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Abstract 

Climate change is expected to drive major changes in agricultural production around the 

world, but estimates of the economic impact of these changes for Canadian agricultural 

production have been inconsistent. Most models use aggregate temperature data such as 

average temperature or growing degree days. This research shows that a novel approach 

that measures the marginal effect of exposure to specific temperatures in defined ranges 

improves yield forecasting. These novel temperature variables are incorporated into a 

production function to forecast yields for winter wheat, spring wheat, durum, barley, fall 

rye, oats, canola and flax. A spatial linear programming model in which gross margins 

are maximized is run for three scenarios: no climate change, a small increase in average 

temperature, and a large increase in average temperature. The model is calibrated to 

output from 2005 to 2010 and then run from 2011 to 2050. The model predicts that with a 

small increase in emissions, there will be a net increase in producer surplus to Canadian 

farmers, with wheat and canola dominating the landscape. This is similar to the current 

landscape; however, most crops migrate further north and west from their current range. 

As well, spring wheat acreage declines in favour of winter wheat, largely due to the 

higher yields for winter wheat. However, with a large increase in emissions, by 2050 the 

dominant crops in the landscape are barley and winter wheat, driven by changes in 

precipitation and temperature. The implications for Canadian agricultural production 

achieved by a spatially disaggregated model are a departure from the results of other 

modelling approaches and should be tested against a greater variety of behavioural 

assumptions and price conditions. Further study can help identify if crops other than 

those included here will become more prevalent. A major shift in the type of crops grown 

in the region would have implications for global food prices and food security.  
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Chapter 1: Introduction 

  



 

1.0 Introduction 

Agricultural land use decisions determine aggregate output of major crops, and major 

shifts in land use signal major structural changes in agricultural production. Agricultural 

land allocation decisions are based on the relative profitability of the various crop 

alternatives, which is itself a function of output prices, input prices, yields, and the policy 

environment. Input prices are determined exogenously to individual land use decisions, 

and Canadian producers are price takers in the international agricultural markets. Thus, 

selecting a mix of crops that will produce the highest expected gross margin stream, 

given fixed inputs, is a key element of the profitability equation that farmers can control 

directly. Considering their production constraints, farmers choose inputs so as to 

maximize profits.  

Even if farmers consistently optimize input usage, yields are still variable from year to 

year due to fluctuations in environmental variables. Environmental variables can include 

soil quality, which does not change substantially from year to year, and weather, which 

does. In fact, weather is the main input into crop production humans cannot control, 

which suggests that a solid understanding of crop yield as a function of temperature and 

precipitation is important for predicting land use decisions in agriculture with climate 

change, and subsequently, aggregate supplies of cereal grains and oil seeds. In particular, 

extreme temperatures such as heat waves, droughts, or cold spells, may have an impact 

on yields. Even exposure to a single day of heat above the plant’s tolerance level may 

have a significant impact. It has been agreed upon by the majority of experts that climate 

is changing, which will expose crops to higher average temperatures and increased or 

decreased overall precipitation levels as well as potentially increased variability of 

temperatures (Natural Resources Canada 2004). Thus, with climate change, the weather 

inputs into crop production are expected to change in substantial ways in the future, even 

if other crop yield function parameters remain static. 

It is challenging to estimate the relationship between crop yields and weather because that 

relationship can change in one of two ways. First, technical change is expected to shift 

the yield function through the development of new seed varieties that are better adapted 

to the Canadian environment. Thus, even if weather variables such as temperature and 

precipitation do not change, yields should increase due to research efforts. For example, 

Dr. Brian Fowler at the University of Saskatchewan heads a research program to improve 

the cold tolerance of cereal grains.  



 

The overarching purpose of this program is to analyse land use and land use change in the 

Canadian prairies with climate change. This research project has been broken down into 

two main components, each driven by a specific and related research question. The first 

question is how do temperatures affect yields of major Canadian prairie crops? The 

second question is, given improved knowledge of the effect of temperature on yield, how 

will changes in climate affect agricultural land allocation in the Canadian prairies at the 

regional level? 

In studies of agricultural production, the treatment of weather variables is often ad hoc, 

with little to no reference to previous studies or theoretical support for a particular 

approach. The lack of published references regarding the appropriate treatment of 

temperature variables is a reflection of the lack of theoretically or empirically supported 

approaches that will provide consistent and unbiased results.  

Schlenker and Roberts (2006 and 2008; SR hereafter) show that there is a relationship 

between daily maximum temperature whereby yields increase with exposure to 

temperatures up to a certain point, above which yields decrease for cotton, corn and 

soybeans in the United States. They use daily minimum and maximum temperatures to 

estimate the number of hours that a crop is exposed to heat over the growing season. The 

SR approach to incorporating daily weather variables is novel as most modeling 

approaches have used either average temperature or growing degree days (GDD). A 

linear relationship between temperature and yield is often assumed, such that an increase 

in temperature is always assumed to increase yields.  

However, neither average temperatures nor GDD incorporate the potential for 

temperatures above some critical maximum to exhibit different, and potentially negative, 

marginal effects on yield than is the case for temperatures below this critical value. 

Statistically, averaging monthly or daily weather temperature variables eliminates the 

effect of particularly high or low temperatures on yields. GDD calculations eliminate the 

effect of temperatures above some exogenously determined value, and simulations 

produce results based on parameters derived from separate studies, or from historical data 

which are not typically validated with out-of-sample data.  

Thus, SR’s approach is better suited to capture the effect of the extremes, both warm and 

cold, on crop yields. This section provides an overview of the methods used to 

incorporate weather in yield analyses. 



 

The research undertaken in this thesis is an application of SR’s methods to the Canadian 

prairies for major crops including wheat, canola, barley, flax and oats, with extensions to 

land use change analysis under climate change scenarios. Not only will the effect of 

summer temperatures and precipitation be examined for all crops noted above, but a 

separate analysis will be undertaken to examine the effect of winter weather on yields of 

fall-planted crops.  

Once the appropriate means to derive weather variables for yield forecasting are 

determined, these improved forecasts are used in an analysis of agricultural land use and 

land use change in the Canadian provinces of Alberta, Manitoba and Saskatchewan. 

These three provinces comprise the Canadian Prairies and contain the largest significant 

agricultural region in the country and one of the most important agricultural production 

regions in the world. A change in agricultural production in this region can provide 

insights into changes in global agricultural production. There are a variety of approaches 

to modeling economic impacts of climate change, but not all incorporate land use or land 

use change. Of those that do, spatially explicit models can capture the micro-level 

impacts of weather. However, spatial models have not commonly been used, likely 

because of the complexity of the data required.  

1.1 Objectives and Hypotheses 

The objectives of the research are:  

i. to estimate the effect of extreme daily temperatures during the growing 

season on yields in Alberta, Saskatchewan and Manitoba for the following 

major Canadian cereal and oilseed crops: winter wheat, spring wheat, canola, 

durum, barley, oats, flax, and spring and fall rye;   

ii. to test the accuracy of out-of-sample yield forecasting for three aggregate 

temperature variables: monthly average, GDD and the SR method; 

iii. to estimate the effects of temperatures during the winter season (in particular 

January and February) on yields of winter wheat and fall rye in the Canadian 

Prairies; 

iv. to incorporate improved yield estimates into a model of land use allocation 

between competing agricultural uses in which both the production function 

and weather inputs are unchanged from the historical dataset; This scenario 



 

constitutes a short-run outcome, which is used to validate the model against 

current agricultural land use data; and 

v. to estimate agricultural land use allocation under an assumption of climate 

change, as modeled by changes in average daily temperatures, and 

The hypotheses that will be tested are as follows: 

i. The temperature variables as formulated by SR provide better out-of-sample 

forecasting estimates than the GDD or monthly average temperature 

approaches. 

ii. Using the temperature variables as formulated by SR, the selected grains and 

oilseeds exhibit a positive response to temperature variables in the lower 

ranges and a negative response to temperature variables in the higher ranges 

such that a critical maximum temperature can be defined beyond which 

yields decrease. 

iii. Using the SR approach, the selected grains and oilseeds exhibit a negative 

yield response to temperatures below a critical minimum. 

iv. Greater snow depth in January and February are associated with higher yields 

due to reduced winterkill for fall-seeded crops. 

v. Variability of snow depth in March and April has a statistically significant 

effect on yields of winter wheat and fall rye, with deeper snow depth being 

associated with higher yields. 

vi. A critical minimum temperature beyond which yields of winter wheat and 

fall rye exhibit a non-linear response can be identified such that exposure to 

temperatures above this point will have a positive effect on yield and 

exposure to temperatures below this point will have a negative effect on 

yield. 

vii. Climate change will induce an increase in the acreage allocated to drought-

tolerant crops. 

viii. Substitution towards crops that produce higher yields and away from crops 

with lower yields will occur as climate shifts change growing conditions. 



 

ix. The spatial distribution of crops will respond to climate change, with heat 

tolerant crops being found further north as temperatures increases. 

1.2 Methods and Data 

The methods used to respond to the questions and test the hypotheses outlined above 

require first an estimate of a production function with spatially disaggregated yield data 

as a function of locally observed weather. The land use analysis will proceed by 

incorporating the production functions to incorporate improved yield forecasting in a 

linear programming model.  

Economic analyses of climate change and agriculture generally fall into one of two 

categories: an econometric model of either production or profit, or a hedonic model in 

which land values are a function of weather. Examples of these will be explored further in 

Chapter 2. Hedonic functions do not specify the land use activities that influence land 

values, and are therefore not useful to respond to the research questions identified above. 

Therefore a production function approach is used, a simplified version of reality in which 

yields are a function of weather, time and site-specific characteristics. Farm management 

choices are assumed to be constant. This production function is incorporated into a spatial 

linear programming model in which gross margins (price * yield – variable costs) are 

maximized across a grid of cells, each10 km
2
 in size. Further explanation and 

contextualization of these choices is found in Chapter 2.   

The data required for the production function are first, yields at a spatially disaggregated 

level, and weather information. The yield data for nine crops were obtained at the county 

or rural municipality level from the Alberta Agriculture Financial Services Corporation 

(AFSC), the Manitoba Agricultural Services Corporation (MASC) and the Government 

of Saskatchewan. Weather data were obtained from Environment Canada’s database of 

climate stations. Each weather station has data for a different subset of the entire time 

series from 1965 to 2007.  Relevant data available are rainfall, precipitation, snow fall, 

maximum temperature and minimum temperature.  

The linear programming model incorporates input and output prices. Output prices are 

available at the provincial level from Statistics Canada. Input prices are available for 

different soil zones for different crops from the Governments of Alberta, Saskatchewan 

and Manitoba.  



 

Climate change analyses require information on base period temperatures and rainfall to 

which changes in average temperature and rainfall are compared. These data (including 

estimates of monthly average temperatures for the base period of 1961 to 1990 as well as 

the forecasted values for 2011 to 2050) were obtained from the Canadian Institute for 

Climate Change, an organization run through the University of Victoria (CICS 2007). 

GIS maps of the estimates of new minimum and maximum temperatures, and of 

precipitation levels are available monthly for a select number of climate change 

scenarios.  

1.3 Contribution to Knowledge 

With competition for agricultural output for biofuels, food, and fibre, the potential for the 

Canadian Prairies to contribute to these industries raises several important questions. Can 

agriculture in the Canadian prairies supply inputs for a biofuels industry? What will 

happen to the price of food for Canadian consumers? Will Canadians eat more imported 

foods? What kind of risk management programs should the Canadian government 

provide for Canadian farmers? These are important policy issues that should be answered 

with the best available information. This information should include estimates of how 

anticipated changes in the climates of Alberta, Saskatchewan and Manitoba will affect 

agricultural output. Finally, such information should incorporate the marginal effects of 

increased temperatures.  

This study contributes information on the marginal effect of different ranges of heat on 

the most important Canadian crops in the Canadian Prairies – winter wheat, spring wheat, 

durum, canola, flax, rye, oats, and barley. In the studies reviewed in Chapter 2, other than 

those of SR, Canadian and American studies have used averaged weather data or assumed 

critical temperature ranges in which the plant yields respond positively to temperature. 

This study will contribute important new information on yield responses to weather 

variables by increasing the quality of the weather dataset used, using daily minimum and 

maximum temperature data rather than average temperature data. No assumptions are 

made about the critical maximum and minimum temperatures to which crops will 

respond. Thus, the need to use averaged weather data is eliminated. Insights into how 

crop acreages shift in response to climatic variables are, therefore, a valuable contribution 

to future study of the behaviour of the Canadian agricultural sector under climate change. 

 



 

As well, this study provides a new and important source of critical information about how 

agricultural land could be allocated as yields shift due to climate change. It contributes an 

improved approach to climate change analysis because of the use of detailed daily climate 

data compiled from Environment Canada’s (2008) database of daily weather 

observations. It also contributes a first attempt to understand the land use implications of 

weather effects on fall-planted crops. The study builds on the methods of SR, but 

incorporates a land use and land use change analysis, absent from the SR analyses. This 

study also contributes spatial detail in the analysis of the distribution of agricultural 

production of various cereal and oilseed crops that is absent from the majority of analyses 

that have been conducted. The combination of detailed spatial data on crop choices 

combined with the detailed weather input data is novel. If the results of this analysis are 

consistent with other research approaches, then the additional data and time required to 

process this data into spatially explicit variables is not justified. If, however, the results of 

this analysis are inconsistent with other approaches, then the spatially-explicit approach 

employed here may provide insights that cannot be obtained using aggregated yield 

and/or weather data.  

1.4 Organization of the thesis 

This thesis is organized in six chapters. The second chapter provides an overview of the 

relevant literature on climate change analysis in agriculture, land use and land use 

change, and the incorporation of climate variables into these types of analysis. Chapter 3 

provides an empirical test of three temperature variables as predictors of yield: average 

temperatures, growing degree days and the approach modeled after SR. This is followed 

by an application of the methods determined by of the analysis in Chapter 3 to provide 

improved yield forecasting. Chapter 4 consists of an analysis of yields of fall-seeded 

crops as a function of winter weather. Chapter 5 provides a land use analysis using a 

spatial linear programming model developed specifically for this thesis. Chapter 6 

provides a summary of the work described above.   



 

Chapter 2: Modeling land use and agricultural production with 

climate change: a review of the literature 

 

  



 

2.0 Introduction 

In Chapter 1, the research regarding land use and land use change under assumptions of 

climate change was outlined. In order to contextualize the research and to integrate theory 

and method, it is necessary to understand the types of research that have been conducted 

to analyse climate change and agricultural production, land use, land use change and 

climate change, and finally, the different approaches to incorporating climate variables 

into standard economic analyses. According to Briassoulis (2000, Section 5.1), there is no 

general theory of land use change, as the drivers are specific to each situation, and 

context dependant since methods vary by discipline and research question; Therefore, 

there is no single approach to modeling land use change that is appropriate for all 

circumstances.  

Briassoulis (2000) divides land use change models into four categories: econometric and 

statistical models, spatial interaction models, optimization models, and integrated models. 

Spatial interaction models examine the effect when a land use in one zone has an effect 

on a land use in a contiguous zone, capturing interaction effects. GIS models that use 

spatially explicit data, but do not model the interaction between regions, do not qualify as 

spatial interaction models. However, they constitute a special category of optimization 

models. Integrated models contain characteristics of more than one of the above 

approaches. 

This chapter provides a review of land use and land use change models in the climate 

change literature. Section 2.1 provides an overview of the modeling approaches used to 

estimate the impacts of climate change on agricultural production. These generally use 

production or profit functions, or hedonic models.  Section 2.2 contains an overview of 

agricultural land use models with respect to climate change, often based on simulation 

models, including spatial optimization models. Section 2.3 contains a review of the 

methods used to incorporate climate data into yield estimates. There are three approaches 

most commonly used; the growing degree day (GDD), average temperatures and daily 

temperatures for crop simulation models. These are compared to a new method 

introduced by Schlenker and Roberts (2006) which is a form of adjusted GDD.   

  



 

2.1 Modeling the Impacts of Climate Change with Econometric Models 

Early attempts to capture the economic impacts of climate change, which did not 

generally attempt to specifically capture land use or land use change, capture aggregate 

changes in production that could be attributed to climate change. These are often partial 

equilibrium models, which are good at modeling detailed agronomic processes and farm 

level detail, and as such are particularly appropriate for modeling short term and localized 

effects of climate (van der Werf and Peterson 2007). These models focus on the specific 

technologies of agriculture or forestry, and allow more detailed modeling of spatially 

disaggregated data. As well, these models allow spatially heterogeneous effects to be 

analyzed.  

The models used to capture the impacts of climate change on agricultural output are 

usually either production functions or profit functions.  A second family are the so-called 

“Ricardian” or hedonic models, which capture the impact of climate change on land 

values, from which the impacts on agricultural production are inferred.  

2.1.1 Production or Profit Function Models 

The earliest approach to estimating the impact of climate change was to use a production 

function. Production functions for specific crops were modeled as a function of climatic 

variables; the changes in yield were aggregated to extrapolate economic impacts for 

specific crops. The profit function approach is similar in that it measures the economic 

impacts of climate change for a specific crop, but now as a function of input and output 

prices as well as weather. Table 2.1 provides a summary of selected papers that use 

production or profit functions.  

Gay et al. (2006) model the production of coffee in Veracruz, Mexico, as a function of 

mean seasonal temperature and mean seasonal precipitation as well as economic variables 

including local and international coffee prices. The results show a 34 percent reduction in 

coffee yields and the likelihood that coffee would not be profitable in the year 2020, 

largely due to the temperature effect.  

  



 

Table 2.1: Summary of selected papers that incorporate temperature data in yield 

estimates 
Authors / Year Location Temperature treatment Type of Model  

Gay et al. 2006. Mexico Seasonal average and 

variance 

Production function 

Schlenker and Roberts. 

2006 and 2008. 

United States Daily minimum and 

maximum, cumulative 

exposure calculated. 

Production function 

Deschênes and 

Greenstone. 2007. 

United States Growing degree days Profit function 

Haim et al. 2008. Israel Simulated daily data Production Function 

Lobell and Ortiz-

Monasterio. 2007 

Mexico 

California 

Simulated daily data and 

monthly average 

temperature 

CERES incorporated into a 

production function 

Brassard and Singh. 2008 Quebec Simulated daily data CERES incorporated into a 

production function 

 

Deschênes and Greenstone (2007) consider the effect of random year over year variation 

in temperatures to study the effect of climate change on agriculture. Looking for an 

alternative to hedonic models, they instead use profit as the dependent variable because 

profit can reflect year-over-year variations in weather where land values tend not to 

fluctuate sufficiently to capture this effect. Using a profit function approach, weather is 

incorporated by using a GDD calculation. This model imposes a short run assumption of 

non-substitutability between crop. The results are then compared to those for hedonic 

models in which such substitutability is endogenized. The authors calculate the marginal 

impact of weather on profit to calculate the profit elasticity of weather. They assume that 

in the long run this value tends to zero.  

Haim et al. (2008) model the impacts of climate change on dryland wheat and cotton 

production in Israel using a production function with agronomic inputs.  The authors used 

temperature projections from 2070 to 2100. Yield estimates were then used to calculate 

net revenues (total revenue less total cost) as a function of the price of water, nitrogen, 

and other input costs, as well as output price. Net revenues were found to be a function of 

precipitation and temperature. Net revenues for wheat were found to be negative under 

extreme climate change, but potentially positive with moderate climate change. Net 

revenues were found to be negative for cotton in both scenarios.  

Schlenker and Roberts (2006 and 2008) use a simplified production function in which 

yield is a function of exposure to temperature and precipitation to estimate the marginal 



 

effect of weather. The climate variables are described in more detail in Section 2.3.4. 

They model yields for rice, corn and soybeans, and find a non-linear relationship between 

yield and heat. Yields increase until a critical maximum temperature is reached. Exposure 

to temperatures above this critical maximum reduces yields. The authors aggregate the 

yield impacts across production in the United States to estimate economic impacts. Given 

that there is no attempt to include land use or crop substitution impacts, the authors 

acknowledge that this estimate likely overstates the negative impacts forecasted, as is 

typical of the production or profit function approaches.  

There are a variety of packaged simulation models used for yield estimates which can 

then be incorporated into production functions. One approach is the use of crop yield 

simulation packages such as CERES for wheat. For example, Brassard and Singh (2008) 

use a crop simulation models CERES, CROPGRO and SUBSTOR to examine the 

impacts of CO2 fertilization effects and longer growing season due to increased 

temperatures on yields for potatoes, wheat, soybeans and maize, for seven agricultural 

regions of Quebec. All inputs except for climate are held constant between the base 

period and the future periods, implying that farmers are not making adaptive adjustments 

to their management practices.  

2.1.2 Ricardian or Hedonic Models 

The production function approach has not been used as often in recent years and has been 

overtaken in popularity by the hedonic approach. These are models in which the value of 

land is a function of the characteristics of the land. In order to capture climate change, 

temperature variables are calculated for parcels of land, which then are used to estimate 

the impact of temperature on land values. Land values are a proxy for the productive 

capacity of the land, which is implicitly assumed to be allocated to the highest value use. 

This approach is also known as a Ricardian model after Ricardo, who theorized that land 

rents provided a proxy for land values and the production that occurred on that land 

(Mendelsohn, Nordhaus and Shaw 1994). Schlenker, Hanemann and Fisher (2005) note 

that the results of the Ricardian approach received significant attention because the results 

of the analyses were at odds with those of previous approaches. The Ricardian approach 

is designed to overcome the bias in the production function approach, which implicitly 

ignores crop-substitution. Thus, they note that previous studies had in general 

overestimated the economic impact of climate change on agriculture, as farmers switch 

away from poorly performing crops to those with higher yields under new climatic 



 

conditions (Mendelsohn, Nordhaus and Shaw 1994). Table 2.2 shows a summary of 

hedonic models used to estimate the economic impacts of climate change on agriculture.  

Table 2.2: Selected papers that use hedonic models to examine the impacts of 

climate change 
Authors / Year Location Temperature treatment 

Mendelsohn and Reinsborough. 2007. Canada and the 

United States 

Monthly average 

Wang et al. 2009. China Monthly average 

Weber and Hauer. 2003. Canada Deviations from mean temp, Jan, 

Apr, Oct, Jul 

Schlenker et al. 2004.  United States Monthly average derived from daily 

data 

Mendelsohn, Nordhaus and Shaw. 1994 United States For rainfall and temperature, 

monthly average derived from a 

weighted regression from all 

weather stations within 500 miles of 

the district for January, July, April 

and October only.  

Reinsborough. 2003 Canada Monthly climatic norms for 1961 to 

1990 

 

Mendelsohn, Nordhaus and Shaw (1994) examine the effects of climate change on 

agricultural production for the United States, comparing a production function approach 

to a Ricardian approach. The model is run twice, once for 1982 and again for 1978, using 

an average of the daily average temperature and rainfall for January, April, July and 

October, and the square of each of these, in the regression. The model is re-run with gross 

profit (total revenue less average cost) as the dependent variable. The result is that the 

economic impact calculation using the production function approach is approximately 20 

times that of the Ricardian approach. Given that the analysis is based on a static estimate 

of the marginal impact of climate, the model may not be robust over time but the authors 

note that the marginal impacts of the variables as described were similar in the two 

“snapshot” years chosen. It is unclear whether or not this result could be used for 

forecasting; the economic impact estimates come from multiplying the marginal effect of 

weather on land values by the estimated climate impacts measured in degrees 

(temperature) and inches (rainfall).  

Reinsborough (2003) uses a Ricardian model and finds that the climate change expected 

over the next few decades will have a negligible effect on Canadian agriculture. She notes 



 

that as production function approaches hold land use allocations constant, they provide a 

lower bound for benefit estimates. The Ricardian model, where crop switching takes 

place but transaction costs for crop switching are not incorporated, is interpreted as an 

upper bound on potential benefits. The Ricardian approach bypasses the yield estimates 

that were required for the production function efforts because land values are a function 

of the characteristics of the land rather than of the specific crops produced. While crop 

switching is assumed,neither the crops grown, nor the changes in the crops chosen, are 

not identifiable in the model. Reinsborough (2003) notes the confidence intervals around 

the results are large, making accurate interpretations of the results difficult. She concludes 

that potential increases in land values are small at best and highly uncertain.  Building on 

this work, Mendelsohn and Reinsborough (2007) use a Ricardian model to compare land 

values in the United States and Canada based on climatic variables and find that Canadian 

land values are more sensitive to precipitation than temperature, with the opposite effect 

occurring in the United States.  

Weber and Hauer (2003) provide an estimate of the economic impacts of climate change 

in Canada using a similar hedonic approach. They use GIS data to intersect Census of 

Agriculture data from 1996 with Census of Canada data from 1996 with soils and climate 

data for a 10 km
2
 grid. Climate data consist of climate norms from 1961 to 1990 for the 

mid-point of December to February, March to May, June to August and September to 

November. The result is a set of 3,665 observations from which they estimate a standard 

hedonic model. The effects on agricultural land values from a one degree increase in 

average temperatures are examined. Consistent with previous studies, a warming of 

temperatures is predicted to increase land values. However, warmer temperatures are 

offset by drier climates and rapid maturation of grain crops, and these impacts are not 

modeled. The relative gain in land values is found to be highest for the prairies and 

lowest in the coastal regions of Canada, although positive in all regions across the 

country.  

Ricardian models are common in the climate change literature because the data that can 

be used to estimate them are flexible, and both land use values and climatic data are 

readily available. They implicitly allow substitution between economic activities, which 

make them an improvement over the production function models used previously. Using 

long range climate predictions, Deschênes and Greenstone (2007) compared the results of 

a hedonic estimate with a production function and found that the hedonic model was 



 

sensitive to parameter values. They conclude this lack of robustness is not adequately 

represented in discussions of most hedonic models. Schlenker, Hanemann and Fisher 

(2005) suggest that adding irrigation amounts to precipitation variables may correct 

omitted-variable bias in the estimator. Using a Ricardian model, they find that the results 

become more robust across weighting schemes and models in the United States once 

irrigation is included as an explanatory variable. 

The above discussion relates to “traditional” Ricardian models.  Structural Ricardian 

models allow for the examination of specific adaptation choices as subsets of the full 

adaptation implicit in the approach.  An example of this is one in which the hedonic 

model is run conditional on specific choices of livestock in Africa (Seo et al., 2008). 

These models allow the examination of specific adaptations but are limited to different 

scenarios introduced by the researcher with specific behavioural assumptions, and as such 

do not allow a full exploration of exogenously determined adaptations.  

2.2 Modeling Impacts of Climate Change by Simulating Land Use 

Change 

The Ricardian models provided the ability to incorporate crop substitution but Deschênes 

and Greenstone (2007) note that the approach provides unreliable estimates due to 

sensitivity to variations in control variables, sample size and weighting. In the Ricardian 

approach, substitution towards higher value activities is implicit. However, it does not 

allow for policy planning by estimating the changes in specific activities such as acreage 

planted to a specific crop, although the structural Ricardian approach allows testing of 

assumptions about some of these possible adaptations. Table 2.3 shows a sampling of 

studies that model the impact of climate change on agricultural land use.  

Briassoulis’ (2000) definition of simulation models includes optimization models. One of 

the benefits of a simulation approach is the ability to model unprecedented circumstances 

such as technical change or shifts in climate. For these situations, no historical data exists 

so in order to predict into the future using assumptions about what will come, simulation 

modelling is an appropriate choice. Simulations also allow estimates of the trade-offs 

between different policy options (Verburg and Lesschen 2006). 

  



 

Table 2.3: Selected papers that incorporate temperature data in simulations of 

agricultural land use 
Authors / Year Location Temperature treatment Land Use Model  

Arthur and Abizadeh. 

1988. 

Western Canada Derived annual average;  

Temperatures dictate 

planting dates; yields are a 

function of moisture 

deficits only 

Simulation 

Mooney, Jeffrey and 

Arthur. 1991. 

 

 

Canadian Prairies Climate normals (average) Linear programming 

Felkner. 2009. Thailand Daily data generated from 

a distribution 

Spatial simulation model 

Kaiser et al. 1993. American mid-west Monthly averages Multi-stage mathematical 

programming 

Rosenzweig and Parry. 

1997. 

International Daily data –average or 

min/max not indicated 

Crop yield simulation model 

John, Pannell and 

Kingwell. 2005. 

Australia Stochastic weather; full 

explanation in Kingwell et 

al., 1990.  

Farm level Linear 

programming 

 

Arthur and Abizadeh (1988) use a simulation model to explore the impact of climate 

change on agricultural output in western Canada. The simulation model uses a profit 

function that incorporates a production function with yield as a function of standard 

climate change predictions, weather, seeding date, soil moisture, yield, crop choice, and 

sectoral effects.  The model is run for various sections of the Canadian prairies.  

John, Pannell and Kingwell (2005) describe a farm-level linear programming model 

known as MUDAS that estimates changes to farm management practices under 

assumptions of climate change in Australia. The model incorporates a discrete stochastic 

representation of weather. With this model, farmers make decisions to optimize output 

after observing weather conditions; Specifically, in the region in Australia modeled, 

farmers make decisions based on observed rainfall rather than anticipated rainfall. The 

full explanation of the stochastic treatment is found in a Government of Australia grey 

literature document by Kingwell et al. (1991) that is not publically available, and thus is 

not reviewed.  

Economic simulations include optimization models where land use outcomes are 

compared based on changes to economic variables. Optimization models use 



 

mathematical algorithms to optimize an objective function subject to constraints. The 

objective function commonly represents cost, utility, or profit, or, as in the case described 

below, producer and consumer surplus. Constraints can include a limited resource base 

such as land or some other input, financial constraints such as a limited budget, and any 

other situationally relevant constraint. Aggregate farm modeling is an outgrowth of farm-

level modeling that became possible due to an increase in computing power in the 1980s 

(Klein and Narayan 1992).  

While the allocation of agricultural land may not have spatial dependencies, it can have a 

temporal dependency in that the choice of crop grown in a given year is based on the crop 

grown in the previous year or years. To capture this effect in an optimization model, 

Rousevell et al. (2003) include rotational penalties to reduce yields of crops that occur in 

less than optimal combinations year-over-year. The model is used to estimate how 

agricultural land use responds to climate change in two regions of the United Kingdom 

using farm level models to simulate land use decisions that are aggregated at the regional 

level. 

One commonly used optimization model used in the Canadian agricultural sector is 

CRAM – the Canadian Regional Agricultural Model. CRAM is a static non-linear 

programming model that maximizes both consumer and producer surplus given 

constraints by choosing an optimal output level (Klein et al. 1996).  It is used in 

conjunction with a variety of biological and agronomic models (AAFC 2011) and as such 

falls into the classification of integrated models, as defined by Briassoulis above. 

Production is driven by demand for agricultural goods. CRAM’s production is broken 

down by regions at five levels: national, east and west, provincial, shipping ports, and 

crop regions. CRAM contains 55 crop regions and 10 livestock regions and contains 

baseline data for 2010 and 2006 only (UNFCC, 2011).  Agriculture and Agri-Food 

Canada has used it to analyze policy options for greenhouse gas mitigation, for example, 

but note that the scale of economic data make it less appropriate for modeling smaller 

scale ecological phenomena (AAFC 2011a).  

Aggregation by region is also used in a partial equilibrium model, FARM (The 

Agricultural Regional Model), also used in Canada. FARM has less disaggregation in the 

data than CRAM, grouping production into western and eastern Canada only (Le Roy et 

al. 2007). CRAM and FARM use regional data rather than data at the 



 

county/municipality level and as such are far coarser treatments for spatially explicit 

yields than the SR approach (Le Roy et al. 2007). Neither does weather explicitly affect 

output in either modeling approach. Examples where these models have been used to 

estimate the impacts of climate change on agricultural land use have not been found.  

Spatial modeling includes linear or non-linear programming models, goal programming, 

and cellular automata programming techniques. Goal programming is a type of 

optimization model where targets are included, based on policy objectives or dictated by 

research on bio-physical/ecological relationships. Cellular automata techniques include 

various ways to define neighbourhood relationships for models where there are 

interactions between spatial units. Non-linear programming is one type of simulation 

modeling where a quadratic objective function can be defined; one common application is 

for trade relationships where both supply and demand from each region can be 

incorporated. 

Spatial economic models are based on the theories of von Thunen, who used land rent to 

describe a theoretical city state with concentric circles of land reflecting different land use 

activities. High rent activities such as vegetable growing are in the inner circle, while 

lower rent activities such as grain growing, take place in the outer circle (Nelson 2002).  

In modern studies von Thunen’s ideas underlie the Ricardian/hedonic analysis of 

Mendelsohn, Nordhaus and Shaw (1994), discussed above, and models that optimize 

profits on a particular parcel of land such as the mathematical programming models 

discussed above, including CRAM. 

Spatial models are appropriate when one of two phenomena is present in the dataset. The 

first is spatial heterogeneity. Spatial heterogeneity reflects the spatial distribution of 

attributes, where the average value at the aggregate level introduces inaccuracies in the 

data. The second problem spatial models can address is spatial dependencies, which occur 

when the land use of two adjacent parcels is interrelated (Florax et al. 2002). Agricultural 

land use with climate change exhibits spatial heterogeneity as the climate impacts are 

different in different regions of the Prairies.  

  



 

When dealing with spatial models, it is important to consider the scale of the dataset and 

of the analysis. Verburg and Lesschen (2006) note three issues related to scale: 

- Land use decisions are the result of the decisions made at various scales, 

from individual to local and regional. 

- Aggregation of small-scale spatial data using an averaging process does not 

lead to accurate representation of these processes. As suggested by the above 

bullet point, small scale behaviour (i.e., at the land owner level) is not 

equivalent to regional behaviour (i.e., average land owner behaviour at a 

regional level).  

- Observations are restricted by the extent and resolution of the measurement 

of data. Extent is the scope, or size, of the region studied, and resolution is 

the distance between observations. Researchers are often limited to data of a 

certain scale, regardless of how well that scale represents the processes or 

decisions being modeled. 

Statistical estimates of land use are sensitive to scale. For example, models that are run at 

the regional level are subject to distortion of heterogeneity through regional aggregation 

of spatial data (Gellrich and Zimmermann 2007; Verberg and Lesschen 2006). This is 

known as the Modifiable Area Unit Problem (MAUP) (Gellrich and Zimmermann 2007). 

In fact, using aggregate data under-estimates yield variability at the field level (Popp, 

Rudstrom and Manning 2005). The MAUP suggests that the smallest scale possible as 

dictated by the data is appropriate. When fine-scale data representing ecological 

relationships are averaged to create spatially aggregate versions of the dataset, substantial 

aggregation errors are introduced (Verberg and Lesschen 2006). 

Spatial effects can be modeled using spatial econometrics or spatial simulation models. 

Spatial econometric techniques deal with econometric issues specific to spatial data, such 

as the colinearity created by spatial homogeneity between contiguous parcels of land, for 

example (Anselin 1988). One way to approach linear programming (LP) is to use 

spatially explicit data to generate variables. When there is no spatial interaction to the 

model (as discussed in Briassoulis 2000, above), an optimization model is often used.  

The models discussed below are summarized in Table 2.4, and do not necessarily model 

climate change but rather provide a sampling of various approaches to incorporating 



 

spatial information in land use analysis. All of the selected examples use linear 

programming.  

Table 2.4: Selected examples of linear programming modeling with spatial data 
Authors / Year Location Purpose 

Arthur and Abizadeh. 

1988. 

Canadian Prairies Climate change in the Canadian Prairies 

Campbell et al., 1992.  Antigua Crop diversification strategies 

Yang and Weersink.  Ontario Environmental goods and services 

Mooney and Arthur. 1990.  Manitoba Climate change in Manitoba 

 

As discussed above, Arthur and Abizadeh (1988) estimate the economic effects of 

climate change with a linear programming model for Manitoba and by multiplying 

acreage seeded by prices by yields for Alberta and Saskatchewan, on the basis that crop 

choices have traditionally been more limited in these provinces. Depending on the 

climate change assumptions used, the province, and the method of processing weather 

data, results indicate increases in all crop outputs, decreases in all crops except wheat or 

barley, or no sensitivity at all. Because of the limitations of the climate change model 

used, and because of the use of daily average weather data, these results are less than 

definitive. No attempt was made to investigate changes in land use due to climate change 

in this case. 

Campbell et al.’s (1992) paper, which uses a linear programming model with spatial data 

and GIS, has been used as a template for many other spatially-explicit land use change 

studies.  The authors consider the options for Antigua to expand agricultural production 

beyond the traditional export crop of sugarcane, as this market had been gradually 

collapsing.  While this is not a climate change study, the methods used have influenced 

the methods used to study climate change using spatial methods. The GIS is used to 

generate variables which are then fed into a nation-wide LP model.  The results of the LP 

model are fed back into the GIS to examine spatial variation in land allocation decisions. 

GIS data included current land use/crop, landholder type, province, water supplies, land 

use categories, proximity to water, etc. The LP model uses local demands for agricultural 

production as a constraint and then minimizes the costs of producing those commodities 

either through local production or through imports.  The model measures potential output 

based on non-stochastic elements only, such as soil quality and land tenure systems.  



 

Yang and Weersink (2005) use spatially explicit data and a linear programming model to 

minimize costs of implementing riparian buffers.  Yields in the model are calculated 

spatially as a function of land characteristics such as soil types and slope. The yields are 

reported from empirical observation as point data with spatial coordinates, so actual 

yields to use in the econometric regression are interpolated from these observed point 

data. Then a cost minimization linear program was built to examine the spatial 

distribution of riparian buffs. Again, weather as a stochastic element is not a key 

ingredient in the simulation of these land use allocations.  

Another model using a linear programming approach to estimate the effects of climate 

change on agriculture in Manitoba was run by Mooney and Arthur (1990). Constraints on 

the model include land availability, feed requirements of the livestock sector, and 

rotational constraints.  Spatial distributions of results are estimated by calculating relative 

effects in different parts of the province based on land values. This model allowed the 

introduction of new crop alternatives under different climate scenarios, using yield data 

obtained from other geographic regions, primarily the north-central and north-eastern 

United States. 

2.3 Incorporating Climate Data into Yield Estimates 

If researchers wish to better examine the impact of climate change on agricultural land 

use, then the manner in which the climatic data are incorporated into the modeling 

approach is critical. Capturing the marginal impacts of exposure to temperature is of 

particular relevance. The purpose of this section is to outline methods used for 

incorporating shifts in weather patterns. Weather is often excluded from agricultural 

production functions due to spatial and temporal heterogeneity. Researchers in the past 

have assumed that a production function captures all non-weather variability in 

production. Therefore, the error term in a given production function was assumed to 

capture all weather-related impacts (Goetz 1993). However, this approach can be too 

simplistic as weather represents an important source of risk in agricultural analysis. If 

weather is not included, models are mis-specified with regards to risk. Just and Pope 

(1978) formulated a production function that incorporated weather variability in order to 

address this form of mis-specification. In a Just-Pope production function, yield, Y, is a 

function of inputs, X, and variance of yield, Z. Z can then be formulated to include 

weather. Equation 2.1 shows a generic specification of this approach.  



 

                    [2.1] 

The econometric reason for the use of temperature in the Just-Pope production function is 

to prevent bias in the estimators, rather than to capture specific weather effects.  No 

guidance is provided on how to aggregate such complex heterogeneous weather datasets 

across time and/or space.  

The production function shown above requires weather as an input to variance. While 

weather could be included in any production function, the question of how to do so is 

unclear. Tables 2.1 – 2.3 contain descriptors of the climate variables used in various 

studies noted in the tables. These treatments can be grouped into four types. The first is 

the use of daily minimum and maximum values for crop yield simulations. The second is 

the calculation of average values, either seasonal or monthly. The third is the calculation 

of growing degree days (GDD). The fourth is a refinement of the GDD method that 

breaks the heat units up into specified temperature ranges, formulated by Schlenker and 

Roberts (2006 and 2008).  

2.3.1 Daily Minimum and Maximum Temperatures 

The first method used to incorporate climate variables in climate change models is to use 

daily minimum and maximum temperature for crop yield simulation models. There are a 

wide variety of simulation models used to predict crop yields in agricultural/agronomic 

models such as a standardized yield simulation models such as CERES. CERES is 

considered a well-validated simulation model for wheat yield prediction (Rosenzweig and 

Tubiello 1996).  In these models, complex physiological processes are modeled, requiring 

complex input data. Often derived daily data are used in these models, where monthly or 

seasonal averages are used to derive a daily value for minimum and maximum 

temperature. Alternatively, the mean and variance of daily minimum and maximum 

temperatures are used to select estimates of daily values from the distribution, but for a 

selected region, which are then used to estimate yield across regions. For example, 

Brassard and Singh (2007) use the absolute difference between weighted average daily 

temperatures and projected temperatures under climate change to analyze yield changes 

for wheat, maize, potatoes and soybeans. Crop models CERES, CROPGRO and 

SUBSTOR were used to simulate yields as a function of solar radiation, minimum and 

maximum temperature and precipitation.   



 

Schlenker and Roberts (2008) indicate that one of the potential issues with simulation 

modeling is that parameters within the model are taken from various sources, any of 

which may be built on incompatible assumptions. As well, simulation models are built 

using data from a particular region and then are not usually validated against out-of-

sample data (Schlenker and Roberts 2008). In one exception, Lobell and Ortiz-

Monasterio (2007) compare the results of the simulation model with those from an 

econometric model of wheat yields. In order to make the comparison, monthly average 

minimum and maximum temperatures are used in the econometric regression.  They find 

that the simulation model produces results within three percent of those of the 

econometric model. If, in fact, average values do not capture the effect of extreme 

temperatures, then it follows that the simulation model is also not adequately capturing 

the effects of extreme temperatures.  

2.3.2 Average Temperatures 

The most common approach to modeling climate change is to use an average 

temperature. Sometimes this is done seasonally and sometimes this is done monthly. 

Sometimes these are referred to as temperature normals; temperature normals are average 

temperatures taken over a specified period. For modelers using any of the standard 

climate change models, such as the Canadian General Circulation Model (CGCM), these 

seasonal or monthly climate normals are available as a baseline, calculated from 1961 to 

1990. Researchers often choose this specific form of average temperature to be consistent 

with pre-existing datasets.  

In an early study of climate change and agriculture, Arthur and Abizadeh (1988) use 

monthly average temperature data and compare two procedures used to estimate daily 

temperature values. First, a process based on the shape of a sine wave is used to estimate 

hourly temperature distributions for each day in the model. An alternative distribution 

assumption of uniformity of temperature throughout the day is also tested. The results 

were interpolated to the nearest of the 188 prairie weather stations, and weather station 

data from 1961 to 1985 were then interpolated to determine the average daily temperature 

for forty districts in western Canada. This derived average daily temperature is the 

weather variable included in their study. Note that an assumption of a linear relationship 

of yield to weather is implicit in this formulation of the weather component. 



 

Bootsma and McKenney have been involved in a series of climate change impact studies 

for Atlantic Canada.  Bootsma, Gameda and McKenney (2005), for example, report on 

the results of a regression of yields as a function of climate.  Impacts are forecasted 

through climate change scenarios generated by versions of the CGCM. They use monthly 

temperatures from various weather stations, interpolated to daily averages values using an 

algorithm first presented in 1943 by Brooks (cited by various authors mentioned 

throughout this paper, including Arthur and Abizadeh 1988, discussed above). These 

weather data are then averaged out over a year. Yields are assumed to have a linear 

relationship with temperature.  

Wang et al. (2009) use monthly average temperature and precipitation from 1951 to 2001 

from 751 climate stations to conduct a Ricardian analysis of the effect of climate change 

on land values in China. They avoid interpolation of the climate data across the study 

region, which avoids data integrity issues introduced by interpolation but reduces the size 

of the dataset for analysis.  

The average temperature approach is common, and was likely used in the past because it 

both easily available and requires as little as a single variable to incorporate into analyses. 

However, it is less than optimal for climate change applications because it cannot capture 

the effects of increasingly higher temperatures on output. A warm summer and a cool 

summer can have the same average temperature depending on variance. The GDD, as 

described in the next section, is an improvement over average temperatures, at least 

theoretically.  

2.3.3 GDD 

One alternative to the use of average temperature is the use of GDD. Taken from 

agronomic literature, a growing degree day is an estimate of the time a crop is exposed to 

heat within an exogenously determined range. The range often starts at 0 ºC and can 

include up to the highest observed temperature, although a critical maximum temperature 

is often imposed. The exogenous range varies by crop and variety (McMaster and 

Wilhelm 1997). The approach has the advantage of being relatively simple to calculate 

and the flexibility of being able to incorporate a variety of different assumptions about 

crop behaviour.  

  



 

Larsen et al. (2001) use a Just-Pope production function (discussed above), which 

includes past variance of yield as a predictor of future yield, where variance is a function 

of temperature. They calculate GDD by using the cumulative daily temperature over 60 

°F between May 1 and October 31. Regardless of how high the daily temperature actually 

rises, yields are assumed to increase. Thus, Larsen et al. (2001) implicitly assume a linear 

relationship between yield and temperature above 60 °F.  

Deschênes and Greenstone (2007) use county level daily temperatures to calculate GDD 

to estimate the effect of an increase in temperature in their study of the effects of climate 

change on Canadian agricultural output. Growing season degree days are calculated using 

the critical temperature range of 46.6 – 89.6 °F. Here, instead of assuming increasing 

yields with increasing heat, the authors assume that exposure to heat above an assumed 

critical maximum has no effect on yield, and that the critical maximum is the same for all 

crops modeled. Similar implicit assumptions are also made for the critical minimum 

temperature. 

The GDD approach, as noted above, is at least theoretically an improvement over average 

temperatures in capturing marginal effects of higher temperatures. A hotter summer has a 

higher GDD value as would a summer with a longer growing season. However, the 

marginal effects of exposure to various temperatures are assumed to be identical, and 

exposure to temperatures outside the range captured in the calculation (defined by the 

researcher) is assumed to have a marginal effect of zero. The following section provides 

an overview of a method developed to further refine temperature variables for analysis 

that incorporates such variable marginal effects.  

2.3.4 Schlenker and Roberts 

A fourth approach to aggregating temperature data has been explored by Schlenker and 

Roberts (2006, 2008) (SR hereafter). SR use a detailed daily dataset containing minimum 

and maximum daily temperature. They use an algorithm to estimate hourly temperature 

for each day, and calculate how many hours crops were exposed to each increment in 

temperature level as shown in Equation 2.2. Note that other inputs such as fertilizers, land 

management decisions, etc., are not captured in the model, and thus are assumed to be 

constant. This is consistent with the scenario described above in Brassard and Singh 

(2008). The unvarying characteristics are captured by the dummy variable for location 

and technological change with a time trend variable. SR show that in the United States, 



 

corn, soybean and rice exhibit a non-linear relationship with temperature; Yields are 

shown to increase until a critical maximum temperature is reached, found to be between 

29 and 32 ºC. Yields are shown to fall with exposure to temperatures above these levels.  

                          [2.2] 

Where: 

yitpj   is yield for crop i in year t in pixel p in district j. 

DEGxtpj  is the number of hours at degree range x in pixel p
1
 in year t in 

district j.  

  jt   is a vector of district dummies for districts j and rainfall data for 

district j in year t. 

Often, the derivation of the temperature data for a region is a complex process involving 

interpolation, algorithms and calculations. Every additional manipulation can introduce 

error so as the complexity of derivation process increases, the confidence in the data 

integrity falls. There is a fundamental trade-off in manipulating spatial data between 

maintaining data integrity and maintaining degrees of freedom (Wang et al. 2007).  

SR manipulate the observed temperature data from weather stations to obtain values that 

have been interpolated across time and space. They use weather stations with complete 

datasets to estimate missing temperature values. These weather-station-level datasets are 

then interpolated across the landscape to form a 2.5 square mile grid of pixels, each with 

individual weather values. From this exercise, they achieve a large data set from which to 

conduct their analysis of yield response to extreme weather. The trade-off is that the 

interpolated values are less precise than the observed values, and the data exhibits greater 

co-linearities as weather in spatially proximal cells will be highly correlated. The 

alternative is to use fewer but more precise observations. If degrees of freedom are not a 

concern for the estimation of accurate coefficients, the second approach may be preferred.  

SR estimate their model with a randomly selected 85 percent of the sample, using the 

remaining 15 percent out-of-sample observations for model validation. SR’s approach 

provides a departure from the standard empirical perspective on aggregate yield 

                                                      
1
 Spatial data is represented either as polygons or as rasters. Raster maps, used here, are made up 

of rasters or pixels, each of which represents a specific tract of land.  



 

responses to weather events. The SR approach incorporates marginal response to 

exposure to high temperatures, which is something that the average temperature or GDD 

approaches do not do. 

Because climate change is anticipated to increase the mean temperature in western 

Canada (Natural Resources Canada 2004, viii), neither the use of average temperature or 

a GDD calculation is particularly well suited to the study of climate change. Averaging 

temperatures removes the impact of the extremes by offsetting higher temperature values 

with lower ones, eliminating the marginal impact of both extremes. The value of GDD 

increases with heat, as warm days contribute more to GDD than cool days, but the 

number of warmer days is not tracked. For both average temperature and GDD, the 

marginal effect of an extra day or hour of exposure to a higher temperature is not 

captured.  

Another potential problem is that exposure to heat above some critical temperature over 

the course of the growing season can damage crop growth, rather than increase it. To 

capture these non-linear effects, it would be necessary to know at what temperatures 

yields begin to decline and by how much. The GDD approach either eliminates the 

effects of temperature above a critical maximum, effectively assuming a neutral effect on 

yield, or assumes no critical maximum, implicitly assuming a linear increase in yield for 

all increases in temperature. If, in fact, these effects matter, then GDD models that do not 

capture them are mis-specified and could be subject to bias in the estimators. In addition, 

the marginal effect of additional exposure to higher temperatures is not captured. 

2.4 Summary 

A wide variety of methods have been used to examine land use and land use change in 

agriculture and many of these have been adapted for climate change. Most commonly 

used has been the Ricardian or hedonic model that uses land values as a proxy for the 

value of production on a particular plot of land, as predicted by physical characteristics of 

that land, including weather. However, it has been shown that small changes in 

assumptions or parameters can have major changes on the model outputs, making 

interpretation of the results complicated.  

Alternatively, linear programming models and spatial LP models have been used for 

ecosystem service valuation studies but less often for climate change studies. However, 

this approach combines the ability to incorporate spatial heterogeneity with profit seeking 



 

behaviour in a way that allows spatial shifts in land use patterns for specific crops to be 

demonstrated. A full discussion of the model developed to examine land use changes in 

the Canadian Prairies is found in Chapter 5. It is based on the discussion of spatial LP 

models found above.  

It has been shown that the treatment of weather in climate change analyses has been ad 

hoc. The use of average temperatures is common, likely because this approach is 

straightforward. The majority of the applications for which average temperature is used, 

the marginal impact of temperatures at the extremes of the range are not important. 

However, for the examination of climate change, these effects are critical. The use of 

GDD captures better the effect of the extreme temperatures on yield but does not allow 

for the estimation of potential non-linear effects of higher temperatures that may in fact 

reduce yield rather than increase it. The weather treatment developed by Schlenker and 

Roberts (2006, 2008) is an adaptation of the GDD approach that allows for both non-

linearities and improved capture of extreme temperature effects. As such, it is potentially 

an improvement over previously used temperature treatments. Researchers who do 

include weather explicitly in climate change models have incorporated it in an ad hoc 

manner due to lack of empirical evidence to support specific approaches. Thus the next 

chapter presents a comparison of average temperature with GDD and the Schlenker and 

Roberts approach described above with empirical evidence of out-of-sample performance 

for yield estimates.  
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Chapter 3: Estimating Yield Response to Temperature for Major 

Crops in the Canadian Prairies 
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Estimating the correct relationship between weather and yields for [these] major crops is 

a critical first step before more elaborate models can be used to estimate how crop 

choices, food supply and prices might shift in response to climate change. These models 

will give biased results if the underlying relationship between weather and yields is 

modeled incorrectly  

Schlenker and Roberts 2008, p. 1 

3.0 Introduction 

To improve yields per hectare, farmers can adopt new management practices, optimize 

input use, or upgrade equipment, but are nonetheless at the mercy of the weather. In a 

good year, the impact of the farmer’s management choices on yield is optimized.  

However, regardless of crop management decisions, if the weather is sufficiently adverse, 

yields may be so low that the cost of harvesting exceeds the revenue to be made from the 

sale of the crop. To save money, the farmer may opt not to harvest, resulting in an 

effective yield of zero. Modeling the effect of weather is an important element in the 

study of agricultural output, and is essential to predicting the effect of climate change on 

agricultural productivity and associated land use changes.  

As discussed in Chapter 2, in the literature of climate change and agriculture, the choice 

of the temperature variables used is not justified in any of the research reviewed with the 

exception of the work by Schlenker and Roberts (discussed further below). Climate 

variables may be found in production functions, which then may form part of a profit 

function. Production or profit models may feed into a larger simulation model that 

forecasts behaviours into the future. The hedonic model approach is also commonly used 

to estimate aggregate impacts of climate change on land use values as a proxy for 

changes in production.  

The temperature treatments used most often are average temperatures or growing degree 

days (GDD). However, average temperatures do not capture the impact of extremely high 

or extremely low temperatures as these tend to cancel each other out. A standard GDD 

variable does not differentiate between exposure to high and low heat. Because exposure 

to different temperatures contributes equally to the value of the GDD, there is an implicit 

assumption that the marginal effects of all temperatures in the defined range are equal. 

Outside of the defined range of temperatures the implicit marginal effect of temperature 

on yields is zero. Thus, the marginal impact of temperatures in the high range is not 

captured by this approach either and it is assumed that exposure to temperatures of 30 °C 

and above will occur more frequently with climate change. A third approach, based on 
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the work of Schlenker and Roberts (2006 and 2008) (hereafter denoted SR), uses a 

modified GDD. The GDD approach is to calculate a single variable of exposure to 

aggregate heat during a defined period. The SR approach is to calculate a series of 

variables of exposure to specific increments of heat during a defined period. The goal of 

this chapter is to identify an appropriate formulation for weather data in basic production 

functions by comparing the performance of the SR approach to average temperature and 

GDD in estimating out-of-sample yield forecasts. The results of this analysis will 

subsequently be used to examine the effect of climate change on agricultural land use 

decisions in western Canada.  

3.1 Objectives  

The purpose of this chapter is compare two common approaches and one novel approach 

to aggregating weather data, and to establish empirically which one produces better out-

of-sample estimations: average temperature, GDD, and the SR approach. Further,  

responses to temperature using the most appropriate temperature variable are estimated.   

The objectives of this chapter are:  

i. To estimate the effect of extreme daily temperatures during the growing season 

on yields for the following major Canadian cereal and oilseed crops: winter 

wheat, spring wheat, canola, durum, barley, oats, flax, and spring and fall rye, in 

Alberta, Saskatchewan and Manitoba, and 

ii. To test the accuracy of out-of-sample forecasting for three aggregate temperature 

variables: monthly average, GDD and the SR method. 

The hypotheses that will be tested are:  

i. The use of more precise temperature observations with fewer degrees of 

freedom will prove sufficient for the purposes of analysis of yield response to 

extreme temperature; a modified approach to the SR method with fewer 

observations but lower colinearity in the data will provide comparable results 

to the SR method. 

ii. The temperature variables as formulated by SR will provide better out-of-

sample forecasting estimates than the GDD or monthly average temperature 

approaches. 
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iii. Using temperature variables as formulated by SR, the selected grains and 

oilseeds will exhibit a positive response to temperature variables in the lower 

ranges and a negative response to temperature variables in the higher ranges 

such that a critical maximum temperature can be defined beyond which 

yields decrease, as SR found for corn, soybeans and rice in the United States. 

iv. Using the SR approach, the selected grains and oilseeds will exhibit a 

negative yield response to temperatures below a critical minimum. 

3.2 Description of the Model and Data 

As discussed in Chapter 2, there are various ways in which to measure the economic 

impact of climate change on agricultural production, ranging from econometric 

estimations of production or profit functions and spatial optimization models, as well as 

the hedonic model approach. What all these approaches have in common is the need to 

incorporate temperature variables. It is known that yield, and therefore profit, are a 

function of farmer choices, moisture and heat. Any of the approaches reviewed in 

Chapter 2 require weather as an explanatory variable if the impact of climate change is to 

be captured. Ideally, the approach should capture the marginal impact of temperatures at 

the high end of the range because these are increasingly likely to occur due to changes in 

climate. Temperatures in the mid-30s (ºCelsius) and above are hypothesized to have a 

different marginal impact than temperatures in the mid-20s (º Celsius).  

Prior to the interest in examining climate change, modeling such marginal impacts was 

not a priority. In fact, rather than incorporating weather in production functions, it was 

assumed that the functional form of the estimate captured all human-controlled impacts 

and that everything else, (i.e., weather) was captured by the error term (Goetz 1993). 

With increasing interest in climate change related applications, it has become more 

important to identify temperature formulations that best capture marginal yield effects 

over various temperature ranges. The purpose of this chapter is to provide empirical 

evidence of the effectiveness of three options for modeling temperature, based on out-of-

sample forecasting. Weather data will be incorporated into a basic production function in 

which all crop management decisions are assumed to be captured by the constant in the 

econometric estimate. This is consistent with the assumptions described in Chapter 2, in 

which farmers’ adaptive choices are assumed away. Thus, the production function 

estimated here, in its simplest possible form, is yield as a function of weather.  
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This section describes the methods used to analyze the effect of exposure to summer 

temperatures on crop yields. The general model takes the form shown in Equation 3.1, 

where the natural log of yields, y, for crop i in year t, is a function of temperature 

(TEMP) in ºC, total seasonal rainfall in mm (RAIN), a vector of district dummies, D, and 

a time trend, T.  

TEMP may contain a single variable or a vector of temperature variables, described 

further below. While there is no theoretical reason to use the natural log of yields, the 

method introduced by SR tested the approach with natural log of yields for the United 

States. In this chapter, their method is adapted for the Canadian context and therefore 

their model format is followed. Bolding an element in an equation signals those elements 

that are vectors, while non-bolded elements are scalars.   

                                          2  [3.1] 

The growing season is assumed to be April 15 to August 31. This is assumed to 

encompass the full growing season in the region, which can start as early as late April or 

as late as early June. Regardless of how late the growing season begins, it must end 

before winter begins in the Prairie regions. Harvesting begins in September and is usually 

complete by the end of October. In regions where crops are not planted until later in the 

season, the TEMP variable(s) is (are) correlated with shorter growing seasons.  

Figure 3.1 summarizes the three forms of the variable (TEMP) that are calculated, and for 

which out-of-sample forecasting is compared. The first variant of TEMP uses an average 

monthly temperature calculation for each month in the growing season. This variable is 

correlated with the length of the growing season as, in a cooler spring, the average 

temperature for April and May will be substantially lower and thus proxy the effect of a 

shorter growing season. The second variant uses a cumulative GDD calculation. The 

GDD is a summation of the total number of hours in a specified range of temperature 

during the growing season. In a year when the spring weather is cooler, the total GDD 

value is lower because there are fewer hours spent in the specified temperature range. 

Thus, GDD is also correlated with the length of the growing season and may proxy the 

effect. The third variant follows SR, and is a modified GDD. The aggregate GDD value is 

broken down into smaller temperature “buckets,” capturing only the number of hours a 

                                                      
2
 Weather station k is located in district j and there may be multiple weather stations in each 

districty for a given year. 
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crop is exposed to a series of specific, defined temperature ranges for the duration of the 

growing season. Instead of one aggregate variable to be used as an explanatory variable 

in a production function, many variables are generated, depending on how the 

temperature ranges are defined. The number of hours of exposure to temperatures less 

than freezing can be captured, for example, which endogenizes the length of the growing 

season more thoroughly than either of the other two approaches. As discussed in Chapter 

2, average temperature and GDD are the most commonly used approaches to 

incorporating temperature in production or profit functions, or land use analyses. Here, 

the SR approach is compared to these formulations.  

Figure 3.1: Overview of the approaches used to model temperature 

 

 

 

 

 

3.2.1 Calculating the temperature variables 

Three different versions of a temperature variable are calculated and used in alternative 

yield model formulations; average daily temperature, growing degree days (GDD), and 

the SR approach. Average temperature is calculated as shown in Equation 3.2.     
    and 

    
     are the maximum and minimum temperatures for the n

th
 day of the m

th 
month for 

the k
th
 weather station, where d is the number of days in the month. The monthly value is 

the average of the average daily maximum and minimum temperatures. For the average 

temperature approach, the vector TEMP contains five variables, one for each month of 

the growing season. 

          

     
         

 
  

     
         

 
 

 
   [3.2] 

Equation 3.3 shows the calculations for the GDD treatment of the temperature variable, 

where     
   and     

     are as above, and B is a baseline temperature below which it is 

assumed no growth occurs, and the hours in the defined range are summed over the 

TEMP 

AVG temp GDD temp SR approach 
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growing season. The growing season is n = 1… d days long. Refinements to the basic 

model are commonly applied to improve forecasting ability. If the daily average 

temperature ((    
   +    

   )/2) is less than the base temperature, then the GDD for that 

day is equal to zero. Alternatively, if either     
    or     

    is less than the base, they are 

reset equal to the base in order to prevent negative values for GDD for a particular day 

from skewing the results (McMaster and Wilhelm 1997). Here, neither adjustment is 

made, as it is also possible to treat the first part of the equation as a simple daily average 

(McMaster and Wilhelm 1997). Theoretically, this does allow for negative GDD. Here, 

GDD calculations were made for B = {0, 5, 10} °C, as these are commonly applied base 

values found in the literature. TEMP contains only one variable for each year for this 

version of the model. 

           
    
        

   

 
           [3.3] 

The SR approach differs from the first two approaches in terms of how temperature is 

modeled.  In particular, hours of exposure to different levels of temperature through the 

growing season are used.  This approach requires that the hourly temperature be 

estimated for each day of the growing season.  The process used for this estimation is 

described below in Section 3.3.3.  The hourly temperature estimates are converted to 

binary variables,         , which are the occurrence of temperature x at the h
th
 hour on 

the n
th
 day of the m

th
 month for the k

th
 weather station during the growing season.  Here, 

“x” represents 1°C temperature intervals/increments, from 0 °C to 40 °C, with x = 1, 2, 

…, 40 corresponding to intervals (0, 0.9), (1.0, 1.9) … (39.0, 39.9) with the values in 

parentheses being the interval lower and upper bounds, in °C.  If, at a particular hour on a 

particular day in a particular month, the estimated hourly temperature is in interval x, the 

value of DEG for that interval is equal to 1; otherwise, it is set equal to 0.  In addition, 

one variable captures all hours over 40 degrees, as multicollinearity was found in the data 

in this range. Observations of temperatures below 0 °C were dropped from the vector to 

prevent additive multicollinearity between variables; the total number of hours in the 

growing season is constant across observations, but the total number of hours above 0 °C 

is not. 

To obtain the temperature values in the TEMP vector for the yield model, the individual 

DEG values are aggregated (i.e. summed) over hours, days and months.  In particular, 

each element TEMPx is calculated as shown in Equation 3.4. 
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                                  [3.4] 

The variable TEMPx represents the cumulative hours of exposure to the x
th
 temperature 

interval over the course of the growing season for station k in year t.  The vector TEMPx 

in this version of the model contains 41 variables for all x from 0 to  40 ºC for station k 

in year t.  

3.2.2 Description of the analysis  

Typically, no weather station has a complete set of observations for the full time period 

between 1965 and 2007. Spatial or inter-temporal interpolation is required to obtain a 

balanced panel data set such that there are no missing weather observations. SR use 

methods to interpolate the incomplete weather data across time and space to create a 

balanced panel data set for the United States, then interpolating weather data to create a 

2.5 x 2.5 mile grid covering the continental United States. SR’s basic unit of observation 

is this 2.5 square mile pixel from this grid. Using data from weather stations that were 

only in operation for a subset of the total period means that the data from these stations 

may in some way be biased, or not be representative of the climate in the region at the 

time in question. Interpolation of potentially biased data can exacerbate data integrity 

problems by compounding the biases (Jeffery et al. 2001). Interpolation of the weather 

data into a map grid of pixels is not undertaken here.  

The yield data are available at the county/district level. The weather data used are at the 

weather station level. Each station, k, is located in a district, j, and is matched up with 

yield data available for that district using GIS. The interpolation process used by SR 

resulted in a much larger dataset from which to run the regression analysis but with 

greater multicolinearity in the data due to spatial homogeneity, and potentially introduced 

weather data integrity degradation. Here, the choice is made to use a smaller dataset 

(maximum potential observations around ten thousand rather than in the millions), but 

fewer potential problems with data integrity or multicolinearity due to spatial 

homogeneity by using the weather station as the unit of measure.  

The following sections outline the datasets used in the analysis, created using the weather 

station, with its available weather data and the associated yield from the district in which 

it is located. Weather stations were plotted on a map using GIS. The yield, temperature 

and rainfall data were then intersected with the weather station data, possible because the 

GIS software allows all the data to be located in physical space. A total of 13,332 
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observations were obtained using this method, each fixed at a point in space representing 

the location of the weather station, the associated weather measured at that station and the 

yield in the district in which the station is located. Some districts contain no weather 

stations so by default the yield data for these districts were excluded from the analysis. 

Some districts, in particular in Alberta where the districts are larger, contain multiple 

weather stations. For these, multiple observations of weather are used to predict the yield 

observations for that district, as each weather station with its independent weather 

observations form a separate observation, even though those in the same district contain 

the same yield data.  

Table 3.1: District average recorded lowest and highest yields and average (kg/ha) in 

the Canadian Prairies for selected crops, 1965-2007. 

Crop 

High 

Yield Year 

Low 

Yield Year 

 

Mean 

Yield 

Winter wheat 
5,346.0 2004 46.0 1988 2589.9 

Spring wheat 
4,588.7 2005 80.9 1988 1991.2 

Durum wheat 
4,917.4 1990 73.0 2002 1859.3 

Oats 
4,364.9 1992 44.7 1980 1911.2 

Barley 
5,000.0 2003 97.4 2002 2377.5 

Spring rye 
4,395.9 2003 96.0 2001 1209.3 

Fall Rye 
4,226.8 2007 125.8 1988 1589.3 

Flax 
2,502.2 2004 5.8 2002 976.7 

Canola 
2,913.5 2005 12.7 2002 1201.5 

3.2.3 Yield data 

Crop yield data are obtained from crop insurance corporations in the cases of Alberta and 

Manitoba, and from the Government of Saskatchewan.  Data are obtained, at the 

county/municipal district/rural municipality level, for winter wheat, spring wheat, durum 

wheat, canola, fall rye, spring rye, oats, flax, and barley. These crops are selected because 

they constitute approximately 85 percent of field crop production in the Canadian Prairie 

provinces, according to the 2006 Census of Agriculture. The selected crops also comprise 

approximately 82 percent of total field crop land allocation (Statistics Canada 2010a). As 

such these crops capture major agricultural land allocation for cropping in the region. 

Alberta yield data are available from 1978 to 2007 because yield values prior to 1978 

were self-reported and are not in use because they are less unreliable.  For Saskatchewan 

and Manitoba, yield data are available from 1965 to 2007. Table 3.1 shows the highest 
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and lowest individual yield observations, by crop, in the dataset. Yield data from irrigated 

lands are excluded as agriculture in the region is almost entirely dryland, with the 

exception of specific areas in southern Alberta. Rye yield data from Manitoba are 

excluded from the analysis because they are not separated into fall rye and spring rye. 

There are a low number of spring rye observations available in the analysis as, in fact, 

this particular crop is not that common in the region; the data show that fall rye is more 

popular.  

3.2.4 Temperature data 

Daily minimum and maximum temperature data were obtained from Environment 

Canada for 2,371 climate stations scattered across Alberta, Saskatchewan and Manitoba. 

The dataset covers 1960 to 2007, from April 14 to September 1 of each year. Data from 

1965 to 2007 were used, except for stations in Alberta because there are no yield data 

prior to 1978, as noted above. Stations with data missing for an entire month between 

May through August were removed from the dataset. Many weather stations that operate 

in the summer only have data for the second half of April, and these were included, as 

data are only needed from April 14 onwards. Observations were removed for years where 

a) there were more than 10 days of missing data, or b) there were more than three 

consecutive days of data missing. The remaining missing temperature data were 

interpolated either spatially or intertemporally. If another weather station in the district 

for that date has available data, then the assumption was made that the values for those 

two stations were identical for that observation. If no data were available for the same 

date, the missing values were interpolated from the temperature data from the day prior to 

and following that date by taking a simple average of the two adjacent dates.  

Table 3.2 shows the total number of climate stations in the Canadian Prairies with usable 

data and provides a summary of the total number of stations that operated during the 

period from 1965 to 2007. Each station was operational for a different range of the total 

years covered, some for one or two years, some for the whole range. The number of 

climate stations with usable data was approximately 36 percent of the total stations in 

Alberta, 39 percent in Manitoba, and 25 percent in Saskatchewan. The total weather 

dataset contains daily observations of weather for each of these stations as described 

further below. 
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Table 3.2 Climate Stations in Western Canada: 1965 to 2007 

 

Total 

Stations 

1965-2007 

Stations with 

Summer Data 

1965-2007 

Percent of 

Total 

Manitoba 499 199 39 % 

Saskatchewan 606 197 25 % 

Alberta 1,242 451 36 % 

 

In order to estimate the effect of extreme temperature on yield, it is important that 

sufficient examples of crop exposure to heat over 30 °C are found in the dataset. Figures 

3.2a-3.2c show the distribution of temperature by month for April to August for 

Saskatchewan, Alberta and Manitoba. The frequency count was calculated using the daily 

maximum temperature value from 1965 to 2007 (1978 to 2007 for Alberta), and 

represents the total occurrences of each 1 °C increment of recorded daily maximum 

temperature for all weather stations across the landscape for the entire period.  

The highest temperature in the weather dataset is 44 °C. As shown in the temperature 

distributions in Figures 3.2a-3.2c, maximum temperatures above 30 °C are common and 

above 40 °C less common, but daily maximums between 30 and 35 °C occurred up to 

1000 times in July in Saskatchewan and Manitoba from 1965 to 2007, and up to 700 

times in Alberta in the period from 1978 to 2007. Sufficient occurrences of temperatures 

in the higher ranges are assumed, therefore, to exist in the dataset for a yield response to 

such temperatures to be analysed econometrically. 
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Figure 3.2a: Frequency
3
 of maximum daily temperatures for Saskatchewan 1965-

2007 

 
 

Figure 3.2b: Frequency of maximum daily temperatures for Alberta 1978-2007 

 
 

Figure 3.2c: Frequency of maximum daily temperatures for Manitoba 1965-2007 

 
 

(Environment Canada 2008) 

  

                                                      
3 Frequency refers to the number of days from 1965 to 2007 each temperature was recorded as the daily 

maximum in any of the weather stations used in the analysis. 
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Latitudes in the northern parts of the Canadian prairies experience more daylight hours in 

the summer than those in the southern parts, which has an impact on yields. Sunrise and 

sunset tables for one year were collected from the US Naval Observatory (2009) for each 

district from April 14 to August 31 to account for the effect of variations in daylight 

hours on crop yield; 2009 was the current year at the time of data collection, and was 

used as the base year; the same tables are used for each year. Although actual times 

fluctuate by several minutes per year, the year-over-year fluctuations were assumed to be 

economically insignificant. The dataset of daily minimum and maximum temperatures is 

combined with daily sunrise and sunset times to estimate hourly temperatures for each 

day of the growing season from 1965 to 2007 using a heat distribution function described 

by Cesaraccio et al. (2001), shown in Equations 3.5a-3.5c.   

Each day is divided into three sections, with an associated equation to calculate hourly 

temperature. The first section (Equation 3.5a) covers sunrise (Hn) until four hours before 

sunset, which is assumed to be the time of maximum temperature (Hx).  The second 

section (Equation 3.5b) covers the period from four hours before sunset (Hx) to sunset 

(Ho).  Finally, the third section (Equation 3.5c) covers from sunset (Ho) until sunrise on 

the following day (Hp). Hx is the time at which maximum temperature (Tx) occurs, and Hn 

is the time at which minimum temperature (Tn) occurs, by assumption.  

  

               
    

     
 
 

 
    for            [3.5a] 

                
 

 
 

    

 
 
 

 
 ]    for            [3.5b] 

                  for            [3.5c] 
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Where:   

T(t) = value of T =f (t), where t = 1:24 

Tn = minimum daily temperature     

Tx = maximum daily temperature 

Tp = minimum temperature on the following day   

 

To = Tx - c(Tx-Tp) where  

c = 0.39 as calibrated by the authors based on California data.  

α = Tx - Tn  

Hn = time of minimum temperature, assumed to be sunrise 

Ho = time of sunset    

Hx  = time of maximum temperature, assumed to be four hours before sunset 

Hp = Hn + 24    R = Tx - To       
     

      
  

 

Figure 3.3 shows the hourly temperatures for August 12, 1989 in the district of Aberdeen, 

SK. The parentheses indicate the equation that was applied for each portion of the day. 

Equation 3.5c is used for temperatures from the previous day, with the estimated 

temperature falling until it reaches the daily minimum at the time of sunrise, here shown 

to be approximately 6:00 am. Equation 3.5a is used to estimate increasing temperatures 

from sunrise until four hours before sunset; the time of sunset is shown here as 

approximately 9:00 pm, so the time of maximum temperature is assumed to occur at 

approximately 5 pm. Equation 3.5b is used to model falling temperatures from the time of 

maximum temperature until sunset, and then Equation 3.5c is used to estimate 

temperatures falling further, based on the minimum temperature recorded on the 

following day. For the date in question in Figure 3.3, the minimum temperature is shown 

to be around 7 °C, with the maximum temperature being approximately 31 °C.  The 

temperature then is estimated to fall to approximately 15 °C by midnight.  
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Figure 3.3: Estimated hourly temperatures on August 12, 1989 For the Rural 

Municipality of Aberdeen, Saskatchewan. 

 

3.5a Cesaraccio et al.’s (2001) equation for temperature from sunrise to time of maximum temperature 

3.5b Cesaraccio et al.’s (2001) equation for temperature from time of maximum temperature to sunset 

3.5c Cesaraccio et al.’s (2001) equation for temperature from time of sunset to sunrise on the following 

day 

 

3.2.5 Rainfall data 

Precipitation data are also taken from the Environment Canada database of weather 

station observations, in the form of daily rainfall measured in mm. These data are then 

summed over the entire growing season between the dates of April 15 – August 31, 

consistent with the growing season defined earlier. Data were available for both rainfall 

and total precipitation, which includes rainfall, snowfall and any other kind of 

precipitation that occurred. However, rainfall data were selected because it was assumed 

that the marginal effect of snowfall, or ice pellets or any of these other forms of 

precipitation, during the growing season would be separable from the marginal effect of 

rainfall on yield. While observations with missing data points are eliminated as described 

above for missing temperature data, remaining missing rainfall data are assumed to be 

zero for any given day, functionally assuming that there was no rainfall for that day. The 

calculation implies that rainfall data may be systematically lower than actual rainfall. 

This approach is assumed to produce minimal distortion of the data because the region is 

semi-arid, with total annual precipitation between 750 and 1500 mm per year. The 

probability that rainfall > 0 is assumed to be acceptably close to zero for any given day.  
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Table 3.3 shows summary statistics for rainfall. The lowest cumulative rainfall for any 

growing season is 19.1 mm, and the maximum on record is 709.4 mm.  Average annual 

rainfall during the growing season ranges from 225.2 mm to 269.3 mm. Drought 

conditions occur when rainfall falls below average for extended periods of time, so the 

cumulative rainfall data reflect periods of drought where seasonal rainfall fell well below 

the average.  The differences in observations between different crops occur because the 

crops are grown in different geographical ranges. For example, winter wheat has a 

different minimum rainfall observation than spring wheat because spring wheat is grown 

across the entire Prairie region but winter wheat is found mostly in the south; the weather 

data for each crop are pulled from a different subset of the weather stations.  

Table 3.3: Summary statistics for cumulative rainfall (mm) in the Canadian 

prairies, by crop. 

Crop Minimum Year Maximum Year Mean 

Winter Wheat 34.5 1988 638.2 2004 259.7 

Spring Wheat 19.1 1988 709.4 2005 266.6 

Durum  34.5 1978 596.6 1975 246.2 

Oats 19.1 1980 709.4 1992 268.2 

Barley 19.1 2002 709.4 2003 267.8 

Fall Rye 19.1 1988 596.6 2007 239.9 

Spring Rye 71.1 2001 488.7 1978 225.2 

Flax 19.1 2002 626.2 2004 259.8 

Canola 34.5 2002 709.4 2005 269.3 

 

3.2.6 Comparing Temperature Variable Performance 

Three versions of the model were run for each of the nine crops to compare out-of-sample 

forecasting. Average temperature, GDD and the DUM model, after SR, were run. The SR 

model is nicknamed “DUM” after the process of converting each hourly temperature 

observation to a dummy variable. Each model contains up to 344 district dummies, 41 

temperature variables, one variable for rain and a time trend. There are up to 12,333 

observations, based on availability of yield data and temperature data for each crop for 

each district for each year. One model is run for each of the nine crops for each 

temperature treatment, using a randomly selected 85 percent of the data. The resulting 

coefficients were used to generate estimates of yield for the 15 percent of the 
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observations that were not used in the regression analysis. These out-of-sample forecasts 

were evaluated for predictive accuracy by comparing the root mean square error (RMSE), 

mean absolute error (MAE), mean absolute percentage error (MAPE) and adjusted 

MAPE for the forecasted yield for each crop. The adjusted R
2
 for each model is reported 

as well. The RMSE is the square root of the average of the squared values of the forecast 

errors; this approach weights larger errors more heavily. The MAE is the average of the 

absolute values of the forecast errors; this approach keeps the weighting of each error in 

the calculation in line with the absolute value of the error. The MAPE is the average of 

the absolute values of the errors in percentage terms; if the cost of the error is more 

closely related to the percentage error rather than the value of the error, this approach is 

used. However, because the observed value is used for the percentage calculation, it can 

result in under-forecasting. The adjusted MAPE uses the average of observed and 

forecasted values as the base for calculating the percentage error, which corrects for this 

problem (all as described in Kennedy 2003, 361).  

The measurement tools described above are used collectively to provide an overview of 

the forecasting strength of each temperature treatment across a number of types of testing 

and crops. A model that provides superior forecasting than the alternatives by one or 

more of these measures provides robust evidence of superior forecasting overall. The size 

of the full dataset and the dataset used in each regression is reported in Table 3.4. The 

remaining observations are used in the out-of-sample forecasting accuracy predictions.  

Table 3.4: Total sample and sub-sample size for parameter estimates used in out-of-

sample forecasting 

 

Total 

Observations 

Observations used 

in the Estimate 

Percent 

of Total 

Spring wheat 12,332 10,430 0.846 

Winter Wheat 1,934 1,642 0.849 

Durum Wheat 5,600 4,763 0.851 

Oats 12,333 10,491 0.851 

Barley 12,579 10,707 0.851 

Spring Rye 327 269 0.823 

Fall Rye 4,667 3,938 0.844 

Flax 7,755 6,565 0.847 

Canola 10,776 9,141 0.848 
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3.3 Results  

Each model is tested for heteroskedasticity and autocorrelation using White and Breusch-

Pagan-Godfrey tests and a Durbin Watson test for autocorrelation. The Durbin-Watson 

test shows no evidence of autocorrelation but the White and Breusch-Pagan-Godfrey tests 

show heteroskedasticity in each one of the models.  This is corrected by using a 

heteroskedastic-consistent covariance matrix. In this section, the results of the out-of-

sample predictions are provided. The best-fit model is tested for the assumption of non-

separability of weather effects. If an hour of exposure to degree x in April or May has the 

same effect as an hour of exposure to degree x during July or August, then the assumption 

of non-separability of weather effects across months in the growing season is supported. 

As well, the temperature effects found by the preferred model are described.  

3.3.1 Comparison of Temperature Treatments 

Adjusted R
2
 statistics are reported for each model. High adjusted R

2
 indicates increased 

explanatory power over observed variations in the dataset; Low RMSE, MAE and MAPE 

values indicate high forecasting accuracy, here tested on out-of-sample data. Results are 

reported in the GDD case for B = 10 only, where B is the base temperature as defined in 

Section 3.3.1; changing the value of B only changes the size of the constant in the 

estimation results. The results of out-of-sample forecasting, as summarized in Table 3.5, 

indicate that the Schlenker and Roberts dummy approach (“DUM PLUS”) outperforms all 

the other approaches for all crops, with the exception of canola and spring rye, where it is 

at least comparable to the next best alternative. Coefficients for the AVG, AVG PLUS, 

GDD, and GDD PLUS models are provided in Appendix A. 

The SR approach implicitly assumes that an hour of exposure to a specific temperature in 

April produces the same effect as an hour of exposure to that same temperature in any 

other month of the growing season. SR tested this assumption and found that the non-

separability assumption was supported with the American dataset. For the Canadian 

dataset, the assumption is tested by separating the data into monthly values, as shown in 

Equation 3.6. The vectors RAINmkt and TEMPxmkt denote the weather exposure in month 

m for station k in year t. Note that there is an extra subscript to indicate monthly weather 

rather than seasonal as was found in the previous version of this equation. 

                                               [3.6] 
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A t-test is performed on the null hypothesis that the coefficients for each one degree 

increment in temperature are equal for different months, as shown in Equation 3.7. Here, 

the coefficients for hours of exposure are tested such that the null hypothesis is that the 

coefficient for year t for station k for TEMPx = 0 for month = April is equal to the 

coefficient for year t for station k for TEMPx = 0 for month = May, June and July or 

August. Thus, m and r represent April through August, where m ≠ r. The process is 

repeated for all values of x from 0 to 40, and again for all monthly values of      to test 

the separability assumption for rainfall.  

                          [3.7] 

Where t-statistics are greater than ~2.0, the null hypothesis should be rejected. The 

corresponding P-value will be below 0.05, which indicates that the probability that the 

null hypothesis is true is less than 5 percent. This indicates that for these degree 

increments, exposure to temperature has statistically different effects in different months. 

The separability assumption is also tested for rain coefficients between months. Appendix 

B contains a summary of the t-test results with an X indicating the tests for which the P-

Value is less than or equal to 0.05 indicating that the null hypothesis of non-separability 

is rejected. In general, non-separability doesn’t hold, except for temperatures above 35 

ºC; nor does it hold for rain variables across months, implying homogeneous effects of 

exposure to heat above this temperature.  

In addition, equivalence of coefficients for variables for each month was collectively 

tested for all variables in each month using a series of F-tests, as shown in Equation 3.8 

The values for m and r are the months April through August, and each element in the 

vector represents the range of temperature from x = 0, 1, …40plus ºC. The results of these 

tests indicated that for coefficients for all the temperature variables for each month, the 

null hypothesis of equality is rejected. The P-values on the F-tests are all 0.000, 

indicating a less than 1 percent probability that the coefficients are collectively equal 

between months.  

      
      

 
       

   
      

 
       

                [3.8] 

The results of the F-tests indicate that non-separability does not hold for the Canadian 

dataset, and the results of the t-tests indicate that there is only limited support for the non-
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separability assumption. In general, August is statistically different from other months, as 

is often the case for April. Temperatures over 35 ºC are shown to be non-separable. 

Rainfall has a statistically different effect on yields depending on the month in which the 

precipitation occurred. An alternative version of the model is formed, using the same 

temperature values as before, but replacing the seasonal rainfall values with monthly 

rainfall values. These alternative models are denoted by “AVG PLUS”, “GDD PLUS” and 

“DUM PLUS” in Table 3.6 (see also Figure 3.5). The variable RAINtk becomes RAINmtk. 

Figure 3.4: Overview of modeling approaches incorporating temperature; two 

variants each model incorporating monthly rainfall values (“PLUS”) 
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Table 3.5: Measures of out-of-sample forecasting for major crops in the Canadian 

prairies.
4
 

 

WINTER WHEAT 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.338 0.232 0.032 0.031 0.533 

GDD 0.357 0.245 0.034 0.033 0.470 

DUM 0.343 0.240 0.033 0.032 0.504 

AVG PLUS 0.343 0.240 0.033 0.032 0.544 

GDD PLUS 0.326 0.224 0.031 0.030 0.501 

DUM PLUS 0.328 0.226 0.031 0.030 0.522 

      

      

 

SPRING WHEAT 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.294 0.215 0.029 0.029 0.369 

GDD 0.302 0.220 0.030 0.030 0.322 

DUM 0.286 0.208 0.028 0.028 0.393 

AVG PLUS 0.288 0.212 0.029 0.029 0.388 

GDD PLUS 0.294 0.217 0.030 0.029 0.353 

DUM PLUS 0.280 0.206 0.028 0.028 0.417 

      

      

 

DURUM 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.357 0.259 0.036 0.035 0.402 

GDD 0.372 0.266 0.037 0.036 0.361 

DUM 0.360 0.261 0.036 0.036 0.423 

AVG PLUS 0.360 0.261 0.036 0.036 0.320 

GDD PLUS 0.354 0.257 0.036 0.035 0.286 

DUM PLUS 0.344 0.251 0.035 0.034 0.456 

      

      

 

CANOLA 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.387 0.250 0.039 0.037 0.328 

GDD 0.401 0.260 0.040 0.038 0.290 

DUM 0.380 0.248 0.038 0.037 0.363 

AVG PLUS 0.380 0.248 0.038 0.037 0.341 

GDD PLUS 0.384 0.250 0.039 0.037 0.306 

DUM PLUS 0.378 0.250 0.039 0.037 0.372 

                                                      
4
 Bolded entries indicate those that rank the highest for that measure. 
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FLAX 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.417 0.298 0.047 0.046 0.267 

GDD 0.426 0.303 0.048 0.046 0.239 

DUM 0.420 0.295 0.047 0.045 0.279 

AVG PLUS 0.414 0.297 0.047 0.045 0.279 

GDD PLUS 0.419 0.300 0.047 0.046 0.264 

DUM PLUS 0.414 0.293 0.046 0.045 0.295 

      

      

 

FALL RYE 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.348 0.255 0.036 0.036 0.349 

GDD 0.362 0.261 0.037 0.036 0.305 

DUM 0.351 0.255 0.036 0.036 0.356 

AVG PLUS 0.351 0.255 0.036 0.036 0.380 

GDD PLUS 0.337 0.251 0.035 0.035 0.356 

DUM PLUS 0.338 0.251 0.035 0.035 0.390 

      

      

 

SPRING RYE 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.444 0.331 0.052 0.051 0.606 

GDD 0.518 0.386 0.061 0.059 0.542 

DUM 0.451 0.336 0.053 0.051 0.636 

AVG PLUS 0.426 0.309 0.048 0.047 0.616 

GDD PLUS 0.471 0.350 0.055 0.054 0.585 

DUM PLUS 0.430 0.327 0.051 0.050 0.648 

      

      

 

BARLEY 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.323 0.228 0.031 0.666 0.334 

GDD 0.339 0.241 0.033 0.667 0.277 

DUM 0.319 0.225 0.030 0.667 0.361 

AVG PLUS 0.331 0.237 0.032 0.031 0.340 

GDD PLUS 0.341 0.245 0.033 0.032 0.294 

DUM PLUS 0.314 0.222 0.030 0.667 0.372 
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OATS 

 

RMSE MAE MAPE ADJ MAPE ADJ R2 

AVG 0.353 0.250 0.035 0.034 0.334 

GDD 0.361 0.256 0.036 0.035 0.295 

DUM 0.340 0.242 0.034 0.033 0.383 

AVG PLUS 0.350 0.249 0.035 0.034 0.352 

GDD PLUS 0.357 0.253 0.035 0.035 0.323 

DUM PLUS 0.337 0.238 0.033 0.033 0.403 
 

 

* RMSE   = root mean squared error 

* MAE   = mean average error 

* MAPE   = mean absolute percentage error 

* ADJ MAPE  = mean absolute percentage error of the average of the actual and predicted 

values 

* ADJ R2   = Adjusted R2 

 

 AVG   = Average temperature model 

 GDD  = growing degree days model 

 DUM   = Schlenker and Roberts model using dummies to calculate total exposure to 

months 

 AVG PLUS = Average temperature model with cumulative monthly rainfall 

 GDD PLUS = growing degree days model with cumulative monthly rainfall 

 DUM PLUS = Schlenker and Roberts using cumulative exposure to temperature for the 

season and with cumulative monthly rainfall 

 

 
The results of the F and t-tests suggest that a model with monthly cumulative values 

could potentially provide additional information over a model with seasonal 

temperatures. However, with 41 temperature variables in each month rather than 41 per 

season, degrees of freedom are reduced by up to 168 (41 temperature variables  X 4 extra 

months of temperature data, and 1 precipitation variable x 4 extra months) for each 

regression. In the seasonal regression for canola, there are 41 temperature coefficients, 1 

rain coefficient, and 327 district dummies (369 total), while for winter wheat there are 41 

temperature coefficients, 1 rain coefficient and 177 district dummies (219 total). To add 

an additional 168 coefficients to the canola data results in a total of 537 coefficients, 

while winter wheat would require 387 coefficients
5
.  

A least squares estimate of a parameter is unbiased asymptotically (Greene 2003, 68). 

While the number of observations in a sample required to produce unbiased estimates is 

unknown, more observations are preferred to fewer observations. A model may require, 

for example, ten observations to produce enough variation in the dataset for each 

                                                      
5
 This is a maximum as in some months, observations of all temperatures in the range are not 

observed. 
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unbiased coefficient. If this assumption were true, the canola model would require over 

5,370 observations, and winter wheat would require over 3,870 to produce unbiased 

coefficients. While sufficient canola data exist to maintain this many degrees of freedom, 

there are, based on this criteria, insufficient data to ensure unbiased estimators for winter 

wheat.  

Therefore, estimating the models with monthly cumulative temperature values for winter 

wheat, with just under 2,000 observations for 223 coefficients and spring rye, with 327 

observations for 91 coefficients, is potentially problematic. Increasing the number of 

coefficients by 41 x 4 = 164 to include a temperature variable for each month increases 

the number of coefficients to be estimated to 495 for winter wheat and 255 for spring rye. 

As these two models do not have ten observations per parameter in Model 1, a monthly 

model is not undertaken. This is based on the assumption that at least ten observations per 

parameter is a reasonable minimum for unbiased parameter estimates. 

  Model 1 

                                               [3.9a] 

  Model 2  

                                                [3.9b] 

Equation 3.9a and 3.9b are different in one respect only; the subscript m on the TEMP 

variable and its associated coefficient in Equation 3.9b is not there in Equation 3.9a. 

Equation 3.9a is Model 1 as shown in Figure 3.4, with temperature variables cumulative 

for the growing season for all temperature variables. Model 2, has temperature variables 

that are cumulative for each month in the growing season.  The rest of the variables are 

identical.  
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Figure 3.5: Overview of the modeling approaches for temperature: Comparing 

seasonal and monthly temperature values 

 

 

 

 

 

 

 

 

 

To determine if Model 2 is capturing statistically different information from Model 1, a J-

test is run. This test is used to determine if Model 2 is statistically equivalent to Model 1. 

The J-test uses the predicted values from Model 1 as an explanatory variable for Model 2, 

and vice versa. If the predicted value variable from Model 1 is statistically significant in 

Model 2, and vice versa, then the models are shown to provide statistically significantly 

different information (Greene 2003). However, if the new variable in Model 2 is 

statistically insignificant, then the first model is does not provide any new information to 

the second model, or vice versa. If the predicted values from Model 2 are significant as a 

variable in Model 1 then Model 2 is said to provide information that is statistically 

different from Model 1.   

                                                      [3.10a] 

                                                            [3.10b] 

The predicted value generated for Model 2 is denoted PRE2, and for Model 1, PRE1. Each 

model is run with predicted values of the alternate model as an explanatory variable, as 

shown in Equations 3.10a and 3.10b. The coefficient of the predicted value variable from 

Model 1, PRE1 is statistically insignificant as a predictor of yield in Model 2 for all crops 

except canola and oats. Results are summarized in Table 3.6.   

  

AVG PLUS GDD PLUS 

GDD AVG SR approach 

DUM 

TEMP 

DUM PLUS = MODEL 1 MODEL 2 
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Table 3.6: Results of the J test between Model 1 and Model 2 for variable PRE 

Crop P-Value for PRE1 in Eq. 3.10b P-Value for PRE2 in Eq. 3.10a 

Winter wheat N/A N/A 

Spring Wheat 0.218 0.000 

Durum  0.277 0.000 

Canola 0.044 0.000 

Flax 0.373 0.000 

Fall Rye 0.224 0.000 

Spring Rye N/A N/A 

Barley 0.314 0.000 

Oats 0.011 0.000 

 

The predicted value variable from Model 2, PRE2, is, however, statistically significant in 

Model 1 for each crop. In fact, including the predicted values from Model 2 in Model 1 

produces results where other variables show no explanatory power at all, with P-values 

above 0.900 for all district fixed-effect dummy variables. The J-test results indicate, 

therefore, that Model 2 provides information that is not captured in Model 1, but the 

reverse is, in general, not true. Therefore, Model 2 is shown to provide additional 

information from Model 1. Further comparison of the behaviour of the two models is 

provided in Section 3.4.2 and 3.4.3.  

3.3.2 Temperature Responses with Model 1 

Model 1 is run for winter wheat, spring wheat, durum, barley, oats, spring rye, fall rye, 

canola, and flax in order to generate the results shown above. The size of the dataset used 

in the analysis is indicated in Table 3.4; the full dataset is used rather than the 85 percent 

subset. Rain data are aggregated by month rather than by season, as indicated by the 

model results reported in Section 3.3.1, indicating that the coefficients are not statistically 

equal between months.  

Appendix C provides the results of the regression for Model 1 (Figure 3.6, Equation 

3.9a). Yields for all major crops grown in the Canadian prairies exhibit negative marginal 

effect of exposure above temperatures that range from 28 ºC to 34 ºC, depending on the 

crop. These values, shown in Table 3.7, are an indication of heat tolerance for exposure to 

temperatures below a crop-specific critical maximum.  Oats are the least tolerant to heat, 
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with yield decreases occurring for every hour of exposure to heat above 28 ºC. Fall rye is 

the most heat tolerant, with yield decreases occurring only above 34 ºC. Spring wheat 

increases yields until the critical temperature of 29 ºC is reached, and for every hour of 

exposure above 29 ºC, yield decreases by 0.06 percent.  Canola yields increase until 29 

ºC is reached, but every hour of exposure to 29 ºC reduces yields by 0.08 percent, based 

on the coefficients for temperature variables over 29 ºC for these crops.   

Table 3.7: Critical Maximum temperatures identified with the seasonal model 

following Schlenker and Roberts (2006, 2008) 

Crop Critical Minimum Critical Maximum 

Winter wheat 5 ºC 29 ºC 

Spring Wheat 5 ºC 29 ºC 

Durum wheat 5 ºC 29 ºC 

Oats 5 ºC 28 ºC 

Barley 4 ºC 28 ºC 

Spring rye 5 ºC 30 ºC 

Fall rye 5 ºC 34 ºC 

Flax 5 ºC 30 ºC 

Canola 3 ºC 29 ºC 

 

It is notable that for fall rye in particular, yields increase to approximately 29 or 30 ºC, 

then show no significant negative yield effects until the temperature goes over 34 ºC. 

Thus, fall rye is heat tolerant in that the plant is able to sustain (but not increase) yields at 

higher temperatures even though these higher temperatures would damage other crops. 

However, should the heat rise high enough, even fall rye succumbs, and yields decrease 

at temperatures over 34 ºC. 

One of the hypotheses of this chapter is that a critical lower temperature would be 

identified, such that marginal yields will be negative for exposure to temperatures below 

a critical minimum and increase for exposure to temperatures above this critical 

minimum. Often, 5 ºC is chosen as the base temperature in a GDD calculation, for 

example, because below 5 degrees no growth is assumed to have occurred. The existence 

of critical minimum temperatures is not as well-supported by Model 1. Negative 

coefficients are found from 3 to 5 ºC, depending on the crop, summarized in Table 3.7. 

However, the coefficients for variables for exposure to temperatures between 0 and 5 ºC 
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fluctuate between positive and negative values. At least one of the positive values is 

statistically significant at least 5 percent for each crop. Thus, while the effect of 

temperature at or below 5 ºC is shown to be statistically insignificant (or statistically 

equal to 0) or negative, there is also evidence of growth below 5 ºC. Potentially, the 

assumption of non-separability of temperature effect between the months of the growing 

season may be obscuring differences of effects that are heterogeneous between months. 

Model 1, with the combination of seasonal temperature variables and monthly rainfall, 

explains approximately 30 – 60 percent of the variation in yield in a given year, as 

exhibited by the adjusted R
2
 values for each regression. 

3.3.3 Temperature Responses with Model 2 

It was shown in Section 3.3.1 that Model 2 provides additional information that is not 

captured in Model 1. Model 2 is not run for winter wheat and spring rye because the 

number of coefficients estimated is assumed to be too great for the number of 

observations available for the estimate.  

Results for Model 2 for the remaining crops are shown in Appendix D. For durum, flax 

and fall rye, critical maximum temperatures range from 23 to 26 ºC in April, 19 to 26 ºC  

in May, 34 to 35 ºC  in June, 34 to 37 ºC  in July, and 37 to 42 ºC  in August. Results are 

summarized in Table 3.8, along with critical minimum temperatures in Table 3.9. Critical 

minimum temperatures range from 5 to 16 degrees in April or May, but no critical 

minimum temperatures are evident in June, July and August. While exposure to 

temperatures near zero in these months is lower than in April and May, it is hypothesized 

that the plant is well enough established to survive cooler temperatures by June. This 

likely explains the results, coupled with the fact that cooler temperatures are less common 

in these months.   
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Table 3.8: Critical maximum temperatures for Model 2, with monthly cumulative 

temperature and rain. 

Crop April 

critical 

maximum 

May critical 

maximum 

Jun critical 

maximum 

Jul critical 

maximum 

Aug critical 

maximum 

Spring 

wheat 

30 ºC 34 ºC 29 ºC N/A 40 ºC 

Durum 

wheat 

24 ºC 19 ºC 35 ºC 34 ºC 38 ºC 

Canola 32 ºC 32 ºC 34 ºC N/A 38 ºC 

Flax 26 ºC 26 ºC 35 ºC 35 ºC 42 ºC 

Fall rye 23 ºC 20 ºC 34 ºC 37 ºC 37 ºC 

Barley 31 ºC 34 ºC 31 ºC N/A 38 ºC 

Oats 30 ºC 36 ºC N/A
 6
 N/A 38 ºC 

 

Table 3.9: Critical minimum temperatures for Model 2, with monthly cumulative 

temperature and rain. 

Crop April 

critical 

minimum 

May critical 

minimum 

Jun critical 

minimum 

Jul critical 

minimum 

Aug critical 

minimum 

Spring 

wheat 

7 ºC 5 ºC 10 ºC N/A N/A 

Durum 

wheat 

5 ºC 15 ºC N/A 3 ºC N/A 

Canola 5 ºC 5 ºC N/A N/A N/A 

Flax 7 ºC 14 ºC N/A 1 ºC N/A 

Fall rye 5 ºC 16 ºC N/A 1 ºC N/A 

Barley 5 ºC N/A 8 ºC N/A N/A 

Oats 5 ºC N/A N/A N/A N/A 

 

  

                                                      
6
 N/A indicates that no critical minimum or maximum was found in the results.  
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Results shown in Appendix D indicate that the coefficients for summer temperatures are 

highly significant and negative for all temperatures for canola, oats, barley and spring 

wheat. Condition indices (see Kennedy 2003, 213) calculated for the temperature 

variables for these crops indicate strong multicolinearity.  

3.3.4 Temperature Responses with Model 3 

Model 2 produces results for canola, barley, oats and spring wheat that are strongly 

influenced by multicolinearity in the data. Therefore, a model that aggregates some of the 

variables is used to address this problem. A third model is run for these four crops alone. 

Variations on variable combinations are tested; the result is a model that uses combined 

data for temperature in June, July and August above 30 ºC, and monthly values for all 

other variables (Equation 3.11, Figure 3.5). Equation 3.11 is identical to the Model 2 

equation. The difference is that now m= April, May, June, July and August for 

temperatures below 30 ºC. For temperatures above 30 ºC, m = April, May, June-July-

August. Under these conditions, critical maximum temperatures in April are found to be 

24 ºC for all four crops, 25 ºC for spring wheat and canola, and 26 ºC for barley and oats 

in May. For June, July and August, the critical maximum temperature is shown to be 35 

ºC for spring wheat and barley, and 36 ºC for canola and oats. For all crops here, 

statistical significance of variables above 34 ºC is often very low, above 10 percent, 

indicating that crop growth is close to zero. The results of this model are found Appendix 

E on page 190. 

Model 3    

                                                [3.11] 
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Figure 3.6 Overview of modeling approaches, aggregating certain monthly 

temperature variables to prevent multicolinearity in the data 

 

 

 

 

 

 

 

 

 

 

Critical minimum temperatures are found to range from 7 to 12 ºC in April and May, and 

are not found at all in June, July and August, although some coefficients below 2 ºC are 

not significant at 1 percent. A summary of the critical temperatures is found in Tables 

3.10 and 3.11. 

The results reported in the above section, with regards to minima in particular, do not 

result in a clear signal. This is due to negative coefficients above a certain temperature 

and positive ones below (or vice versa in the low temperatures). Therefore, the reported 

results should be interpreted as signalling potential critical maxima or minima, rather than 

proof of the same.  
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Table 3.10: Critical maximum temperatures for spring wheat, canola, oats and 

barley from Model 3 using monthly cumulative temperature, combined above 30 

degrees C for June, July and August. 

Crop 

April critical 

maximum 

May critical 

maximum 

Jun/Jul/Aug 

critical 

maximum 

Spring Wheat 24 ºC 25 ºC 35 ºC 

Canola 24 ºC 25 ºC 36 ºC 

Oats 24 ºC 26 º 36 ºC 

Barley 24 ºC 26 º 35 ºC 

 

Table 3.11: Critical minimum temperatures for spring wheat, canola, oats and 

barley from Model 3 using monthly cumulative temperature, combined above 30 

degrees C for June, July and August. 

Crop 

April 

critical 

minimum 

May critical 

minimum 

Jun critical 

minimum 

Jul critical 

minimum 

Aug critical 

minimum 

Spring 

Wheat 

7 ºC 14 ºC N/A N/A N/A 

Canola 12 ºC 13 ºC N/A N/A N/A 

Oats 12 ºC 5 º N/A N/A N/A 

Barley 12 ºC 5 º N/A N/A N/A 
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3.4 Discussion and Conclusions 

The objectives for this chapter were to estimate the effect of extreme daily temperatures 

during the growing season on yields for major Canadian cereal and oilseed crops, 

including winter wheat, spring wheat, canola, durum, barley, oats, flax, and spring and 

fall rye, in Alberta, Saskatchewan and Manitoba, and to test the accuracy of out-of-

sample forecasting for three aggregate temperature variables: monthly average, GDD and 

the dummy (SR) approach. It was hypothesized that the SR approach would provide 

better out-of-sample forecasting than average temperature or GDD temperature variables. 

The SR approach was predicted to indicate that marginal impacts of exposure to different 

temperatures are not equal, in both the higher temperature ranges and the lower 

temperature ranges experienced in the Canadian Prairies.   

Model 2 (Equation 3.9b), using monthly aggregate temperature and rainfall values 

outperforms Model 1, with seasonal aggregation of temperature values. However, in 

Model 2, multicolinearity in the data resulted in unexpected signs and significance for 

many of the variables. A solution to this problem was tested by combining variables for 

June, July and August above 30 ºC; the result is Model 3. The SR approach provides 

evidence that crops in the Canadian prairies are sensitive to temperatures in the 25-30 ºC 

range in April and May, but are able to withstand temperatures of up to 35 or 36 ºC in 

June, July and August. Evidence for critical minimum temperatures is less clear, but the 

signs of the coefficients, taken from the variables that exhibit the highest significance, 

indicate that critical minimum temperatures exist. These range from 5 to 14 ºC in April 

and May and are not a factor in June, July and August. It is thought that perhaps by June, 

the plant is well established enough to withstand temporary exposure to cool 

temperatures. However, colinearity in the data in the more detailed Models 2 and 3 mean 

that interpretation of the coefficients is difficult and that in fact, Model 1 may be more 

reliable.  

It was assumed that it would be possible to analyze marginal yield responses with a small 

dataset built on the weather station as the unit of observation rather than the large dataset 

of pixels representing the area studied, as was done by SR. The hypothesis that using 

temperature observations at the station level rather than the interpolation of these 

observations across a landscape provides sufficient degrees of freedom for 

temperature/yield analysis is partially supported. For crops such as spring wheat with 

over 12,000 observations in the dataset, degrees of freedom appear not to be an issue. 
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However, the results for spring rye and winter wheat are considered potentially suspect, 

with less than 10 observations to estimate each coefficient. However, the results are 

consistent across all crops, regardless of degrees of freedom. In general, then, using 

weather stations as the unit of measurement for temperature data appears to be sufficient 

under most circumstances.  

The analysis of crop yield as a response to temperature is useful because major studies of 

climate change have often relied on average temperatures, but these have shown to be 

unsuited to capturing the marginal effects of different temperatures. This analysis has 

clearly demonstrated that the SR approach, as shown in Models 1 and 2, is superior in 

capturing these effects. The results provide empirical evidence to select appropriate 

approaches to aggregate temperature in the study of climate change and Canadian 

agricultural land use in the Prairie Provinces.  

The results of this analysis show that yield responses to various temperature ranges are 

positive for mid-range temperatures but, for each, there is a critical maximum 

temperature beyond which, marginal impacts on yield are negative for major crops in the 

Canadian Prairies. However, there is tension in the approach between the level of detail 

that can be modeled and colinearity in the data. The SR-inspired approach to aggregating 

temperature data is the approach that will be used to forecast crop yields for western 

Canada under climate change scenarios taken from the Canadian Institute for Climate 

Change. Yields will be predicted under standard climate change scenarios by changing 

the mean values of temperature and rainfall. Under these changed climatic conditions, 

predictions will be made about land use decisions in the Canadian Prairies. The results of 

the analysis have important implications for policy discussions related to biofuels and 

food production over the next decades. Chapter 4 provides an application of the DUM 

PLUS (SR, Model 1) approach to analysis of fall seeded crops and winter climate, while 

Chapter 5 provides an application of the DUM PLUS approach to land use, land use 

change and climate change for the provinces of Manitoba, Saskatchewan and Alberta to 

the year 2050.  
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Chapter 4: Estimating yield responses to winter temperatures in 

the Canadian prairies for fall-seeded crops 
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4.0 Introduction 

In Chapter 3, it was demonstrated that the SR approach to incorporating weather variables 

produced better out-of-sample forecasts than using average temperatures or growing 

degree days (GDD) for major spring-seeded crops grown in the Canadian Prairies. The 

purpose of this chapter is to apply the results of Chapter 3 to a similar problem related to 

yields of fall-seeded crops. While summer temperatures are normally used as predictors 

of yield, researchers at the University of Saskatchewan Crop Development Centre 

suggested that winter temperatures and snowfall may have a significant impact on yields 

of fall-seeded crops (pers. comm.). In the Canadian Prairies, winter wheat and fall rye are 

seeded in September or October each year and require eight to twelve weeks of growth 

with exposure to gradually falling temperatures to “harden off” sufficiently to survive the 

winter.  

Full acclimatization is typically achieved by mid-November, and survival of the seedling 

is a function of sufficiently warm soil temperature as this is the predictor of the 

temperature at the crown of the plant (Fowler 2002).  While yields of fall-seeded crops 

are a function of summer temperatures, it is thought that the yield effects of winter 

climate can be isolated. This chapter tests the hypothesis that air temperatures, in 

particular in the coldest winter months of January and February, and snow, can proxy the 

effect of soil temperature on yields for fall-seeded crops. It is possible that not only will 

snow depth will have a statistically significant relationship with yields, but the variance 

of snow depth may also exhibit a similar relationship. In this chapter, yield responses for 

two fall-seeded crops are analyzed as a function of climatic conditions in the previous 

winter.  

4.1 Objectives  

The objective of this chapter is to estimate the effects of temperatures during the winter 

season (in particular January and February) on yields of winter wheat and fall rye in the 

Canadian Prairies. These months are chosen because it is hypothesized that the depth of 

the winter pack in these months is indicative of the level of insulation provided to the 

crop over the winter months, and thus deeper snow packs could provide a proxy measure 

for warmer soil temperatures due to improved insulation. 
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The hypotheses that will be tested are:  

i. Greater snow depth in January and February are associated with higher yields 

due to reduced winterkill for fall-seeded crops. 

ii. Variability of snow depth in March and April will have a statistically 

negative effect on yields of winter wheat and fall rye. 

iii. It will be possible to discern a critical minimum temperature beyond which 

yields of winter wheat and fall rye exhibit a non-linear response. It is 

hypothesized that exposure to temperatures above this point will have a 

positive effect on yield and exposure to temperatures below this point will 

have a negative effect on yield. 

4.2 Description of the Model 

In Chapter 3, the effects of temperature and rainfall on yields for winter wheat and fall 

rye were examined. However, unlike spring-seeded plants, these two crops are planted in 

the fall of the previous year and thus begin re-sprouting on existing root systems much 

earlier compared to spring-seeded crops. While fall temperatures can affect the 

“hardening off” needed for the seedlings to survive the winter, much of the winter kill is 

potentially due to exposure to extreme cold in the two coldest months of the winter, 

which are January and February (Fowler 2002). Snow pack depth can provide insulation 

for the seedlings, and potentially mitigate the impact of extremely cold temperatures, 

which the Canadian prairies can dip below the -30 °C on a regular basis. While ideally, 

the model would include both winter climatic variables and summer variables, the size of 

the weather dataset, described below, for the winter climatic variables is much smaller 

than is available for summer climatic variables. This limits the number of coefficients that 

can be estimated. The approach outlined attempts to identify an efficient analysis that 

makes best use of the data available for the winter months while incorporating the SR 

approach to aggregating temperature.  

Chapter 3 provided empirical evidence that the Schlenker and Roberts (2006, 2008) 

(hereafter SR) approach to aggregating temperature effects produces improved out-of-

sample forecasts for yield than the average temperature or GDD approaches. However, 

the SR approach requires more data from which to calculate the weather variables and 

more observations from which to estimate the marginal effects of each increment in 
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temperature. The effect of winter weather on the yields of winter wheat and fall rye are 

examined using monthly cumulative exposure to temperature. The general form of the 

winter model is shown in Equation 4.1. The natural log of yields, y, for crop i in year t in 

district j, are a function of exposure to temperature from 0 °C to -40 °C in 1 degree 

increments for weather station k in district j in year t, district dummies D, a time trend, T 

and snow. While the TEMP, SNOW, D and T data are the same across crops, the 

marginal effect is different for each crop, which is why there is a subscript i on each of 

the coefficients but not on the variable itself. This is consistent with the model 

formulation in Chapter 3. The format of the temperature variables is cumulative from 

January to April, following Model 1 from Chapter 3, because the data indicated 

colinearity in monthly aggregations. Following the format of Chapter 3, bolded elements 

in the equation are vectors while non-bolded elements are scalars.  

                                               [4.1] 

It is assumed that the majority of winterkill occurs during the months of January and 

February, although much of the damage may occur in March and April. By May, the 

danger from extreme cold to fall-seeded crops has usually receded. Data for September 

through December were not included in the model because the crop does not generally 

enter dormancy until late in this period. Thus, the data from these months was assumed to 

be a poor predictor of winterkill.   

The yields in Equation 4.1, as in Chapter 3, are in natural log format. The vector TEMP 

contains cumulative temperature exposure to temperatures from 0 to minus 40 °C (and 

below) for the months of January to April in three degree increments. Data that can be 

included in the the SNOW vector include both the mean and variance of snow depth for 

January to April. It is hypothesized that snow depth in January and February are key to 

the winterkill rate for winter crops such as winter wheat and fall rye. As well, the 

variance of snowpack, particularly in April, is hypothesized to be an important predictor 

of yield in the subsequent summer.  Variance of snow pack is potentially an indicator of 

the consistency of the insulating effect of snow pack depth. If the variance is low, the 

snow pack was relatively consistent, providing consistent insulation to the plant. If the 

variance is high, the snow pack fluctuations infer that the insulation benefits from the 

snow pack were inconsistent. However, if in fact warmer temperatures result in lower 

winterkill, this could also mean that there were frequent warm temperatures during the 
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winter months, which might result in less damage to winter wheat and fall rye seedlings. 

The choice of the variables in the SNOW vector is discussed further below. 

4.2.1 Yield data 

Yield data are as in Chapter 3, taken from provincial crop insurance organizations in 

Alberta and Manitoba and from the Government of Saskatchewan. As with the analysis 

discussed in Chapter 3, yield data were available from 1965 to 2007 for Saskatchewan 

and Manitoba and from 1978 to 2007 for Alberta. Only data from 1978 and later were 

selected for all three provinces. Yields for fall rye and winter wheat are reported in kg/ha 

at the district or rural municipality level. Yields for these fall-seeded crops are only 

reported for those districts in which they are grown, and intersected with available 

weather data using GIS. Thus, appropriate coverage of weather stations is not an issue in 

the analysis as only those stations with available and relatively complete data were used.  

When weather conditions are sufficiently adverse, winterkill for these crops is 100 

percent, and the fields are re-sown in the spring. This means that the yield data do not 

reflect the conditions in which full winterkill occurs because there is no way in the 

dataset to identify years where fall-seeded crops fail in the dataset; the dataset will not 

reflect a relationship between very poor weather and extremely low yields (for example, 

when there is complete winterkill).  

4.2.2 Temperature data 

Minimum and maximum temperatures and snow depth data are obtained from the 

Environment Canada database of weather stations, as described in Chapter 3. Sufficient 

winter data for the years 1978 to 2007 are available for 72 stations in Manitoba, 

compared to 199 for summer data. In Alberta, the number of stations with sufficient data 

for the summer analysis is 451, but there are 126 with sufficient data in the winter, which 

is about 10 % of the total operational stations during the whole period. Saskatchewan has 

approximately 40 fewer stations with sufficient data in the winter as compared to the 

summer. Table 4.1 summarizes the availability of weather station data. The smaller 

number of stations in the winter weather dataset reflects the smaller geographic region in 

which the winter crops are grown as well as the smaller number of weathers stations that 

are operating over the winter for the period of 1978 to 2007. Thus, as with Chapter 3, the 

base unit of each observation is the weather station k located in district j with weather 

observations in year t, regressed on yield for crop i.  
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Table 4.1 Climate Stations in Western Canada: Totals from 1978 to 2007 

 

Total 

Stations 

1978-2007 

Stations with 

Winter Data 

1978-2007 

Manitoba 499 72 (14%) 

Saskatchewan 606 154 (25%) 

Alberta 1242 126 (10%) 

 

Missing temperature data are treated as described in Chapter 3, but missing snow depth 

data are assumed to be the same as the day before and day after. For up to 10 days of 

missing data, values are interpolated from the values taken from the day before and day 

after the missing data. This is based on the assumption that if there were 70 cm of snow 

on Day 1 and on Day 8, there were likely 70 cm of snow for all the days between. Where 

more than 10 days of data are missing, or where no data are available for the first or last 

day from which to interpolate values, the data for that year and that station are not 

included in the final dataset. There were many observations of winter weather data where 

full months of data were missing in each year. An alternate approach to interpolating 

missing data could, therefore, increase the potential size of the dataset for analysis.  

Minimum and maximum temperature data are used to calculate the number of hours of 

exposure to temperatures from -1 to -40 °C, using the same method as described in 

Chapter 3. To prevent additive colinearity in the data, temperatures from -0.9 °C and 

above are excluded. Condition indices were generated that diagnosed the presence of 

multicolinearity in the data between temperature variables from January to April. 

Combinations of temperature data are tested to reduce the multicolinearity, and the 

resulting variables contain three degree increments in temperature for the winter season, 

defined as January 1 to April 30. The TEMP variables are, therefore, organized in three 

degree increments, from -1 to -3 °C, which incorporates all temperatures from -1.0 

degrees to -3.9 °C, and from -4 to -6.9 °C, down to -37.0 to -39.9 °C. All temperatures 

below -40 °C were treated as a single variable. A total of 16 temperature variables are 

therefore used in the analysis.  
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Figure 4.1a: Average number of hours in each 1 degree increment from 1978 to 2007 

for winter wheat
7
 

 

Figure 4.1b: Average number of hours in each 1 degree increment from 1978 to 

2007 for fall rye 

 

                                                      
7
 DEGMX = the number of hours between X ºC and X.9 ºC where X = -1 to -50. 
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Figure 4.1c: Minimum and maximum observations for winter wheat; number of 

hours at each 1 degree increment of temperature from -1 to -50 ºC from January to 

April 1978 to 2007 

 

 

Figure 4.1d: Minimum and maximum observations for fall rye; number of hours at 

each 1 degree increment of temperature from -1 to -50 ºC from January to April 

1978 to 2007 
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Figures 4.1a through 4.1b show the frequency of weather observations in the dataset for 

winter wheat and fall rye. The average number of hours observed in each single degree 

increment of temperature is consistent between the two crops, with about 125 – 150 hours 

on average of time between -1 and -0 °C. The average number of hours spent between -50 

and -49 °C is close to zero.   

Figures 4.1c and 4.1d show the minimum and maximum observed number of hours at 

each temperature for each day from January to March from 1978 to 2007. Figure 4.1c 

shows that the number of hours spent at -2 ºC ranged from a minimum of 50 hours to a 

maximum of 200 hours in the dataset for winter wheat. Figure 4.1d shows that for fall 

rye, the number of hours spent at -2 ºC ranged from around 30 hours up to over 200 

hours. It is also shown that in each year the temperature reached -16 °C at least once, as 

the minimum number of hours is greater than 0. However, for temperatures below -16 ºC 

are experienced as the lowest temperature in the dataset, there are years in which the 

temperature does not dip this low. The minimum number of hours spent at these 

temperatures is 0. The maximum number of hours spent at -50 ºC is greater than 0, 

indicating that at least once in the time period, temperatures fell this low. As with the 

summer model in Chapter 3, sufficient observations of colder temperatures are therefore 

assumed to allow analysis of the marginal effects on crop yields.  

4.2.3 Snow depth and variance data 

The SNOW vector described in Equation 4.1 could contain either snow depth, snow 

variance, or both variables. One of the variables available in the Environment Canada 

database is daily snow depth in cm. From these data, the average and variance of snow 

depth are calculated for each weather station k. Table 4.2 provides summary statistics for 

winter snow depth, showing that the mean of average snow depth in January and 

February is 39 cm in regions where winter wheat is grown and 39.6 in regions where fall 

rye is grown. Daily snow depth data were used to calculate average monthly snow depth 

such that the average snow depth for station k for month m in year t,                   
   , is the 

sum of daily snow depth divided by the number of days in the month, as shown in 

Equation 4.2. The average of this value found in the data used in the analysis from 1978 

to 2007 is shown in Table 4.2 and averages from 2 -3 cm in April to approximately 20.5 

cm in February.  

                    
    

               

 
     [4.2] 
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Figures 4.2a and 4.2b show the frequency of observed monthly average snow depth 

variables. In each month, for every weather station in the dataset, snow depth is most 

commonly between 0 and 10 cm. There are four observations of snow depth up to 1 m in 

depth in February and March in the dataset for winter wheat, but not for fall rye.  The 

mean values shown in Table 4.2 were used to calculate variance of snow depth in each 

month. The frequency of variance observations are shown in Figures 4.2c and 4.2d.  

The summaries indicate that February has the most snow on average throughout the 

region, with lowest variance, and therefore the most stable snow pack depth. This is 

consistent with generally consistently cold temperatures throughout the region for the 

month of February. April has generally less snow and less variance in snow pack depth 

because in many years by mid-April the snow pack has disappeared. March, on the other 

hand, may be cold and snowy, and may be warm with melting snow packs. It can also 

fluctuate back and forth between spring and winter conditions. Thus, the relatively high 

variance of snow depth in March with the relatively low average snow pack depth 

calculated from the dataset is consistent with observed patterns.  

Table 4.2: Average observation of average snow depth by month (in cm) in the 

datasets from 1978 to 2007  

 
JAN FEB MAR APR 

 

WINTER 

WHEAT 18.6 20.4 16.0 2.6 

 

FALL RYE 

 18.6 20.5 15.6 3.1 
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Figure 4.2a: Frequency of observed average snow depth by month for winter wheat in cm from 1978 to 2007, all weather 

stations 
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Figure 4.2b: Frequency observed of average snow depth by month for fall rye in cm from 1978 to 2007, all weather stations 
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Figure 4.2c: Frequency of observed variance of snow depth by month for winter wheat in cm from 1978 to 2007, all 

weather stations 
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Figure 4.2d: Frequency of observed variance of snow depth by month for fall rye in cm from 1978 to 2007, all weather 

stations 
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4.2.4 Description of the analysis 

The combination of available yield data and weather data for the winter period provides a 

total of 718 observations for the winter wheat analysis and 1,504 for fall rye. This reflects 

the smaller geographic area in which winter wheat is found compared to fall rye in the 

Canadian Prairies and the more limited geographical area in which these crops are grown 

in general. The analysis for winter wheat using summer climatic data contained 1,934 

observations, while the count for fall rye was 4,667. Overall the size of the datasets has 

decreased by 62 percent for winter wheat and by 67 percent for fall rye.   

Variations on the model using temperature data from January and February, or January to 

April are tested, aggregated seasonally (as with Model 1 from Chapter 3) or monthly (as 

with Model 2 from Chapter 3). Colinearity in the data dictated the seasonal aggregation in 

3 °C increments, as discussed above.  

Snow depth and snow variability are highly colinear between January and April. 

Therefore, only one of these variables could be used in the analysis. The use of January 

and February snow data is tested against the use of snow data for January to April or 

January and February and April. A model was run using snow depth and another with 

snow variance. Comparison of the adjusted R
2
 and other measures of model performance 

(such as the maximum of the likelihood function) indicates that a model with snow 

variance has improved statistical significance than a model with snow depth. Therefore, 

the model was run as shown in Equation 4.3 – this equation is identical to the general 

form of the model shown in Equation 4.1 above with the exception of the SNOW variable 

which has now been defined further as the variance of snow depth, SVAR, for each 

month m from January to April in year t at station k.  

                                               [4.3] 

Potentially, an interactive variable between snow depth and colder temperatures would 

provide more insights into the effect being picked up by the model. However, models 

were tested in which interactions proved to be less informative than the models that are 

reported here. However, these variables in combination with explanatory variables not 

used here might provide further insights. 
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4.3 Results of the Winter Model for Winter Wheat and Fall Rye 

The following sections provide an overview of the results of the models run for winter 

temperature data as discussed above. The next section provides a review of the winter 

wheat results, and the following section provides an overview of the fall rye results.  

4.3.1 Winter Wheat 

The model run for winter wheat is shown in Equation 4.2, TEMP contains cumulative 

exposure to temperatures from 0 to minus 40 ºC for January through April, in three 

degree increments. SVAR contains snow depth variance for January through April. D 

contains dummies for each rural municipality/county. 

The coefficients for Equation 4.3, found in Appendix F
8
, on snow depth variance for 

January and March are positive, while the coefficients are negative for February and 

April.  Only January and February coefficients are significant at least at a 10% level of 

significance.  As well, the coefficients are smaller by a factor of 10 for March and April, 

suggesting that snow depth variance in January and February are more important than late 

winter snow depth variance. The temperature coefficients are negative and significant at 

warmer temperatures. There are more coefficients that are positive and significant at 

colder temperatures.  

This suggests that the colder the air temperature is during the winter months, the lower 

the winterkill and the higher the yield the following growing season for winter wheat. 

This is the opposite of the hypothesized result that exposure to cooler temperatures would 

result in a non-linear effect, with yields decreasing as temperatures fall. However, the 

results indicate that, if anything, exposure to temperatures below the critical level results 

in increasing yields rather than decreasing yields around ever cooler temperatures. The 

tipping point appears to be between –22 and –28 ºC, based on the significance and sign of 

the coefficients for these variables.  The adjusted R
2
 for this model is 0.457. 

4.3.2 Fall Rye 

The fall rye analysis proceeds exactly as for the winter wheat analysis, following 

Equation 4.3. The adjusted R
2
 for the fall rye model is 0.247, indicating that winter 

weather explains less of the variability of yield for fall rye than for winter wheat. Snow 

variance is shown to have a positive impact on yield except in April, where the 

coefficient is negative and significant at 1 percent. 

                                                      
8 Appendix F does not include the dummy variable coefficients for each district. 



80 

 

There is no discernable pattern in the coefficients for temperature, as shown in Appendix 

F. In the colder ranges measured, coefficients are either positive or negative, and some of 

both are significant at 10 percent or lower. In the warmer ranges, some coefficients are 

positive and some are negative but only the negative ones are significant at 10 percent or 

lower. This suggests the same effect found for winter wheat, where a critical minimum 

temperature somewhere around -25 to -28 ºC, exists. Exposure to temperatures above this 

critical minimum during the winter months would then decrease yields, and exposure to 

temperatures below this critical minimum would have no effect or increase yields.  

4.4 Discussion and conclusions 

The analysis is undertaken because it was hypothesized that snow depth and air 

temperature in the coldest months of the Canadian Prairie winter could serve as a proxy 

for soil temperature. Soil temperature is the known variable that predicts winter kill for 

fall-seeded crops. There are several elements interacting here; soil temperature predicts 

winter kill but this does not necessarily translate into soil temperatures functioning as an 

accurate predictor of yields.  

Three hypotheses were tested in this chapter. The first was that greater snow depth in 

January and February would produce higher yields for winter wheat and fall rye in the 

subsequent growing season. Testing various model specifications resulted in snow depth 

being rejected as a variable as it was not significant on its own and because colinearity 

with snow variance was found. Thus, this hypothesis is not supported by the results of the 

analysis.  

It was also hypothesized that variability of snow depth in March and April would have a 

statistically significant impact on yields of winter wheat and fall rye. Variability of snow 

depth is not statistically important for either crop in March and strongly significant (at 

1% or lower) for fall rye in April. Thus, the results indicate that variability of snow pack 

in the late spring may have an impact on rye yields. This is likely directly related to the 

length of the growing season. Where the snow pack has melted by April, the variance is 0 

and strongly correlated with an early growing season and higher yields. Where the early 

spring is cool, there can be significant snow pack on the fields until late April or early 

May. In this case, the variance of snow pack depth would also be low, but correlated with 

a late growing season and lower yields.  
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The hypothesis that fall rye and winter wheat will exhibit a non-linear response to a 

critical minimum winter temperature is partially supported, but in an unexpected way. 

Winter temperature appears to be positively correlated with yield of fall rye and winter 

wheat, provided that temperatures stay below a critical minimum of approximately minus 

31 ºC; on average, crops spend between 25 and 35 hours in these temperature ranges each 

year. This conclusion is better supported by the winter wheat results than by the fall rye 

results. It is reasonable to assume that winter kill and yield at the end of the growing 

season are related but somehow the link between soil temperature and air temperature and 

snow pack is less clear.  

When winter kill is extremely high due to adverse conditions over the winter, the fields 

are re-sown in the spring with alternate crops that will mature before the end of the 

growing season. Data for fall-seeded crops that fail completely are not captured in the 

dataset; therefore it is difficult to know to what extent the yield dataset over-states yields 

in any given year. 

Climate data availability in the winter months is lower from that of the summer months, 

reducing degrees of freedom in the analysis. Aggregating over three degree increments 

here, and using only one snow variable over five months, plus the constant, time trend 

and district dummy variables, a total of 154 coefficients were estimated for the winter 

wheat model and 157 for rye. The winter wheat dataset has 718 observations and fall rye 

1,504; both fail the rule of thumb test of 10 observations per coefficient discussed in 

Chapter 3, although fall rye is close. While this rule of thumb cannot be used to 

determine whether or not there is sufficient data, it does encourage the question to be 

asked. Thus, it is possible that asymptotic unbiasedness of the estimators was not 

achieved. This can only be tested by repeating the analysis with a larger dataset.  

This chapter provides an opportunity to use temperature in an empirically sound way to 

test a theory about the way that fall-seeded crops respond to climate. Researchers at the 

University of Saskatchewan are attempting to increase cold tolerance in winter wheat, 

arguing that such fall-seeded crops are more environmentally beneficial than spring 

seeded crops, require reduced pesticide applications, and provide improved duck and 

other wildlife habitat in the spring. Introducing increased cold tolerance traits for fall-

seeded crops can provide an opportunity for these crops to be grown in a much wider 

range. Currently, winter wheat is grown most often in southern Saskatchewan, Alberta 
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and Manitoba. The model tested here provides limited support for the hypothesis that 

winter temperatures in the coldest months of the year, along with snow depth and 

variance of snow depth, can serve as predictors of the subsequent year’s yields. However, 

it would seem that either the specification used here, or the small size of the data set, is 

insufficient to provide clear answers.  

A different model specification, one which incorporates temperatures and snow fall data 

from September through December, as well as temperature and rainfall data from the 

subsequent growing season, could be tested for improved performance. However, a 

model that incorporates these variables would (at least) double the number of coefficients 

and many weather stations (in particular in Alberta) only operate in the summer. The 

number of weather stations with sufficient data to estimate yield as a function of both 

winter and summer climate variables is more limited, potentially, than those available for 

winter alone. Incorporating observations from 1956 to 1977 from Saskatchewan and 

Manitoba would also increase the degrees of freedom available for the estimate. 

However, it may be that the approach outlined in this chapter is impractical given the 

quantity of data available from which to run the analysis. If sufficient data are identified, 

a model that incorporates fall weather as well as winter weather may enable a more 

robust result to be obtained.  
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Chapter 5: Agricultural Land Use Change in Western Canada 

with Climate Change 
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5.0 Introduction 

One of the objectives specified in Chapter 1 is to estimate the impacts of climate change 

on agricultural land use in the Canadian Prairies. Chapter 2 provided an overview of the 

literature on land use with respect to climate change. Notably, economic impacts are 

commonly measured with Ricardian models, but, as discussed in Chapter 2, the 

robustness of such models has been debated. Climate factors are often confounded with 

soil characteristics and other physical characteristics, resulting in confounding variables. 

Also, the omitted variable bias is difficult to quantify (Deschênes and Greenstone 2007).  

A model that will allow the estimation of agricultural land use changes from shifts in 

climate should use spatial data, provide the ability to predict future yields and be able to 

accommodate both supply side impacts as well as demand side changes that affect price. 

Such a model would allow the estimation of total welfare impacts of climate change in 

the Canadian Prairies, disaggregated by region or district, as well as provide some 

insights into shifts in spatial patterns of agricultural land use allocation. The purpose of 

this chapter is to build a model to analyze spatial trends in land use patterns for 

agriculture under various climatic conditions, using highly disaggregated spatial data.   

Chapter 3 provided an estimate of the impact of temperatures during the growing season 

on crop yields for nine major Canadian crops, demonstrating that calculating cumulative 

exposure to temperature at different heat levels provides improved yield forecasting over 

average temperature or growing degree day approaches. Having an improved estimate of 

the relationship between yields and temperature is a launching point for estimating the 

impacts of changes in the economic and ecological environment in which the crops are 

grown. One anticipated shift is a change in the distribution of temperature due to climate 

change, with increased average temperature, accompanied by changes in the distribution 

of rainfall across western Canada.  

Schlenker and Roberts (2008) make predictions of the impact of climate change for 

American agricultural production. However, they do so under the assumptions that 

production patterns are stable and that aggregate impacts are scaled up from changes in 

yield without any adaptive behaviour on the part of farmers. Implicitly, no substitution 

between crops occurs. The purpose of this chapter is to address the question of spatial 

shifts in crop production under climate change, while incorporating crop substitution. 

Section 5.1 presents a summary of the objectives of this chapter, and Sections 5.2 and 5.3 
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provide an overview of the model developed to examine land use change in the Canadian 

Prairies. The remainder of the chapter is dedicated to exploring the results of the analysis.  

5.1 Objectives and hypotheses 

The objectives of this chapter are: 

i. To incorporate improved yield estimates into a study of land use allocation 

between competing agricultural uses in which both the production function 

and weather inputs are unchanged from the historical dataset. This scenario 

constitutes a short-run outcome, which is used to validate the model against 

current agricultural land use data. 

ii. To estimate agricultural land use allocation under an assumption of climate 

change occurring, as modeled by changes in average daily temperatures.  

iii. To demonstrate a linear programming approach that can capture the essential 

economic impacts of climate change on agricultural land use allocations in 

the Canadian Prairies. 

The hypotheses that will be tested during the land use change analysis phase of the 

project are: 

i. Climate change will induce an increase in the acreage allocated to drought-

tolerant crops. 

ii. Substitution towards crops that produce higher yields and away from crops 

with lower yields will occur as growing conditions change. 

iii. The spatial distribution of crops will respond to climate change, with heat 

tolerant crops being found further north as temperatures increases. 

iv. The spatial distribution of crops will respond to changes in the distribution of 

rainfall patterns. 
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5.2 Model Description 

As discussed in Chapter 2, there are several approaches to land use modeling that can be 

employed to examine the economic impacts of climate change. The most common 

modeling approach is the Ricardian, or hedonic model. However, as noted in Chapter 2, 

these models are sensitive to parameter values and therefore may not be sufficiently 

robust. Hedonic models commonly assume spatial homogeneity, which can lead to biased 

estimators (Deschênes and Greenstone 2007).  A second commonly used option is a 

simulation model; often a math programming model that incorporates behavioural 

choices as well as economic and physiological restrictions. The third main option is to 

use specialized simulation software such as CERES that simulates yields for specific 

crops. CERES, however, cannot be used to simulate economic behaviour. In Chapter 2, a 

comparison of crop simulation models and production functions with average 

temperatures as explanatory variables for yield predictions showed that these approaches 

are statistically equal. In Chapter 3 it was shown that the use of the modified GDD as first 

shown by Schlenker and Roberts (2006) (hereafter termed the SR approach) provides 

improved yield predictions over average temperatures. Thus, crop simulation models such 

as CERES are not ideal for simulating the economic impact of climate change.  

A model that incorporates spatial heterogeneity is appropriate for the study of weather 

effects as these effects will differ between the eastern and western regions of the Prairies, 

from the north to the south, and from the south-western region on Saskatchewan (which 

is particularly hot and dry) to the rest of the Prairies. The model used here allows for the 

use of the SR approach to estimate yield predictions and a dynamic spatial linear 

programming (LP) model to simulate supply responses to climate change. This approach 

provides the ability to model both physiological/agronomic constraints as well as 

economic behavioural constraints. In a single period, the LP model estimates yield under 

specified climate conditions, and maximizes gross margins. The model is run for each 

rural municipality/county from 2005 to 2010 using simulated weather draws from the 

base period. The model is then run over 40 years from 2011 to 2050 for two climate 

change scenarios as well as once with no change in climate, with dynamic links to 

enforce shifting restrictions on total hectares of land allocated to each crop within each 

district.  
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Figure 5.1: Model Overview, Static Elements 
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These are (1) a base scenario with no climate change, (2) a low emissions climate change 

scenario (B1) and (3) a high emissions climate change scenario (A1B). The low 

emissions scenario produces emissions that are higher than current, but the lowest 

emissions forecasted by climate specialists under assumptions of significant mitigative 

behaviours across the global economy. The high emissions scenario forecasts emissions 

based on a “business as usual” approach in which few if any mitigative behaviours are 

adopted. The LP model includes dynamic links to impose behavioural restrictions year-

over-year. These restrictions provide proxies for real-world land use decisions based on 

crop rotations. Increased green house gas emissions of carbon dioxide (for example) 

result in increased temperatures and changes to rainfall patterns as a result of changes to 

the air and ocean currents globally. The B1 scenario predicts a smaller increase in 

temperatures and the A1B scenario predicts a larger increase in temperatures globally. 

The localized effects of these shifts for both temperature and rainfall are outlined in 

Appendix J, as the global averages obscure local effects that may differ from the global 

average in both size and direction. This is to say that local temperatures and rainfall may 

either rise or fall, depending on the location relative to shifts in air currents, for example.  

Figure 5.1 provides an overview of a single period of the model. Historical spatial 

weather data are used to calculate average and variance data for each variable for each 

pixel in the study region. The model optimizes gross margin for each cell subject to 

restrictions that are applied at the district level. The 2006 Census of Agriculture is used to 

validate the model, as is discussed further below. The 2006 Census dictates initial land 

use decisions and creates the base years for the path-dependent choices that occur 

subsequently. Changes to average weather are taken from climate change scenarios and 

new land use impacts are estimated.  

5.2.1 Estimating Yield: Simulating weather conditions 

The purpose of this section is to outline the process by which daily temperature and 

precipitation data are used to generate yield estimates for each of the crops modeled. The 

process begins with historical data taken from weather stations throughout the region. 

These are transformed into a spatial dataset of maps that contain information on the 

minimum and maximum temperatures and on rainfall for each day in the growing season. 

These data are used to calculate an average value for each variable, and a variance, in the 

cells or “rasters” on the map, each of which represents a specific geographical area. Using 

MatLab’s tool, tests of best-fit distributions are performed because draws on the 
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Figure 5.2: All weather stations in the Canadian Prairies operational between 1961 and 1990.  
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distribution will be used in the linear programming model to simulate weather conditions. 

Independent draws on the distribution of weather in each cell result in widely diverging 

draws between adjacent cells; these draws are adjusted using a Cholesky decomposition
9
 

of a correlation matrix. Because the number of cells in the final grid was too large to 

follow the adjustment procedure for all cells simultaneously, draws are instead adjusted 

between cells grouped according to the eco-regions
10

 in which they are located. These 

adjusted draws are used to calculate the number of hours of exposure to temperatures at 

different ranges, which in turn are used to generate yield estimates for each crop for each 

year of the model by following the methods of Chapter 3. However, none of the models 

developed there are used here.  

The first step of the process described above is to generate maps for the three climate 

variables (minimum and maximum temperature, and rainfall) for the study area. Weather 

stations collect weather data across the Canadian Prairies. These observations become 

part of a database, managed by Environment Canada, of all empirically observed weather.  

Weather stations may operate for a portion of the year only (most commonly the summer 

months) and very few have been in operation for the full base period. Minimum and 

maximum temperature and daily rainfall data were obtained for 1961 to 1990 for all 

weather stations in the provinces of Alberta, Saskatchewan and Manitoba because these 

are the base years used in the climate change model from which to compare shifts in 

future climate.   

Each weather station across the study region was plotted as a point datum using ArcView 

GIS, as shown in Figure 5.2. Weather data from 1961 to 1990 were uploaded to the 

mapping software where daily weather observations were joined to the weather station 

from which it was originally captured. For each day in the growing season, defined as 

April 15 to August 31, plus one day at either end (139+2 =141 days
11

), weather stations 

with no maximum temperature data for that day for were filtered out. Of the remaining 

weather stations, each contains a data point that indicates the maximum temperature for 

that day at that site. 

                                                      
9
 The Cholesky decomposition assumes a normal distribution; this is discussed further below. 

10
 Eco-regions are regions characterized by common vegetation and soils (reference) and represent 

the realization of climate. As such they provide a proxy for environmental variation across the 

study region.  
11

 The data from the day before and the day after the growing season are required for Equations 

3.5a through 3.5c as discussed in Chapter 3.  
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One of the standard options in ArcView for interpolation called kriging is used to 

generate maps that show estimated maximum temperature values across the study area. 

Kriging is an algorithm to estimate the maximum temperatures for all the physical spaces 

between the point data observations. The kriging process assumes a trend pattern such 

that if, in a given region, temperatures increase as one moves across the landscape in a 

particular direction, the highest temperature estimated in “hot spots” can exceed the 

highest temperature observed. The same can occur for downward trends and the lowest 

estimated values in “cold spots” can be lower than the lowest observed temperature. 

The result from the kriging process is a raster map, or map of cells, each of which 

represents a specific location in the study area. Each cell represents 10 km
2
, and the 

matrix of cells, in rows and columns, represents the geographical region covered by the 

interpolation process. As noted in Chapter 2, spatial modeling should take place on the 

same scale as the phenomenon being modeled. Weather could be modeled at a smaller 

scale than shown here but this scale was chosen as the smallest practical size that allowed 

the model to be run with relatively manageable processing times. The resulting data can 

be exported in ASCII file format and manipulated as a text data file. The process was 

repeated for each day of the growing season for each year in the base period from 1961 to 

1990. It was repeated again for minimum temperature observations starting with April 14, 

1961 and ending with September 1, 1990. 

A similar procedure was used for rainfall observations. The process proceeded as 

described for minimum and maximum temperatures but a different interpolation 

algorithm was used. Using the kriging interpolation method for rainfall values resulted in 

negative rainfall values in certain areas. Instead of kriging, an algorithm called natural 

neighbour was used. The natural neighbour algorithm assumes that the trends across the 

landscape are bounded by the highest and lowest observed data points. This results in 

rainfall estimates that are bounded by zero (no rainfall) and the highest recorded rainfall 

for that day.   

The interpolation processes described above produced 4,230 (=141 days x 30 years) maps 

for each climate variable, or 12,690 maps (=4,230 maps x 3 variables) in total. The 

extent, or geographical area, covered by each map varies because the subset of weather 

stations with valid data for each day is slightly different. As well, the algorithm used to 

generate the temperature maps produced maps with different extents than those used for 
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rainfall. The output maps for rainfall are still made up of cells that represent the same 10 

km
2
 areas of land but these output maps do not cover the same geographical extent as the 

kriging process. Kriging interpolation produces rectangular matrices and natural 

neighbour interpolation does not, as an artifact of the specifics of the different algorithms. 

The next stage of the process is to harmonize the extent of each of the maps and to 

identify non-agricultural land so that it can be excluded from the economic analysis.  

The extent of the map for which a full set of climate variables was obtained was 

determined to contain 156 columns and 122 rows of cells. From this extent, non-

agricultural land was identified. Specifically, hydrological and municipal maps were used 

to identify cells that are mostly water or urban developments. National parks and First 

Nations reservations were also identified and coded as non-agricultural land. While First 

Nations reservations may contain a significant amount of agricultural land, data for these 

areas were not available and they are, therefore, not included in the analysis. 

Originally, data from weather stations in British Columbia, Ontario and the North West 

Territories were not obtained which meant that observations of climate variables outside 

the geographic areas of Alberta, Manitoba and Saskatchewan could not be used in the 

interpolation process. As an artifact of this decision, the weather maps that were 

generated truncate the northern portions of Manitoba, Saskatchewan and Alberta, and 

some of the mountain regions in the west of Alberta. In Figure 5.3, the regions north of 

Lake Winnipeg in Manitoba, north of Prince Albert National Park in Saskatchewan, and 

the north-east corner of Alberta can be identified as Canadian Shield. These are the areas 

that are characterized by many thousands of lakes, both small and large, which are of no 

particular interest in this examination of agricultural land use.  

In Alberta, a land zone rule is in place that designates land for forestry and agriculture. 

The “green” zone is land in the north allocated primarily to forestry, although oil sands 

production and other industrial activities take place there. The “white” zone is allocated 

primarily to agricultural production. Some of the “white zone” is excluded from the study 

area by the truncation described above, and some of the “green zone” is included.  The 

amount of agricultural activity on the land base studied was defined by the amount of 

crop land in each district according to the 2006 Census of Agriculture, rather than by 

these government-imposed zones. Crop land is minimal in the green zone so the impact 

on the final extent is minimal. There is an exception in the region around Grande Prairie, 
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where some crop land was truncated and this should be taken into consideration when 

reviewing results for that region. Manitoba and Saskatchewan do not have similar zoning 

regulations in place, and have no agricultural land in their northern regions as they consist 

largely of Canadian Shield.  

The map shown in Figure 5.3 consists of a grid of 19,032 cells in 156 columns and 122 

rows. Each cell contains a value of “0” for the parcels of land that have no agricultural 

land and a “1” for those that do. In Figure 5.3, the 0s have no colour and the 1s are 

shaded. In order to harmonize the extents of each of the 12,690 climate variable maps that 

were generated, each of the interpolated daily weather maps was multiplied by the map 

shown in Figure 5.3. This is a mathematical operation option in ArcView which allows 

mathematical manipulation of the values in the individual cells using the various maps as 

variables. Thus, the maps function as large matrices of data that can be manipulated as a 

unit. Output maps that result from these mathematical operations have an extent that 

matches the input map with the smallest extent; the map shown in Figure 5.3 contains the 

extent that contains values for all the climate variables, which is equal to or smaller than 

any of the individual maps. The series of 12,690 climate variable maps with different 

extents were, therefore, transformed into a series of 12,690 maps with identical extents. 

Figure 5.4 shows one example of an output map, showing the maximum temperature 

recorded on July 15, 1975. The highest temperatures of the day were between 32 and 36 

°C, in the southern regions of Saskatchewan and Manitoba.  

Of the 19,032 cells in this final extent, 7,727 consist of agricultural land that is of interest 

in the analysis. These cells contain daily temperature or rainfall values; the rest contain 

zeros. All of the cells were carried forward in the analysis to preserve the placement of 

each cell in the extent. This means that once the linear programming analysis is complete, 

the results can be accurately mapped back onto the landscape from which the climate 

values were generated because the dataset generated preserves the exact order in which 

the cells are found in the extent. From this set of climate variable maps, average values 

were calculated using 30 years of data from 1961 to 1990 for each variable for each day. 

This results in 423 (=141 days x 3 variables) maps with average values for the base 

period. Using these mean values, base period variances are also calculated, resulting in 

another 423 maps.  
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Figure 5.3: Area used in the simulation model 
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Figure 5.4: Example of maximum temperature (°C) map generated by interpolation of weather station observations; Data 

here is from July 15, 1975 
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Ultimately, draws on the distribution of the climate values will be used to generate daily 

minimum and maximum temperature and rainfall estimates. In order to take these draws, 

the best-fit distribution for the variables must be determined. While it was impractical to 

test for best fit distributions across 141 days of the growing season and three variables 

and all 19,032 cells, a selection of cells were tested. Cells were randomly selected from 

early, mid and late season and from north, mid-range and southern regions for each 

variable. This process was repeated for a year taken from the beginning of the base 

period, the middle and again towards the end of the base period. Normal distributions 

were the best fit in the highest proportion of the temperature maps (both minimum and 

maximum), and second best fit in the majority of the rest. . Because normal distributions 

have infinite tails, there exists the possiblity of extremely high or extremely low 

temperature draws. However, since the marginal effects of all temperatures of 35 °C and 

above are assumed to be homogeneous, it is assumed that these draws would not affect 

the analysis in any significant way. As well, correlation for spatial heterogeneity 

(described below) will adjust these draws such that the extremes are eliminated. Thus, for 

each cell (r) in a temperature map, a normal distribution around the calculated mean (     

and variance (  ) is assumed. For rainfall, a lognormal distribution was the best-fit 

distribution identified by the same sampling procedure.  

5.2.2 Estimating Yield: Spatial and Temporal Correlation 

Independent draws, taken from each cell for temperature and rainfall, are not correlated, 

but the observed values are highly correlated spatially. Draws of a maximum temperature 

of 8 °C cannot be observed in one cell and 32 °C in a contiguous cell on a land-base that 

is no further than 10 km away, but independent draws would allow this type of pattern to 

emerge. Likewise, rainfall should be correlated with maximum temperatures and with 

minimum temperatures. The procedure below outlines the process used to obtain 

correlation-adjusted draws for each of the three variables for each day, which will prevent 

unrealistically different draws from occurring. Temporal correlation would capture the 

effect of several hot days in a row. However, given the approach used here the 

temperature data are aggregated across the season and so it is not possible to capture the 

effect of this type of weather pattern. Therefore, no attempt to address temporal 

correlation was made.  The process described below for spatial correlation could have 

been applied to temporal correlation. However, doing so would have reduced the 

variation in the weather patterns such that extreme weather draws would be much less 
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likely. Given that these are the phenomena that this study intended to examine from the 

outset, correlating temporal draws would have been unproductive. 

The process begins with correlation of each of the three variables in a single cell. This is 

followed by addressing spatial correlation for each variable between cells. The most 

commonly applied solution to adjusting independent draws for correlation is the 

Cholesky decomposition method. This is a known solution to transform independent 

standard normal draws into correlated standard normal draws. In a typical example of the 

application of the Cholesky decomposition, Wang (2008) uses the decomposition method 

in a Monte Carlo simulation by correlating stochastic draws to simulate options prices 

responding to similar market shocks. The essence of the method is to construct an upper 

triangular matrix, A,  such that C = A
T
A where C is the correlation matrix and A can be 

defined as the “square root” of C (Kennedy 2003, 545).  The Cholesky decomposition is 

an algorithm for calculating A from any positive definite matrix, and is a standard 

function in most statistical software packages (including MatLab). Equation 5.1 shows 

the independent draw (    is equal to the average (    plus an error term. Independent 

draws in the vector    multiplied by A produces correlated draws (  ) as shown in 

Equation 5.2 where r and q are different cells in the district. 

                      [5.1] 

                       [5.2] 

The first step is to measure the correlation between minimum temperature, maximum 

temperature and rainfall, and adjust the independent draws for correlation. The second 

step is to take independent draws for the maximum temperature values, and correlate 

those independent draws and then repeat the process for minimum temperature draws and 

for rainfall draws. First, pair-wise correlation coefficients were obtained between average 

variable values for maximum temperature, minimum temperature and rainfall from 1961 

to 1990 for a single cell r, defined below, such that ρr,q is the 3 x 3 spatial correlation 

matrix between                       where t = 1961 … 1990   

The definition of spatial correlation can vary. Anselin (1988) provides various definitions 

for spatial relationships for contiguous cells, which could include those above, below, 

right and left (rook pattern) or including the cells it shares corners with diagonally (queen 

pattern). It is possible to define which cells are related and to calculate correlations and 
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adjusted draws for each group. Adjusted draws for a given cell could be re-adjusted as 

many as four times (rook pattern) as an adjustment is made for each of the four cells 

against which it abuts. It is better to make all the adjustments simultaneously to reduce 

computation time. Using the Cholesky decomposition approach, it is theoretically 

possible to adjust every independent draw for a given day with every other independent 

draw for temperature in the entire dataset simultaneously to produce a dataset of 

correlated draws. However, an attempt to perform this operation in MatLab resulted in 

extremely large correlation matrices. Larger matrices are less likely to be positive definite 

as there is no theoretical reason why a correlation matrix must fit this criteria. As well, 

MatLab has restrictions on the size of the matrices that can be used for calculations. A 

matrix that could adjust an entire day’s worth of spatial correlations, capturing all 

correlated effects was, in the end, too large for the software to handle. It is unknown if 

another software package might alleviate this constraint.  

Another option that was explored was to calculate draws for contiguous cells pair-wise, 

one pair at a time. Once the correlations for two contiguous cells had been calculated and 

the draw for the second cell adjusted, the process could be repeated for cells 2 and 3, 

where the draw of the third cell is adjusted based on the draw in the second. Each cell 

would, therefore, only be adjusted once. This approach proved to be workable, but was 

also impractical to run due to long computational times.  

A third solution was found by dividing the research area into zones. A random draw is 

taken for each of the three variables for one cell in the first zone, and the independent 

draws for the three variables are correlated for that single cell using the Cholesky 

decomposition method as described above. The method does not adjust the draw for the 

first variable in the correlation matrix, but adjusts all other draws such that they are 

simultaneously correlated with the first draw and with each other.  The next step is to take 

a draw for the first cell in each of the other zones for maximum temperature; these draws 

are adjusted using the Cholesky decomposition using spatial correlation between the cells 

as described above. A temperature shock is calculated for that cell in each zone such that 

DRAWrzt – AVGrzt = SHOCKzt for rz = 1, where r is the first cell in the zone, z is the zone 

and t is the year. The SHOCK value that is generated for each z is then applied to each of 

the other cells such that AVGqzt + SHOCKzt = DRAWqzt in zone z for qz = 1…Rz, where q 

is not the first cell in the zone and Rz is the number of cells in that zone. The process is 

repeated for minimum temperature and again for rainfall. The result is that the only 
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independent draw for a given day is in the first cell for maximum temperatures as the 

Cholesky decomposition method correlates all other draws to this first value.  

Correlation is measured between average values rather than observed values because 

correlation between average values is assumed to be higher than it would be for observed 

values but using a higher correlation value results in correlation-adjusted values that are 

closer together than if a lower value had been used. The method produced such tight 

correlation values for minimum and maximum temperatures that the correlated values 

were always very close together, no more than 2 to 4 ºC apart. To allow for greater 

variation between daily minimum and maximum temperatures, the correlation between 

these two variables is assumed to be 0
12

. The correlation matrix for maximum 

temperature, minimum temperature and rainfall for that first cell is shown in Table 5.1, 

below (the correlation between minimum and maximum temperature of 0.953 was 

changed to 0 by assumption). Spatial correlation between pairs of contiguous cells Rr and 

Rq is found to be consistently over 0.9, with many pairs showing correlations of over 

0.99. Spatial correlations for rainfall and minimum temperature were similar in value to 

the correlations found for maximum temperature.   

Table 5.1: Correlation in the first cell between minimum temperature, maximum 

temperature and rainfall 

  
MAX MIN RAIN 

MAX 
1 0.953 0.042 

MIN 
 1 0.261 

RAIN 
  1 

 

In order to divide the region into zones, soil zones were considered, as these are 

commonly used in the agricultural production economics literature. Black soil zones are 

found in the mid-latitudes of the three provinces, with grey and brown soils found to the 

south and north.  Soil zones proved to be hard to find in GIS format; however, maps of 

Canada’s Eco-Regions were available from Agriculture and Agri-Food Canada (2008). 

Table 5.2 shows the groupings of Eco-Regions into the ten zones that were used here. 

These resulting zones closely resemble soil zones, but are more disaggregated, in 

                                                      
12

 Other correlation values were tested and proved to be too restrictive because they produced 

daily minimum and maximum temperature draws that were consistently only a few degrees apart, 

which is an unrealistic outcome. Thus, assuming values of the correlation coefficient that were 

greater than zero did not solve the problem described.  
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particular in Northern Alberta. Soils are divided into grey, brown, dark brown and black. 

Figure 5.5 shows the ten zones that were aggregated from the various eco-regions and 

their distribution in the study region. A shock was generated for minimum and maximum 

temperature draws for each day in the growing season for each of these zones using the 

Cholesky decomposition approach. The zone-level shock was applied to each cell in that 

zone. Thus, a shock of + 2.3 °C, based on the adjusted draw for the first cell in the zone, 

translates into a shock of 2.3 °C was applied to each of the other cells in that zone for that 

variable. Zone 11 is shown on the map but was dropped from the analysis because it 

consists of the continental divide, which is mountainous non-agricultural land.  

The yield estimates for each crop is based on a single draw of minimum and maximum 

temperature, and rainfall, for each day of the growing season. A more rigorous approach 

would be to use Monte Carlo procedures whereby yields are calculated based on a 

number of weather draws, and the average yield in the resulting distribution used. One 

could likely achieve the same effect by using the average values for each of the three 

variables to estimate crop yield. However, this process would eliminate the variation and 

occurrences of higher temperatures that the model was designed to capture. As well, the 

time required to generate yield estimates based on the Monte Carlo process described 

above precluded the use of this approach.
13

 

  

  

                                                      
13

 Each “run” takes approximately 2.5 hours per loop. To calculate annual yield estimates for a 40 

year time horizon would take approximately 25 hours. 
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Table 5.2: Zones used in the study as defined by Eco-Regions 

Zone Number 

of cells 

Proxy for 

soil zone 

Eco-region 

number 

Eco-region name 

Zone 1 233 Grey 137 

136 

64 

Clear Hills Upland 

Slave River Lowland 

Northern Alberta Uplands 

Zone 2 460 Grey 138 Peace Lowland 

Zone 3 1757 Black 45 

65 

69 

70 

71 

87 

89 

143 

145 

148 

149 

163 

215 

216 

Maguse River Upland 

Northern Alberta Uplands 

Tazin Lake Upland 

Kazan River Upland 

Selwyn Lake Upland 

Athabasca Plain 

Hayes River Upland 

Western Boreal 

Western Alberta Upland 

Mid-Boreal Lowland 

Boreal Transition 

Southwest Manitoba Uplands 

Coastal Hudson Bay Lowland 

Hudson Bay Lowland 

Zone 4 87 Black 88 

90 

91 

Churchill River Upland 

Lac Seul Upland 

Lake of the Woods 

Zone 5 922 Brown 142 

139 

Wabasca Lowland 

Mid-Boreal Uplands 

Zone 6 1640 Black 156 Aspen Parkland 

Zone 7 1063 Dark Brown 157 

158 

Moist Mixed Grassland 

Fescue Grassland 

Zone 8 1284 Brown 159 Mixed Grassland 

Zone 9 77 Dark Brown 160 Cypress Upland 

Zone 10 466 Black 155 

162 

Interlake Plain 

Lake Manitoba Plain 

(Source: adapted from AAFC 2011b)
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Figure 5.5: Eco-regions of the Canadian Prairies  

Source: adapted from AAFC 2011b.
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5.2.3 Estimating Yield: Temperature Coefficients  

Chapter 3 outlines the model that generates the coefficients used to calculate the yield 

from the adjusted rainfall and temperature draws described above.  The process of 

calculating yields from all 41 temperature variables (as specified in Model 1 in Chapter 3) 

proved to be a time consuming process for all 7,727 cells with temperature data over 141 

days in the growing season. As well, the data in Model 1 show signs of colinearity in the 

variables in the range of 35 ºC and higher, as well as in the lower temperature ranges 

below 5 °C. A decision was made to use a version of Model 1 with fewer coefficients, 

which reduced computation time from ~ 5 hours per loop to ~ 2.5 hours per loop by 

aggregating the temperature observations into fewer temperature buckets, which 

simultaneously address colinearity issues encountered in Chapters 3 and 4. In other 

words, a simplified version of Model 1 from Chapter 3 is used.   

The model used to estimate yield is shown below in Equation 5.3. Hours of exposure to 

temperatures from 0 to 5 ºC are in the first TEMP variable. Exposure to hours between 6 

and 8 ºC up to 33 to 35 ºC are in three-degree “buckets,” and all hours of exposure to 

temperatures over 36 ºC are in a final bucket. The total number of temperature 

coefficients in the TEMP vector is thus reduced from 41 down to 12. Daily rainfall 

estimates in the vector RAIN are aggregated monthly, as per the Model 1 specification; 

there are, therefore, five variables in this vector. Various specifications for the time trend 

are tested; Model 1 from Chapter 3 resulted in highly elevated yield estimates by 2050 for 

a variety of crops. The model used here is tested with various time trends specified as T, 

T
2
, T

3
 and T

4
, or no time trend, in isolation or in combination, to determine which 

specification produces the most stable yield forecasts, defined as those that do not tend 

towards zero or above 10,000 kg/ha and above over time. Equation 5.3 shows the model 

as used for canola, spring wheat, oats, barley, and flax. For durum, winter wheat and fall 

rye, where any time trend resulted in highly distorted yield forecasts, the time trend was 

dropped. These models are run with no time trend. Regardless of the time trend variant 

used, all yield forecasts trended to values that were either extremely high (in the 100,000s 

of kg/ha) or extremely low (10s of kg/ha) for all crops if modeled past 2050. The final 

models were run for t = 2011 … 2050 for all crops to prevent these unrealistic yield 

estimates from affecting the results.  The coefficients estimated using the model 

specifications shown above are shown in Table 5.2.  
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Table 5.2: Estimated Coefficients for the Crop Yield Models 

 
WWHT   SPRWHT   DURUM   CANOLA   FLAX   

CONSTANT 7.6014 *** 6.4353 *** 5.5977 *** 4.8642 *** 4.9143 *** 

TIME NA   0.00875 *** NA   0.00994 *** 0.00987 *** 

APRRAIN 0.00278 *** 0.00068 *** 0.00102 *** -0.00029   -0.00023   

MAYRAIN 0.00233 *** 0.00097 *** 0.00156 *** 0.00060 *** 0.00059 *** 

JUNRAIN 0.00095 *** 0.00109 *** 0.00235 *** 0.00115 *** 0.00113 *** 

JULRAIN -0.00099 *** 0.00018 *** 0.00137 *** 0.00131 *** 0.00130 *** 

AUGRAIN -0.00077 *** -0.00105 *** -0.00124 *** -0.00087 *** -0.00087 *** 

DEG0_5 0.00020   0.00028 *** 0.00093 *** 0.00046 *** 0.00045 *** 

DEG6_8 -0.00051 ** 0.00017 ** -0.00004   0.00023   0.00021   

DEG9_11 0.00101 *** 0.00054 *** 0.00098 *** 0.00067 *** 0.00063 *** 

DEG12_14 -0.00055 ** 0.00049 *** 0.00071 *** 0.00059 *** 0.00054 *** 

DEG15_17 0.00046 ** 0.00029 *** 0.00077 *** 0.00063 *** 0.00063 *** 

DEG18_20 0.00017   0.00023 *** 0.00054 *** 0.00052 *** 0.00057 *** 

DEG21_23 -0.00036   0.00026 *** 0.00053 *** 0.00058 *** 0.00057 *** 

DEG24_26 -0.00072   0.00034 *** 0.00035 ** 0.00063 *** 0.00061 *** 

DEG27_29 -0.00036   0.00017   0.00008   0.00107 *** 0.00100 *** 

DEG30_32 -0.00058   -0.00059 *** 0.00013   -0.00015   -0.00021   

DEG33_35 -0.00085   -0.00334 *** -0.00138 *** -0.00231 *** -0.00230 *** 

DEG36P 0.00206 ** -0.00045   0.00025   -0.00087 * -0.00087 * 

ADJUSTED R2 0.4838   0.4114   0.3898   0.2983   0.2994   

NUM OBS 1934   12,333   
         

5,600    7,755   

        

7,755    
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FALLRYE   BARLEY   OATS   

CONSTANT 6.2196 *** 6.2124   6.0194 *** 

TIME NA   0.01017   0.00878 *** 

APRRAIN 0.00118 *** -0.00006   0.00023   

MAYRAIN 0.00259 *** 0.00017   0.00073 *** 

JUNRAIN 0.00175 *** 0.00042   0.00121 *** 

JULRAIN 0.00055 *** 0.00047   0.00095 *** 

AUGRAIN -0.00147 *** -0.00108   -0.00095 *** 

DEG0_5 0.00042 *** 0.00042 *** 0.00038 *** 

DEG6_8 0.00037 ** 0.00033 *** 0.00000   

DEG9_11 0.00024   0.00076 *** 0.00085 *** 

DEG12_14 0.00057 *** 0.00056 *** 0.00057 *** 

DEG15_17 0.00048 *** 0.00048 *** 0.00055 *** 

DEG18_20 0.00015   0.00050 *** 0.00039 *** 

DEG21_23 -0.00013   0.00055 *** 0.00042 *** 

DEG24_26 -0.00027   0.00060 *** 0.00037 *** 

DEG27_29 0.00096 *** -0.00020   -0.00040 ** 

DEG30_32 0.00011   -0.00064 *** -0.00112 *** 

DEG33_35 -0.00213 *** -0.00288 *** -0.00322 *** 

DEG36P -0.00144 *** -0.00007   0.00048   

ADJUSTED R2 0.3220   0.3651   0.3932   

NUM OBS       4,667         12,580    

     

12,335    

 

***  significant at 1 % 

** significant at 5% 

*   significant at 10% 
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Table 5.2 Continued 

 

Where: 

TIME    a time trend variable 

APRRAIN  Total simulated rain in April in mm 

MAYRAIN  Total simulated rain in May in mm 

JUNRAIN  Total simulated rain in June in mm 

JULRAIN  Total simulated rain in July in mm 

AUGRAIN  Total simulated rain in August in mm 

DEG0_5  Total hours of exposure to degrees 0.0 to 5.9 ºC from April 15 to August 30 

DEG6_8  Total hours of exposure to degrees 6.0 to 8.9 ºC from April 15 to August 30 

DEG9_11 etc  as DEG6_8 
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                                         [5.3] 

One potential problem that may arise from the process to generate the coefficients listed 

above stems from the fact that each of these crops is responding to the same climatic 

shocks. Therefore, the error terms between the models should be correlated. Running the 

models independently, as was done, does not account for this correlation in the error 

terms. An unbalanced panel model or a seemingly unrelated regression (SUR) approach 

can address the issue, but neither approach was practical given the size of the dataset and 

the fact that each crop yield estimate is based on a different subset of the total climate 

observations. Thus, it is possible these yield estimates are uncorrelated when the 

empirical observations would be correlated, leading to distortion in the results. It is 

important to be aware of this potential issue when interpreting the output of the model.  

5.2.4 Calculating Gross Margins 

The process described above allows for the calculation of the total monthly rainfall in 

each cell, and the total number of hours the crop was exposed to each 3ºC increment in 

temperature. The model parameters derived as noted above, are then used to estimate 

yields for winter wheat, spring wheat, durum, barley, oats, canola, flax, and fall rye. 

Spring rye is excluded because the crop is the smallest of those modeled previously in 

terms of acreage. As noted in Chapter 3, the small size of the dataset used in the analysis 

meant that the results of the model developed are less “reliable” in a statistical context.  

Gross margin per ha for each crop are calculated using the yield estimates calculated as 

described above, and average output prices from 2005 to 2010. Thus, the assumption is 

made that relative prices are held constant. Prices used are shown in Table 5.3 and were 

taken from the Statistics Canada database and adjusted for inflation using the CPI for 

2010.  
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Table 5.3 Average crop output prices, 2005 to 2010 ($/1000 kg, real values 2010) 

 

Winter 

Wheat 

Spring 

Wheat Durum Canola Flax 

Alberta 196.37 227.00 364.73 382.40 144.47 

Saskatchewan 185.94 222.30 363.88 395.79 142.54 

Manitoba 201.94 215.26 362.32 399.87 156.94 

 

 

Rye Barley Oats 

Alberta 135.62 143.43 196.37 

Saskatchewan 125.45 139.94 185.94 

Manitoba 129.50 155.16 201.94 

 

Source: Statistics Canada 2010b.  
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Table 5.4: Average Input Variable Costs by Zone for 2010 ($/ha, real values 2010) 

ZONE WWHT SPRWHT DURUM CANOLA FLAX 

Zone 1 256.24 284.78 284.78 301.47 252.50 

Zone 2 256.24 284.78 284.78 301.47 256.24 

Zone 3 382.95 345.73 414.43 408.51 297.29 

Zone 4 382.95 345.73 414.43 408.51 297.29 

Zone 5 192.37 234.47 240.66 245.50 278.96 

Zone 6 382.95 345.73 414.43 408.51 297.29 

Zone 7 221.83 266.75 271.72 347.44 267.62 

Zone 8 192.37 234.47 240.66 245.50 278.96 

Zone 9 221.83 266.75 271.72 347.44 267.62 

Zone 10 382.95 345.73 414.43 408.51 297.29 

 

ZONE FRYE BARLEY OATS 

Zone 1 170.87 275.54 237.93 

Zone 2 170.87 275.54 237.93 

Zone 3 255.36 312.33 287.29 

Zone 4 255.36 312.33 287.29 

Zone 5 140.68 221.93 195.89 

Zone 6 255.36 312.33 287.29 

Zone 7 160.05 259.04 222.87 

Zone 8 140.68 221.93 195.89 

Zone 9 160.05 259.04 222.87 

Zone 10 255.36 312.33 287.29 

(Sources: listed below) 

Table 5.4 shows a summary of the input costs used in the model. Manitoba produces 

input cost estimates for all eight crops (Manitoba Ministry of Agriculture, Food and Rural 

Affairs 2011) for eastern and western Manitoba, both in the black soil zone. Saskat-

chewan produces input costs for winter wheat for all soil zones and for spring wheat, 

durum, barley, oats, flax, canola, grown in the black, brown and dark brown soil zones 

(which correspond roughly to Zone 8 (brown), Zone 7 (dark brown) and Zones 3 and 6 

(black) (Saskatchewan Ministry of Agriculture 2008).  Note that no input costs for fall 

rye are available for Saskatchewan. Alberta provides input costs by crop and by soil zone, 

but does not include every crop in every soil zone (Alberta Agriculture and Rural 

Develop-ment 2011).   
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Table 5.2 shows the soil zones that correspond approximately to each of the ten zones 

defined for the analysis. However, values for certain specific crops for certain soil zones 

were not available. To obtain these missing data, the following process was followed. 

Data for spring wheat were available for every zone for each province and were thus used 

as the base for the calculation. For each soil zone, input costs are calculated as a 

percentage of the input cost for spring wheat. First, the average value of the input costs 

for available soil zones is calculated for each crop. This ratio of this value divided by the 

input costs for wheat in this soil zone, p, is calculated. This value is used to generate the 

value of the input cost for crop X in the each soil zone such that the input cost is equal to 

(p x input costs for wheat). 

The final gross margin (π) calculation for crop i in year t for cell r is shown in Equation 

5.4, below. Yields are measured in kg/ha, which multiplied by output price in $/kg 

produces gross revenues in $/ha. From these are subtracted input costs in $/ha for the 

final gross margin estimate for each crop for each cell.  

       
  

     
  

     

  
  

  

  
       [5.4] 

5.2.5 Incorporating Climate Change  

This section describes the methods used to incorporate the estimated impact of climate 

change on the average temperatures used in the model. The Canadian Regional Climate 

Model (CRCM) V4.2 monthly data (aet run) has been generated and supplied by the 

Ouranos Climate Simulation Team via the Canadian Centre for Climate Modeling and 

Analysis (CCCma)'s data distribution Web page (Canadian Centre for Climate Modeling 

and Analysis 2010). The data available for this model are monthly average minimum and 

maximum temperatures and a monthly average value for daily rainfall for 1961 to 2100. 

The values for of 1961 – 1990 are observed data during this period.  Two climate change 

scenarios that are available are the B1, and A1B scenarios, described below. These are 

standard scenarios used in climate change modeling around the world and have well 

known implications for relative emissions and shifts in temperature among climate 

change modellers.  

The B1 scenario describes a future with the least amount of emissions and minimum 

temperature shifts. It represents a future with a high level of environmental and social 

consciousness combined with a globally coherent approach to a more sustainable 
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development. The B1 scenario assumes increases in emissions from emissions observed 

in the base period, but is the lowest estimate of the increases that may occur. A1B is the 

scenario with the highest emissions, and thus the highest levels of temperature shifts. In 

this scenario, the current distinctions between “poor” and “rich” countries eventually 

dissolve. There is a strong commitment to market-based solutions but no single source of 

energy is dominant. Appendix J shows snapshots of the changes to daily maximum 

temperature, minimum temperature and rainfall for July in 2025 and 2050. Average daily 

maximum temperatures rise as much as 10 ºC across the region with scenario A1B, and 

daily rainfall for July falls as much as 2 mm per day in the central regions but could go up 

as much as 0.55 mm per day in the south-eastern corners of Manitoba and in the 

mountains.  

The data are provided for a grid across the landscape, as shown in Figure 5.6. In a process 

that mirrors the production of the daily variable maps, maps were produced for each 

monthly value (in the growing season) for each variable for the full base period from 

1961 to 1990 (5 months x 30 years x 3 variables = 450 maps) and again from 2011 to 

2050 (5 months x 40 years x 3 variables = 600 maps).  However, the exercise discussed in 

Section 5.3.1 produced daily average and variance values from which the independent 

draws were taken, and the process described here produced monthly average values only. 

The monthly shock to the average maximum temperature for 2011 was calculated as the 

monthly value for 2011 less the average value for that month in the base period. Thus, the 

shock due to climate change for maximum temperature for April 2011 was the predicted 

average maximum temperature for April 2011 minus the average maximum temperature 

for April from 1961 to 1990.  

For each climate change scenario, the daily average variable values were adjusted using 

the shock generated for the appropriate month. Thus, if for 2011, in scenario A1B, the 

predicted increase in average value for a particular cell is 2.3 ºC for the month of May, 

then the average daily maximum temperature value for each day in May was increased by 

2.3 ºC for that cell. The daily values for each month in each year of the simulation were 

adjusted according to the change in the average value for that month for that year. This 

process was repeated for the minimum temperature and rainfall variables.  Note that there 

are no changes made to climate variable variances as there are no simulation forecasts on 

these data in any of the standard climate forecast models from which the changes to 

average temperature were drawn. The result is a new daily average and original variance 
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from which to take daily climate draws for temperature and rainfall variables. These new 

daily averages change for each year of the climate scenarios. Examples of the shocks to 

the average value used in the model for each scenario are found in Appendix J. 

Figure 5.6: Grid for simulated temperatures for climate change scenarios 

  

5.3 The Dynamic Linear Programming Model 

The Schlenker and Roberts (2006, 2008) approach to estimating economic impacts from 

climate change introduced a new and improved method for incorporating climate 

variables into production function estimations. The production function approach to 

estimating economic impacts of climate change does not allow for any substitution 

between crops; this is the main critique of the production function approach. The usual 

approach to estimating economic impacts of climate change on agriculture has been to 

aggregate changes in land values across the landscape with a hedonic model or to 

aggregate changes in the value of production with a production function approach. The 

model described here simulates substitution effects between the crops modeled using a 

linear programming simulation approach by simulating supply responses to climate 
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change. It does not incorporate the option of land moving in or out of crop production
14

, 

or land moving from crop production to livestock grazing (or vice versa), or land shifting 

between agriculture and alternative land uses such as urban development, forestry or 

mining. The model does not incorporate the possibility of different crops, such as drought 

tolerant canary seed, chick peas, lentils and dry field peas, being grown much more 

widely in the region. Neither does it include price effects. It can, however, given these 

constraints, allow an estimation of the effects of climate change on producer surplus.   

The model is described below in Equation 5.6 to 5.12, with explanations below. 

                               ],         [5.5] 

Subject to: 

                           [5.6] 

                          [5.7]  

                                                  [5.8] 

For           

        
        

                     [5.9a] 

        
        

  
 

     
  )           [5.10a] 

For          

       
           

                    [5.9b] 

       
           

  
 

     
  )           [5.10b] 

Variables 

HA       hectares 

 

  

                                                      
14

 This assumption does not preclude the model from leaving crop land idle.  
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Parameters 

    mean price, 2005 to 2010 

    estimated yields in kg per ha 

C input costs  

CA hectares of land recorded under the 206 Canadian Census of Agriculture for each 

crop 

c coefficient of variation of historical acreage from 1961 to 1990  

HAit-n land allocations for crop i in years t-n become parameter values in the dynamic 

restrictions 

 

Subscripts 

t  year  

j  district 

i  crops in the choice set 

p  province 

  zone 

r, q cells in the grid 

n lagged number of years 

 

Equation 5.5 is the objective function, in which the model maximizes gross margins from 

crop production for each district j by choosing the number of hectares to allocate to each 

crop i where i = 1…8, for year t. Each district has Rj cells, and crops are allocated to cells 

rj = 1… Rj.  Equation 5.6 restricts the total crop land in each cell r in year t for all crops i 

to 10,000 ha, which is the physical limit of the size of the cell at 10 km
2
.  Equation 5.7 

restricts the total crop land in each district j for year t for all crops i to the amount 

specified in the 2006 Census of Agriculture. The census total for 2006 includes all crops, 

including these not modeled here. Thus, the model should over-predict acreage for all 

crops in the first five years of the model to expand the production to include lands on 

which crops not included in the model were grown. These include fallow land, hay, dried 

field peas, corn, soybeans, switch grass, canary seed, potatoes, and other crops that are 

currently only grown in specific regions of the study area.  

Equation 5.8 is a restriction to prevent cropland from rotating between cells. The 

assumption is made that the best available croplands are chosen in t = 2005, and the 

remaining lands are allocated to other uses including forestry, livestock grazing, etc. 

Costs of transitioning between land-use categories are assumed to be prohibitive. Thus, in 

the first iteration of the model, 2005, the best croplands are used to optimize the model. 

Restriction 5.9 ensures that the subset of all possible agricultural land that is chosen in the 

first iteration is held constant throughout the modeling period. If the sum of the land 

allocated to all crops i in cell r is zero in 2005, then the yields for all crops in cell r for t > 
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2005 are assumed to be 0. Effectively, no new cells can move into crop production for the 

duration of the simulation once they have been chosen in the first year of production. 

While acreages could have been set to zero, it was simpler to incorporate the values of the 

restriction into the restriction matrix to set yield equal to zero instead.  

Equation 5.9 and 5.10 are dynamic restrictions that limit the land base for a given crop 

from moving more than one coefficient of variation away (+/-) from the previous year’s 

total land base per crop. The coefficient of variation is the ratio of the standard deviation 

of acreage over the average acreage. If the coefficient of variation is 0.5, then acreage of 

the crop can fluctuate between 1.5 times the acreage of the previous year and 1/1.5 

=0.666 of the previous year’s acreage. The coefficient of variation is chosen instead of 

the variance of acreage because it provides parameters in percentage terms rather than 

absolute values terms. The equations produce upper and lower bounds to the shifts in 

total production of crop i in district j from year t to year t+1. The coefficient of variation 

is between 0 and 1, so (1+c) produces an upper bound that is c percent above the acreage 

in t-1, where (1/1+c) is always less than 1, and produces a lower bound that is that is c 

percent below the acreage in t-1. 

The use of the coefficient of variation means that the size of the shifts are comparable 

between crops, which have total acreages and shifts in absolute value of acreage at very 

different scales. Version 5.9a and 5.10a are used for the first two years of the model (t = 

2005, 2006), in which total acreage for crop i in district j must be within one coefficient 

of variation from the total recorded acreage for crop i for district j in the 2006 Census of 

Agriculture. Versions 5.9b and 5.10b are used for t > 2006, where the total land in crop i 

for district j for year t cannot move more than one coefficient of variation above or below 

the total land in crop i for district j for year t-1.  

A single iteration of the model contains individual optimizations for j = 1 … 474, as there 

are 474 districts in the final model. The model is run from 2005 to 2010, and then 

validated against observed data for that period. The validated model is then run from 

2005 to 2050 for a total of 46 repetitions of the entire model for the base scenario (no 

climate change), for B1 (low emissions) and for A1B (high emissions). The model output 

for each year t is a table with the total allocation in ha for crop i in cell r.   
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5.3.1 Validating Model Output 

In this section, the exercises used to validate the model outputs, and to calibrate the 

model inputs are outlined. The first task is to compare the estimated yields for each crop 

to the observed yields for those crops for 2005 to 2010. Empirical data are available for 

this period, and can be compared to estimated values produced by the model. Figure 5.7 

shows the ratio of observed yields to estimated yields, each averaged over the 2005 to 

2010 period for each crop. It is worth noting that the estimated values come from 

simulated temperature draws from the 1961 to 1990 base period and not on actual 

temperature observations from 2005 to 2010. Observed yields are, of course, a product of 

actual temperatures from 2005 to 2010 and not those of the whole base period. Therefore, 

some variation between observed yields and estimated yields is to be expected, although 

the inclusion of the time trend corrects for some of these variances. Winter wheat, durum 

and fall rye show observed average values that are approximately 50% of the  

Figure 5.7: Ratio of observed/estimated average yields, 2005 to 2010 
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Figure 5.8: Ratio of observed to estimated percentage of total cropland for various 

forms of the LP model, averaged from 2005 to 2010 

5.8 a) 
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5.8 c) 

  

estimated averages, while observed average canola yields are about 150% of the 

estimated yields. Barley shows observed average values that are almost 200 % of the 

estimated average value. The ratios of observed yields to estimated yields are fairly 

consistent between provinces, with observed yields in Alberta, in general, higher than 

those of the other two provinces in the simulation. It is worth noting that these results are 

likely highly sensitive to output prices, discussed further below. 

An uncalibrated version was compared to one in which a restriction was applied to 

simulate crop rotations such that canola could only be grown once every four years. This 

restriction was found to be too constricting to the model behaviour as the total amount of 

cropland in production decreased substantially, even without climate change. Figure 5.8b 

shows that this approach underestimates barley and canola, while underestimating winter 

wheat, flax, fall rye and oats.  

A version was run in which no rotational restrictions applied but yields were adjusted by 

a factor determined by the ratio of observed to predicted yields, as shown in Figure 5.7. 

Model performance was compared using the ratio of observed to estimated percentage of 

total crop land for each crop, averaged from 2005 to 2010. The results are shown in 

Figure 5.8a through 5.8c, above. It is shown that the uncalibrated model produces 
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estimates of land use that overestimates land allocations to flax and fall rye and 

underestimates those to canola and barley by as much as 300 % for canola in Manitoba.  

The model that uses adjustments to the yield estimates produces the land use allocation 

patterns that are, in aggregate, closest to the observed values. The calibration that 

produced the best result was one in which yield adjustments were made, by multiplying 

the yields by the adjustment factor shown in Table 5.4. These adjustment factors are 

based on the ratio of observed to estimated yield as discussed above in Figure 5.7. For 

example, the observed over estimated ratio of canola yields is approximately 140%, so a 

yield adjustment factor of 1.4 is applied to the estimated yield to align it more closely 

with observed yields. 

Aggregate results for the study region are shown in Figures 5.9-5.10 for the uncalibrated 

model versus the calibrated version. Note that total acreage increases and then stabilizes. 

This is because the model does not incorporate crops other than the eight modeled but the 

land base in the cells selected is larger than is needed to allocate sufficient land for these 

specific crops. Thus, the model adds more land to the defined land base until all available 

land in the selected cells is in use for the modeled crops. Flax and fall rye are still over-

represented, but by a smaller margin. Canola is still under-represented, but again, by a 

smaller margin. 

Table 5.5: Adjustment factors by crop to calibrate the model as the approximate 

ratio of observed / estimated crop yields from 2005 to 2010 

CROP 

YIELD 

ADJUSTMENT 

FACTOR 

Canola 1.4 

Barley 1.8 

Durum 0.6 

Winter Wheat 0.6 

Fall Rye 0.6 

Oats N/A 

Flax N/A 

Spring Wheat N/A 
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Figure 5.9: Total acreage of all crops, base scenario with yields calibrated as per 

Table 5.4 

 

Figure 5.10: Total acreage of all crops, uncalibrated base scenario  
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5.4 Results  

Aggregate results are presented first, which allow an overview of trends in crop 

production that affect all districts and regions. Following this, spatial shifts in production 

are reviewed. This is followed by a discussion of the results in relationship to the model 

specifications and parameters and contextualization of output.   

5.4.1 Aggregate Results 

Figures 5.11 to 5.13 show aggregate crop allocations under each model using the 

calibrated model. The base model, shown in Figure 5.11 and Table 5.5, produces an 

agricultural landscape that is dominated by canola and wheat, although it is winter wheat 

rather than spring wheat that is chosen. Otherwise, there are no major fluctuations of 

acreage over time. 

Aggregate results for scenario B1 are shown in Figure 5.12 and Table 5.5. B1 is the 

climate change scenario with the lowest level of emissions increases, and lowest 

estimated temperature shifts. In this scenario canola and winter wheat acreages increase. 

Given that the base model overestimates winter wheat, acreage for this crop is likely 

overstated here as well. The biggest change from the base scenario is the increase in 

winter wheat acreage in exchange for an almost equal drop in spring wheat acreage.    

Table 5.5 and Figure 5.13 show the results for the A1B model, which constitutes the 

highest increases in emissions scenario. Here production of all crops falls immediately 

with the exception of winter wheat and barley. Over time the production of winter wheat 

also begins a gradual decline. However, winter wheat acreages do not approach those 

found in the B1 model or the base scenario. In the A1B scenario, acreages for all crops 

except winter wheat fall very quickly, and winter wheat begins a steady decline starting 

around 2035. However, acreages for barley begin a steady increase starting around 2025. 

This is likely due to a combination of warmer temperatures and lower rainfall. The A1B 

model shows dramatically different crop choices from the base model or the B1 model.  

The A1B scenario constitutes the highest emissions modeled and thus the greatest 

increases in temperatures. While Scenario B1 shows no major changes in the land base 

chosen for the eight crops modeled compared to the base period of 2005 to 2010, 

Scenario A1B does. In Scenario A1B, there is a loss of approximately 6 million ha of 

land in Saskatchewan, 2 million in Manitoba and 1 million ha in Alberta (see Figure 

5.16). This is likely due to major increases in temperature and decreases in precipitation, 
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resulting in a lower gross margins for the crops modeled. Maps showing the distribution 

of the changes in rainfall and temperature are shown in Appendix J.  

Figures 5.14 to 5.16 show the total land in agriculture from all crops modeled for each of 

the three provinces in the base scenario. In Figures 5.14 and 5.15, for the base model and 

scenario B1, total acreage increases by approximately 2 million ha. This is accounted for 

by the fact that the total agricultural land available in the model is greater than the sum of 

the land allocated to the eight crops modeled. However, in Figure 5.16, total acreage of 

land allocated to these eight crops falls between 2010 and the 2020s. Acreage then 

increases gradually; Figure 5.13 indicates this is due to an increase in barley acreage 

primarily.  

Table 5.6: Total ha ('000s) by crop by scenario 

YEAR 

BASE 

Winter 

Wheat 

Spring 

Wheat Durum Canola Flax 

Fall 

Rye Barley Oats 

 

Total 

2005 
383 8,553 1,689 7,249 1,113 283 4,123 2,213 25,612 

2010 
1,054 9,913 2,267 12,389 982 559 2,507 1,349 31,020 

2025 
9,688 7,207 2,293 10,359 606 424 856 297 31,730 

2050 
8,858 5,505 1,126 14,116 512 281 1,044 263 31,705 

B1 
Winter 

wheat 

Spring 

Wheat Durum Canola Flax 

Fall 

Rye Barley Oats 

 

Total 

2025 
10,490 3,342 5,469 9,020 456 2,093 579 263 31,712 

2050 
18,040 1,539 2,244 8,339 434 414 478 219 31,707 

A1B 
Winter 

wheat 

Spring 

Wheat Durum Canola Flax 

Fall 

Rye Barley Oats 

 

Total 

2025 
4,711 1,416 476 209 247 206 2,796 252 10,313 

2050 
4,531 980 333 168 211 226 13,448 217 20,114 
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Figure 5.11: Aggregate annual land use allocations by crop, base model from 2005 to 

2050 

   

Figure 5.12: Aggregate annual land use allocations by crop, Scenario B1 (low 

emissions) from 2005 to 2050 

 

Figure 5.13: Aggregate annual land use allocations by crop, Scenario A1B (high 

emissions) from 2005 to 2050 
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Figure 5.14: Total annual acreage by province, base model from 2005 to 2050 

 

Figure 5.15: Total annual acreage by province, B1 scenario from 2005 to 2050 

 

 

Figure 5.16: Total annual acreage by province, A1B scenario from 2005 to 2050 
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Figures 5.17 to 5.24 in Appendix G show that the distribution of crops around the region 

as observed for the years 2005 and 2010. Figure 5.19 shows the dominant crop choice in 

each cell, which is indicative of shifting land use patterns for the base model in 2010; the 

crop mix is very similar to the 2005 map shown in Figure 5.17, but with less canola 

overall than in 2005, largely dominated by spring wheat and durum, with some barley 

and oats. By 2025, shown in Figure 5.21, the spring wheat has been replaced by winter 

wheat, particularly in Manitoba whereas the south-west corner of Saskatchewan is largely 

growing durum. By 2050, shown in Figure 5.23 almost all the spring wheat has been 

replaced by winter wheat, as has some of the durum. 

Figures 5.25 to 5.28 in Appendix H show the same maps for the B1 scenario. Figure H1 

shows that for the B1 scenario, the dominant crop choices on the map for 2025 are 

primarily canola and some durum, particularly in the central regions of Saskatchewan. 

Small pockets in the southerly areas of Saskatchewan and Alberta show fall rye as well. 

By 2050, shown in Figure H3, winter wheat has become much more dominant throughout 

the region. Some durum remains in the central regions of Saskatchewan, and canola is 

found on the outer range of what is now the black soil zone.  

Figures I1 to I4 in Appendix I shows the same information for the A1B scenario. In 2025, 

shown in Figure I1, the dominant crops are barley in the western regions of 

Saskatchewan, with spring wheat in the black soil zone. Manitoba has largely moved into 

winter wheat production with some spring wheat, and Alberta is largely dominated by 

barley with winter wheat in the south. By 2050, shown in Figure I3, the dominant crop 

has shifted to barley across the region although there is winter wheat found in the Grande 

Prairie region and interspersed in central Saskatchewan. These results may resemble the 

agricultural landscape found further south in the United States, in Kansas and other mid-

west states where dryland agriculture is found. 

It is noteworthy that the cropland in Alberta responds to heat and moisture stresses in the 

B1 scenario, but these conditions have a relatively minor impact on Saskatchewan and 

Manitoba. This is likely because Manitoba is predicted to see increases in daily rainfall 

along with increases in daily average temperatures, which will likely lead to improved 

growing conditions for many crops. Figure J1 through J2 show the changes in maximum 

temperature for Scenario B1 in 2025 and 2050. The maximum temperature in 2025 

increases by up to 3.5 ºC in 2025 in the eastern and western portions of the province, 
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while the average maximum temperature falls by up to 0.1 ºC in the central regions of 

Saskatchewan. Figure J2 and J3 show the changes in the average minimum temperature 

for July in 2025 and 2050 for Scenario B1. In 2025, the average daily minimum 

temperature in July rises by up to 8.5 ºC, while in 2050, the minimum temperature rises 

by up to 2.5 ºC. Saskatchewan is already a semi-arid region with rain-fed agriculture and 

many of the crops that are grown, in particular in the southern grey soil zone, are already 

fairly drought-tolerant. Figures J5 and J6 show the changes in rainfall for July for 2025 

and 2050 for Scenario B1. In 2025, average daily rainfall falls by up to 2.1 mm 

throughout Saskatchewan and central Alberta, while increasing by up to 0.1 mm in 

Manitoba. By 2050, the average daily rainfall in July falls by up to 1.9 mm throughout 

the Saskatchewan and Alberta, while increasing up to 1.3 mm in Manitoba.  

The effects of Scenario A1B on minimum and maximum temperature and rainfall for July 

in 2025 and 2050 are shown in Appendix J, Figures J7 and J8. Maximum temperature is 

expected to rise by up to 3.3 ºC in the southern parts of the study region, while falling by 

as much as 3.3 ºC in the northern regions and in Manitoba by 2025 (Figure J7). However, 

by 2050 the maximum temperature is expected to rise by up to 10.9 degrees across the 

region (Figure J8).  Minimum temperature is expected to increase by up to 1.6 ºC 

throughout the region except in Manitoba, where it could fall as much as 1.2 ºC by 2025 

(Figure J9). By 2050, the minimum temperature is expected to rise by up to 7.5 ºC across 

the region (Figure J10). Average daily rainfall in July of 2025 is expected to fall by up to 

1.9 mm across the region, except for the far south east corner of Manitoba (Figure J11), 

while by 2050, the south east regions of Saskatchewan and Manitoba are anticipated to 

see a fall by 1.9 mm in the average daily rainfall, while the southern part of Alberta and 

the mountains may see increases by up to 0.55 mm per day.  

The crops modeled generally migrate northwards, as described above, with low emissions 

climate change scenarios. However, the ongoing decreases in moisture become more 

wide-spread, including most of the Manitoba growing region by 2050 under the high 

emissions scenario, A1B. This trend, coupled with an increase in average temperatures in 

July of 10 °C are the most likely drivers of the geographical shifts in agricultural 

production in the area.  
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5.4.2 Impact of Climate Change on the Spatial Distribution of Crop Acreages 

The most striking aspect of the spatial impact of climate change is that there is very little 

impact on the spatial distribution of the crops modeled, but rather that the total acreage 

allocated to most of these crops falls. Appendix G contains output maps showing 

concentrations of acreage for each crop for the base model for 2005, 2010, 2025 and 

2050. Appendix H shows the results for each crop for 2025 and 2050 for scenario B1 and 

Appendix I shows the results for scenario A1B. These maps show that, for the most part, 

crops are grown in the same regions where they are currently found. The distributions of 

for each crop for 2005 in the base model are based on the 2006 Census of Agriculture and 

are therefore represent observed phenomena (Figures 5.17 and 5.18a-5.18h). However, a 

comparison with the output maps for the base model in 2010 (Figures 5.19 and 5.20a – 

5.20h) does not reveal major differences in the distribution of crops across the landscape, 

although the concentrations have begun to shift. Durum and winter wheat, for example, 

are predicted to be produced in higher concentrations further west and north of their 2005 

range, which for both are largely the southern parts of Saskatchewan.  

Durum expands northwards into central Saskatchewan until changes in climatic variables 

push total acreage down. In the base scenario, durum acreage occurs largely in the south-

eastern regions of Saskatchewan in the grey soil zone, although by 2010 it is showing 

higher concentrations in the brown zone (Figure 5.20c). The B1 scenario 2025 (Figures 

5.25 and 5.26c) shows durum growing in higher concentrations throughout what is 

currently the black soil zone and in much lower concentrations in the grey soil zone. In 

2050, the B1 scenario continues to show higher concentrations of durum in central 

Alberta, in the regions between Calgary and Edmonton, in particular (Figure 2.28c). In 

the A1B scenario, the highest concentrations of durum are to be found, once again, in the 

south-eastern regions of Saskatchewan (Figure I4c).  

Flax is found primarily in the brown soil zones in the base model for 2005 and 2010, 

although the total flax acreage is falling (Figures G2e and G4e). However, under the low 

emissions scenario (B1), flax acreage has moved north into what is now the black soil 

zone by 2025 (Figure H2e).  By 2050 (Figure H4e), in both climate change scenarios, 

total acreage has fallen but distribution has not changed from the B1 scenario in 2025.  
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5.4.3 Changes to Producer Surplus 

Producer surplus is the difference between input costs and output prices at the margin, or 

the area above supply and below market price; gross margin is a calculation of this 

amount. Table 5.6 shows the total gross margins by crop by year by scenario for 2005, 

2010, 2025 and 2050. All values are cited in Canadian dollars (CAD), at 2010 real levels. 

The base model predicts a rise in gross margins for agriculture in the Canadian Prairies 

by 2025, largely driven by an increase in the gross margin of winter wheat to just over 

$38 billion. However, by 2050, most of these benefits have disappeared, although 

agriculture has still increased overall from just under $3 billion to $15.3 billion.  

The B1 model shows a total net value for agricultural production of $40 billion by 2025 

driven by increases in winter wheat, durum, canola and fall rye. As with the base model, 

these gross margins are lower for 2050, at a total of $32 billion. The gains over 2005 stem 

from winter wheat valued at $26 billion, canola, valued at $2.3 billion and durum at $2.1 

billion. This overall increase comes despite a decrease in gross margin of $1 billion from 

spring wheat. That the model shows negative gross margins for any of the crops for the 

entire region is indicative that restrictions on fluctuations in acreage for any given crop 

are binding; else these acreage values would be set to 0 to increase profits.  

The A1B model shows a net gain for agriculture in 2025 of $0.4 billion, with net losses in 

the production of spring wheat, durum, canola, flax, fall rye, barley and oats. Only winter 

wheat shows positive gross margins in 2025, hence the overwhelming choice of winter 

wheat as the crop of choice in the model. By 2050, winter wheat and spring wheat show 

positive gross margins, but the other crops are all showing negative gross margin. The 

gross margins of agricultural production for all three provinces in 2050 for this scenario 

is $-0.281 billion. However, the base model tended to overstate winter wheat as a crop 

choice so these results are likely overstated with respect to winter wheat. On the other 

hand, the negative gross margin values are likely too low as farmers will likely switch out 

to more profitable crops that were not modeled here. Thus, the net change in producer 

surplus is likely higher than stated as the crop substitution effect is likely higher than the 

overstated winter wheat effect. It is notable that spring wheat is shown as having positive 

margins but has less acreage than barley, which has negative gross margins. It is worth 

noting that the numbers cited here are single year values, rather than net present values of 

the stream of gross margins over time. While barley experienced positive gross margins 

in 2049, winter wheat shows positive gross margins for several years leading up to 2050. 
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Therefore, the local effects must be highly variable where gross margins are highly 

profitable in specific areas in order to produce the aggregate patterns shown here.  

The analysis shown here reinforces the interpretation of the results discussed above. 

Climate change renders the growing of the majority of common crops in the Canadian 

Prairies economically infeasible. The model selects for those crops that are drought 

tolerant as best it can, showing increases in profits from winter wheat and durum, for 

example. It is possible that winter wheat is shown to be an economically superior choice 

with climate change because the length of the growing season would favour early spring 

growth and snow pack from the winter months may provide additional moisture. It would 

be interesting, therefore, to examine winter snow pack data in combination with summer 

data to estimate yields for fall-seeded crops to gain a better understanding of these 

relationships. While the model incorporates technical change as a time trend for almost 

all the crops, it is excluded for fall rye, winter wheat and durum as a stable time trend that 

did not skew yield values into unrealistic values until 2050 could not be found.  

The model was run in full with the rotational restrictions on all crops, on canola only and 

compared to the one reported above. Even with these different behavioural assumptions 

included in the model, the results are similar. The difference is that with rotational 

restrictions, the total acreage allocated to these eight crops falls in scenario A1B relative 

to the base model, and does not recover. The crop leading the increase in total acreage is 

barley. While actual acreage responds to agronomic conditions such as crop rotations, and 

farmer needs such as animal feed, this model does not incorporate such behaviours. A 

farm-level model may be a better means to further analyze specific behavioural 

assumptions associated with the model developed here. However, the results are robust 

across a number of assumptions, which increases the robustness of the results reported 

above. The implications of the results are that in the short run, farmers may enjoy 

significant increases in profits due to climate change but that within approximately 50 

years these benefits will have eroded away, likely due to increases in temperatures and 

decreases in water availability. If these results were confirmed by additional analysis 

using this spatially disaggregated approach, it would have major implications for policy 

regarding farm credit, risk management and insurance, income stabilization programs, 

etc. As such, the approach suggests that the spatial disaggregation approach does provide 

additional insights that merit further study. 
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Table 5.7: Gross Margins („000$) by crop by year 

BASE 

WINTER 

WHEAT 

SPRING 

WHEAT DURUM CANOLA FLAX FRYE BARLEY OATS TOTAL 

2005 329,770 

               

1,559,624  

               

649,495  

                 

159,371 

                 

108,168  

                 

90,573  - 174,222  

                 

175,904  

                 

2,898,684  

2010 

              

1,882,929  

                 

5,157,778  

              

4,194,986  

                 

717,495  

              

1,011,890  

           

1,108,845  - 62,786  

                 

601,745  

               

14,612,882  

2025 

           

19,916,579  

                 

1,621,918  

           

13,182,521  

                    

20,134  

                 

700,260  

           

2,919,557  -    5,610  

                    

51,000  

               

38,406,359  

2050 

           

13,226,163  

                     

226,108  

              

1,610,011  

                    

19,474  

                 

147,577  

                 

40,793  

                      

7,298  

                    

20,735  

               

15,298,159  

          

          

B1 

WINTER 

WHEAT 

SPRING 

WHEAT DURUM CANOLA FLAX FRYE BARLEY OATS TOTAL 

2025 

           

20,039,001  

           

1,635,816  

           

11,141,651  

           

4,255,870  

           

211,548  

           

2,923,213  - 10,645  

           

36,327  

                                

40,232,780  

2050 

           

26,800,685  

               

541,899  

              

2,125,109  

           

2,311,164  

           

125,374  

               

157,073  -  3,991  

             

7,007  

                                

32,064,320  

          

          

A1B 

WINTER 

WHEAT 

SPRING 

WHEAT DURUM CANOLA FLAX FRYE BARLEY OATS TOTAL 

2025 862,368 -48,308 -95,836 -18,561 -20,168 -17,039 -239,525 -18,742 404,188 

2050 836,162 38,673 -62,518 -14,614 -15,562 -16,652 -1,033,621 -13,004 -281,137 
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5.4 Discussion and conclusions 

Understanding the behaviour of the base model is important to in order to fully interpret 

the behaviour of the climate change scenario simulations. Total acreage, as shown in 

Table 5.7, increases in the base model for all three provinces, and then remains largely 

constant for the base model and for Scenario B1. However, in Scenario A1B, total 

acreage drops off to less than half of the 2005 acreage by 2025. By 2050, the acreage in 

Alberta has recovered, but in Manitoba the acreage remains about half the level in 2005. 

Acreage in Saskatchewan increases from 2025 to 2050, but not to the full amount seen in 

2005. The downward trend in acreages in Scenario A1B is likely due to decreased rainfall 

combined with increased temperatures throughout the region, although there is nothing in 

the spatially disaggregated results to explain why Alberta recovers more fully than the 

other two provinces.  

Table 5.8: Total ha of cropland ('000s) by scenario by province 

BASE Alberta Manitoba Saskatchewan Total 

2005 7,982 4,411 13,212 25,606 

2010 9,173 5,520 16,327 31,021 

2025 9,759 5,592 16,337 31,728 

2050 9,754 5,575 16,377 31,706 

B1
15

 Alberta Manitoba Saskatchewan Total 

2025 9,761 5,582 16,368 31,712 

2050 9,752 5,576 16,377 31,706 

A1B Alberta Manitoba Saskatchewan Total 

2025 3,903 989 5,421 10,314 

2050 7,195 2,697 10,222 20,114 

 

  

                                                      
15

 The starting acreage for the B1 and A1B scenarios is that for 2010 using the base scenario for all 

crops.  
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The most likely driver in the changes in production in the region is reduced rainfall, with 

concomitant reductions in yield. Warmer temperatures, in the presence of adequate 

moisture, generally result in higher yields. Scenario B1 shows that Manitoba’s main 

producing regions may see an increase in rainfall with mild climate change, but in the 

A1B scenario, by 2050, this advantage is largely dissipated with reductions of almost 2 

mm of rainfall per day (or about 300 mm per growing season) across all three provinces.  

The implications of the model are clear that the future for spring wheat, durum, barley, 

oats, fall rye, flax, and canola is questionable, assuming that the climate change 

predictions are accurate. The future for winter wheat, in contrast, shows economic 

promise. The model is not implying that there will be no agriculture in the Canadian 

Prairies, but rather that its face will change substantially. A further version of this model 

could be run with drought-tolerant crops such as canary seed, chick peas, lentils, 

sunflowers, etc., all of which are grown as niche crops in various regions in the Prairies.  

The objectives of this chapter were to incorporate improved yield estimates into a study 

of land use allocation between competing agricultural uses in which both the production 

function and weather inputs are unchanged from the historical dataset.  The second 

purpose of the chapter was to estimate agricultural land use allocations under the 

assumption that climate change has occurred, thus changing the average daily 

temperature.  It is clear that under a wide variety of weather conditions, canola continues 

to be profitable for farmers in the Canadian prairies, and that with climate change; feed 

grains will become more economically competitive than they currently are.  

There were several hypotheses that were tested in this chapter. First, it was hypothesized 

that climate change would induce an increase in the acreage allocated to drought-tolerant 

crops. It turned out that using the linear programming model made it harder to make 

direct linkages between land use and specific climate trends. This is an area where further 

analysis would provide greater insights. However, increased climate change did increase 

the acreage of barley and oats and rye, with winter wheat becoming more prominent 

under the most extreme scenario (A1B); crops that are more drought tolerant than canola 

and flax.  

A second hypothesis that was tested was that acreages would exhibit a positive own-gross 

margin effect. Because prices were held constant, all changes in gross margin came from 

changes in yield. The increased acreages for barley and oats, and the decrease in acreages 
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for spring wheat are due to changes in yields. Thus, the hypothesis that acreages are 

exhibiting a positive own-gross margin effect is supported. 

A third hypothesis was that the spatial distribution of crops would respond to climate 

change, with heat tolerant crops being found further north as temperatures increase. The 

region in which the dominant crops of flax and canola is found further north, along the 

border with the Canadian Shield, which would tend to support the hypothesis. Another 

hypothesis that was posed is that the spatial distribution of crops will respond to changes 

in rainfall patterns. Both hypotheses are supported in the growth of range for durum and 

winter wheat in particular, and to some extent flax in the earlier periods and lower levels 

of climate change. The hypothesis that cropping patterns will respond to changes in 

rainfall was highly supported by the collapse of agricultural land allocated to any of the 

crops modeled. 

There are many ways in which this research could be expanded. First, restrictions that 

proxy crop rotations could be incorporated and tested. Restrictions that are close to 

current practices may unnecessarily impose a short term assumption on the model, which, 

with constant input and output prices, already has many. The second way to continue the 

research is to incorporate demand analysis, such that different price paths that reflect 

different scenarios with respect to the use of biofuels, agricultural production in other 

countries, trends in food consumption patterns, etc., could be modeled. The third follows 

from the second, in which input price trends could be modeled, taking into consideration 

long term trends in fuel and fertilizer costs. Lastly, incorporation of crops that may be 

grown in higher concentrations or with a larger geographic distribution throughout the 

Prairies could be included, in particular those that are known for their drought tolerance. 

Should the inclusion of all or any of these elements produced similar results to the current 

model, it would increase confidence in the validity of the results reported here. Given that 

temperatures are predicted to increase, the marginal effect of increased exposure to 

warmer temperatures is a critical component to capturing the full impact of climate 

change on overall production. 
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Chapter 6: Summary and Conclusions 
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6.0 Introduction 

Forecasts of the economic impact of climate change on Canadian agricultural production 

have been, at best, indeterminate with both the potential for gains and/or losses being 

predicted by previous studies (for example, Reinsborough 2003). Some predicted results 

have confidence intervals that range from negative to positive values, providing even less 

insights for farmers and policy makers as we begin to live with climate change. However, 

the aggregate impact of climate change is the sum of a myriad of local impacts, while the 

models used to analyze these impacts have usually been large scale with spatially 

aggregated weather data. The purpose of this research project was to look at small-scale 

weather impacts on small-scale agricultural production and to aggregate these small-scale 

effects in order to better estimate impacts of climate change on agricultural activity.  

A number of objectives were outlined at the beginning of this thesis. The first was to 

estimate the marginal effect of extreme daily temperatures during the growing season on 

yields for the following major Canadian cereal and oilseed crops: winter wheat, spring 

wheat, canola, durum, barley, oats, flax, and spring and fall rye, in Alberta, Saskatchewan 

and Manitoba. In order to achieve this objective, three different types of temperature 

variables were tested for out-of-sample predictive accuracy: average temperature, 

growing degree days (GDD) and the method developed by Schlenker and Roberts (2006 

and 2008, hereafter SR).  The second objective was to apply the temperature variables 

with the best performance to an analysis of the effect of winter temperatures on yields for 

two common fall-seeded crops in the Canadian Prairies: fall rye and winter wheat. The 

particular focus was on the effect of snow fall and temperature in January and February. 

The temperature variables with the best performance were also incorporated into a study 

of agricultural land allocation between competing crop choices, in which the production 

function and weather inputs are unaffected by climate change.  

The results of this short run econometric model were used to calibrate the land use model, 

which were then re-run under two climate change scenarios, one in which there is a small 

increase in emissions, and one in which there is a large increase in emissions. These 

scenarios are called B1 and A1B, respectively, and form part of a standard set of tools 

used for discussion of climate change and its impact on various ecosystems. This final 

analysis uses a spatial linear programming model with more spatial disaggregation than is 

commonly found in the economic literature on climate change and agriculture. It was 
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noted in Chapter 2 that it is important to model spatial effects at the scale at which they 

occur in nature, which this spatial linear programming model was designed to capture.  

Hypotheses that were tested for this thesis include the supposition that the use of more 

precise temperature observations with fewer degrees of freedom will prove sufficient for 

the purposes of analysis of yield response to extreme temperature. This is a departure 

from the approach used by SR, who created a 10 square mile grid that covered the 

continental USA, thus ensuring that sufficient degrees of freedom existed to include a 

large number of explanatory variables. The approach used here is a modified approach to 

the SR method that uses weather stations as the unit of measure resulting in fewer 

observations. The smaller number of observations is offset by lower spatial colinearity in 

the dataset and it is thought that this approach will provide comparable results to the SR 

method. The results of the analysis support this hypothesis.   

The second hypothesis tested is that the temperature variables broken down by range, as 

formulated by SR will provide better out-of-sample forecasting estimates than the GDD 

or monthly average temperature approaches. As well, it is hypothesized that using these 

temperature variables to explain yield, the grains and oilseeds modeled will exhibit a 

positive response to temperature variables in the lower observed ranges and a negative 

response to temperature variables in the higher observed ranges such that a critical 

maximum temperature can be defined beyond which yields decrease, as SR found for 

corn, soybeans and rice in the United States. In addition, it is postulated that using the SR 

approach, the selected grains and oilseeds will exhibit a negative yield response to 

temperatures below a critical minimum.  

The process began by empirically testing three different temperature treatments. The 

analysis requires an estimate of the effect of temperatures on yields, but the most 

common approaches, averaging temperatures or calculating GDD, cannot capture the 

marginal effect of various temperature ranges. Given that temperatures are predicted to 

increase, the marginal effect of increased exposure to warmer temperatures is a critical 

component to capturing the full impact of climate change on overall production. The 

approach modeled after SR proved to provide improved out-of-sample yield forecasts 

than either of the other two methods examined. Critical maxima were found to exist in the 

29-34 °C range for all crops modeled, which are in the same range as those indentified by 

SR for cotton, corn and soybeans, although these three crops exhibit negative growth 
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above 31°C. The ranges identified by SR are often assumed in the literature (for example 

in a GDD calculation), but justification for the assumption is not generally offered. 

Evidence of critical minima was limited at best in the empirical results.   

Applying the results of the analysis to fall-seeded crops, it was postulated that increased 

snow depth in January and February will be associated with higher yields due to reduced 

winterkill for fall-seeded crops. In addition, the variability of snow depth in March and 

April was predicted to have a statistically significant effect on yields of winter wheat and 

fall rye. It was also predicted that a critical minimum temperature beyond which yields of 

winter wheat and fall rye exhibit decreasing marginal yields would be identified such that 

exposure to temperatures above this point will have a positive effect on yield and 

exposure to temperatures below this point will have a negative effect on yield.  However, 

the combination of winter snow depth and winter temperatures did not provide 

particularly insightful results into the analysis of yields for fall rye and winter wheat. It 

was hypothesized that a dataset with winter temperatures, snow depth and summer 

temperatures and rainfall could provide potentially more interesting results. However, 

colinearity in the data and the small size of the winter climate data set prohibited this 

approach from being attempted. The results of this analysis were indeterminate and 

further exploration of the research question was limited by availability of data.  

The spatial linear programming model was developed to test the hypothesis that climate 

change will induce an increase in the acreage allocated to drought-tolerant crops, and that 

acreages for a specific crop should increase in all provinces when gross margin for that 

crop increases (positive own-gross margin effect), and vice versa. It was predicted that 

the spatial distribution of crops will respond to climate change, with heat tolerant crops 

being found further north as temperatures increases, and that the spatial distribution of 

crops will respond to changes in the distribution of rainfall patterns. These hypotheses are 

supported by the empirical results.  

Yield forecasts for eight crops to 2050 were calculated using changes in climate for a 

base case scenario with no climate change, a low emissions prediction (B1) and a higher 

emissions prediction (A1B). The low emissions scenario assumes that many economic 

behaviours changing to allow emissions to be mitigated by new technologies, but 

emissions are still higher than in the base scenario. The A1B scenario assumes that very 
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few adaptive technologies will evolve and that almost no emissions reductions behaviours 

will be adopted. Therefore, this is the highest emissions scenario available.  

These forecasted yields were incorporated into a spatial dynamic linear programming 

model where the gross margin on production of eight crops is maximized. Yield estimates 

under scenario A1B are much lower than yield estimates with the base case and the B1 

scenario. Negative gross margins for most of these crops result in a gradual reduction in 

acreage to spring wheat, durum, canola, flax, oats and fall rye. The range of the crops 

modeled generally moved northward and westward with low emissions increases but 

under large increases in emissions, all but winter wheat and barley would no longer be 

commonly grown. These two crops are found in the landscape under the driest conditions 

modeled and these are generally more drought tolerant. 

Modeling climate change is a complex process that incorporates both socio-economic and 

geo-physical characteristics. However, while the standard models produced by the 

Canadian Centre for Climate Modeling allow some analysis of climate risk they do not 

provide much of a basis for modeling climate uncertainty. If the models are wrong, the 

results of this analysis are also wrong. It is difficult to model the “unknown unknowns” 

that may affect the results of climate change analysis. However, these climate models 

represent the best effort to use what is known to predict the future.  

The results of the analysis presented here are a departure from the general aggregated 

analyses. In Chapter 2, several studies were summarized, including those by Weber and 

Hauer (2003) and Reinsborough (2003) showed that either the impacts of climate change 

on Canadian agriculture were either very small or have confidence intervals around zero. 

The fact that the results of the analysis presented here are different suggests that modeling 

micro-scale effects is important to climate change analysis, and that models that fail to do 

so result in “average” impacts that are not a true aggregation of these micro-scale effects. 

The model developed here requires additional refinement in order to improve the 

confidence in the results. An analysis that incorporates demand factors as well as one in 

which price effects are modeled (for both input and output prices) with similar results 

would dramatically improve the robustness of the model results. Still, the results reported 

here are robust across a number of different behavioural assumptions.  

The results of the analysis suggest that major changes are coming for agricultural 

production in Western Canada. These changes comprise a shift away from crops that 
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require more water to those that do not. The changes would likely be slowed by price 

effects so the impact may not be felt for another 30 to 50 years, but the types of 

production that are typical of the arid mid-west of the United States may a model of what 

will come for the Canadian Prairies. Research by Weber and Hauer (2003) or 

Reinsborough (2003) suggest that the economic impacts of climate change for Canadian 

farmers are highly uncertain. But these are large scale models that do not attempt to 

incorporate the full spatial and/or temportal heterogeneity that exists across the Prairie 

landscape. The results of this model suggest that in the short run and with small increases 

in emissions, Prairie farmers will see significant benefits that can be garnered from 

increased production of drought tolerant grains like winter wheat and from barley. 

However in the longer run, the spatial models outlined here predict a decline in the 

profitability of production of the crops modeled, leaving barley and winter wheat 

dominating the landscape. The model does not include price effects, and these could slow 

the rate of change, as declining production for all crops across such a wide scale will 

result in price increases, which changes the gross margin equation. However, if 

governments around the world decide to tackle climate change by increasing fuel charges 

(for example) there will be a significant rise in input costs for fuel, fertilizer, etc., as well 

as in the transportation costs of such food to markets. Eventually, such input costs must 

rise regardless of government policy, as fossil fuels become scarcer. However, the 

challenge will then be to transition to a more sustainable form of energy which also 

implies rising input costs for farmers on a wide scale basis. Further modeling can provide 

insights into the relative strengths of the various scenarios for future food and fuel prices.  

6.1 Limitations of the Research 

The model using the SR approach described in Chapter 2 performed better than average 

temperature or GDD in the basic formulations for each type of variable. It was shown in 

Chapter 3 that the SR approach was not particularly useful in analyzing the behaviour of 

fall-seeded crops using winter temperatures formulated. However, under these 

circumstances, an approach that uses average temperatures and summer data might 

provide more interesting insights. As well, average maximum temperature, and 

alternative formulations of the GDD variable could be tested for out-of-sample 

forecasting against the performance of a wide variety of functional forms for the SR 

approach. Only three variations of the SR approach were tested here but the potential 

number of variants is much larger.  



 

140 

 

The land use model incorporates yield variation over time but is otherwise a short run 

model in which no adaptive behaviour is incorporated. As such the results of the model as 

described constitute a “worst-case scenario,” as it is most likely that farmers would adopt 

crops not shown modeled here, improve land management practices, utilize irrigation 

where sufficient water is available, among many other possibilities. Improved varieties 

would be developed with increased drought tolerance – indeed much current research is 

already focused on this issue. In addition, land would move out of cropping and into one 

of many alternate uses, including livestock grazing, forestry, urban development, etc., the 

results shown represent short-run adaptation by producers in the Prairie region.. 

6.2 Future Directions 

The results of the land use analysis have shown that the approach described here provides 

significantly different results from the Ricardian, profit or production fuctions approaches 

described in Chapter 2. This justifies further effort to incorporate many elements that are 

missing as described above in Section 6.1. A model that incorporates a variety of 

different crops other than those included here would provide further insights into the 

productive capacity for crops of predicted climate conditions. A model that incorporates 

land shifting between cropping and other agricultural land uses, or between agricultural 

and non-agricultural land uses such as forestry would be important extensions to the 

model.  

In addition, the production function used here is basic, with yields as a function of 

weather only. A farm-level model in which spatial homogeneity is assumed and in 

various management choices can be modeled would allow the short term behavioural 

constraints that were imposed here to be relaxed. The production functions using the SR-

type weather variables explains 30 to 60 percent of the variability in yield year over year, 

which implies that farmer choices explains the other 40 to 70 percent of the variability. 

Modeling these choices would provide additional insights into the types of adaptations 

that farmers can expect to make over  the coming decades.  

The model shown here does not incorporate any elements of risk. Further specifications 

that use expected gross margins rather than actual gross margins would further elucidate 

the types of adaptive measures that farmers may have to make in the coming decades.  

Finally, the current model does not incorporate any potential demand effects of climate 

change; that is, effects on demand and thus market prices for the crops considered in the 
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analysis.  Another potential area of further research, therefore, would be to explicitly 

incorporate demand relationships into the analysis (i.e., consider consumer surplus). 

6.3 Summary 

In this chapter, an overview of the research described in the first five chapters has been 

provided. The yield functions fed into the development of a spatially disaggregated linear 

programming model with highly detailed weather variables that are used to simulate 

future weather conditions to 2050. The modeling approach reported here is relatively 

novel in that it requires highly disaggregated spatial data and sufficient time to run. If the 

results of the model were akin to those produced by researchers cited above and others, 

then it would not add much value to the debate. However, the modeling approach does 

produce significantly different results, and with specific implications for how, where and 

potentially when farmers in the Canadian Prairies will be affected by climate change. 

These results have strong implications for government support programs, crop insurance, 

extension and research programs, etc., because the status quo will not serve the needs of 

the farming community if these results are accurate.  
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APPENDIX A: AVG, AVG PLUS, GDD and GDD PLUS model 

results. 

This section contains results for the models that test the average and GDD temperature 

treatments.  One asterisk (*) indicates significance at 10%, two asterisks (**) indicates 

significance at 5% and three (***) indicates significance at 1%.  

Variable Name  Variable Description 

CONSTANT  The constant in the equation 

TIME   Time trend, calculated as YEAR – 1964  

APRIL RAIN  Total cumulative rainfall from April 15 to April 30, in mm 

MAY RAIN  Total cumulative rainfall for May 

JUNE RAIN  Total cumulative rainfall for June 

JULY RAIN  Total cumulative rainfall for July 

AUGUST RAIN Total cumulative rainfall for August 

APRIL AVG  Average daily temperature for April 15 to April 30 

MAY AVG  Average daily temperature for May 

JUNE AVG  Average daily temperature for June 

JULY AVG  Average daily temperature for July 

AUGUST AVG  Average daily temperature for August 

GDD 10  Growing degree days from April 15 to August 30 with a 10  

degree Base 

RAIN   Total cumulative rainfall from April 15 to August 30  

Adj R2   The adjusted R
2
 statistic from the regression analysis 

N OBS   The number of observations in the regression analysis 
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Model AVG: monthly average temperature, seasonal rainfall. 

 

Winter wheat Spring wheat Durum Canola Flax 

Constant 7.76830 *** 7.9365 *** 8.118 *** 7.35480 *** 7.10280 *** 

Time 0.01643 *** 0.00860 *** 0.00687 *** 0.01484 *** 0.01020 *** 

RAIN 0.00073 *** 0.00070 *** 0.00131 *** 0.00048 *** 0.00094 *** 

April AVG 0.04091 *** 0.01345 *** 0.01713 *** 0.01527 *** 0.00869 *** 

May AVG -0.06211 *** -0.00836 *** -0.01983 *** 0.00951 *** 0.00138   

June AVG -0.03234 *** -0.03149 *** -0.02183 *** 0.00002   0.00813 ** 

July AVG -0.02186 *** -0.03288 *** -0.04811 *** -0.04874 *** -0.05047 *** 

August 

AVG 0.03315 *** 0.01655 *** 0.01691 *** -0.00076   0.02487 *** 

Adj R2 0.533   0.369   0.402   0.328   0.267   

n OBS 
        

1,642    

     

10,430    

        

4,763    

     

10,776    

        

7,755    
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Fall Rye Spring Rye Barley Oats 

  Constant 7.86300 *** 8.4911 *** 8.5062 *** 8.2256 *** 

  Time 0.01048 *** -0.01235 ** 0.01078 *** 0.00968 *** 

  RAIN 0.00107 *** 0.00276 *** 0.00043 *** 0.00109 *** 

  April AVG 0.00559 ** 0.04496 *** 0.00989 *** 0.00816 *** 

  May AVG -0.03028 *** -0.05441 *** 0.00731 *** 0.00355   

  June AVG -0.04156 *** -0.05236 *** -0.01420 *** -0.01738 *** 

  July AVG -0.01422 *** -0.05137 ** -0.06018 *** -0.05654 *** 

  August 

AVG 0.01898 *** 0.02959 *** 0.00939 *** 0.01068 *** 

  Adj R2 0.349   0.606   0.334   0.334   

  

n OBS 
        

4,667    

           

327    

     

10,707    

     

10,491    
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Model AVG PLUS: monthly average temperature, monthly rainfall.  

 
WWHT SPRWHT DURUM CANOLA FLAX 

CONSTANT 7.8321 *** 8.1025 *** 8.3037 *** 7.4034 *** 7.1974 *** 

TIME 0.01763 *** 0.00841 *** 0.00717 *** 0.01500 *** 0.00994 *** 

APRIL RAIN 0.00296 *** 0.00118 *** 0.00256 *** 0.00129 *** 0.00023   

MAY RAIN 0.00192 *** 0.00152 *** 0.00187 *** 0.00182 *** 0.00139 *** 

JUNE RAIN 0.00047 ** 0.00125 *** 0.00222 *** 0.00036 *** 0.00133 *** 

JULY RAIN 0.00013   0.00042 *** 0.00129 *** 0.00048 *** 0.00147 *** 

AUGUST 

RAIN 0.00068 *** -0.00046 *** -0.00088 *** -0.00034 *** -0.00033 ** 

APRIL AVG 0.03346 *** 0.01250 *** 0.02061 *** 0.01243 *** 0.00785 *** 

MAY AVG -0.05375 *** -0.00849 *** -0.02381 *** 0.01185 *** 0.00053   

JUNE AVG -0.02850 *** -0.02937 *** -0.01605 *** 0.00025   0.00662 * 

JULY AVG -0.03330 *** -0.03332 *** -0.04546 *** -0.04810 *** -0.04256 *** 

AUGUST 

AVG 0.03284 *** 0.00581 *** -0.00196   -0.00589 *** 0.01415 *** 

ADJ R2 0.544   0.388   0.320   0.341   0.279   

NUM OBS 

        

1,642    

     

10,430    

        

4,763    

        

9,141    

        

6,507    
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CONSTANT FRYE SRYE BARLEY OATS 

  TIME 8.0458 *** 8.5834 *** 8.4216 *** 8.3871 *** 

  APRIL RAIN 0.01093 *** -0.01141 *** 0.01068 *** 0.009406 *** 

  MAY RAIN 0.00109 *** 0.00488 * 0.00069 *** 0.001048 *** 

  JUNE RAIN 0.00303 *** 0.00568 *** 0.00091 *** 0.001581 *** 

  JULY RAIN 0.00136 *** 0.00272 *** 0.00066 *** 0.001682 *** 

  AUGUST RAIN 0.00066 *** 0.00169 ** 0.00059 *** 0.001314 *** 

  APRIL AVG -0.00063 *** 0.00224 *** -0.00047 *** -0.00044 *** 

  MAY AVG 0.00068   0.03749 *** 0.00927 *** 0.007866 *** 

  JUNE AVG -0.02778 *** -0.04328 ** 0.00705 *** 0.002186   

  JULY AVG -0.04151 *** -0.05278 *** -0.01332 *** -0.01602 *** 

  AUGUST AVG -0.01539 *** -0.05526 ** -0.05622 *** -0.05044 *** 

  ADJ R2 0.00872 *** 0.01774   0.00152   -0.00376 * 

  NUM OBS 0.380   0.616   0.340   0.352   

  

 

        

3,968    

           

269    

     

10,707    

     

10,491    
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MODEL GDD: seasonal GDD, seasonal rainfall.   

 

Winter wheat Spring wheat Durum Canola Flax 

Constant 7.20970 *** 7.2399 *** 7.28860 *** 6.67650 *** 6.767 *** 

Time 0.01761 *** 0.00884 *** 0.00727 *** 0.01382 *** 0.01016 *** 

RAIN 0.00059 *** 0.00080 *** 0.00135 *** 0.00071 *** 0.00100 *** 

GDD -0.00015 ** -0.00019 *** -0.00032 *** -0.00003   0.00009 ** 

Adj R2 0.470   0.322   0.3613   0.290   0.239   

Num. 

OBS 

        

1,642    

     

10,430    

        

4,673    

        

10,776     7,755   

           

           

 
Fall Rye Spring Rye Barley Oats 

  Constant 7.25050 *** 7.05360 *** 7.5786 *** 7.3236 *** 

  Time 0.01153 *** -0.01188 * 0.01004 *** 0.00910 *** 

  RAIN 0.00100 *** 0.00314 *** 0.00062 *** 0.00126 *** 

  GDD -0.00043 *** -0.00033   -0.00016 *** -0.00020 *** 

  Adj R2 0.305   0.542   0.277   0.295   

  Num. 

OBS 

        

4,667    

           

327    

     

10,707    

        

10,491    
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MODEL GDD PLUS: Seasonal GDD, monthly rainfall.  

 
WWHT SPRWHT DURUM CANOLA FLAX 

CONSTANT 7.2755 *** 7.2959 *** 7.3358 *** 6.6869 *** 6.8195 *** 

TIME 0.01716 *** 0.00851 *** 0.00735 *** 0.01391 *** 0.00986 *** 

APRIL RAIN 0.00240 *** 0.00094 *** 0.00167 *** 0.00076 *** -0.00007   

MAY RAIN 0.00258 *** 0.00175 *** 0.00212 *** 0.00207 *** 0.00132 *** 

JUNE RAIN 0.00052 ** 0.00147 *** 0.00217 *** 0.00043 *** 0.00141 *** 

JULY RAIN 0.00006   0.00075 *** 0.00181 *** 0.00099 *** 0.00197 *** 

AUGUST 

RAIN -0.00036   -0.00068 *** -0.00100 *** -0.00015   -0.00056 *** 

GDD 10 -0.00027 *** -0.00028 *** -0.00041 *** -0.00006 ** 0.00002   

ADJ R2 0.501   0.353   0.286   0.306   0.264   

NUM OBS 

        

1,642    

     

10,430    

        

4,763    

        

9,141    

        

6,507    
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FRYE SRYE BARLEY OATS 

  CONSTANT 7.3172 *** 6.9265 *** 7.4496 *** 7.3991 *** 

  TIME 0.01180 *** -0.01002 * 0.01003 *** 0.008874 *** 

  APRIL RAIN 0.00167 *** 0.00571 ** 0.00031   0.000689 *** 

  MAY RAIN 0.00297 *** 0.00796 *** 0.00107 *** 0.001759 *** 

  JUNE RAIN 0.00158 *** 0.00339 *** 0.00081 *** 0.001826 *** 

  JULY RAIN 0.00073 *** 0.00290 *** 0.00119 *** 0.001829 *** 

  AUGUST 

RAIN -0.00144 *** 0.00008   -0.00058 *** -0.00048 *** 

  GDD 10 -0.00056 *** -0.00049 * -0.00020 *** -0.00028 *** 

  ADJ R2 0.356   0.585   0.294   0.323   

  

NUM OBS 

        

3,968    

           

269    

     

10,707    

     

10,491    
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APPENDIX B: SEPARABILITY TEST RESULTS 

This appendix provides a summary of the cross-month t-tests of coefficient equivalency from 

Model 2. Equation 3.7 indicates that the null hypothesis is that the coefficients for crop i for month 

r or m for station k for x = . Boxes marked with an X are those where the results indicate that the 

probability that the null hypothesis is true is less than 5%.  These are months and crops for which 

weather effects are statistically different. 

                          [3.7] 

The months of the test are shown in the left column for each test, and the crops along the 

top of each test. The test results are shown for each 1 ºC temperature variable that was 

run in Model 2. 
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April=May   X   X X     X X 

 
April=May   X   X X   X   X 

April=June               X X 

 
April=June       X     X   X 

April=July   X               

 
April=July       X     X     

April=August   X   X X X     X 

 
April=August   X   X X X X   X 

May=June   X   X     X     

 
May=June                   

May=July   X   X     X     

 
May=July   X               

May=August   X       X       

 
May=August   X   X X X X     

June=July   X               

 
June=July                   

June=August   X   X X X X     

 
June=August   X   X X X X     

July=August   X   X   X X     

 
July=August   X   X   X X     

 

*Here due to multicolinearity DEG30 plus is counted for winter wheat in April and May 
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April=May   X               

 
April=May                   

April=June   X               

 
April=June                   

April=July                   

 
April=July   X               

April=August   X       X       

 
April=August   X               

May=June       X X         

 
May=June   X               

May=July   X   X           

 
May=July   X               

May=August   X       X       

 
May=August   X   X   X X     

June=July   X               

 
June=July   X               

June=August   X   X X X       

 
June=August   X   X X X       

July=August   X   X   X X     

 
July=August   X   X   X       
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April=May                   

 
April=May             X     

April=June                   

 
April=June             X     

April=July                   

 
April=July             X     

April=August                   

 
April=August             X     

May=June   X     X   X     

 
May=June                   

May=July   X         X     

 
May=July   X               

May=August                   

 
May=August           X       

June=July                   

 
June=July                   

June=August   X   X X X X     

 
June=August   X     X X       

July=August   X X X   X X     

 
July=August   X     X X X     
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DEG37 
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April=May                   

 
April=May                   

April=June                   

 
April=June                   

April=July                   

 
April=July                   

April=August                   

 
April=August                   

May=June                   

 
May=June                   

May=July                   

 
May=July                   

May=August           X X     

 
May=August         X         

June=July                   

 
June=July                   

June=August           X       

 
June=August         X         

July=August   X X X X         

 
July=August         X         

                     

                     

 

DEG39 
  

DEG40p 
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April=May                   

 
April=May                   

April=June                   

 
April=June                   

April=July                   

 
April=July                   

April=August                   

 
April=August                   

May=June           X       

 
May=June           X   X   

May=July                   

 
May=July           X   X   

May=August       X   X X     

 
May=August               X   

June=July                   

 
June=July                   

June=August                   

 
June=August                   

July=August                   

 
July=August   X               

 



 

167 

 

 

RAIN 
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April=May   X     X X   X   

April=June         X X X     

April=July         X         

April=August   X X X X       X 

May=June   X           X   

May=July   X           X X 

May=August   X X X X X X X   

June=July   X X     X X   X 

June=August   X X X X X     X 

July=August   X X X X X X   X 
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APPENDIX C: MODEL 1 RESULTS (seasonal cumulative temperature and monthly 

cumulative rainfall.) 

This section contains results for Model 1.  One asterisk (*) indicates significance at 10%, two asterisks (**) indicates significance 

at 5% and three (***) indicates significance at 1%.  

Variable Name  Variable Description 

CONSTANT  The constant in the equation 

TIME   Time trend, calculated as YEAR – 1964  

APRRAIN  Total cumulative rainfall from April 15 to April 30, in mm 

MAYRAIN  Total cumulative rainfall for May 

JUNRAIN  Total cumulative rainfall for June 

JULRAIN  Total cumulative rainfall for July 

AUGRAIN  Total cumulative rainfall for August 

DEG0   Total number of hours of exposure from April 14 to August 30 between 0.0 ºC and 0.9 ºC 

DEG1   Total number of hours of exposure from April 14 to August 30 between 1.0 ºC and 1.9 ºC 

DEG2 … DEG 39 As above for DEG0 and DEG1 but for temperatures from 2.0 to 2.9 ºC up to 39.0 to 39.9 ºC 

DEG40P  Total number of hours of exposure from April 14 to August 30 from 40.0 ºC and above 

Adj R2   The adjusted R
2
 statistic from the regression analysis 

N OBS   The number of observations in the regression analysis 

 

 

 

 

  



 

169 

 

 

Spring 

Wheat    

Durum 

Wheat   

Winter 

Wheat   Canola   Oats   Barley   Flax   

Constant 5.7658 *** 3.33460 *** 5.12420 *** 4.88500 *** 5.45310 *** 5.61080 *** 4.53190 *** 

Time 0.00879 *** 0.00890 *** 0.01838 *** 0.01367 *** 0.00884 *** 0.01013 *** 0.00978 *** 

AprRain 0.00054 *** 0.00102 *** 0.00198 *** 0.00043 * 0.00006   -0.00016   -0.00036   

MayRain 0.00097 *** 0.00132 *** 0.00202 *** 0.00115 *** 0.00075 *** 0.00019 * 0.00058 *** 

JunRain 0.00104 *** 0.00195 *** 0.00022   -0.00009   0.00118 *** 0.00038 *** 0.00110 *** 

JulRain 0.00017 ** 0.00124 *** -0.00033   0.00030 *** 0.00094 *** 0.00047 *** 0.00131 *** 

AugRain -0.00097 *** -0.00130 *** -0.00036   -0.00054 *** -0.00088 *** -0.00100 *** -0.00076 *** 

DEG0 0.00156 *** 0.00310 *** 0.00154   0.00094 ** 0.00220 *** 0.00175 *** 0.00315 *** 

DEG1 0.00048   0.00189 *** 0.00275 *** 0.00013   0.00028   0.00073 ** 0.00008   

DEG2 0.00074 ** 0.00170 *** 0.00117   0.00095 ** 0.00086 ** 0.00099 *** -0.00009   

DEG3 -0.00003   0.00156 *** -0.00061   -0.00027   0.00005   -0.00013   0.00022   

DEG4 0.00005   0.00107 ** -0.00009   0.00011   0.00031   -0.00008   0.00068   

DEG5 -0.00046 * -0.00006   -0.00009   0.00004   -0.00032   0.00009   -0.00015   

DEG6 0.00087 *** 0.00150 *** 0.00119   0.00076 ** 0.00077 *** 0.00062 ** 0.00087 ** 

DEG7 0.00035   0.00043   0.00075   0.00053 * 0.00010   0.00058 ** 0.00019   

DEG8 0.00060 *** 0.00125 *** 0.00172 *** 0.00066 *** 0.00095 *** 0.00077 *** 0.00032   

DEG9 0.00056 *** 0.00124 *** 0.00028   0.00100 *** 0.00065 ** 0.00111 *** 0.00109 *** 

DEG10 0.00059 *** 0.00072 ** 0.00065   0.00068 *** 0.00075 *** 0.00061 *** 0.00086 ** 

DEG11 0.00086 *** 0.00194 *** 0.00127 ** 0.00075 *** 0.00132 *** 0.00116 *** 0.00122 *** 

DEG12 0.00056 *** 0.00148 *** 0.00023   0.00025   0.00064 *** 0.00058 *** 0.00071 ** 

DEG13 0.00086 *** 0.00166 *** 0.00023   0.00088 *** 0.00096 *** 0.00075 *** 0.00077 ** 

DEG14 0.00042 ** 0.00052 * -0.00021   0.00074 *** 0.00062 *** 0.00064 *** 0.00051   

DEG15 0.00062 *** 0.00107 *** 0.00060   0.00060 *** 0.00059 *** 0.00081 *** 0.00132 *** 

DEG16 0.00020   0.00147 *** 0.00046   0.00022   0.00059 *** 0.00050 *** 0.00054 * 

DEG17 0.00061 *** 0.00138 *** 0.00230 *** 0.00080 *** 0.00105 *** 0.00067 *** 0.00076 ** 

DEG18 0.00033 * 0.00096 *** 0.00006   0.00064 *** 0.00070 *** 0.00054 *** 0.00065 ** 

DEG19 0.00034 ** 0.00097 *** -0.00031   0.00092 *** 0.00053 *** 0.00059 *** 0.00051 * 
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Spring 

Wheat 

 

Durum 

Wheat 

 

Winter 

Wheat 

 

Canola 

 

Oats 

 

Barley 

 

Flax   

DEG20 0.00049 *** 0.00120 *** 0.00226 *** 0.00089 *** 0.00061 *** 0.00091 *** 0.00125 *** 

DEG21 0.00021   0.00085 *** 0.00007   0.00069 *** 0.00030   0.00047 *** 0.00085 *** 

DEG22 0.00027   0.00113 *** 0.00058   0.00035   0.00034 * 0.00058 *** 0.00050 * 

DEG23 0.00054 *** 0.00117 *** 0.00054   0.00099 *** 0.00104 *** 0.00075 *** 0.00071 ** 

DEG24 0.00063 *** 0.00130 *** 0.00007   0.00122 *** 0.00076 *** 0.00103 *** 0.00132 *** 

DEG25 0.00019   0.00081 ** 0.00015   0.00069 *** 0.00017   0.00046 ** 0.00038   

DEG26 0.00047 ** 0.00047   0.00061   0.00020   0.00051 ** 0.00050 ** 0.00063 * 

DEG27 0.00073 *** 0.00173 *** 0.00144 ** 0.00031   0.00101 *** 0.00073 *** 0.00113 *** 

DEG28 0.00024   0.00058   0.00021   0.00015   -0.00026   0.00006   0.00102 ** 

DEG29 -0.00056 * -0.00023   -0.00042   -0.00088 ** -0.00097 *** -0.00098 *** 0.00085 * 

DEG30 -0.00056   -0.00005   -0.00020   -0.00049   -0.00069   -0.00082 * -0.00049   

DEG31 -0.00090 * 0.00058   -0.00126   -0.00080   -0.00231 *** -0.00106 ** -0.00033   

DEG32 0.00099 * 0.00191 ** 0.00072   0.00073   0.00123 * 0.00148 ** 0.00132   

DEG33 -0.00035   0.00092   0.00082   -0.00136   -0.00018   -0.00007   0.00048   

DEG34 -0.00242 *** -0.00106   -0.00412   -0.00187   -0.00268 *** -0.00171 * -0.00452 *** 

DEG35 -0.00434 *** -0.00104   -0.00471   -0.00321 * -0.00423 *** -0.00457 *** 0.00119   

DEG36 -0.00672 *** -0.00379   0.01058 ** -0.01070 *** -0.00978 *** -0.00775 *** -0.00346   

DEG37 -0.00632 * -0.00582 * -0.00754   -0.00483   -0.00351   -0.00481   -0.00894 * 

DEG38 -0.01068 ** -0.00781   0.00340   -0.00834   -0.00337   -0.01064 * -0.00723   

DEG39 0.00594   0.00823   0.00689   0.01962 * 0.01527 * 0.01351 * 0.00259   

DEG40P -0.01688 ** -0.01412 * 0.01871   0.00615   -0.00531   -0.01137   -0.00814   

ADJ 

R2 0.4242   0.3445   0.522   0.3612   0.4032   0.3769   0.3102   

Nobs 
        

12,332            5,600    

        

1,642    

      

10,776    

      

12,333    

      

12,579            7,755    

Ncoef 387   295   223   373   390   391   359   
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Fall Rye   

Spring 

Rye   

Constant 5.67580 *** 1.96950   

Time 0.01168 *** -0.00631   

AprRain 0.00102 *** 0.00375 ** 

MayRain 0.00230 *** 0.00549 *** 

JunRain 0.00121 *** 0.00374 *** 

JulRain 0.00039 *** 0.00180 ** 

AugRain -0.00146 *** 0.00043   

DEG0 0.00200 *** 0.00351   

DEG1 0.00107 * 0.00044   

DEG2 0.00115 * 0.00680 *** 

DEG3 0.00015   -0.00089   

DEG4 0.00078   0.00420 * 

DEG5 -0.00108 ** -0.00064   

DEG6 0.00090 * 0.00183   

DEG7 0.00092 ** 0.00165   

DEG8 0.00117 *** 0.00186   

DEG9 0.00039   0.00241   

DEG10 -0.00039   0.00194   

DEG11 0.00020   -0.00198   

DEG12 0.00096 *** 0.00296 * 

DEG13 0.00060 * -0.00120   

DEG14 0.00060 * -0.00093   

DEG15 0.00089 ** 0.00383 *** 

DEG16 0.00048   0.00681 *** 

DEG17 0.00098 *** 0.00124   

DEG18 -0.00001   -0.00100   

DEG19 0.00047   0.00217   
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Fall Rye   

Spring 

Rye   

DEG20 0.00038   0.00253 ** 

DEG21 -0.00042   0.00226   

DEG22 0.00035   0.00124   

DEG23 -0.00009   0.00023   

DEG24 0.00045   0.00246 * 

DEG25 -0.00073 * 0.00170   

DEG26 -0.00062   -0.00407 ** 

DEG27 0.00089 ** 0.00265   

DEG28 0.00050   0.00238   

DEG29 0.00030   0.00247   

DEG30 0.00043   0.00028   

DEG31 -0.00115   -0.00288   

DEG32 0.00203 ** 0.00308   

DEG33 0.00064   -0.00309   

DEG34 -0.00051   0.00611   

DEG35 -0.00512 ** -0.02259 *** 

DEG36 -0.00231   0.02451 ** 

DEG37 -0.01026 ** -0.01902   

DEG38 -0.00958   -0.02851   

DEG39 0.00521   -0.04116   

DEG40P -0.03660 *** n/a   

ADJ 

R2 0.3939   0.6671   

Nobs 
        

4,667    

           

327    

Ncoef 264 
16

  91   

 

                                                      
16

 The coefficients for the district dummies are not reported to due to conserve space.  
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APPENDIX D: MODEL 2 RESULTS (Monthly cumulative temperature and monthly 

cumulative rainfall) 

This section contains results for Model 2.  One asterisk (*) indicates significance at 10%, two asterisks (**) indicates significance 

at 5% and three (***) indicates significance at 1%.  

Variable Name   Variable Description 

CONSTANT   The constant in the equation 

TIME    Time trend, calculated as YEAR – 1964  

APRIL RAIN   Total cumulative rainfall from April 15 to April 30, in mm 

MAY RAIN   Total cumulative rainfall for May 

JUNE RAIN   Total cumulative rainfall for June 

JULY RAIN   Total cumulative rainfall for July 

AUGUST RAIN  Total cumulative rainfall for August 

APRDEG0   Total number of hours of exposure from April 14 to April 30 between 0.0 ºC and 0.9 ºC 

APRDEG1   Total number of hours of exposure from April 14 to April 30 between 1.0 ºC and 1.9 ºC 

APRDEG2 … APRDEG 39 As above for DEG0 and DEG1 but for temperatures from 2.0 to 2.9 ºC up to 39.0 to 39.9 ºC 

APRDEG40P   Total number of hours of exposure from April 14 to April 30 from 40.0 ºC and above 

MAYDEG0   Total number of hours of exposure for May between 0.0 ºC and 0.9 ºC 

MAYDEG1   Total number of hours of exposure for May between 1.0 ºC and 1.9 ºC 

MAYDEG2 … MAYDEG 39  As above for DEG0 and DEG1 but for temperatures from 2.0 to 2.9 ºC up to 39.0 to 39.9 ºC 

MAYDEG40P   Total number of hours of exposure for May from 40.0 ºC and above 

JUNDEG0 to JUNDEG40P  As above, but for June 

JULDEG0 to JULDEG40P  As above, but for July 

AUGDEG0 to AUGDEG40P  As above, but for August 

Adj R2    The adjusted R
2
 statistic from the regression analysis 

N OBS    The number of observations in the regression analysis 
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Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 Adjusted 

R2 0.473 0.498 0.395 0.434 0.413 0.352 0.477   

Time 0.0081 *** 0.0077 *** 0.0132 *** 0.0084 *** 

AprRain 0.0008 *** 0.0014 *** 0.0010 *** 0.0005 ** 

MayRain 0.0011 *** 0.0015 *** 0.0014 *** 0.0009 *** 

JunRain 0.0009 *** 0.0018 *** -0.0001   0.0011 *** 

JulRain 0.0001 * 0.0011 *** 0.0001   0.0007 *** 

AugRain -0.0004 *** -0.0004 ** -0.0002 ** -0.0005 *** 

AprDeg0 0.0012 *** 0.0030 *** 0.0013 ** 0.0016 *** 

AprDeg1 0.0001   0.0024 *** 0.0000   -0.0002   

AprDeg2 0.0013 *** 0.0022 *** 0.0023 *** 0.0013 ** 

AprDeg3 0.0003   0.0017 ** -0.0001   -0.0008   

AprDeg4 -0.0001   0.0018 *** 0.0004   -0.0003   

AprDeg5 -0.0007   -0.0015 * -0.0002   -0.0012 ** 

AprDeg6 0.0005   0.0021 ** 0.0011 * 0.0003   

AprDeg7 -0.0007   0.0001   0.0005   -0.0013 ** 

AprDeg8 0.0001   0.0020 ** -0.0010 * -0.0013 ** 

AprDeg9 0.0006   0.0015 * 0.0012 ** 0.0004   

AprDeg10 0.0004   0.0005   0.0008   -0.0002   

AprDeg11 0.0009 * 0.0019 ** 0.0011 * 0.0006   

AprDeg12 0.0003   0.0017 ** -0.0002   -0.0011 * 

AprDeg13 0.0021 *** 0.0036 *** 0.0029 *** 0.0015 ** 
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Variable 

Spring 

Wheat  Durum  Canola  Oats  

AprDeg14 0.0022 *** 0.0028 *** 0.0026 *** 0.0029 *** 

AprDeg16 0.0007   0.0026 ** 0.0005   0.0011   

AprDeg17 0.0012 * 0.0005   0.0017 ** 0.0023 *** 

AprDeg18 -0.0022 *** -0.0004   -0.0004   -0.0009   

AprDeg19 0.0006   0.0012   0.0006   0.0013   

AprDeg20 0.0032 *** 0.0056 *** 0.0033 *** 0.0028 *** 

AprDeg21 0.0005   0.0010   0.0012   -0.0004   

AprDeg22 0.0025 ** 0.0016   0.0010   0.0012   

AprDeg23 0.0016   0.0023   0.0046 *** 0.0025 * 

AprDeg24 -0.0018   -0.0035 * 0.0000   0.0000   

AprDeg25 -0.0003   0.0055 ** 0.0024   -0.0012   

AprDeg26 -0.0014   -0.0011   -0.0026   -0.0054 ** 

AprDeg27 0.0042 * 0.0102 *** 0.0047   0.0024   

AprDeg28 0.0020   -0.0072   0.0037   -0.0075 ** 

AprDeg29 0.0021   0.0032   -0.0007   0.0002   

AprDeg30 -0.0022   -0.0048   -0.0103   -0.0108 * 

AprDeg31 -0.0137 * 0.0108   -0.0019   -0.0196 ** 

AprDeg32 -0.0339 ** -0.0387 ** -0.0586 *** -0.0612 *** 

AprDeg33 -0.0379 ** 0.0200   -0.0190   -0.0210   

AprDeg34 -0.0240   -0.0626   0.0045   -0.0076   

AprDeg35 -0.0174   -0.0136   -0.0250   -0.0134   

AprDeg36 -0.0819 ** -0.0629   -0.1735 *** -0.0516   
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Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
MayDeg0 0.0019 *** 0.0022 ** 0.0011 * 0.0035 *** 

MayDeg1 0.0003   0.0003   0.0006   0.0011 * 

MayDeg2 0.0001   -0.0002   -0.0003   0.0007   

MayDeg3 -0.0002   0.0000   -0.0006   0.0012 ** 

MayDeg4 0.0001   -0.0004   -0.0002   0.0009 ** 

MayDeg5 -0.0008 ** -0.0012 * -0.0010 ** -0.0001   

MayDeg6 0.0011 *** 0.0014 ** 0.0005   0.0017 *** 

MayDeg7 0.0002   0.0001   0.0000   0.0008 * 

MayDeg8 0.0010 *** 0.0020 *** 0.0013 *** 0.0017 *** 

MayDeg9 -0.0002   -0.0008   -0.0002   0.0003   

MayDeg10 0.0000   -0.0003   0.0000   0.0010 ** 

MayDeg11 -0.0002   0.0007   -0.0005   0.0010 ** 

MayDeg12 -0.0006 * -0.0010   -0.0004   0.0005   

MayDeg13 0.0004   -0.0006   -0.0003   0.0012 *** 

MayDeg14 -0.0004   -0.0008   0.0001   0.0004   

MayDeg15 0.0001   -0.0005   0.0008 * 0.0014 *** 

MayDeg16 0.0002   0.0012 * 0.0001   0.0014 *** 

MayDeg17 0.0000   0.0008   0.0001   0.0012 *** 

MayDeg18 0.0009 ** 0.0006   0.0023 *** 0.0022 *** 

MayDeg19 0.0002   -0.0003   0.0009 * 0.0013 *** 

MayDeg20 -0.0011 *** -0.0010   -0.0001   0.0002   

MayDeg21 0.0006   -0.0001   0.0004   0.0018 *** 

MayDeg22 0.0003   0.0015 ** 0.0004   0.0013 ** 

  



 

177 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
MayDeg24 0.0005   -0.0004   0.0007   0.0005   

MayDeg25 -0.0003   -0.0004   0.0001   0.0006   

MayDeg26 -0.0013 * -0.0033 *** -0.0015   -0.0008   

MayDeg27 0.0012   0.0017   -0.0015   0.0016 * 

MayDeg28 -0.0006   -0.0020   0.0007   0.0001   

MayDeg29 0.0003   -0.0016   -0.0015   -0.0009   

MayDeg30 -0.0028 ** -0.0012   0.0000   -0.0010   

MayDeg31 0.0039 ** 0.0011   0.0027   0.0002   

MayDeg32 0.0011   0.0038   -0.0019   0.0018   

MayDeg33 0.0004   0.0004   0.0017   0.0033   

MayDeg34 -0.0039   -0.0029   -0.0024   0.0003   

MayDeg35 0.0083   0.0091   0.0162 ** 0.0085   

MayDeg36 -0.0013   0.0105   -0.0137   -0.0126   

MayDeg37 -0.0144 * -0.0150   -0.0256 ** -0.0154 * 

MayDeg38 -0.0099   -0.0494 ** -0.0242   0.0052 * 

MayDeg39 -0.0034   0.1582 *** -0.0683   0.0148   

MayDeg40 -0.0118   -0.1546   0.0116   -0.0270   

MayDeg41 0.0620   0.1275   0.0667   0.0744   

MayDeg42 0.1311 * 0.1588   n/a   -0.0061   

MayDeg43 n/a   n/a   n/a   n/a   

MayDeg44 n/a   n/a   n/a   n/a   

 

  



 

178 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
JunDeg0 -0.0011   0.0076   0.0034   0.0004   

JunDeg1 -0.0008   0.0059   -0.0062 ** -0.0022   

JunDeg2 -0.0006   0.0047   -0.0006   -0.0010   

JunDeg3 -0.0027   0.0040   -0.0027   -0.0035   

JunDeg4 -0.0023   0.0021   -0.0033   -0.0013   

JunDeg5 -0.0008   0.0053   -0.0009   -0.0016   

JunDeg6 -0.0012   0.0021   -0.0021   -0.0030   

JunDeg7 -0.0002   0.0026   -0.0009   -0.0013   

JunDeg8 -0.0015   0.0022   -0.0011   -0.0020   

JunDeg9 -0.0007   0.0025   -0.0015   -0.0010   

JunDeg10 -0.0005   0.0060 * -0.0013   -0.0004   

JunDeg11 0.0003   0.0056   -0.0001   0.0001   

JunDeg12 -0.0003   0.0040   -0.0012   -0.0010   

JunDeg13 0.0003   0.0051   0.0001   -0.0001   

JunDeg14 -0.0013   0.0029   -0.0013   -0.0016   

JunDeg15 -0.0015   0.0026   -0.0021   -0.0021   

JunDeg16 -0.0016   0.0041   -0.0015   -0.0021   

JunDeg17 -0.0012   0.0038   -0.0010   -0.0015   

JunDeg18 -0.0012   0.0035   -0.0016   -0.0016   

JunDeg19 -0.0008   0.0041   -0.0005   -0.0013   

JunDeg20 -0.0008   0.0039   -0.0007   -0.0011   

JunDeg21 -0.0011   0.0035   -0.0014   -0.0015   

JunDeg22 -0.0013   0.0038   -0.0015   -0.0013   

  



 

179 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
JunDeg24 -0.0009   0.0041   -0.0010   -0.0005   

JunDeg25 -0.0016   0.0031   -0.0020   -0.0026   

JunDeg26 -0.0009   0.0024   -0.0009   -0.0012   

JunDeg27 -0.0014   0.0046   -0.0010   -0.0001   

JunDeg28 0.0001   0.0044   -0.0010   -0.0003   

JunDeg29 -0.0017   0.0014   -0.0006   -0.0026   

JunDeg30 -0.0021   0.0041   -0.0030   -0.0013   

JunDeg31 -0.0039 ** 0.0033   -0.0039   -0.0049 ** 

JunDeg32 -0.0015   0.0028   0.0013   -0.0001   

JunDeg33 -0.0014   0.0047   0.0022   -0.0009   

JunDeg34 -0.0064 ** 0.0019   -0.0020   -0.0034   

JunDeg35 -0.0174 *** -0.0033   -0.0113 ** -0.0191 *** 

JunDeg36 -0.0118 ** -0.0049   -0.0070   -0.0101 * 

JunDeg37 -0.0113   -0.0113   -0.0051   -0.0074   

JunDeg38 -0.0073   -0.0024   -0.0063   -0.0027   

JunDeg39 0.0034   0.0194   0.0185   0.0069   

JunDeg40 -0.0041   -0.0137   -0.0090   -0.0056   

JunDeg41 0.0213   0.0029   0.0373   -0.0059   

JunDeg42 -0.1486 *** -0.1908 *** 0.1282   -0.1259 *** 

JunDeg43 0.0773   -0.2214 * 0.0557   0.3298 * 

JunDeg44 0.0294   0.3192 *** -0.1175   -0.0672   

 

 

  



 

180 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
JulDeg0 -0.0174 * 0.0087   -0.0200   -0.0092   

JulDeg1 -0.0099   0.0009   -0.0079   -0.0060   

JulDeg2 -0.0081   0.0144   -0.0003   0.0049   

JulDeg3 -0.0211 *** -0.0009   -0.0145   -0.0104   

JulDeg4 -0.0077   0.0149   -0.0077   -0.0023   

JulDeg5 -0.0159 *** 0.0028   -0.0123   -0.0048   

JulDeg6 -0.0148 *** 0.0004   -0.0110   -0.0060   

JulDeg7 -0.0141 *** 0.0051   -0.0120   -0.0058   

JulDeg10 -0.0144 *** 0.0018   -0.0117   -0.0056   

JulDeg11 -0.0136 *** 0.0043   -0.0100   -0.0044   

JulDeg12 -0.0130 *** 0.0060   -0.0122   -0.0048   

JulDeg13 -0.0141 *** 0.0046   -0.0117   -0.0054   

JulDeg14 -0.0138 *** 0.0035   -0.0107   -0.0055   

JulDeg15 -0.0140 *** 0.0025   -0.0108   -0.0053   

JulDeg16 -0.0145 *** 0.0035   -0.0114   -0.0047   

JulDeg17 -0.0139 *** 0.0052   -0.0106   -0.0045   

JulDeg18 -0.0139 *** 0.0047   -0.0114   -0.0050   

JulDeg19 -0.0144 *** 0.0041   -0.0114   -0.0059   

JulDeg20 -0.0139 *** 0.0039   -0.0107   -0.0051   

JulDeg21 -0.0145 *** 0.0027   -0.0115   -0.0064   

JulDeg22 -0.0145 *** 0.0027   -0.0121   -0.0063   

  



 

181 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
JulDeg24 -0.0141 *** 0.0034   -0.0110   -0.0056   

JulDeg25 -0.0136 *** 0.0036   -0.0108   -0.0052   

JulDeg26 -0.0134 *** 0.0037   -0.0115   -0.0048   

JulDeg27 -0.0141 *** 0.0040   -0.0119   -0.0056   

JulDeg28 -0.0150 *** 0.0032   -0.0127   -0.0066   

JulDeg29 -0.0159 *** 0.0028   -0.0140 * -0.0077   

JulDeg30 -0.0151 *** 0.0019   -0.0125   -0.0073   

JulDeg31 -0.0153 *** 0.0028   -0.0129   -0.0086   

JulDeg32 -0.0128 *** 0.0041   -0.0100   -0.0045   

JulDeg33 -0.0178 *** 0.0015   -0.0167 * -0.0084   

JulDeg34 -0.0177 *** -0.0011   -0.0129   -0.0106   

JulDeg35 -0.0195 *** -0.0035   -0.0177 * -0.0109   

JulDeg36 -0.0232 *** -0.0010   -0.0273 *** -0.0186   

JulDeg37 -0.0190 ** -0.0013   -0.0174   -0.0107   

JulDeg38 -0.0099   0.0067   -0.0098   0.0087   

JulDeg39 -0.0269   0.0171   -0.0574   -0.0132   

JulDeg40 -0.0069   0.0262   0.0508   0.0693 ** 

JulDeg41 -0.0303   -0.0138   0.0158   -0.0273   

JulDeg42 -0.0180   -0.0730   -0.0481   -0.0208   

JulDeg43 -0.1621 *** -0.0659   -0.1017   -0.1556 ** 

JulDeg44 -0.0245   0.0391   0.0195   0.0411   

 

 

  



 

182 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
AugDeg0 0.0116 *** 0.0003   0.0117 *** 0.0152 *** 

AugDeg1 0.0098 *** 0.0016   0.0089 *** 0.0089 *** 

AugDeg2 0.0101 *** 0.0018   0.0116 *** 0.0108 *** 

AugDeg3 0.0117 *** 0.0070 ** 0.0135 *** 0.0108 *** 

AugDeg4 0.0101 *** 0.0002   0.0108 *** 0.0097 *** 

AugDeg5 0.0099 *** 0.0019   0.0117 *** 0.0095 *** 

AugDeg6 0.0108 *** 0.0040   0.0123 *** 0.0113 *** 

AugDeg7 0.0097 *** 0.0000   0.0105 *** 0.0095 *** 

AugDeg8 0.0114 *** 0.0031   0.0128 *** 0.0118 *** 

AugDeg9 0.0111 *** 0.0023   0.0122 *** 0.0109 *** 

AugDeg10 0.0109 *** 0.0028   0.0119 *** 0.0114 *** 

AugDeg11 0.0105 *** 0.0025   0.0103 *** 0.0106 *** 

AugDeg12 0.0111 *** 0.0043 * 0.0125 *** 0.0117 *** 

AugDeg13 0.0097 *** 0.0022   0.0111 *** 0.0102 *** 

AugDeg14 0.0099 *** 0.0007   0.0110 *** 0.0102 *** 

AugDeg15 0.0108 *** 0.0037   0.0112 *** 0.0104 *** 

AugDeg16 0.0099 *** 0.0014   0.0105 *** 0.0103 *** 

AugDeg17 0.0108 *** 0.0016   0.0115 *** 0.0111 *** 

AugDeg18 0.0102 *** 0.0007   0.0110 *** 0.0102 *** 

AugDeg19 0.0101 *** 0.0010   0.0115 *** 0.0105 *** 

AugDeg20 0.0109 *** 0.0022   0.0113 *** 0.0108 *** 

AugDeg21 0.0111 *** 0.0032   0.0121 *** 0.0111 *** 

AugDeg22 0.0110 *** 0.0032   0.0113 *** 0.0107 *** 



 

183 

 

Variable 

Spring 

Wheat 

 

Durum 

 

Canola 

 

Oats 

 
AugDeg24 0.0114 *** 0.0040   0.0129 *** 0.0110 *** 

AugDeg25 0.0106 *** 0.0031   0.0122 *** 0.0106 *** 

AugDeg26 0.0106 *** 0.0024   0.0111 *** 0.0108 *** 

AugDeg27 0.0113 *** 0.0030   0.0117 *** 0.0110 *** 

AugDeg28 0.0102 *** 0.0006   0.0117 *** 0.0091 *** 

AugDeg29 0.0100 *** 0.0006   0.0107 *** 0.0094 *** 

AugDeg30 0.0094 *** 0.0010   0.0117 *** 0.0097 *** 

AugDeg31 0.0092 *** 0.0031   0.0098 *** 0.0078 *** 

AugDeg32 0.0105 *** 0.0037   0.0106 *** 0.0111 *** 

AugDeg33 0.0113 *** 0.0039   0.0094 *** 0.0098 *** 

AugDeg34 0.0112 *** 0.0037   0.0093 *** 0.0098 *** 

AugDeg35 0.0111 *** 0.0043   0.0124 *** 0.0110 *** 

AugDeg36 0.0104 *** 0.0026   0.0041   0.0067 * 

AugDeg37 0.0057   0.0018   0.0058   0.0091 * 

AugDeg38 0.0050   -0.0044   -0.0052   -0.0014   

AugDeg39 0.0316 *** 0.0009   0.0373 *** 0.0368 *** 

AugDeg40 -0.0095   0.0006   -0.0424   -0.0183   

AugDeg41 0.0519   0.0476   0.1338 *** 0.0573   

AugDeg42 -0.0098   -0.0135   -0.0373   0.0108   

AugDeg43 -0.0071   -0.0238   -0.0373   -0.0338   

AugDeg44 0.0093   0.0486   0.0960   0.0333   



 

184 

 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 Adjusted 

R2 9.0175 *** 

-

21.2350 *** -8.4336   

Time 0.0103 *** 0.0095 *** 0.0100 *** 

AprRain 0.0004 * -0.0001   0.0006 * 

MayRain 0.0005 *** 0.0007 *** 0.0021 *** 

JunRain 0.0003 *** 0.0012 *** 0.0006 *** 

JulRain 0.0001 * 0.0006 *** 0.0004 *** 

AugRain -0.0004 *** -0.0004 ** 0.0000   

AprDeg0 0.0013 *** 0.0015 ** 0.0009   

AprDeg1 0.0005   -0.0005   0.0002   

AprDeg2 0.0021 *** 0.0007   0.0016 ** 

AprDeg3 -0.0005   0.0007   -0.0005   

AprDeg4 -0.0008 * 0.0013 * -0.0003   

AprDeg5 -0.0007   -0.0003   -0.0009   

AprDeg6 0.0002   0.0018 ** 0.0008   

AprDeg7 -0.0005   -0.0009   0.0011   

AprDeg8 0.0000   0.0003   0.0015 * 

AprDeg9 0.0005   0.0008   0.0017 * 

AprDeg10 0.0007   -0.0008   0.0002   

AprDeg11 0.0009 * 0.0015   0.0006   

AprDeg12 -0.0005   -0.0006   0.0004   

AprDeg13 0.0016 *** 0.0028 *** 0.0013   

AprDeg14 0.0016 *** 0.0002   0.0024 ** 

  



 

185 

 

Variable Barley 

 

Flax 

 

Fall 

Rye   

AprDeg16 0.0008   0.0021 * 0.0016   

AprDeg17 0.0006   -0.0001   0.0012   

AprDeg18 -0.0026 *** 0.0001   -0.0036 ** 

AprDeg19 0.0015 * -0.0002   0.0027 * 

AprDeg20 0.0013   0.0006   0.0048 *** 

AprDeg21 0.0006   0.0026 * -0.0004   

AprDeg22 0.0022 ** 0.0005   0.0000   

AprDeg23 0.0022 * -0.0001   -0.0023   

AprDeg24 0.0000   0.0023   -0.0012   

AprDeg25 0.0002   -0.0042   -0.0073 ** 

AprDeg26 -0.0028   -0.0013   -0.0091 ** 

AprDeg27 0.0059 ** 0.0076 ** 0.0023   

AprDeg28 -0.0009   -0.0049   -0.0095   

AprDeg29 0.0055   0.0110 ** -0.0070   

AprDeg30 -0.0021   -0.0136 * -0.0217 * 

AprDeg31 -0.0161 ** -0.0095   -0.0316 * 

AprDeg32 -0.0567 *** -0.0251   0.0093   

AprDeg33 -0.0217   -0.0224   -0.0428   

AprDeg34 0.0212   0.0043   0.0072   

AprDeg35 -0.0244   0.0334   n/a   

AprDeg36 -0.0301   -0.0794   n/a   

 

  



 

186 

 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 
MayDeg0 0.0029 *** 0.0048 *** 0.0020 ** 

MayDeg1 0.0007   0.0006   0.0013   

MayDeg2 -0.0001   -0.0006   0.0000   

MayDeg3 0.0005   -0.0002   0.0007   

MayDeg4 0.0007 * 0.0007   0.0007   

MayDeg5 -0.0001   0.0000   -0.0015 ** 

MayDeg6 0.0011 *** 0.0017 ** 0.0008   

MayDeg7 0.0009 ** 0.0018 *** 0.0013 * 

MayDeg8 0.0016 *** 0.0022 *** 0.0023 *** 

MayDeg9 0.0002   0.0011 * 0.0002   

MayDeg10 0.0006   0.0005   -0.0009   

MayDeg11 0.0003   0.0011 * 0.0009   

MayDeg12 0.0001   0.0000   0.0002   

MayDeg13 0.0010 *** 0.0020 *** 0.0005   

MayDeg14 0.0004   -0.0003   -0.0013   

MayDeg15 0.0011 *** 0.0021 *** 0.0007 ** 

MayDeg16 0.0007 * 0.0016 ** -0.0002   

MayDeg17 0.0006   0.0005   0.0011   

MayDeg18 0.0016 *** 0.0014 ** 0.0011   

MayDeg19 0.0009 ** 0.0003   0.0006   

MayDeg20 0.0000   0.0000   -0.0014 * 

MayDeg21 0.0015 *** 0.0000   -0.0013   



 

187 

 

Variable Barley  Flax  

Fall 

Rye   

MayDeg22 0.0009 * 0.0025 *** 0.0015 * 

MayDeg24 0.0010 * 0.0020 ** 0.0012   

MayDeg25 0.0004   0.0020 * -0.0013   

MayDeg26 -0.0006   -0.0013   -0.0031 ** 

MayDeg27 0.0023 *** 0.0016   0.0036 ** 

MayDeg28 0.0007   -0.0005   -0.0033 * 

MayDeg29 0.0006   0.0011   0.0025   

MayDeg30 -0.0027 * 0.0011   -0.0063 ** 

MayDeg31 0.0047 *** -0.0030   0.0083 ** 

MayDeg32 0.0007   0.0011   0.0076   

MayDeg33 0.0039   0.0051   -0.0011   

MayDeg34 -0.0014   -0.0130 ** -0.0099   

MayDeg35 0.0051   0.0161 * 0.0001   

MayDeg36 -0.0019   0.0139 * 0.0169   

MayDeg37 -0.0137   -0.0100   0.0083   

MayDeg38 0.0032   -0.0143   -0.0305   

MayDeg39 -0.0060   -0.1047   -0.0043   

MayDeg40 0.0028   0.0581   -0.0235   

MayDeg41 0.0155   0.1340   0.1132   

MayDeg42 0.1145   0.0633   0.2580 ** 

MayDeg43 n/a   n/a   n/a   

MayDeg44 n/a   n/a   n/a   

 

  



 

188 

 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 
JunDeg0 0.0003   0.0024   0.0072   

JunDeg1 -0.0003   0.0071   0.0133 *** 

JunDeg2 0.0019   0.0036   0.0118 *** 

JunDeg3 -0.0017   0.0006   0.0117 *** 

JunDeg4 -0.0014   0.0021   0.0120 *** 

JunDeg5 0.0009   0.0079 *** 0.0122 *** 

JunDeg6 -0.0008   0.0021   0.0113 *** 

JunDeg7 0.0005   0.0052 ** 0.0122 *** 

JunDeg8 -0.0003   0.0042 * 0.0105 *** 

JunDeg9 0.0003   0.0032   0.0127 *** 

JunDeg10 0.0006   0.0038   0.0139 *** 

JunDeg11 0.0008   0.0042 * 0.0113 *** 

JunDeg12 0.0003   0.0037   0.0133 *** 

JunDeg13 0.0010   0.0040 * 0.0131 *** 

JunDeg14 -0.0006   0.0034   0.0126 *** 

JunDeg15 -0.0005   0.0035   0.0111 *** 

JunDeg16 -0.0003   0.0021   0.0109 *** 

JunDeg17 -0.0003   0.0038   0.0123 *** 

JunDeg18 0.0004   0.0032   0.0118 *** 

JunDeg19 0.0004   0.0038   0.0115 *** 

JunDeg20 0.0004   0.0049 ** 0.0121 *** 

JunDeg21 -0.0001   0.0039   0.0116 *** 

JunDeg22 0.0002   0.0041 * 0.0122 *** 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 
JunDeg24 0.0008   0.0048 ** 0.0132 *** 

JunDeg25 -0.0006   0.0033   0.0098 *** 

JunDeg26 0.0006   0.0050 ** 0.0106 *** 

JunDeg27 -0.0001   0.0039   0.0087 *** 

JunDeg28 0.0012   0.0049 ** 0.0151 *** 

JunDeg29 -0.0012   0.0059 ** 0.0098 *** 

JunDeg30 -0.0007   0.0020   0.0136 *** 

JunDeg31 -0.0039 ** 0.0025   0.0069 ** 



 

189 

 

JunDeg32 0.0020   0.0089 *** 0.0099 *** 

JunDeg33 -0.0003   0.0080 ** 0.0062 * 

JunDeg34 -0.0027   -0.0008   0.0070   

JunDeg35 -0.0138 *** 0.0047   -0.0099   

JunDeg36 -0.0115 ** -0.0056   0.0132 * 

JunDeg37 -0.0084   -0.0123   0.0100   

JunDeg38 -0.0134   -0.0110   0.0055   

JunDeg39 0.0169   0.0086   0.0313 ** 

JunDeg40 -0.0080   0.0039   -0.0167   

JunDeg41 0.0008   -0.0218   0.0412   

JunDeg42 -0.1557 *** -0.0951   -0.0308   

JunDeg43 0.1239   -0.1270   0.0583   

JunDeg44 0.1248   0.0587   -0.1225   

 

 

  



 

190 

 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 
JulDeg0 -0.0191 ** 0.0275   0.0120   

JulDeg1 -0.0077   -0.0119   -0.0135   

JulDeg2 -0.0023   0.0074   0.0109   

JulDeg3 -0.0151 *** 0.0145   0.0060   

JulDeg4 -0.0069   0.0092   0.0090   

JulDeg5 -0.0112 ** 0.0090   0.0042   

JulDeg6 -0.0120 *** 0.0057   0.0067   

JulDeg7 -0.0106 ** 0.0083   0.0047   

JulDeg8 -0.0108 ** 0.0082   0.0034   

JulDeg9 -0.0104 ** 0.0093   0.0062   

JulDeg10 -0.0114 *** 0.0090   0.0051   

JulDeg11 -0.0092 ** 0.0092   0.0044   

JulDeg12 -0.0101 ** 0.0093   0.0077   

JulDeg13 -0.0114 *** 0.0076   0.0056   

JulDeg14 -0.0101 ** 0.0091   0.0073   

JulDeg15 -0.0103 ** 0.0081   0.0066   

JulDeg16 -0.0101 ** 0.0092   0.0055   

JulDeg17 -0.0104 ** 0.0089   0.0067   

JulDeg18 -0.0107 ** 0.0096   0.0056   

JulDeg19 -0.0112 ** 0.0089   0.0063   

JulDeg20 -0.0102 ** 0.0090   0.0054   

JulDeg21 -0.0115 *** 0.0082   0.0047   

JulDeg22 -0.0116 *** 0.0077   0.0046   



 

191 

 

Variable Barley 

 

Flax 

 

Fall 

Rye   

JulDeg24 -0.0113 *** 0.0088   0.0046   

JulDeg25 -0.0107 ** 0.0084   0.0062   

JulDeg26 -0.0106 ** 0.0078   0.0056   

JulDeg27 -0.0113 ** 0.0087   0.0060   

JulDeg28 -0.0123 *** 0.0084   0.0057   

JulDeg29 -0.0136 *** 0.0080   0.0058   

JulDeg30 -0.0124 *** 0.0073   0.0047   

JulDeg31 -0.0126 *** 0.0081   0.0060   

JulDeg32 -0.0098 ** 0.0088   0.0053   

JulDeg33 -0.0139 *** 0.0046   0.0074   

JulDeg34 -0.0143 *** 0.0009   0.0043   

JulDeg35 -0.0175 *** -0.0015   0.0012   

JulDeg36 -0.0220 *** -0.0035   0.0039   

JulDeg37 -0.0160 * -0.0036   -0.0060   

JulDeg38 -0.0053   -0.0034   -0.0021   

JulDeg39 -0.0220   0.0023   0.0174   

JulDeg40 -0.0065   0.0596   -0.0343   

JulDeg41 -0.0048   -0.0819   -0.1091   

JulDeg42 0.0086   0.1585 ** -0.0309   

JulDeg43 -0.1579 ** -0.0969   0.0017   

JulDeg44 -0.0245   -0.0421   -0.1477 * 

 

 

  



 

192 

 

Variable Barley 

 

Flax 

 

Fall 

Rye 

 
AugDeg0 0.0107 *** 0.0203 ** 0.0016   

AugDeg1 0.0082 *** 0.0232 *** 0.0052   

AugDeg2 0.0071 *** 0.0159 *** 0.0025   

AugDeg3 0.0083 *** 0.0281 *** 0.0029   

AugDeg4 0.0074 *** 0.0288 *** 0.0058   

AugDeg5 0.0074 *** 0.0219 *** 0.0015   

AugDeg6 0.0079 *** 0.0257 *** 0.0033   

AugDeg7 0.0073 *** 0.0215 *** 0.0031   

AugDeg8 0.0096 *** 0.0256 *** 0.0049 * 

AugDeg9 0.0082 *** 0.0252 *** 0.0011   

AugDeg10 0.0080 *** 0.0238 *** 0.0021   

AugDeg11 0.0081 *** 0.0237 *** 0.0041   

AugDeg12 0.0087 *** 0.0251 *** 0.0043   

AugDeg13 0.0068 *** 0.0224 *** 0.0016   

AugDeg14 0.0073 *** 0.0241 *** 0.0020   

AugDeg15 0.0076 *** 0.0254 *** 0.0036   

AugDeg16 0.0071 *** 0.0233 *** 0.0034   

AugDeg17 0.0083 *** 0.0245 *** 0.0018   

AugDeg18 0.0070 *** 0.0236 *** 0.0017   

AugDeg19 0.0076 *** 0.0240 *** 0.0012   

AugDeg20 0.0086 *** 0.0255 *** 0.0026   

AugDeg21 0.0083 *** 0.0267 *** 0.0028   

AugDeg22 0.0083 *** 0.0246 *** 0.0030   
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Variable Barley 

 

Flax 

 

Fall 

Rye   

AugDeg24 0.0089 *** 0.0251 *** 0.0037   

AugDeg25 0.0083 *** 0.0237 *** 0.0029   

AugDeg26 0.0080 *** 0.0249 *** 0.0026   

AugDeg27 0.0087 *** 0.0249 *** 0.0049 * 

AugDeg28 0.0077 *** 0.0245 *** 0.0013   

AugDeg29 0.0072 *** 0.0232 *** 0.0028   

AugDeg30 0.0066 *** 0.0238 *** 0.0033   

AugDeg31 0.0061 *** 0.0222 *** 0.0021   

AugDeg32 0.0086 *** 0.0240 *** 0.0042   

AugDeg33 0.0078 *** 0.0236 *** 0.0035   

AugDeg34 0.0084 *** 0.0214 *** 0.0048   

AugDeg35 0.0074 *** 0.0298 *** 0.0003   

AugDeg36 0.0069 *** 0.0292 *** 0.0053   

AugDeg37 0.0051   0.0226 *** -0.0042   

AugDeg38 -0.0026   0.0239 *** 0.0000   

AugDeg39 0.0291 *** 0.0453 *** 0.0022   

AugDeg40 -0.0205   0.0331   -0.0290   

AugDeg41 0.0666 ** 0.0859 ** 0.0727 * 

AugDeg42 -0.0108   -0.0218   -0.1445 * 

AugDeg43 0.0040   -0.0167   0.0726   

AugDeg44 0.0279   0.0485   0.0112   
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APPENDIX E:  MODEL 3 RESULTS 

This section contains results for Model 3.  One asterisk (*) indicates significance at 10%, 

two asterisks (**) indicates significance at 5% and three (***) indicates significance at 

1%.  

Variable Name   Variable Description 

CONSTANT   The constant in the equation 

TIME    Time trend, calculated as YEAR – 1964  

APRIL RAIN   Total cumulative rainfall from April 15 to April 30, in  

mm 

MAY RAIN   Total cumulative rainfall for May 

JUNE RAIN   Total cumulative rainfall for June 

JULY RAIN   Total cumulative rainfall for July 

AUGUST RAIN  Total cumulative rainfall for August 

APRDEG0   Total number of hours of exposure from April 14 to  

April 30 between 0.0 ºC and 0.9 ºC 

APRDEG1   Total number of hours of exposure from April 14 to  

April 30 between 1.0 ºC and 1.9 ºC 

APRDEG2 … APRDEG39 As above for DEG0 and DEG1 but for temperatures  

    from 2.0 to 2.9 ºC up to 39.0 to 39.9 ºC 

APRDEG40P   Total number of hours of exposure from April 14 to  

April 30 from 40.0 ºC and above 

MAYDEG0   Total number of hours of exposure for May between 0.0  

ºC and 0.9 ºC 

MAYDEG1   Total number of hours of exposure for May between 1.0  

ºC and 1.9 ºC 

MAYDEG2 … MAYDEG39  As above for DEG0 and DEG1 but for temperatures  

from 2.0 to 2.9 ºC up to 39.0 to 39.9 ºC 

MAYDEG40P   Total number of hours of exposure for May from 40.0 ºC  

and above 

JUNDEG0 TO JUNDEG29   As above for April and May 

JULDEG0 to JULDEG29 As above for April and May 

AUGDEG0 to AUGDEG29   As above for April and May 

JJADEG30 to JJADEG40P   Cumulative total hours for June, July and August for 30  

to 30.9 ºC up to 40 ºC and above 

Adj R2    The adjusted R
2
 statistic from the regression analysis 

N OBS    The number of observations in the regression analysis 
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Variable 

Spring 

Wheat 

 

Canola 

 

Oats 

 

Barley 

 Adj. R2 0.463   0.390   0.429   0.482   

Trend 0.0081 *** 0.0133 *** 0.0084 *** 0.0103 *** 

AprRain 0.0008 *** 0.0010 *** 0.0006 *** 0.0004 * 

MayRain 0.0011 *** 0.0014 *** 0.0008 *** 0.0005 *** 

JunRain 0.0008 *** -0.0001   0.0011 *** 0.0003 *** 

JulRain 0.0002 ** 0.0001   0.0008 *** 0.0002 *** 

AugRain -0.0004 *** -0.0002 * -0.0005 *** -0.0004 *** 

AprDeg0 0.0015 *** 0.0013 ** 0.0019 *** 0.0016 *** 

AprDeg1 0.0002   0.0000   -0.0001   0.0006   

AprDeg2 0.0014 *** 0.0022 *** 0.0013 ** 0.0021   

AprDeg3 0.0003   -0.0001   -0.0007   -0.0004   

AprDeg4 -0.0001   0.0004   -0.0003   -0.0008 * 

AprDeg5 -0.0007   -0.0002   -0.0012 ** -0.0007   

AprDeg6 0.0005   0.0011 * 0.0003   0.0002   

AprDeg7 -0.0007   0.0004   -0.0013 ** -0.0006   

AprDeg8 0.0000   -0.0010 * -0.0013 ** -0.0001   

AprDeg9 0.0006   0.0011 * 0.0003   0.0005   

AprDeg10 0.0003   0.0006   -0.0003   0.0007   

AprDeg11 0.0010 ** 0.0011 * 0.0008   0.0009 * 

AprDeg12 0.0003   -0.0003   -0.0011   -0.0005   

AprDeg13 0.0022 *** 0.0031 *** 0.0017   0.0018 *** 

AprDeg14 0.0024 *** 0.0027 *** 0.0030   0.0017 *** 

AprDeg15 0.0014 ** 0.0013 * 0.0017   0.0019 *** 

AprDeg16 0.0007   0.0004   0.0011   0.0008   

AprDeg17 0.0016 ** 0.0019 ** 0.0026   0.0009   

AprDeg18 -0.0023 *** -0.0005   -0.0009   -0.0026 *** 

AprDeg19 0.0008   0.0005   0.0015   0.0016 ** 

AprDeg20 0.0034 *** 0.0033 *** 0.0031   0.0014   

AprDeg21 0.0006   0.0012   -0.0004   0.0006   

AprDeg22 0.0026 ** 0.0013   0.0014   0.0024   

AprDeg23 0.0014   0.0043 *** 0.0023   0.0021   

AprDeg24 -0.0020   -0.0001   -0.0003   -0.0001   

AprDeg25 -0.0002   0.0022   -0.0012   0.0002   

AprDeg26 -0.0011   -0.0021   -0.0052   -0.0027   

AprDeg27 0.0044   0.0046   0.0026   0.0062 ** 

AprDeg28 0.0016   0.0036   -0.0077   -0.0014   

AprDeg29 0.0039   0.0003   0.0016   0.0068   

AprDeg30 -0.0015 * -0.0102   -0.0098   -0.0013   

AprDeg31 -0.0126 ** -0.0018   -0.0182 ** -0.0154 ** 
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Variable 

Spring 

Wheat 

 
Canola 

 

Oats 

 

Barley *** 

AprDeg33 -0.0347   -0.0216   -0.0184   -0.0191   

AprDeg34 -0.0203   0.0064   -0.0045   0.0252   

AprDeg35 -0.0163   -0.0206   -0.0116   -0.0225   

AprDeg36 -0.0831 * -0.1703 *** -0.0543   -0.0300   

MayDeg0 0.0017 *** 0.0012 * 0.0034 *** 0.0028 *** 

MayDeg1 0.0003   0.0006   0.0012 * 0.0007   

MayDeg2 -0.0001   -0.0004   0.0006   -0.0002   

MayDeg3 -0.0002   -0.0006   0.0013 ** 0.0005   

MayDeg4 0.0001   -0.0001   0.0010 ** 0.0008 * 

MayDeg5 -0.0009 ** -0.0010 ** -0.0001   -0.0001   

MayDeg6 0.0012 *** 0.0005   0.0017 *** 0.0011 *** 

MayDeg7 0.0002   0.0000   0.0008 * 0.0009 ** 

MayDeg8 0.0009 *** 0.0013 *** 0.0017 *** 0.0016 *** 

MayDeg9 -0.0002   -0.0003   0.0003   0.0002   

MayDeg10 0.0000   0.0000   0.0010 ** 0.0005   

MayDeg11 -0.0002   -0.0004   0.0010 ** 0.0003   

MayDeg12 -0.0006 * -0.0004   0.0006   0.0001   

MayDeg13 0.0004   -0.0003   0.0012 *** 0.0010 *** 

MayDeg14 -0.0004   0.0002   0.0004   0.0004   

MayDeg15 0.0000   0.0007   0.0013 *** 0.0011 *** 

MayDeg16 0.0003   0.0003   0.0015 *** 0.0007 * 

MayDeg17 0.0001   0.0002   0.0013 *** 0.0006   

MayDeg18 0.0009 ** 0.0023 *** 0.0022 *** 0.0017 *** 

MayDeg19 0.0002   0.0010 * 0.0013 *** 0.0009 ** 

MayDeg20 -0.0012 *** -0.0002   0.0000   -0.0002   

MayDeg21 0.0003   0.0004   0.0016 *** 0.0013 *** 

MayDeg22 0.0003   0.0005   0.0013 ** 0.0010 ** 

MayDeg23 0.0007   0.0006   0.0009   0.0011 ** 

MayDeg24 0.0002   0.0005   0.0003   0.0008   

MayDeg25 -0.0003   -0.0001   0.0005   0.0003   

MayDeg26 -0.0011   -0.0014   -0.0006   -0.0004   

MayDeg27 0.0013   -0.0014   0.0018 ** 0.0025 *** 

MayDeg28 -0.0005   0.0007   0.0002   0.0008   

MayDeg29 0.0006   -0.0016   -0.0007   0.0007   

MayDeg30 -0.0027 ** 0.0001   -0.0010   -0.0026 * 

MayDeg31 0.0040 *** 0.0031   0.0004   0.0049 *** 

MayDeg32 0.0008   -0.0014   0.0018   0.0007   

MayDeg33 0.0000   0.0014   0.0031   0.0035   

MayDeg34 -0.0053   -0.0037   -0.0013   -0.0029   

Variable Spring 

 
Canola 

 

Oats 

 

Barley   
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Wheat 

MayDeg37 -0.0119   -0.0242 ** -0.0133   -0.0115   

MayDeg38 -0.0130   -0.0246   0.0011   0.0009   

MayDeg39 -0.0170   -0.0724   0.0024   -0.0144   

MayDeg40P 0.0233   0.0188   0.0060   0.0145   

JunDeg0 0.0122 *** 0.0151 *** 0.0133 *** 0.0090 *** 

JunDeg1 0.0075 *** 0.0009   0.0056 ** 0.0047 ** 

JunDeg2 0.0064 *** 0.0055 ** 0.0058 *** 0.0064 *** 

JunDeg3 0.0046 *** 0.0040 ** 0.0037 * 0.0031 ** 

JunDeg4 0.0050 *** 0.0030 * 0.0057 *** 0.0032 *** 

JunDeg5 0.0065 *** 0.0054 *** 0.0055 *** 0.0055 *** 

JunDeg6 0.0060 *** 0.0043 *** 0.0040 *** 0.0038 *** 

JunDeg7 0.0070 *** 0.0054 *** 0.0056 *** 0.0051 *** 

JunDeg8 0.0056 *** 0.0051 *** 0.0049 *** 0.0042 *** 

JunDeg9 0.0064 *** 0.0048 *** 0.0060 *** 0.0049 *** 

JunDeg10 0.0068 *** 0.0050 *** 0.0066 *** 0.0052 *** 

JunDeg11 0.0077 *** 0.0062 *** 0.0072 *** 0.0055 *** 

JunDeg12 0.0069 *** 0.0051 *** 0.0060 *** 0.0049 *** 

JunDeg13 0.0075 *** 0.0064 *** 0.0069 *** 0.0056 *** 

JunDeg14 0.0059 *** 0.0050 *** 0.0055 *** 0.0040 *** 

JunDeg15 0.0057 *** 0.0043 *** 0.0049 *** 0.0041 *** 

JunDeg16 0.0056 *** 0.0048 *** 0.0049 *** 0.0043 *** 

JunDeg17 0.0060 *** 0.0054 *** 0.0055 *** 0.0043 *** 

JunDeg18 0.0060 *** 0.0047 *** 0.0054 *** 0.0050 *** 

JunDeg19 0.0064 *** 0.0059 *** 0.0058 *** 0.0050 *** 

JunDeg20 0.0065 *** 0.0056 *** 0.0059 *** 0.0050 *** 

JunDeg21 0.0061 *** 0.0050 *** 0.0054 *** 0.0044 *** 

JunDeg22 0.0060 *** 0.0048 *** 0.0058 *** 0.0048 *** 

JunDeg23 0.0063 *** 0.0047 *** 0.0054 *** 0.0047 *** 

JunDeg24 0.0063 *** 0.0052 *** 0.0064 *** 0.0054 *** 

JunDeg25 0.0056 *** 0.0044 *** 0.0044 *** 0.0040 *** 

JunDeg26 0.0063 *** 0.0054 *** 0.0058 *** 0.0052 *** 

JunDeg27 0.0059 *** 0.0054 *** 0.0070 *** 0.0046 *** 

JunDeg28 0.0074 *** 0.0053 *** 0.0068 *** 0.0059 *** 

JunDeg29 0.0056 *** 0.0049 *** 0.0044 *** 0.0034 *** 
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Variable 

Spring 

Wheat 

 
Canola 

 

Oats 

 

Barley 

 JulDeg0 0.0188 *** 0.0141 ** 0.0127 * 0.0091 * 

JulDeg1 0.0111 ** 0.0125 ** 0.0064   0.0089 * 

JulDeg2 0.0098 *** 0.0158 *** 0.0158 *** 0.0123 *** 

JulDeg3 -0.0012   0.0044   0.0015   0.0006   

JulDeg4 0.0108 *** 0.0103 *** 0.0088 *** 0.0080 *** 

JulDeg5 0.0032 ** 0.0060 *** 0.0069 *** 0.0043 *** 

JulDeg6 0.0041 *** 0.0066 *** 0.0052 *** 0.0031 ** 

JulDeg7 0.0051 *** 0.0062 *** 0.0058 *** 0.0048 *** 

JulDeg8 0.0045 *** 0.0077 *** 0.0053 *** 0.0042 *** 

JulDeg9 0.0053 *** 0.0073 *** 0.0074 *** 0.0048 *** 

JulDeg10 0.0048 *** 0.0064 *** 0.0059 *** 0.0040 *** 

JulDeg11 0.0056 *** 0.0082 *** 0.0071 *** 0.0061 *** 

JulDeg12 0.0060 *** 0.0059 *** 0.0066 *** 0.0051 *** 

JulDeg13 0.0051 *** 0.0066 *** 0.0063 *** 0.0040 *** 

JulDeg14 0.0053 *** 0.0075 *** 0.0060 *** 0.0053 *** 

JulDeg15 0.0051 *** 0.0073 *** 0.0062 *** 0.0050 *** 

JulDeg16 0.0045 *** 0.0068 *** 0.0068 *** 0.0052 *** 

JulDeg17 0.0052 *** 0.0075 *** 0.0070 *** 0.0049 *** 

JulDeg18 0.0052 *** 0.0068 *** 0.0065 *** 0.0046 *** 

JulDeg19 0.0047 *** 0.0067 *** 0.0055 *** 0.0041 *** 

JulDeg20 0.0053 *** 0.0075 *** 0.0065 *** 0.0051 *** 

JulDeg21 0.0045 *** 0.0066 *** 0.0051 *** 0.0037 *** 

JulDeg22 0.0046 *** 0.0060 *** 0.0052 *** 0.0037 *** 

JulDeg23 0.0054 *** 0.0070 *** 0.0067 *** 0.0040 *** 

JulDeg24 0.0050 *** 0.0071 *** 0.0060 *** 0.0041 *** 

JulDeg25 0.0055 *** 0.0074 *** 0.0063 *** 0.0047 *** 

JulDeg26 0.0057 *** 0.0066 *** 0.0067 *** 0.0047 *** 

JulDeg27 0.0051 *** 0.0064 *** 0.0060 *** 0.0042 *** 

JulDeg28 0.0043 *** 0.0055 *** 0.0051 *** 0.0032 *** 

JulDeg29 0.0034 *** 0.0042 *** 0.0040 *** 0.0019 * 
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Variable 

Spring 

Wheat 

 
Canola 

 

Oats 

 

Barley 

 AugDeg0 -0.0027   0.0004   0.0029   0.0005   

AugDeg1 0.0020   0.0030   0.0023   0.0027   

AugDeg2 0.0029 * 0.0061 *** 0.0048 ** 0.0020   

AugDeg3 0.0044 *** 0.0076 *** 0.0045 ** 0.0031 ** 

AugDeg4 0.0032 ** 0.0054 *** 0.0037 ** 0.0025 ** 

AugDeg5 0.0025 ** 0.0060 *** 0.0032 ** 0.0023 * 

AugDeg6 0.0036 *** 0.0066 *** 0.0052 *** 0.0028 *** 

AugDeg7 0.0025 ** 0.0048 *** 0.0033 ** 0.0022 ** 

AugDeg8 0.0043 *** 0.0071 *** 0.0057 *** 0.0045 *** 

AugDeg9 0.0040 *** 0.0064 *** 0.0048 *** 0.0032 *** 

AugDeg10 0.0038 *** 0.0062 *** 0.0053 *** 0.0030 *** 

AugDeg11 0.0033 *** 0.0045 *** 0.0045 *** 0.0030 *** 

AugDeg12 0.0039 *** 0.0068 *** 0.0055 *** 0.0035 *** 

AugDeg13 0.0024 ** 0.0054 *** 0.0039 *** 0.0017 * 

AugDeg14 0.0027 *** 0.0053 *** 0.0040 *** 0.0022 ** 

AugDeg15 0.0037 *** 0.0056 *** 0.0042 *** 0.0025 *** 

AugDeg16 0.0027 *** 0.0048 *** 0.0041 *** 0.0020 ** 

AugDeg17 0.0036 *** 0.0058 *** 0.0049 *** 0.0031 *** 

AugDeg18 0.0030 *** 0.0053 *** 0.0040 *** 0.0019 ** 

AugDeg19 0.0030 *** 0.0059 *** 0.0044 *** 0.0026 *** 

AugDeg20 0.0037 *** 0.0056 *** 0.0046 *** 0.0034 *** 

AugDeg21 0.0039 *** 0.0064 *** 0.0049 *** 0.0032 *** 

AugDeg22 0.0037 *** 0.0055 *** 0.0045 *** 0.0031 *** 

AugDeg23 0.0034 *** 0.0062 *** 0.0056 *** 0.0033 *** 

AugDeg24 0.0042 *** 0.0071 *** 0.0049 *** 0.0038 *** 

AugDeg25 0.0034 *** 0.0064 *** 0.0044 *** 0.0031 *** 

AugDeg26 0.0033 *** 0.0053 *** 0.0045 *** 0.0028 *** 

AugDeg27 0.0042 *** 0.0061 *** 0.0049 *** 0.0036 *** 

AugDeg28 0.0029 *** 0.0059 *** 0.0028 ** 0.0025 *** 

AugDeg29 0.0025 ** 0.0054 *** 0.0031 ** 0.0019 * 
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Variable 

Spring 

Wheat 

 
Canola 

 

Oats 

 

Barley   

JJADeg31 0.0029 *** 0.0042 *** 0.0022   0.0016   

JJADeg32 0.0050 *** 0.0067 *** 0.0061 *** 0.0049 *** 

JJADeg33 0.0034 *** 0.0038 ** 0.0041 *** 0.0026 ** 

JJADeg34 0.0023 * 0.0038 ** 0.0023   0.0020   

JJADeg35 -0.0004   0.0018   0.0000   -0.0016   

JJADeg36 -0.0014   -0.0042   -0.0033   -0.0034   

JJADeg37 -0.0012   0.0003   0.0018   -0.0010   

JJADeg38 -0.0002   0.0008   0.0075   -0.0137   

JJADeg39 0.0155 * 0.0200 * 0.0155 * 0.0264 *** 

JJADeg40P -0.0100   0.0082   -0.0043   -0.0076   
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APPENDIX F: WINTER MODEL RESULTS 

This section contains results for Model 3.  One asterisk (*) indicates significance at 10%, 

two asterisks (**) indicates significance at 5% and three (***) indicates significance at 

1%.  

Variable descriptions 

Constant  The model constant 

Time   Time trend, = YEAR – 1977 

JanSV   Variance of snow depth for January 

FebSV   Variance of snow depth for February 

MarSV   Variance of snow depth for March 

AprSV   Variance of snow depth for April 

Win1_3   Total hours from January 1 to April 30 from -1 to -3.9 °C 

Win4_6  to Win37_39 Total hours from January 1 to April 30 from -4 to 6.9 °C and -37  

to *39.9 °C 

Win40P  Total hours below -40 °C between January 1 and April 30 

Adj R2   Adjusted R2 statistic for the regression 

nObs   The number of observations in the analysis 

nCoef  The number of coefficients that were estimated, including the    

  number of  district dummies 
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Winter 

Wheat 

 

Fall Rye 

 
Constant 8.186 *** 7.6907 *** 

Time 0.01354 *** 0.01063 *** 

JanSV 0.00039 ** 0.00027 * 

FebSV -0.00075 * 0.000001   

MarSV 0.00010   0.00006   

AprSV -0.00008   -0.00010 *** 

Win1_3 -0.00095 *** -0.00028   

Win4_6 -0.00015   -0.00047 ** 

Win7_9 -0.00035   0.00044 * 

Win10_12 -0.00059 * -0.00080 *** 

Win13_15 -0.00011   -0.00026   

Win16_18 0.00026   0.00019   

Win19_21 -0.00085 * 0.00018   

Win22_24 0.00009   0.00034   

Win25_27 -0.00178 *** -0.00112 *** 

Win28_30 0.00104 * -0.00053   

Win31_33 -0.00072   0.00092 * 

Win34_36 0.00033   0.00032   

Win37_39 -0.00114   -0.00171 ** 

Win40p 0.00181 * 0.00099 * 

Adjusted 

R2 0.457   0.247   

N Obs 718   1504   

N Coef 154  
17

 157   

 

 

                                                      
17

 Coefficients for the district dummies are not reported to conserve space.  
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APPENDIX G: Acreage concentrations by crop, selected years, 

Base Model   
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Figure G1: Base model 2005, highest acreage per cell 
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Figure G2: Base Model 2005 

Figure G2a Base Model Winter wheat 2005      

 
 

Figure G2b Base Model Spring Wheat 2005 
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Figure G2c Base Model Durum Wheat 2005      

 
 

Figure G2d Base Model Canola 2005 
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Figure G2e Base Model Flax 2005       

 
 

 

Figure G2f Base Model Rye 2005 
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Figure G2g Base Model Barley 2005      

 
 

 

Figure G2h Base Model Oats 2005 
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Figure G3: Base Model 2010, highest acreage per cell. 
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Figure G4 Base Model 2010 

Figure G4a Base Model Winter Wheat 2010      

 
 

Figure G4b Base Model Spring Wheat 2010 
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Figure G4c Base Model Durum Wheat 2010      

 
 

 

Figure G4d Base Model Canola 2010 
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Figure G4e Base Model Flax 2010 

 
 

 

Figure G4f Base Model Rye 2010 
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Figure G4g Base Model Barley 2010      

 
 

 

Figure G4h Base Model Oats 2010 
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Figure G5: Base Model 2025, highest acreage per cell 
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Figure G6 Base Model 2025 

Figure G6a Base Model Winter Wheat 2025      

 
 

 

Figure G6b Base Model Spring Wheat 2025 
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Figure G6c Base Model Durum Wheat 2025   

 
   

 

Figure G6d Base Model Canola 2025 
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Figure G6e Base Model Flax 2025       

 
 

Figure G6f Base Model Fall Rye 2025 
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Figure G6g Base Model Barley 2025      

 
 

Figure G6h Base Model Oats 2025 
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Figure G7: Base Model 2050, highest acreage per cell 
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Figure G8 Base Model 2050 

Figure G8a Base Model Winter Wheat 2050      

 
 

Figure G8b Base Model Spring Wheat 2050 
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Figure G8c Base Model Durum 2050      

 
 

 

Figure G8d Base Model Canola 2050 
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Figure G8e Base Model Flax 2050       

 
 

 

Figure G8f Base Model Rye 2050 
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Figure G8g Base Model Barley 2050      

 
 

Figure G8h Base Model Oats 2050 
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APPENDIX H:  Model B1 acreage concentrations by crop, 

selected years  
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Figure H1: Model B1 2025, highest acreage per cell 
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Figure H2 Model B1 2025 

Figure H2a Model B1 Winter Wheat 2025      

 
 

Figure H2b Model B1 Spring Wheat 2025 
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Figure H2c Model B1 Durum 2025       

 
 

Figure H2d Model B1 Canola 2025 
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Figure H2e Model B1 Flax 2025       

 
 

Figure H2f   Model B1 Fall Rye 2025 
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Figure H2g Model B1 Barley 2025       

 
 

Figure H2h Model B1 Oats 2025 
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Figure H3: Model B1 2050, highest acreage per cell 

  



 

231 

 

Figure H4: Model B1 2050 

Figure H4a Model B1 Winter Wheat 2050      

 
 

Figure H4b Model B1 Spring Wheat 2050 
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Figure H4c Model B1 Durum 2050       

 
 

Figure H4d Model B1 Canola 2050 
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Figure H4e  Model B1 Flax 2050       

 
 

Figure H4f  Model B1 Rye 2050 
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Figure H4g Model B1 Barley 2050       

 
 

Figure H4h Model B1 Oats 2050 
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APPENDIX I: Model A1B acreage concentrations by crop, 

selected years   
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Figure I1: Scenario A1B 2025, highest acreage per cell 
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Figure I2: A1B 2025 

Figure I2a A1B Winter Wheat 2025 

 
 

Figure I2b A1B Spring Wheat 2025 
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Figure I2c A1B Durum 2025 

 
 

Figure I2d A1B Canola 2025 
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Figure I2e A1B Flax 2025 

 
 

Figure I2f A1B Fall Rye 2025 
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Figure I2g A1B Barley 2025 

 
 

Figure I2h A1B Oats 2025 
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Figure I3: A1B 2050, highest acreage per cell 
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Figure I4: Model A1B 2050 

Figure I4a A1B Winter Wheat 2050 

 
 

Figure I4b A1B Spring Wheat 2050 
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Figure I4c A1B Durum 2050 

 
 

Figure I4d A1B Canola 2050 
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Figure I4e A1B Flax 2050 

 
 

Figure I4f A1B Fall Rye 2050 
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Figure I4g A1B Barley 2050 

 
 

Figure I4h A1B Oats 2050 
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APPENDIX J: Changes to average climate variables for scenarios 

B1 and A1B
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Figure J1: Change in daily average maximum temperature, July 2025, B1 scenario (low emissions) 
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Figure J2: Change in daily average maximum temperature for July 2050, B1 scenario (low emissions) 
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Figure J3: Change in daily average minimum temperature for July 2025, B1 scenario (low emissions) 
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Figure J4: Change in daily average minimum temperature for July 2025, B1 scenario (low emissions) 
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Figure J5: Change in daily average rainfall for July 2025, B1 scenario (low emissions) 
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Figure J6: Change in daily average rainfall for July 2050, B1 scenario (low emissions) 
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Figure J7: Change in daily average maximum temperature for July 2025, A1B scenario (high emissions) 
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Figure J8: Change in daily average maximum temperature for July 2050, A1B scenario (high emissions) 
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Figure J9: Change in daily average minimum temperature for July 2025, A1B scenario (high emissions) 
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Figure J10: Change in daily average minimum temperature for July 2050, A1B scenario (high emissions) 
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Figure J11: Change in the daily average rainfall for July 2025; A1B scenario (high emissions) 
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Figure J12: Change in the daily average rainfall for July 2050; A1B scenario (high emissions) 

 

 

 


