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Environmental variation is often a very important aspect in the ecology of 
organisms, with most populations experiencing at least seasonal fluctuations in 
resource availability and thus in their carrying capacity (Annegers 1973; Emmel 
1976, chap. 10; Fleming and Hooker 1975; Fretwell 1972). A recent body of 
literature has begun to explore the dynamics of populations experiencing a fluc- 
tuating carrying capacity (e.g., Levins 1969; May 1973, 1974, 1976, 1978; Goel and 
Richter-Dyn 1974; Roughgarden 1975). In this paper we clarify some aspects of 
the dynamics of the logistic model with a variable K and suggest implications for 
natural selection on the ability of organisms to follow or "track" fluctuations in K. 

THE MODEL 

Although often too simplistic, the logistic model governed by the equation 

N = rN(I - N/K) (1) 

has been shown to describe population growth quite well in a broad range of 
species (see, e.g., Andrewartha and Birch 1954; Davidson 1938a, 1938b; Emmel 
1976, p. 103; Istock 1977; Gause 1931, 1934; Crombie 1945; Pearl 1930; Lotka 
1925; Odum 1971). It is only recently, however, that there have been attempts to 
explore the dynamics of the model with the carrying capacity K not constant but 
variable, so that it may represent environmental fluctuations, e.g., seasonality. 
Specifically, it is essentially shown in Levins (1969) that when equation (1) holds 
for a constant intrinsic rate of increase r and time-dependent carrying capacity 
K(-), assumed here to be a piecewise continuous positive function, the solution of 
equation (1) is (for any t > u) 

rt 
[N(t)]-' = e-rat-u)[N(u)]-l + f re-rt-vQ(v) dv 

t-u (2) 
= e-r(t-u)[N(u)]-l + fUre-rvQ(t v) dv, 
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where Q(t) = l/K(t) is also positive and piecewise continuous. Thus, envisaging 
the present population N(t) as having arisen from the infinite past, 

rt 
[N(t)'- = fQ(v) re-r(t-v) dv = re-rvQ(t - v) dv (3) 

provided e-rN(-u) 0 as u -> oo, which is a reasonable assumption. Observe 
that since frore-rvdv = 1, N(t) is the reciprocal of a weighted average of the 
reciprocal of the carrying capacity K(u) for u S t. 

In several places, including Goel and Richter-Dyn (1974, sec. 4.2c), the function 
K or 1/K incorporates a white noise term, which in solving equation (1) leads to the 
problem of the definition of a stochastic integral; Turelli (1977) gives a recent 
discussion of the problem and includes many references. Our formulation incor- 
porates better-behaved functions of K, though it is likely that the main analytical 
results at equation (7) below hold without K necessarily being piecewise continu- 
ous. 

ERGODIC PROPERTIES 

An important parameter both in population and evolutionary theory is the 
average population size, which we define (assuming the limits exist) as 

t 
N -(N) lim tuJ N(u) du. 

t--c~z 0 

Again assuming that the limits exist, we similarly define 
rt _ t 

K-(K) = lim t-J K(u) du, Q (K-') = lim t- JQ(u) du. (4) 
t-4c0 t-Z0 

In ecological systems, there are two important nonconstant functions K: (a) those 
that are periodic (representing seasonality), say K = Kp, and (b) those that differ 
from such a periodic function by some zero mean ergodic random function 
(representing stochastic variation), say K = K, + W. In the former case it follows 
that Q = Qp = 1/Kg, is also periodic, and it is a consequence of a consistency result 
in convergence of means that the limits at (4) will exist, and that also 

0fO 

K = lim t-1J K(u)du, Q = lim rJ_ Q(u)du. (5) t An -0 t t an0 -t 

In the latter case we have, by definition of ergodicity, that with probability one 
limt, t-1 f W(u) du = 0, and so the statements at (4) and (5) about K will remain 
true. Provided that 1/(K. + W) is suitably regular in its behavior (for example, that 
it is with probability one uniformly bounded away from co), the statements about Q 
will also be true, though in general we should have (K-') different from ((Kp + 
W)-,). 

For any given K (or Q), equation (3) shows that N, and hence also N, is a 
function of the intrinsic rate of increase, r. Indeed, the behavior of N for large and 
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small r follows from equation (3) as 

lim [N(t)]-' = lim Q(t - h) - 0), (Sa) 

lim [N(t)]-' = lim t-1 J Q(u) du =Q (Sb) 
r40 t- >c -t 

independent of t. (The proof of [Sa] and [Sb] simply uses the Abelian behavior of 
Laplace transforms, e.g., Widder [1941, p. 181].) Thus, writing N(r) to emphasize 
the dependence on r, 

N(0) liln N(r) = 1/Q = ((K-'))-', (6a) 

N(oo) lim N(r) = K = (K). (6b) 

A more comprehensive statement which includes equation (6) and is proved in the 
Appendix is that 

N(O) = ((K-1))-1 = 1/Q = [(N-')(r)V-1 - N(r) < K = N(oo), (7) 

from which we get support for the intuitively reasonable conjecture: 

N(r) increases with r. (8) 

This relationship is illustrated in figure 1 for K (*) varying in a manner described 
in equation (10) below. Jos van Kan and Peter Sonneveld have proved a stronger 
result from which the truth of the conjecture follows, but we have not seen details 
of it yet. 

For the results at (7) to be true, it suffices that equation (3) be the solution of 
equation (1) and that the limits at equations (4) and (5) exist. In the case that K(*) 
is the sum of a periodic term and a white noise error term, May (1974) uses the Ito 
stochastic integral and concludes that N =(N) - (K) -K, which is consistent 
with equation (7). Roughgarden (1975) questioned the relevance of this result on 
two grounds. First, for K differing from a constant by white noise, use of the 
Stratonovitch integral as in Feldman and Roughgarden (1975) leads to the conclu- 
sion that N = K, and second, using computer simulations, Roughgarden found no 
statistically significant difference between N found from the stochastic logistic 
model and its value derived from a linear approximation to the model. Our results 
tend to refute Roughgarden's suggestions; also, the equality he obtained in the 
simulations can in part be attributed to the values of the parameters he used. 

Equation 7 and the conjecture at equation (8) are exemplified in the Appendix, 
where we obtain explicit expressions for N(t) and N(r) in the case that 

[K(t)]-' = Q(t) = Qo + Qi cos 2irt (all t), (9) 

for 0 < Qi < Qo. This form of K is easier to manipulate algebraically, e.g., as at 
equation (3), than taking 

K(t) = K0 + K, cos 2irt (10) 
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FIG. 1.-The function of N on r forK(*) varying in a sinusoid manner as defined at eq. (10). 
The function is plotted for y = 0.15, 0.4, 0.5 (see eq. [15]). 

as in May (1976, 1978). The example also illustrates algebraically, as asserted and 
illustrated graphically elsewhere (e.g., see May 1973, 1974, 1976, 1978; Roughgar- 
den 1975), that the magnitude of r determines the ability of the population to track 
variations in K, for we find (with eq. [9] holding) that 

[N(t)]-' = Qo + Qi(12+ 4 
1 

) cos 27r(t - Or) 

=[K(t)] ' + Qi[(1 + 4T2) cos 2n(t - Or) - cos 27Tt (11) 

where the phase lag of N relative to K is the fraction or of a period 0 < or < 4 for 
which tan 2irr = 217/r. For r small, or l I and [N(t)]-' deviates from Q0 = (K-1) by 
at most about rQ1/27T; while for large r, 

[AT(t)] =I[K(t)]-' + ( 2 ) sin 2nt + O(r -2)} (12) 

The long-term average N(r) averages out these first order effects in the sense 
that 

N(r) = ((K-1))-l(1 + 8r22) + O(r4) for r -> 0, (13) 

N(r) = K[1 - 2(Q1Q2) ] + O(r-4) for r ->. (14) 

Setting 

_2 (K) 
- 1, (15) 

((K))2 
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a pseudosquare of the coefficient of variation of K (C.V.K), equations (11) and (12) 
can be expressed for small y2 in the form (cf. eq. [Al 1]) 

N(r) ((K-'))-' ( + 
47j2) 

+ O(r4) forr small, (16) 

N(r) ~ K [i - r2(yIi) 
2 

+ O(r4) for r large. (17) 

These results are similar to those quoted in May (1976, 1978) for K as given at 
equation (10). In figure 2 we illustrate the strong dependence of N on y for 
numerical approximations of equation (3) where K( ) is described by equation 
(10). The magnitude of deviation in N from K for large y emphasizes the invalidity 
of Roughgarden's (1975) assertion that N and K are equal. 

In figure 3 we attempt to offer an intuitive understanding to the mechanisms 
producing the results described above. Consider N responding to a fluctuating K. 
When N << K, it will be growing at a rate considerably less than the rate of 
decrease when N >> K. This is attributable to the concavity of N as a function of 
N. 

Goel and Richter-Dyn (1974, sec. 4.2c) study the process N determined by Q(t) 
- Qo + o-w(t) where w(t) is a white noise process and the constant o- > 0 is the 
standard deviation. Their approximations lead them to conclude that the distribu- 
tion for the stationary stochastic process N,, satisfying a suitably defined stochas- 
tic differential equation (related to eq. [1]), should have its mode at 

r [(i+ 4fr)Q/2 2 i] ( ( 2i (18) 

At first sight it seems strange that the mode of N8 should decrease with increasing 
r, yet (assuming N(r) is finite) the mean increases. (In Goel and Richter-Dyn's 
approximations, the mean is infinite, but taking the distribution of N8 truncated at 
some large value, the truncated mean increases with r.) 

The two properties are consistent in that the size of the mode behaves for small 
o-2r like (o2r)-112e -r/Qo which is decreasing, and the mode merely reflects a 
weighted average of those values of N8 that occur often and for which N, changes 
relatively slowly. For example, the proportion of time t for which N(t) (as at eq. 
[11]) is below x equals 

1 ~~~~(1 + 472r)/ 7T- arc cos [(x1 - QO) 1 1 

a (,Ty)-l [Q1y2 (I + 42 ) -(1 - QOy2 1 dy (19) 

provided a [Qo + Q1(1 + 4-2/r2)"2Y' S X S [Qo - Qj(1 + 4 2/r2)Y"2 b. This 
relative frequency has a bimodal density with infinite peaks at the two end-points, 
the peak at the lower end being the fatter; this lower end point decreases with 
increasing r, and the peak becomes less fat. 
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FIG. 2.-The relationship between mean population size, N, and the magnitude of variation 
in K, y. Values were determined by numerical approximation of eq. (1) with the carrying 
capacity varying as described at eq. (10). 
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FIG. 3.-Curves of N = rN(1 - NIK) as a function of N for K = Nmin, N and Nmax when 
r = 2 and K(-) fluctuates as at eq. (10) with K0 = 1,000, K1 = 800, so that y = 0.57. 

NATURAL SELECTION FOR TRACKING ABILITY 

MacArthur (1962, 1972, pp. 226-230) noted that the logistic model may be 
written as a simple model of density-dependent natural selection. The Malthusian 
parameter of fitness, m, is thus the function of population density 

m = N/N - r-(r/K)N. (20) 

MacArthur points out that, of genotypes with different values of r and K, the one 
possessing superior positive fitness may depend upon population density. 

Our results for a periodic extension of MacArthur's model may be illustrated in 
a similar fashion by plotting N/N as a function of N as at equation (20) with K 
replaced by N(r). We plot this function for three r values as the dashed lines in 
figure 4. Note that as r increases, positive fitness (m = N/N) is higher at all 
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FIG. 4.-The per capita rate of increase, NIN, as a function of N for r = 0.2, 2, 10, oc. 
The heavy dashed lines illustrate the density-dependent fitness function for genotypes with 
different r values. Note that N at equilibrium increases with r. The closed curves illustrate the 
dynamics of genotypes (populations) with respective r values, each tracking K( ) varying as 
at eq. (10) with K1 = 800, y = 0.57 and K = 1,000. 

population densities. Thus, one would expect natural selection to favor forms with 
superior "responsiveness" or tracking ability regardless of population density. 
The advantages to high r, as reflected by high reproductive effort or short de- 
velopmental periods, become greater with increasing C.V.K (= y, eq. [15]). 

In view of the large number of organisms with low r, the result that natural 
selection should always favor high r seems intuitively capricious. A mitigating 
aspect of the dynamics of our model is that the probability of extinction is highest 
for genotypes with high r because, although N is higher for forms with high r, Nmin 
decreases with increasing r as illustrated by the closed curves in figure 4. As 
Pielou (1977) and MacArthur and Wilson (1967) point out, the probability of 
extinction is highest for populations with the lowest actual population size. 

This interpretation marches well with the conclusions of Murphy (1968). In 
essence, Murphy argued that severely fluctuating environments result in the 
extinction of genotypes with high reproductive effort (high r), whereas genotypes 
which allocate a greater proportion of their limited resources to somatic functions 
may enjoy an enhanced probability of survival for future reproductive attempts. 
Similarly, our model suggests that genotypes with low tracking ability (low r) have 
a lower probability of extinction during periods of low K than responsive 
genotypes with high r. As Schaffer (1974) showed with somewhat different 
rationale, selection against forms with high r becomes more intense with increased 
severity of environmental fluctuations. 
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DISCUSSION 

To assume that life histories, as reflected by r values, are shaped solely by 
tracking ability is, of course, naive. In reality many factors may control the 
optimum life history. For example, age specific expectations of fertility and 
survivorship (Taylor et al. 1974), predator pressures and trophic position (Wilbur 
et al. 1974) have influences which may prevail over tracking ability. Also, some 
life-history attributes associated with high r may affect other determinants of K 
and thus N; e.g., high reproductive output may increase an organism's resource 
demands so that K for an energy-limited organism is reduced. 

Many organisms have evolved mechanisms which enhance "tracking ability" 
irrespective of r. For example, many organisms are able to increase reproductive 
output when resources are abundant, but have low reproductive output when 
resources are scarce (Ballinger 1977; Lack 1968; Sadlier 1969). If the probability of 
successfully rearing a large clutch or litter is positively correlated with resource 
availability, individuals that maximize reproductive output when availability is 
high will clearly possess higher reproductive success than nonresponsive forms. 
On the other hand, limiting reproductive output when resource availability is low 
may be an adaptation to minimize risks associated with reproduction such that 
survivorship is maximized, since the chances of successful reproduction are low 
anyway. Clearly, phenotypes which can successfully track fluctuations in the 
environment will possess a selective advantage. This sort of tracking, through 
environmentally responsive reproductive output, may well override the advan- 
tages of low variance in reproductive output demonstrated by Gillespie (1977) and 
Boyce (1977). 

In this paper we have shown that nonlinearities in the logistic model may have 
implications of biological significance. The qualitative results presented here also 
apply to a wide range of population models, e.g., those presented by Pielou (1977, 
p. 35ff), where N is a concave function of N. However, these results do not apply 
to the linear approximations formulated by Roughgarden (1975) and Nisbet et al. 
(1977). We contend that the linearization and oversimplification of population 
models as encouraged by Nisbet et al. (1977) should be avoided if at all possible, 
since inherent nonlinearities may offer valuable insight into biological mecha- 
nisms. This is especially significant when investigating the importance of sizable 
stochastic or periodic variations in model parameters. 

SUMMARY 

The mathematics of stochastic nonlinear population models is notoriously in- 
tractable and has led some investigators to study linear approximations to make 
computations easier. However, nonlinear models may often better describe bio- 
logical systems, and linearization may obscure dynamics of biological signifi- 
cance. 

We clarify various aspects of the dynamics of the logistic population model with 
a fluctuating carrying capacity. Average population size decreases with an in- 
creasing magnitude of variation in K, but N is always less than or equal to K. This 
effect is mediated by the intrinsic rate of increase, r. In general, N increases as r 
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increases. This pattern should be general for models where N is a concave 
function of N. 

In environments where the magnitude of variation in K is not large, natural 
selection will favor genotypes which are best able to track fluctuations in K. 
However, when the fluctuations in K are large, natural selection may favor forms 
which are not highly responsive to fluctuations in K. 
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APPENDIX 

Integration of eq. (1) as it stands shows that 

r-1 [N(t) - N(O)] =f N(u) du-f N2(u)Q(u) du, (Al) 

so the existence of the limit N - (N) at eq. (4) implies the existence of (N2Q) with 

(N2Q) lim t-j N2(u)Q(u) du = N. (A2) 

Now 

I [Q-1/2(U) - N(u)Q 1/2(U)]2 du 

K(u) du -2f N(u) du + N2(u)Q(u) du; 

so, using eq. (A2), 
N R K independent of r. (A3) 

Integration of eq. (3) coupled with eqs. (4) and (5) shows that, when the limits exist, 

(N-1) lim tr JduI re-r-Q(t -v) dv 
(-4+00 O o 

= Q independent of r. (A4) 

Since also 

1 = lim [N- 11l2(U) * N-112(U )] du) 

t t 1 

lim [U1JN(u) du NlJ -'(u) du J 

= N (N-'), (A5) 
the results at eqs. (A3), (A4), and (A5) yield equation (7). 
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It may be noted that the above argument leading to eq. (7) may be used in integrating 
NNO for any finite power a, and since [N lK)112 - (N ,lQ)112]2 ? 0, we can deduce that 

((N-a))-l = ((N-a+lQ))-l (NN+1Q) = (Nay a (Na-1K), (A6) 

of which equation (7) is the special case a = 1. 
When K(-) is periodic, N(-) as defined at eq. (3) is also periodic with the same period, 

which without loss of generality may be taken as the unit of time. N( ) may then be 
expressed in the form 

[N(t)]-l = r(I - e-`)-le-?'Q(t - v) dv, (A7) 

which is the equation we used to compute N(t) via Simpson's rule for numerical integra- 
tion. Similarly, 

N(r) = r-1(I - e-r') LIhe rQ(t - v) dv ldt. (A8) 

Differentiation twice with respect to r in (A8) leads eventually to the result that 

N(r) = N(O) (1 + r2 j dt [N(O) uQ(t - u) du 4 - 4 } ) + o(r2), (A9) 

of which eq. (13) is a special case with a more detailed error term. 
When K is as at eq. (9), straightforward computation or reference to tables of integrals 

shows that 
1~~~~~~~~~~~~~ K J(Q0 + Q1 cos 2rt)-1 dt = - (AlOa) 

2) = b(Q0 + Q1 COS 2_r)2d 

=101~~~~~~~~~/ 
= L/[(Q20 - Q2) (1 - s. ) ], (AlOb) 

so the standardized second moment measure of variability of K (loosely speaking the 
square of the coefficient of variation of K) equals 

2 - (K2 - Q2 ) 

2Qo (All) 
Q2Q 

when Q2IQ2 is small. 
Substituting from eq. (9) into eq. (3) gives 

N(t)L-1 = f re-"' [Q0 + Q1 cos 2ir(t - v)] dv 

= Q0 + rQ,(r2 + 4,r2)-1 (r cos 2irt + 2ir sin 2irt), (A12) 
which leads to eq. (11), and then by integration (cf. eq. [AlOa]) to 

N-r) = Q t- ( Ql )2 ( 47T2 j-1 1112 (A13) 

In figure 4 the closed curve shown as the asymptote of r(l - NIK) versus N as r x0 can 
be shown to be 

- QQ = K/K versus K (A14) 
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by straightforward analysis involving 

1IN(t) = f re-rQ(t - u) du = f e -Q (t - dv 

e' [Q(t) - (IL ) Q(t) + . . . dv 

= Q(t) - r-Q(t) + O(r-2). 
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