

A
F
P
–

V
T

A
F
P

Im
p

ro
v
e
m

e
n
t

(%
)

U
C

G
N

o
d

e
s

V
T

A
F
P
–

U
C

G
Im

p
ro

v
e
m

e
n
t

(%
)

C
H

A
F
P

E
d

g
e
s

V
T

A
F
P

E
d

g
e
s

C
H

A
F
P
–

V
T

A
F
P

Im
p

ro
v
e
m

e
n
t

(%
)

U
C

G
E

d
g
e
s

V
T

A
F
P
–

U
C

G
Im

p
ro

v
e
m

e
n
t

(%
)

ZenTuner 893 828 7.28 792 4.35 1,577 1,374 12.87 1,291 6.04

github-contributions-ios 4,919 1,908 61.21 1,047 45.13 60,119 8,656 85.60 1,752 79.76

Kotoba 1,574 1,543 1.97 1,543 0.00 4,957 3,465 30.10 3,463 0.06

authenticator 2,568 2,484 3.27 2,484 0.00 12,926 6,411 50.40 6,394 0.27

FrameGrabber 7,382 6,697 9.28 6,583 1.70 96,604 13,471 86.06 12,354 8.29

Swiftagram 5,344 5,254 1.68 5,254 0.00 33,225 17,635 46.92 17,635 0.00

PGPro 3,310 3,253 1.72 3,253 0.00 23,410 12,183 47.96 12,038 1.19

daylight-ios 2,569 2,074 19.29 2,074 0.00 11,561 5,532 52.15 5,468 1.16

compositional-layouts-kit 1,241 1,217 1.93 1,217 0.00 3,488 2,924 16.17 2,914 0.34

flappy-fly-bird 2,204 2,167 1.68 2,167 0.00 7,794 5,263 32.47 5,162 1.92

swiftui-2048 1,708 1,701 0.41 1,701 0.00 4,990 4,279 14.25 4,272 0.16

FlappySwift 625 622 0.48 622 0.00 2,957 2,216 25.06 2,216 0.00

Tofu 1,716 1,695 1.22 1,695 0.00 6,520 4,605 29.37 4,494 2.41

CalendarKit 1,102 703 36.21 617 12.23 3,625 1,982 45.32 1,638 17.36

CompositionalDiffablePlayground.ios 2,817 2,749 2.41 2,749 0.00 9,698 6,123 36.86 6,112 0.18

edhita 916 901 1.64 901 0.00 2,825 1,705 39.65 1,703 0.12

watchOS-2-Sampler 611 182 70.21 182 0.00 1,704 188 88.97 188 0.00

iOS-Depth-Sampler 2,035 1,818 10.66 1,818 0.00 7,815 4,037 48.34 4,008 0.72

wireguard-apple 4,553 4,131 9.27 4,110 0.51 65,701 12,868 80.41 12,246 4.83

Swift-Radio-Pro 4,204 4,141 1.50 4,141 0.00 31,909 8,495 73.38 8,368 1.49

swift-2048 857 842 1.75 842 0.00 2,607 2,115 18.87 1,968 6.95

trailer 7,721 7,644 1.00 7,644 0.00 84,024 26,411 68.57 25,898 1.94

Geometric Mean - - 4.56 - 4.61 - - 40.25 - 1.40

For each algorithm, Table 6.3 shows the number of reachable nodes from all

entry points, as well as the reachable edge counts in the generated call graphs.

We calculated geometric means for the improvements between algorithms and

ignored zero values in our calculation.

With respect to reachable nodes, VTAFP has small improvements com-

pared to CHAFP, with a geometric mean of 4.56% fewer reachable nodes. How-

ever, there are some outliers that have significantly fewer reachable nodes such

as the benchmarks github-contributions-ios (61.21%) and watchOS-2-

Sampler (70.21%). These applications have a high number of spurious edges

due to many functions sharing the same type signature. For instance, github-

contributions-ios and its libraries have many methods that override the ==

operator. Whenever the application compares two values using the operator,

which the program does 79 times, the applied function pointer uses the generic

78

type signature for the operator method. Using its type signature matching,

CHAFP resolves the function pointer to every == operator method in the pro-

gram, and there are 54 such methods. Therefore, there are over 4,000 spurious

edges5 from this method usage alone. VTAFP prunes these spurious edges and

substantially reduces the number of CG edges.

Reachable edges provide a better indication of the precision of a call graph

than reachable nodes. Most functions in an app will likely be in the call graph

because SWAN sets all non-library functions as entry points, and a call to

a library function will likely transitively call (possibly many) other library

functions. VTAFP has a geometric mean of 40.25% fewer edges than CHAFP,

with several benchmarks having over 80% fewer edges, such as wireguard-

apple (80.51%), github-contributions-ios (85.60%), FrameGrabber

(86.06%), and watchOS-2-Sampler (88.97%).

VTAFP generally provides better precision than CHAFP, with a geo-
metric mean of 40.25% fewer reachable edges. This significant decrease
in reachable edges is due to the heavy use of non-trivial function point-
ers with similar type signatures in SIL.

Table 6.4 provides detailed data of how many CHAFP polymorphic edges

that VTAFP resolves to be monomoporphic (indicating an increase in pre-

cision). The more precise VTAFP analysis identifies a mean of 2.00% poly-

morphic call sites that CHAFP detects to be monomorphic. Notably, for

swift-2048 and iOS-Depth-Sampler, 16.13% and 12.25% of polymorphic

call sites, respectively, become monomorphic in VTAFP compared to CHAFP.

However, for 16/22 benchmarks, less than 1% of polymorphic call sites become

monomorphic.

Overall, VTAFP identifies a mean of 2.00% of the polymorphic call
sites identified by CHAFP to be monomorphic, but most benchmarks
see a difference of less than 1%.

Most of the imprecision that CHAFP exhibits is due to its imprecise han-

dling of non-trivial function pointers by using type-signature matching. CHAFP

579 ∗ (54− 1) because every call site has one real edge and the rest are spurious.

79

often resolves function pointers to completely unrelated functions. In these

benchmarks, the type hierarchies are not very complex. Therefore, these spu-

rious edges do not arise from handling dynamic dispatch in CHAFP, but rather

from handling function pointers imprecisely.

RQ2. To answer this question, we compare the call graphs generated by

VTAFP with those generated by UCG.

With respect to reachable methods, Table 6.3 shows that UCG has little to

no improvements in reachable methods compared to VTAFP, with a geomet-

ric mean of 4.61% fewer reachable methods and 17/22 benchmarks seeing no

improvement. The benchmark github-contributions-ios is an exception

for which UCG has 45.13% fewer methods than VTAFP.

Across all apps, UCG has a geometric mean of 1.4% fewer edges than

VTAFP, with 16/22 benchmark apps having less than a 3% improvement. The

two outliers are github-contributions-ios and CalendarKit, which have

a 79.76% and 17.36% improvement, respectively. These outliers can be at-

tributed primarily to VTAFP treating library functions as entry points because

VTAFP starts with a CG produced by CHAFP, which builds a CG for the entire

program. VTAFP pessimistically prunes CHAFP’s edges, whereas UCG is an

optimistic algorithm that does not treat library functions as entry points (see

Chapter 4.4.1 and Chapter 4.4.3). For instance, github-contributions-ios

has many toString() functions on polymorphic types within a library that

call each other. CHAFP grossly over-approximates their edges, and VTAFP

prunes CHAFP’s edges using its type information. However, those library

functions are never called by the user program. Since UCG does not treat

them as entry points, it does not have any edges to or from those functions.

CalendarKit has a similar situation where call sites within library functions

have many resolutions due to polymorphism and are pruned by VTAFP, but

the user code never calls them and therefore UCG has no edges to them.

UCG generally provides slightly better precision than VTAFP, with a
geometric mean of 1.4% fewer edges.

80

Table 6.4: Number of monomorphic and polymorphic reachable call sites in the
call-graphs generated by CHAFP and how many of them become unreachable,
monomorphic, and polymorphic in VTAFP.

VTAFP

Benchmark CHAFP Unreachable Mono Poly

github-contributions-ios
Mono 14,059 6,429 7,397 0
Poly 1,084 403 0 (0.00%) 483

wireguard-apple
Mono 10,017 1,022 8,486 0
Poly 2,874 22 14 (0.49%) 2,505

Swift-Radio-Pro
Mono 7,210 0 6,768 0
Poly 721 0 5 (0.69%) 529

FrameGrabber
Mono 13,478 1,203 11,599 0
Poly 1,176 88 60 (5.10%) 717

swift-2048
Mono 1,956 0 1,869 0
Poly 124 0 20 (16.13%) 92

daylight-ios
Mono 3,664 820 2,614 0
Poly 1,729 117 0 (0.00%) 1,387

Tofu
Mono 3,985 0 3,800 0
Poly 474 0 1 (0.21%) 335

FlappySwift
Mono 1,550 0 1,435 0
Poly 471 0 0 (0.00%) 362

compositional-layouts-kit
Mono 2,699 0 2,481 0
Poly 187 0 0 (0.00%) 180

flappy-fly-bird
Mono 4,331 0 4,018 0
Poly 613 0 1 (0.16%) 461

swiftui-2048
Mono 3,592 0 3,566 0
Poly 231 0 8 (3.46%) 201

ZenTuner
Mono 1,289 78 1,209 0
Poly 87 3 0 (0.00%) 75

PGPro
Mono 11,357 0 11,186 0
Poly 538 0 9 (1.67%) 388

authenticator
Mono 5,556 29 5,470 0
Poly 387 0 0 (0.00%) 318

CompositionalDiffablePlayground.ios
Mono 5,761 0 5,435 0
Poly 318 0 1 (0.31%) 273

trailer
Mono 23,702 0 23,682 0
Poly 973 0 3 (0.31%) 645

CalendarKit
Mono 3,119 1,085 1,924 0
Poly 53 4 0 (0.00%) 23

Swiftagram
Mono 15,468 54 15,338 0
Poly 1,125 0 1 (0.09%) 753

iOS-Depth-Sampler
Mono 4,494 821 3,528 0
Poly 253 1 31 (12.25%) 186

watchOS-2-Sampler
Mono 1,382 1,122 171 0
Poly 16 5 0 (0.00%) 8

edhita
Mono 1,754 0 1,577 0
Poly 68 0 2 (2.94%) 47

Kotoba
Mono 2,063 0 1,941 0
Poly 811 0 2 (0.25%) 726

Mean
Mono - - - -
Poly - - - (2.00%) -

81

Table 6.5 provides detailed data of how many VTAFP polymorphic edges

UCG resolves to be monomoporphic. Unlike VTAFP, UCG’s pointer analysis

(i.e., SPDS) is context-sensitive, flow-sensitive, and field-sensitive and there-

fore precisely finds the allocation sites of function pointers. This sensitivity

enables UCG to build a precise CG through which UCG propagates instanti-

ated types in a flow-sensitive manner. UCG analysis identifies a mean of 8.63%

polymorphic call sites that VTAFP detects to be monomorphic. Notably, for

wireguard-apple and CalendarKit, 71.86% and 47.83% of polymorphic

call sites, respectively, become monomorphic in UCG compared to VTAFP.

However, for 14/22 benchmarks, less than 1% of polymorphic call sites be-

come monomorphic.

Overall, UCG identifies a mean of 8.63% of the polymorphic call sites
identified by VTAFP to be monomorphic, but most benchmarks see a
difference of less than 1%.

RQ3. To answer this question, we compare the call graphs generated

by VTAFP with those generated by both CHAFP and UCG. As we previously

showed using Table 6.3, VTAFP has 40.25% fewer reachable edges than CHAFP,

and UCG has 1.4% fewer reachable edges than VTAFP. Therefore, VTAFP is

between CHAFP and UCG in terms of precision, but is far closer to UCG than

CHAFP. The improvement from CHAFP to VTAFP removes several spurious

edges that CHAFP computes due to its type signature function pointer resolu-

tion strategy. However, VTAFP still has some imprecision due to its field-based

and flow-insensitive nature.

VTAFP offers a significant increase in precision compared to CHAFP,
with a geometric mean of 40.25% fewer edges, but is slightly less precise
than UCG with a geometric mean of 1.4% more edges.

82

Table 6.5: Number of monomorphic and polymorphic reachable call sites in the
call-graphs generated by VTAFP and how many of them become monomorphic
and polymorphic in UCG.

UCG

Benchmark VTAFP Mono Poly

github-contributions-ios
Mono 7,397 1,545 0
Poly 483 22 (4.55%) 82

wireguard-apple
Mono 8,500 8,126 0
Poly 2,505 1,800 (71.86%) 675

Swift-Radio-Pro
Mono 6,773 6,681 0
Poly 529 0 (0.00%) 523

FrameGrabber
Mono 11,659 10,752 0
Poly 717 64 (8.93%) 580

swift-2048
Mono 1,889 1,742 0
Poly 92 0 (0.00%) 92

daylight-ios
Mono 2,614 2,614 0
Poly 1,387 30 (2.16%) 1,338

Tofu
Mono 3,801 3,690 0
Poly 335 0 (0.00%) 335

FlappySwift
Mono 1,435 1,435 0
Poly 362 0 (0.00%) 362

compositional-layouts-kit
Mono 2,481 2,481 0
Poly 180 0 (0.00%) 178

flappy-fly-bird
Mono 4,019 3,918 0
Poly 461 0 (0.00%) 461

swiftui-2048
Mono 3,574 3,567 0
Poly 201 0 (0.00%) 201

ZenTuner
Mono 1,209 1,126 0
Poly 75 13 (17.33%) 62

PGPro
Mono 11,195 11,070 0
Poly 388 0 (0.00%) 382

authenticator
Mono 5,470 5,453 0
Poly 318 12 (3.77%) 306

CompositionalDiffablePlayground.ios
Mono 5,436 5,425 0
Poly 273 0 (0.00%) 273

trailer
Mono 23,685 23,684 0
Poly 645 3 (0.47%) 639

CalendarKit
Mono 1,924 1,618 0
Poly 23 11 (47.83%) 4

Swiftagram
Mono 15,339 15,339 0
Poly 753 0 (0.00%) 753

iOS-Depth-Sampler
Mono 3,559 3,530 0
Poly 186 0 (0.00%) 186

watchOS-2-Sampler
Mono 171 171 0
Poly 8 2 (25.00%) 6

edhita
Mono 1,579 1,577 0
Poly 47 0 (0.00%) 47

Kotoba
Mono 1,943 1,941 0
Poly 726 0 (0.00%) 726

Mean
Mono - - -
Poly - - (8.63%) -

83

Table 6.6: Median runtimes for each algorithm (milliseconds)

Benchmark

C
H

A
F
P

V
T

A
F
P

U
C

G

V
T

A
F
P
/

C
H

A
F
P

U
C

G
/

V
T

A
F
P

ZenTuner 109 805 824 7.4 1.0

github-contributions-ios 799 22,860 2,645 28.6 0.1

Kotoba 162 1,201 925 7.4 0.8

authenticator 285 1,351 3,835 4.7 2.8

FrameGrabber 841 9,173 12,061 10.9 1.3

Swiftagram 546 6,657 54,179 12.2 8.1

PGPro 320 2,253 5,538 7.0 2.5

daylight-ios 284 1,585 1,576 5.6 1.0

compositional-layouts-kit 120 1,039 882 8.7 0.8

flappy-fly-bird 213 1,587 1,988 7.5 1.3

swiftui-2048 183 1,303 1,560 7.1 1.2

FlappySwift 114 906 526 7.9 0.6

Tofu 212 940 1,733 4.4 1.8

CalendarKit 188 1,528 953 8.1 0.6

CompositionalDiffablePlayground.ios 260 1,170 1,799 4.5 1.5

edhita 125 883 600 7.0 0.7

watchOS-2-Sampler 167 994 385 6.0 0.4

iOS-Depth-Sampler 219 1,516 1,659 6.9 1.1

wireguard-apple 521 7,692 9,178 14.7 1.2

Swift-Radio-Pro 370 2,552 3,243 6.9 1.3

swift-2048 100 872 1,729 8.7 2.0

trailer 712 12,562 87,701 17.6 7.0

Geometric Mean - - - 8.1 1.2

Mean 311 3,701 8,887 - -

Median 216 1,433 1,731 - -

RQ4. Table 6.6 shows the median running times for our suite of algo-

rithms for all benchmark apps. Figure 6.2 shows a plot of the running times

in Table 6.6. The results have several outliers across the algorithms (e.g.,

github-contributions-ios, trailer, Swiftagram). Therefore, we use

median values for this comparison. Factors that may create such outliers in-

clude heavy usage of interprocedural function pointers and app size (in terms

84

Zen
Tun

er

gi
th

ub
-c
on

tr
ib

ut
io
ns

-io
s

K
ot

ob
a

au
th

en
tic

at
or

Fr
am

eG
ra

bb
er

Sw
ift

ag
ra

m

PG
Pro

da
yl

ig
ht

-io
s

co
m

po
sit

io
na

l-l
ay

ou
ts

fla
pp

y-
fly

-b
ird

sw
ift

ui
-2

04
8

Fla
pp

yS
w
ift

Tof
u

C
al
en

da
rK

it

C
om

po
sit

io
na

lD
iff

ab
le

ed
hi

ta

wat
ch

O
S-

2-
Sa

m
pl

er

iO
S-

D
ep

th
-S

am
pl

er

w
ire

gu
ar

d-
ap

pl
e

Sw
ift

-R
ad

io
-P

ro

sw
ift

-2
04

8

tr
ai
le
r

0

10

20

30

40

50

60

70

80

90

100

R
u
n
ti

m
e

(s
)

CHAFP

VTAFP

UCG

Figure 6.2: Plotted runtimes from Table 6.6.

of LOC count), which are shown in Table 6.2. github-contributions-ios,

trailer, and Swiftagram are the three largest apps, with LOC ranging

from 344,078 to 265,332, and are all outliers. Furthermore, some of them

have many interprocedural function pointers. github-contributions-ios

has 281 non-trivial function references and 1,579 non-trivial dynamic refer-

ences. trailer has a combined total of 756 non-trivial references. Lastly,

Swiftagram has a combined total of 237 non-trivial references.

Compared to CHAFP, VTAFP is 8.1× slower using a geometric mean. The

difference varies between 4.4× for Tofu and 28.6× for github-contributions-

ios.

85

The difference in running times between VTAFP and UCG also varies

widely. However, the difference is smaller compared to the difference between

CHAFP and VTAFP, with a geometric mean difference of 1.2×. Across all

benchmarks, the median running time of VTAFP is 1,433 ms while UCG has a

median running time of 1,731 ms. In seven benchmarks, UCG performs bet-

ter than VTAFP, but with a maximum runtime difference of 0.1× (github-

contributions-ios). On the other hand, VTAFP outperforms UCG for au-

thenticator (2.8×), Swiftagram (8.1×), PGPro (2.5×), and trailer

(7.0×). Nevertheless, UCG still computes call graphs in under 13 seconds for

all but two benchmarks (Swiftagram and authenticator).

For all benchmarks, CHAFP computes its call graph in under 1 second.
VTAFP is 8.1× slower than CHAFP. UCG is 1.2× slower than VTAFP.
While UCG is slower than VTAFP for some benchmarks, VTAFP and
UCG finish their call graph analysis in under 13 seconds for most
benchmarks. Therefore, both algorithms generally have similar per-
formance in practice.

6.2.4 Discussion

Our algorithms provide multiple options for Swift call graph construction,

each with their own benefits. We found that CHAFP is fast but is imprecise

compared to VTAFP and UCG. VTAFP is much more precise than CHAFP

but is less performant. Lastly, UCG is slightly more precise than VTAFP

but may be less performant in some cases. Therefore, VTAFP is likely the best

algorithm to use in most situations. However, UCG provides the best precision

and is never less precise than VTAFP, making it the best choice in situations

where CG precision is very important. For instance, if we use SWAN’s call-

graph construction for a dead-code elimination analysis to reduce app binary

size [14], UCG’s increased precision may help reduce binary size better than

VTAFP would.

86

Table 6.7: Detected crypto API misuses in the benchmark applications.

Benchmark Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 7
ECB IV KEY SALT ITER PWD

UniversalFrame 2 2

xcode-
projects

1 1

SwiftyLocalKit 2 2

InvestScopio 2 2

SujungVillage-
User-iOS

3 3

open imsdk for
swift

2

CCCryp 2

encrypt 2 2

mqttChat 2 2

lhcp 2 2

SwiftBasicKit 2 2

HDWallet 1

tlatia 1 1 1

Total (44) 14 8 18 1 2 1

6.3 Crypto API Misuse in Real-World Apps

We evaluated SWAN’s crypto analysis on collection of open-source Swift appli-

cations that use the CryptoSwift API and have crypto misuses. In this section,

we report our results and show examples of misuses from the applications.

6.3.1 Benchmark Applications

The benchmarks that we used for this portion of the evaluation are different

than the ones we used for evaluating processing overhead and call-graph con-

struction. We focused on benchmarks that use crypto APIs and have crypto

misuses. We manually searched GitHub repositories using specific queries,

87

such as ‘‘import CryptoSwift’’ AES language:Swift and ‘‘import

CryptoSwift’’ PBKDF2 salt language:Swift. This resulted in 4,960 code

results. We limited our search to the first three pages (30 results) of the

search results. We looked through the first 30 results and ignored redundant

repositories and code results inside of the CryptoSwift library (many reposi-

tories include the full CryptoSwift library). In total, we found 57 applications

across all of the queries that, using manual inspection, contain crypto API

misuses. Out of those 57 applications, we only managed to successfully build

13. Table 6.7 lists the benchmarks along with the number of violations for

each rule. Some notable benchmarks include InvestScopio, an app available

on the App Store that predicts returns on investments, SujungVillage-

User-iOS, a dormitory service managing app, and mqttChat, a generic

chat application. Some apps provide utilities for use in other applications,

such as SwiftyLocalKit, SwiftBasicKit, CCCryp, and tlatia, which

is a password-based utility for encrypting files.

Our benchmark selection process is biased towards applications with man-

ually verified crypto misuses. We did not select benchmarks that correctly

use the CryptoSwift API. Therefore, we cannot (and do not) use our selected

benchmarks for evaluating whether SWAN can avoid false-positives (i.e., cases

where there are no API misuses but SWAN still reports misuses).

6.3.2 Results

SWAN’s crypto analysis detected 44 defects in total across all benchmarks. We

used CHAFP for call-graph construction, but using VTAFP or UCG instead has

no effect on our analysis results. Rule 1 (usage of ECB block mode) and Rule

3 (constant key) are the most frequent violations, and Rule 4 (constant salt)

and Rule 7 (constant password) are the least frequent. We manually inspected

and compared each benchmark with SWAN’s results and determined that all

but one detected violations are true positives. We manually examined the

arguments passed to supported crypto API calls and did not find any false

negatives.

SWAN discovered three different types of violations (constant salt, low

88

381 struct Key {

382 let keyLength = 32

383 let password: String

384 let salt: String = "icGFEkNbIuNK1cz1qNq5kMV1jqkpvduX"

385 let keyDerivation: PKCS5.PBKDF2

386

387 var key: [UInt8] {

388 do {

389 return try keyDerivation.calculate ()

390 } catch {

391 return []

392 }

393 }

394

395 init? (withPassword password: String) {

396 self.password = password

397 do {

398 keyDerivation = try PKCS5.PBKDF2(

399 password: Array(self.password.utf8),

400 salt: Array(salt.utf8),

401 keyLength: keyLength)

402 } catch {

403 return nil

404 }

405 }

406 }

Figure 6.3: A simplified excerpt from the tlatia benchmark that contains
crypto API misuses.

iteration count, and constant password) in tlatia. Figure 6.3 shows the vi-

olating code from the application’s Key.swift file. SWAN reports the three

violations on line 398. The struct Key sets its salt field to a constant string

on line 384. This field goes through two transformations on line 400 before

passing it to the PKCS5.PBKDF2 constructor: String.utf8() and conversion

to a byte array (Array.init()). Since SWAN models both of these functions,

the analysis detects dataflow from the original salt string to the salt param-

eter of the PKCS5.PBKDF2 constructor. SWAN also reports a low iteration

count because the program does not provide an iteration count to the con-

structor, and the default value for the iteration count is 4,096, which is below

the analysis’ minimum threshold of 100,000 (the minimum amount of itera-

tions required for secure encryption–see Chapter 5.3.2). The final violation

is a constant password. However, this is in fact a false-positive because the

89

407 fileprivate let key = "app"+".live"+".content".md5()

408

409 public class ZCryptoContentManager: NSObject {

410 public static func encrypt(_ str: String) -> String {

411 do {

412 let aes = try AES(key: Padding.zeroPadding.add(to:

key.bytes , blockSize: AES.blockSize), blockMode:

ECB())

413

414 let encrypted = try aes.encrypt(str.bytes)

415 guard let encryptedBase64 = encrypted.toBase64 ()

else {

416 return str

417 }

418 return encryptedBase64

419 } catch let error { ... }

420 return str

421 }

422 }

Figure 6.4: A simplified excerpt from the SwiftBasicKit benchmark that
contains crypto API misuses.

program never sets the password field to a constant value (the program gives

Key.init() a password from the user). SWAN reports a violation because,

at the SIL level, the password field has a default constant value, even though

in practice it is not possible for the program to use the default value. This

is the only false-positive that SWAN reported in the benchmarks. Avoiding

this type of false-positive requires modifying SWAN’s crypto analysis to avoid

reporting a violation involving default values auto-generated by SIL. However,

these are not the same as default values specified by the API, such as the

default iteration count, because those could result in genuine violations.

Figure 6.4 shows a simplified excerpt from the SwiftBasicKit bench-

mark, where SWAN found two ECB usage violations and two constant key

violations. Figure 6.4 only shows one of each violation on line 412. The pro-

gram gives ECB as a direct parameter, but the key parameter dataflow is more

complex. The key value is defined on line 407 as a concatenation of multi-

ple static strings, and then the program hashes the concatenated string using

MD5. MD5 is not considered secure [61], so SWAN models String.md5() to

simply return the string. Therefore, SWAN continues to treat key as a con-

90

423 // enryptionFunction.swift

424 func aesEncrypt(key: String) throws -> String {

425 let key: [UInt8] = Array(key.utf8) as [UInt8]

426 let aes = try! AES(key: key , blockMode: ECB(),

padding :. pkcs5)

427 let encrypted = try aes.encrypt(Array(self.utf8))

428 return encrypted.toBase64 ()

429 }

430

431 // ViewController.swift

432 class ViewController: UIViewController {

433 override func viewDidLoad () {

434 super.viewDidLoad ()

435 let value = "My value to be encrypted"

436 let key = "MySixteenCharKey"

437 let encryptedValue = try! value.aesEncrypt(key: key)

438 }

439 }

Figure 6.5: A simplified excerpt from the encrypt benchmark that contains
crypto API misuses.

stant string after the hashing. Next, the program pads the key’s bytes with

zeros to fit the block size of AES on line 412. SWAN models the padding func-

tion to simply return the first argument, which in this example is a constant

string. Therefore, SWAN detects that the program gives a constant key to

AES(), which is an API misuse.

Figure 6.5 shows a multi-file, interprocedural constant key misuse on line 426

from the encrypt benchmark. The same line also contains a simple ECB us-

age violation. This particular benchmark is a small, example-style application.

The program defines the key as a constant string on line 436 and then passes

it to aesEncrypt() on line 437. On line 425, the key goes through two trans-

formations: String.utf8() and conversion to a byte array (Array.init()),

similarly to Figure 6.3. SWAN has models for these two functions and has

interprocedural dataflow support, and therefore determines that the key ar-

gument on line 426 comes from the constant string value on line 436.

SWAN detects 44 crypto API miuses in total across all benchmarks,
with only one false-positive.

91

6.3.3 Discussion

SWAN’s crypto analysis finds various misuses in real-world applications, with

very limited false-positives. The misuses’ dataflow ranges from direct function

call arguments, to string concatenation, to hashing and data type transfor-

mations, to interprocedural dataflow. Without dataflow analysis and function

modelling, SWAN would not find many of these misuses. Our results demon-

strate SWAN’s analysis capabilities and its ability to find real misuses.

Due to our limited sample size, we cannot make any conclusions about the

general distribution of crypto misuses in Swift applications using our results.

However, based on our results in merely 13 tested applications and the total

number of candidate benchmarks (57) that we found to have misuses, we

believe that crypto API misuses of the CryptoSwift library are a significant

problem in Swift applications. SWAN can help find these misuses, which are

also security vulnerabilities and may potentially lead to data breaches if not

resolved.

6.4 Regression Test Suite

In this section, we describe our testing infrastructure and tests that we use

on an ongoing basis to verify SWAN’s functionality and precision. These tests

are handcrafted and anecdotal, but allow us to verify and evaluate individual

components of SWAN. Furthermore, the infrastructure allows us to avoid re-

gression in terms of precision and functionality. These tests themselves are a

small contribution for Swift analysis because they provide a micro-benchmark

for Swift that other (future) Swift analysis tools could potentially utilize to

verify their functionality and precision.

6.4.1 Test Suite

SWAN uses a suite of tests for various language features and analysis capabil-

ities. The suite includes tests for verifying that SWAN can track data through

Swift’s containers: Array, Dictionary, and Set. Sensitive data may be stored

92

440 func test_shuffled () {

441 let src = source (); //!testing!source

442 let arr1 = ["a", src , "b", "c", "d"];

443 let arr2 = arr1.shuffled ();

444 sink(sunk : arr2 [0]); //!testing!sink

445 }

446

447 func test_findFirst () {

448 let src = source (); //!testing!source

449 let arr = ["a", src , "b", "c", "b", "c"];

450 let FirstElement = arr.first(where: {$0 == "b" });

451 sink(sunk : FirstElement !); //!testing!sink

452 }

Figure 6.6: Two tests from SWAN’s test suite that verify SWAN can track
dataflow through Swift’s arrays.

in these containers and therefore SWAN’s models feature extensive coverage

of these containers.

Figure 6.6 shows two such tests from SWAN’s test suite for the Array con-

tainer. The function on line 440 tests dataflow through the Array.shuffled()

method, and the function on line 447 tests dataflow through the Array.first()

method. SWAN treats arrays as objects that can hold a single value (see Sec-

tion 3.6). Therefore, SWAN models Array.shuffled() to simply return the

array without modifying it. SWAN also models Array.first() to return the

array’s (single) value. We expect that SWAN should detect a vulnerability on

line 440 because after shuffling the array, the first value may indeed be the

tainted value. On the other hand, the vulnerability in test findFirst() on

line 451 is technically a false-positive because the first element that matches

the condition on line 450 would be the third element in the array, "b". How-

ever, because SWAN does not aim to precisely handle arrays, this false-positive

result is acceptable.

SWAN has similar dataflow tests for language features such as recursion,

closures, dynamic dispatch, objects with fields, and Swift’s first-class function

objects. The test suite also has typestate tests for SWAN’s analysis for de-

tecting inefficient configurations of the Core Location API (see Section 5.2.2).

Lastly, the test suite has individual tests for each of the crypto API misuse

rules that SWAN supports. These tests usually feature both simple and com-

93

plex dataflow.

6.4.2 Annotation Tester

SWAN features a standalone annotation verification CLI tool for its tests that

scans the source code for annotations, compares them to the results, and

then outputs any discrepancies. Examples of such annotations are seen in

Figure 6.6 on lines 441, 444, 448 and 451, which are all taint analysis anno-

tations. Other types of available annotations are typestate annotations (e.g.,

?FileOpenClose?error for the spec in Figure 5.4) and crypto annotations

(e.g., KEYerror for a constant key violation). The annotations may option-

ally be labelled as false-positives or false-negatives by adding !fp or !fn to

the annotation, respectively. Since these annotations are line-number agnos-

tic, they allow for tests to be easily modified. Furthermore, these annotations

may be added to (benchmark) applications and are not limited to the context

of SWAN’s test suite.

94

Chapter 7

Related Work

7.1 Analysis Frameworks

In this section, we describe relevant tools and frameworks. SWAN serves as

a general Swift static analysis framework, features enhanced call-graph con-

struction approaches, and may be applied to domain-specific problems, such

as crypto API misuses. Therefore, we discuss related work in each of these

areas.

7.1.1 Android Analysis Tools

The Android platform has seen an abundance of analysis frameworks over

the past decade. FlowDroid [8] is a lifecycle-aware, context-sensitive, flow-

sensitive, field-sensitive, and object-sensitive taint analysis tool for Android

apps. SCanDroid [11] uses WALA [63] and matches Android app manifests

to dataflow analyses to ensure that apps do not overreach their permissions.

DroidInfer [28] uses context-free language reachability to perform type-based

and context-sensitive taint analyses for Android apps. While all these frame-

works work well for the Android platform, there is no openly-available equiva-

lent counterpart for the Swift platform. SWAN bridges this gap by providing

a robust open-source static analysis framework for Swift. SWAN also borrows

SPDS [48] from the Java/Android analysis work as its analysis engine.

95

7.1.2 LLVM-Based Analyses

While LLVM [39] and Clang [38] support some low-level analyses, they are

not suitable for deeper analyses of Swift applications such as precise taint

tracking. This is because most Swift-specific structures and source information

are typically lost during the compilation of Swift source code to low-level

LLVM IR, which makes reporting errors back to the user in the original source

not possible to the best of our knowledge. Moreover, the most useful analyses

that Clang provides (i.e., memory sanitizer and thread sanitizer) are primarily

dynamic analyses. Unlike static analyses, dynamic analyses require running

the Swift program under analysis multiple times with various inputs to ensure

enough coverage of the program behaviour. SWAN overcomes this limitation

by providing a framework for static analysis of Swift programs.

Because Swift compiles to LLVM IR, one may use an LLVM IR analysis

tool to analyze Swift programs. The Phasar framework [44] provides call

graph construction and dataflow analyses on LLVM IR, theoretically enabling

it to analyze Swift applications. However, an analysis targeting LLVM IR

immediately faces practical concerns when applied to Swift. For example, it

is easy to acquire LLVM IR for a single Swift file, but acquiring LLVM IR for

an Xcode project, which is the primary Swift program source format, using

the compiler frontend is not possible to the best of our knowledge. Even if

acquiring LLVM IR was possible, the IR does not contain source information,

making reporting useful results back to the developer difficult. Therefore,

applying an LLVM-based analysis framework to Swift is impractical.

7.1.3 Swift Analysis Tools

Many publicly available analysis tools for Swift are linters such as SwiftLint [52].

These tools only help enforce Swift code standards and best practices. Fur-

thermore, these tools are not extendable to provide sophisticated analysis for

detecting defects such as security vulnerabilities.

Most existing analysis approaches for iOS apps tend to consume app bina-

ries through decompilation [19], [23], [65]. While these approaches are useful

96

for detecting specific properties, they do not provide a call graph based on the

source code or with source information.

Many industry static application security testing (SAST) products offer

Swift support but require a license to use. For instance, SonarSwift [46] is

a static Swift code analyzer which allows users to define rules for bugs, code

smells, and vulnerabilities to find in their codebase. However, Swift is not

supported in the free version of the software and requires a paid license. As a

result, we are unable to verify its correctness and effectiveness at Swift static

analysis. Other tools that support Swift but require a paid license to use

include Coverity [53], Checkmarx [16], and Fortify SCA [40].

Recently, GitHub made their Swift analysis for CodeQL open-source [26].

However, at the time of writing, they have not yet announced or officially re-

leased Swift support nor added Swift support to their user-facing toolchain.

Despite this, we built their Swift toolchain using CodeQL’s development tools.

CodeQL supports the same crypto API misuse rules that SWAN supports.

Therefore, we ran CodeQL on the apps we used for evaluating SWAN’s crypto

support. Similar to SWAN, CodeQL uses an auto-builder tool that uses

xcodebuild to extract Swift code during compilation. However, CodeQL’s

source code extractor fails to extract user code from the apps. In our testing,

CodeQL either failed to build the application, detected no defects, or detected

defects only in the CryptoSwift library and not inside user code. We suspect

that CodeQL’s code extractor for Swift is not yet fully ready for use because

it does not correctly select the build scheme. SWAN requires the user to

provide the build scheme whereas CodeQL tries to automatically select one.

Due to these problems we encountered, we could not include a comparison to

CodeQL’s Swift analysis in our evaluation.

7.2 Call-Graph Construction

Given that SIL uses function pointers for dynamic dispatch, existing call-graph

construction strategies for OOLs, without any modification to handle function

pointers, are not sufficient. The most popular and established analyses, Class

97

Hierarchy Analysis (CHA) [18], Rapid Type Analysis (RTA) [12], and Variable

Type Analysis (VTA) [51], all do not resolve function pointers. CHA and RTA

would not handle non-trivial function pointers in any way because they would

not know the allocation sites of non-trivial function pointers. VTA would

resolve the operands of dynamic dispatch instructions, but if the resulting

function pointer is non-trivial and requires dataflow analysis, then it too cannot

resolve where the function pointer is applied.

Existing work that addresses function pointers, such as Phasar [45], often

use hard-and-fast solutions, for instance by considering the type signature of a

function pointer and resolving to all functions that match that signature. Such

solutions, while sound, are not very precise because many unrelated functions

can share the same type signature (e.g., a function with no arguments or a

return value). Therefore, these solutions will compute highly imprecise call-

graphs for SIL.

While prior work have tackled function pointers in C using sophisticated

analysis techniques [9], [24], [35], [41], C does not feature dynamic dispatch.

Therefore, these solutions are also not sufficient for Swift/SIL. Moreover, SIL

function pointers may be written to fields, and thus we require a field-sensitive

pointer analysis, which existing solutions do not use. Others call-graph con-

struction algorithms for C++, such as RTA, have entirely ignored C++’s

function pointers, likely due to their relatively infrequent usage.

7.3 Crypto API Misuse

Krüger et al. [32] have developed a static analysis tool called CogniCrypt,

which automatically detects crypto-API misuses in Java/Android applications.

CogniCrypt can also assist in fixing the misuses and can generate code for the

user that securely implements various operations, such as data encryption.

Their work uses a domain-specific language (DSL), called CrySL [33], which

allows their analysis to extend to other APIs easily. CogniCrypt integrates

into the Eclipse IDE, and it is the first integrated tool to detect misuses and

generate secure code patterns. It is a good reference for developing similar

98

tools for other languages and platforms. However, while SWAN uses the same

analysis engine as CogniCrypt (SPDS), porting CogniCrypt to support Swift

requires significant effort and was out of the scope of this work. Moreover, it is

not clear whether such a port would make sense due to the difference between

Java/Android crypto APIs and Swift crypto APIs.

Most existing solutions that detect crypto API misuse in iOS apps use

the binary analysis approach. This approach is fundamentally inferior to the

source-code approach we use because little to no source information can be

provided back to the developer when a misuse is detected. Furthermore, this

approach faces many engineering challenges because decompilation of iOS apps

is difficult and never perfect. Feichtner et al. decompile ARM binaries to

LLVM IR and use slicing techniques to determine whether a crypto API call

has the correct parameters based on the same fundamental six rules that our

work uses [25]. They identified that 82% of the iOS apps they analyzed had

at least one API misuse. Their work finds misuses of the iOS CommonCrypto

library, whereas SWAN’s crypto analysis finds misuses of the CryptoSwift

library. Therefore, we did not compare SWAN to their analysis tool. Further-

more, to our knowledge, our work is the first to find misuses of CryptoSwift.

Li et al. use a combination of static and dynamic analysis to detect crypto

API misuses in iOS apps by analyzing runtime call traces [37]. Their work

predates Swift and therefore we also did not compare SWAN with it.

99

Chapter 8

Conclusion

Static analysis reasons about a program’s behaviour without executing the

program’s code and may be used to detect security vulnerabilities, such as

cryptography API misuses that may expose the program to attacks. Despite

Swift being the most popular programming language for developing iOS ap-

plications and iOS devices having a large market share [50], there has been a

lack of open-source static analysis tools for Swift analysis. While some com-

mercial tools [16], [53] do offer analysis support for Swift, they are impractical

for the static analysis research community due to their high cost and closed-

source nature. To address this, in this thesis, we presented SWAN, a static

analysis framework for Swift. SWAN features configurable taint and typestate

analysis, call-graph construction, and crypto API misuse analysis. SWAN’s

analysis can track dataflow across Swift modules and through libraries, and

SWAN’s modelling functionality allows modelling black-box functions, such as

Swift standard library functions.

We evaluated various components of SWAN on 22 open-source Swift ap-

plications to assess SWAN’s performance, precision, and effectiveness on real-

world applications. Together, these aspects determine the overall practicality

of SWAN as a static analysis framework. We assessed SWAN’s overhead and

determined that SWAN prepares the majority of benchmarks for analysis in

under 5 seconds. After SWAN processes and prepares a benchmark, it is

ready to run an analysis, such as call-graph construction. SWAN computes

call-graphs using a suite of call-graph construction algorithms that vary in

100

performance and consists of CHAFP, VTAFP, and UCG. Therefore, we also

evaluated the algorithms on the 22 benchmarks. Our slowest but most pre-

cise algorithm, UCG, builds a call-graph in under 13 seconds for all but two

benchmarks. VTAFP, which is nearly as precise as UCG, builds a call-graph

in under 9 seconds for all but two benchmarks. Lastly, CHAFP builds a call-

graph in under 1 second for all benchmarks, thereby providing the quickest

but least precise call-graph. Lastly, we tested SWAN’s crypto API misuse

analysis on a different set of 13 open-source applications with known crypto

API misuses. SWAN finds 44 misuses in total across all 13 apps, with only one

false-positive, demonstrating that SWAN can find crypto API misuses in real

Swift applications. To detect some of these misuses, SWAN tracks dataflow

interprocedurally, through multiple files, and through data manipulation func-

tions (e.g., concatenation, hashing, and string to byte conversion), which we

have modelled.

SWAN serves as a practical platform for Swift analysis that developers

and researchers can utilize to construct call-graphs and detect defects in Swift

applications. Furthermore, SWAN may be extended to support other types of

analyses, and therefore enables its users (e.g., the static analysis community)

to write further analyses for Swift. Since SWAN’s architecture is modular and

features its own intermediate representation (IR), SWIRL, this leaves the door

open for integration into other analysis engines/frameworks, whereby SWIRL

could be translated to the IR of another engine.

101

References

[1] Apple, Ios 16, https://www.apple.com/ca/ios/, Accessed: Apr. 4,
2023.

[2] ——, Macos ventura, https://www.apple.com/ca/macos/, Accessed:
Apr. 4, 2023.

[3] ——, Package manager, https://www.swift.org/package-manager/,
Accessed: Mar. 9, 2023.

[4] ——, Swift, https://developer.apple.com/swift/, Accessed: Mar.
9, 2023.

[5] ——, Swift intermediate language (sil), https://github.com/apple/
swift/blob/master/docs/SIL.rst, Accessed: Mar. 9, 2023.

[6] ——, Swift standard library, https://developer.apple.com/documentation/
swift/swift-standard-library, Accessed: Mar. 9, 2023.

[7] ——, Xcode 14, https://developer.apple.com/xcode/, Accessed:
Mar. 9, 2023.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Programming Language Design and Implementation (PLDI),
2014, pp. 259–269. doi: 10.1145/2594291.2594299. [Online]. Available:
https://doi.org/10.1145/2594291.2594299.

[9] D. C. Atkinson and W. G. Griswold, “Effective whole-program analy-
sis in the presence of pointers,” in Proceedings of the 6th ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing, ser. SIGSOFT ’98/FSE-6, Lake Buena Vista, Florida, USA: Asso-
ciation for Computing Machinery, 1998, pp. 46–55, isbn: 1581131089.
doi: 10.1145/288195.288217. [Online]. Available: https://doi.org/
10.1145/288195.288217.

[10] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5,
pp. 22–29, 2008. doi: 10 . 1109 / MS . 2008 . 130. [Online]. Available:
https://doi.org/10.1109/MS.2008.130.

102

https://www.apple.com/ca/ios/
https://www.apple.com/ca/macos/
https://www.swift.org/package-manager/
https://developer.apple.com/swift/
https://github.com/apple/swift/blob/master/docs/SIL.rst
https://github.com/apple/swift/blob/master/docs/SIL.rst
https://developer.apple.com/documentation/swift/swift-standard-library
https://developer.apple.com/documentation/swift/swift-standard-library
https://developer.apple.com/xcode/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/288195.288217
https://doi.org/10.1145/288195.288217
https://doi.org/10.1145/288195.288217
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130

[11] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for sys-
tematic testing of android apps,” in Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA), A. L. Hosking, P. T. Eug-
ster, and C. V. Lopes, Eds., 2013, pp. 641–660. doi: 10.1145/2509136.
2509549. [Online]. Available: https://doi.org/10.1145/2509136.
2509549.

[12] D. F. Bacon and S. L. Graham, “Fast and effective optimization of stati-
cally typed object-oriented languages,” AAI9828589, Ph.D. dissertation,
1997, isbn: 059181143X.

[13] A. Bangash, D. Tiganov, K. Ali, and A. Hindle, “Energy efficient guide-
lines for ios core location framework,” in 2021 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), Los Alami-
tos, CA, USA: IEEE Computer Society, Oct. 2021, pp. 320–331. doi:
10.1109/ICSME52107.2021.00035. [Online]. Available: https://doi.
ieeecomputersociety.org/10.1109/ICSME52107.2021.00035.

[14] M. Chabbi, J. Lin, and R. Barik, “An experience with code-size opti-
mization for production ios mobile applications,” in 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
2021, pp. 363–377. doi: 10.1109/CGO51591.2021.9370306.

[15] A. Chatzikonstantinou, C. Ntantogian, G. Karopoulos, and C. Xenakis,
“Evaluation of cryptography usage in android applications,” in Pro-
ceedings of the 9th EAI International Conference on Bio-Inspired In-
formation and Communications Technologies (Formerly BIONETICS),
ser. BICT’15, New York City, United States: ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2016, pp. 83–90, isbn: 9781631901003. doi: 10.4108/eai.3-12-
2015.2262471. [Online]. Available: https://doi.org/10.4108/eai.3-
12-2015.2262471.

[16] Checkmarx, Checkmarx sast: Scan with ease at the source code level,
https://checkmarx.com/product/cxsast-source-code-scanning/,
Accessed: Mar. 9, 2023.

[17] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
pp. 451–490, Oct. 1991, issn: 0164-0925. doi: 10.1145/115372.115320.
[Online]. Available: https://doi.org/10.1145/115372.115320.

[18] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proceedings of the 9th
European Conference on Object-Oriented Programming, ser. ECOOP ’95,
Berlin, Heidelberg: Springer-Verlag, 1995, pp. 77–101, isbn: 3540601600.

103

https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1109/ICSME52107.2021.00035
https://doi.ieeecomputersociety.org/10.1109/ICSME52107.2021.00035
https://doi.ieeecomputersociety.org/10.1109/ICSME52107.2021.00035
https://doi.org/10.1109/CGO51591.2021.9370306
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://checkmarx.com/product/cxsast-source-code-scanning/
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320

[19] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu, “Iris: Vetting private
api abuse in ios applications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15,
Denver, Colorado, USA: Association for Computing Machinery, 2015,
pp. 44–56, isbn: 9781450338325. doi: 10.1145/2810103.2813675. [On-
line]. Available: https://doi.org/10.1145/2810103.2813675.

[20] dkhamsing, Open-source ios apps, https://github.com/dkhamsing/
open-source-ios-apps, Accessed: Mar. 9, 2023.

[21] L. N. Q. Do, J. R. Wright, and K. Ali, “Why do software developers
use static analysis tools? a user-centered study of developer needs and
motivations,” IEEE Transactions on Software Engineering, vol. 48, no. 3,
pp. 835–847, 2022. doi: 10.1109/TSE.2020.3004525.

[22] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13, Berlin, Germany: Association for Computing Ma-
chinery, 2013, pp. 73–84, isbn: 9781450324779. doi: 10.1145/2508859.
2516693. [Online]. Available: https://doi.org/10.1145/2508859.
2516693.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting pri-
vacy leaks in ios applications,” in Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011, The Internet Society, 2011. [On-
line]. Available: https://www.ndss-symposium.org/ndss2011/pios-
detecting-privacy-leaks-ios-applications-paper.

[24] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interproce-
dural points-to analysis in the presence of function pointers,” in Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, ser. PLDI ’94, Orlando, Florida, USA: Asso-
ciation for Computing Machinery, 1994, pp. 242–256, isbn: 089791662X.
doi: 10.1145/178243.178264. [Online]. Available: https://doi.org/
10.1145/178243.178264.

[25] J. Feichtner, D. Missmann, and R. Spreitzer, “Automated binary analysis
on ios: A case study on cryptographic misuse in ios applications,” in Pro-
ceedings of the 11th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, ser. WiSec ’18, Stockholm, Sweden: Association
for Computing Machinery, 2018, pp. 236–247, isbn: 9781450357319. doi:
10.1145/3212480.3212487. [Online]. Available: https://doi.org/10.
1145/3212480.3212487.

[26] GitHub, Codeql, https://codeql.github.com, Accessed: Mar. 9, 2023.

104

https://doi.org/10.1145/2810103.2813675
https://doi.org/10.1145/2810103.2813675
https://github.com/dkhamsing/open-source-ios-apps
https://github.com/dkhamsing/open-source-ios-apps
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://www.ndss-symposium.org/ndss2011/pios-detecting-privacy-leaks-ios-applications-paper
https://www.ndss-symposium.org/ndss2011/pios-detecting-privacy-leaks-ios-applications-paper
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3212480.3212487
https://codeql.github.com

[27] T. S. Group, Soot - a java optimization framework, Montréal, QC, Canada:
McGill University, 1999. [Online]. Available: https://github.com/

Sable/soot.

[28] W. Huang, Y. Dong, A. Milanova, and J. Dolby, “Scalable and pre-
cise taint analysis for android,” in International Symposium on Soft-
ware Testing and Analysis (ISSTA), M. Young and T. Xie, Eds., 2015,
pp. 106–117. doi: 10 . 1145 / 2771783 . 2771803. [Online]. Available:
https://doi.org/10.1145/2771783.2771803.

[29] B. Kaliski. (Sep. 2000). “Pkcs #5: Password-based cryptography spec-
ification version 2.0,” [Online]. Available: https://www.rfc-editor.
org/rfc/rfc2898.

[30] kingthorin, Sql injection, https://owasp.org/www-community/attacks/
SQL_Injection, Accessed: Mar. 9, 2023.

[31] A. Krizmanic and A. Jess, Is objective-c still relevant in 2023 or is swift
the only real choice? https://www.itmagination.com/blog/is-

objective-c-still-relevant-in-2022-or-is-swift-the-only-

real-choice, Accessed: Apr. 4, 2023.

[32] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert, F.
Günther, C. Weinert, D. Demmler, and R. Kamath, “Cognicrypt: Sup-
porting developers in using cryptography,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 2017, Urbana-Champaign, IL, USA: IEEE Press, 2017,
pp. 931–936, isbn: 9781538626849.

[33] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “Crysl: An ex-
tensible approach to validating the correct usage of cryptographic apis,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2382–
2400, 2021. doi: 10.1109/TSE.2019.2948910.

[34] M. Krzyzanowski, Cryptoswift, 2022. [Online]. Available: https://github.
com/krzyzanowskim/CryptoSwift.

[35] C. Lattner, A. Lenharth, and V. Adve, “Making Context-Sensitive Points-
to Analysis with Heap Cloning Practical For The Real World,” in Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’07), San Diego, California,
Jun. 2007.

[36] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does crypto-
graphic software fail? a case study and open problems,” in Proceedings
of 5th Asia-Pacific Workshop on Systems, ser. APSys ’14, Beijing, China:
Association for Computing Machinery, 2014, isbn: 9781450330244. doi:
10.1145/2637166.2637237. [Online]. Available: https://doi.org/10.
1145/2637166.2637237.

105

https://github.com/Sable/soot
https://github.com/Sable/soot
https://doi.org/10.1145/2771783.2771803
https://doi.org/10.1145/2771783.2771803
https://www.rfc-editor.org/rfc/rfc2898
https://www.rfc-editor.org/rfc/rfc2898
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://www.itmagination.com/blog/is-objective-c-still-relevant-in-2022-or-is-swift-the-only-real-choice
https://www.itmagination.com/blog/is-objective-c-still-relevant-in-2022-or-is-swift-the-only-real-choice
https://www.itmagination.com/blog/is-objective-c-still-relevant-in-2022-or-is-swift-the-only-real-choice
https://doi.org/10.1109/TSE.2019.2948910
https://github.com/krzyzanowskim/CryptoSwift
https://github.com/krzyzanowskim/CryptoSwift
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237

[37] Y. Li, Y. Zhang, J. Li, and D. Gu, “Icryptotracer: Dynamic analysis on
misuse of cryptography functions in ios applications,” in Network and
System Security, M. H. Au, B. Carminati, and C.-C. J. Kuo, Eds., Cham:
Springer International Publishing, 2014, pp. 349–362, isbn: 978-3-319-
11698-3.

[38] LLVM Developer Group, Clang: A c language family frontend for llvm,
https://clang.llvm.org/, Accessed: Mar. 9, 2023.

[39] ——, The llvm compiler infrastructure, Accessed: Mar. 9, 2023. [Online].
Available: https://llvm.org/.

[40] MicroFocus, Fortify static code analyzer, https://www.microfocus.
com/en-us/cyberres/application-security/static-code-analyzer,
Accessed: Mar. 9, 2023.

[41] A. Milanova, A. Rountev, and B. G. Ryder, “Precise call graphs for c pro-
grams with function pointers,” English, Automated Software Engineer-
ing, vol. 11, no. 1, pp. 7–26, 2004. doi: 10.1023/B:AUSE.0000008666.
56394.a1.

[42] S. Rasthofer, S. Arzt, R. Hahn, and M. Kolhagen, (in)security of backend-
as-a-service, 2015.

[43] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’95, San Francisco, California, USA: Association for Computing Machin-
ery, 1995, pp. 49–61, isbn: 0897916921. doi: 10.1145/199448.199462.
[Online]. Available: https://doi.org/10.1145/199448.199462.

[44] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-procedural
static analysis framework for C/C++,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
2019, pp. 393–410. doi: 10.1007/978-3-030-17465-1_22. [Online].
Available: https://doi.org/10.1007/978-3-030-17465-1%5C_22.

[45] ——, “Phasar: An inter-procedural static analysis framework for c/c++,”
in Tools and Algorithms for the Construction and Analysis of Systems,
T. Vojnar and L. Zhang, Eds., Cham: Springer International Publishing,
2019, pp. 393–410, isbn: 978-3-030-17465-1.

[46] SonarSource, Swift - clean code for your swift projects, https://www.
sonarsource.com/swift/, Accessed: Mar. 9, 2023.

[47] J. Späth, Spds, https://github.com/codeshield-security/spds,
Accessed: Mar. 9, 2023, CodeShield GmbH.

[48] J. Späth, K. Ali, and E. Bodden, “Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems,” Proc. ACM
Program. Lang., vol. 3, no. POPL, Jan. 2019. doi: 10.1145/3290361.
[Online]. Available: https://doi.org/10.1145/3290361.

106

https://clang.llvm.org/
https://llvm.org/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://doi.org/10.1023/B:AUSE.0000008666.56394.a1
https://doi.org/10.1023/B:AUSE.0000008666.56394.a1
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1%5C_22
https://www.sonarsource.com/swift/
https://www.sonarsource.com/swift/
https://github.com/codeshield-security/spds
https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361

[49] StatCounter GlobalStats, Desktop operating system market share world-
wide, https://gs.statcounter.com/os-market-share/desktop/
worldwide/2022, Accessed: Apr. 4, 2023.

[50] ——, Mobile operating system market share worldwide, https://gs.
statcounter.com/os-market-share/mobile/worldwide/2022, Ac-
cessed: Apr. 4, 2023.

[51] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution
for java,” in Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’00, Minneapolis, Minnesota, USA: Association for Com-
puting Machinery, 2000, pp. 264–280, isbn: 158113200X. doi: 10.1145/
353171.353189. [Online]. Available: https://doi.org/10.1145/

353171.353189.

[52] SwiftLint Community, Swiftlint - a tool to enforce swift style and con-
ventions, https://github.com/realm/SwiftLint, Accessed: Mar. 9,
2023.

[53] Synopsys, Coverity static application security testing, https://www.

synopsys.com/software- integrity/security- testing/static-

analysis-sast.html, Accessed: Mar. 9, 2023.

[54] Tailor Community, Tailor - cross-platform static analyzer and linter for
swift, https://github.com/sleekbyte/tailor, Accessed: Mar. 9,
2023.

[55] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications.,”
Pacific Journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

[56] T. Team, Type analyzer for javascript, Århus, Denmark: Århus Univer-
sity, 2009. [Online]. Available: https://github.com/cs-au-dk/TAJS.

[57] TensorFlow, Swift for tensorflow (archived), https://github.com/

tensorflow/swift, Accessed: Mar. 9, 2023.

[58] ——, Swift for tensorflow (in archive mode), https://www.tensorflow.
org/swift/guide/overview, Accessed: Mar. 9, 2023.

[60] D. Tiganov, L. N. Q. Do, and K. Ali, “Designing uis for static-analysis
tools,” Commun. ACM, vol. 65, no. 2, pp. 52–58, Jan. 2022, issn: 0001-
0782. doi: 10.1145/3486600. [Online]. Available: https://doi.org/
10.1145/3486600.

[61] S. Turner, Updated Security Considerations for the MD5 Message-Digest
and the HMAC-MD5 Algorithms, RFC 6151, Mar. 2011. doi: 10.17487/
RFC6151. [Online]. Available: https://www.rfc-editor.org/info/
rfc6151.

[62] Uber, Ribs: Uber’s cross-platform mobile architecture framework. https:
//github.com/uber/RIBs, Accessed: Mar. 9, 2023.

107

https://gs.statcounter.com/os-market-share/desktop/worldwide/2022
https://gs.statcounter.com/os-market-share/desktop/worldwide/2022
https://gs.statcounter.com/os-market-share/mobile/worldwide/2022
https://gs.statcounter.com/os-market-share/mobile/worldwide/2022
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353189
https://github.com/realm/SwiftLint
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://github.com/sleekbyte/tailor
https://github.com/cs-au-dk/TAJS
https://github.com/tensorflow/swift
https://github.com/tensorflow/swift
https://www.tensorflow.org/swift/guide/overview
https://www.tensorflow.org/swift/guide/overview
https://doi.org/10.1145/3486600
https://doi.org/10.1145/3486600
https://doi.org/10.1145/3486600
https://doi.org/10.17487/RFC6151
https://doi.org/10.17487/RFC6151
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://github.com/uber/RIBs
https://github.com/uber/RIBs

[63] WALA Community, T.j. watson libraries for analysis (wala), https:

//github.com/wala/WALA/, Accessed: Mar. 9, 2023.

[64] XcodeGen Community, Xcodegen, https://github.com/yonaskolb/
XcodeGen, Accessed: Mar. 9, 2023.

[65] M. Zheng, H. Xue, Y. Zhang, T. Wei, and J. C. Lui, “Enpublic apps:
Security threats using ios enterprise and developer certificates,” in Pro-
ceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’15, Singapore, Republic of
Singapore: Association for Computing Machinery, 2015, pp. 463–474,
isbn: 9781450332453. doi: 10.1145/2714576.2714593. [Online]. Avail-
able: https://doi.org/10.1145/2714576.2714593.

108

https://github.com/wala/WALA/
https://github.com/wala/WALA/
https://github.com/yonaskolb/XcodeGen
https://github.com/yonaskolb/XcodeGen
https://doi.org/10.1145/2714576.2714593
https://doi.org/10.1145/2714576.2714593

	Introduction
	Background Material
	Static Analysis
	Taint Analysis
	Synchronized Pushdown Systems
	Typestate Analysis
	Swift

	The SWAN Framework
	Overview
	Building Xcode Projects and Dumping sil
	Building Single Swift Files
	Swift Package Manager

	Parsing sil
	Translating sil to swirl
	SWIRLGen
	SWIRLPass

	SPDS Integration
	Models
	Cross-Module Analysis

	Call-Graph Construction
	Background
	Function Pointers
	Dynamic Dispatch

	Algorithms
	CHAFP
	VTAFP
	UCG

	Algorithm Comparison
	Implementation Details
	Entry Points
	Closures
	Libraries
	Improving the Precision of Instantiated Types

	Summary

	SWAN Analyses
	Taint Analysis
	Typestate Analysis
	JSON Configuration
	Energy Inefficient API Misuse Analysis

	Crypto API Misuse Detection
	Crypto Misuse Rules
	Misuse Detection

	Summary

	Evaluation
	Processing Overhead
	Benchmark Applications
	Experimental Setup
	Results
	Discussion

	Call-Graph Construction
	Benchmark Applications
	Experimental Setup
	Results
	Discussion

	Crypto API Misuse in Real-World Apps
	Benchmark Applications
	Results
	Discussion

	Regression Test Suite
	Test Suite
	Annotation Tester

	Related Work
	Analysis Frameworks
	Android Analysis Tools
	LLVM-Based Analyses
	Swift Analysis Tools

	Call-Graph Construction
	Crypto API Misuse

	Conclusion
	References

