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Scientific Abstract 
Maternal smoking during pregnancy (MSP) has an independent and causal effect on fetal health outcomes.  

Through accumulating epidemiologic and experimental evidence, our understanding of the breadth and 

duration of health effects of this toxic exposure is expanding.  MSP has been linked to the etiology of many 

non-fatal, non-communicable common complex diseases (CCDs) such as depression and anxiety, poor 

cognitive performance, asthma, cardiovascular disease, diabetes and obesity.  Despite the potency and 

prevalence of this exposure around the world, the mechanisms mediating these effects on human health are 

still unknown.  

While numerous studies hypothesize that MSP dysregulates fetal developmental programming through 

epigenetic modifications such as DNA methylation (DNAm), there is yet not a single clinically useful epigenetic 

marker for CCDs.  This is despite an explosion of human cohorts and animal models studying DNAm since 

about the early- to mid-2000’s. This failure is juxtaposed with the success and rapid advancement of 

epigenetic markers and therapies in cancers of multiple forms within a similar period.   

Perhaps one of the greatest barriers to clinical translation is the “gap” between genes, epigenetics and 

phenotype in complex traits.  A frequent finding in association studies of CCDs is that many individuals may 

have shared phenotypic traits, but at best weakly share individual environmental risk factors or 

genetic/epigenetic markers.  This gap further widens with factors such as varying intronic genetic mutations, 

phenotype heterogeneity and complex gene x environment (GxE) interactions.   

In this thesis, we consider that mis-assignment of the contribution of genetic and environmental factors 

relevant to any given individual can lead to false conclusions regarding its effect on observed disease and/or 

epigenetic manifestations.  Moreover, we reason that epigenetic differences persistent and potent enough to 

underlie the pathogenesis of CCDs must shift the mechanics of regulation across the genome.  Thus, we 

speculate that DNAm related to CCD must alter chromosomal activity by orchestrating changes in DNA 

interactions that are stably maintained and have regulatory consequences on multiple genes through 

modification of their physical contact with chromosomal and other nuclear structures.  Based on these 

premises, we explore context-based mapping of two entities: 1) individual-level risk profiling based on 

vulnerability to exposure rather than exposure alone and 2) DNAm profiling based on genome-wide patterns 

rather than single feature differences.  In this way, we seek the relevance of a given MSP-related signal by 
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couching it within its clinical-level and genome-level context in order to visualize and adjudicate its relation to 

health.   

We apply this context-dependent analytic approach to population-based data from the UK pregnancy cohort, 

Avon Longitudinal Study of Parents and Children (ALSPAC).  These children have wide-ranging vulnerability 

to MSP and heterogeneous physical and mental outcomes – an ideal situation to model common epigenetic 

pathways among diverse GxE contexts for complex traits. We recruit specific multidimensional data analysis 

methods to extract a small number of DNAm patterns found in cord blood that are representative of fetal 

vulnerability to MSP.  The biological coherence of these patterns is supported by three main findings.  First, 

patterns are enriched for sites of chromosomal regulation at both genic and intronic regions.  Second, specific 

patterns are shared among phenotypically similar children throughout childhood suggesting a common 

epigenetic shift underlying their physical and mental developmental trajectories.  Third, most patterns 

persisted in blood collected in middle childhood and adolescence despite random, technical and physiologic 

methylation changes expected over time.  This supports a robust relation to stable phenotypic effects starting 

from fetushood.  We observed replication of these vulnerability patterns in cord DNAm data in an independent 

cohort (Generation R, Netherlands).  These patterns were derived directly from ALSPAC with no additional 

clinical data from Generation R.   Yet, these “template-based” DNAm patterns related similarly to later 

childhood phenotype within Generation R as in ALSPAC.   

The novelty of this work lies in its use of context-based patterns of risk and epigenetic differences to provide a 

more detailed map of complex trait architecture.  As envisioned by biologists like Conrad Waddington over a 

half century ago, the overlap of such maps - rather than unimodal data points - may provide deeper and 

potentially more accurate insights into the molecular underpinnings of complex diseases. 
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This thesis is an original work by Jane Ng. No part of this thesis has been previously published. 
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Chapter 1 Introduction 

 Background 

 Developmental origins of health and disease hypothesis and common disease – a 

convergence of multiple dimensions 

 

Common complex diseases (CCDs) describe a group of disorders that are non-fatal and non- 

communicable.  However, 15 million people per year die from CCDs, rendering it the greatest 

cause of mortality across the world (Smith, Taylor F., Maccani, & Knopik, 2012).   Sadly, over 

85% of these deaths are under age 70.  Moreover, CCDs cause the greatest burden of 

premature and chronic disability.  Examples of diseases include depression (Williams et al., 

1998), cognitive disorders, (Forray & Foster, 2015; Heinonen et al., 2011), asthma (Gilliland et 

al., 2001), cardiac disease (Leybovitz-Haleluya et al., 2018) and obesity and diabetes (Li, L. et 

al., 2016; Rogers, 2019).  Various lines of evidence point to early-life as the etiologic origins of 

many CCDs (Rogers, 2019; Roseboom, T., de Rooij, & Painter, 2006). In other words, they may 

result from the gene and environment interactions (GxE) that alter the developmental trajectory 

of health starting from fetal life.   

In recent years, many have suggested broadening GxE to refer to genetic x non-genetic factor 

interactions that lead to a phenotype (Smith, Martyn T., McHale, & de la Rosa, 2019).  In part, 

this is motivated by the low rate of heritability (10% or less) uncovered through genome wide 

association studies (GWAS) for the vast majority of CCDs (Zhang, Y., Qi, Park, & Chatterjee, 

2018).  Even when considering non-disease traits, non-genetic factors must be at least half of 

the equation in estimating phenotype (Polderman et al., 2015).  Regardless, the most commonly 

used framework for understanding these interactions for CCD is known as the Developmental 

Origins of Health and Disease hypothesis (DOHaD) (see Barouki, Gluckman, Grandjean, 

Hanson, & Heindel (2012) for an excellent review).  Around the 1980s, the DOHaD concept was 

popularized by David Barker and colleagues (Barker & Osmond, 1995).  Its foundation lies in the 

proposed link between low birth weight caused by fetal undernourishment to increased risk of 

stroke and coronary heart disease in adulthood.   Subsequently, this concept has garnered 

further support from decades of observational human studies, most notably from the UK, 

northern Europe, the US and India (Barouki et al., 2012).  
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The DOHaD framework posits that in utero environments offer a “long term forecast” for the 

fetus indicating whether the postnatal environment will be adverse or protective.  In response, 

the fetus adapts structurally and functionally in order to best survive the predicted postnatal 

conditions.  In other words, the fetus undergoes biological programming.  A common 

misconception is that the DOHaD framework links adverse early environments to poor health.  

Instead, it posits that poor health is linked to a mismatch between the prenatal forecast and the 

actual postnatal environment (Hales & Barker, 1992).  Among various studies, those from the 

Dutch Famine Birth Cohort study are the most well-known to demonstrate this concept.  During 

a 16-month period in World War II, embargoes in combination with a harsh winter restricted food 

supplies such that adult rations provided only between 400-800 calories per day (Roseboom, T. 

et al., 2006). Individuals born to mothers exposed to this famine expected a calorie insecure 

environment postnatally but instead experienced resource-rich postnatal environments.  This 

disparity is believed to account for this group’s higher rates of cancer, cardiovascular disease, 

type II diabetes (Roseboom, T. et al., 2006), obesity (Roseboom, Tessa J. et al., 2001), 

schizophrenia (Bale et al., 2010; Susser & Lin, 1992).   Not only this, researcher observed a 

third dimension of time to be important: the gestational period of exposure to famine modified 

the relation to certain types of adult disease traits (Roseboom, T. et al., 2006).  For example, 

lower birth weight and impaired glucose tolerance in adulthood related to famine exposure from 

mid- to late-gestation, whereas early gestation exposure is related to a more atherogenic serum 

lipid profile, higher BMI, increased stress responsiveness and lower self-rated health in 

adulthood. 

From the DOHaD framework, several life course models such as the cumulative effects (a.k.a. 

accumulation of risk) model and pathway model have developed in the field of epidemiology 

(Boyce & Ellis, 2005; Ellis, Essex, & Boyce, 2005).  However, a common thread over time 

between the various models is that employing predictors that focus on the direct exposure alone 

will miss the greater context of an individual’s risk of disease.  A more accurate predictor should 

capture the “net” force of the exposure (Figure 1).  In this way, we can view health as a “vector 

sum” of the magnitude and timing of interactions between the environment and genes.   
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Figure 1: "Net" effect of GXE interactions using an algebra analogy.  Vector u and v represent the influence 

on health of two predictors.  Vector “u + v” is the net influence on health.  Source: 

http://thejuniverse.org/PUBLIC/LinearAlgebra/LOLA/index.html.  

Seeking to reflect reality more accurately, we consider that individuals are subject to various 

harmful and protective gene-environment interactions that shape their biological programming in 

early-life.  If we are the products of such influences, then integrating multiple sources of 

information to capture the net effect may offer a better estimate of the overall impact on an 

individual’s health trajectory (Figure 2). 

 

 

Figure 2: A more comprehensive predictor may combines multiple data sources to refine the estimation of 

the net effect of GXE interactions.  Source: http://thejuniverse.org/PUBLIC/LinearAlgebra/LOLA/index.html  

I draw upon this mathematical concept of vectors to evoke the multidimensionality of health.  For 

graphical purposes, it is easiest to visualize this “net” effect of GXE as two-dimensional (2D) and 

linear vectors.  However, this is very likely an immense and potentially misleading over-

simplification.  There is at least the third dimension of time and fourth dimension of “dose” of 

each factor. As well, drawing these as directional vectors assumes that the influence on health 
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by a given factor has the following properties: 1) absolutely known and accurately measured 

quantities, 2) remains the same over time 3) remains the same regardless of interactions with 

other factors, 4) is linear and 5)  homogeneously affects all individuals in a population. 

The intangibility of multidimensional health effects perhaps is more analogous to the famous 

Bohr’s electron cloud model (Bohr, 1913).  First described in 1913, it remains the most accepted 

model of the atom.  In this model, estimates of electron location predict atomic chemical 

properties.  The location of electrons is expressed in probabilities that are not equally distributed 

around the atom and influenced constantly by interactions with other forces.  Thus, to estimate 

the probability of human vulnerability to disease due to genetic and non-genetic interactions 

may also require more sophisticated modeling than linear pathways.  If humanity can model and 

thus harness the usefulness of even the smallest particles such as electrons, we can hope to 

similarly embrace the challenge of modeling omnipotent GxE influences to be clinically useful for 

the health of the population from birth to old age.   

 Barriers to translation – the gap between biologic markers and common complex 

disease 

 

To understand the molecular underpinnings of CCD, there has been an explosion of GxE 

studies in the past decade using numerous biological markers (Bookman et al., 2011; Ober & 

Vercelli, 2011; Welter et al., 2013).  However, yet a single test can provide patient-specific risk 

of complex disease development that is applicable to the general population.   

Despite the failure of this area in making the clinical translation leap, the theoretical rationale 

and potentially immense health and economic impact globally continues to stoke research 

interest. Perhaps one of the greatest barriers to translation is the gap between genes, biologic 

markers and phenotype in CCDs (Manolio et al., 2009; Petronis, 2010; Relton, C. L. & Davey 

Smith, 2010).  Factors such as genetic variants and pleiotropy, phenotype heterogeneity and 

direct and indirect GxE interactions further widen this gap.  Mis-assignment of the contribution of 

genetic and environmental factors can lead to false conclusions regarding effect on phenotype.  

Based on this premise, this thesis explores shifting the view of individual risk classification and 

biologic profiles from separate and independent entities to that of relative predisposition using 

multi-factor context based features.  In order to unravel this context, it is critical to acknowledge 

the dimensions of time, exposure and phenotype.  
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When speaking of “origins in early-life”, one typically refers to events occurring before 

adulthood.  This has given researchers the flexibility to refer to one or more windows in which 

their environmental factor of study is likely to have an effect on the individual.  As such, this 

could refer to childhood, gestation, pre-conception and/or even the time of exposure to one’s 

ancestors (Kyle & Pichard, 2006; Roseboom, T. et al., 2006).  As mentioned, the DOHaD often 

refers to developmental programming influenced by exposures in early-life that may render an 

individual better or worse adapted to face later exposures in their environment (Barker & 

Osmond, 1995; Hales & Barker, 1992; McMillen & Robinson, 2005) . The major point is that both 

observational and experimental data have shown the effect of timing of exposure to be clinically 

relevant (Bosch et al., 2012; Class, Lichtenstein, Långström, & D'onofrio, 2011; Roseboom, T. et 

al., 2006).  Thus, data from a single time point may have limited ability to predict health 

trajectories. 

 

 
 

In 2005, Christopher Wild coined the phrase “exposome” to describe environmental influences 

(including social, behavioural and chemical) over a life course (Wild, 2005).  He borrowed the 

suffix –ome to link this area to the other “omic” disciplines in biology.  In contrast to the genome, 

which is static and can be precisely measured, the exposome is dynamic over time and often 

difficult to objectively and accurately measure.  Whether it be exposure to famine, environmental 

pollutants or stress from war, abuse or poverty, scientists struggle with misclassification and/or 

imprecision of exposure estimates (Manrai et al., 2017). Advances in areas such as 

pharmacokinetic models, smartphone-based sensors, geolocation technologies and self-

reported questionnaire methodologies have all improved exposome assessment (Turner et al., 

2017). However, as discussed above, multiple repeat time point assessments add critical value 

to understanding common disease.   
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Like the exposome, the phenome is a vast area involving organism-wide, high dimensional 

profiling of phenotypic traits.  This discipline has expanded exponentially since its introduction in 

evolutionary biology a half century ago (Houle, Govindaraju, & Omholt, 2010).  Also like the 

exposome, it is has an important time dimension where phenotype can vary from one time to the 

next and the rate of change can vary depending on life cycle stage.  In addition, it has the added 

complexity of cellular heterogeneity.   Increasingly, phenome and exposome fields are 

overlapping.  For instance, exposome researchers are actively seeking the use of various 

phenome technologies as exposure biomarkers to improve accuracy and precision (Turner et 

al., 2017).  Of course, this is with caution to the possibility of reverse causality – did the omic 

difference result from the exposure or is the result of the disease? In addition, we realize better 

now that certain traits lead to specific health behaviours, further blurring the lines between 

phenome and exposome. 

Viewing these three dimensions together, we appreciate that none can be extricated from 

another nor can be perfectly captured.  Thus, the separation of these dimensions is not only 

artificial but also potentially misleading.  Systems biology approaches aim to coalesce these 

dimensions into a “multi-omic” space that encompasses the various molecular omics (e.g. 

genome, epigenome, transcriptome, proteome, metabolome, and/or microbiome levels,) as well 

as the exposome and phenome.  This multi-omic space acknowledges that complex systems 

are more than the sum of their parts and therefore components cannot be viewed individually 

but in context of its network relations (Martino, Ben-Othman, Harbeson, & Bosco, 2019).  

Arguably, medicine has enjoyed great success in many areas such as infection and cancer 

where accurate and effective treatment is led by individual and/or categorical patient 

characterization.  However, we argue that most CCDs defy clear-cut definition due the effect of 

context on whether an individual will or will not succumb to disease (Figure 3).   
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Figure 3: Schematic of traditional mapping paradigm for diseases amendable to categorical description. 

Disease definition for entities where clinical features, (e.g. timing, exposure,) and/or biological features can 

clearly inform medical management.  Examples of such disease include cancer and infectious diseases.  In 

these situations, features have clear definitions of typical versus atypical categories and these categories 

provide clinically relevant in that they inform diagnosis, prognosis and/or therapeutic target, presumably 

because the categories correlate strongly with the underlying molecular pathology. 

By weaving together multiple sources of information into a context of disease predisposition over 

time, rather than prediction using any single piece of information by itself, one may be able to 

attenuate misdirection by misclassification, imprecision or irrelevance to the clinical question 

under study.  This fits well with current trends in precision medicine and shows signs of success 

for CCDs (see Figure 4 of a recent example of real life application of multi-data source precision 

medicine.)  Bringing this back to the GxE paradigm of DOHaD, we posit that each individual can 

be positioned in a multidimensional matrix of genetic and non-genetic factors that shape his/her 

health trajectory. 
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Figure 4: Example of real-life multiomic approach. The P100 study collected a dense data cloud of multiomic 

data for 108 individuals for 9 months.  Actionable results were provided to subjects along with customized 
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behavioural coaching.  Many subjects demonstrated improved clinical biomarkers (e.g. for diabetes and 

cardiovascular risk factors) during the study. Image from (Price, N. D. et al., 2017).  

 

We borrow from systems biology and apply a context-based approach to a widely used model of 

DOHaD: adverse effects of maternal smoking during pregnancy (MSP) and early and late 

childhood physical and mental outcomes.  We employ epigenetic, anthropometric, 

questionnaire, and linked public repository data at multiple time point to develop an 

interconnected and multidimensional view of health trajectory.  

 Epigenetics and common complex disease 

 Overview of epigenetics 

 

Over a half century ago, Conrad Waddington described a new field he called epigenetics.  He 

defined it as “the branch of biology which studies the causal interactions between genes and 

their products which bring the phenotype into being” (Waddington, 1957).  He used the 

metaphor of an “epigenetic landscape” where a given cell (depicted as a ball in the figure) is 

poised to take various paths to different cell fates (Figure 5).   

 

Figure 5: The "epigenetic landscape".  This model was originally used to describe cellular decision-making 

during differentiation and development from an embryologic standpoint.  A cell is represented by the ball and 

the landscape forms paths leading to different cell fates.  Figure reprinted from (Waddington, 1957). 

On a molecular level, epigenetic changes were initially defined as chemical modifications that 

alter the physical coiling and looping structure of DNA (Figure 6).   
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Figure 6: Successive stages of chromosome compaction depend on the introduction of additional proteins. 

The differential packaging of genomic regions leads to physically different accessibility to the various 

components of regulatory and transcriptional machinery.  Relatively accessible areas of chromatin are 

referred to as “open” whereas those tightly associated with various proteins as part of higher-order 

chromatin assembly are called “closed”. Source: Richard Wheeler at en.wikipedia.  

While the famous landscape metaphor is visually powerful, this description paints a more 

analytically practical image of these structural modifications: “Patterns of activation and 

silencing, known as the epigenome, exist across all the genes in a cell.” (Lamb, N., 2007)  

These patterns are intimately connected to chromosomal function and ultimately, the flow of 

information to and from DNA to cellular phenotype.  It is clear that epigenetic factors are a 

critical part of normal and necessary biologic processes, such as X-inactivation, cellular 

differentiation and genomic imprinting.  It is one among many molecular mechanisms that exert 

force on the cellular and nuclear environment to influence DNA function ( 

Figure 7).  However, its research fascination springs from its posited role in continuously 

coordinating adaptation by relaying information from the external environment to influence 

chromosomal changes.  Thus, epigenetics could be seen as patterns of environmental imprints 

that modify genome structure which in turn contribute to how external influences “get under the 

skin” to alter health (Boyce & Ellis, 2005; Ellis, Essex, & Boyce, 2005; Pluess & Belsky, 2011).   
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Figure 7: The forces of DNA interactions in eukaryotic cells.  The cellular microenvironment consists of both 

physical and chemical signals which are transduced by various protein assemblies that connect the cell 

surface, cytoplasm, nuclear envelope, and nuclear compartments. Image from Annunziato (2008).  

The ever changing local and global architecture of chromatin emerges from various layers of 

cross talk between epigenetic mechanisms such as DNA methylation, nucleosome positioning 

(modulated by ATP-dependent chromatin remodeling machines), histone modifications, small 

RNAs, non-coding RNAs and topographical location within the nucleus that coordinates gene 

regulation and transcription product features (Fischle, Wang, & Allis, 2003; Geiman & 

Robertson, 2002).  Studies exploiting the 3-D visualization of gene regulation indicate that “cis 

effects” are just the tip of the iceberg of chromosome regulation: interactions between epigenetic 

mechanisms have been shown to effect whole domains of chromatin or even a whole 

chromosome (Fischle et al., 2003). Where it once thought that euchromatin is transcriptionally 

active compared to inert and tightly coiled heterochromatin, it is now clear that even 

heterochromatin has conformationally flexible and thus active or poised domains 

(Tchasovnikarova & Kingston, 2018).  Besides exerting influence on DNA shape, epigenetic 

marks direct nuclear location of chromatin during interphase.  Epigenetic signals orchestrate a 

concert of DNA configurations with clusters of transcription-related factors – together described 
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as a “transcription factory” (Figure 8) (Cook, P. R. & Marenduzzo, 2018; Uhler & Shivashankar, 

2017).   

 

Figure 8: The 3D organization of chromatin is non-random and links nuclear morphology, chromosome 

organization and gene expression in a manner that tends to be evolutionarily conserved within cell types.  

Using fluorescence in situ hybridization and various chromosome conformation capture techniques, studies 

have demonstrated the interaction of chromosomes with various distinct nuclear territories that lead to 

differential associations with transcription factories, chromosome conformations and inter-chromosomal 

intermingling. Image from Uhler & Shivashankar (2017).  TAD – topologically associated domain. LAD – 

lamina associated domain. 

Akin to a manufacturing line, the tools needed to perform a task (e.g. transcription, replication, 

repair, etc.,) are localized in high concentration at certain sites instead of being randomly 

scattered.  By the law of mass action, this high concentration drives efficient processing.  In this 

way, epigenetic marks coordinate the co-localization of foci of transcription machinery and 

receptive DNA conformations to promote efficient RNA production.  For example, initiation 

requires the collision of a RNA polymerase with an accessible promoter region of a gene.  As 

well, effective transcription requires the DNA helix to rotate both laterally and rotationally, 

manoeuvres which also require epigenetic mechanisms.  Thus, epigenetic patterns shape gene 

expression through multiple means (e.g. guiding shape, nuclear location and possibly movement 

of DNA) that interactively alter physical dynamics at various sites (Fischle et al., 2003; Uhler & 
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Shivashankar, 2017).  Current research suggests that the majority of dynamic transcription 

occurs in topologically associated domains (TADs – see Figure 8), which range in size from 500 

to 1000 kilobases (kb) (Mishra & Hawkins, 2017; Yu et al., 2017). 

Epigenetic modifications sit at the crossroads between these higher order interactions discussed 

above and the direct interactions with gene expression machinery.  Currently, a commonly 

referenced definition of epigenetics originates from the  NIH Epigenomics Roadmap Project 

initiative, which states, “Epigenetics refers to both heritable changes in gene activity and 

expression (in the progeny of cells or of individuals) and also stable, long-term alterations in the 

transcriptional potential of a cell that are not necessarily heritable” (Roadmap et al., 2015).  

Using this definition, four categories can describe epigenetic mechanisms: 1) DNA modifications 

2) chromatin modifications 3) non-coding RNAs that are involved in transcription regulation and 

transcript stability and 4) RNA modifications that can affect mechanisms such as splicing, 

transport, and stability of transcription products but also protein associations involved in 

chromatin regulation (see Figure 9). 

 

Figure 9: Classes of epigenetic mechanisms.  Using a broad definition of epigenetics, the types of 

mechanisms could be divided into four classes of alterations that share the characteristic of being able to 

stably alter the transcriptional potential of a cell. Image from (Aristizabal et al., 2019). 
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Of all epigenetic modifications, DNAm is the most widely studied.  It involves methylation or 

hydroxymethylation at the five‐position of cytosines in cytosine – phosphate - guanine (CpG) 

dinucleotide sites (unless otherwise specified, DNAm in this work will refer only to methylation 

as hydroxymethylation is currently far less commonly assayed in human and animal 

studies.) Early in DNAm studies, CpG dense regions (known as islands) and gene promoters 

were the primary research focus.  This was driven by the observation that hypermethylation of 

CpG islands generally lead to transcription repression (Bird, 1992).  However, it is now clear that 

patterns of methylation along a DNA strand in CpG sparse regions and at enhancers, introns, 

exons and intergenic regions have varying and context dependent effects on gene regulation, 

making DNAm a far more complex entity than previously thought.  Though we are far from fully 

understanding this epigenetic mechanism, it is obvious that metrics that are gene-centric (e.g. 

distance from transcription start sites (TSS) and promoters) or based on CpG density are 

restricted to describing the one-dimensional (1-D) linear sequence of DNA.  These metrics bear 

variable correlation to the in vivo “appearance” of methylation in context of a dynamic, 3-D 

region of chromatin and thus may have limited functional relevance. 

Clearly, this field is still at its infancy and we are only just beginning to see the forest for the 

trees.  Nevertheless, we must resist adopting traditional views of processes as in signal 

transduction cascades that were functionally captured with largely forward flowing pathways 

onto downstream effects.  As we shift our perspective from the linear DNA sequence and local 

epigenetic marks, we see that the functional substrate of gene regulation may be chromatin and 

nuclear organization itself.  In this spirit, researchers have been scrambling to use 1-D 

epigenetic data to predict the 3-D form and therefore true functionality of the genome in a given 

cell (Di Pierro, Cheng, Aiden, Wolynes, & Onuchic, 2018).  Specifically, several groups are 

developing high-throughput methods to predict how DNAm affects DNA shape and impact on 

DNA-protein interactions (Lazarovici et al., 2013; Rao et al., 2018).  However, most epigenome 

wide studies (EWASs) in humans use DNAm data from microarray chips.  To date, the most 

commonly used chip in EWAS is the Illumina HumanMethylation 450 K BeadChip® (450K chip) 

which covers around 450,000 methylation sites across the genome (Min, Hemani, Davey Smith, 

Relton, & Suderman, 2018; Sandoval et al., 2011).  Though data from the 450K chip has to date 

had little correlation with DNA shape directly, it has been instrumental in the initial foray into 

DNAm changes in various tissues across multiple CCDs.  Several international consortia have 

collated 450K chip data to understand better this data in context of disease and variability from 
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technical artifacts, tissue type and population differences (Adams et al., 2012; Roadmap et al., 

2015). 

Not only is DNAm highly relevant to function, it is attractive in terms of feasibility.  DNAm as 

measured through chips like the 450K chip are relatively inexpensive, technically robust, and 

high throughput (meaning can be upscaled to population wide testing,) compared with 

techniques like whole-genome bisulphite sequencing (WGBS).   This latter technique is the 

current “gold standard” of DNAm quantification and employs random fragmentation of the 

genome followed by bisulphite sequencing to obtain complete genome CpG coverage.  

However, this comes at the cost of a large amount of sequencing (Suzuki, M. et al., 2018).  In 

contrast, the 450K chip only assays sites curated by the manufacturer.   All Illumina DNA 

methylation assays use the same library to label genomic CpG loci facilitating cross-platform 

comparison and annotation, (identifiers all have the prefix cg.)  The 450K chip is particularly 

attractive as it requires only a small amount of sample, remains stable in various storage 

conditions and has a well-standardized protocol (Forest et al., 2018; Sandoval et al., 2011).  

This is in contrast to assays for WGBS or RNA sequencing for example.  This lends DNAm 

assays for use in large human cohorts for research purposes or a clinical test in the general 

population.  Though the most common tissue used in studies to date is venous blood, 

successful and reliable DNAm data extraction in large cohort studies arise from sources such as 

buccal cells from mouth swabs (Forest et al., 2018), archived newborn blood spot cards used for 

public health screening (Joo et al., 2013), urine (O'Reilly et al., 2019) and skin (Zhou, F. et al., 

2016)..  The use of these less invasive tissue sources in clinical applications is being actively 

explored (Forest et al., 2018). 

At this point in technologic advancement, the study of CCD on a population level will require 

better utilization of 1-D epigenetic data to infer 3-D changes that are relevant to cell function.  

Given the current paucity of knowledge, we posit that the viewing of patterns across the genome 

may help avoid making false assumptions regarding what represents functionally relevant 

DNAm changes.  Using patterns may be akin to using every other piece of a jigsaw puzzle to 

surmise the appearance of the whole image.  Though it is still inadequate, we posit that the 

alternative of focusing on linear-based views of DNAm risks the bias of only collecting puzzle 

pieces of certain colour or shape – it is unclear if and unclear what may be missing.  We posit 

that genome-wide pattern finding is an important avenue to explore to attenuate this risk.   
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 Overview of common complex disease and precision medicine 

 

As the name implies, the diseases so far discussed are both “common” and “complex”.  

Common in that these diseases are prevalent across race, sex and social class.  The “complex” 

term typically refers to the cause being multi-factorial (usually a mixture of genetic and non-

genetic factors) or has multiple single causes that lead to one shared disease description 

(Bookman et al., 2011; Lewis et al., 2007).  This term could arguably also refer to the fact that 

these diseases often affect multiple organ systems or cause multiple morbidities.  To date, 

research focus is predominantly trained on metabolic syndrome, (encompassing traits of insulin 

resistance, dyslipidemia, obesity, hypertension, etc.,) cardiovascular disease, mood disorders, 

cancer and neurologic disease, (e.g. Alzheimer disease and autism) (Buchanan, Weiss, & 

Fullerton, 2006).  These groups of diseases receive immense research investment given their 

societal cost due to high prevalence, mortality and/or morbidity.  The actual cost in terms of 

financial burden as well as loss of work force productivity and quality of life is compounded by 

the chronicity of these diseases and increasingly early age of onset, in addition to the commonly 

and long-observed inter-generational component within families (Murray & Lopez, 1997).  

Moreover, once clinically detectable, these diseases already tend to be intractable to 

amelioration and/or cure once.  Thus, the most cost-effective and efficient public health battle 

strategy against CCDs would be pre-disease detection combined with patient- and disease-

specific prevention.  This is the major goal of precision medicine and drives a multi-billion dollar 

biomarker development market (Akhmetov & Bubnov, 2015).   

Today, one of the great frustrations for both the patient and physician is it is unknown who will 

ultimately be affected by a given risk factor.  Disease-risk estimates are derived from 

populations heterogeneous in their mixtures of vulnerable and resilient individuals and subject to 

forces such as mortality selection (i.e. dying from another disease related or not to the 

exposure) and thus has very limited applicability to any single individual.  So, even though one 

can advise that smokers have as much as a 30% greater chance of death from prostate cancer 

than non-smokers (Huncharek, Haddock, Reid, & Kupelnick, 2010), the chances for the smoker 

in front of you is completely unknown.  In addition, the rigours of the scientific method may 

inadvertently contribute to the lack of credence of medical community when risk and disease 

links are questioned or even disproved (see  
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Table 1 for a list of what are now considered equivocal disease associations (Buchanan et al., 

2006). 
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Table 1: Examples of disease associations with markedly inconsistent published results.  From Buchanan et 

al., (2006). 
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It is clear that medicine has struggled in the realm of CCD to deliver precise and early diagnoses 

and treatment.  Currently, preventative measures are often either delivered on a community 

level or based on patient risk factor profiles.  The former method attempts to reduce risk on a 

population level.  Examples include public messages advocating for better diet, exercise and 

warnings to avoid toxins such as smoking, alcohol and drugs.  These measures are common 

and affordable, but have low efficacy (Ekpu & Brown, 2015; Howells, Musaddaq, McKay, & 

Majeed, 2016). The latter method targets patient-specific risk behaviours.  There is some limited 

success of such interventions, but often only available in trial settings or in small subsets of 

populations.  To date, cost renders none feasible for population-wide public health 

implementation (Cnattingius, 2004).  Nevertheless, ongoing development of these measures are 

driven by accumulating data that patient-tailored management of complex disease is more 

effective than general interventions in terms of effective changes in health behaviour and/or 

health status  (Bennett et al., 2010; Strecher, Wang, Derry, Wildenhaus, & Johnson, 2002).  

Thus, the ability to measure a patient’s specific predisposition to an illness may not only be 

important diagnostically, but for preventive intervention in areas such as patient adherence.  

Mobile and online health applications exploit this aspect of patient psychology by providing 

individualized health counselling and monitoring.  A meta-analysis of studies providing genetic 

testing for complex disease concurs with this trend, even when no possible prevention or cure 

exists (Frieser, Wilson, & Vrieze, 2018). 

For these reasons, biomarkers hold theoretical and practical promise of precision medicine to 

stem the alarming rising tide of complex disease seen across the globe.  Currently, nearly all 

clinical biomarkers used in the general population rely on some degree of organ dysfunction. For 

example, the clinical categorization “diabetic” is simply marking the passage of the individual 

from below to above threshold on a spectrum of glucose tolerance.  To render biomarkers 

capable of detecting the pre-disease status, we require a better understanding of 1) the full 

spectrum of disease vulnerability and progression on a patient specific level and 2) to do so 

before overt cellular dysfunction (Martino et al., 2019).   

Another important aspect of complex disease is that a patient may present initially with only one 

organ dysfunction, but his/her risk of multi-organ involvement or co-morbidities is high. The 

dependency between the physiologic dysfunction of one system and the likelihood of developing 

dysfunction in another system is well recognized, but poorly understood.  This knowledge gap 

increases disease heterogeneity and undermines efforts to understand and prevent the multi-

organ spread of CCDs (Bookman et al., 2011; Sanavia, Aiolli, Da San Martino, Bisognin, & Di 
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Camillo, 2012).  Uncovering the common molecular threads between physiologic systems in 

disease evolution may distill multisystem dysfunction into common denominators that could hold 

the key to global organ recovery.   

Precision medicine seeks to provide individualized diagnosis and treatment that is pre-clinical 

and disease modifying.   To succeed in this endeavour for complex diseases, the field must find 

molecular signatures linked to disease etiologies that exist on different genetic and 

environmental backgrounds (Dover, 2009; Martino et al., 2019).  Based on this information, one 

could offer patient-specific management that has better compliance than general advice and 

would better target finite health resources.  Additionally, what if the health care provider could 

also tell if your loved ones like your children or partner were similarly affected?  This would help 

synergize family-based adherence that has far more powerful clinic effect than, for example, one 

family member dieting while other members eat potato chips (Trivedi & Asch, 2019).  Last, what 

if one could track and feedback the health status, while still in the pre-clinical stage? This may 

help sustain compliance and tailor the intensity, duration and/or type of intervention.  These data 

could also be used to better design and evaluate interventions (Akhmetov & Bubnov, 2015).  As 

well, historically and currently health resources focus on the most seriously ill both in terms of 

acute and long-term care for medications and/or utilization of health care personnel and medical 

facilities.  For individuals suffering at these extremes of disease, it is an unfortunate reality that 

the efficacy of treatment and gains in quality of life and workforce strength is the absolute 

lowest.  It is also at these extremes that the likelihood of developing subsequent complications 

and co-morbidities increase.  Thus, the power of personal data in modifying individual and inter-

generational health could be exponential through the synergy of enhanced patient-level 

(Mirowsky & Ross, 2015) and medical-level (Price, N. D. et al., 2017) efficacy, as well as cost-

effectiveness. 

Related to the last point, targeting health resources to only those at risk of disease has other 

non-health related benefits.  For instance, it is a fact worldwide that cost-based policies are the 

most effective public health intervention (Ekpu & Brown, 2015).  As an example, a 10% increase 

in tobacco tax reduces smoking prevalence by up to 8%.  However, increased taxation is 

associated with increased cigarette smuggling, theft, counterfeiting, and tax evasion, as well as 

being unpopular with powerful tobacco industry lobbyists.  Moreover, governments benefit from 

tobacco industry activities, (ranging from crop production, processing, marketing, distribution, 

etc.,) through tax revenues, employment opportunities and economic stimulation.  More 

morbidly, premature death saves governments money on expenses such as senior benefits, 
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disability support and pensions.  Thus, patient-specific allocation of resources makes strong 

economic sense.   

Risks abound across the population and it is impossible and possibly unhelpful with finite 

resources and changing government agendas to attempt to provide intervention to all 

individuals.  Patient-specific and pre-disease detection is required to target the most vulnerable 

individuals for optimal treatment efficacy and economic efficiency.  In the next section, we 

consider epigenetics as a potentially viable test of individual-specific vulnerability to exposures 

related to CCDs.   

 

 DOHaD, DNAm and common complex disease 

 

Using data from the Dutch Hunger Winter, researchers have found distinct difference in DNA 

methylation 60 years later in subjects exposed to early versus mid and late gestational exposure 

to famine (Tobi et al., 2015).  Again, this points back to the importance of timing in accurately 

interrogating the underlying mechanisms relating early-life exposome and later life phenome.  

As well, several lines of epidemiologic and experimental evidence converge to support three 

specific lifecourse time points of intervention: the in utero, postnatal to infancy, and peri-pubertal 

periods (Murgatroyd & Spengler, 2011; West-Eberhard, Mary Jane, 2003).  These time points 

optimize the balance of heightened epigenetic plasticity and adaptation to novel challenges to 

extract maximal gain in human “biological capital” (Barouki, Gluckman, Grandjean, Hanson, & 

Heindel, 2012; Burdge & Lillycrop, 2010; Godfrey, Costello, & Lillycrop, 2016).  Moreover, 

environment sensitive epigenetic changes during these periods are long lasting.  Can 

epigenetics be the game-changer for our understanding of CCD?  To consider this question, we 

consider how precision medicine, CCD and epigenetic changes can be juxtaposed biologically 

and methodologically for possible integration. 

Buchanan and colleagues summarized a powerful metaphor of CCD using an hourglass (Figure 

10).  Patient phenomes, genomes and exposomes may vary widely and may flow one from the 

other in complex pathways.  For example, the flows may be multi-directional, time-dynamic, 

overlapping, and/or stochastic.  Despite the breadth of these factors, this concept  theorizes that 

a given complex disease will converge through a common channel of molecular derangement, 

akin to the hourglass neck that connects far broader bases.  If DNAm can detect the net result of 
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genetic and non-genetic interactions on chromatin poise, it would be an ideal place to look for 

critical common molecular mechanisms.  As discussed in Section 1.1.2: Barriers to translation – 

the gap between biologic markers and common complex disease, it reduces our reliance on 

exposome and phenome measures that unlikely wholly capture disease vulnerability and are 

difficult to accurately quantify in the first place.  DNAm may enhance measurement accuracy by 

shifting away from traditional clinical risk algorithms that coerce internally heterogeneous 

variables into pure categories.  In other words, clinical risk “calculators” rely heavily on entities 

such as sex, race, social context, smoking, alcohol use, premature birth, etc., as categorical or 

even dichotomous values.  These values often form the basis of binary bifurcations of decision 

trees or can shift the “normal” reference range of a biomarker.  Can concepts such as race or 

social status be measured or even understood as having homogeneous causes or effects?  The 

use of a “continuous” epigenetic gauge of GxE may not only be more accurate, but also more 

clinically and biologically realistic.   
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Figure 10: Hourglass metaphor for the genetic and non-genetic interactions in complex disease. E = 

environmental factors, T = phenotypic traits.  This thesis explores the use of DNAm patterns as one of 

“Common Precursor Phenotypes” at the neck of the hourglass. Regarding the lines between Gene, 

Environment and Trait, note the lack of arrows and the twisting of lines.  This represents the unknown 

directionality and complexity of these interactions (Buchanan et al., 2006). 

Dysregulated DNAm could represent a downstream, upstream or ripple-life effect of a biological 

cascade set off by a stressful insult.  On a genome wide scale, it can give a live profile that can 

be matched to catalogued profiles with similar insults and comorbidities.  The power of this 

profile or epigenetic phenotype is its fluidity: it is unrestrained by bounds of normal versus 

abnormal.  It is simply a map that can be overlapped with other trait maps.  It does not require 

an already dysfunctional biological pathway to “create” an abnormal paucity or accumulation of 

transcripts, proteins, lipids, sugars, etc., in order to provide actionable information.  In this way, 
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transcriptomic, proteomic and metabolomic markers may be considered more “downstream” and 

thus later indicators of cellular dysfunction than epigenetic phenotypes.   

Clinicians demarcate transition from health to disease using diagnostic tests whose sensitivity 

and specificity heavily depends on what reference range is used.  In contrast, epigenetic profiles 

can be mapped together with risk factors, clinical findings and/or biomarkers to describe the 

patient’s unique propensity for disease.  Since there is no reliance on cellular dysfunction, this 

has the potential to detect the disease precursor state.  This widening of the effective 

preventative window is critical to precision medicine.  This is because as this window closes, the 

palliative window opens.  By changing the clock of disease, clinicians may finally have the 

chance to offer rescue rather than band-aid solutions.   

Perhaps we currently miss the mark for disease prediction from lack of accounting for all the 

forces that impact health trajectories.  Though it is a daunting task, it may be the key to better 

understanding the mechanical underpinnings of disease and health development.  In the context 

of epigenetic processes within the cell, we could view these net forces as altering the propensity 

towards certain cell fates.  Lappalainen and Greally propose a refinement of Waddington’s 

epigenetic landscape metaphor to suggest that reprogramming could “deepen” a furrow  in that 

landscape, thereby raising the likelihood of cells entering that phenotypic channel as seen in 

Figure 11 (Lappalainen & Greally, 2017).  This results in a shift in the propensity of a given 

phenotype to appear.  In this work, we use patterns in DNAm across the genome as a proxy of 

cellular poise resulting from net genetic and non-genetic forces.  We ultimately seek patterns 

that identify furrows deepened by MSP that lead to increased propensity to poorer health 

outcomes.   

 

 



 
25 

Figure 11: Net genetic and non-genetic forces alter the epigenetic landscape and cellular poise.  In a), the cell 

represented by the ball has equal propensity to follow one of two channels leading to two different fates.  

Both b and c illustrate two different possible effects of reprogramming.  In b), the reprogramming results in a 

bifurcation that results in the emergence of a subpopulation of cells within the same lineage but with minor 

phenotypic differences.  This leads to mosaicism within that lineage, thus expanding the phenotypic 

variability of that cell type.  However, in c), the reprogramming deepens one of the channels, thus increasing 

the propensity of that phenotype appearing. In other words, the reprogramming changes the relative 

proportions of the two lineages.  Both b) and c) illustrate two models by which reprogramming could have 

phenotypic consequences.  Image from Lappalainen & Greally (2017). 

 Thesis scope 

 

 Maternal smoking in pregnancy as a epigenetic model of common complex 

disease 

 

Several groups have investigated maternal smoking during pregnancy (MSP) as an important 

human model to connect the DOHaD hypothesis to the etiology of CCDs (Agrawal et al., 2010; 

Pickett, Wood, Adamson, D'Souza, & Wakschlag, 2008a; Suter, M. A., Anders, & Aagaard, 

2013; Suter, M., Abramovici, & Aagaard-Tillery, 2010).  Tobacco is the most prevalent 

substance used during the periconceptual and gestational periods in North America and Europe 

(Cnattingius, 2004; Cook, J. L. et al., 2017; Rodriguez & Smith, 2019).  It is associated with 

adverse fetal and infant outcomes, including poor fetal growth, prematurity, ischemia-hypoxia, 

sudden infant death syndrome, respiratory disease in early and later life, cardiovascular 

morbidity, increased adiposity, multiple cognitive and behavioural morbidities and delinquency 

(Cnattingius, 2004; Forray & Foster, 2015; Leybovitz-Haleluya et al., 2018; Li, L. et al., 2016; 

Wakschlag, Pickett, Cook Jr, Benowitz, & Leventhal, 2002).  It is widely believed that tobacco 

exposure dysregulates fetal developmental programming through epigenetic modifications.  In 

this context, DNAm is among if not the most intensely interrogated potential molecular mediator 

linking MSP with adverse health outcomes over the past decade (Choukrallah et al., 2018; 

Knopik, Marceau, Bidwell, & Rolan, 2019).  

Despite this fervent interest, there is yet not a single clinically useful epigenetic marker for MSP. 

This failure is juxtaposed with the success and rapid advancement of epigenetic markers and 

therapies in cancers such as in leukemia, lymphoma, myeloma (Kelly & Issa, 2017) and 

potentially some solid tumours (Linnekamp et al., 2017) within a similar period (Issa, 2007).   
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We review briefly various streams of research that support the study of MSP-sensitive DNAm 

changes in context of the DOHaD hypothesis and child development.  First, it is biologically 

reasonable for MSP to affect fetal DNAm.  Cigarette smoke contains a large number of 

chemicals, such as carcinogens, nicotine, and carbon monoxide that easily pass the placenta 

from the mother to fetus (Jauniaux & Burton, 2007).  These chemicals can modify DNAm 

through various mechanisms, such as by causing DNA damage, inducing fetal hypoxia, altering 

DNA-binding factors or directly disrupting methylation machinery through altered substrate or 

cofactor availability (Lee, K. W. & Pausova, 2013; Toledo-Rodriguez et al., 2010).  There exists 

a high overlap between MSP-associated differential DNAm in children and that with current 

smoking in mothers and other adults in various studies (Knopik et al., 2019; Suter, M. et al., 

2010; Suter, M. et al., 2011). This has led scientists to question whether MSP-related DNAm 

differences in children actually reflect epigenetic inheritance rather than the direct effect of intra-

uterine MSP exposure.  To investigate this question, Joubert et al. (2014) used a large 

pregnancy cohort, the Norwegian Mother and Child Cohort Study (MoBa), to compare the 

effects on newborn DNAm between paternal smoking, grandmaternal smoking (i.e. mother’s 

exposure to MSP) and maternal smoking (categorized by four classes: never smoker, stopped 

before pregnancy, stopped before 18 weeks gestation and smoked through 18 weeks gestation) 

(Joubert et al., 2014).  This comparison is relevant as the ovum and sperm that created the 

newborn are exposed to smoking in the grandmother or father, respectively.  As well, DNAm in 

sperm is likely affected by smoking (Jenkins et al., 2017).  Joubert and colleagues found that 

maternal smoking past 18 weeks gestation was the only significant association to newborn 

methylation compared to the never smoker group.   The authors interpreted this to indicate that 

DNAm differences in the children are due to direct intra-uterine MSP effects of sustained 

smoking rather than being inherited.  A later study observed a similar finding in another large 

and similarly designed observation cohort, the Avon Longitudinal Study of Parents and Children 

(ALSPAC) cohort (Richmond et al., 2015).   

Second, MSP has the potential to induce DNAm changes that are present in all somatic cells.  

This is because early embryogenesis is a highly sensitive and plastic period of development.  At 

this formative stage, stem cells undergo global demethylation and subsequent reestablishment 

of DNAm patterns (Smith, Zachary D. et al., 2012).  These newly established patterns then are 

propagated from the stem cells to all subsequent somatic cell lineages.  For example, MSP is 

related to differential DNAm in fetal lung (Chhabra et al., 2014), fetal brain (Chatterton et al., 

2017) and placenta (Maccani, Koestler, Houseman, Marsit, & Kelsey, 2013; Smith, Taylor F. et 

al., 2012), as well as in blood samples from newborns (Joubert et al., 2016; Markunas et al., 



 
27 

2014; Miyake et al., 2018) and older children (Lee, K. W. et al., 2014; Richmond et al., 2015). 

This would be in keeping with the multi-organ effects of MSP on child physical and mental 

development.  As well, the top molecular hits from MSP studies in human and animal studies 

implicates a wide range of developmental and growth biological processes.  These include gene 

targets such as aryl-hydrocarbon receptors repressor (AHRR – involved in cell growth and 

differentiation regulation), growth factor independent 1 transcriptional repressor (GFI1 – silences 

gene promoters in diverse tissues but especially in the hematopoietic system), fat mass and 

obesity-associated (FTO – physiologic function unclear but has strong association with body 

mass index, obesity risk, and type 2 diabetes across various ethnicities,) and cytochrome P450 

family 1 member A1 (CYP1A1 – involved in drug detoxification and lipid family biosynthesis) 

(Joubert et al., 2012; Joubert et al., 2016; Lee, K. W. et al., 2014; Markunas et al., 2014; 

Richmond et al., 2015). Together, MSP-related DNAm likely has global effects on fetal 

development, rendering it an ideal candidate to mediate the early biological programming of 

multi-system traits.  Thus, MSP is a well-suited model for the study of DOHaD and the etiology 

of complex, chronic and multi-system diseases. 

Third, MSP-related DNAm changes may persist throughout the life course.  DNA 

methyltransferases are enzymes that can copy DNAm from parent to daughter cells during cell 

division and are responsible for maintaining DNAm patterns in post-differentiated cells (Lee, K. 

W. & Pausova, 2013; Petronis, 2010).  Several independent cohorts demonstrate the stability of 

MSP-related differential DNAm from early and late childhood (Joubert et al., 2016; Lee, K. W. et 

al., 2014; Richmond et al., 2015) and early adult hood and midlife (Tehranifar et al., 2018; 

Wiklund et al., 2018) .  This feature is a particular advantage in DOHaD research compared to 

biomolecules like RNA.  For example, the gene expression changes associated with adult 

smoking revert by >50% one year after quitting.  Ten years after quitting, the reversion rate 

is > 85%.  In contrast, the reversion rate after one year of quitting ranges from 17 to 33% and 

differences remain detectable even 40 years after smoking cessation (Tsai, Spector, & Bell, 

2012).  The relative stability of DNAm compared to other biomolecules may speak to its role in 

complex chromatin regulating mechanisms that are less easily dismantled.  This DNAm 

"memory" may also lend greater sensitivity of the nucleus to mobilize should a subsequent 

exposure event occur.  While the answer remains a mystery, the persistence of specific DNAm 

changes renders it a good candidate to inform if not mediate the effects of early-life exposures 

to later life.   
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Fourth and as alluded to above, MSP-related DNAm changes can be sensitive to exposure 

changes.  While it appears largely stable, DNAm at certain sites loci appears reversible.  For 

example, using the same cohort as the discovery cohort in this study, Richmond et al. found that 

differential DNAm related to MSP persisted from birth to age 7 and 17, (AHRR, MYO1G, 

CYP1A1, CNTNAP2) while others appeared “reversible”, (GFI1, KLF13, ATP9A).  Similarly, 

Miyake and colleagues found differential methylation sites between children exposed to MSP 

that was sustained throughout pregnancy versus smoking cessation early in pregnancy (Miyake 

et al., 2018).  The study by Joubert and colleagues using the MoBa cohort could be similarly 

interpreted (Joubert et al., 2014).  One interpretation of these two well-designed studies is that 

sustained versus sustained smoking have distinct epigenetic effects.  Alternatively, it may 

suggest that smoking cessation may reverse the DNAm response to early gestational MSP 

exposure.  This would mirror adult studies showing reversibility of DNAm changes after smoking 

cessation (Tsai et al., 2012).  Whether these studies imply environmental sensitivity or 

reversibility of DNAm, the apparent plasticity of DNAm to MSP exposure makes it a stronger 

candidate not only as a biomarker but also potentially as a therapeutic target.   

MSP is the most common toxin exposure in childhood in both the developed and developing 

countries (Rodriguez & Smith, 2019).   Its effects are linked to lifelong and broad consequences 

for the child.  And regrettably, the exposure is completely preventable.  The responsiveness yet 

stability of DNAm changes, as well as its biologic mechanism of action, render DNAm a strong 

candidate as a molecular marker and mediator in the DOHaD model.  As well, the relative low 

cost and technical robustness of DNAm microarrays compared to other biomarkers makes it 

feasible for human study in large cohorts, a critical bottle-neck in the study of CCD.  Thus, the 

study of DNAm patterns underlying MSP-related disease may enhance our understanding of 

common molecular pathways in the DOHaD context and bring us closer to patient-specific 

diagnosis and management of complex diseases affecting all ages across the globe. 

 Current evidence linking maternal smoking and offspring complex disease to DNA 

methylation 

 

Besides cancer, metabolic syndrome1 and neuropsychiatric outcomes have received the most 

research attention among CCDs related to MSP.  This is likely due to their rapidly rising burden 

 
1 a constellation of traits including glucose intolerance, abnormal cholesterol and lipid metabolism, hypertension, 
and overweight 
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both in terms of quality of life and societal costs (Biederman, Monuteaux, Faraone, & Mick, 

2009; Li, L. et al., 2016; Taal et al., 2013; Wiklund et al., 2018).  Metabolic syndrome is a 

canonical example of the DOHaD paradigm.  As discussed in Section Developmental origins of 

health and disease hypothesis and common disease – a convergence of multiple dimensions, 

adverse pregnancy conditions relate to poor fetal growth, (as evidenced by low birth weight,) a 

likely precursor to abnormal childhood fat accrual and adulthood metabolic syndrome traits 

(Drake & Walker, 2004; Roseboom, Tessa J. et al., 2001; Suter, M. A. et al., 2013). Using a 

modern cohort of Dutch children with 450K data, Küpers and colleagues demonstrated that 

GFI1 hypermethylation in cord blood mediated the relation between MSP and low birth weight in 

a meta-analysis of three independent European descent cohorts, Groningen Expert Center for 

Kids with Obesity (GECKO) , ALSPAC (UK) and Generation R (GenR) (Kupers et al., 2015).  

They showed that differential methylation at three loci at the GF1 gene accounted for 12-19% of 

the 202 g lower birth weight seen in MSP exposed infants.  Murphy et al. also examined birth 

weight, but in a multi-ethnic birth cohort in the United States (Murphy et al., 2012).  This study 

specifically examined DNAm using pyrosequencing at two imprinted genes, Insulin-like Growth 

Factor 2 (IGF2) and H19.  They found that IGF2 differential methylation accounted for 21% of 

the proportion low birth weight in male infants.  Another prospective pregnancy study found 

methylation at cg25685359 in cord blood was positively associated with MSP and negatively 

associated with birth weight.  This locus is associated with the miRNA let-7b host gene 

(LET7BHG) which is implicated in adipocyte differentiation and insulin signaling in both animal 

and human models.  In fact, a study in pre-menopausal women showed an 8-fold decrease in 

blood LET7BHG miRNA levels after a 12 month intervention to reduce dietary glycemic load, the 

only marker in the study to show such a dramatic change (McCann et al., 2013). Recently, 

researchers using 450K data from adolescents in the Raine Study found that two out of 23 CpG 

sites significantly associated with MSP were also linked to cardiometabolic measures in 

adolescence (Rauschert et al., 2019).  These two sites were found in the 

FTO and CYP1A1 regions.  As well, this group did not find that other smoking exposures, 

(paternal smoking during pregnancy, childhood exposure to second hand smoke (SHS) or 

personal smoking of the adolescent,) affected DNAm directly nor altered the relation between 

MSP and methylation.  This is consistent with the findings by Richmond and colleagues who 

also found no effect of paternal smoking during pregnancy on the relation between MSP and 

newborn DNAm in ALSPAC (Lee, K. W. et al., 2014; Richmond et al., 2015).   

To support the role of intra-uterine MSP effects on birth weight rather than other maternal 

factors on birth weight, researchers use the placenta as a proxy of the fetal experience of 
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environmental exposures (Maccani et al., 2013).  A recent meta-analysis of seven birth cohorts 

in the US, Europe and Australia using 450K data from placental tissue found four CpG loci that 

related to MSP were also associated with birth weight z-scores (Everson et al., 2019).  Three of 

these four sites are located near known birth weight related SNPs, (LEKR1, WBP1L and EDC3). 

There are also a number of studies demonstrating MSP-related DNAm differences to neurologic 

development (Chatterton et al., 2017; Toledo-Rodriguez et al., 2010).  Because of the obvious 

challenges in sampling brain tissue, human studies are mostly limited to using blood DNAm as a 

proxy.  Post-mortem samples provide guidance on the use of such surrogates, with studies 

showing a relative concordance of DNAm between peripheral blood and brain tissues at specific 

CpG sites (Edgar, Jones, Meaney, Turecki, & Kobor, 2017; Hannon, Lunnon, Schalkwyk, & Mill, 

2015).  As well, research benefits from several successful animal models.  For example, a 

mouse model of ADHD and prenatal nicotine exposure found that global DNA hypomethylation 

in striatal and frontal cortical cells was related to altered cortico-striatal neurotransmitter-related 

signaling.  This clinically correlated with enhanced nicotine preference and ADHD-like 

psychopathology (Buck et al., 2019).  Moreover, this effect persisted in the “grandchildren” (i.e. 

F2 generation).  This and similar models have expanded our understanding of multi-

generational, molecular and pharmacologic aspect of neuropsychiatric pathology in humans 

(Petronis, 2010).  Using DNAm in blood as a surrogate for that in brain, a recent expansive 

meta-analysis encompassing 2821 human subjects used genetic instrumental variable (IV) 

analysis to infer a causal relation between MSP-related differential DNAm and psychiatric 

morbidity in later life (Wiklund et al., 2018). 

These groups and others have used various study designs and statistical techniques to 

strengthen causal inferences supporting the mediating role of DNAm in these diseases.  To 

date, EWAS has identified literally hundreds of statistically significant differentially methylated 

sites or regions in various tissues related to MSP (Knopik et al., 2019).  Most studies focus on 

gene-centric findings, such as changes located at or around SNPs like AHRR and CYP1A1, two 

of the most consistently identified hits relating to offspring blood DNAm and MSP (Lee, K. W. et 

al., 2014).  Despite prospective and longitudinal cohorts, intense pooling and collaboration of 

international resources and samples, and a cost-effective and technically robust means of 

assessing DNAm across multiple populations and sample types (Joehanes et al., 2016), there is 

yet no the leap to clinical translation. The remainder of this chapter discusses concepts and 

examples borrowed from various research realms that specifically target this field towards 

clinical applications.   
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 Mapping individuals to the risk context of MSP  

 

Today, modern cohorts amass immense multi-omic data.  We are better able to profile human 

disease than ever before.  This enables more fine-grained study of the manifold biologic and 

environmental interactions that establish an individual’s poise between healthy and diseased 

states.  This idea of individual-specific vulnerability to health risks borrows from evolutionary-

developmental biology theory (West-Eberhard, M. J., 2003).  This concept has fostered several 

theoretical frameworks since the mid-1990s. Among these, “biologic sensitivity to context” 

(Boyce & Ellis, 2005) and “differential susceptibility” (Belsky & Pluess, 2009) are prominent.  

These concepts share roots with the DOHaD hypothesis.  In our study, we employ this concept 

to visualize a spectrum of individuals ranging from “typical” i.e. manifested outcomes are as 

expected given risk profile to “atypical” i.e. demonstrate poor outcomes despite low risk or good 

outcomes given high risk factors (Boyce & Ellis, 2005).  In Figure 12, the outcome is a proxy of 

fetal development, birth weight and MSP is the risk.  By comparing the four categories at the 

bottom, we can better disentangle pathways that are 1) MSP-related processes, 2) processes 

related to birth weight but not due to MSP or 3) processes related to MSP but not the outcome.  

For example, we could compare the typical-vulnerable and atypical-vulnerable cases.   

Differential DNAm that overlaps in both these groups would be unrelated to smoking and more 

likely related to processes that cause low birth weight.  By using such comparisons akin to 

counterfactual analysis, we may better characterize the fetuses and/or children that would 

succumb to MSP adverse effects and hopefully target the molecular underpinnings underlying 

this vulnerability. 
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Figure 12: Typical and atypical risk-phenotype association.  This figure uses the example of the effect of MSP 

on fetal growth.  Though this depiction suggests a linear spectrum of between typical and atypical, individual 

vulnerability exists on a multi-dimensional grid that represents the joint contribution of factors that may be 

protective or harmful depending on context. 

However, these four typical-atypical categories may underrepresent other smoke exposures and 

genetic, environmental and familial factors that are relevant to MSP-related fetal programming.  

We speculate that including these additional factors may provide different clinical insight and 

perspective.  By moving from a two-dimensional to a multi-dimensional characterization of each 

subject’s risk factors, we shift from a linear spectrum to a potentially richer topography of 

vulnerability.  The benefit of a multidimensional view of the impact of MSP is backed by the 

clinical relevance of GxE MSP effects on child outcomes (Agrawal et al., 2010), but also the 

known distinct effects of genetic, non-genetic and GxE effects on DNAm in cord blood (Czamara 

et al., 2019).  While using greater than two variables is less conducive to the “clean” dissection 

of counterfactual comparisons, it offers a view of the interactions that may confer relative 

vulnerability or resilience depending on context as would occur in reality.  Put another way, we 

propose to profile MSP-vulnerability using a composite of multiple variables. 

There is an additional and related potential benefit to the use of multiple variables to form an 

MSP composite measure.  Our overall objective is to overlap a subject’s MSP-related risk with 

his/her epigenetic 450K data.  The “curse” of high dimensional data is classically known as the 

phenomenon where data from thousands of variables (p) are collected on a relatively small 

sample of subjects (n), (a situation often symbolized as p >> n.)  Because subjects are few, an 

outlier subject can have a powerful (and likely non-generalizable) influence on model selection 

and the inferences drawn.  We further aggravate outlier influence if we misclassify MSP-related 
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risk.  Outliers are defined as data that lies distant to other observations.  They can result from 

true data variance, measurement error, or recording error.  As we add multiple “layers” to a 

composite measure, we potentially attenuate the influence of subjects that may be considered 

“outlying” based on one measure, but when combined with other measures, can be better 

placed in context of a landscape of vulnerability.  For instance, it is fortunate that in a population 

only a small number of children are exposed to high and continuous levels of smoking as a 

fetus.  If we used maternal smoking in pregnancy alone, this small group of children would 

powerfully influence the data model built using the high dimensional epigenetic data.  There are 

numerous means of dealing with outliers, including removing them, removing and then re-

introducing them in sensitivity analysis, data transformation, changing models (e.g. switching 

from a linear to quadratic model assuming the outlier is a valid observation) and various 

methods of “down-weighting” the observation so that it contributes less to the overall model 

(Debruyne, Höppner, Serneels, & Verdonck, 2017). The discovery and management of outliers 

is a field unto itself.  However, the most important message in outlier literature is that one should 

be very curious as to the “why” a data point is labelled an outlier in the first place.  A commonly 

quoted statement to remind us of this lesson is below: 

“So unexpected was the hole that for several years computers analyzing ozone data had 
systematically thrown out the readings that should have pointed to its growth.”  

— New Scientist 31st March 1988   

 

There exists an implicit danger in assuming any not obviously “wrong” observation is an outlier.  

One could systematically remove potentially valuable information.  When considering the issue 

of outliers, we posit that the use of a composite will improve our capture of signals present in 

high dimensional by both avoiding data loss and attenuating the polarizing influence of subjects 

who cluster at extremes of certain variables but not necessarily all variables. By viewing 

subjects using multi-view versus single-view perspectives, we “break up” these clusters and 

reduce the chances that subjects can unduly influence model behaviour based on one feature 

alone.   

We also consider the increased error due to mis-reporting of smoking status.  Systematic 

underreporting of smoking in pregnant women is a known source of error (Brand et al., 2019; 

Dietz et al., 2011; Shipton et al., 2009; Valeri et al., 2017).  Mothers may either falsely deny or 

underestimate daily usage, likely due to social stigma and personal guilt regarding substance 
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use in pregnancy.  In addition to the random error surrounding any variable measurement, this 

error aggravates misclassification and introduces bias that may be a critical cause of misleading 

and inconsistent findings between cohorts, (for a specific example in MSP research and 

methylation, see results of (Kupers et al., 2015) versus (Valeri et al., 2017).  Put together, we 

believe mapping individuals to their risk context may improve overall accuracy in identifying 

DNAm differences likely to have a biological basis of MSP vulnerability by attenuating reliance 

on (and therefore the error influence of) any given variable.  

We also consider another source of error: selection bias.  Pregnant smokers are more likely to 

be poor, young, unmarried and have health risks such as poor nutrition, and psychiatric 

disorders such as depression, anxiety, substance use and attention-deficit hyperactivity disorder 

(for overviews, see Rodriguez & Smith, 2019 and Rodriguez-Bernal et al., 2010.)  Thus, there is 

unequal distribution of potential confounders between risk categories.   For instance, Fang et al. 

found no difference between MSP exposed versus non exposed infants in terms of 

developmental outcome or birth weight until selection bias, (estimated using a propensity score,) 

was included in the models (Fang et al., 2010).  In another example, Fertig analysed data from 

multiple cohorts to investigate the nearly doubled risk of low birth weight in the year 2000 

compared to 1958.  Her analysis estimates that as much as half the association is due to 

selection bias (Fertig, 2010).  Clearly, selection bias in MSP research is a critical source of 

unreliable estimates that can have ramifications not only on biological research but also on 

public health decisions.  Numerous methods exist to mathematically correct or account for 

selection bias such as IV analysis, Heckman correction, fixed effects and propensity score 

matching.  However, many of these methods require confounding covariates to abide by 

statistical assumptions such as linearity, normality, or additive effects.  As well, the quality of the 

correction is affected by the confounder data available in the dataset and if the method can 

reliably accommodate the number and types of data (e.g. continuous, ordinal or nominal.) Last, 

certain techniques are only able to study selection bias in specific contexts. For example, the 

fixed effects approach used in Abrevaya (2006) requires measured variation in maternal 

smoking over subsequent pregnancies.  In general, the inherent nature of techniques to counter 

selection bias is to account for what is unmeasured and/or unknown.  Instead, we attempt to 

better describe what we do know in hopes that multi-source data (e.g. over time different time 

points, origins, or methods of data collection) are less likely prone to be all similarly biased and 

thus offer a more accurate subject characterization.  
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In addition, we believe that “mapping” of vulnerability may be particularly relevant in a MSP 

model of DOHaD.  For instance, approximately 20% of low birth weight is attributable to MSP in 

European ancestry population studies (Cnattingius, 2004; Kramer, 1987).  This rate is lower in 

Black populations.  This means in a given population that many more infants have average or 

even high birth weight despite high reported MSP  In fact, it is estimated that about half of the 

estimated effect size of MSP on birth weight is actually due to unobserved variables that are 

related to MSP and are not MSP itself (Abrevaya, 2006; Fertig, 2010).  Also interesting is that 

while the level of toxins like tar and nicotine inhaled from cigarettes have decreased since the 

1950’s, the association between MSP and low birth weight reported in more recent cohorts is 

actually stronger than in older cohorts (Fertig, 2010; Kline, Stein, & Hutzler, 1987; Wehby et al., 

2011).  Whether this is true or due to artifacts like selection bias is unclear (Fertig, 2010).  

However, what is clear is that no simple relation exists between MSP and infant outcomes.  

Thus, it is even more imperative to avoid oversimplifying MSP related risk if we seek its 

underlying pathogenic mechanisms.   

Last, mapping provides a natural response to the “mismatch” hypothesis posed by DOHaD and 

related life course models.  Mapping avoids assuming which prenatal to postnatal influences are 

considered “matched” or “mis-matched” in terms of predicting long-term health.  We aim to 

generate a composite profile that provides a comprehensive view of various MSP-related 

influences stemming from pre-/post-natal sources.  The influences traverse gestational (e.g. 

maternal smoking in pregnancy, grandmaternal smoking, fetal growth, etc.) and postnatal (e.g. 

paternal smoking, household smoking, etc.) effects. Another advantage particularly relevant to 

epigenetic research is that is difficult in observational human studies to dissect apart genetic 

versus non-genetic, and similarly transgenerational versus intergenerational, influences given 

the action of shared genes and shared environments across generations (Horsthemke, 

Bernhard, 2018).  For instance, maternal genetic predilection for tobacco addiction and tobacco 

toxin xenobiotic metabolism could have both genetic and non-genetic influences on the fetus.  

As well, secondary epimutations from a certain insult may mimic transgenerational epigenetic 

inheritance (Horsthemke, B., 2006).  However, such epimutations actually arise from a DNA 

sequence change in a neighbouring gene area that affects the methylation and transcription of 

the gene of interest.  While the epimutation occurs in the F0 generation and may appear to 

persist in the F3 generation without further exposure to the certain insult, it is due to genetic 

rather than epigenetic transmission.  A composite profile avoids these research design 

conundrums by avoiding assumptions of how one effect interacts with others and how that 

impacts health outcome. 
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To this end, this thesis will also explore transforming the 2-D spectrum expressed in Figure 12 

into a multidimensional topography by triangulating genetic and non-genetic MSP factors with 

impact on fetal growth.   

 Mapping individual epigenetic data to genome wide patterns 

 

We also explore a context-based view of epigenetic profiles.  We consider that each individual 

expresses a mixture of patterns of DNAm across the genome, each pattern arising from the net 

effects of genetic and non-genetic influences.  This study of patterns provides at least three 

important biological contexts and several statistical advantages. 

 Biological advantages 

 

First, we posit that DNAm patterns may enhance biological context by giving clues regarding 

chromatin function. Numerous studies have uncovered patterns of gene and histone based 

epigenetic modifications that modulate chromatin structure that translate into altered gene 

regulation (Fortin & Hansen, 2015; Huang, Marco, Pinello, & Yuan, 2015; Wu, Y. et al., 2019; 

Zhu et al., 2016).  The driving hypothesis behind this interest is that co-varying sites of 

epigenetic variance are functionally linked by their physical 3-D proximity to other epigenetic 

marks (e.g. histone modifications) and localization to chromatin/nuclear structures (Zhang, L. et 

al., 2017).  On a molecular level, the fact that patterns emerge is unsurprising.  At its most basic 

level, active chromatin must accommodate transcription machinery and silent chromatin must 

wrap and twist into fibres and coils.  Thus, epigenetic patterns could be thought of as a 

“connect-the-dots”drawing– but we need to understand the rules in order to visualize the 

chromatin structure underlying the dots.   

As discussed in Section 1.2.1: Overview of epigenetics, we must find a way to reconcile relevant 

changes to chromatin function and structure with the 1-D DNAm information that is currently the 

most feasible source of epigenetic data that can be extracted on a population-scale as required 

in CCD research.. .  However, the real-time functions of DNAm range from directing nuclear 

traffic to orchestrating the 3-D conformation of DNA strands (Feng et al., 2006; Lay et al., 2015; 

Liu, S. et al., 2018; Price, M. E. et al., 2013; Rao et al., 2018; Raviram et al., 2016; Schoft et al., 

2009; Tajbakhsh, 2011; Xu, C. & Corces, 2018; Zhang, L. et al., 2017; Zhu et al., 2016).  This 

fascinating realm of research reminds us of how difficult it is to fully envision with linear 1-D 
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metrics alone the relation between methylation and transcriptional output. Whether using 

individual DNAm loci, gene-centric annotation or linear DNA sequence distances, it is clear we 

do not fully appreciate the what, where and how differential DNAm actually affects cell fate.   

Currently, there are large-scale efforts to map chromatin state.  This mapping strives to 

characterize the genome as regions of probable transcriptional activity that is more finely 

grained than merely open (or active) versus closed (or inactive) regions.  These maps are 

genome wide and integrate information regarding histone variants, chromatin modifications, 

(e.g. post-translational methylation and/or acetylation of nucleosome proteins,) and/or data from 

chromatin immunoprecipitation assays for example. These “marks” on the chromatin help infer 

the degree of openness of that region of DNA to transcriptional machinery.  Interestingly, non-

coding regions harbour a vast number of key marks linked to differential chromatin activity.  

Moreover, data support that these chromatin features are a critical mechanism in exposure-

mediated shifts in gene expression and overall cell function (Schvartzman, Thompson, & Finley, 

2018). 

In addition, the advancement of 3-D chromosome structure assays has enabled the generation 

of chromatin interactome maps.  This intriguing body of research uses high-resolution analysis 

of 3-D chromatin structure to visualize DNA as fibres that are woven into a hierarchy of loops 

that are tethered by anchor points attached to various nuclear membrane structures, nuclear 

regulatory factors and other chromatin areas (Figure 13).  The working paradigm of these 

chromatin interactome maps is that the relation between gene expression and chromatin context 

is due to the physical “tethering” of chromosome regions to elements such as promoters, 

enhancers and transcription machinery.  It is believed that most dynamic gene expression 

regulation occurs within more transcriptional active regions called topologically associated 

domains (TADs) (Mishra & Hawkins, 2017) as seen in Figure 8 and Figure 13. 
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Figure 13: Schematic of hierarchical chromatin organization in both 2-D and 3-D views.  Top two images 

show 2-D view of chromosomes based on TAD location.  Bottom two images show 3-D view of chromatin 

focusing on within TAD regions. Bottom image shows examples of anchoring of chromatin loops to 

proximate DNA regions. 

With this intricate weaving of chromatin fibres across various nuclear structures, it is no wonder 

that studies have shown less than 10% of putative target genes from chromatin interactome 

studies map to the "closest" regulatory region by linear genomic distance (Jung et al., 2019; Wu, 

Y. et al., 2020). As well, studies show that the context-specific role of DNAm on chromatin 

changes is what functionally effects gene expression (Collings & Anderson, 2017; Lay et al., 

2015). Such maps have mechanistically linked DNAm on sites from within a few kilobases of 

one another to as “far” as on different chromosomes.   

The work of areas like chromatin interactome studies shows that epigenetic changes function in 

physically related clusters.  This correlates well with clinical associations that show (with the 

exception of some cancer-related DNAm aberrations) concordant changes in groups of CpG 

sites are more likely to affect phenotype than single CpG site differences (Portela & Esteller, 

2010).  It is clear even from sequence based (as opposed to chromosome structure based) 
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analysis that differential methylation at one site may have indirect effects on proximal and distal 

genes.  In their study comparing cord blood of children of smoking versus non-smoking mothers, 

Bauer et al. found that 93.2% of intragenic enhancers overlapping with DMRs targeted at least 

one gene outside the local host gene (Bauer et al., 2016). Moreover, about a third of these did 

not even interact with the local gene.  Mothers’ blood samples demonstrated a similar finding.  

Despite these findings, most EWAS to date continue to use statistical association to exposure or 

outcome to filter out relevant genomic sites or use sequence- or gene-based clustering.  This 

may risk destroying the information embedded in the functional clustering of methylation at 

certain sites.  The task of interpreting 450K DNAm data with our current state of knowledge may 

be likened to building a 450,000 piece jigsaw puzzle without knowing what picture to expect. 

Imposing assumptions on DNAm sites without understanding their role in the topography of 

epigenetic regulation of chromatin activity may be akin to discarding most pieces and/or forcing 

certain pieces together in the cases of filtering and clustering, respectively.  Instead, we adopt a 

pattern finding approach to find DNAm sites that en bloc relate to vulnerability profiles.  We 

hypothesize that these patterns may reflect a specific chromatin context that predisposes to a 

certain cell fate.  Contrary to traditional studies, Bauer and colleagues used a cohort of mothers 

and children to perform a functionally rooted profiling involving RNA-seq, whole genome 

bisulphite sequencing and ChIP-seq (Bauer et al., 2016).  In this way, they characterized 

genome wide gene expression, DNAm and histone modifications in mothers and in children at 

birth, age 1 and 4 years. This group found that 82% of the MSP-related DMRs found at birth 

persisted at age 1 and 4 years.  Interestingly, they observed that MSP exposed children had 

more transitions from repressed to active chromatin states than non-exposed children, and that 

the opposite was true for non-smoking versus smoking mothers.  In addition, such transitions 

were more pronounced near MSP-related DMRs.  This offers strong evidence of a link between 

MSP, differential DNA and chromatin dynamics (Bauer et al., 2016).   

Second, we posit that patterns will more effectively capture the net impact of protective and risk 

factors that simultaneously influence an individual at a given time.  In the context of epigenetic 

processes within the cell, we could view these net forces on biological programming as altering 

the propensity towards certain cell fates. As seen in Figure 11, Lapplalainen and colleagues 

expanded Waddington’s epigenetic landscape metaphor to suggest that reprogramming could 

“deepen” a furrow in that landscape, thereby raising the likelihood of cells entering that 

phenotypic channel (Lappalainen & Greally, 2017).   
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Using the lens of epigenome-wide poise within the DOHaD framework, we aim to capture an 

individual’s cumulative MSP-related biological programming and adaptation to current 

conditions.  As such, we view these patterns as the sum of active biological processes that 

together represent a degree of tissue-based poise predisposing to a given phenotype.  This 

departs from traditional biomarker development that, in order to quantify a value of relative risk 

or dose-response effect, removes individual-context in exchange for individual-independent 

categories. 

Third, we posit that DNAm patterns can provide a disease-based context of underlying 

molecular mechanisms. In genetics, pleiotropy is the phenomenon where a single gene 

contributes to more than one unrelated phenotypic trait.  Data suggests this widely exists among 

CCDs.  If an isolated genomic area can exhibit such pleiotropy, then it stands to reason that this 

may also be true of epigenetic differences.  Understanding pleiotropic effects may be critical to 

uncovering the common biological mechanisms underlying and connecting the multiple traits in 

the constellation of a given complex disease entity (Vattikuti, Guo, & Chow, 2012; Yang, C., Li, 

Wang, Chung, & Zhao, 2015).  For instance, medicine previously considered the traits of 

hypertension, central obesity, dyslipidemia and glucose intolerance as separate entities.  The 

recognition that these traits are biologically linked in what is today called metabolic syndrome 

has changed the paradigm of medical management and research efforts.  We speculate that a 

pattern of epigenetic differences may exhibit a more predictable relation to underlying 

pathogenic mechanisms that may be shared among traits.  Thus, instead of trying to trace traits 

to their molecular common denominators, patterns may be an easier means of tracing molecular 

commonalities to their related constellation of traits.   

 Statistical advantages 

Besides providing a different analytic lens, pattern finding has a number of statistical 

advantages. First, pattern finding across hundreds of subjects attenuates the risk of spurious 

results due to probes which are unequally affected by technical artifacts or batch effect.  For 

example, most EWAS population studies to date used mixed cell type tissue.   The problem 

arises when epigenetic forces are not equivalent for all probes in all cell types within a tissue. 

This leads to a very significant degree of variability simply due to cell type discrepancy that can 

and has been mistaken as disease specific markers (Jaffe & Irizarry, 2014).  The patterns we 

propose to extract from blood represent the landscape of DNAm variability across a mixture of 

cell types of varying proportions.  Blood cell populations vary physiologically with age throughout 

childhood.  While various means of correcting for cell type heterogeneity have been proposed, 
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the main advantage of using patterns which involve numerous DNAm sites is that it relies less 

heavily on any single site that may or may not be affected by either physiologic or pathogenic 

processes at a given stage of a child’s development.  Replacing the single probe view with a 

context based view diffuses the chance error of concentrating on a problematic probe. 

Second, error can be introduced by genotype-dependent methylation.  This is a problem when a 

genetic variant may be associated to disease status – but also alters DNAm.  This would lead to 

an association between DNA methylation levels and disease that is not necessarily causal.  

Genotype is known to affect methylation levels in both cis and even trans locations.  For 

example, single nucleotide polymorphisms (SNPs) can directly or indirectly alter methylation (Zhi 

et al., 2013; Zhou, D. et al., 2015; Zhou, W., Laird, & Shen, 2017).  In the former case, the 

actual site of methylation can be reduced by half or totally in the heterozygous or homozygous 

state, respectively.  In the latter case, methylation can be altered indirectly via a change in the 

TF binding site which then alters the local level of DNA methylation  (Gutierrez-Arcelus et al., 

2013) or histone modifications (Lappalainen & Greally, 2017).  Taken together, effect of 

genotype variability also argues against using traditional gene-centric EWAS approaches as 

previously discussed. A global view of the methylation landscape reduces the likelihood of 

targeting genotype rather than environment related DNAm differences. Similarly, this may also 

lessen the variability seen between ethnicities and thus broaden the general applicability of 

findings.   

Third, pattern finding seeks to distill information from thousands of sites into a number of 

meaningful features.  This reduces the likelihood of type 1 errors that arise from performing 

multiple individual statistical tests (Anderson, Burnham, & Thompson, 2000; Vacha-Haase & 

Thompson, 2004).  Type 1 errors refer to the likelihood of rejecting the null hypothesis 

erroneously, (e.g. stating there is a difference, relation or effect when there truly is none.)  

Multivariate techniques such as pattern finding conduct comparisons of variables simultaneously 

rather than through multiple separate tests.   

Fourth, patterns may help confront issues due to low effect size.  The study of epigenetic 

features linked to CCDs faces the difficult challenge of comparing phenotypes that are linked to 

small mean differences in between subjects, (typically in the 5% range as opposed in the 30% 

and above range for cancer phenotypes) (Bacalini et al., 2015; Teschendorff, Andrew E. & 

Relton, 2018). In addition, few targets are expected to have detectable differential function.  The 

study byBauer et al. illustrates this point where the paucity of differentially expressed genes 
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impelled the authors to instead target the downstream pathways targeted by DMRs.  Using 

RNA-seq to compare genome wide gene expression in children of smoking versus non-smoking 

mothers, this group found very few genes passed the multiple testing threshold, (the fairly 

standard 10% false discovery rate (FDR) with the Benjamini and Hochberg (BH) correction used 

in EWAS.)  In the specific context of DNAm,  Meissner and colleagues recently reported in a 

study of 30 human cell and tissue types that only ∼20% of CpGs are differentially methylated 

(Roadmap et al., 2015). Of those, the majority are cell type specific differences and likely 

disease unrelated.  With such small effect sizes and relatively large sources of data noise, 

numerous studies have attempted to optimize detection of differential methylation by grouping 

multiple sites together using various criteria, typically based on array-specific architecture, 

biological annotation or localization of CpG sites relative to one another (Teschendorff, Andrew 

E. & Relton, 2018).  This follows the current paradigm in GWAS of complex diseases which 

suggest that a large portion of phenotypic variability can be accounted for by multiple common 

genetic variants with small effects (Vattikuti et al., 2012).  Pattern seeking follows this line of 

thought given that DNAm variability at a single site likely has a small effect on phenotype, but 

that clustering these small effects can enhance detection.  For instance, Bacalini and colleagues 

(2015) proposed a multivariate method using 450K data that grouped sites by CpG density and 

proximity to a gene.  They tested this method in a large meta-analysis and found that it could 

detect significant differences between samples in regions with very low DNAm variability 

between probes.  They also found that these differences would be non-significant if tested 

individually using univariate methods (Bacalini et al., 2015).  To make things worse, more 

intrinsic DNAm variability at individual DNA sites is found in samples exposed to cigarette 

smoking (Jenkins et al., 2017; Petronis, 2010; Vazsonyi & Belliston, 2006).  Researchers 

speculate this is caused by increased heterogeneous and/or stochastic events cause by 

cigarette toxins (Petronis, 2010).  While better understanding of such events would greatly 

improve analysis of epigenetic alterations, at this point it remains a black box.  What is known is 

that such high variability further challenges statistical power to distinguish health status using a 

DNAm biomarker.  We posit that intra-subject (in other words, subject specific) information can 

attenuate this problem.  Intra-subject DNAm differences extracted by multivariate techniques 

can express deviation from a given pattern and is less dependent on inter-subject variability at a 

single probe.  In other words, patterns may help better visualize how similar or dissimilar an 

individual is to a given genome wide DNAm configuration rather than comparing similarity 

between individuals. 
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Related to low-effect size at individual CpG sites is another possible source of bias related to the 

450K chip design.  Silva-Martínez and colleagues argue that the risk of probe density-driven 

false-negatives is increased by using differences in methylation levels between disease and 

healthy controls (Silva-Martínez, Zaina, & Lund, 2017).  Using 13 case-control disease studies, 

this group found a near perfect linear relation between probe density and frequency of 

differentially methylated genes based on beta methylation differences between diseased and 

normal samples.  Moreover, they demonstrate that accounting for probe density provides more 

pathobiologically relevant hits compared to using beta methylation differences alone.  This claim 

was based on relatively greater gene function category enrichment, overlap with expression 

data (both in number and degree), and disease or tissue specificity.  Using univariate techniques 

and multiple testing, it is to be expected by chance that more dense areas will be more likely 

selected.  However, pattern based techniques avoid multiple testing and therefore are less 

susceptible to distribution biases.   

In summary, we propose that mapping patterns of genome wide DNAm provide statistical 

advantages as well as facilitate biological interpretation (Figure 14).  Epigenetic studies of 

complex diseases struggle with low effect size, high variability of DNAm at single sites and 

multiple testing combined with merely emerging knowledge of the effect of genotype, stochastic 

effects, technical artefacts and the true biological relations between differential DNAm and 

exposures and/or outcomes.  We consider the specific gains in exploring a small number of 

pattern-based indicators of differential DNAm.  It will reduce the number of hypothesis tests and 

may attenuate the effects of high inter-subject data variability.  It may better model biological 

effects by offering a glimpse of genome-wide chromatin poise as well as offering a gene-

agnostic view that minimizes the impact of genotype-related DNAm and/or disease risk 

influences.  As such, it would refine signal precision.  Put together, these points could 

substantially increase the power to detect differential methylation and the discovery of clinically 

useful biomarkers (Klein & Hebestreit, 2016). 
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Figure 14: Mapping paradigm for subtle or multi-factorial diseases.  This employs a precision medicine based 

characterization of individuals based on overlapping clinical and biological data to map vulnerability to CCD.  

Unlike Figure 3, the goal is to identify patterns of features related to disease vulnerability.  Figure 3 describes 

a biomarker paradigm ideal for post overt disease onset while this figure describes positioning each 

individual on a multidimensional landscape of  disease predisposition.   

 Thesis Outline 

 

 Rationale 

Over the past decade, an explosion of studies has left little doubt that MSP leaves an indelible 

imprint on child health and the epigenome.  Despite this fervent interest, there is yet not a single 

clinically useful epigenetic biomarker for this prevalent and potent exposure.  Omics research, 

particularly in phenomics and exposomics, have enabled the development of rich data 

landscapes with improved accuracy and precision in positioning individuals in terms of their risks 

and outcomes.  Coupled with molecular advances that enable high-throughput, genome wide 

interrogation of epigenetic modifications like DNAm, we now have an opportunity to better 

overlay multiple layers of information to generate a multidimensional rendering of human health. 



 
45 

This work integrates multiclass prospective data from questionnaires, public education 

repositories, clinical measures and DNA methylation microarrays.  The proposed methodology 

aims to provide a context-based view of risk that is not only more accurate but attenuates both 

misclassification and data loss through avoidance of discretization.  As well, it uses pattern 

finding methods to describe DNAm differences rather than traditional EWAS methods that focus 

on categorical comparisons at multiple genomic sites or user defined regions.  In medicine, 

diagnostic accuracy improves when combining patient endorsed symptoms, clinician detected 

signs and ancillary investigations.  While including this much information can often include “red 

herrings”, the overall pattern of illness cannot be obtained without it.  Moreover, CCDs likely 

involve multiple pathways and thus are likely best described as a combination of multiple factors 

as opposed to a few.  

Thus, the primary motivation of this thesis is to test if and what differences in genome-wide 

DNAm patterns characterize fetal susceptibility to MSP.  If MSP-related DNAm patterns exist, 

how do these differences relate to future health trajectories and regulation of chromosomal 

activity?  As discussed in Section 1.2.3: DOHaD, DNAm and common complex disease with the 

hourglass analogy, one of the challenges of studying and clinically managing CCD is that it may 

be broad and heterogeneous in its risk factors and manifestations.  Not all individuals with a 

complex disease have the same risk factors.  Similarly, not all individuals with a complex 

disease will manifest all traits.  Thus, we use continuous and “all-inclusive” ranges of risk and 

various multiple outcomes to best capture the two wide-ranging reservoirs of the complex 

disease hourglass. 

 Hypotheses 

There is a landscape of genetic and non-genetic factors that shape health trajectories.  This 

thesis seeks to explore this landscape with the following hypotheses: 

1. Individuals can be topographically positioned relative to other subjects on a multi-

dimensional map of exposomic factors.  This “vulnerability map” encompasses both familial and 

environmental factors in the form of family history and maternal report of MSP, as well as an 

indication of the degree of impact these factors had on the individual.  In this way, we 

hypothesize this map can point to individuals relatively more vulnerable or more resilient to 

MSP-related risks in terms of their fetal development. 
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2. We can use the positioning on this map as “bait” to find DNAm patterns that are related 

to varying degrees of MSP vulnerability.  Based on the observation that MSP has persistent and 

broad reaching effects on child health, we posit the following inter-related corollaries regarding 

the relevant DNAm patterns: 

a) They will be present in predominantly impact active chromatin domains – 

repressed chromatin domains are less open to cellular and extracellular signaling and 

thus less likely to participate in environment-sensitive changes.   

b) They will have pervasive system effects: the effect of maternal smoking in 

pregnancy is known to be related to multi-system dysregulation in the exposed child. 

Thus, we expect the area(s) of chromatin to plausibly dysregulate function across 

multiple pathways from the molecular to tissue level. 

i. Impact areas annotated to diverse tissue and/or biological functions:  we 

expect the area(s) of chromatin to plausibly dysregulate multiple 

pathways, which may already be known to be implicated in functions such 

as growth, proliferation, and inflammation.   Most importantly, these 

disrupted areas will form reproducible patterns that will affect multiple 

organs that impact physical, cognitive and psychological growth.   

ii.  We expect the pervasiveness of these effects to be across both sexes, 

acknowledging the likely sex based susceptibility to maternal smoking 

based on various epidemiologic (Suzuki, K. et al., 2011; Zaren, Lindmark, 

& Bakketeig, 2000) and epigenetic (Murphy et al., 2012; Zhang, B. et al., 

2018) studies.  However, this first pass work will focus on autosomal 

chromosomes only.  While the effect of MSP very likely has interactions 

with sex chromosomes, the far more limited pathways likely implicated 

with the latter limits the informative versus complicating consequences.  

For this reason, sex chromosomes are excluded from analysis.   

 

3. The DNAm patterns will impact chromatin function in a stable manner.  We expect that 

epigenetic changes capable of altering phenotype through cellular reprogramming will involve 

interactions with other epigenetic mechanisms that will reinforce and propagate these effects 

through multiple rounds of cell turnover.   

a) Biological stability: For example, these changes will likely implicate mechanisms such as 

histone modification, miRNA-related regulation, and changes in both extronic and 

intronic areas, etc..  As such, we expect the patterns to be widely spread throughout the 
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genome and affect multiple functional areas outside of traditional regulatory elements 

like TSSs.  This marks a specific shift away from gene-centric views of DNAm 

differences. 

b) Temporal stability: following the above, if a DNAm pattern mediates phenotype-relevant 

cellular reprogramming over the subject’s life course, it follows that it will persist through 

time such that impacted DNAm domains can be identified in samples throughout 

childhood.   

 

4. The DNAm patterns will have universal effects across populations.  We hypothesize that 

using subject vulnerability to MSP will potentially identify core changes to cellular programming 

that affect human health trajectories over time.  Core changes should be independent of genetic 

and non-genetic disease susceptibility forces.  Thus, the changes will be reproducible in truly 

independent cohorts.  While cohorts will use the same or similar DNA methylation microarrays to 

ensure similar chromosomal coverage, other data variables such as the population, (e.g. racial 

mixture, exposures, demographics,) timing of sample collection, storage, extraction, and 

statistical processing of the data do not necessarily need to be uniform in order to capture the 

similar areas of impacted DNA.   

 Objectives 

This work represents an entirely novel approach to viewing the interplay of genetic and non-

genetic factors related to MSP and DNAm.  It explores the use of multidimensional data to better 

define individual predisposition to MSP-related health differences.  We venture that improved 

estimation of disease susceptibility from early-life exposures will better identify rational DNAm 

targets that relate to vulnerable health trajectories in childhood, and thus prevent more harmful 

and/or irreversible pathology in adulthood.  To test this methodology and associated 

hypotheses, the specific objectives of this thesis were as follows below and presented in Figure 

15: 

1. Mapping infants to their MSP-related vulnerability 

2. Mapping MSP-related vulnerability to DNAm patterns 

3. Exploring clinical relevance of DNAm patterns 

4. Exploring functional relevance of DNAm patterns 

5. Exploring the replicability of DNAm patterns over time  

6. Exploring the replicability of DNAm patterns in a different population 
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Figure 15: Schematic of thesis objectives.  Green – data from discovery cohort.  Purple – data from 

replication cohort.  For clarity: Factor analysis (MSP composite) results referred to as “dimensions”,  PLS 

(DNA methylation) results referred to as “components”. 

Chapter 2 Methods 

 

 Data source 

 Discovery cohort 

 

ALSPAC collected data on a total of 15,454 pregnancies resident in the former county of Avon, 

United Kingdom (UK), with expected dates of delivery 1 April 1991 to 31 December 

1992.(Golding, 1990)  This resulted in 15,589 known foetuses.  The study website contains 
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details of all the data that is available through a fully searchable data dictionary2. Written 

informed consent was obtained for all ALSPAC participants. Ethical approval was granted from 

the ALSPAC Law and Ethics Committee and the local Research Ethics Committee in 

accordance with the guidelines of the Declaration of Helsinki. 

Table 2 shows a summary of variables available including the source of the data and the 

approximate timing of collection. 

Table 2: Schematic of ALSPAC variables showing source and timing. 

 

 

 

 

Mothers completed multiple self-administered questionnaires.  At about 18 and 32 weeks 

gestation, maternal smoking was assessed used the following questions to assess smoking: 

“Did you smoke regularly at any of the following times in the last 9 months: 1) Before  

pregnancy, 2) first 3 months of pregnancy and 3) last 2 weeks”.  Mothers endorsing smoking 

 
2 (http://www.bris.ac.uk/alspac/researchers/data‐access/data‐dictionary) 
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had the options of cigarettes, cigars, pipe or other.  Data was recoded such that any answer but 

“No” or “I don’t know” was coded as yes.   Mothers also answered questions regarding smoking 

of the maternal grandparents (including grandmaternal smoking during the mother’s gestation), 

the mother’s partner and other household members.  SDP is related to genetic variants and 

offers the possibility of conducting IV analysis using SNPs to strengthen causal inferences 

between exposure related methylation and outcome (for example, see use of Mendelian 

randomisation in (Wiklund et al., 2018).  However, we are underpowered to conduct such 

analysis in this single cohort (Richmond et al., 2015).  We transformed birth weight into a z-

score (labeled as bwzscore) adjusted for sex and gestational age using a multi-ethnic, multi-

country reference available through the R package hbgd (Villar et al., 2014). 

 

 

The following variables were selected due to their theoretic relevance to exposure to MSP as 

well as whether serial data are available. 

Behaviour – ratings using the Strengths and Difficulties Questionnaire (SDQ) provided by the 

mother at ages 81, 115 and 140 months and by the teacher at 120 and 156 months.  Subscale 

scores were pro-rated if one or two items were missing.   

Academic performance – Scores from Standard Assessment Tests (SATs) administrated by 

the UK Department of Education were linked to ALSPAC subjects for Key Stages 1 to 3, 

(corresponding to ages 5-7, 8-11 and 12-14 years, respectively.) As in previous research using 

this cohort data, we used raw scores in all models (Booth et al., 2014; Meadows, Herrick, Feiler, 

& ALSPAC Study Team, 2007). 

Neurodevelopment - Assessed at age four years and age eight using researcher administered 

measures: the Wechsler Pre-school and Primary Scale of Intelligence UK (WPPSI) and Wechsler 

Intelligence Scale for Children-III UK (WISC), respectively.  Full details of the tests, scoring and 

inter-rater reliability described in (Taylor, C. M., Kordas, Golding, & Emond, 2017).  In summary, 

subtest scores for both IQ tests were calculated to create a Verbal IQ and Performance IQ (as 

well as a Total IQ score reflecting a combination of both.) Child development before age four 

assessed using maternal questionnaire based on the Denver Developmental Screening Test at 

four time points: 6 months, 18 months, 30 months and 42 months (Iles-Caven, Golding, 

Gregory, Emond, & Taylor, 2016).   
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Anthropometric – height, weight, body circumferences and blood pressure were measured 

throughout infancy and in 1-2 year intervals throughout childhood starting at age 7.  Body 

composition estimated using dual-energy x-ray absorptiometry (DEXA) at age 9, 11 and 13 

years. Values were converted to internal z-scores (sex specific) using data from the full ALSPAC 

cohort. Individual growth trajectories calculated using multilevel models with random effects are 

available from the ALSPAC data repository for all subjects with two or more measures.  

Internally derived z-score for deviation from average is labeled as zwres0.  Internally derived z-

score for deviation from average change in weight/height between birth and 3 months, 3 and 12 

months and 12-36 months of age are labelled as zwres1/zhres1, zwres2/zhres2 and 

zwres3/zhres3, respectively.  

 ARIES DNAm data 

A convenience sample from ALSPAC had DNAm data collected from blood samples at birth 

(cord blood) and around ages 7 and 15 years, henceforth referred to as Accessible Resource for 

Integrated Epigenomics Studies (ARIES) data.  DNA extraction, bisulphite conversion and 

DNAm data measurement using the Illumina Infinium HumanMethylation450 BeadChip (450K 

beadchip) as well as semi-random sample distribution across chips (to reduce batch effects), 

quality control and subject mismatch checks using genotype probes/sex-match as previously 

described (Relton, Caroline L. et al., 2015).   

Using the 450K beadchip, DNAm data are expressed as percentages ranging from 0 to 100% at 

each methylation site, known as a beta value.  This value reflects the percentage of the sample 

that is methylated at that specific probe site Figure 16.  It does not reflect partial methylation as 

methylation is an all or none event at a given locus on each DNA strand.  That means that in 

non-gamete cells, methylation at a site can only be 0%, 50%, or 100% within a single cell. 
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Figure 16: Schematic of mixture of cell with either methylation or no methylation at a single CpG site.  The 

different proportion of cells with methylation results in beta values that could theoretically range from 0-

100% on the 450K chip.  Adapted from Holbrook, Huang, Barton, Saffery, & Lillycrop (2017). 

Other literature has argued for the use of M-values, the logit transformation of beta values.  This 

is a worthwhile consideration for linear analysis as M-values are more homoscedastic.  

However, several studies have shown that beta values are unlikely to cause statistical 

conclusion problems and therefore conversion to M values does not appear necessary and may 

even lead to the “creation” of outliers (Teschendorff, Andrew E. & Relton, 2018). With this 

understanding, we proceed using beta values.   

Initial data analysis was performed using raw beta values from ARIES.  Subsequently, analysis 

was updated using Version 2 data release (Spring 2016) where data are provided preprocessed 

on site at the University of Bristol.  ARIES pre-processed data methylation data (background 

correction and subset quantile normalization performed within each time point) in R (version 

3.0.1) with the wateRmelon package (Pidsley et al., 2013) using the algorithm created by 

Touleimat & Tost (2012)  to reduce the non-biological differences between probes.  The 

beadchip probes were filtered by detection p-values and variability. Data points with low 

signal:noise ratio (detection p > 0.01) or with methylated or unmethylated read counts of 0 were 

also excluded.  This left 417832 probes in the cord blood ARIES data from the ∼485 000 

cytosines tested on the 450K beadchip. Previous work has shown the DNAm measured with this 

chip can be confounded by cross-hybridization with other genomic sites and proximity to SNPs 

(Chen, Y. A. et al., 2013).  We used the DMRcate R package to filter these ~48 000 unreliable 

probes (Peters et al., 2015).  This left 377 460 probes.  We performed discovery analysis of 

relevant DNAm patterns from all 914 subjects with cord blood data from ARIES.   
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A common first step before dimensionality reduction is to remove data with low variability as 

these data are unlikely to contribute to methodologically distinguishable processes.  As well, 

testing only higher variability probes can reduce multiple test correction penalties (Edgar et al., 

2017).   

As previously described by Edgar et al (2017), we filtered probes using a threshold of 5% range 

in change in beta values.  Specifically, we retained only sites with DNAm values in the cord 

blood cohort that varies by at least 5% when taking the difference between the top and bottom 

methylated values between the 10th and 90th percentile range.  This filtered about 200000 

probes, leaving 185466 probes for further analysis.     

 

 

We aim to use as much data as possible to distinguish true relations between variables of interest 

and unmeasured and/or unknown sources of noise (Teschendorff, Andrew E. & Relton, 2018). 

While PCA and ICA may have limited utility in identifying MSP-related patterns, it has been 

explored specifically in DNAm to capture variability related to noise.  As such, we employed the 

use of the R package reFACTor (Rahmani et al., 2016) and normFact (Teschendorff, Andrew, 

Renard, & Absil, 2014) to estimate the variability related to cell type and batch, respectively.   

(a) Cell type composition 

 

Regarding cell type correction, we use data driven methods as the ARIES database does not 

contain cell composition information.  For cord blood DNAm data, we estimated cell composition 

using the meffil R package (Min et al., 2018).  This package has several cord blood cell type 

references.  One of the most commonly used references in cord blood DNAm studies is that 

from (Bakulski et al., 2016).  However, this resulted in a large number of negative cell count 

estimates (both with and without filtering as described above.)  We compared these results with 

the other references available in meffil.  Among these, the gse68456 reference provided the 

least number of negative estimates.  This reference uses a more "stringent" cell sorting 

protocol in that it excludes erythroid lineage-specific markers (de Goede et al., 2015).  

Accordingly, we found very different estimated counts particularly with nucleated red blood cells 

(nRBCs) between the two references, as well as between the two nRBC estimates and their 

relation with DNAm components (data not shown but available upon request.)  Furthermore, this 

reference has also been previously employed with ARIES data (Timms et al., 2019).  As such, 
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we proceeded with this gse68456 reference in our analysis.  The cord blood reference uses 

seven cell types.  As in Houseman, Molitor, & Marsit (2014), negative proportion estimates are 

corrected post hoc to zero. 

The reFACTor package is specifically designed to perform reference-free cell type heterogeneity 

adjustment using PCA. It is an unsupervised method in that no information about exposure or 

phenotype is entered.  We used this reference-free method as there is no appropriate age-

specific blood cell composition references for ages 7 and 15.  Using reFACTor, we trialed setting 

k to values 5, 6 and 7 to represent the common cell types sorted by flow cytometry (CD14+ 

monocytes, CD19+ B cells, CD4+ helper T cells, CD56+ NK cells, CD8+ cytotoxic T cells, 

eosinophils and neutrophils).  We found similar correlations (that had p < 0.05) between DNAm 

patterns and the reFACTor components regardless between these three k values (see Appendix 

C.)  As such, we set k=5 to represent the major cell types found in healthy individuals outside 

the newborn period. 

(b) Batch effect 

 

In the ARIES dataset, bisulphite-converted DNA (BCD) plate is known to be the strongest batch 

effect, even compared to covariates such as physiologic artifacts like sex or blood cell count 

artifacts or technical artifacts related to the microarray chip, laboratory conditions, etc. (Joubert, 

Bonnie R. et al., 2016).  We proceeded to use spatiotemporal ICA factorization (Teschendorff, 

Andrew et al., 2014) to remove this batch effect on data processed to this point.  This is a matrix 

factorization based technique to correct batch effects.  This method is commonly applied in 

biology to model covariates in studies of differentially expressed genes.  It assumes that rank-

one components can represent gene by sample differences.  This would apply in cases where a 

clear artefact (such as BCD plate) exists that facilitates recovery of batch-related components.  

As well, this method well matches our rationale that DNAm signals of biological interest are 

intermixed with noise.  This ICA method leaves behind a “cleaned” data matrix that theoretically 

only has variability specifically due to that batch effect removed.  Though this risks leaving 

behind variability related to other technical artefacts, we spare removing variability intertwined 

with biological signal (Renard & Absil, 2017).  Thus, this ICA method is in keeping with our 

attempt to carefully “unearth” the underlying and subtle MSP-related vulnerability patterns in 

cord blood.   
To implement the normFact R function (provided directly first author of Renard & Absil, 2017), 

the user must set the α parameter (a value bound by 0 to 1) that represents the extremes of two 
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ICA factorization assumptions: independence among genes versus independence among 

samples, respectively.  An alpha of 0.5 would thus represent a perfect trade-off between both of 

these options. After discussion, the author recommended to set alpha to zero. Figure 17 shows 

the normFact results on cord DNAm with the relation between the ICA component and each 

BCD number.  As suggested by the authors, BCD components with R2 > 0.5 were removed.  

Thus, we removed eight BCD-related components.   
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Figure 17: BCD plate related components obtained using normFact R function (spatio-temporal independent 

component analysis, alpha = 0) on cord ARIES DNAm data.  Components with R2 > 0.5 are removed. 

(c) Subject sex 

Sex is a biological variable known to mediate the effect of exposures on health outcomes.  For 

example, studies have observed the differential effect of maternal smoking on child outcomes 

based on child sex, (see Figure 18 for an example of this phenomenon seen in childhood BMI 

trajectories.) 
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Figure 18: Example of differential effect of maternal smoking on risk of obesity based on child sex.  Suzuki , 

Int J Obesity, 2010 

 

One can consider two means to deal with this very powerful influence: 1) analyse the two sexes 

separately, 2) attempt to statistically control for sex during outcome/predictive analysis and 3) try 

to account for variability due to sex before outcome/predictive analysis.  The effect of subject 

sex on health is an entire topic unto itself.  However, a cursory examination of these 3 possible 

means to account for this factor reveals some clear limitations.  The first option has the lowest 

risk that any opposite effects observed by sex would not “dilute” the total observed effect.  

However, this option also decreases the study power but limiting the sample size usually by half.  

The second option is frequently used in medical studies.  It assumes that there is a linear and 

direct and/or interactive relation between sex and the outcome that can be accounted for such 

that if sex played an important role, the effect of the predictors would be attenuated once sex 

was included in the model.  These assumptions may or may not be true.   

The third has become increasingly popular in biological high dimensional data analysis.  A 

canonical example is the use of SVA to try and characterize the variability due to the covariates 

such as sex.  This variability is represented as data-specific variable unto itself i.e. it is not left as 

a binary “female versus male” variable but an expression of the specific pattern of sex in the 

observed data.   
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While there is likely no single correct answer for how best to deal with the influence of sex, it is 

clear that it is an important variable to consider if we are to better understand the foundation of 

molecular disruptions caused by exposures that lead to cellular dysfunction.  In this thesis, we 

posit that there exist underlying disruptions that are sex-nonspecific.  However, that does not 

preclude that sex likely interacts with such disruptions to alter the manifested phenotype.  As 

well, there are likely important sex-specific disruptions that occur due to a given exposure.  

However, the size of our cohort would make separate analysis by sex very underpowered.  As 

well, our search for MSP-related patterns starts at birth, before the emergence of secondary 

sexual characteristics which significantly expand the phenotype divergence between sexes.  As 

such, we believe our assumption that non sex specific changes identified at birth can have 

important short and long term effects on both sexes is reasonable.  Moving forward, we attempt 

to identify DNAm patterns that appear strongly influenced by sex.  While these patterns may 

contain important information, we choose to exclude such patterns at this time and to focus on 

other patterns that have a sex-ambivalent effect.  As well, as suggested in the 3rd option, we 

include DNAm variability due to sex as a predictive variable.  In that way, sex “competes” with 

other DNAm patterns in terms of relevance to predictors.  If sex related variability ranks among 

the other patterns, that may suggest direct or interactive molecular effects on outcome.   

 
As well, single-probe based analysis is less reflective of the biological reality of DNAm mediated gene 

regulation.  Differential methylation related to disease or aging largely demonstrate spatial correlation, 

usually within 500 base pairs but even beyond.  These patterns likely represent the physical 

occupation of  epigenetic machinery like endonucleases and cofactors on the DNA strand 

(Teschendorff, Andrew E. & Relton, 2018). Statistically, this represents collinearity.  This means 

that one could linearly predict the value of methylation at one site from that of another with a 

non-trivial degree of accuracy. Pattern recognition is ideal to deal with this statistical property, 

whereas this is a challenge for traditional parametric techniques such as ANOVA. 

2.1.3 Replication cohort 

The Generation R Study (GenR) is a population-based prospective pregnancy cohort study.  It 

included 9778 women and their children, born between April 2002 and January 2006.  This 

cohort collected DNA methylation data from 1396 cord blood samples using the Illumina 450K 

Infinium BeadChip.  Besides detailed pregnancy data, this cohort collected substantial offspring 

data, including anthropometrics at birth, in infancy, and at ages 6, 10 and 13 years. Full 

background and design of this cohort have been previously described in detail (Kooijman et al., 
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2016a).  Briefly, obstetric records of mothers were retrieved from hospitals and midwife 

practices to obtain pregnancy outcomes such as infant sex and birth weight.  Information about 

child growth (length (height), weight, head circumference) was collected at each visit to the 

routine child health centers in the study area using standardized procedures and at the research 

center at 6, 10 and 13 years of age.  We used DNAm data collected from the cord blood of a 

subgroup sample of GenR consisting of a total of 969 children of European descent as 

described in Joubert et al (2016).  Briefly, DNA extracted (using the salting-out method).  Quality 

control of analyzed samples was performed using standardized criteria. Probes with a single 

nucleotide polymorphism in the single base extension site with a frequency of > 1% in the 

GoNLv4 reference panel (Genome of the Netherlands Consortium, 2014) were excluded, as 

were probes with non-optimal binding (non-mapping or mapping multiple times to either the 

normal or the bisulphite-converted genome) (Bonder et al., 2014), resulting in the exclusion of 

49,564 probes, leaving a total of 436,013 probes in the analysis.  We ran DASES normalization 

using a pipeline adapted from that developed by Touleimat & Tost (2012). DASES normalization 

includes background adjustment, between-array normalization applied to type I and type II 

probes separately, and dye bias correction applied to type I and type II probes separately and is 

based on the DASEN method described by Pidsley et al, but adds the dye bias correction, which 

is not included in DASEN (Pidsley et al., 2013). We then overlapped these sites with those 

representing the ARIES cord DNAm patterns, followed by low variance probe filtering as 

described in Section 2.1.2.1.  However, this overlap followed by filtering at the 5% change 

threshold resulted in a remaining set of 88807 probes.  This was unsurprising as the variance 

threshold employs quartiles that would reasonably shift “inwards” after the probe matching with 

ARIES DNAm patterns.  To account for this and better match the dimension size of the two 

cohorts, we relaxed the threshold to 2% that left a final set of 173565 probes, (a 3% threshold 

left 148285 probes and a 1% threshold left 175060 probes.)   We then proceeded with batch 

effect removal as described for ARIES data in Section 2.1.2.1. 

 Mapping individual data  

 

The first three methods represent the bulk of this thesis.  The first two objectives of mapping 

MSP-related vulnerability and DNAm share the common need to condense a relatively high 

number of predictors (e.g. exposome data or DNAm microarray sites) into a smaller number of 

representative variables that are “concentrated” in their relation to biological mechanisms related 

to MSP. The third objective seeks to relate these new representative variables to the newborn’s 



 
60 

future childhood outcomes.  However, all three objectives involve pattern finding.  At this 

juncture, we should mention the concept of overfitting which will have important implications 

in general for pattern finding but particularly in context of high numbers of predictors. 

 Overfitting 

 

To understand overfitting, we must first establish the primary goal of pattern finding: obtaining 

among competing models the solution that best describes the data overall.  Overfitting describes 

the situation when a method and/or high dimensionality of the data allows a degree of flexibility 

such that the data can be “made” to fit the question posed by the researcher.    Moreover, the 

resulting solution fits a certain sample of data very well, but cannot be generalized to other data 

of the same phenomenon.   

 

Figure 19: Schematic of overfitting in pattern finding. Image from wiki.org. 

In many disciplines (including medicine), the philosophical principle of Occam’s Razor is taught 

to imply that simpler solutions are “better”.  In its original form, it states “Entities should not be 

multiplied beyond necessity.”  The right most image in Figure 19 may seem to imply that more 

complex solutions are “wrong” – however, the solution is inappropriate if it cannot be 

generalized to new data.  It has also been argued that studies demonstrate more examples of 
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the success of simpler versus more complex solutions merely because of the types of problems 

researchers ask (Duda, Hart, & Stork, 2001).  As humans, we may naturally ignore problems 

that only have complex solutions.  With this in mind, this section discusses overfitting with the 

aim to find the best fit to our problem and not necessarily the simplest classifier.   

To combat overfitting the data, there are several methods including regularization, penalization, 

minimization of description length, etc. The comparison of these continue to be hot topics and 

far beyond the scope of this thesis.  However, it is agreed that there is no universal means to 

avoid overfitting (Wolpert & Macready, 1997).  The choice of method is problem dependent.  In 

other words, overfitting avoidance can have different effects in one context compared to another 

and can lead to artificially worse performance in some cases (Duda et al., 2001).  The success 

of a solution depends on the match between the problem and the pattern finding technique – not 

the overfitting method imposed upon it. 

We provide a cursory overview of broad concepts to combat overfitting.  First, many researchers 

propose using as large a sample as possible.  By feeding more data into the pattern finding 

method, the method may better learn to find the signal of interest.  This practice is supported by 

the often poorer performance when low sample sizes are used.  However, if the additional data 

contains a lot of noise, this method can actually worsen generalizability.  As well, obtaining more 

data can be infeasible.   

A second broad category of techniques involves resampling.  These methods are the most 

popular among omics research.  Appearing in many forms, the basic principle is to use multiple 

samples in an attempt to better estimate statistics by comparing/collating the model's 

performance on “unseen” data.  Examples include cross-validation (CV), k-fold CV, repeated k-

fold CV, Monte Carlo CV, bootstrap, boosting, Jackknife, and learning with queries.  However, a 

clear minimum of prediction errors may not be obtained with resampling, making model 

selection difficult.   

A third category is penalization.  This group is based on the idea that high dimensional data may 

only contain a sparse set of relevant information.  Thus, overfitting can occur more readily if a 

model is more complex due to the inclusion of irrelevant information.  As such, this group of 

methods penalize complexity that does not improve a given model’s performance.  This is 

accomplished by controlling parameters in the model that affect model complexity.  Often, these 

parameters cannot be directly estimated from the data and are supplied by the user.  This 

typically involves a search procedure to find the most generalizable tuning parameters, such 
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as a grid search, gradient search or random search. To make tuning systematic and 

reproducible, many pattern finding techniques now have built-in optimization procedures.  

However, tuning in general is computationally expensive.  As well, it can be dataset specific 

so re-tuning may be required when applied to other data such as for validation in an 

independent cohort. Penalization methods include regularization (for example, leading to 

sparsity) and pruning.  Last, a model can be more prone to overfitting due to the presence of 

data disturbances due to randomness, outliers and noise.  Ideally, the researcher is able to 

remove these disturbances before analysis.  While it is difficult mathematically to extract 

randomness from data, many methods exist to denoise and to detect and remove outliers.  

However, as alluded to in Section 1.4: Mapping individuals to the risk context of MSP in the 

discussion of outliers, removing this unwanted variability from the data could also inadvertently 

remove important information.  Therefore, many researchers now advocate for methods that are 

robust to variability originating from these entities either due to their match with the type of data 

and/or study design and research question.  We consider both approaches in our methods 

described below.   

  Other statistical challenges 

In addition to these general concerns with overfitting, we also face unique challenges posed by 

our specific dataset.  In Objective 1, our goal is to represent a multifactorial entity using data that 

has both random and non-random missingness.  This new vulnerability variable must represent 

degrees of risk of MSP-related effects despite the fact that there are relatively few instances of 

MSP exposure compared to non-exposure.  Moreover, this vulnerability variable must be clinical 

sensible in order to act as appropriate “bait” to capture important DNAm patterns.   In Objective 

2, we seek to represent important DNAm variability in high dimensional data that likely has a 

very low signal to noise ratio, both due to the nature of DNAm and of complex traits.  The 

following sections describe these challenges and our proposed solutions. 

 Mapping clinical data 

2.3.1 Mapping individuals with unidimensional and/or categorical data 

 

As discussed in Section 1.3.1, many studies have demonstrated clinical outcome or biological 

differences between children based on MSP.  Such studies employ various methods using self-

reported maternal smoking to classify this exposure.  Some are simply binary (nonsmokers 

versus other), others attempt to quantify daily dosage (e.g. cigarettes per day,) and others use 
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smoking in various gestational periods.  Using the latter method in the ALSPAC cohort, there is 

adequate maternal data to categorize MSP as in Figure 20. 

 

 

Figure 20: Maternal smoking - classification by gestational period.  Numbers in brackets represent class size 

within the mother-infant dyads with infant cord DNAm data available, (total 914 dyads, 13 of which had 

missing or irregular coding of maternal smoking in pregnancy.) 

Given the “successes” of these other reports, what evidence do we have that a different 

characterization system will improve our understanding of the impact of MSP on offspring?  To 

investigate this question, we will compare this traditional MSP characterization with our other 

proposed methods.  As discussed in Section 1.4: Mapping individuals to the risk context of MSP, 

we are curious about using counterfactual typical-atypical contrasts to better understand 

exposure-related susceptibility.  This requires a proxy of vulnerability of the specific fetus to the 

exposure.  One of the clinical proxies for fetal growth and development is birth weight, leading to 

linked MSP-birth weight categories shown in Figure 12.  To explore how such a scheme would 

look in our data, we can plot the birth weight of children in each to explore the impact of this 

exposure (Figure 21).  
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Figure 21: Boxplot of birth weight by maternal smoking classification.  Top plot: Birth weight by z-score 

(internal to ALSPAC.) Bottom plot: Birth weight  by z-score based on national references for gestational age. 

-6

-3

0

3

6

None Periconception only 2 or more trimesters Throughout pregnancy Unknown
Maternal smoking in pregnancy

B
ir

th
 w

ei
gh

t, 
in

te
rn

al
 z

-s
co

re

Birth weight (unadjusted) by maternal smoking in pregnancy

-6

-3

0

3

6

None Periconception only 2 or more trimesters Throughout pregnancy Unknown
Maternal smoking in pregnancy

B
ir

th
 w

e
ig

h
t, 

z-
sc

or
e

 b
y 

ge
st

a
tio

n
a

l a
g

e

Birth weight by maternal smoking in pregnancy



 
65 

 

Based on MSP, there remains a high level of variability on the effect on the child using 

outcomes like birth weight. Though there is a significant difference between the groups (p < 

0.001), there is considerable “spread” seen in the range of weights.  This is more pronounced 

once birth weight is corrected for gestational age using national reference values.  This is 

particularly notable in the non-smoking group, likely reflecting the many other factors that dictate 

the size of a baby at a given stage of development.   

This possibility motivates us to go beyond MSP and birth weight alone to capture fetal 

programming.   As discussed in Section 1.4 Mapping individuals to the risk context of MSP, we 

wonder if we can better discern between MSP versus non-MSP-related risk by combining 

genetic and non-genetic factors.  This leads us to further propose combining reports of MSP 

with family smoking history, social factors, and pregnancy factors in conjunction with birth 

weight.  The combination of multiple variables to represent the cumulative prenatal environment 

particularly in the context of the DOHaD hypothesis is not new.  This environment is complex 

and considered impossible to observe or measure directly (Bollen, Noble, & Adair, 2013; 

Camerota & Bollen, 2016; Camerota & Willoughby, 2019).  Camerota and colleagues use the 

term “favorable fetal growth conditions” (FFGC) to describe “an abstract variable that 

encompasses all of the environmental, genetic, and epigenetic factors that program prenatal 

development.” (Camerota & Bollen, 2016) These authors and others modeled FFGC as a latent 

variable using structural equation models.  Other researchers combine multiple variables using a 

summative approach in which individual predictors are discretized (typically dichotomized) such 

that they are “unidirectional” i.e. the researcher determines which direction is considered a 

positive or negative influence and assigns points that are summed (Laucht, Esser, & Schmidt, 

1997; Silveira et al., 2017; Wade, Madigan, Akbari, & Jenkins, 2015).  Table 3 is a typical 

example of such a method (Silveira et al., 2017).  Silveira et al. found that their cumulative score 

was a better predictor of several neurodevelopmental outcomes than birth outcomes or single 

predictors in the discovery cohort, the Maternal Adversity, Vulnerability and Neurodevelopment 

(MAVAN) cohort in Canada.  They replicated this in an ethnically distinct cohort with different 

data variables, Growing Up in Singapore Towards Healthy Outcomes (GUSTO).  These findings 

with robust replication point to the validity and utility of cumulative early-life environmental 

variables that relate to later health outcomes in the DOHaD paradigm. 
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Table 3: Typical example of summative index approach to creating a cumulative prenatal environment 

variable. 

 

 

2.3.2 Combining multiclass data from multiple sources 

The major challenge posed by integrating exposome data is how to harmonize and aggregate 

multiclass data from multiple sources.  While there are many techniques to represent the 

combined effect of quantitative variables, methods to combine that and qualitative data are far 

fewer.  In the following, we consider only those methods capable of combining both quantitative 

and qualitative data types. 

 Integrating variables - Methodologic assumptions regarding variable relations 

 

When exploring relations between variables, we have already discussed the importance of 

considering which variables are relevant and among those, whether there is a direct, inverse or 

even non-linear relation of one variable relative to the other.  As well, what is the strength of that 

relation?  In other words, one requires the variable weighting.  Weighting includes a numeric 

value and an ordinality that captures the variable’s importance and its direction of effect on the 

specific outcome interest.   

The summative scoring method has the advantage of flexibility in assuring that selected 

variables always contribute to the global score.  In this method, variables must always be 
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discretized and transformed to an ordinal scale.  The ordinal value is multiplied by the weight 

and then all variables are summed.   Weighting typically is distributed relative to all variables 

and so usually the sum of all weights equals 100%.  If all variables are considered of similar 

importance, then the weight of each could be considered equal to 1 divided by the number of 

variables.  Weight assignment may also be based on previous knowledge.  However, there is 

not always data available to guide assignment in which cases researcher-defined parameters 

must be used.  In either case, each study is influenced by these choices making comparison of 

results between studies more challenging.  This is a problem that exists not only in biomedical 

research but in other areas where mapping is required (Le Clec’h et al., 2016; Ragland, 1992; 

Taylor, J. M. & Yu, 2002) Scoring also has the advantage of easy interpretability when scores 

are very high or very low.  However, scores in the moderate range provide little information to 

distinguish the different possible causes in each individual.  Another way to view this limitation is 

that the score does not provide any information on the inter-relations between variables. 

Another strong limitation of this method is that the weight of a variable is specific for a given 

outcome, meaning that a new weight is required when studying the same score for a different 

outcome.  This highly complicates the design of experiments using more than one outcome.  As 

well, it creates further sources of variation when comparing results from different studies.  

Therefore, there are several reasons why the summative scoring method may have restricted 

applicability and validation in CCD that affect the general population and likely involve multiple 

affected traits.  The issue of weighting also brings up the issue of weighting similar information 

from different sources.  Is the mother’s perception of her partner smoking to be weighted the 

same or differently than the partner’s self-report?  Which one “matters” more to the fetus?  

Instead of a summative score, we could categorize individuals based on key qualitative and 

quantitative variables.  As discussed in Section 1.4: Mapping individuals to the risk context of 

MSP, we could visualize individuals on a spectrum of MSP exposure versus effect on fetal 

growth.  In this context using birth weight as a proxy of fetal growth, we could analyse the 

characteristics of “typical” individuals who demonstrate outcomes as expected given their risks 

versus “atypical” individuals i.e. those that demonstrate low birth weight despite low risk or high 

birth weight given high risk factors.  In this scenario, the advantages is a clear demarcation 

between typical and atypical subjects which allows the discovery of similarities based on 

exposure-related poor outcomes, rather than effects that may be related to the exposure but do 

not appear to effect outcome (often referred to as the bystander effect).  This would maximize 

the observed impact on clinical outcomes and support causal inferences. 
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An additional advantage is that weighting is unnecessary.  This decreases the variability if the 

approach is applied in another population.  However, the typical-atypical categorization 

approach shares some similar drawbacks to summative scoring.  Both require discretization of 

variable values.   

In general, discretization is also known to cause data loss and even provide biased results.  In 

various clinical and simulation scenarios, categorization cut-off levels can falsely alter apparent 

associations with outcomes (Ragland, 1992; Royston, Altman, & Sauerbrei, 2006; Selvin, 1996; 

Taylor, J. M. & Yu, 2002).  Thresholds have population and experimenter specific biases, even if 

based on previous literature. As well, thresholds risk misclassification and data loss – both 

which can dilute or inflate the observed effect of an exposure in an unknown manner (Ragland, 

1992; Taylor, J. M. & Yu, 2002) This known phenomenon has resulted in the often ignored 

advice to avoid discretizing continuous outcomes (Royston et al., 2006; Van Belle, Fisher, 

Heagerty, & Lumley, 2004). Furthermore, neither method accounts for inter-relations between 

variables.   

Another disadvantage that represents the double-edged sword phenomenon of contrasting 

typical versus atypical individuals is that it tends to work best at the extremes of exposure and 

outcome.  This best accentuates the contrast exposure-related outcomes versus bystander 

effects.  However, this excludes subjects in the in-between of exposure and outcome.  The 

analysis thus suffers from reduced number of subjects and subsequent statistical power loss.  

Moreover, this leads to concerns with applicability in the general population.  For the study of 

CCD, most individuals are not at the extremes of the population.  As well, optimal extraction of 

typical versus atypical usually involves 2 to 3 variables, in contrast to summative scoring where 

the researcher has the theoretic ability to include as many variables as deemed relevant in the 

score.   

 

 Objective variable selection and mapping based on similarity of MSP vulnerability 

 

The above methods are limited primarily by the need for user-defined parameters for selection, 

discretization and relation between the variables of interest.  While these parameters may be 

amenable to the study of diseases with extreme and/or more clear-cut risks and phenotypes 
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(e.g. the relation between smoking and race on prostate cancer) they may ill suit the study of 

CCDs with wide-ranging risk and phenotype across the population. 

For this reason, we explored data reduction techniques that seek to represent the similarity and 

dissimilarity between individuals with a select number of dimensions that do not require 

researcher imposed parameters.  These include techniques such a confirmatory factor analysis 

(Winchester, Sullivan, Roberts, Bryce, & Granger, 2018) and principal component analysis 

(PCA) (Duda et al., 2001).  This latter family of methodology has successfully linked these 

cumulative early-life variables to later child outcomes.   

PCA is a widely used method for multivariate analysis of multidimensional data (Duda et al., 2001).  

It is often described as an “unsupervised” learning algorithm meaning that no previous knowledge of 

the data under study informs the analysis (Pagès, 2014).  PCA and related techniques finds an 

alternative set of coordinates to represent the data more simply.  More specifically, PCA uses linear 

transformation of variables to generate N dimensional vectors, a new coordinate system where all 

vectors are orthogonal to each other. PCA can be understood as a mathematical means to express 

all variables through a small number of principal components (PCs).   These PCs account for the 

maximum variance in the data. In a PCA model, the data (X) is decomposed into two vectors (the 

scores (T) and the loadings (P) where X = TPT + E.  E is the residual (i.e. the information not captured 

by the multiplication of the scores and the loadings.)    

The true power of PC scores is revealed through plotting on the dimensional vectors: this allows the 

observation of groupings of subjects who are most similar based on the given vectors.  In addition, 

plotting loadings reveals the most important variable features in the vector. 

The methods described in the section above required the researcher to select which variables 

would be used in the score.  In PCA, the researcher does not select the variables used in each 

dimension.  Each dimensional vector is differentially influenced by some or all of the original 

variables.  In addition, the researcher does not need to assign the directionality of relations 

between variables.  As well, the relation between variables can vary in different dimensions.  In 

this way, this method does not exclude possible inter-relations between multiple variables that 

may vary in different individuals.  For instance, higher birth weight may or may not associate 

with MSP depending on the presence of grandmaternal smoking during pregnancy (i.e. maternal 

exposure as a fetus to smoking.)  This adds richness to the characterization of vulnerability that 

can be accomplished through machine learning that is not possible with only research-defined 

parameters. 
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There are also model-based clustering of mixed data (e.g. R packages available include 

Rmixmod, VarSelLCM, ClustOfVar, MixAll, etc.)  These approaches often combine variable 

selection along with model fitting using maximum likelihood estimates to achieve the best 

performance (Fop & Murphy, 2018).  The overall goal is to separate individuals into clusters 

where within cluster variance is minimal and/or between cluster variance is maximal.  In this 

way, clusters represent distinct patterns and members belong exclusively to one cluster.  We 

attempted to use the package MixAll (Iovleff, 2019). We trialed various cluster numbers from 2-

6.  While a good proportion of subjects were assigned to each cluster (10% or more), it was 

difficult to interpret the clusters in terms of relative variable contribution (data available upon 

request.) As such, it rendered parameter selection ambivalent.  We also attempted to use this 

method with the R package VarSelLCM (Marbac & Sedki, 2019).  However, the variable 

selection only found the continuous variable (birth weight) relevant and therefore the clusters 

contained no information regarding the categorical variables.  Given that we have a strong 

theoretic backing for the relevance of these MSP-related variables (Section 1.4: Mapping 

individuals to the risk context of MSP), this algorithm was unsatisfactory.  We decided to not 

further pursue clustering as it did not appear a good fit with our design rationale and data.   

 Factor analysis in MSP vulnerability composite construction  

 

In contrast to cluster analysis that aims to separate individuals, factor analysis focuses on 

variables.  Factor analysis seeks the inter-relations between these variables that suggest they 

are causally linked or at least driven by a shared but unmeasured factor (Pagès, 2004).  For 

example, one cannot directly measure mood.  However, one can rate the level of fear of large 

groups, worries about health, feelings of dread, etc.  Together, high ratings are more likely with 

anxiety traits.  Thus factor analysis may combine these measures into a factor representing 

anxiety.    Similarly, measures of sadness, lack of enjoyment, and low motivation would be 

higher in people with more depression and thus these might be combined to create a 

depression factor.  In this work, the aim is to find factors that represent certain commonalities 

underlying the variables that connect or separate individuals in terms of their vulnerability to 

MSP and MSP-related risks.  Thus, each individual is assigned his/her own individual profile 

expressed as to what degree he or she can be described by a given factor.  Importantly, 

individuals may overlap in terms of their similarity to a given factor.  Arguably, cluster analysis is 

more readily interpretable as individuals are assigned to mutually exclusively categories unlike 

factor analysis where individuals are ascribed a combination of factors.   
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A consequence of factor analysis is dimension reduction. Since the combination of two or more 

variables will be replaced by a factor, this methodology has the statistical advantage of 

minimizing Type 1 error due to multiple comparisons.  As well, we hypothesize that using a MSP 

composite that combines multiple sources of information may provide a finer grained and more 

relevant measure to the specific individual under study as well as attenuating the risk of relying 

on a single quantity of MSP with an unknown level of measurement error.   

We used the Factor Analysis for Mixed Data (FAMD) method in the FactoMineR R package 

which employs PCA and PCA based methods to describe the similarity between individuals 

using both continuous and categorical variable types (Husson, Josse, Le, Mazet, & Husson, 

2016).  Specifically, it uses PCA for the former and multiple correspondence analysis for the 

latter variable type.  FAMD provides information on the inter-relations between variables that is 

entirely data driven and produces continuous values representative of both quantitative (i.e. birth 

weight) and qualitative (i.e. environmental smoke exposure) variables.  As such, each dimension 

reflects information contributed by varying degrees by all variables.  In other words, each 

dimension represents a pattern that arises from a specific configuration of variables driven by 

the relation between those variables.   

Before analysis, FAMD requires normalization (centering and scaling) of the data elements prior 

to their aggregation.  This is an attractive feature for data arising from multiple sources as each 

source is treated separate from the other.  Otherwise, this method requires little manipulation of 

the data in that it does not require discretization, weighting or directionality assignment.  For 

example, MSP can remain a nominal variable with no positive or negative assumptions 

imposed.  Consequently, it is not restricted to have a specific ordinality in relation to infant birth 

weight within a specific context.  The weighting of each variable in a given dimension is entirely 

driven by the data.  This reduces researcher influence on assignment of meaning of the 

variables and thus undue influences on final results.  This is particularly important given that our 

driving motivation is to obtain the “net” influence of diverse and interacting MSP-related factors.  

Assignment of meaning insinuates that the researcher knows the exact nature of the inter-

relations between variables that exist in all individuals. When this is not true, PCA based 

techniques can be used to objectively select variables used to map similarities between 

individuals (or the subject of interest) (Northstone et al., 2013; Rahmani et al., 2016).  This 

matches our objective to use infants with similar MSP-related vulnerability as bait to capture 

common DNAm differences that may represent health diatheses.  Last, another feature of PCA-
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based methods is that the extracted composites are orthogonal to each other, attenuating 

multicollinearity issues among predictors. 

Another advantage of the FactoMineR package is the built-in multiple imputation function to deal 

with missing values.  Before conducting FAMD, we performed data imputation for missing data 

using the MIFAMD function.  We used the regularised iterative algorithm for imputation to avoid 

overfitting as advised by the authors.3   

 

2.3.3 MSP vulnerability - Variables of interest  

 

Considering previous studies and the non-genetic and genetic factors employed (see Table 3 for 

examples,) we explored factors such as smoke exposure during pregnancy, maternal second 

hand smoke exposure and familial smoking history, as well as pregnancy variables such as 

gestational weight gain, diabetes and hypertension.  For familial smoking, we included the 

history of both the grandfather and grandmother.   Regarding the latter, we included both 

grandmaternal history of ever smoking and smoking during the gestation of the subject’s mother.  

The mother’s exposure as a fetus not only potentially represents a genetic predisposition to 

MSP exposure, it may also pose a transgenerational consideration as this is a direct exposure of 

the ovum that ultimately forms the subject (Figure 22). 

 
3 We also tested another popular PCA based method to analyse mixed data: PCAmixdata (R package). We trialed 
both the PCAmix and MFAmix (multiple factor analysis with mixed data within a dataset) functions.  Most 
components generated with this method were related to MSP.  Despite entry of different numbers and 
combinations of variables, the maternal reported MSP remained the strongest influence, (data available upon 
request.)  Of note, PCAmixdata uses generalized singular value decomposition compared to the factor analysis 
method in FactoMineR.  Further exploration of why this lead to different results in our dataset is unfortunately 
beyond the scope of this thesis.   
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Figure 22: Genetic effects of smoking across generations.  (Image from 

https://magazine.jhsph.edu/2017/fall/features/lasting-legacy-epigenetics-and-prenatal-environmental-

exposures-studies/) 

 

2.3.4 Summary of composite analysis and construction 

 

Variables were centered and scaled before analysis. We predicted missing values based on 

similarity between individuals and relation between known variables using MIFAMD function. We 

performed tuning using the estim_ncpFAMD function to obtain the number of components used 

to predict missing data (result being ncp = 2). The number of imputed datasets was increased to 

50 (nboot=50) from the default of 20 as per the author provided vignette; otherwise the function 
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default settings were used.  Thus, the final dataset was the culmination of 50 imputed sets.  

We then used the FAMD function to conduct the composite analysis.  To avoid confusion with 

the results of later analysis, the components of this analysis will henceforth be referred to as 

“dimensions”.   

 Mapping the epigenome to visualize vulnerability related profiles  

 

As aforementioned, most work in DNAm and complex disease has largely focused on the use of 

single sites independently related to outcomes or single sites conglomerated together.  The 

latter has more frequently been taking the form of summative score creation – likely bolstered by 

the increasing success of genetic (i.e. allelic) scores as health predictors (for a recent example 

of the summative DNAm score approach being used in ALSPAC, see (Reed, Suderman, Relton, 

Davis, & Hemani, 2020). As discussed in Section 2.3.2.1: Integrating variables - Methodologic 

assumptions regarding variable relations, unknown methodological biases may arise from user-

defined parameters for selection of DNAm sites and the direction, intensity, interactions and 

context (linear versus non-linear) of its relation between the variable(s) of interest.   

As an alternative to linear methods, data mining and machine learning methods are better suited 

to detect multiple interactions, even non-linear ones.  Such methods include multifactor 

dimensionality reduction, artificial neural network and statistical epistasis network (Moore, 

Asselbergs, & Williams, 2010).  These methods are increasingly employed in omic studies as 

multi-way interactions are very likely the biological reality in complex diseases (Loucoubar et al., 

2017).   However, there is a heavy computational cost when calculating all 2-way combinations 

of variables, let alone 3- or 4-way interactions.  This computational burden is multiplied several 

hundreds of thousands fold in the case of microarrays like the 450K chip, rendering such 

analytic methods untenable on the whole chip.  Approaches to reduce computational load 

include selecting only sites related to exposure or outcome, (this is the most common method in 

EWAS thus far,) filtering variables such as by removing “redundant” variables (e.g. methods like 

Spatially Uniform RelieF have been applied to GWAS (Greene, Penrod, Kiralis, & Moore, 

2009),) or subset specific analysis, (e.g. separately analyzing probes belonging to similar 

annotations based on pathway analysis as reviewed in (Yu et al., 2017).  However, such data 

reduction methods carry the same risk of imposing known and unknown assumptions on the 

importance and interaction of variables in relation to phenotype (see discussion in Section 1.5: 

Mapping individual epigenetic data to genome wide patterns.) 
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Mapping DNAm using pattern recognition attempts to attenuate these problems.  As well, it fits 

our hypothesis that MSP-related changes in DNAm will occur in a manner that will change the 

poise of multiple chromosome areas as opposed to modifying directly the transcription 

regulation of a handful of genes.  Moreover, exploring patterns may be one way of overcoming 

our current ignorance of both the quantitative relation between MSP and DNAm changes or how 

those changes interact with the “neighbouring” DNAm context, either within a few kilobases or 

perhaps even on another chromosome.  Regardless of how MSP is measured, (e.g. using self-

report or cotinine levels), several studies suggest that a simple linear dose-response relation 

may not exist (Bauer et al., 2016; Gao, L. et al., 2018). At the  molecular level, it is well 

established there is complex and poorly understood relation between DNA methylation and its 

functional impact on DNA accessibility and subsequent RNA transcription (for example, see 

consortia report from international analysis of 111 reference epigenomes in (Roadmap et al., 

2015).) Using data-driven pattern finding to derive a context based view of DNAm, we aim to 

extract patterns that depend on both the relation to MSP risk and relative DNAm levels across 

genomic sites on the microarray chip.  As such, there are no assumptions from the researcher 

how a given exposure level relates to how or where DNAm shifts occur across the genome.  

While many epigenetic studies adopt the transcriptomic view of characterizing differential DNAm 

in terms of hypo- or hypermethylation, this assumes that the decrease or increase in methylation 

can alone and directly account for changes in the variable of interest.  This may be reasonable 

in transcriptomic studies given that RNA expression of a gene has a relatively direct effect on its 

downstream molecular pathway(s).  In contrast, DNAm occurs in both coding and non-coding 

regions and thus has a relatively more indirect but more wide-spread effect on regions of 

chromosomal activity.  Pattern finding allows the researcher to avoid imposing this direct 

hypo/hypermethylation view and instead be able to freely explore the “what, where, how” of 

DNAm in the DOHaD framework. 

2.4.1 Explore theories re: multidimensional data usage 

Considering our goal of pattern recognition, we sought a multidimensional data mining 

technique that would best balance between the exploitation of genome-wide analysis of DNAm 

and the complex challenges posed by high-dimensional data, especially those unique to 450K 

data.  As such, we sought a method that would fulfill the following features:  

1. A distinguishing feature of our analysis is the simultaneous consideration of all sites that 

pass quality control parameters.  We considered this to be an important criterion given the 

infancy of our current understanding of methylation and its effect on phenotype.  We believe the 
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elimination of sites poses high and unpredicatable risk of eliminating useful information.   In 

order to optimize the strength of high dimensions, we exercise extreme caution in eliminating or 

making unfounded assumptions regarding variables to correctly extract the most relevant 

information possible.  

2. It will be computationally taxing to satisfy the above condition.  It is for this reason that 

very intense filtering usually occurs before any data analysis.  However, in order to explore data 

thoroughly, the selected method must use both time and computing resource feasible methods. 

This criterion is also highly related to criterion #1 because the use of high dimensional data have 

a major drawback – the analysis is prone to over-fitting.  There are two primary means to 

combat over-fitting: variable selection and cross validation. Both these strategies, particularly the 

latter, require intense computer resources and time in order to test multiple iterations of data to 

select the best models. 

3. Referring to Hypothesis 3b) and 4), the selected method must enable comparison 

between and within individuals over time, as well as between populations.  As such, we require 

computational feasibility to upscale to other high dimensional and high throughput data, but also 

a method robust enough to an additional layer of data noise introduced when comparing 

different data sets with varying biological and technical sources of variability.   

 

2.4.2 Pattern finding in high dimensional data 

 

Data mining involves the recovery of data patterns that originate from signals that exist amidst 

data noise. This objective is usually divided into two branches: Unsupervised and supervised. 

Unsupervised refers to the use of the observed data set alone to extrapolate the signal source.  

In contrast, supervised refers to the experimenter introducing additional data to guide the 

recovery of relevant signals.  Obviously, this experimenter-informed analysis has the benefit of 

better targeting the results towards the biological question of interest. However, this advantage 

is a double-edged sword: the major drawback of supervised analysis is greater risk of 

“overfitting” as previously discussed.  We further discuss the pros and cons of various 

techniques below. 

 
 

As discussed above in Section 2.3.2.2: Objective variable selection and mapping based on 

similarity of MSP vulnerability, PCA is a canonical example of unsupervised pattern finding.  
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PCA aims to capture the greatest data variability.  In other words, it extracts components 

focused on the strongest signals.  In microarray data, such strong signals can arise from 

sources like sex, cell type heterogeneity and technical artifacts.  In addition, p>>n datasets are 

prone to false associations that arise at random that may be equal or actually stronger than true 

associations (Wang, Miller, & Clarke, 2008).  As well, owing to the “curse of high 

dimensionality”, outliers can become fortified by the additional data to become even more 

powerful influences compared to low-dimensionality settings as discussed in Section 1.4: 

Mapping individuals to the risk context of MSP. 

However, we are specifically seeking a signal that represents a common but likely subtle 

difference in DNAm that links heterogeneous individuals along a shared MSP-related health 

trajectory.  Moreover, the signal we seek is likely weaker than signals from noise.  This may 

seem counter to traditional GWAS (or even EWAS) that seek the genomic loci that 

demonstrates the most significant signal (i.e. the smallest p-value after multiple hypothesis 

testing.) However, for DNAm related to CCD, the strongest signal is not necessarily our goal. 

For this reason, we turned to explore the use of independent component analysis (ICA).  Like 

PCA, it is an unsupervised data decomposition approach that has the benefit of extracting easily 

interpretable components.  ICA is known as a “blind source separation” technique.  It is based 

on the idea that the variability seen in data is actually the overlap of various sources of signal 

each with its own probability distribution.  In other words, the data can be represented as a 

linear combination of statistically independent components.  This is a particularly popular 

technique in the presence of large data noise where each isolated component can be checked 

for their correlation to the phenotype/exposure of interest versus known sources of noise.  We 

trialed two R packages, JADE and fastICA.  We found the components derived from ICA had 

limited relation to future child outcomes, (data available upon request.)   

We speculate that unsupervised techniques like PCA and ICA may favour extracting unrelated 

signals, (such as strong known and unknown sources of confounding,) relative to subtle CCD 

signals that may be weaker (i.e. represent little data variability.)  Alternatively, it may be difficult 

for unsupervised techniques to extract less organized signals.  For instance, a single pathogenic 

process may involve various biological processes that overlap among those directly related to 

the stress and those that are merely bystanders.  Therefore, a single pathogenic event may 

appear to emit signal from multiple sources.  In these cases, it may require the guidance of 

clinical or other biologic data to tease apart signals related to a given trait from ubiquitous 
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bystanders like general inflammation.   As such, it would seem that unsupervised approaches 

poorly fit our hypothetical framework to distill MSP-related DNAm patterns. 

 
Supervised pattern finding in current DNAm literature can be distance based, pathway based or 

interdependence based (Teschendorff, Andrew E. & Relton, 2018). We briefly discuss these 

broad categories below. 

Distance based methods 

Distance based methods consider contiguity in DNA sequence distance and almost always in 

relation to the distance to gene or promoter.  Several statistical tools are available to perform 

this analysis (examples of commonly used R packages include Min fi (Aryee et al., 2014), 

ELMER (Silva et al., 2019) and RnBeads (Müller et al., 2019).  However, an estimated four fifths 

of human genome transcription involves non-protein coding RNA (Kapranov et al., 2007). As 

well, noncoding sequences are implicated in chromatin organization and transcription 

(Dhanasekaran, Kumari, & Kanduri, 2013).  Thus, the likelihood that important smoking-related 

chromatin changes involve non coding intergenic spaces is high. This poses a number of 

problems.  First, the 450K chip preferentially surveys protein coding genes and their promoters, 

as well as CpG rich regions.  Second, these non-coding RNAs are often transcribed with coding 

sequences meaning the important areas of chromatin disruption may overlap both genic and 

intergenic regions (Hubé & Francastel, 2018). Third, different genomic regions have widely 

varying probe coverage in terms of distribution and density.  For example, CpG-poor regions 

(not CpG-rich promoters, gene bodies, intragenic regions) have far lower probe density and 

higher probe sparsity than CpG-rich regions (Sandoval et al., 2011).  Fourth, methylation of 

probes within 500bp has high correlation (Geeleher et al., 2013).  Fifth, the distance to a 

regulatory element may have non-causal associations with nearby gene expression (Bauer et 

al., 2016; Vives-Usano et al., 2020; Xu, H., Zhang, Yi, Plewczynski, & Li, 2020).  For example, 

only about 40% of enhancers regulate their nearest genes.  This is believed to be a result of the 

mechanism of action: enhancers associate with promoters to upregulate transcription by forming 

chromatin loops that physically approximate genic regions to transcription factories (Margueron 

& Reinberg, 2010). This elaborate orchestration of chromatin structures involves TF complexes, 

cohesin extrusion and various other known and unknown mechanisms (Chambeyron & 

Bickmore, 2004; Chen, T. & Dent, 2014; Kazakevych, Sayols, Messner, Krienke, & Soshnikova, 

2017).  Thus, patterns arising from information such as distance to gene regulatory regions may 

risk being functionally non-contributory at our current state of knowledge.  
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Thus, it could be misleading to analyse all probes equally when they are unequally represented 

on the chip and unequally correlated to functional molecular activity.  To address these issues, 

several techniques to analyse differentially methylated regions (DMRs) rather than single sites 

have been proposed.  However, the majority of these again perform a pooled univariate analysis 

of single CpG probes (Butcher & Beck, 2015; Peters et al., 2015), meaning individual 

comparison of probes is still being performed.  Bacalini et al. proposed a solution whereby 

relatively lower density and thus less represented probes are analysed through single probe 

comparisons while higher density/better represented probes are analysed through region based 

comparison (Bacalini et al., 2015). Based on the probe location relative to CpG islands and 

genes, this group divided all probes into 4 classes thought to have different epigenetic functions 

on gene expression and chromatin structure.  They refer to these classes as “blocks of probes” 

(BOP).  This group demonstrated that such a method increased the intersection of age-related 

DNAm differences identified in a meta-analysis of 3 separate 450K datasets relative to single-

probe based ANOVA. 

The approach by Bacalini and colleagues considers the inherent design of the array before 

analysis and modifies the analytic method accordingly.  By accounting for the potentially 

differential effect of DNAm on chromatin activity based on location, the BOP method adjusts 

whether single versus region based analysis is performed.  However, it remains that this 

approach relies on sequence and gene-centric annotation.  Currently, we have very limited 

understanding of how the epigenome functionally flows to and from proximal (e.g. transcription 

products) and distal (e.g. chromatin loops,) levels.  As well, no distance-based method can fully 

account for the 3-D proximity of a methylation site relative to another site or regulatory region to 

date.  Thus, it can be risky to base analysis on current knowledge of how DNAm single sites or 

regions behave based on location or inferred function.  Until integrative analysis of chromatin 

architecture, chromatin modifications and RNA expression can better annotate the inferred 

effect of DNAm on chromatin behaviour, this bias may either inflate or attenuate the importance 

of differential DNAm.  For this reason, massive international efforts continue to juxtapose 3-D 

chromatin data with DNAm data as well as other genetic variants and gene regulatory marks 

(Stunnenberg et al., 2016). 

Pathway based methods 

Pathway based methods are so called because they overlap the biological data of interest, (e.g. 

DNAm data,) with pathway databases that typically intersect molecular (e.g. transcriptome, 
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proteome, genome, etc.,) and clinical (e.g. disease associations, cell type, ethnicity, etc.,) 

features.  Gene Set Enrichment Analysis (GSEA) is among the most popular of these methods.  

GSEA aims to find if certain DNAm site candidates are overrepresented more than would be 

expected by chance among sets of genes related by molecular and/or clinical features.  

Examples of available tools and approaches include (Pina, Pinto, Feijo, & Becker, 2005; Sofer et 

al., 2012; Subramanian et al., 2005; Tiong & Yeang, 2019; Trajkovski, Lavrac, & Tolar, 2008).   

Despite using pathway data, GSEA does not exploit links between genes within a given 

pathway, such as their positions and roles and the directions and types of the signals 

transmitted from one gene to another. In contrast, topology-based pathway analysis is designed 

to integrate this information.  In effect, they attempt to create “wiring diagrams”.  This can be 

more insightful when exploring downstream effects or understanding underlying mechanisms 

(Presson et al., 2008).  Since the development of topology-based pathway analysis, there has 

been an explosion of available tools, for example PathNet (Dutta, Wallqvist, & Reifman, 2012), 

GEPAT (Weniger, Engelmann, & Schultz, 2007) and NEO (Aten, Fuller, Lusis, & Horvath, 2008).   

The drawback of any pathway analysis is that it requires a ranked list of candidate sites usually 

determined by calculating the delta-change between exposure and phenotype categories.  This 

returns us to the same issues previously discussed in Section 2.3.2.1: Integrating variables - 

Methodologic assumptions regarding variable relations regarding researcher-imposed 

thresholds and discretization.  Even within the transcriptomics field where pathway analysis was 

born, the fold-change4 threshold is known to cause bias and inconsistency among data sets 

(Nguyen, Shafi, Nguyen, & Draghici, 2019; Yu et al., 2017).  The delta-change based ranking 

also presents a specific issue due to the design of the 450K chip.  Using data from 13 human 

DNAm studies, Silva-Martinez and colleagues found that genes with a lower density of CpG 

sites have a higher false negative rate when testing for enrichment in disease- or tissue-specific 

function gene ontology categories (Silva-Martínez et al., 2017).  The authors conclude this is 

due to a link between likelihood of detecting a delta-change difference and the CpG density of a 

gene on the 450K chip that is a technical property and not biological.  Moreover, the complex 

and yet relatively unknown relation between DNAm and biological function makes annotation 

based analysis less suitable than that used for expression microarrays (Harper, Peters, & 

Gamble, 2013; Huang da, Sherman, & Lempicki, 2009; Nguyen et al., 2019; Subramanian et al., 

2005).  Furthermore, most databases are disease-biased, especially to cancer (Huang da et al., 

 
4 changes in expression are generally greater in expression studies thus the metric is usually fold-change 
rather than delta-change 
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2009; Nguyen et al., 2019).  This renders drawing inferences problematic especially for more 

subtle or pre-morbid health states such as in CCD.   

Interdependence based methods 

Interdependence based pattern recognition attempts to visualize DNAm in relation to the signal 

of interest without any a priori assumptions about where or to what degree DNAm differences 

will occur.  A fascinating body of research using high-resolution analysis of chromatin structure 

and gene expression has mapped the context-specific role of DNAm on functional chromatin 

state (Collings & Anderson, 2017; Lay et al., 2015).  Without a priori restrictions of “where to 

look” on the 450K chip, we may be better able to detect DNAm changes that may be subtle or 

appear functionally unrelated but actually are part of a larger change in chromatin structure and 

functions.  This global view may also help uncover the convergence of areas of differential 

methylation that may otherwise seem unrelated by previously reported features like physical 

genomic location, predicted role in gene expression or protein interactions or previously 

identified association in clinical disease.  

Given that the observed DNAm data have a non-normal distribution, we focused on pattern 

recognition techniques that do not assume a specific data distribution, which is the case of methods 

such as Fisher's linear discriminant analysis.  One of the most flexible classes among pattern finding 

methodologies is machine learning (ML).  This class is popular in data mining research and includes 

methods such as random forests (RFs), artificial neural networks and support vector machines.   It 

can be distinguished from classical estimation and classification statistical methods in that its 

modeling centres on an optimisation problem.  This shift typically involves computationally intense 

algorithms; a shift enabled by now easily accessible high performance cluster (HPC) computer 

resources.  We consider the “cost-accuracy trade-off” of using these newly emerging techniques.  

Computational cost is a critical limiting step in mining very high dimensional data sets.  For 

example, many ML methods are optimized to analyse more than two datasets with a few 

hundred to thousand variables (Gao, C. et al., 2018).  After removal of low quality probes, our 

data set still has over 200,000 DNAm data points for each of over 900 subjects.  Then each 

subject has data from three different ages.  This equates to about 1.2 million data points per 

subject.  Despite the use of HPCs, such analysis required days to weeks when they were trialed 

and some did not even complete in that time, (e.g. support vector machine using R Package 

e1071 by Meyer & Wien, 2015).  As well, our primary objective was to overlap the phenotypic maps 

of individuals using biologic (i.e. DNAm) and clinical (i.e. MSP related vulnerability) data.  Considering 



 
82 

again the cost-accuracy ratio, one may consider it “overkill” to overlap only two datasets using 

machine learning.  As such, we experimented with four commonly used pattern recognition tool 

that have favourable cost-accuracy profiles when handling two datasets: tensor factorization 

(Hore et al., 2016), canonical correlation analysis (mixomics) and partial least squares (PLS) 

(Gromski et al., 2015).  Among these, only the latter extracted results with relations to both MSP-

related data and child outcome data.  In the interest of space, we focus on this method moving 

forward in this work. 

The goal of PLS analysis is to find the relation between two or more datasets, (in our case, 

between the MSP composite and DNAm sites.  The two most common categories: 1) the 

symmetric form optimizes the covariance between datasets and 2) the asymmetric form aims to 

predict one dataset from the other(s).  PLS is popular in various fields typically for classification 

purposes, such as in biochemical profiling in chemometrics, food authentication in quality control 

and tissue pathology and forensic evidence in medical science (Boulesteix & Strimmer, 2007; 

Durif et al., 2018). It is robust to missing data, non-normality of residuals, noise and collinearity 

in context of adequate sample size (Wold et al., 1983) and efficient for use in p>>n cases 

(Dennis & Forzani, 2018).  Compared to other machine learning tools, PLS has the critical 

advantage of relatively easy interpretability.  Given the exploratory nature of our investigation, 

interpretability is a major issue as our current understanding of relevant versus irrelevant (i.e. 

biologically uninteresting or confounding) patterns in DNAm is limited.  As such, PLS was 

selected among other machine learning methods as the best fit considering our hypothesis and 

design rationale, data load, and feasibility based on computing resources. 

PLS can be thought of as a regression extension of the previously discussed method, PCA. Their 

shared conceptual basis enhances the relative ease of use and interpretability of PLS.  While PCA 

attempts to describe the maximum variation in the observed data, PLS aims to maximise the overlap 

of covariance projections between the data and the outcome. In other words, PCA returns features 

caused by the attribute with the biggest variance. In contrast, PLS returns features caused by the 

property under investigation.  
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Figure 23: Graphical representation of decomposition of data into a two sparser matrices.  Image adapted from Hore et al.  (2016).  We aim to use PLS 

to represent MSP related variability within DNAm data using a small number of components.
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The output of PLS is to represent sources of variability within the high dimensional DNAm 

microarray data using a small number of components (Figure 23).  PLS decomposes the DNAm 

data on the left of the equal sign of Figure 23 into the two matrices on the right.  Referring to the 

matrices on the right of the equal sign, each consists of 2 dimensions that describe the relative 

contribution of the individual (left) or DNAm site (right) to that component, respectively.  In our 

application, the goal of PLS is to generate components that represent a consistent pattern of DNAm 

at certain genomic sites that are related to MSP variability among subjects.  We posit that these 

“vulnerability-informed” DNAm patterns as expressed as PLS components represent biologically 

meaningful differences in epigenetic poise.   

As aforementioned, interpretability was a major consideration in selecting PLS.  This is best 

exemplified using partial least squares discriminant analysis (PLS-DA) which is frequently used for 

classification of samples, (e.g. healthy versus diseased.)  This is an extension of PLS which 

essentially adds two more procedures.  The first is recoding continuous variables into categorical 

variables (i.e. ordinal or nominal).  This involves the use of dummy coding (i.e. coding each variables 

as a combination of +1 and 0).  The second is discriminant analysis to conduct prediction modeling.  

After PLS-DA decomposition, one can easily visualize the discrimination ability of the algorithm by 

observing how individuals cluster based on their DNAm scores.   

There are a number of PLS packages available in R.  Among those with applications in high 

dimensional biological data, these include the pls package (specifically the Canonical Powered-PLS 

(CPPLS) function) (Mevik & Cederkvist, 2004), the mixOmics package (specifically the PLS and 

PLSDA functions) (Cao-Lei, Elgbeili, Szyf, Laplante, & King, 2019) and the sgPLS package (Liquet, 

de Micheaux, Hejblum, & Thiebaut, 2016).  The former employs an asymmetric PLS form while the 

latter two employs a symmetric form.  We first explored the pls package as it is among the first R 

packages to offer the PLS algorithm as described by Svante Wold, the pioneer of nonlinear PLS 

modeling (Wold, Martens, & Wold, 1983).  It allows parallelization which greatly assists in time spent 

during cross validation. It is very fast and easy to use.  We used both the PLS and CPPLS functions, 

the latter of which appeared particularly applicable to our application as it allows the entry of 

multiclass data.  It aims to better optimize the latent variables in context of high data noise by 

replacing covariance between the DNAm data and MSP data with canonical correlation in PLS 

methodology.  This would theoretically sharpen the focus on relevant predictors.  Previous work has 

used CPPLS for biomarker selection (Mehmood et al., 2012).  However, in the context of our DNAm 

data, this is not truly variable selection in that we could not find the loci that most strongly 

contributed to each pattern. The mixOmics package was very intuitive to use.  However, the tuning 

and performance evaluation functions were very computing intensive, taking over 7 days using 

parallel computing on multiple CPUs.  The sgPLS package offer tuning and performance functions 

that had less intense parallel computing resources.   
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Pattern finding also aids in comparisons over time.  The first step in PLS is to centre and scale 

values.  Therefore, scores are always relative to differences in DNAm relative to other sites at the 

same time point.   As such, comparison of scores at different times is truly a comparison of the 

relative pattern shift over time, rather than any changes of any single sites over time that may or 

may not be due to a biological signal of interest. 

Pattern finding with PLS also facilitates comparisons among different data sets.  Recall in Objective 3b 

and Objective 4 that we specifically aim to test the stability of our DNA signals over time within the same 

cohort and also across another population.  Using the DNAm loadings (Figure 23), one has a “template” 

with which to re-create the patterns generated in one data set in a separate data set.  Statistically, 

testing for temporal stability within the ARIES cohort and replicability in the GenR cohort are means 

of internal and external validation, respectively.  Clinically, if the patterns are relevant to subject 

outcomes in more than one data set, that would lend support to the biological meaningfulness of 

DNAm at those specific genomic sites.  In our case, that could mean children sharing DNAm 

patterns share similar developmental pathways related to common early-life exposures.   

2.4.3 Objective variable selection and mapping based on MSP vulnerability 

 

Just like in PCA, the loadings of the components identified by PLSDA provide information on the 

DNAm sites that form the basis for differentiation between components.  Thus, as discussed in 

Section 2.3.2.2: Objective variable selection and mapping based on similarity of MSP vulnerability, 

variable selection in DNAm is again data driven.  After testing multiple algorithms, we selected that 

found in the the sgPLS R package (Liquet et al., 2016) based on feasibility (data resource 

requirements) for tuning and performance assessment. 

This package offers the study of the relation between an omics dataset and a multivariate phenotype 

with simultaneous variable selection in a one-step strategy. This method was motivated by the 

increased biological relevance revealed by multi-dataset integrative approaches compared to 

analysis of data sets singly or in tandem (Liquet et al., 2016; Loucoubar et al., 2017).   

Using the sparse PLS (sPLS ) function, the sgPLS package performs variable selection using 

L1 penalizations on the loading vectors of both the MSP and DNAm matrices (conceptually 

equivalent to the T and P vectors described for PCA (Section 2.3.2.2: Objective variable selection 

and mapping based on similarity of MSP vulnerability) and offers intuitive graphic functions that are 

provided in the mixOmics packaged discussed in the previous section.   

The sparse PLS function (sPLS) in this package was easy to implement using our data.  The 

package did not have parallelization capability at the time of this analysis.  However, it still was faster 

to tune compared to the mixOmics package but far slower than the pls package.  As well, this 
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method appears less prone to over-fitting as it conducts variable selection using cross validation to 

establish component-wise thresholds.   

Using data from an transcriptomic and immune marker clinical trial, the authors of the sgPLS 

package compared the performance of their method to least absolute shrinkage and selection 

operator (LASSO) penalized regression methods, another very popular high dimensional method 

with variable selection that also uses cross validation for parameter selection.  Results were 

comparable (data available upon request.)  We did not pursue the use of LASSO or ridge regression 

as it has been shown in DNAm data to select sites with weak functional relations, particularly in 

mixed cell type tissues such as in our dataset (Zhong, Kim, Zhi, & Cui, 2019).   

2.4.4 Summary of DNAm analysis 

 

We posit that patterns reflect changes in DNA shape and thus function.  As such, this work aims to 

identify DNAm patterns that relate to early-life exposures that alter chromatin activity.  We use the 

MSP composite to bait DNAm pattern finding in cord blood because various human studies suggest that 

MSP-sensitive differential DNAm is already present at birth (Bauer et al., 2016; de Vocht, Simpkin, 

Richmond, Relton, & Tilling, 2015; Joubert et al., 2012; Joubert, Bonnie R. et al., 2016; Miyake et al., 

2018).  Furthermore, differential DNAm at birth has functional links later in life such as correlation with 

expression of target genes, phenotype and histone modifications (Bauer et al., 2016).  

We used the PLSDA function from the mixOmics package for categorical MSP variables and the sPLS 

function from the sgPLS package for the continuous MSP composite.  To avoid confusion, we henceforth 

refer to PLS results as “components” and FAMD results as “dimensions”.  PLS is prone to overestimate 

the accuracy of classification.  To attenuate this issue, we conducted tuning to find the optimal parameters 

when possible.  This included optimisation by M-fold CV and test grids to compare performance using 

various ranges of number of DNAm components, number of MSP dimensions and number of DNAm sites 

to retain.  For components, we varied the number from one to 50 in increments of 10.  We used the 

following performance metrics: predictive residual sum of squares (PRESS), R2, mean squared error 

of prediction (MSEP) and proportion of DNA methylation variability captured.  For MSP dimensions, 

we systematically trialled the number from two to 10 dimensions. In order to tune the number of DNAm 

variables to retain, we used the tuning.sPLS.X function in the sgPLS package that computes the MSEP 

of the PLS model.  We used 10-fold CV and a grid of keepX values (representing number of CpG sites 

to retain) of 500, 1000, 2000, 5000 and 10000.  For the majority of model, keepX optimized at a value of 

1000.  Previous work with PLS suggests that 5- to 10-fold CV offers a good balance between 

performance and computational efficiency (Mevik & Cederkvist, 2004).  We performed training with 75% 

of total sample selected with the dplyr R package.  This selection was random with the caveat that training 

was only performed on subjects with complete MSP data, which consisted of 901 of the 914 subjects with 

DNAm data.  
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As discussed in Section 2.4.2.3, we will extract PLS components from other data based on the PLS 

model from cord DNAm.  To do so, we use the predict function of the sgPLS package.  Similar to any 

other regression “prediction” technique, this function could be described roughly to calculate the 

component scores of the new data set based on the regression coefficients of each CpG site, (from the 

loadings matrix of Figure 23) projected onto the DNAm data matrix.  Full mathematical details are in 

(Gonzalez, Cao, Davis, & Dejean, 2012; Liquet, de Micheaux, Hejblum, & Thiebaut, 2016).   

 Mapping methylation patterns to explore molecular mechanisms related 

to child outcomes 

2.5.1 Considerations when mapping high dimensional data in complex traits  

As discussed, EWASs have uncovered a great number of differentially methylated sites associated 

with disease, yet in context of our limited knowledge of the architecture of epigenetic changes, 

genetic background and disease manifestation, we cannot accurately predict disease risk from this 

wealth of epigenetic information. This is particularly challenging for complex disease which is fraught 

with influences such as genetic heterogeneity, epistasis (gene-gene interactions) and GxE that 

include multiple mechanisms besides DNA methylation. Traditional methods that have been used to 

analyze the epigenetic-disease associations are usually linear or comparative based, e.g. regression 

(commonly linear or logistic,) chi-square, etc., or variants of such tests.  These methods test for 

main effects one variable at a time and cannot account for interactions when considering the relation 

between DNAm and exposure/phenotype (Moore et al., 2010). 

Another important consideration is that atypical outcome distributions challenge linear modeling.  

While there are strategies to “force” the variables to fit linear regression assumptions (e.g. 

transformation, binning, etc.,) there are often cases where this is simply inadequate.   For example, 

Figure 24 shows the distribution of the responses to the Strengths and Difficulties Questionnaire 

(SDQ).  This is a well-known measure of child behavior and was measured by both parents and 

teachers at up to six different time points in ALSPAC.  
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Figure 24: Distribution of scores on Strengths and Difficulties Questionnaire. 

We trialed various type of transformations, including square root, cube root, and log (for the latter, 

we added a constant value of 1 to avoid undefined values from log(0).)  We also tried the Box-Cox 

transformation (using the MASS R package.)  There was no uniform transformation that normalized 

this data.  We trialed different regression models for count data, including negative binomial, zero-

inflated, and poisson.  There was poor model fit in all trials.   

In the interest of accounting for non-linear and non-main effect relations, as well as employing a 

uniform approach regardless of the distribution of the outcome, we moved from exploring regression 

based techniques to machine learning methods that could accommodate both these challenges. 

2.5.2 Random forest selection in exploratory studies 

Clearly, one must compromise between representing molecular reality and computational cost, as 

well as non-violation of statistical assumptions.  Random forest (RF) learning is considered well-

suited to achieve this balance in investigating the etiology of CCD using p>>n data (Degenhardt, 

Seifert, & Szymczak, 2019; Diaz-Uriarte & Alvarez de Andres, 2006; Kursa, Miron Bartosz, 2014; Li, 

J., Tran, & Siwabessy, 2016; Qi, 2012). Studies have shown that RF can outperform univariate tests 

when the number of relevant candidates is far smaller than irrelevant ones (Degenhardt et al., 2019; 

Kursa, Miron Bartosz, 2014).  As well, sensitivity to detect small marginal effects, particularly in 

context of noisy data (Lunetta, Hayward, Segal, & Van Eerdewegh, 2004; Scornet, Biau, & Vert, 

2015).  Moreover, univariate tests have no power when main effects are absent.  An example of this 
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situation occurs in GWAS studies when genetic heterogeneity and SNP-SNP interactions result in 

no main effect (Lunetta et al., 2004; Winham et al., 2012).  Genetic heterogeneity is particularly 

relevant in the complex diseases, where there are likely multiple pathways to acquire a trait that 

involve different subsets of genes/regions.  Because RF can detect interactions (by collecting such 

insights in multiple different trees), it can outperform univariate testing in such situations (Breiman, 

2001; Diaz-Uriarte & Alvarez de Andres, 2006; Qi, 2012; Rai, 2017).  Importantly, RF can 

incorporate these higher-order interactions between the predictors yet is computationally efficient.   

RF is a machine learning algorithm that can be used for ranking exploratory variables in high-

dimensional data by their relative importance in predicting an outcome (Breiman, 2001). It falls under 

the family of tree-based methods that use recursive partitioning to conduct regression/classification, 

with subsequent collation of results from an ensemble of randomized samples.  This family of 

methods are non-parametric and require no a priori assumptions regarding the relation between the 

predictors and outcome.  This advantage is increasingly exploited in genome wide association 

studies when the genetic architecture of a trait is relatively unknown (Breiman, 2001; Degenhardt et 

al., 2019; Genuer, Poggi, & Tuleau-Malot, 2015; Kursa, Miron Bartosz, 2014).  A decision tree as 

seen in Figure 25 is constructed by step-by-step splits of the data using a sequence of hierarchical 

Boolean questions (e.g. testing whether Xi ≤ θj is true, where θj is a threshold value.  For regression, 

this threshold value is the local average of the outcome values at each split.)  These splits are called 

nodes.  Current algorithms can comb through thousands of these questions efficiently.  As such, it 

has become useful when screening large numbers of candidate predictors (e.g. candidate genes or 

methylation sites.)   

 

Figure 25: Schematic of classification tree "sorting" of observations.  The grid on the left is drawn from the tree 

on the right.  The axes reflect the different variable values that can be seen at each node (branch) of the tree. 

(Image source: https://www.solver.com/classification-tree.) 
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A single decision tree built as described will fit the data perfectly.  If one altered the sampling of 

observations or the predictors entered into the model, then that likely alters the selections at each 

node (i.e. the answers to the Boolean questions) and thus the construction of an entirely different 

tree.  As discussed in Section 2.2.1, this is called overfitting – where the model fits too well the 

specific set of data.  While each tree that uses a different subset of observations or predictors could 

reveal a different relation and potentially important relation among predictors and outcomes, how 

does one know which tree to trust?  Random forests offers a solution as an ensemble machine 

learning method that combines multiple trees as well as several different randomization methods to 

“vote” for the best model (Breiman, 2001) (Figure 26). By collating the results of hundreds to 

thousands of trees, RF is able to also provide a numerical estimate of variable importance. 

 

Figure 26: Random forest uses an ensemble of multiple decision trees.  (Image source: 

https://towardsdatascience.com/random-forest-learning-essential-understanding-1ca856a963cb) 

 

In this way, RF is a means of collecting insights from many different models but never relying on one 

model too heavily.  It accomplishes this task through several features.  First, RF ensures that all 

predictors have a similar chance of being selected by limiting the number of predictors that can be 

split at each decision node.  As well, each tree accesses a random subset of predictors.  In this way, 

not all the same predictors are grabbed at a given node at each tree. Second, RF grows each tree 

independently on its own bootstrap sample with replacement of the original observations.  The “with 

replacement” means that in each sample, some subjects are represented multiple times, while 

others are left out.  The left out subjects, (called “out-of-bag” or OOB,) are a built-in validation 

mechanism that can be used as the test sample to estimate performance.  These features of 

recursive partitioning and local model fitting of potentially extreme values within independent 

decision trees make RF relatively robust to outliers, a major concern in heavily data dependent 

models (Karimpour-Fard, Epperson, & Hunter, 2015).  
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2.5.3 Random forest disadvantages 

Despite the aforementioned advantages, there remain drawbacks of the RF approach.  First, it 

remains more computationally intensive than univariate techniques.  Second, no missing data are 

allowed.  This is a critical issue in human cohorts compared to experimental models.  Last, the 

interpretability compared with conventional regression analyses is more difficult, earning it a 

reputation of being a “black box” method.  While regression models provide easy to understand 

metrics for predictors based on regression coefficients, the importance of a predictor as estimated 

by RF contains its complex interaction structure with all other predictors included (Qi, 2012). 

Consequently, it is difficult to estimate the direct, indirect and interactive associations between a 

predictor and outcome from RF models. However, this is a rapidly expanding field and better 

techniques to render RF more interpretable and efficient continue to evolve. 

Based on our hypothesis, the DNAm patterns found in cord blood represent early differences in 

epigenetic programming.  As discussed, previous research on MSP largely sought differentially 

methylated sites and regions and used effect size based calculations to determine clinical relevance.  

So far, the effect sizes or variability attributed to DNAm differences observed are typically low 

(Knopik et al., 2019).  This is despite the use of the extremes of MSP exposures in a number of 

studies in order to maximize effect.  In contrast, our work considers the use of relatively subtle 

differences in positioning of MSP-related vulnerability to identify patterns.   As well, it is arguable 

whether there is a linear relation between DNAm differences and various outcomes.  Given these 

points, the utility of using effect-size based models is doubtful in the context of our hypotheses and 

data set.    

2.5.4 Contrast with biomarker discovery 

 

Both molecular mechanism and biomarker discovery studies involve feature selection to obtain the 

important players in disease pathology. Therefore, their technologies are closely related to each 

other. However, there is a subtle but critical difference in their respective goals regarding feature 

selection. The objective of biomarker discovery is to find a small set of biomarkers (e.g. genes or 

proteins) to achieve good prediction accuracies, usually by excluding redundant or “weak” 

predictors. This allows the development of more affordable and efficient diagnostic tests. In contrast, 

the goal of mechanistic exploration is to better understand the complete pathologic processes 

underlying disease.  Thus, the aim is to uncover all the important players rather than building the 

best predictive model (Qi, 2012).  

In machine learning, this contrast is captured by the difference between the “minimal-optimal” and 

“all relevant” problem.  The former describes the phenomenon where accuracy is impaired when the 

number of variables is higher than optimal (Kursa, M., Rudnicki,W., 2010; Li, J. et al., 2016). The 

solution to this problem is to find a small number of variables that provides the best possible 

prediction.  This is helpful when looking for one or a small number of biomarkers that can best 
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classify disease status.  In comparison, the latter problem aims to identify all predictors which relate 

to the outcome in at least one circumstance.  In other words, accuracy is not the only criteria upon 

which a predictor is determined as important or not.   

The Boruta algorithm is one of the most well-known algorithms in RF that attempts to solve the “all 

relevant” problem.  It uses an entity called the “shadow variable” to gauge whether a variable is 

related to the outcome by more than chance.  The shadow variable is a new variable based on 

existing variable values but is randomly shuffled such that it should bear no correlation to the 

outcome.  It generates shadow variables with each RF tree and then collates the importance of this 

variable.  Last, it compares the importance of this variable with the other “real” variables using a 

binomal test to statistically evaluate the likelihood of whether a given variable is more useful that the 

shadow variable.  By having multiple shuffled copies of the shadow variable, Boruta is able to 

construct a distribution to compare the number of times the shadow variable performed better or 

worse than the other “real” variables (Figure 27).  Boruta provides a robust estimate of the variable 

importance because it is designed to distinguish between variables that appear related to the 

outcome simply by chance (Kursa, Miron Bartosz, 2014).  This is because the shadow variable can 

only be related to the outcome due to data stochasticity and therefore acts as an external reference 

of what may appear important due to chance.  This gives an alternative and data independent 

criteria for selecting important variables besides prediction accuracy.  As summarized by the 

authors, “adding randomness to the system and collecting results from the ensemble of randomized 

samples one can reduce the misleading impact of random fluctuations and correlations.” 
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Figure 27: Example of the shadow variable and its relative importance compared to "real" variables.  Variables 

ranking in importance lower than the shadow are no more likely related to the outcome than by chance. 

2.5.5 Summary of child outcome analysis 

 

We explore the relation between methylome patterns with child outcomes using RF family machine 

learning methods to explicitly model both main effects and interactions. Given our hypothesis that 

domains of DNA methylation interact with other genetic and non-genetic factors in biological 

networks underlying phenotype, this method fits well with our study aims.  Among association 

analysis methods, it is relatively robust to major concerns that plague p >> n datasets in human 

cohorts, including overfitting and outlier sensitivity. 

 Detecting relevant variables – Random forest analysis with Boruta pre-selection 

 

We apply the same two-step RF strategy as recommended in (Rai, 2017).  These authors used 

simulated and real-life data to systematically compare pipeline and tuning parameters on high 

dimensional data.  We briefly describe the process in the following.  As well, some of the testing and 

tuning results will be referred to here instead of in the results section to streamline contents.   

In Step 1, we used the Boruta algorithm (implemented using the R package of the same name 

performed with maximum 1000 iterations) to obtain all relevant predictors, including the covariates 

sex, socioeconomic indicators, and blood cell type estimates.  We increased the ntree value to 1000 

given previous work suggesting that high dimensional datasets may encounter unstable importance 
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scores and false negatives when ntree is inadequate (Kursa, Miron Bartosz, 2014).  Component 

recurrence may support a more robust association with outcome as each model places all variables, 

including sex, social factors and relevant covariates in “competition” for relevance.  Thus, 

components that are consistently selected across outcomes after thousands of iterations and re-

samplings and are not related to covariates are considered for further examination. 

In Step 2, we then evaluate the model using the RF the caret R package.  We only use the variables 

selected by Boruta.  This reduces computational load and has been found to increase model 

performance as well as attenuate overfitting (Li, J. et al., 2016; Rai, 2017).  We use the train function 

(set.seed(100), ntree = 1000) to conduct RF and resampling with 5 fold cross validation with 3 

repeats.  We used mean square error (MSE) and coefficient of determination (R2) metrics to 

compare models with and without Boruta pre-selection of variables (Li, J. et al., 2016). 

 Covariates 

 

In all models, we include infant sex and social factors (we selected maternal education and paternal 

social status).  For anthropometric models, we also include control variables known to influence the 

outcome.  For example, previous research has already demonstrated DNAm differences are related 

to body composition, both before and concurrent to DNAm sampling (see (Agha et al., 2016; Cao-

Lei et al., 2019) for recent examples).  As well, weight velocity in infancy is known to influence peri-

pubertal fat mass, waist circumference and weight.  We wish to avoid focusing on associations 

between the DNAm patterns and future outcomes that may be due to the tendency of certain 

phenotypes to demonstrate continuity as we age.   Thus, the anthropometric models tend to have 

several more covariates than other outcome models.  This is performed to hopefully distinguish 

DNAm differences that are due to MSP-related vulnerability.  We also employ the 

randomForestSRC package to visualize results using partial dependence plots.   

 Tuning 

 

RFs are known to typically perform well with little tuning of parameters.  That said, there are two 

main parameters that may be tuned.  The first parameter we will look at is number of variables 

randomly selected at each split, (called mtry in caret).  Consistent with previous biologic applications 

of RF, most notably by Breiman (2001), there is a minimal effect of mtry over a wide range of values 

surrounding the square root of the number of predictor variables (e.g. SNPs, methylation probes, 

etc.) (Kursa, M., Rudnicki,W., 2010).   

The second parameter is the number of trees, (called ntree in caret.)  Most literature focuses on 

prediction using ntree between 100–1000.  Based on simulations using high dimensional data, (e.g. 

SNP data) to estimate variable importance where true associations may be far outnumbered by 
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those due to noise, one observes that more trees are needed to achieve stable estimates 

(Degenhardt et al., 2019; Diaz-Uriarte & Alvarez de Andres, 2006).  Consistent with previous 

evaluations of RF on both real life and simulated data, ntree was set to 1000 both for feature 

selection with Boruta and model estimation with randomForest (Kursa, M., Rudnicki,W., 2010; 

Lunetta et al., 2004).  This number of trees is about 10 times higher than defaults.  We aimed for 

these settings to be sensitive enough to detect true predictors with small effects and interactions yet 

remain computationally feasible (Winham et al., 2012).  We evaluated changes to tuning parameters 

using the caret R package. 

We also explored the effect of data partitioning between randomly selected training and testing sets 

(random seed = 100).  We compared performance using R2 and root mean square error (RMSE).  A 

better model is implied by higher R2 and lower RMSE. The default parameters were good if not the 

best options as seen in other studies (Diaz-Uriarte & Alvarez de Andres, 2006; Li, J. et al., 2016; 

Rai, 2017) however the differences among changed settings was marginal (data available upon 

request) so we used default settings for the sake of reproducibility in all analysis. 

 

 Model stability 

 

We further checked the stability of the results by rerunning the analysis twice with different random 

seeds as in (van der Meer et al., 2017).  In addition, we compared the relative ranking of relevant 

predictors by Boruta and by RF after Boruta selection.  

Further, to assess whether our findings were due to specific and unknown properties of our data and 

the Boruta algorithm, we compared models using RF alone without Boruta.  We used variance 

explained and error rate on OOB samples as performance metrics.  We performed sensitivity 

analysis by comparing results with and without data imputation.   

 Mapping methylation patterns to explore molecular relevance 

 

One of the biggest challenges in the study of complex diseases and epigenetics is how to link 

clinical and molecular relevance.  Depending on the data set size and analytic method employed, 

dozens to hundreds of “significant” DNAm sites can be found related to infant exposure to MSP.  

This has been repeatedly shown in numerous cohorts around the world from various ethnic groups, 

(for reviews, see (Joubert et al., 2016; Knopik et al., 2019; Taal et al., 2013).)  What is the relation, if 

any, between the significant CpG “hits” and how do these interact with molecular mechanisms that 

can plausibly lead to altered phenotype?   
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Most studies borrow from the gene expression field and perform pathway analysis.  This method 

combines large molecular interaction databases and statistical testing to link hits with annotated 

gene products, regulatory mechanisms, biological process and/or correlations with clinical disease.  

This testing is known to be prone for false positive bias and researchers have developed numerous 

correction and resampling techniques to overcome this problem (for examples, see (Geeleher et al., 

2013; Silva-Martínez et al., 2017; Yu et al., 2017).  This is particularly an issue with the 450K chip 

given it was designed to over-represent genic sites with known or inferred relevance to disease 

(especially cancer) and key biological processes.   

Given the costs of animal models and multi-omic human studies, the intermediate means to 

interrogate functionality in the case of CCD and epigenetics remains actively explored.  In the 

meantime, in order to better understand the possible molecular implications of the DNAm patterns 

suggested by the components, we venture to consider the overlap between our DNAm patterns and 

chromatin activity and topology, through both experimentally derived and computationally inferred 

means.   

2.6.1 Mapping patterns to chromatin activity 

 

The global collaborative efforts of the NIH Roadmap Epigenomics Mapping Consortium (referred to 

as the NIH Roadmap hereafter) have created an immense reference data set for various types of 

epigenetic data in various tissues and species (Roadmap et al., 2015).  The NIH Roadmap defined 

15 chromatin states based on genome-wide histone modification patterns and CCCTC-Binding 

Factor (CTCF – also known as 11 Zinc Finger Transcriptional Repressor) binding patterns (Table 4).  

By combining these patterns, they have demonstrated that these states are associated with 

differential DNA methylation and accessibility (see  

Figure 7) (Chen, T. & Dent, 2014; Geiman & Robertson, 2002; Rye et al., 2014; Tchasovnikarova & 

Kingston, 2018; Zhang, L. et al., 2017; Zhu et al., 2016).  For example, certain states are related 

with relative chromatin activity because they are promoter associated, (e.g. H3K4me1, 

H3K9ac, H3K4me3, and H3K27ac.)  Other states are linked to inactivity as repressive marks (e.g. 

H3K27me3) are widespread in those regions.   
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Table 4:  Chromatin state definitions and abbreviations. Image from Roadmap et al. (2015). 

 

Using this repository, we mapped each components’ representative CpG sites to their chromosomal 

location and its predicted chromatin states. To avoid bias due to usage of a specific cell reference, 

we separately conducted analysis using 3 different cell types:  Primary B and T cells from cord blood 

(reference E031 and E033, respectively) and primary mononuclear cells from peripheral blood 

(reference E062.)   

2.6.2 Mapping methylation to chromatin topology 

 

As discussed in Section 1.5: Mapping individual epigenetic data to genome wide patterns and as 

shown in Figure 8 and Figure 13, chromosomal architecture is hierarchically organized in an 

elaborate looping structure that mediates gene expression by decreasing or increasing likelihood of 

physical contact between distantly located cis-regulatory elements and transcription factories.  

Recently, decreasing costs and increasingly high throughput of 3D chromosome analysis 

technologies have improved chromatin interactome maps in terms of resolution, genome coverage 

and tissue and species coverage (Jung et al., 2019; Mishra & Hawkins, 2017).   

To illustrate the utility of chromatin interactome data in linking disease to genetic data, we now show 

an example of how a small disruption can dramatically alter the physical shape and therefore 

function of chromatin.  Using SNP data from 26 human populations and combining this with 3-D 
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chromatin structure data from a human cell line, Sadowski and colleagues demonstrated that the 

deletion shown in Figure 28 leads to significant changes in transcription of multiple genes, including 

an increase in Protein Phosphatase 2 Regulatory Subunit B (PPP2R3C) expression (Sadowski et 

al., 2019).  This gene is associated with hematologic and reproductive diseases.  Moreover, the 

expression changes occur even though the deletion is entirely in the intronic (i.e. non-coding) region 

of the KIAA0391 gene.  The authors posit that the deletion increases PPP2R3C transcription by 

disrupting a chromatin anchor point, thus changing the loop structure and “freeing” the PPP2R3C 

promoter to make contact with enhancers (see third row, Figure 28).   

 
Figure 28: 3D models of the impact of a deletion (chr14:35605439-35615196) located in an intron of KIAA0391.  

While the deletion involves less than 10kB, it leads to a 3D structural change that completely obliterates a CTCF 

anchor.  Left column: without deletion.  Right column: with deletion. First row: linear schematic of chromosome 

with loops colored as on images in second row.  Second row: 3D models of structural change.  Third row: 3-D 
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model with genes and intronic, exonic and enhancer regions marked.  Arrows indicate TSSs.   Image from 

(Sadowski et al., 2019). 

 

Though the above example is for a sequence deletion, it demonstrates the vulnerability of chromatin 

to and the feasibility of small changes in non-coding regions to disrupt function by altering 

interactions between other chromosome sites and transcription regulation machinery.  It also 

provides a potential explanation for a recurrent, over decade old observation in GWAS data: trait-

associated variants are often in non-coding regions, sometimes far removed (in terms of linear 

genomic distance,) from the putative gene targets.   

Because of work of groups like above, there is growing interest in mapping 450K data to chromatin 

anchor and loop structures.  Wu and colleagues recently overlapped 450K data with various 3C-

based datasets to generate a genome wide map of inferred promoter-anchored chromatin 

interactions (PAIs) (Wu, Y. et al., 2020).  Using this map, we were specifically interested in PAIs that 

overlapped with chromatin loops and topological associated domains (TADs) (data obtained directly 

from authors) given such dual associations may increase the likelihood of functional implications.  

However, given the small number of PAI with TAD overlap in their dataset, we looked at PAI and 

loop overlap only, (PAI and loop overlap totaled to 130 sites.) 

2.6.3 Summary of methylation pattern mapping 

 

We approach DNAm as an indicator of the structural adaptation of chromosomal regions to the net 

effect of intrinsic and extrinsic cellular forces.  These adaptions lead to altered chromatin activity.  To 

this end, we used the regioneR R package to estimate enrichment in chromatin activity or structure 

using permutation testing.  Enrichment of overlap was defined as the number of overlaps between 

the component-representative sites and the features of interest relative to what would be the 

expected overlap with whole genome and the feature of interest.  We employed the strategy where 

each feature set is circularly randomized within each chromosome. The overlap distribution in 

10,000 random circular permutations was used to compute a P-value by comparing the observed 

value with the null distribution (using the human autosomal genome as provided in 

BSgenome.Hsapiens.UCSC.hg19.masked: Full masked genome sequences for Homo sapiens - 

UCSC version hg19. R package version 1.3.99.) 

 Replication 

 

The ALSPAC and GenR cohort data were acquired in entirely independent studies.  Thus, not all the 

covariates collected were homologous. Even with features in common between the discovery and 

replication cohorts, covariates can have substantially different distributions (Gao, C. et al., 2018).  
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As such, we used covariates known to impact the child outcomes based on previous research in the 

GenR cohort.   

Though there will be unavoidable differences in biological sample handling and DNAm processing, 

previous work performing epigenomic meta-analysis involving both ALSPAC and GenR have found 

results to be comparable (Joubert et al., 2016; Sharp et al., 2018).  Moreover, the successful 

recovery of similar signals in GenR despite these technical differences would support the robustness 

of the findings.  In fact, a recent study using 3 cohorts used machine learning to create a DNAm 

score (Rauschert et al., 2020).  This group actually used raw beta values only and found 

performance comparable to previous work that performed data harmonization.  As such, there was 

no attempt to harmonize the pre-processing of DNAm of the cohorts except for low variance filtering 

and batch correction.   

 Disadvantages of pattern finding  

 

In the end, pattern finding can suffer from statistical “mirages” just as candidate site/region studies 

do – it is a reality of crunching literally hundreds of thousands of numbers.  Patterns are detected 

based on the statistical association between epigenetic changes and the subjects’ exposure and/or 

phenotype matrix.  Thus, the estimation of this association may be prone to false positives just as in 

candidate studies.  In candidate studies, there is a widely accepted false positive correction 

technique.  This is coupled with support of biological plausibility that is often tested through 

functional annotation testing, which is also subject to multiple hypothesis testing and thus also 

requires false positive correction.  Associations estimated in this manner form the bulk of findings 

published in the DNAm literature surrounding maternal smoking and child outcomes (Knopik et al., 

2019). 

In contrast, there is no such broadly accepted means of false positive correction in RF.  Nor is there 

a specific technique for testing biological plausibility in pattern seeking.  Thus, pattern seeking is 

better suited for hypothesis generation than hypothesis testing at this juncture.  Despite these 

drawbacks, epigenetic studies of CCD are in dire need of exploration to make the knowledge 

translation leap.  While the state of the art evolves and better defines what is a biologically and 

statistically robust pattern finding result, this work ventures to explore what contributions other 

methods besides traditional candidate studies can provide.   

Chapter 3 Results 

 Mother-child characteristics 

Among ALSPAC subjects, 15211 newborns have at least one item of collected data.  Data from all 

these newborns and their mothers were included in composite construction.   
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DNAm data was processed on samples from a subset of 1018 children-mother pairs that form the 

ARIES project.  In total, 914, 973 and 974 children had DNA methylation measured from cord blood 

(at birth), at around age 7 and age 17, respectively.  Previous studies have compared the baseline 

characteristics of families in the overall ALSPAC versus the ARIES dataset (Appendix B). 

Compared with the ALSPAC mothers, the ARIES subset mothers were older, reported less 

MSP, attained a higher educational level and more likely employed in non-manual labour. The 

MSP-relevant features of 15211 infant-mother pairs used in this work is tabulated in Table 5 (see 

column labelled “Total”.) 
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Table 5: Descriptive statistics by maternal smoking in pregnancy classification 

 

 

Sex 

 

 

None 

(N=8754) 

 

 

Periconception 

only (N=963) 

2 or more 

trimesters 

(N=1898) 

Throughout 

pregnancy 

(N=1815) 

 

 

Unknown 

(N=1781) 

 

 

Total 

(N=15211)

 

p -

value

      0.044

N-Miss 22 1 7 0 487 517  

Male 4460 476 (49.5%) 1019 (53.9%) 968 (53.3%) 650 7573  
 (51.1%)    (50.2%) (51.5%)  

Female 4272 486 (50.5%) 872 (46.1%) 847 (46.7%) 644 7121  
 (48.9%)    (49.8%) (48.5%)  
Ethnicity       < 

0.001

N-Miss 165 21 99 23 683 991  

Caucasian 8166 891 (94.6%) 1664 (92.5%) 1705 (95.1%) 981 13407  
 (95.1%)    (89.3%) (94.3%)  

Other 423 51 (5.4%) 135 (7.5%) 87 (4.9%) 117 813  
 (4.9%)    (10.7%) (5.7%)  
Gestational Age       < 

0.001

N-Miss 2 0 1 0 589 592  

Mean (SD) 39.297 39.467 (2.122) 38.998 (3.031) 39.421 (1.805) 28.018 38.365  
 (2.401)    (13.761) (5.504)  

Range 9.000 - 18.000 - 47.000 10.000 - 46.000 26.000 - 46.000 4.000 - 4.000 -  
 44.000    45.000 47.000  
Birth weight, z-score for 

gestional age 

     < 

0.001

N-Miss 158 13 46 18 1085 1320  

Mean (SD) 0.495 0.589 (1.017) 0.235 (1.091) 0.032 (1.042) 0.189 0.392  
 (1.027)    (1.119) (1.057)  

Range -6.398 - -3.585 - 3.729 -4.101 - 6.306 -3.278 - 3.248 -3.751 - -6.398 -  
 4.245    3.632 6.306  
Birth weight, internal z-score      < 

0.001

N-Miss 162 12 70 10 793 1047  

Mean (SD) 0.045 0.104 (0.502) -0.081 (0.544) -0.129 (0.476) -0.061 0.003  
 (0.504)    (0.459) (0.507)  

Range -2.364 - -2.051 - 1.772 -2.268 - 1.531 -2.165 - 1.380 -2.195 - -2.364 -  
 1.988    1.603 1.988  
Birth length, internal z-score      < 

0.001

N-Miss 245 26 109 23 813 1216  

Mean (SD) 0.109 0.385 (1.577) -0.227 (1.677) -0.393 (1.611) -0.144 0.003  
 (1.595)    (1.378) (1.606)  

Range -9.251 - -6.650 - 5.346 -7.624 - 5.133 -8.560 - 4.655 -5.793 - -9.251 -  
 5.474    4.091 5.474  
Gestational weight gain      < 

0.001

N-Miss 1937 235 738 410 1608 4928  
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 None 

(N=8754) 

Periconception 

only (N=963) 

trimesters 

(N=1898) 

pregnancy 

(N=1815) 

Unknown 

(N=1781) 

Total 

(N=15211)

p-

value

Over 1771 277 (38.0%) 380 (32.8%) 334 (23.8%) 48 (27.7%) 2810 

 (26.0%)     (27.3%)  
Recommended 2749 278 (38.2%) 421 (36.3%) 491 (34.9%) 66 (38.2%) 4005  

 (40.3%)     (38.9%)  
Under 2297 173 (23.8%) 359 (30.9%) 580 (41.3%) 59 (34.1%) 3468  

 (33.7%)     (33.7%)  
Maternal grandmother - ever 

smoked        
N-Miss 455 29 180 52 1781 2497  

FALSE 4280 562 (60.2%) 1139 (66.3%) 1234 (70.0%) 0 7215  
 (51.6%)     (56.7%)  

TRUE 4019 372 (39.8%) 579 (33.7%) 529 (30.0%) 0 5499  
 (48.4%)     (43.3%)  
Maternal grandmother - smoked 

while pregnant 

N-Miss 496 32 190 55 1781 2554  

Don’t know 1178 152 (16.3%) 260 (15.2%) 254 (14.4%) 0 1844  
 (14.3%)     (14.6%)  

FALSE 5543 610 (65.5%) 900 (52.7%) 809 (46.0%) 0 7862  
 (67.1%)     (62.1%)  

TRUE 1537 169 (18.2%) 548 (32.1%) 697 (39.6%) 0 2951  
 (18.6%)     (23.3%)  
Maternal grandfather - ever 

smoked        
N-Miss 297 37 258 138 1781 2511  

FALSE 6383 482 (52.1%) 581 (35.4%) 483 (28.8%) 0 7929  
 (75.5%)     (62.4%)  

TRUE 2074 444 (47.9%) 1059 (64.6%) 1194 (71.2%) 0 4771  
 (24.5%)     (37.6%)  
Mother’s partner - smoked while 

pregnant        
N-Miss 290 12 161 34 1781 2278  

FALSE 8125 863 (90.7%) 1477 (85.0%) 1555 (87.3%) 0 12020  
 (96.0%)     (92.9%)  

TRUE 339 88 (9.3%) 260 (15.0%) 226 (12.7%) 0 913  
 (4.0%)     (7.1%)  
Others who smoke in household 

N-Miss 554 45 236 106 1781 2722  

FALSE 5992 731 (79.6%) 1363 (82.0%) 1436 (84.0%) 0 9522  
 (73.1%)     (76.2%)  

TRUE 2208 187 (20.4%) 299 (18.0%) 273 (16.0%) 0 2967  
 (26.9%)     (23.8%)  
Maternal education level a

of pregnancy 

time      < 

0.001

N-Miss 531 76 388 120 1534 2649  

Non-degree 7359 763 (86.0%) 1186 (78.5%) 1278 (75.4%) 192 10778  
 (89.5%)    (77.7%) (85.8%)  

Degree 864 124 (14.0%) 324 (21.5%) 417 (24.6%) 55 (22.3%) 1784  
 (10.5%)     (14.2%)  
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 None 

(N=8754) 

Periconception 

only (N=963) 

trimesters 

(N=1898) 

pregnancy 

(N=1815) 

Unknown 

(N=1781) 

Total 

(N=15211)

p-

value

Maternal financial concerns       < 

0.001

N-Miss 755 105 432 186 1581 3059  

No strain 7445 777 (90.6%) 1216 (82.9%) 1342 (82.4%) 163 10943  
 (93.1%)    (81.5%) (90.1%)  

Strain 554 81 (9.4%) 250 (17.1%) 287 (17.6%) 37 (18.5%) 1209  
 (6.9%)     (9.9%)  
Maternal psychopathology       < 

0.001

N-Miss 246 41 107 78 1580 2052  

Denies 6749 644 (69.8%) 1101 (61.5%) 1087 (62.6%) 141 9722  
 (79.3%)    (70.1%) (73.9%)  

Concerns 1759 278 (30.2%) 690 (38.5%) 650 (37.4%) 60 (29.9%) 3437  
 (20.7%)     (26.1%)  
Maternal substance use in 

pregnancy 

      < 

0.001

N-Miss 34 0 1 0 1403 1438  

Denies 8365 914 (94.9%) 1736 (91.5%) 1630 (89.8%) 377 13022  
 (95.9%)    (99.7%) (94.5%)  

Concerns 355 49 (5.1%) 161 (8.5%) 185 (10.2%) 1 (0.3%) 751  
 (4.1%)     (5.5%)  
Neighbourhood quality, 

ascending quality 

      < 

0.001

N-Miss 624 57 280 86 1170 2217  

0 6 (0.1%) 0 (0.0%) 3 (0.2%) 11 (0.6%) 2 (0.3%) 22 (0.2%)  

1 20 (0.2%) 2 (0.2%) 9 (0.6%) 9 (0.5%) 5 (0.8%) 45 (0.3%)  

2 54 (0.7%) 7 (0.8%) 34 (2.1%) 37 (2.1%) 10 (1.6%) 142  
      (1.1%)  

3 113 24 (2.6%) 57 (3.5%) 69 (4.0%) 19 (3.1%) 282  
 (1.4%)     (2.2%)  

4 387 53 (5.8%) 118 (7.3%) 132 (7.6%) 59 (9.7%) 749  
 (4.8%)     (5.8%)  

5 331 58 (6.4%) 131 (8.1%) 120 (6.9%) 41 (6.7%) 681  
 (4.1%)     (5.2%)  

6 617 85 (9.4%) 167 (10.3%) 192 (11.1%) 59 (9.7%) 1120  
 (7.6%)     (8.6%)  

7 849 83 (9.2%) 220 (13.6%) 218 (12.6%) 64 (10.5%) 1434  
 (10.4%)     (11.0%)  

8 1102 113 (12.5%) 231 (14.3%) 230 (13.3%) 92 (15.1%) 1768  
 (13.6%)     (13.6%)  

9 1670 200 (22.1%) 269 (16.6%) 320 (18.5%) 90 (14.7%) 2549  
 (20.5%)     (19.6%)  

10 1993 185 (20.4%) 238 (14.7%) 260 (15.0%) 104 2780  
 (24.5%)    (17.0%) (21.4%)  

11 872 87 (9.6%) 125 (7.7%) 122 (7.1%) 55 (9.0%) 1261  
 (10.7%)     (9.7%)  

12 116 9 (1.0%) 16 (1.0%) 9 (0.5%) 11 (1.8%) 161  
 (1.4%)     (1.2%)  
Maternal social status       < 

0.001
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 None 

(N=8754) 

Periconception 

only (N=963) 

trimesters 

(N=1898) 

pregnancy 

(N=1815) 

Unknown 

(N=1781) 

Total 

(N=15211)

p-

value

N-Miss 1822 243 800 580 1651 5096  

1 527 28 (3.9%) 19 (1.7%) 17 (1.4%) 5 (3.8%) 596  
 (7.6%)     (5.9%)  

2 2330 203 (28.2%) 311 (28.3%) 300 (24.3%) 36 (27.7%) 3180  
 (33.6%)     (31.4%)  

3 3009 318 (44.2%) 450 (41.0%) 497 (40.2%) 52 (40.0%) 4326  
 (43.4%)     (42.8%)  

4 443 76 (10.6%) 112 (10.2%) 146 (11.8%) 14 (10.8%) 791  
 (6.4%)     (7.8%)  

5 515 85 (11.8%) 169 (15.4%) 210 (17.0%) 18 (13.8%) 997  
 (7.4%)     (9.9%)  

6 106 10 (1.4%) 37 (3.4%) 63 (5.1%) 5 (3.8%) 221  
 (1.5%)     (2.2%)  

65 2 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.2%) 0 (0.0%) 4 (0.0%)  

Paternal social status      < 

0.001

N-Miss 1218 184 689 447 1634 4172  

1 1053 44 (5.6%) 57 (4.7%) 43 (3.1%) 8 (5.4%) 1205  
 (14.0%)     (10.9%)  

2 2790 253 (32.5%) 322 (26.6%) 340 (24.9%) 44 (29.9%) 3749  
 (37.0%)     (34.0%)  

3 858 101 (13.0%) 120 (9.9%) 110 (8.0%) 10 (6.8%) 1199  
 (11.4%)     (10.9%)  

4 2047 268 (34.4%) 499 (41.3%) 590 (43.1%) 60 (40.8%) 3464  
 (27.2%)     (31.4%)  

5 620 86 (11.0%) 154 (12.7%) 200 (14.6%) 18 (12.2%) 1078  
 (8.2%)     (9.8%)  

6 156 22 (2.8%) 53 (4.4%) 79 (5.8%) 6 (4.1%) 316  
 (2.1%)     (2.9%)  

65 12 (0.2%) 5 (0.6%) 4 (0.3%) 6 (0.4%) 1 (0.7%) 28 (0.3%)  

 

Subject demographics.  Columns 1-5 represent maternal smoking categories.  Reported p-value: Continuous 

variables – ANOVA, categorical – Chi squared.  “Miss” – missing data.  Social status was derived from 

reported occupation according to the UK Registrar General’s classification.  From 1 to 3, the occupations 

refer to manual unskilled, semi-skilled manual and skilled occupations; 4 refers to skilled non-manual 

occupations; 5 refers to managerial and technical occupations; 6 refers to professional occupations and 65 

refers to armed forces.  Education – “Degree” refers to had a university degree at time of index pregnancy. 

In Methods (Section 2.3: Mapping clinical data), we considered differences between 

categorical versus continuous descriptions of MSP.  In the remainder of this section, we 
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explore the implications of using these two methods when describing the phenomenon of 

exposure to MSP.   

 MSP vulnerability using self-reported maternal smoking categories 

 

We can see from Table 5 that there are significant differences in social status and maternal 

general health and pregnancy health between the MSP categorical groups.  Moreover, our 

design is to construct MSP vulnerability patterns present in DNAm at the time of birth. As such, 

we are limited to the subsample of 914 subjects with cord blood samples.  The breakdown of 

these infants within each of smoking categories is found in Table 6.  

 

 

Table 6: Maternal smoking-birth weight categories - number of subjects with cord blood DNAm data 

Smoking Category Number of subjects 

Non-smoker 707 

Smoking in periconception  

  

51 

Smoking until T1 23 

Smoking in 2 or more periods 100 

Other (missing more than 1 response or irregular 

coding) 

13 

 

Three categories have less than 10% of the observations. This low portion is considered 

statistically important class imbalance that can impact model accuracy (Cerf, Gay, Selmaoui-

Folcher, Crémilleux, & Boulicaut, 2013).  The 13 subjects in the last category were interesting in 

that some report no smoking early but answered affirmatively later in pregnancy.  While this 

could be true, this atypical pattern could also be an issue with database entry, reluctance of the 

mother to honestly report at the outset of the study or an honestly inaccurate response of the 

mother as found in other studies (for useful examinations of this issue, see Gorber, Schofield-
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Hurwitz, Hardt, Levasseur, & Tremblay (2009) and Valeri et al. (2017).  Also of note, 25 subjects 

were born under 37 completed weeks of gestation (i.e. pre-term) while all others were born at 

term or greater. 

 

Next, we wanted to look at the relative impact of smoking in the cord sample subjects. Due to 

the distribution of birth weight based on gestational age in general populations, splines can be 

used to model this outcome (Villandré et al., 2011).  These results for the cord blood subjects 

are in Table 7. Looking at column 1, the smoking categories are related to birth weight.  Looking 

at columns 3 to 7, it appears this hold true across gestational ages except at the latest 

gestational ages. 

 

 

Table 7: Regression results from linear spline model of smoking category and sex on birth weight in cord 

sample subjects (n = 914) 

 

Values in bold have p < 0.5.  Results using splines R package, (basis matrix for representing the family of 

piecewise-cubic splines performed with ns function using variable gestational age.) 

Sex is a known major source of variability in methylation research.  This variable did not have a 

significant impact on birth weight (our proxy for fetal development) in the DNAm convenience 

sample (Table 7).  Due to the sampling procedure of ARIES from ALSPAC, the distribution of 

MSP exposure and sex is fairly equal (Table 8).   
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Table 8: ARIES cord blood DNAm samples - Sex distribution 

 

Non-smoker Persistent 

Male 357 62 

Female 361 68 

 

 MSP vulnerability using typical-atypical categories 

 

We next looked at subject characteristics by MSP-birth weight categories as described in Figure 

12.  In Table 9, we show the number of subjects in each category.  Because this categorization 

seeks to optimize subject differences, only 359 subjects fall at the extremes of maternal 

smoking (i.e. non-smoking versus persistent smoking.)  Using gestational age and sex corrected 

z-score for birth weight, we arbitrarily split birth weight such that children at or below -1 SD were 

categorized as lower birth weight than their peers.   

Table 9: Typical-atypical categories based on MSP and birth weight in ARIES 

Fetal tobacco 

exposure 

Birth weight Abbreviation n 

None Low NS - LBW 42 

None Appropriate NS - AGA 260 

Present Low S - LBW 16 

Present Appropriate S - AGA 41 

 

After further exploration of this categorization, we noted that other variables appeared to affect 

this categorization.  For example, there was a disparate distribution of maternal pre-pregnancy 

weight across the categories (Figure 29).   Specifically, there was an inverse association 

between maternal pre-pregnancy BMI and being in the NS-LBW group, (beta = -1.6 kg/m2 

average difference in mothers compared to mothers of infants in NS-AGA group, p = 0.000184.)   
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Figure 29: Maternal pre-pregnancy body mass index by typical-atypical category 

To remove the influence of extremes of maternal pre-pregnancy BMI, obese and low BMI 

mothers were removed from the formative PLS-DA group.   

Table 10: Typical-atypical MSP-birth weight categories - distribution based on maternal pre-gestational BMI. 

Maternal 

weight before 

pregnancy  

NS- High 

BW 
NS-Low BW S - High S-Low BW 

Low BMI 0 8 2 3 

Normal 118 131 20 26 

Overweight 35 18 2 9 

Obese 14 6 1 2 

 

Maternal pre-gestational weight classification using WHO reference guidelines (National Research Council, 

2010). 
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 MSP vulnerability using composite data 

 

To create the vulnerability score, we used all available mother-infant data in the ALSPAC cohort 

(n = 15211).  We used MIFAMD to impute missing data before conducting FAMD analysis.  We 

used number of components = 2 (tuned using the estim_ncpFAMD function) and 50 imputed 

datasets.  As discussed in the Methods section, we considered three sources of infant health 

relevant data related to MSP: pregnancy health related, MSP related and birth weight.  We 

extracted 20 dimensions in total.  For the sake of space, only data for five dimensions are 

shown. 

Regarding the MSP variables, we recall the concerns relating to class imbalance and 

uncertainty in self-reported data discussed in Section 3.1.1.  Another issue is that we cannot 

ascertain the accuracy of a more finely grained versus coarser breakdown of MSP categories in 

terms of the duration and which periods during periconception and gestation. The risk of bias 

caused by misclassification would be highly challenging to attenuate or even estimable in terms 

of direction or magnitude (Valeri et al., 2017).  Instead of bringing forward these issues, we 

decided to use consistency as a major basis of grouping this self-reported measure.  Moving 

forward in multi-class data analysis, mothers who consistently reported smoking or not smoking 

throughout the survey period were classified as "Persistent" or "Non-smokers", respectively.  

Mothers who at one point or another reported smoking were classified as "Non-persistent". 

In our first trial of using FAMD, we included all three types of data: maternal health related, MSP 

related and birth weight.  We first look at the scree plot in Figure 30.   
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Figure 30: Boxplot of variance captured per FAMD dimensions using data from ALSPAC (n = 14694) using 

the following variables: maternal health, MSP related and birth weight factors.  Y-axis is proportion (%) of 

variance captured.  

We next look at these top two dimensions in Figure 31. The first dimension is mainly composed 

of MSP and social factors whereas the second dimension is dominated by maternal health and 

infant factors.  Both dimensions together capture less than 20% of total variability.  As well, 

there is only a small drop (less than 2%) between these top two dimensions and the third.  

Typically, successful factor analysis typically finds steeper drops in variance capture between 

top dimensions versus remaining dimensions (Pagès, 2004).
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Figure 31: FAMD analysis using maternal health related, MSP-related and birth weight factors - Variable contribution of first two dimensions.  Colours 

represent different groups of variables, (smoking related, pregnancy related, social factors and infant birth weight.)
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We proceeded to systematically trial different combinations of features in composite creation.  

We used percent variability captured by the top dimensions and percent contribution of the 

feature to the dimensions to compare combinations.  We found that the maternal health and 

most social features impaired performance.  We also note that these features had the most 

missing data compared to other features like birth weight (see Table 5). 

Proceeding with FAMD without maternal health and social features, we see the scree plot in 

Figure 32.  Unlike the previous analysis with all the theoretically relevant variables included 

seen in Figure 30, the first two dimensions capture almost 40% of total data variability.  As well, 

there is a larger gap in variance capture and eigenvalues between the top dimensions and the 

subsequent dimensions.  We proceeded with this FAMD model that only included MSP-related 

features and infant birth weight.  Please refer to Appendix F for measures of sampling 

adequacy.
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Figure 32: Scree plot of factor analysis of vulnerability data.  Missing data imputed using 50 datasets using the MIFAMD function.  Left: x-axis = 

Eigenvalues. Right: x-axis: Percentage of variance captured. 
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Next, we obtain a general overview of what each dimension represents by calculating the 

relative contribution of each variable to the dimension.  The squared cosine shows the 

importance of a component for a given observation (see footnote 5).  Higher values indicate a 

larger portion of importance. Figure 33 shows the contribution of each variable in determining 

the first two dimensions.  The first dimension represents 19.8% of data variability and primarily 

captures grandmaternal data i.e. the grandmother’s smoking history and whether the 

grandmother smoked while pregnant with the mother.  In contrast, Dimension 2 captures similar 

information for the subject’s own mother and represents 18.7% of data variability.   

 

Figure 33: Variable contribution5 to Dimension 1 and 2 

 

We can also view each dimension separately to get an overview of the most prominent features 

of each dimension (Figure 34).  If all variables contributed equally, then an equal split of 100% is 

calculated as the inverse of number of variables.  With the eight MSP related variables, this is 

12.5% (1 divided by 8).  Some authors suggest that contribution over this value can be 

 
5 Contribution calculated as square cosine*100 / total square cosine of the dimension 
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considered important (Kassambara, 2017).  For most dimensions, only about two variables are 

prominent using this cut-off (i.e. surpasses the red dotted line in Figure 34.)  
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Figure 34: Barplot of relative contribution (y-axis: squared cosine*100/total squared cosine) of variables to dimension 

construction.  The most relevant are typically considered over the inverse of the number of variables, (12% in this 

case - depicted by red dotted line.)
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To better visualize gross directionality of factors relative to the dimension scores, we can view a 

correlation plot of the individual constituent variables and each of the five dimensions (Figure 

35).  
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Figure 35: Correlation plot between FAMD dimensions and constituent variables.  Pearson correlation values with font size reflecting the strength of 

correlation. X-axis – Dimension score.  Y-axis – variable value (scaled and centered.)
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However, take note that correlation is shown to only show a cursory overview of the data to 

show continuous and categorical variables together.  Correlation was not used to perform factor 

analysis.  Correlation may be misleading when visualizing categorical variables as there is no 

true ordinality to the data.  For instance, Dimension 3 appears to have a low correlation value 

with maternal prenatal exposure to smoking – however, the blue bar graph shows that lower 

Dimension 3 scores are grouped with less maternal prenatal exposure.  The clustering 

performed by FAMD is more appropriate for categorical data and better visualized in 

contribution plots like in Figure 31 and Figure 36.
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Figure 36: FAMD analysis using only MSP variables and birth weight.   Plot of relative contribution of variables to dimension 1 and 2.  Percent 

contribution indicated by colour legend.  Variables that move from the centre along the same axis as the dimension are more influential.  The numeric 

suffix represents the level of the variable, for instance GrandmatHxSmok_1 represents no grandmaternal history of smoking whereas 

GrandmatHxSmok_2 presents a postive history.  
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Using Dimension 1 as an example, it is positively related to grandmaternal smoking history and 

mother’s own exposure to smoking from the grandmother (Figure 36.)  Dimension 2 increases 

as maternal MSP and pre-conceptual history of smoking increases.  Dimension 4 and 5 are both 

positively related to birth weight.  However, Dimension 4 is higher when mothers report smoking 

during part but not the entire pregnancy. In contrast, Dimension 5 is lower when this type of 

smoking is reported.  It is also higher when other household members smoke.  Dimension 4 

increases in relation to higher birth weight and what could be described as a "U-shaped" relation 

to maternal smoking in pregnancy.  Dimensions 3 and 5 are the only dimensions to include 

relations in smoking in individuals besides the mother or grandmother. Table 11 summarizes the 

directionality of MSP exposure with each dimension. 

Table 11: Summary of MSP exposure composite index - dimension characteristics 

Dimension  Birth weight 

Maternal 

Smoking in 

Pregnancy 

Maternal Hx 

Smoking 

Grandmaternal 

Hx of Smoking 

Maternal 

prenatal 

exposure to 

smoking 

Maternal 

partner 

smokes 

Other 

household 

members 

smoke 

Grandfather 

smokes 

1  .  .  .  +  +  .  .  . 
2  .  +  +  .  .  .  .  . 
3  .  +/‐  .  .  .  +  +  ‐ 
4  +  +/‐  .  .  .  .  .  . 
5  +  ‐/+  .  .  .  .  +  . 

This table provides character of variable as dimension score increases. "." indicates no relation, "+" and "-" indicate a 

positive or negative correlation, respectively.  In the Maternal smoking in pregnancy column (column 2), the "+/-" indicates 

a nonlinear relation i.e. low dimension scores are related to both no or high levels of reported MSP, but high values are 

related to medium levels of reported MSP. The converse is represented by "-/+". 

 DNA exploratory analysis  

 

The distribution of beta values in our cord convenience samples is depicted in Figure 37.  This 

beta distribution is consistent with other literature (Solomon et al., 2018; Zhou, W. et al., 2017). 
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Figure 37: Histogram of beta values in cord blood samples (n = 914) 

Next, we explored the DNAm data with PCA (Figure 38). The aim was to visualize if and what 

natural groupings existed in the cord DNAm based on the greatest variance in the dataset.  

Visual inspection of PCA components revealed no separation by MSP status of the samples. 

Looking at Figure 38, we can see that this analysis accounts for a small portion of DNAm 

variance, the first two principal components (PCs) together only summing to around 10%.  
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Figure 38: Scree plot.  The first component captures the most methylation variability.  However, the 

percentage captured is less than 10% which is considered low.   

Instead of just viewing the variability captured by the components, we can visualize if the 

components separate subjects according to their MSP vulnerability.  Using the top 2 

components, we can plot each subject using the component scores.  We can colour each 

subject data point according to their maternal reported MSP category.  Little distinction can be 

seen in Figure 39. 
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Figure 39: Score plot of principal components analysis of DNAm data, (first two principal components 

plotted.) Together, the first to components account for about 10% of total data variation.  Legend: zero refers 

to non-smoking mother, 1 is periconception only, 2 is smoked in 1 or more trimesters, 3 is smoking 

consistently throughout pregnancy.   

We also used multiple hypothesis testing to observe the linear relation between beta values and 

smoking category.  The Manhattan plot in Figure 40 depicts the significance of association with 

beta values as the negative logarithm of the p-value (-log(p-value)) versus the chromosomal 

location for each of the tested CpG sites.  Twelve CpGs passed the significance threshold after 

multiple testing correction (Bonferroni).  
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Figure 40: Manhattan plot of epigenome wide association analysis of smoking status in cord samples (n = 

914).   Solid horizontal line represents Bonferroni threshold; dotted horizontal line represents FDR correction 

(Benjamini & Hochberg method, p < 0.05) threshold. Generated using cpgAssoc R package. 

This is in contrast to birth weight.  When a similar analysis was performed relating to birth 

weight (Figure 41), 671 sites CpGs exceed significance the Bonferroni threshold. 



 

 127 

 

Figure 41: Manhattan plot of epigenome wide association analysis of infant birth weight (cohort based z-

score) in cord samples (n = 914).   Solid horizontal line represents Bonferroni threshold; dotted horizontal 

line represents FDR correction (Benjamini & Hochberg method, p < 0.05) threshold. Generated using 

cpgAssoc R package. DNAm vulnerability patterns using categories  

Next, we will use PLS to directly observe co-variability between DNAm and MSP vulnerability.  

We start with maternal reported MSP and then proceed with typical-atypical MSP-birth weight 

categories.  We will be using the categorical extension of PLS, PLS-DA.  As with the PCA 

analysis above, we can similarly plot the PLS component scores of each subject and then 

colour data point according to the subject’s MSP vulnerability category. 

3.2.1 Analysis with PLS-DA and maternal reported MSP 

 

We first use MSP based on maternal report as “bait” to guide the formation of the components 

using PLS-DA.  The following figures, Figure 42 and Figure 43 show results from PLS-DA using 

cord DNAm data and maternal reported MSP for the ARIES and GenR cohorts, respectively. 
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Figure 42: PLS-DA of DNAm and maternal reported MSP.  Left: Plot of subject component scores.  Right: 

same as left except each data point is coloured as per legend to demonstrate distinction between groups. 
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Figure 43: Generation R data - PLS-DA of cord DNAm data and maternal reported MSP. Black - non-smoker. 

Green - Quit in early pregnancy.  Red - Smoker during pregnancy. 

 

We can also colour the data points with other variables to see if the scores can separate 

subjects accordingly.  As seen in Figure 44, the PLS-DA detected patterns did not appear 

related to social variables, such as social status or education level of either mother or father of 

the subject (for sake of space, only maternal education shown.)  Neither paternal smoking 

before nor during the pregnancy showed any association.  We also checked if BCD plate was 

related to any patterns in PLS-DA scores and found none.  Subject sex did lead to some 

separation.  We repeated PLS-DA after removing DNAm data from sex chromosomes X and Y.  

However, this difference persisted. 
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Figure 44: PLS-DA of cord DNAm related to maternal smoking categories.  Colour are by the following 

variables: Top left - Maternal education level, top right - paternal smoking in before/during pregnancy, 

bottom left - microarray plate number (component 2 used as an example), bottom right – infant sex (after 

removal of DNAm data from X and Y chromosomes.) 

We took a cursory look at whether the PLS-DA patterns had any relation to clinical outcomes.  

As an example, we look at regression models for prenatal growth (i.e. birth weight) in Figure 45 

and a summary of results including early postnatal growth in Table 12. These associations were 

observed even after controlling for maternal BMI, maternal gestational weight gain, infant 

gestational age, and infant sex. 
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Figure 45: Linear plot - regression model to predict birth weight based on PLS-DA components (extracted 

using maternal reported MSP).  Shading indicates residual error.  Predictors (top to bottom, left to right): 

maternal BMI, infant sex, gestational age at birth, Component 2 scores, and maternal average weight gain. 

 

Table 12: PLS-DA components (maternal reported MSP) linear relation to prenatal growth (birth weight) and 

postnatal growth in the first 3 months of life. 

 
Covariates: maternal BMI, maternal average weight gain, infant sex, and gestational age at birth. 

 



 

 132 

However, closer examination of the components revealed that the majority of variance was 

related to only two categories: smoking in periconception or “other”.  This latter group consists 

of subjects with no MSP data or inconsistent reporting (e.g. reporting no smoking in before or in 

early pregnancy but then reported smoking in later pregnancy.)  Very little variance was related 

to subjects with no MSP exposure.  Components 2 and 3, which were related to pre- and post- 

natal growth rates, do include relative increases in representation of variability related to first 

trimester smoking and smoking in greater than 1 period in pregnancy compared to Component 

1.  However, there remains little variability related to non-smokers in all three of these 

components. 

Table 13: PLS-DA (cord blood and maternal smoking categories).  Variance captures by components. 

VARIABLE 

NUMBER OF COMPONENTS (CUMULATIVE) 

1  2  3  4  5  6  7  8 

DNAm  0.3738  1.819  2.826  3.796  5.41  6.193  6.963  7.782 

No smoking  2.8449  3.673  4.034  7.953  13.4  25.287  29.368 30.348

Smoking in 

Periconception  32.0895  33.635 41.228 41.268 41.27 41.876  42.911 45.342

Smoking to first 

trimester  0.5658  10.234 18.299 19.452 22.52 47.391  68.214 78.303

Smoking in 2 periods or 

more  0.2732  12.616 34.228 51.272 59.91 69.094  70.595 70.866

Other  31.6521  31.784 33.008 38.467 42.87 44.694  44.876 45.536

 

To further evaluate these results, we conducted model cross-validation using 10 random 

segments (Figure 46).  Typically, a greater number of components should lead to better (i.e. 

lower) RMSEP-values.  It is known in CV that a clear minimum of prediction errors may not be 

obtained, making the model selection difficult.   The highly variable predictive error together with 

the poor representation of smoking versus non-smoking in the PLS-DA components suggests a 

poor model. 
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Figure 46: PLS-DA using maternal reported MSP categories - Performance using 10 fold cross validation.  

Lines show Root Mean Square Error of Prediction.  X-axis: number of PLS-DA components tried. 

3.2.2 Analysis with PLS-DA and typical-atypical MSP-birth weight categories 

 

Next, we now change “bait” to the typical-atypical MSP-birth weight categories.  We can see 

from Figure 47, there is some separation seen even with only two components.  As well, about 

9% of DNAm variability is captured with the first two components compared with less than 3% in 

the case of PLS-DA using maternal reported MSP categories.    
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Figure 47: Scatterplot of PLS-DA scores using cord DNAm and typical-atypical MSP categories. Each axis 

also notes the percent explained variance of DNAm data. Legend: 0 – Non smoker, 1 – Smoking in 

periconception, 2 – smoking to first trimester, 3 – smoking in 2 or more periods. 

By plotting three components as seen in Figure 48, we observe even clearer separation of 

subjects by typical-atypical category.  This may be expected as this categorization uses the 

extremes of birth weight and MSP exposure.  Due to this property, also note there are about 

only half as many data points as with maternal reported MSP analysis. 
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Figure 48: PLS-DA of cord DNA methylation data using typical-atypical categories. 

As with the maternal reported MSP analysis, we again evaluated the model using cross 

validation.  We again encountered the same problem as previously with no clear minimum of 

prediction errors.  Suspecting we were encountering overfitting, we repeated the PLS analysis 

but this time using soft-thresholding penalization to promote sparsity (implemented using the 

sPLS function in the mixOmics R package.)  This is shown in Figure 49.  As we can see, 

introducing sparsity leads to a less distinct separation of points, especially of the smaller smoker 

categories. 
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Figure 49: Sparse PLS-DA of cord DNA methylation data using typical-atypical categories. 

We considered the matter of unbalanced samples (i.e. much smaller smoker-low birth weight 

group) and prediction error estimates.  Rather than using MSEP, such situations may be better 

suited to estimating the Balanced Error Rate (BER). BER is appropriate in case of an 

unbalanced number of samples per class as it calculates the average proportion of wrongly 

classified samples in each class, weighted by the number of samples in each class (Cerf et al., 

2013).  This is often compared to the overall error rate, which is simply the proportion of 

“correct” classifications across all the samples.  As in Figure 46, we show results after 

conducting 10–fold CV but this time, using BER and overall error rate (Figure 50).  While there 

is some improvement in overall error with adding more PLS-DA components, this is associated 

with a deterioration of BER.  This observation in context of the results in Figure 49 likely 

represents worsening performance in the smaller classes (Cerf et al., 2013). 
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Figure 50: Sparse PLS-DA using typical-atypical MSP categories - Performance using 10 fold cross 

validation.  Lines show global accuracy (continuous line) and balanced error rate (dashed line).  X-axis: 

number of PLS-DA components tried. 

3.2.3 Relation to covariates 

Using these DNAm components derived from typical-atypical categories, we proceeded to 

evaluate their relation to covariates. 

 Relation to cell type heterogeneity  

Cell type-attributed heterogeneity, along with genetic variation and age, are known to be major 

sources of variation in comparative blood-based DNAm studies (Jaffe & Irizarry, 2014; Tsai et 

al., 2012). Looking at the correlation plot in Figure 51, we can see that Component 7 strongly 

relates to both CD4+ T cells and granulocytes.  However, these cell counts are estimates based 

on an external cord blood reference.  It appears the estimated values of these two cell types 

have a strong negative correlation.   

 

 

 



 

 138 

 

Figure 51: Correlation matrix.  Cell count versus PLS-DA components from MSP-birth weight categories. 

Pearson correlations p-values are indicated by the circle diameter (i.e. larger diameter, lower p-values.)  

Colour scale indicates r value. 

 Relation to infant sex 

As a reminder, we filtered probes on sex chromosomes from the DNAm data before PLS 

analysis.  As well, the typical-atypical components used birth weight z-scores that were adjusted 

for gestational age and sex.  Despite this, half of the components related to infant sex, 

Component 7 demonstrating the strongest relation.  Recalling from above, it was also the 

component most correlated with cell type. 
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Table 14: ANOVA - Relation between infant sex and DNAm components (typical-atypical related). 

 

 Relation to social factors 

Maternal education related to Component 2 (Table 15).  In contrast, no component related to 

paternal social status (Table 16). 

Table 15: ANOVA - Relation between maternal education and DNAm components (derived from typical-

atypical mother-infant categories). 
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Table 16: ANOVA - Relation between paternal social class (by occupation) and DNAm components (derived 

from typical-atypical mother-infant categories). 

 

3.2.4 Relation to clinical outcomes 

We conducted the two-step approach to uncover DNAm components relevant to child outcomes 

as described in Methods (Section 2.5.5).  We found Boruta frequently unable to select any 

important features.  If any features were selected, the models performed poorly.  As an 

example, the tables below provide the evaluation of models for school performance using the 

DNAm components related to typical-atypical categories.  Below are the variables selected by 

Boruta and the RF performance metrics (Table 17 and Table 18, respectively.)   
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Table 17: Boruta selected variables (PLS-DA on cord DNAm using typical-atypical categories) for school 

outcomes. 

 

Table 18: Performance metrics for models of school performance.  Components from DNA methylation at 

birth (PLS-DA using typical-atypical categories.) 

 

Metrics include MSE and R2  (standard deviation in following column.) Results from different trials of mtry provided, 

with the most optimal mtry in the third column.  When only one variable is selected, mtry can only be two.  Eng – 

English, Sum – Summary score, Sci – Science. 
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A number of DNAm components passed Boruta selection, especially in the early school periods 

(“K1” stage in England.)  However, among these, only Component 10 does not have a strong 

relation with cell type, sex or maternal education. 

K2 English and Science models were very poor.  K2 Math had only one selected variable, 

Component 7.  Recall that this component related strongly to both granulocyte count and infant 

sex.  Because no variables were selected for any K3 stage outcomes, we performed no further 

modeling and hence these are missing from the table.  

 

 DNAm vulnerability patterns using composite data  

 

We now move to using our MSP composite as “bait”.   As the composite is a continuous 

measure, we used PLS regression (PLS-R) as opposed to discriminant analysis (PLS-DA).  In 

addition, class imbalance is not a concern for continuous measures.  Last, we now can use data 

on all 914 subjects with cord blood as we are not limited to only subjects whose mothers 

provided smoking data. 

3.3.1 Analysis with PLS-R and MSP composite 

 

Figure 52 provides the performance indices PRESS, R2, MSEP and proportion of DNA 

methylation variability captured (Abdi, H. & Williams, 2013).  
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Legend:  

Figure 52: PLS regression performance metrics of relation between DNAm variability and MSP vulnerability composite (using 

10-fold CV).  Column name represents number of exposure dimensions used in PLS analysis.  Each row graphs a different 

metric of fit versus number of DNAm components. Each line colour represents a different MSP composite.  We trialed 

between 2 to 20 composite dimensions.  However, for the sake of space, we show only results from trials using four, five or 

4 dimensions 5 dimensions 6 dimensions 
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six composite dimensions.   (R function perf based on function of same name from package mixOmics implemented in 

package sgPLS.)
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In terms of variability captured for the MSP composite and DNAm, we consider second and 

fourth rows of Figure 52.   It appears that the composite-derived components provide a weaker 

relation to DNA methylation variability and composite dimensions than using the components 

derived from MSP alone or using the typical versus atypical categories. Looking at the predictive 

error (first and third rows), we do not see the expected decrease in error rate as number of 

components increase for most dimensions.  However, unlike for the categorical MSP-derived 

components, the errors tend to stabilize for many of the dimensions instead of having an 

ongoing erratic pattern.  This may suggest this model is less over-fit than the categorical MSP-

derived models.   

3.3.2 Relation to covariates 

 Relation to cell type heterogeneity  

 

Looking only at correlations with p < .05 in Figure 53, the strongest association in cord blood 

was between component 3 and granulocyte count (r = 0.3.)  There appears to be less 

correlation with cell type than compared with PLS-DA using typical-atypical categories (Figure 

51). 
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Figure 53: Correlation matrix between cord DNA methylation components (from MSP composite) and 

estimated cell type composition using meffil R package.  Pearson correlations that have p<.05 are indicated 

with a circle.  Colour scale indicates r-value. 

 

 Relation to infant sex 

 

As seen in the PLS-DA results, subject sex had ongoing influence on DNAm components 

despite the removal of sex chromosomes from the DNAm data.  This remains true for 

components from PLS analysis using the MSP composite.  As seen in Table 19, Component 10 

and to a lesser extent, Component 13, were associated with subject sex (p < 0.05).
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Table 19: ANOVA between cord DNAm components and infant sex. 
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 Relation to social factors  

 

As we extracted the components from MSP-related factors that are correlated to social factors, 

we were interested to see what the relation was between variables such as maternal and 

paternal social factors as well as neighbourhood conditions, financial security and maternal 

psychopathology.  There were varying degrees of missingness among these variables but social 

variables demonstrated no consistent pattern.  For brevity, we only show the ANOVA tables for 

maternal education and paternal social status, (Table 20 and Table 21, respectively.)
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Table 20: ANOVA - Maternal education by cord DNAm components. 
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Table 21: ANOVA - Paternal social status (as derived by occupation class) by cord DNAm components. 
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 Relation to vulnerability composite  

 

We further tuned the overlap between the MSP composite and DNAm to find the optimal 

number of dimensions and components to generate DNAm patterns.  Again referring to Figure 

52, we now look across the columns to find the number of dimensions that result in better 

PRESS, R2, MSEP and proportion of variability captured.  The 5-dimension solution appears to 

have slightly lower error rates with comparable variability capture.  This would represent five 

clinical subtypes of infants’ vulnerability to MSP-related factors – this would be a clinically 

reasonable figure.   This is based on our a priori hypothesis that at least four possible extremes 

represent the spectrum between typical and atypical groups (see Figure 12).  We also 

considered eigenvalues and variance explained (Figure 52) from the FAMD analysis.  Thus, 

based on these results, as well as on composite features and theoretical basis, we proceeded with 

the 5-dimension composite solution. 

We turn to the optimal number of components, testing number of components ranging from 2-

50.  Looking for the “hinge” points of each metric, we are seeking the point where increasing the 

number of components results in either a plateau or decrease in performance.   Biologically, we 

also considered that each of the five dimensions of the exposure composite might arise from 

more than one biological process so we may expect the number of components to exceed that 

by multiples.  Considering these points, we proceeded with the first 20 DNAm components.  

We explored the relation of each component to the variables used to create the MSP 

vulnerability composite.  The following figures plot the distribution of component scores based 

on these variables. 
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Figure 54: Boxplot of DNAm component scores versus variable (shown in legend) from MSP vulnerability 

composite. Legend: Report of this history was either Absent or Present for smoking of mother’s partner 

(MatPartnerSmok), maternal history of smoking before pregnancy (MatHxSmok), maternal grandmother 

history of smoking (GrandmatHxSmok), maternal grandmother smoking while pregnant with mother (as 

reported by mother – MatprenatSmok), other household members besides parents who smoke 

(HouseholdSmok) and Maternal smoking during pregnancy.  Sample size in brackets (after removing missing 

values for given variable.) 
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Figure 55: Scatterplot of DNAm component scores (x-axis) versus birth weight z-score (y-axis).  N = 893. 

We next sought to understand the MSP vulnerability subtype underlying each DNAm pattern.  

Looking at the Pearson correlation between each MSP dimension and the PLS components, 

Table 22 indicates the strongest relation between the two.  The first MSP composite is most 

frequently represented (six components are most strongly related to this dimension.)  In fact, the 

first 3 PLS components all represent this dimension the most (Figure 55).  To remind the reader 

of the variables most representative of each dimension, Table 22 provides the contribution of  

constituent variables to each dimension (this is the tabular format of Figure 34)   



 

 157 

Table 22: Relative variable contributions to each FAMD dimension representing MSP vulnerability 

 

This table displays the squared cosine*100/total squared cosine of the dimension to provide the percentage 

contribution. 

Table 23: Top correlated FAMD dimension to DNA methylation component 

Component MSP vulnerability dimension 

1 1 

2 1 

3 1 

4 2 

5 3 

6 4 

7 4 

8 5 

9 1 

10 5 

11 5 

12 3 

13 2 

14 1 

15 2 

16 3 

17 4 

18 1 

19 2 

20 5 
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Figure 56: Scatterplot of DNAm scores (x-axis) versus MSP vulnerability dimension values (y-axis.)  n = 914. 
Dark blue points indicate best fit line. 

Recall that we used the perf function in the sgPLS package to perform 10-fold internal cross 

validation of our PLS model.  This function provides insight into feature stability (from either 

the DNAm data or MSP dimensions) by indicating how often a feature is selected across all 

folds of validation.  This offers another view of the relevance of dimensions to each 

component.  Figure 57 shows the portion of folds that selected a given dimension for each 

component.  With this view, we can see that while some components, (like Component 20,) 

“preferred” one dimension over others, other components selected 2 or more dimensions 

with no clear preference, (like Component 18.) 
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Figure 57:  Barplot of feature stability measure of PLS model (from final tuning that used 5 dimensions and 

20 components.)  Y-axis is portion of times dimensions are selected across 10-fold internal cross validation 

by given component.  Output from keepY result in perf function in sgPLS package. 

 

The DNAm components extracted using the composite marker had more attenuated relations to 

covariates such as cell count, maternal education and sex compared the categorical MSP-

derived components.  In terms of performance, DNAm components captured less variability but 

appeared to less over-fit than the categorical-derived components.  As such, we proceed with 

further analysis using composite-based DNAm patterns.   

 Clinical relevance of DNAm vulnerability patterns 

 

In this chapter, we explore whether specific DNAm components predict child phenotype across 

diverse mental and physical outcomes.  As described in Section 2.5.5, we used the two-step 

machine learning procedure to uncover if variables and which variables are relevant to 

predicting outcome.   

 

The first step of this process is variable pre-selection with Boruta.  Before we proceed, we 

wished to compare the effect of pre-selection versus no preselection.  Metrics include the 
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number of trees needed to reduce error, R2 and RMSE.  A lower number of trees, higher R2 and 

lower MSE implies a better model.  For the sake of space, we do not show model metrics for all 

the outcomes.  As an example, we illustrate using waist circumference using cord DNAm 

components.  Figure 58 shows the RF results with no preselection (i.e. all DNAm components 

and covariates are entered into the model.)  

 

Figure 58: Random forest model of waist circumference (age 10).  No preselection of variables.  Variables: 

DNAm components from cord blood, sex, maternal education, paternal social status and early fetal and 

infant growth. Left: Error rate (calculated using OOB data) versus number of trees. Right: Variable 

importance (calculated using OOB data) versus variable importance (Breiman-Cutler method.) R package: 

rfsrc. 

Second, we observe which variables are selected with Boruta (Figure 59).  Variables to the right 

of the ShadowMax variable with green boxes consistently demonstrate relevance to the 

outcome that is likely unrelated to stochastic processes. Yellow boxes indicate “tentative” 

importance by the author of the package.  As you may recall from Methods Section 2.5.4: 
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Contrast with biomarker discovery, the Boruta algorithm adds randomness by shuffling copies of 

all variables (which become the shadow variables) a specified number of runs.  Variables 

labelled as tentative because RF could not decide whether the variable was more or less 

important than ShadowMax within the run number (in our case, 1000 runs.)  We did not take 

these less certain variables forward in analysis.  Therefore, in the case of waist circumference at 

age 10, the Boruta algorithm selected five variables as relevant: all early growth variables 

(including birth weight) and Component 11.   

 

Figure 59: Boruta ranked variables for relevance to waist circumference at age 10 (n = 862.).  Variables 

entered: DNAm components from cord blood, sex, maternal education, paternal social status and early fetal 

and infant growth.   R package: Boruta.  

 

Using only these Boruta selected variables, we conducted RF to obtain performance metrics 

(Figure 60). We note that compared to Figure 58, fewer trees are needed to drop the model 

error rate.  Random forest models where there is more “certainty” in distinguishing between 

relevant and non-relevant variables require fewer decision trees to arrive at the final model. 
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Figure 60: Random forest model of waist circumference (age 10).  Boruta-selected variables only.  Left: Error 

rate (calculated using OOB data) versus number of trees. Right: Variable importance (calculated using OOB 

data) versus variable importance (Breiman-Cutler method.) R package: rfsrc. 

We compared RF models with and without Boruta feature selection (Table 25).  Using the metric 

of variance explained and error rate, we can see that the error rate with and without Boruta is 

similar.  However, the variance explained drops to 15.9% from 20.1% when modeling without 

Boruta.  We observed overall better metrics with Boruta preselection across outcomes, 

regardless of the age of outcome measurement.  As an example, Table 24 shows these metrics 

for waist circumference at various ages.  In addition, computation times were much faster after 

Boruta selection.  To maintain consistency, all results presented are from Boruta selected 

models.  

 

Table 24: Comparison of performance between models with and without Boruta filter. 
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7 
No  20 0.793 0.290 

Yes 2 0.786 0.314 

9 
No  20 0.880 0.171 

Yes 2 0.880 0.193 

10 
No  20 0.890 0.160 

Yes 2 0.879 0.194 

11 
No  20 0.867 0.165 

Yes 2 0.873 0.174 

Outcome: waist circumference at various ages. Variables entered: cord DNAm components, estimated cell 

type composition, sex, weight trajectory (between birth and age 3), paternal social status and maternal 

education.  R package: caret. 

 

Like all RF algorithms, Boruta does not accept missing values.  This necessary discarding of 

incomplete variables diminishes the sample size of models that are without Boruta preselection.  

Thus, we performed sensitivity analysis to check if these observations were related to the 

differences in sample size of Boruta-selected models versus those without pre-selection (e.g. n 

= 862 in the Boruta model compared with n = 805 without Boruta.)  This is important for not only 

the power to detect relevant variables but also because excluded subjects change the impact of 

outlier and data noise effects on model specification.  We repeated the analysis using the built-

in impute function present in the randomForestSRC package.  Table 25 shows a comparison 

between these three models, including with imputation (n = 914).  The performance appears similar 

between the model without Boruta and the model with imputation.  This makes the performance 

differences seen in Boruta-filtered models less likely due to change in sample size alone.  Boruta 

filtered models perform better than either of the other two models in terms of percent variance 

explained and error rate. 

However, excluded subjects change the impact of outlier and data noise effects on model 

specification.  These results are at the right most column in Table 25.  The metrics of RF with 

preselection and with data imputation demonstrate little difference (last two columns.)   
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Table 25: Random forest metrics - comparison of 3 models using cord blood DNAm patterns and waist 

circumference as outcome.  Raw - Without Boruta preselection, Data imputation - With data imputation 

without Boruta preselection using built-in impute function.  R package: rfsrc. 

 

 

We also considered models to be likely over-fit if the metrics for the test set are dramatically 

worse than that of the training set.  As an example, Table 26 shows the metrics for childhood 

anthropometric outcomes at various ages between 7 to 13 years (calculated using 5-fold cross 

validation with three repeats.)  The test MSE and R2 values are slightly worse than the training 

values but remain close for most outcomes, making over-fitting less likely.   
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Table 26: Random forest performance with Boruta selected variables to predict child weight using DNAm 

components at Age 7 blood samples.  

 

In the outcome column, numerical suffix indicates age at time of outcome measurement in years. Outcomes 

are all internally normalized by sex for the ALSPAC cohort.  Outcomes are weight, height, bone mass 

(DEXA), fat mass (DEXA), lean mass (DEXA), and waist circumference. 

As another safeguard against overfitting, we also checked the consistency of variable 

importance ranking after cross validation with rankings from Boruta and again using a different 

R package (randomForest).  We excluded results from clearly poorly performing models (i.e. 

negative R2 and/or high MSE values), as well as models with highly divergent results in 
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importance ranking or test versus training metrics.  We show in 

 

Figure 61 an example of these checks using the same outcome as in Figures 55 to 56 (waist 

circumference at age 10).  We observe similar importance ranking after CV with repeats.  
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Figure 61: Plot of variable importance after 5-fold cross validation with three repeats.  Outcome: waist 

circumference at age 10 (n = 862.) Variables: cord DNAm components, estimated cell type composition, sex, 

weight trajectory (between birth and age 3), paternal social status and maternal education.  Ranking of 

importance of all variables (using package Boruta.) Inset: Ranking of importance of Boruta selected variables 

(using package randomforest.) 

We now proceed with results for various physical and cognitive outcomes.  We focus on results 

relating to cord DNAm components first but for the sake of space, tables and figures may include 

DNAm components derived from later ages that we will be refer to in subsequent sections. 

3.4.1 Anthropometric outcomes 

 

Table 27 summarizes the DNAm components selected by Boruta as relevant variables for 

weight, height and waist circumferences at various ages across childhood after passing the 

checks discussed at the introduction of this chapter. Only Component 11 and 14 passed this 

testing in cord blood DNAm, both of which relate to waist circumference.
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Table 27: Boruta-selected DNAm components relevant to anthropometric measures at various ages. 

 

Outcome consists of weight, height and waist circumference (z-scores). This summary table only includes Boruta-selected DNAm components for the 

sake of clarity. Italics highlight components that persist at more than one DNAm collection age and/or more than one outcome. The columns indicate 

the child’s age at the time of outcome measurement.
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Consistent with previous literature (e.g. Bann et al., 2014), the most important predictors of all 

anthropometric measures were birth size (length and weight) and rate of growth between birth 

and 3 years of life.  These variables were consistently selected for all outcomes. There was also 

a relation between these growth outcomes and estimated leukocyte count, especially 

granulocytes and T cells.  (For the sake of space, data not shown.)   

We also looked at the results of DEXA scanning as a reliable means of estimating lean, fat and 

bone mass (Figure 62).  Component 14 again reappears here, this time relating to lean mass at 

age 11.  Like in Table 27, we summarize the results from the two-step analysis for body 

composition outcomes at various ages in Table 28. 

 

Figure 62: Boruta importance plot for lean mass (z-score) at age 11. Green boxes indicate selected variables.
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Table 28: Boruta-selected DNAm components relevant to body composition at various ages. 

 

Outcome consists of lean, fat and bone mass as measured through DEXA scanning (z-scores). This 

summary table only includes Boruta-selected DNAm components for the sake of clarity. Italics highlight 

components that persist at more than one DNAm collection age and/or more than one outcome. 

Knowing the importance of birth size to physical outcomes, we further explored these two 

components in context of birth weight.  Partial dependence plots help visualize the interaction 

between DNAm components and variables in relation to outcomes.  We show such a plot in  

that illustrates the predicted outcome values within quartiles of DNAm component scores while 

holding all other covariates at their average.  Looking at Component 14 in the left column, we 

can see that around birth weight z-scores around or greater than negative one, lower 

Component 9 scores relate to higher lean mass.  However, this separation by component score 

does not apply to lower birth weight infants.  In the right column, Component 11 scores in the 

highest quartile relate to higher waist circumference but only within the average birth weight 

range. For lean mass and waist circumference, these plots demonstrate that the relation to 

DNAm patterns may not be uniform at all ranges of birth weight nor are they necessarily linear
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Figure 63: Partial dependence plot of outcome (y-axis) as a function of birth weight (z-score adjusted 
for sex and gestational age), conditional on quartile ranges of component scores from cord blood 
DNAm components.  X-axis: Outcome as z-score (suffix indicates age in years.) 
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3.4.2 Neurodevelopment 

Component 18 related to toddler development at 30 months.  Components 8 and 11 were 

related to total IQ score (WISC) measured at age eight. Every model selected the paternal 

social status variable.  All models for IQ at age four and development scores besides 30 months 

performed poorly, (results not shown.)  

Table 29: Neurodevelopment outcomes - Random forest selected DNAm components 

 

3.4.3 Behaviour 

Most models performed poorly (negative R2 and high MSE).  Better performing models 

demonstrated no consistent pattern of predictors, including DNAm components.  Subject sex 

was the most common RF selected predictor.  Results are omitted here for space 

considerations. 

3.4.4 Academic performance 

In cord blood, only DNAm Component 5 was selected more than once in relation to 

performance in Key Stage 2 and 3, (scores in English at both stages and Science at Key Stage 

3.)  Like for neurodevelopmental outcomes, paternal social status was selected in every model.   
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Table 30:  Academic outcomes – Random forest selected DNAm components 

 

Academic outcome consists standardized testing performance at Key stage 1 (age 5-7 years), 2 (age 8-11 years) and 3 (age ~14 years).  This summary 

table only includes Boruta-selected DNAm components for the sake of clarity. Italics highlight components that persist at more than one DNAm 

collection age and/or more than one outcome. 
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We note the presence of some DNAm patterns that were selected no matter the age of blood 

collection or clinical outcome, (e.g. Components 1, 2 and 3.)  However, recall from the preceding 

covariate analysis that these components were the most related to cell type estimates.  As well, 

Component 10 appears frequently but is also related to infant sex.  This is in contrast to other 

components that appear less frequently but do not have strong relations to covariates (e.g. 

Component 9 and 11.)  We will be focusing further analysis on this latter type of component.     

3.4.5 Cell count composition revisited 

We diverge at this time to recall that DNAm data from ages 7 and 15 years do not have a DNAm 

reference.  As such, our analysis used a reference-free correction method (reFACTor) to 

mitigate the effects of cell type heterogeneity.  To evaluate the difference between meffil and 

reFACTor, we repeated the correlation analysis of cord DNAm this time with reFACTor 

estimated cell type composition.  Unlike the reference based cell type correction, several 

components stand out with strong correlation to estimated cell counts.  We also performed two-

step RF to observe the effect on relation of outcomes to cord blood components corrected with 

ReFACTor.  Models were comparable to that with reference-based correction (Appendix C).  

We further compared component, dimension and estimated cell composition using reFACTor 

versus meffil (using adult reference "blood gse35069") and found only minor differences 

(Appendix C). 

We were also wary of the relation between the MSP composite and cell count given the signal 

strength of this covariate in DNAm data.  As the MSP composite forms the basis of construction 

of the DNAm components, we wanted to consider this possibility seriously.  Fortunately, the two 

appear to have little correlation (Appendix C). 

 Comparison of performance: DNAm patterns versus MSP variables or 

composite in relation to child outcomes 

 

We wanted to compare the ability of DNAm patterns to predict outcomes versus using the 

maternal report of smoking throughout pregnancy.  Using the same two-step variable selection 

process, we entered the same control variables (i.e. sex and social factors) and instead of any 

DNAm variables, we used the maternal smoking variable as described in Methods and as used 

in the MSP vulnerability composite.  In many cases, we found that the maternal smoking was 

not even selected by Boruta for further analysis.  The sample size was often smaller as 

maternal smoking data was unavailable for all subjects whereas DNAm patterns can be 
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extracted for subjects with missing maternal data.  We show an example using waist 

circumference in Figure 64.  Like with DNAm component analysis (Figure 59), the top ranking 

variables are growth rate variables, with growth between age 1-3 years being the most 

important variable by a large margin.   

 

Figure 64: Boruta ranked variables for relevance to waist circumference at age 10.  Variables entered: MSP-

related variables (7 variables), sex, maternal education, paternal social status and early infant growth.   R 

package: Boruta.   (n = 533). 

We also wanted to compare model performance using the MSP-related variables versus the 

MSP-composite derived DNAm components (Table 31).  The results between the two are 

comparable.  In addition, no variables were selected except for early growth measures (Table 

32 and Figure 64).  This was a consistent finding across most outcomes.   
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Table 31: Comparison of RF metrics between DNAm component versus clinical variables. 

 

Metrics from RF using outcome: waist circumference at all available data ages.  On left, DNAm components.  Middle: MSP 

variable-only.  On right: Composite formed from MSP variables and birth weight..  Covariates for both analyses: sex, 

maternal education, paternal social status. 

The sample size for DNAm component analysis is different for each outcome due to missing 

data.  In the case of waist circumference at age 10, DNAm component analysis included 862 

subjective while it was only 533 for variable-only analysis.  To test whether the differences 

between DNAm component versus variable-only models were due to the change in sample size, 

we repeated the above analysis but again employing the built-in impute function present in the 

randomForestSRC package as in Section 3.4: Clinical relevance of DNAm vulnerability patterns. 

Results were consistent with and without imputation (data not shown.) 
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Table 32: Frequency of selection by Boruta as a relevant variable in models of waist circumference at ages 7, 

9, 10 and 11.   

DNAm component 

MSP variable-only 

MSP composite 

 

We also performed the same analysis using the vulnerability composite.  We found that model 

results were comparable to the other two models.  Unlike with MSP variables alone however, 

the composite dimensions were often selected as relevant features by Boruta (Table 32).   
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Figure 65: Boruta ranked variables for relevance to waist circumference at age 10.  Variables entered: MSP 

dimensions, sex, maternal education, paternal social status and early infant growth.   R package: Boruta. (n = 

862). 

 

 DNAm patterns persist into mid and late childhood 

Using the DNA patterns discovered in cord blood, we are able to use the PLS weightings as a 

“template” to extract the same patterns among CpG sites in DNAm data from other sources.    In 

this way, we are able to calculate age-specific component scores for each individual’s DNAm 

data collected from blood in mid and late childhood.  In other words, these age-specific scores 

represent the DNAm patterns at age 7 and 15 years. We repeat the same clinical outcome 

testing for these later age DNAm patterns. 
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3.6.1 Late DNAm patterns and covariates 

 Subject sex 

In Table 19, we showed the relation between sex and DNAm components from cord blood.  We 

perform the same analysis for DNAm components from later ages (Table 33 and Table 34).  We 

can see that Components 10 and 13 are stably related to sex at birth, age 7 and age 15.  The 

number of components related to sex increased by 7 fold between birth to ages 7 and 15.  While 

a number had p < 0.001, the beta coefficients were very small compared to Component 10.  
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Table 33: ANOVA between Age 7 DNAm components and infant sex. 

 

Table 34: ANOVA between Age 15 DNAm components and infant sex. 
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 Social factors 

Like in cord blood, we used ANOVA to observe any relation between DNAm components at 

later ages and social factors.  None were found (data not shown.) 

 Batch effects 

While only weak batch effects were seen in cord blood after batch correction, such effects 

seemed far more prominent in blood at Age 7 and 15 as estimated through independent 

component analysis.  As a reminder, Age 7 and 15 DNAm data was processed with the same 

normFact function (Renard & Absil, 2017) used for cord data to attenuate BCD plate batch 

effect specifically for those samples. 
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Figure 66: Correlation matrix between DNAm components and sample batch. Colour indicates Pearson 

correlation and circle size indicates p-value.  DNAm data from age 7 (Top) and age 15 (Bottom.).  R script 

normFact (Renard & Absil, 2017). 
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Components 1, 2, 3, 7, 10 and 14 were possibly related to batch effects in DNAm data from Age 

7 and 15.   Of note, Components 3, 10 and 14 are also related to sex at Age 7 and 15 (Table 33 

and Table 34). 

 Late DNAm patterns and cell count 

Figure 67 shows the correlation matrix between DNAm components and cell count, this time 

using a reference-free estimation method.  Again, this was because there are no cell 

composition references available for age 7 and 15.  We can see that Component 1, 2, 3 and 7 

are strongly correlated with cell count using the reFACTor principal components.
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Figure 67: Correlation matrix between DNAm components and estimated cell count. Colour indicates Pearson 

correlation and circle size indicates p-value (R package reFACTor.) Top: Age 7 blood. Bottom: Age 15 blood.
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3.6.2 Clinical relevance of mid and late childhood DNAm patterns 

 

We performed the same two-step process as described for cord DNAm component analysis to 

model the relation to outcomes.  Overall, we discovered a subset of components that persisted 

in their relation to concurrent or future outcomes at later ages.  As well, the relation between 

outcomes in infancy and certain components at Age 7 and 15 persisted.   

For example, DNAm Component 11 maintained its relation to anthropometric, body 

composition, cognitive outcomes and academic performance between cord, Age 7 and Age 15 

DNAm samples, (Table 28 and Table 29.)  As well, it does not seem to strongly relate to 

covariates.     

While Component 11 was relatively steady, Component 5 almost seemed to “change track” with 

age.  Component 5 in cord blood was related to a number of academic measures but no other 

outcomes.  This component at Age 7 relates to age 8 Verbal skills.  However, at Age 15, this 

component is unrelated to any neurocognitive outcomes.  Instead, Component 5 at Age 15 is 

relevant to various anthropometric and body composition measures - at not just one but all 6 

time points.  This relation across physical outcomes over time was surprising as it did not exist 

in cord or Age 7 blood.  

On the other hand, some later childhood outcomes were only related to Age 7 and 15 

components and not cord components.  This was true for DNAm components 7 and 9 which at 

Age 7 and 15 were related to cognitive scores at age 8, multiple anthropometric outcomes at 

various ages and academic performance from start of school to mid-childhood (multiple subjects 

at key stages 1, 2 and 3.) 

Interestingly, some components would “skip” an age in terms of its relation to outcome.  We 

take neurodevelopment as an example.  Component 18 in cord is related to developmental 

scores at age 30 months.  In Age 15 blood, component 18 was related to cognitive scores at 

age 8 years (Performance and Total scores).  Component 14 displayed a similar pattern for 

anthropometric measures.  In cord blood, it is related at lean mass at age 11.  In Age 15 blood, 

it relates to weight and/or waist measures at ages 7, 8, 11 and 14.  However, this relation 

should be viewed with caution as Component 14 was weakly associated with sex in DNAm data 

from samples at Age 7 and 15 (Table 33 and Table 34.)  That said, there was no association 

between sex and Component 14 in cord blood.  In addition, the association to sex appears 
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similar at Age 7 and 15 (for both, adjusted R2 = 0.02, F statistic between 21-22, p < 0.001) yet at 

Age 7 there is no relation with Component 14 and any anthropometric measures.  If sex was an 

important covariate at both Age 7 and 15, then we would expect the “false” relation with 

Component 14 with outcome to also appear in Age 7 blood.  

3.6.3 DNAm patterns interact with child features 

As seen in Results section 3.4.1: Anthropometric outcomes, we found that the DNAm 

components had differential relation to outcome depending on covariates.  To further explore 

this phenomenon, we wanted to investigate whether this feature persisted in DNAm 

components extracted at later ages.  To illustrate this, we employ dependence plot of the same 

outcomes as in Results section 3.4.1, (i.e. lean mass and waist circumference,) but this time 

using DNAm from blood at age 15.  Figure 68 shows this data both for DNAm data from age 15 

as well as from cord blood as shown in  for better comparison.  While different DNAm 

components relate to these outcomes at different ages, we can see that there exist differential 

relations between the component and outcome depending on the fetal growth (birth weight) at 

both DNAm ages. 
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Figure 68: Partial dependence plot of outcome (y-axis) as a function of birth weight (z-score adjusted for sex and gestational age), conditional on 
ranges of component scores from blood at Age 15 (left column) or Cord (right column.)  Z-axis: Outcome as z-scores for lean mass (top) and waist 
circumference (bottom.) 
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 Molecular relevance 

 

One of the biggest challenges in the study of complex diseases and epigenetics is how to link 

clinical and molecular relevance.  Depending on the data set size and analytic method 

employed, dozens to hundreds of “significant” DNAm sites can be found related to infant 

exposure to MSP.  This has been repeatedly shown in numerous cohorts around the world from 

various ethnic groups, (for reviews, see (Joubert et al., 2016; Knopik et al., 2019; Taal et al., 

2013).)  What is the relation, if any, between the significant CpG “hits” and how do these interact 

with molecular mechanisms that can plausibly lead to altered phenotypes? 

In order to better understand the possible molecular implications of the DNAm patterns 

suggested by the components, we mapped each components’ representative CpG sites to their 

chromosomal location and its predicted chromatin states.  Histone modifications and variants 

and regions of open chromatin are examples of epigenetic marks that help localize putative 

regulatory elements.  When multiple marks are aggregated and placed in context with 

information such as TSSs or exon/intron boundaries, this generates a genome-wide map of 

what are called 'chromatin states' (Table 35).  These states have been used to estimate 

chromatin activity and are known to coincide with critical genomic elements, such as promoters, 

enhancers, and transcribed, repressed, and repetitive regions (Ernst & Kellis, 2010).  We used 

the Core 15 state model derived from five chromatin marks (H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, H3K9me3) assayed in 127 epigenomes (Roadmap et al., 2015). 
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Table 35:  Chromatin state definitions and abbreviations.The active states (associated with expressed genes) 

consist of active TSS-proximal promoter states (TssA, TssAFlnk), a transcribed state at the 5’ and 3’ end of 

genes showing both promoter and enhancer signatures (TxFlnk), actively-transcribed states (Tx, TxWk), 

enhancer states (Enh, EnhG), and a state associated with zinc finger protein genes (ZNF/Rpts). The inactive 

states consist of constitutive heterochromatin (Het), bivalent regulatory states (TssBiv, BivFlnk, EnhBiv), 

repressed Polycomb states (ReprPC, ReprPCWk), and quiescent state (Quies). Image and description from 

(Roadmap et al., 2015). 

 

 Genic and chromatin based context 

 

For the sake of space, we will proceed with showing results for only a few illustrative 

components to demonstrate the general trend for most components.  We take Components 7, 9, 

11 and 14 as examples (Figure 69).  We see that in terms of absolute counts, quiescent marks 

are the most common mark in patterns across chromosomal locations, followed by transcription 

marks (both weak and strong) and repressed Polycomb states. The next spike in frequency is in 

enhancer marks.  This is the general trend seen across DNAm components. 
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Figure 69: Histogram of cord DNAm components 7, 9, 11 and 14 categorized by chromatin state (using T cell reference genome E031 as example.)  



 

 191 

The design of the 450K chip has a predilection for genic sites.  Thus, it is important to frame the 

frequency of the chromatin marks of the components in context of that of the 450K chip itself. 

Figure 70 illustrates this comparison.  It is clear the quiescent sites are by far the most frequent 

mark on the 450K chip, followed distantly by weak repressed polyComb marks.  In contrast, 

quiescent and transcription marks are much closer in frequency in DNAm components.  

Enhancer and TxFlnk marks (the latter that demonstrates both promoter and enhancer 

signatures, see Table 35) are particularly notable for their appearance in the components as 

they are among the least frequent marks on the 450K chip. 



 

 192 

 

Figure 70: Comparison of chromatin mark frequency of Illumina 450K beadchip (post all probe filtering) and cord DNAm Component 7, 9, 14 and 11 

(clockwise from top left.)  X- and y-axis the same on all graphs.  Legend: Orange – 450K, Green – DNAm component.  Graph only shows marks 

with >1% frequency per chromosome for space considerations.  Cell reference: cord T cells epigenome (E033).  
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To further investigate biological relevance in terms of epigenetic machinery, we were also 

curious about the CpG contexts of these components.  We used the BOP categorization 

proposed by Bacalini et al. based on its location relative to other CpGs and genic areas 

(Bacalini et al., 2015).  This group found differential BOP analysis revealed more age-related 

sites in a meta-analysis of 3 studies using multivariate ANOVA compared to univariate analysis.  

Figure 71 shows schematically the definition of these BOPs as well as their distribution across 

the 450K chip.  Note that the two classes in genic regions, Class A and C, are the most 

common class while the non-genic classes, Class B and D, are rarer.   
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Figure 71: Top - Schematic of BOP classes based on genomic location.  Figure from (Bacalini et al., 2015). 

Middle – Histogram of all CpG probes on 450K bead chip in each BOP category. Bottom: Relative frequency 

of chromatin mark by BOP category (all CpG probes on 450K chip.)  Relative frequency instead of count 

scale reasons.  There were far more probes in Class A with the TssA mark (87635 probes) that made it 

difficult to see the other bars which were mostly in the hundreds to few thousands.   
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We attempted the analytic pipeline provided by (Bacalini et al., 2015).  No results passed the 

MANOVA or ANOVA statistical thresholds for relevance, (data not shown.) Taking a look at the 

distribution of the CpG sites representative of the DNAm patterns, however, we observed two 

unexpected findings (Figure 72).  First, we found a notable shift in distribution of BOP categories 

comparing the 450K chip to the DNAm patterns.  Most dramatically, we observe a move away 

from Class A sites, which are the CpG dense genic sites.  We take special note that Class A is 

more than double the frequency on the 450K chip than any other class (Figure 71).  In fact, 

Class A probes marked as active TSS account for about 18% of all sites alone.  Second, there 

is a larger portion of CpG sites within the DNAm patterns in CpG poor regions, (Class C and D,) 

compared to the 450K chip.  As well, despite Class A probes being the most common class in 

most chromatin mark categories, Class B and D still retained representation in the quiescent 

and repressed weak Polycomb categories.  These non-genic classes are the least represented 

on the 450K chip (less than 15% of chip sites each.)  
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Figure 72: Histogram of representative CpG sites in cord DNAm components 7, 9, 11, and 14 categorized by 

BOP classes (using B cell reference genome E033 as example.) 

 

We used permutation testing to test whether the DNAm patterns were enriched in particular 

chromatin states compared to the reference genomes (Figure 70).  Results were similar 

regardless of reference used.  We can see that patterns are enriched in both active marks (e.g. 

enhancer and active transcription features,) as well as inactive marks (e.g. bivalent and 

repressed Polycomb states,) compared to NIH Roadmap cord blood references.  On the other 

hand, it had less than expected heterochromatin and quiescent state marks. To confirm 

whether these findings were specific to a certain cell type reference, we conducted this 

analysis using cord T or B cell as well as blood mononuclear cell reference genomes.  

Except for a few categories, most results were consistent between all references.   
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Figure 73: Enrichment testing of component 7, 9, 11 and 14 loci as selected using sparse PLS using 1000 

permutations.  Asterisks indicate p-values: *(<.05), **(<.01),***(<.001).  Results shown are for cord T cell 

reference (E033).  Results using other references available upon request. 

 Topology based context 

 

We further explored the overlap of the component sites with functional chromatin structures.  

Recently, Yang et al. generated a genome-wide map of promoter-anchored chromatin 

interactions (PAIs) and among those, chromatin loops that overlap with 450K chip.  Using the 

same permutation method, Figure 74 shows that there was indeed enrichment in some 

components for PAI/loop marks for some components.  However, unlike for chromatin marks in 

the above analysis, enrichment for PAI using this mapping reference is not as consistent a 

feature among all components. 
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Figure 74: Permutation testing for enrichment at sites of PAI/loop chromatin locations relative to the 

human autosomal genome.  P-value indicated on top of graph.  Green vertical line: Observed number of 

overlaps.  Red vertical line: Expected number of overlaps (alpha = 0.05).  X-axis: Number of overlaps. Y-

axis: Frequency. Cord DNAm components shown from clockwise from top left:  Components 7, 9, 11 and 

14.  Among these, component 7 does not demonstrate more overlap than expected compared to the 

whole human genome. 
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 Gene set enrichment 

We also conducted similar gene set enrichment analysis as in previous epigenetic candidate 

studies. Figure 75 shows an example of this analysis using Component 11 and obesity related 

outcomes (waist circumference and lean mass).  Like in previous DNA methylation literature for 

obesity, the most significant enrichment occurs in pathways related to DNA activity and 

regulation (for examples, see Keller et al., 2017; Xu, X. et al., 2013).   
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Figure 75: Ranking of gene importance by p-value from linear regression with a) waist circumference at age 

10 and component 11 in Cord blood or b) lean mass at age 9 and component 11 in Age 7 blood as 

comparisons.  Covariates included estimated cell types, sex, social status and bisulphite conversion batch.  

R package: methylGSA (default settings for minimum and maximum gene set size as well as gene set list, 

Gene Ontology). 

 

 

 Independent validation - Generation R cohort 

 

Just as we extracted the DNAm patterns from blood at later ages in the ARIES, we performed 

the same procedure on the cord DNAm data available in the GenR cohort.  We used the same 

two-step process with Boruta pre-selection to evaluate the relevance of variables for an 

anthropometric outcome, body mass index (BMI) in standard deviations (SDs) at age 5 (Figure 
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outcomes are not exactly the same, we also juxtapose the performance metrics of this analysis 

with that of ARIES data for waist circumference at age 10 to get a better sense of the analysis in 

the two cohorts relative to one another.  

 

Figure 76: Generation R replication analysis - Age 5 BMI (SDS).  Boruta selected variables - importance 

values (R package rfsrc.)  Variables entered: GenR cord DNAm components, estimated cell count, sex, birth 

weight (SD), infant BMI (SD) and maternal education. (n = 686) 
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Figure 77: Random forest analysis summary - GenR outcome: Age 5 BMI (SDS).  ARIES outcome: Waist 

circumference age 10. 

Like in ARIES, early growth remains one of the most important variables selected.  However, 

more DNAm components were selected by Boruta in the GenR (in total, 11 components were 

selected) data compared to ARIES for a single outcome.  Interestingly, components 9, 11 and 

14 were selected in GenR, all of which were also selected in ARIES for anthropometric 

outcomes such as weight, waist circumference as well as body composition measures of fat and 

lean mass.  However, only component 11 was selected in cord blood in ARIES.  Component 9 

was selected for such outcomes in DNAm data at ages 7 and 15.   Intriguingly, the error rate in 

GenR is much lower and the variance explained is slightly higher than that in ARIES.     

 

Chapter 4 Discussion 

 Key findings 

 

In the past half century, epigenetics has critically informed medicine in diseases like cancer and 

congenital syndromes.  Despite fervid research worldwide and involving tens of thousands of 

subjects, there is no such translational success for CCDs.  Traditional biomarker discovery 

approaches function well in clinical scenarios with clear distinctions between healthy and 

disease states.  However, these approaches often apply assumptions that may be violated in 

conditions that have more complex and/or heterogeneous causes and manifestations such as in 

many CCDs.   
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We explore context-based views of vulnerability to disease and epigenetic patterns to better 

map the phenomenon of exposure to maternal smoking in pregnancy and its related clinical and 

biological topography of health consequences on children.  In doing so, we discovered DNAm 

patterns with the following characteristics: 

 

1. DNAm patterns found at birth traverse all of childhood. 

 

As suggested by numerous studies, DNAm may serve a long-lasting, historical record of 

exposures.  We used a novel multi-dimensional vulnerability composite using genetic and non-

genetic variables related to MSP to “bait” the capture of DNAm patterns.  These patterns 

persisted in blood in mid- and late-childhood.  These results suggest that DNAm patterns may 

record not only exposures, but also the net effect of these exposures in the presence of 

protective and susceptibility factors.   

 

2. DNAm patterns map to regions implicated in important changes in chromatin 

structure and function. 

 

DNAm patterns covered a large portion of non-genic, CpG poor areas available on the 450K 

BeadChip.  This is interesting because genic and CpG rich areas of the genome 1) are 

disproportionally over-represented by the 450K BeadChip and 2) characterize the vast majority 

of reported candidate sites identified by previous EWAS studies of complex traits.  As well, 

DNAm patterns are enriched in specific forms of both active and repressive chromatin marks 

that may have direct biological relevance to stable changes in chromatin function.  For example, 

the patterns were significantly enriched in enhancer marks that directly interact with gene 

promoters through elaborate chromatin looping structures.   

 

Based on our current understanding of DNAm-mediated chromatin regulation, these patterns 

plausibly relate to dynamic processes implicated in stable yet environment sensitive changes in 

cellular phenotype.   

 

3. There are common DNAm patterns shared among children with similar physical 

and mental health outcomes and shared among children in two independent cohorts.   
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Our findings in newborn cord blood support the common molecular origins of various CCD traits 

by demonstrating the pervasive effect of MSP across anthropometric and cognitive trajectories 

starting from fetal life.  While research often separates physical and mental health domains, 

epidemiologic and biologic evidence suggests that CCDs may first manifest in one domain but 

later involve multiple domains.  This is in keeping with the current paradigm that CCDs arise 

from a primary root that gives rise to a constellation of multi-system dysfunctions; this is in 

contrast to multiple primary dysfunctions.  The longitudinal perspective is thus highly important 

to capture trait evolution. 

 

An independent validation cohort replicated over half of DNAm components found in the 

discovery cohort.  This replication succeeded despite little data harmonization of DNAm data.  

Future work will expand replication into other ethnic populations and health outcomes.  Figure 

78 depicts a summary schematic of our workflow.  

 

Figure 78: Schematic of thesis deliverables. 
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 Vulnerability score using multi-class data 

 

In this work, we explored different approaches to represent MSP-related risk to use as bait to 

capture “vulnerability informed” patterns of DNAm.  We first explored using categorical 

measures of maternal reported MSP followed by PLS-DA, a technique commonly employed in 

cancer biomarker research.  This led to DNAm patterns that provided sharp distinctions 

between infants with varying MSP exposure but the model was highly over-fit.  Next, we 

attempted to map the extremes of MSP-related vulnerability and resilience by considering the 

impact on fetal health by including a proxy of intra-uterine growth: infant birth weight.  We used 

typical-atypical MSP categories to group the outer lying mother-infant dyads in terms of MSP 

versus birth weight relations.  While this led to some model improvements, the use of exposure-

phenotype extremes in this data set lead to severe class imbalance (primarily due to low 

numbers of persistently smoking mothers.)  As well, we found that covariates like cell type, 

infant sex or maternal education were associated with most of these typical-atypical related 

components.  We next turned to a continuous measure of MSP vulnerability, a multi-class 

composite of MSP-related variables and birth weight.  Using factor analysis, we arrived at a five 

dimension composite that appeared to capture five different and clinically plausible profiles that 

we will examine more closely here.     

Referring to Table 11, we recall that Dimension 1 is positively related to grandmaternal smoking 

history and mother’s exposure as a fetus to smoking from the grandmother.  As such, it may 

relate to genetic or transgenerational MSP factors (i.e. grandmaternal smoking and maternal 

exposure to smoking as a fetus.)  In contrast, Dimension 2 is related to maternal factors: the 

dimension score increases as report of MSP and pre-gestational history of smoking increases.  

There also appears to be an inverse relation to birth weight, albeit weak.  Therefore, this 

dimension could be describing typical sensitivity to smoke exposure.  Dimension 3 is mainly 

related to non-maternal line smoking.  It is most related and positive correlated to smoking of 

the mother’s partner and household members.  Interestingly, it is inversely related to 

grandfather smoking but is not related to grandmother smoking.  Last, it has an inverted U-

shaped relation to MSP: low scores correspond to both no or high levels of reported MSP, but 

high values correspond to non-persistent MSP.  This dimension may reflect direct environmental 

smoking background and may be an important contrast to the potentially genetic influences 

related to Dimension 1.  Dimension 4 increases in relation to higher birth weight and 

demonstrates the same inverted U-shaped relation to MSP as Dimension 3.  One may 
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speculate this reflects positive effects of maternal attempts to limit MSP. In contrast, Dimension 

5 is positively associated with birth weight but also to household member smoking.  Like 

Dimension 4, Dimension 5 may represent atypical resilience to risk, or seen another way, the 

presence of protective factors associated with these risks.  Interestingly, unlike Dimension 3 and 

4, higher scores in Dimension 5 correspond to non-smoking and persistent smoking status in 

pregnancy.    In the case of a mother surrounded by other household smokers but abstains from 

smoking herself, this may offer a protective set up for her child.  Mothers in the same situation 

who continue to smoke off and on in pregnancy may not similarly offer such protection.  In the 

case of a fetus that thrives despite smoking in both the mother and household members, the 

fetus itself may have intrinsic resilience to this toxic exposure.  There is a fascinating body of 

research specifically on patterns of maternal smoking in pregnancy.  For example, Pickett et al. 

used a cohort of over 18,000 mother-infants pairs (Millennium Cohort Study) to investigate the 

relation between non-smokers, quitters and light or heavy smokers in pregnancy and infant 

temperament (Pickett, Wood, Adamson, D'Souza, & Wakschlag, 2008b).  The authors 

described a "protective effect" of smokers who quit during pregnancy in relation to decreased 

risk of infant problem behaviours.  Further, Massey et al. performed extensive laboratory and 

home based researcher observations of mothers and their responsiveness to their infants in a 

prospective pregnancy study (Massey et al., 2018).  This study used both maternal self-report, 

maternal urine and infant meconium at delivery to categorize smoking pattern groups, as well as 

to clarify the prenatal use of any other substances, such as alcohol, cannabis and opioids.  They 

found spontaneous tobacco quitting associated with increased maternal responsiveness to her 

infant compared to all other groups of mothers.  Interestingly, spontaneous quitters were also 

more responsive to their infants than even never-smoking mothers were.  This was despite 

spontaneous quitters still having higher risk factors than never smokers do, such as more 

problems at school, with the law and at work. In this thoroughly profiled cohort, the authors 

speculate that this association was due to resilience conferred by successful quitting during 

pregnancy that is independent of nicotine addiction or social factors.  This area requires further 

study but holds great potential for expanding the discovery of novel and clinically important 

targets beyond the “weakness” perspective to fostering strengths that promote thriving, healthy 

children.   

Being a continuous variable, we had expected that birth weight would be one of the major 

contributors of the composite variables (Rhemtulla, Brosseau-Liard, & Savalei, 2012).  We 

observed this directly when trialing the use of the R package VarSelLCM (Marbac & Sedki, 
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2019) to create the composite variable.  This was unsurprising because many studies have 

found that non-continuous variables with less than four categories tend to be more weakly 

related to a latent factor than if it were continuous.  VarSelLCM is a clustering method that 

attempts to separate individuals into mutually exclusive groups.  However, factor analysis 

methods like FAMD attempt to group variables by their relation with each other.  Individuals 

have scores for each group (which we call Dimension in this thesis) and the overall pattern of 

variables is described by the combination of Dimension scores.  While both are pattern-finding 

methods and clustering is arguably easier to envision and interpret, it may not have fit our goal 

to build a multidimensional image of an infant’s vulnerability to MSP-related phenomena.   

We take special note of Dimensions 3, 4 and 5 that demonstrate an atypical relation to MSP i.e. 

there is no linear “dose-response” to direct MSP.  Specifically, non-persistent smoking does not 

fall in between non-smoking and persistent smoking.  This could be a spurious finding perhaps 

due to the bias and/or inaccuracy of self-reported MSP.  Alternatively, the relation is real but 

seems atypical because one assumes that increasing MSP always has the same direction of 

effect in relation to other variables. This alludes back to our discussion in Section 2.3.2.1: 

Integrating variables - Methodologic assumptions regarding variable relations regarding 

researcher-imposed assumptions on the ordinality and weighting (i.e. importance) of a variable 

within a given context.  In many cases, such arbitrary assumptions in a given population could 

introduce errors of unknown impacts.  We argue that “non-linearity” is merely a matter of 

perspective.  In fact, we posit this is one of the strengths of context-based analysis. We remind 

readers that these dimensions originate from data from eight variables analysed simultaneously.  

While humans can easily visualize positioning in 2-D and 3-D space, it is harder for us to 

conceptualize this in 8-D space.  The “non-linearity” of the MSP relation may be difficult to 

reconcile in a dose-response paradigm, but mathematically represents the most optimal 

configuration to represent the variability in vulnerability profiles of these children.   

 DNA methylation patterns 

 

We used PLS-R to overlap the vulnerability profiles with DNAm data to uncover what patterns 

emerge.  As seen in Table 23 and Figure 57, Dimension 1 is the most represented dimension 

among the DNAm components.  Dimension 2 and 5 are tied as the second most represented by 

number of DNAm components.  We were surprised to find that a number of vulnerability 

dimensions related most strongly to various sources of smoke exposure instead of weight, like 
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Dimension 1 and 2.  Nearly 75% of all the components are linked to either Dimension 1, 2 or 5.  

As well, each dimension takes almost an equal share of the components.  Birth weight has 

repeatedly been shown to be related to cord DNAm, though the direction of this relation is 

unknown (Agha et al., 2016; Haworth et al., 2013; Kupers et al., 2015; Michels, Harris, & 

Barault, 2011; Suter, M. et al., 2010).  This is in contrast to the weak or complete lack of findings 

of the relation between cord DNAm and smoke exposure from non-maternal sources, like 

grandparents (Joubert et al., 2014), fathers (Bouwland-Both et al., 2015; Joubert et al., 2014; 

Lee, K. W. et al., 2014; Rauschert et al., 2019; Wu, C. C. et al., 2019) and other household 

members.     

The relation between Dimension 1 and DNAm was particularly surprising.  Represented by 

relatively time distant MSP exposure (i.e. grandmaternal smoking characteristics,) we did not 

expect it to be such a prominent feature among DNAm patterns in relation to more proximal 

variables such as maternal smoking, (such as that represented by Dimension 2) or birth weight, 

(like in Dimension 4 and 5.)  To be sure, the impact of grandmaternal exposures on 

grandchildren is supported by data from human cohorts from the past half century, with more 

specific findings for grandmaternal smoking in more recent cohorts and animal models 

(Babenko, Kovalchuk, & Metz, 2015; Drake & Walker, 2004; Hypponen, Smith, & Power, 2003; 

Rodgers & Bale, 2015; Tremblay, 2010)for examples and reviews.)  Intergenerational effects 

specifically on human DNAm are also supported, for instance in a study of grandmaternal 

exposure to stress (Serpeloni et al., 2017) and lead (Sen et al., 2015).  However, the results are 

very inconsistent in this arena.  In their investigation of possible transgenerational effects of 

smoking, Joubert and colleagues found none of the 26 CpG sites examined showed any relation 

between grandmother smoking during pregnancy and grandchild cord DNAm methylation 

(Joubert et al., 2014).  The results of this work may be the first to contradict this earlier finding 

by Joubert et al..  Alternatively, it may offer evidence to encourage better matching of study 

design to hypothesis.  This group started with data from the same 450K chip as in ARIES.  

However, they only pursued testing in 26 CpG sites that passed significance testing in relation 

to maternal smoking categories. We posit this pre-selection based on maternal data limits the 

scope of detection of grandmaternal effects and may prove a cautionary tale against discarding 

DNAm without better understanding of its biological and clinical contexts, (see Section 1.5: 

Mapping individual epigenetic data to genome wide patterns.)  Nonetheless, there is a robust 

correlation between grandmaternal and maternal smoking found in both numerous 

epidemiologic and genetic studies (for review, see Buck et al., 2019).  So, if transgenerational 
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effects exist, it is not unreasonable that at least one of those 26 sites would have a relation to 

grandmaternal smoking.  This would particularly be true in a well powered study like in this 

case, (Joubert et al. used data from 1042 newborns from the MoBa cohort.)  In that case, we 

speculate whether the problem lies in the initial 26 selected CpGs.  As discussed earlier, 

reliance on a single self-reported measure exposes the researcher to possibly biased estimates 

of true MSP-related impacts, both biologically and clinically.  Inconsistencies between studies 

can be a good opportunity to re-evaluate the foundation of our hypotheses and study design.  

We suggest that a good place to start is improving the accuracy and relevance of 

measurements, such as considering the use of multivariate estimates to obtain the most 

comprehensive triangulation of a subject’s individual susceptibility as explored in this work. 

The relation between Dimension 3 and DNAm patterns is supported by previous work on the 

impact of second hand smoke exposure.  For instance, Guerrero-Preston et al.. examined 

difference in global DNA methylation in cord blood between 3 maternal groups: non-smoker, 

second-hand smoker or active smoker (Guerrero-Preston et al., 2010). They found a dose-like 

response in that progressively lower levels of methylation were found moving from the non-

smoker, second hand smoke exposed and active smoker groups.   To our knowledge, we are 

the first to identify DNAm patterns related to paternal or household member smoking.   

We were fascinated by why there was unequal representation of certain dimensions by DNAm 

patterns.  One possibility is that there is more than one overlapping pattern of variability in the 

newborn’s DNAm that relate to the profiles represented by these dimensions.  We speculate 

that if the dimensions represent an origin point for vulnerability to MSP-related risks, then it 

would reason that multiple altered biological processes would propagate from this common 

diathesis.  Even if this diathesis resulted in a change in only one area of chromatin architecture, 

we have already seen in Section 3.7.2: Topology based context that this can lead to a cascade 

of changes in the physical interaction of chromatin and transcription machinery both locally and 

distal to the change.  If this were the case, then DNAm differences could either mediate the 

effect of the diathesis or be the result of the diathesis related change in chromatin.  Finer 

mapping of the overlap of DNA patterns with 3D chromatin data is needed to interrogate this 

possibility.   

The fact that some dimensions are over-represented by PLS components may lead to a 

reasonable suspicion of confounding.  It is true that the MSP variables are highly susceptible to 

confounding as they are strongly linked to socioeconomic factors.  And because socioeconomic 
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factors are linked to child outcomes, one could argue that the PLS components could represent 

confounding rather than biological DNAm differences.   

To dissect this possibility, we walk through the process of component construction bearing this 

argument specifically in mind.  First, the creation of the MSP composite dimensions preceded 

and was entirely independent of the DNAm components.  The clustering of certain variables 

could certainly be bound by confounding and not by biological processes.  For instance, 

Dimension 3 is linked to 4 factors: grandpaternal smoking, household members smoking, 

maternal partner smoking as well as MSP.  While researchers debate the possible biological 

reasons underlying the clustering of smoking behaviour, it very likely is strongly influenced by 

non-transmissible SES factors that lead to the coincidence of these risks, (for examples of 

studies countering these points, see (Cnattingius, 2004; Fertig, 2010; Freathy et al., 2009; 

Hypponen et al., 2003; Munafo, Freathy, Ring, St Pourcain, & Davey Smith, 2010; Shenassa, 

Papandonatos, Rogers, & Buka, 2015; Siahpush, 2006; Stroud et al., 2014).) We have already 

discussed previous attempts to separate MSP-related effects, for instance to compare intra-

uterine from environmental effects (e.g. see Brion et al., 2010) or to control for selection bias 

(e.g. see Fertig, 2010).  However, the reality is that exposure to MSP would unlikely occur in 

isolation.  Furthermore, the effect of MSP would not homogeneously affect all individuals in a 

population.  To this end, we ask to what clinically relevant end does attempting to study the 

isolated effect of MSP alone provide for translational medicine?  At our current state of 

knowledge, we may better benefit by first asking: How does the constellation of MSP-related 

factors known to influence health outcomes affect the biological programming of the child?  It is 

in this spirit that we attempt to represent MSP as a phenomenon in its most “natural” context 

instead of artificially dissecting maternal smoking from its associated factors.  We argue that 

“confounders” actually provide important context in which to couch the biological effect of MSP.  

As such, we believe it is critical to include this context in order to truly unearth the reality of MSP 

effects on the fetus and child.  We use the MSP composite to provide the coordinates of the 

unique vulnerability “space” occupied by each individual. 

Second, we used the MSP composite to bait the capture of related DNAm patterns using PLS-

R.   As succinctly described by Hervé Abdi: “the goal of PLS regression is to predict Y from X 

and to describe their common structure.” (Abdi, Hervé, 2010).  PLS-R does not seek to capture 

the most data variability.  Instead, PLS-R is seeking a pattern of DNAm found among individuals 

that share similar coordinates in the “space” of MSP vulnerability.  The PLS components are 

agnostic to what variables or class of variables the composite represents. PLS does not 
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consider how much variability from each constituent variable was captured by the dimension 

when decomposing the DNAm data.  And there is no potential bias for PLS-R in our application 

to favour continuous or categorical MSP variables.  Therefore, PLS components are not directly 

influenced by which variables most heavily contribute to a given dimension.  In other words, 

PLS-R asks “what patterns in DNAm best describe the differences and similarities of children 

based on their position in the MSP vulnerability space?” rather than “how to use DNAm to 

account for the most variability in any single MSP variable like birth weight, maternal smoking, 

grandmaternal smoking, etc.?”  We demonstrated the influence of MSP variables on outcome in 

Section 3.5: Comparison of performance: DNAm patterns versus MSP variables or composite in 

relation to child outcomes.  When using the MSP related variables only (i.e. no DNAm 

components) in RF, few or none of the variables were selected above the covariates, (e.g. rate 

of infant growth, sex, cell count, etc.,) as relevant to outcome in the ARIES subset.  Knowing 

this, we argue that whether the composite was formed from biological, social, nutritional and/or 

other factors, the DNAm pattern remains a molecular reflection of the composite profile.    In this 

manner, we are able to attenuate direct exposure of our clinical outcome models to any single 

MSP-related variable and its inherent bias and measurement error.  We argue this may improve 

the accuracy and robustness to clinically-irrelevant confounding in our detection of DNAm 

signals which translate to better outcome models.   

Third, PLS is an iterative algorithm i.e. after the first component is extracted, it is “subtracted” 

from both the DNAm and composite projections before the algorithm seeks the second 

component and so on (Abdi, H. & Williams, 2013; Beaton, , , Saporta, & Abdi, 2019).  The 

recurrent “selection” of certain dimensions is not due to it being “leftover” and then re-selected.  

It is due to the PLS model finding another projection that captures the next biggest overlap 

between DNAm and MSP composite data.  This would support that there are different DNAm 

patterns underlying these recurring dimensions.  In this way, a given vulnerability profile could 

be seen as causing more than one change in methylation-mediated chromatin structure.  

Another interpretation is that there is correlation in DNAm patterns of individuals who score 

similarly in Dimensions 1, 2 and 5.  This group of individuals would drive up the chances of all 

three dimensions being targeted by the PLS model.  Another way of thinking of this is that a 

given DNAm projection overlaps with more than one dimension.  This could occur if a common 

DNAm pattern is related to more than one MSP profile, suggesting a common molecular 

disruption can be caused by different sources. 
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Put together, there are both biological and statistical concepts that could explain how and why 

certain MSP profiles are more often selected by the PLS model.  We suggest that refining the 

MSP vulnerability mapping technique and re-testing this pattern finding in DNA methylation and 

other biomarker data (e.g. metabolite, RNA-seq, etc.) would be a robust means to test whether 

these vulnerability profiles do indeed point to common molecular intersections.  

 DNA methylation vulnerability relates to future child outcomes 

 

Using RF to relate MSP-composite derived DNAm components to outcomes, we found a number of   

frequently appearing DNAm patterns in ARIES that appeared to be clinically relevant no matter the 

age of blood collection or clinical outcome, (e.g. Components 1, 2 and 3.)  This was replicated in the 

GenR cohort.  Like in other omic studies, there emerge biomarkers that appear almost ubiquitous 

(Cauchi et al., 2016).  They may emanate from biological pathways that intersect coincidentally or 

causally with the process under study.  With more understanding of their interaction in time and 

intensity in context of more specific markers, it is possible they could also be useful diagnostically 

and/or therapeutically.  However, the seemingly low specificity of these patterns within the scope of 

information and analysis available in this exploratory work remains a mystery that merits future 

investigation.   

Leaving aside these ubiquitous components as well as those related to covariates, we found 

that Component 5 had pervasive relevance across outcomes but had an inconsistent pattern of 

timing, whether considering DNAm age and age of outcome assessment.  Components 7 and 14 

were also frequently called.  However, these two components had weak but significant relations to 

covariates at Age 7 and 15 and therefore must be interpreted with extra caution. Components 9 and 

11 were most frequently called as relevant to outcomes across DNAm ages and outcome 

measurement ages.  Component 11 was the most consistent component in terms of relevance in 

cord, Age 5 and Age 17 blood.  This was related to Dimension 5 (atypical resilience to MSP.)  

Components 9 and 14 were both related to Dimension 1 (genetic/transgenerational MSP 

factors.)  All three of these components were selected in the GenR replication cohort, (further 

discussion below.)  We speculate that the stability of these components across time within 

individuals and between individuals, even from an independent cohort, suggest they relate to an 

intrinsic property of the child and/or the early environment. This would also explain their 

persistence across outcome types.   
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Component 5 was most related to Dimension 3 (mainly non-maternal line smoking.)  The 

variability in dose of environmental sources of smoke exposure may relate to the apparent 

pattern-less relevance of Component 5 to clinical outcomes and serves as an interesting 

contrast to components like Component 9 which were related to genetic/transgenerational MSP 

factors.   

Component 5 also is a good point of discussion regarding reverse causality.  For anthropometric 

measures, it was selected in blood at Age 7 and Age 15 and not at all in cord blood.  Thus, it 

could be argued that only finding DNAm relations with greater temporal proximity to the 

outcome suggests that the outcome influenced DNAm rather than vice versa.   Increasingly, this 

field has attempted to clarify the direction of causality between DNAm differences, exposures 

and outcomes.  Enhanced pooling of epigenetic data and long standing longitudinal cohorts has 

allowed more power to conduct causal analyses such as Mendelian randomisation and cross-

lagged models (Richardson et al., 2019; Richmond, Al-Amin, Smith, & Relton, 2014; Wiklund et 

al., 2018).  However, these methods often require direct (i.e. non interactive) relations and 

adequate effect sizes in the setting of longitudinal human cohorts in order to avoid Type II 

errors.  As such, these forms of interrogation may poorly fit the study of complex diseases.  In 

this work, there are several aspects of the study design that argue against reverse causality.   

First, the uncovered DNAm patterns were generated from the intersection of the MSP 

composite variable and cord blood DNAm data.  Thus, the “weightings” or relative importance of 

a given DNAm site was determined by the overlap between the composite and values of 

methylation at the time of birth.  Thus, the association between the patterns found in cord blood 

with later outcomes could not be due to reverse causation.  However, for patterns found in blood 

at ages 7 and 15, there still exists the possibility that some DNAm variability in later life 

attributable to outcome related factors affected these older age DNAm patterns. We remind 

readers that the older age DNAm patters were derived from the “template” of weightings derived 

from cord blood.  As such, this should attenuate the chance the relations between cord-based 

DNAm patterns seen in later childhood were caused by the health outcomes around this time of 

life.   

Previous studies have shown that early exposures leave an enduring mark on DNAm.  It could 

be the vulnerability composite is related to later outcomes and are unrelated to the DNAm 

patterns originating in cord blood.  Therefore, there is low likelihood that outcome is importantly 

responsible for the Age 7 and Age 15 DNAm patterns.   
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Second, unlike previous studies, we performed no pre-selection of candidate sites using 

outcome to then create a score or other quantity to act as a “predictor”.  Our design was 

motivated purely by seeking exposure related patterns and then subsequently observing if these 

patterns are relevant to later development.  Third, we had more DNAm samples with age.  Thus, 

we are expanding our sample size as we test the association between later DNAm patterns and 

outcome.  This increased power to detect associations may be responsible for the greater 

number of DNAm component “hits” at later ages.   

Last, we are not the first to observe that DNAm at later ages is more strongly related to 

outcome.  Many studies have observed this phenomenon where higher correlation of DNAm 

variability occurs the more temporally proximal the outcome measure (see (Agha et al., 2016; 

Cao-Lei et al., 2019; Reed et al., 2020) for recent examples.) As well, it would be unreasonable 

to suspect that the physical context of the organism’s current state has no relation to biological 

markers like DNAm, whether through causal or coincident pathways.  The nucleus is a busy 

web of trafficking and connecting structures where molecules compete for space and 

equilibrium.  Changes in one domain would likely have a ripple effect on other areas.  Whether 

that leads to clinically relevant effects may depend on context but we do not argue the 

possibility of reverse effects.  Instead, we are curious how reverse effects interact with MSP 

related effects and at what point do we expect the reverse effects to indicate that no causal 

MSP effects are present?  This would be best clarified with functional testing but it is hard to 

imagine an answer equally applicable to all epigenetic candidates exists. 

Relating specifically to Component 5, there are additional points that argue against reverse 

causality.  First, very few components were selected in cord blood for anthropometric outcomes, 

so Component 5 is more like the rule than the exception in this case.  Second, Component 5 

was selected in cord blood for a number of academic performance time points.  This makes it 

less likely that it’s selection at age 7 and 15 was purely a consequence of the child’s 

anthropometric outcomes.  Third, another possibility is that one’s epigenetic profile is more “set” 

at older ages.  While epigenetic programming is ongoing throughout the lifespan, studies in 

monozygotic twins have clearly shown that DNAm divergence of these siblings widens with age 

(for example, see Talens et al, 2012.)   This suggests that environment related methylation 

variation stably accumulates over time.  One of our objectives was to identify genomic areas 

sensitive to MSP.  According to our hypothesis, these areas should be susceptible to 

environmental changes, as opposed to more “conservative” areas.  We speculate that the 

young newborn may not have yet “set” their trajectory in cord blood, but that as time passes 
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more and more children fall into the developmental path that their MSP-related origins were 

pushing them towards.  Mathematically, the “clinical relevance” of a DNAm component relies on 

how many individuals in the sample demonstrate MSP-related (or is related to a covariate of 

MSP) outcomes.  Hence, the apparent “increase” in relevant DNAm components relevant to 

outcome is actually just an increase in children more obviously following their MSP exposure 

trajectory.  Therefore, the increasing concordance of differential DNAm with age could also be 

interpreted as a “lag” between cause and observable phenotype changes.  In other words, the 

affected DNAm may need time before one can see it “set in”.  Is it because we fail to detect 

earlier phenotype changes or because more “hits” to the epigenome need to accumulate or do 

other effects “override” exposure-mediated earlier in life (e.g. early infant growth in the first 3-6 

is strongly influenced by in utero environment/maternal factors and then becomes increasingly 

sensitive to environmental influences)? While this remains a mystery, the potential of DNAm to 

be the canary in the coal mine makes it an ideal pre-clinical disease biomarker.   

The answer to these questions could potentially be better understood with methods like 

Mendelian randomisation (a specific instance of IV) analysis (Richmond et al., 2014; Wehby et 

al., 2011; Wiklund et al., 2018).  If these components could be statistically “tethered” to a 

suitable IV of the fetus and mother such as a genetic variant that is unrelated to clinical 

outcomes.  As mentioned, it would require a very large sample size and would likely involve 

pooling multiple cohorts that all have collected the data on the same IV.  Fortunately, with the 

DNAm pattern template, only DNAm data are required after that requirement.  The cohorts 

would not require any MSP related data.    

That we found little to no relation with behaviour was unsurprising.  There is a relatively large 

mass of EWAS literature regarding child mental health outcomes ranging from ADHD and 

autism to infant temperament traits.  While the initial findings that were reported were often 

positive and typically using only a few methylation sites, more recent findings have provided 

more genome-wide coverage and have been less consistent, (for examples, see Bale et al., 

2010; Devlin, Brain, Austin, & Oberlander, 2010; Petronis, 2010 versus Knopik et al., 2019; 

Hamza et al., 2019; Meijer et al., 2020; Taylor, R. M. et al., 2020 and evidence of causality in 

human studies is weak (Cecil et al., 2018; Knopik et al., 2019).  While it is unclear if this is due 

to changes in methodology, technique or publication bias, we do know that pediatric mental 

health is an important but highly heterogeneous outcome to study.  Among child outcomes, it 

may have the most complex and poorly understood relation to social determinants of health, 

including MSP (Bradley & Corwyn, 2008; Cents et al., 2013; Crockenberg & Leerkes, 2004; 
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Hanington, Ramchandani, & Stein, 2010; Jansen et al., 2009; Lee, L. C., Halpern, Hertz-

Picciotto, Martin, & Suchindran, 2006; Palmer et al., 2016; Rueda & Rothbart, 2009).  We 

speculate whether this outcome may also benefit from re-evaluation as to the precision and 

accuracy of measurement, with consideration of integrating genetic influences (e.g. Bale et al., 

2010; Oberlander et al., 2010; Rodgers & Bale, 2015; Stergiakouli & Thapar, 2010) and the 

evolution of natural versus pathologic changes in cognition and behaviour that occur in 

childhood over time (De Pauw, Mervielde, & Van Leeuwen, 2009; Guerin, Gottfried, & Thomas, 

1997; Lemery, Goldsmith, Klinnert, & Mrazek, 1999).  

In this first pass effort to explore integrated MSP-methylation-outcome analysis, we did not 

include outcomes like asthma and allergy.  While there has replicated findings of relations 

between MSP - child DNAm (Joubert, Bonnie R. et al., 2016; Reese, S. E. et al., 2017) and child 

DNAm – asthma (Nicodemus-Johnson et al., 2016; Reese, Sarah E. et al., 2019), the link 

suggesting DNAm mediates MSP and outcome remains questionable.  To our knowledge, only 

Neophytou and colleagues (2019) have successfully demonstrated a mediation effect.  

However, this was only at a single locus and was only related to parental report of physician 

diagnosed asthma status (located in the AHRR locus, cg05575921 indirect OR was 1.18 (95% 

CI = 1.07, 1.68).)   In addition, this finding failed to correspond to associations to clinical 

measures of asthma control and lung function tests (i.e. confidence intervals all crossed zero.)  

This area continues to undergo active research; however, there is so far no evidence of a 

connection. However, asthma and allergy are primary inflammatory diseases.  With numerous 

smoking related DNAm hits related to inflammatory pathways and our current state of ignorance 

regarding the mechanisms of action of DNAm in complex trait processes, asthma and allergy 

may require specific study design considerations to best tease apart pathogenic versus 

bystander effects. 

Last, we noted with surprise that several DNAm components were related to height, (e.g. 

Components 5, 7 and 11.)   Unlike adiposity, numerous epidemiologic studies suggest that 

genetic factors account for up to 90% of adult height variation (Lanktree et al., 2011; Shah et al., 

2015).  In contrast,  adiposity has demonstrated heritability of only between 40-70% (Herrera & 

Lindgren, 2010) as well as a growing body of research supporting epigenetic (including 

differential DNAm) influences (for example, see Sharp et al., 2015).  However, it is plausible that 

epigenetics also modifies height.  Simeone et al. observed that over 80% of height associated 

genes contain CpG islands, suggesting they are susceptible to DNAm-mediated regulation 

(Simeone & Alberti, 2014).  Other epigenetic differences previously implicated in influencing 
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adult height include micro-RNA and open chromatin regions (Muthuirulan & Capellini, 2019).  

Across human populations, height has an intricate relation with social status, infectious disease 

and nutrition.  While height may or may not have a causal role in this web, the possibility that 

stature has modifiable aspects is intriguing and highly worthwhile for human health and social 

well-being.  Our work further supports exploration of this possibility. 

 Effect size 

 

Our study was designed for hypothesis generation with the goal of exploring various mapping 

methods for clinical and DNAm data.  We employed methods that do not lend themselves to 

standard calculations of effect size on childhood outcomes.  We did so with the belief that effect 

size is not necessarily a major contributor of importance, as evidenced by the publication of 

impactful EWAS literature with effect sizes as low in magnitude as 1% in both adult (Esposito et 

al., 2016; Stringhini et al., 2015; Rakyan et al. 2011)  and pediatric (see excellent recent review 

by Shanthikumar et al. 2020) outcome studies.  In fact, small effect size motivates the filtering of 

methylation probes displaying low variance. 

Nonetheless, we venture to discuss the lack of effect size information provided by our work.  

The best estimates of effect size assume linear and direct relations between the exposure, 

biomarker and/or outcome.  As discussed in the literature by groups such as Rakyan et al. 

(2011), the estimate size is highly dependent on the sample size.  To expect a large and direct 

relation between our DNAm patterns and outcome is unreasonable for several reasons.   

First, as discussed in Section 1.5.2, the estimated effect size in context of high noise and with 

our sample size is likely very small.  To rely on effect size to judge importance would expose the 

work to an anticipated high chance of false negative results. 

Second, blood is a mixed cell organ.  We use it as a proxy for epigenetic changes in tissues 

related to growth and mental development, which involve experimentally inaccessible tissues 

such as endocrine and nervous tissues.  Therefore, our measurement tool aims to capture an 

indirect and incomplete “shadow” of the change in epigenetic poise of the target tissue.  

Moreover, our capture of epigenetic signals employs a non-categorical measure of vulnerability.  

Our view of vulnerability is a multidimensional and interactive composite of genetic and non-

genetic factors.   In essence, we seek to capture surrogate DNAm patterns that reflect the 

predilection for specific cell fates in a distinct target organ that likely is mixed cell type itself.  
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This scenario is poorly suited to the use of a method that assumes direct and non-interactive 

relations.   

Third, as discussed in Section 1.2.1, current biomarkers largely function by detecting the by-

products of cellular damage or dysfunction, e.g. serum enzyme levels due to cell lysis or 

increased production of inflammatory signals due to injury.  We challenge the paradigm that 

clinical tools should depend on the aftermath of injury. We posit that it is possible to detect 

vulnerable molecular poise that can alert clinicians of a maladaptive health trajectory before 

disease onset.  For instance, Rakyan and colleagues (2011) identified 132 differentially 

methylated positions that distinguished type 1 diabetes status in discordant monozygotic twins 

in blood monocytes.  They found these sites displayed differential methylation before diabetes 

diagnosis in a separate data set (Rakyan et al. 2011).  However, this was using a clear binary 

outcome in adults.  Given that we are linking epigenetic poise and childhood antecedents of 

potential disease, we employ entities which are mathematically “fuzzy” i.e. are difficult to 

characterize using dose-response type models between risk and outcome.   

However, we were curious about the impact of candidate sites identified in other studies of 

childhood outcomes.  We surveyed the literature for “effect sizes” of DNAm in this regard.  

Using mediation analysis, Kupers et al. found that differential methylation at 3 CpGs at the GFI1 

locus explained 12-19% of the lower birthweight in smoking mothers (Kupers et al., 2015). This 

was observed in a meta-analysis of three large pregnancy cohorts: GECKO, ARIES & GenR.  

Later, Valeri and colleagues attempted to replicate these findings in the MoBa cohort (Valeri et 

al., 2017).  After adding statistical correction for misclassification of maternal smoking, this 

group found a much weaker evidence of methylation mediated differences in birth weight than 

reported by Kupers et al.  As well, Valeri et al. went on to perform further analysis using 

maternal cotinine levels available to the MoBa study to “correct” the self-report of 18 mothers 

who denied smoking in pregnancy.  This subsequent analysis showed no significant mediation 

effect by methylation.   

More recently, Reed et al. used DNAm scores to investigate the direction of influence between 

DNAm and birth weight and BMI in later childhood using the same ARIES data. The scores 

were calculated by “multiplying the CpG site methylation levels in that profile with the 

corresponding published effects estimates and then summing the products.”(Reed et al., 2020)  

They found the DNAm scores explained the most concurrent BMI variance as the child ages 

(i.e. cord DNAm scores explained 1% of birth weight variance while adolescent DNAm scores 
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explained roughly 3% of adolescent BMI variance.)  The authors also compared the mothers’ 

DNAm scores and mothers’ BMI and found the value to be much higher at 10%.  As well, the 

authors used cross-lagged models and Mendelian randomisation and found data to suggest that 

BMI is predictive of later DNAm.  The group concluded BMI was more likely influencing the 

DNAm scores rather than vice versa.  While our methodology was not designed to evaluate 

direct effects and thus cannot provide comparable estimates of DNAm “effect size” per se, the 

low effect size and low predictive ability of DNAm seen in the study by Reed and colleagues 

demonstrates the importance of considering reverse causality.   It also underlines how study 

design and asking what questions greatly influences what answers you obtain.  This work is 

motivated by the idea that biological and clinical perspectives of CCD need better 

accommodation in the analysis of epigenetic data.  The results of this work is just an initial foray 

into how we can design and analyse DNAm data to better answer questions regarding causality 

and direct or interactive effects on health. 

 

 Persistence 

Other studies have demonstrated sustained MSP-related DNAm changes over time (Bauer et 

al., 2016; de Vocht et al., 2015; Joubert, Bonnie R. et al., 2016).  However, this is not a 

consistent finding among environmental epigenetic studies. Several studies have found cord 

DNAm at specific sites related to specific exposures, but found no evidence of these relations in 

DNAm levels measured in later life.  For example, Alfano and colleagues used the same ARIES 

data and found no overlap between time points between their identified methylation marker for 

socioeconomic position (maternal education) and DNAm either using level of association ( FDR-

corrected p <0.05) or through longitudinal analysis (i.e. average difference in methylation to 

yearly change in lowest/highest education level.) 

The observed persistence of DNAm patterns over time is particularly striking considering that 

this means not only “surviving” physiologic shifts in DNAm during rapid phases of childhood 

development, but also be detectable through technical variability from the use of heterogeneous 

tissues.  There is known low reproducibility between certain tissues.  For instance, even within 

the same gene, (intron 3 AHRR gene,) Novakovic and colleagues observed tissue specificity for 

sites of differential DNAm related to MSP between infant cord, infant buccal epithelium and 

placenta (Novakovic et al., 2014).  In addition, previous literature has also shown tissue 

specificity for unreliable probes.  By analysing tissue from three time points, we sought the 
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same pattern of methylation in DNA in two if not three different sources depending on the 

subject: cord blood, buffy coat and whole blood.  Besides their tissue subtype specificity, these 

tissues also exhibit variability secondary to mixed cell heterogeneity.   

 

 Replication 

Using the GenR cohort, we found evidence of replication for several patterns in predicting mid-

childhood BMI.  There are several critical aspects to this replication.  First, the replication 

analysis simply used the genome-wide “template” of MSP related patterns from ARIES in that 

very little data harmonization was attempted.  Besides employing the same batch removal 

technique and filtering of low variance probes, the entire preprocessing of DNAm data from 

quality control to normalization was the current standard protocol for that cohort.  This 

preprocessing agnostic feature of the MSP-related patterns supports their biological role.  This 

is in contrast to finding patterns only fitted for ARIES data or due to a artefact encountered by 

chance. 

Second, the association models had a number of differences in control variables between GenR 

and ALSPAC.  Even within the same study population, researchers often find altering control 

variables can importantly change model estimates.  In fact, this many times leads to attenuation 

of previously “significant” relations.  That the patterns persisted to relate to child growth despite 

these differences, even in an entirely independent cohort, supports a robust relation to biological 

mechanisms. 

Third, despite the above-mentioned differences in handling data and modeling between the two 

cohorts, the relative ranking of importance of the patterns was roughly similar.  If the patterns 

reflected a technical artefact or other data bias that happened to be present in both studies, one 

could potentially see some patterns emerge as relevant in both data sets.  But it would be less 

likely for such bias to so similarly affect both cohorts to create the same relative pattern 

rankings.  The two cohorts are from different countries, were recruited about two decades apart 

and under different research stewardship (Kooijman et al., 2016b).  Recent international 

epigenetic and genetic consortium have promoted more uniform raw data collection and 

extraction, processing and analysis.  For instance, the Canadian led International Human 

Epigenome Consortium has a dedicated team, the Assay Standards Working Group, to 

standardize assay protocols and quality control.  However, ARIES is among the first pioneers of 

epigenetic cohorts and pre-dates many of the new standards to which more modern cohorts 
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now conform.    It is for such disparities between cohorts that many studies attribute the failure 

of replication in independent cohorts.  For example, Alfano et al. were unable to replicate the 

parental socioeconomic position related DMP found in ARIES in the ENVIRONAGE birth cohort 

(Alfano et al., 2019).   

While replication of MSP-related differential methylation sites/regions is reported quite 

frequently (Joubert, Bonnie R. et al., 2016; Knopik et al., 2019; Lee, K. W. et al., 2014), this is 

not the case for outcome related hits (for reviews, see Dall’Aglio et al., 2018 and compare 

contradictory findings of Kupers et al., 2015 and Valeri et al., 2017).  This may be due in part to 

the low reliability of certain CpGs leading to false negatives (Sugden et al., 2019).  This makes 

replication an even more challenging task even in the presence of “true” differences.   

Fourth, the improved prediction error rate seen in GenR relative to ARIES may simply be due to 

the close temporal juxtaposition of the infant growth variable and BMI at age 5.  However, we 

did not note relative improvement in performance with younger childhood outcomes in ARIES 

models, arguing against temporal proximity of outcome to explanatory variables (like infant 

growth rate) inflating predictive ability.  Still looking at the prediction rate, let’s assume infant 

growth most strongly drives this model performance metric.  In that case, we may expect that 

the DNAm components created in one cohort and then validated in another cohort would 

worsen the prediction error, just like how a training model performs better than a testing model.  

The fact that DNAm components “survived” variable selection without model degradation in two 

cohorts despite the presence of a very strong variable such as infant growth may support its 

true relevance to the outcome.   

 Relevance to molecular function  

 

In seeking molecular references for these DNAm components, we first localized the patterns in 

context of the 450K BeadChip and then in their predicted chromatin state.  Then, we further 

mapped the patterns to one of the basic structural units of chromatin-based gene regulation, 

TADs and chromatin loops. 

Despite the high prevalence of probes found in CpG rich, genic regions on the 450K chip, there 

was a consistent and dramatic shift away from these probes in the DNAm patterns.  On the 

contrary, the DNAm patterns had a stronger predilection for non CpG rich sites compared to the 

450K chip (Figure 72).  These findings were consistent regardless of which cell references used 
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and across most DNAm patterns.  We found these results interesting given the known statistical 

bias in EWAS for selecting probes in CpG rich regions (Bacalini et al., 2015; Geeleher et al., 

2013; Silva-Martínez et al., 2017).  Therefore, we believe that the design of the 450K chip was 

not a strong influence on the emergence of the observed DNAm patterns, as also evidenced by 

the very different distribution of sites seen using both BOP and chromatin mark annotation.  This 

is an important sanity check that supports the notion that these DNAm patterns are purposefully 

created individual elements rather than a statistical “trimming” of sites that would follow the 

microarray distribution.   

Moreover, we note that CpG poor areas of the genome, especially those in non-genic regions, 

are believed to regulate chromatin structure (Xue et al., 2020).  Thus, the localization of our 

DNAm patterns may lend support to our hypothesis that clinically-informed pattern finding can 

detect changes in chromatin architecture.  This is in contrast to traditional EWAS where 

candidate sites are largely focused on sites/regions in CpG dense, genic areas.   We speculate 

that alterations in chromatin architecture may have pervasive and perhaps persistent effects on 

cellular phenotype.  In comparison, the context dependent nature of epigenetic regulation 

renders a significant degree of uncertainty regarding the effect of methylation differences at a 

single site or region on a given nearby gene.  Re-looking at previously observed associations 

between methylation and nearby transcription levels, researchers increasingly question whether 

these are causal versus coincidental relations given the high inconsistency seen between 

studies of the same genic areas (see (Xu, H. et al., 2020) for a recent review.)   

The enrichment in enhancer and bivalent domains is particularly interesting as the 450K chip 

has a low representation of such marks (Figure 70).  As well, enhancer states cover on average 

approximately 3% of each reference epigenome; bivalent states even less than that.  In 

comparison, about 68% of reference epigenomes are covered by a quiescent state (Roadmap 

et al., 2015).  In a multiomic study of smoking versus non-smoking mothers and their children, 

Bauer et al. found that MSP-related differential methylation in enhancer regions were about 

twice more frequent than in promotors (Bauer et al., 2016) using WGBS data, (which unlike 

450K chip data, is genome comprehensive and therefore not biased to manufacturer curated 

CpG sites.)  Interestingly, most of the enhancers identified were intragenic and targeted distal 

genes.  Moreover, the same study found that enhancer methylation is more often functionally 

translated in terms of RNA expression than that in promoters or non-regulatory elements (Bauer 

et al., 2016).  Bivalent loci are so-called as they are “poised” between active transcription and 

stable repression.  Typically, they consist of large regions of H3 lysine 27 methylation harboring 
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smaller regions of H3 lysine 4 methylation.  Bivalent marks are the subject of intense research 

due to their known involvement in the dramatic change from pluripotent to lineage specific cells 

(Harikumar & Meshorer, 2015) and post-differentiation cellular plasticity (Tritschler, Theis, 

Lickert, & Bottcher, 2017).  Data also suggest that these regions have clinical implications, such 

as in cancer (Avgustinova & Benitah, 2016) and neurodegenerative (Yang, X. W., 2016) 

disease. Chromosomal domains that may be poised to switch to and from “active” and “inactive” 

states would be ideal candidates for exposure-sensitive genomic targets (Prickaerts et al., 

2016).  Referring again to the study above by Bauer and colleagues, the authors described 

chromatin state transitions from birth to around age four by using ChIP-seq to map genome 

wide histone modifications.  They found children exposed to MSP had significantly more 

transitions into bivalent states than those without this exposure.  This is in line with our finding of 

enrichment of bivalent domains as a clinically relevant DNAm pattern related to MSP. 

Similarly, the low representation of quiescent marks is notable given it is one of the most 

frequent marks on the chip and in reference genomes.  As well, looking at the maternal 

methylome, smoking leads to increased chromatin state transitions to the quiescent state from 

the time of delivery to 4 years later compared to non-smoking mothers, which is the opposite of 

what is observed in their offspring (Bauer et al., 2016).  A chromatin state change over time 

relative to exposures suggests an environment sensitive epigenetic mechanism at play.  Thus, 

this finding in mothers may suggest that the significantly low representation of quiescent marks 

seen in the DNAm patterns is not a general response to smoke exposure but may be unique to 

MSP exposure in the fetus.   Among the EWAS investigating MSP exposure, many of the most 

reproducible candidate sites target general pathways which could be suspicious for a non-

specific response to tobacco exposure i.e. may not be directly related to disease susceptibility.  

For instance, CYP1A1 and AHRR are both involved in the xenobiotic metabolism pathways of 

numerous toxins found in cigarette smoke.  The altered epigenetic regulation of genes involved 

in such pathways is unsurprising with MSP exposure – however, it does not necessarily signify 

a causal influence on pathophysiologic processes for the fetus.  As well, the altered methylation 

of this gene is found in the placenta (Suter, M. et al., 2010) and in mothers (Bauer et al., 2016).  

Findings that demonstrate a distinction between the effects of MSP on mothers compared to 

their infants may shed light on more suitable candidates for the study of DOHaD in the MSP 

model.  

Advances in 3D mapping of the genome herald a new frontier in defining the mechanics of omic 

data and their function in disease pathology (Hu & Tee, 2017; Tak & Farnham, 2015). We look 
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again at the enrichment in enhancer marks, now from the point of view of potential functional 

relevance.  Enhancers are non-coding epigenetic regulatory elements (~ 50–1500 base 

pairs) that form long-range DNA loop structures that spatially and temporally regulate gene 

expression by engaging in numerous physical interactions with gene promoters, both proximal 

and distal to its sequence location. Such chromatin loop structures are believed to be among 

the basic regulatory units that form the foundation upon which more intricate chromatin 

architecture is built.  Given its expansive regulatory role, it is therefore unsurprising that 

numerous and diverse diseases associated with genetic variants are enriched in enhancer 

regions.  These include autoimmune disorders, diabetes, cancers and neurodegenerative 

diseases (Fu, Tessneer, Li, & Gaffney, 2018; Hu & Tee, 2017). Moreover, enhancers are also 

sensitive to diverse environmental signals (Hah et al., 2015; Klengel et al., 2013; Lu, McComish, 

Burdon, Taylor, & Korner, 2019).  The exciting and rising tide of research investigating 3D 

genomic features such as enhancers may hold the key to unlocking the functional relevance of 

disease-associated genetic variants and phenotype (Fu et al., 2018; Tak & Farnham, 2015; 

Weaver et al., 2017). 

Given the enrichment in chromatin marks like enhancers that physically interact with promoters 

to direct chromatin conformation, we were curious how these patterns mapped to 3-D chromatin 

structure.  As discussed in Section 2.6.2: Mapping methylation to chromatin topology, Wu and 

colleagues recently created the first 450K BeadChip data set annotating areas of promoter 

anchored chromatin interactions (PAIs).  We found that most identified DNAm patterns were 

enriched in PAIs, but also chromatin loop structures (Figure 74). 

Recently, Czamara and colleagues used data from 4 large pregnancy cohorts to map 450K chip 

sites whose cord methylation levels correlate with the largest differences in gene expression, 

specific prenatal environmental factors (i.e. pregnancy characteristics) and the closest SNP 

genotype (Czamara et al., 2019).  In this way, the authors offer a map of gene expression 

correlated with variably methylated regions according to gene and environment influences.  

They further filtered this list to those CpG sites that overlap with SNPs with putatively functional 

consequences on regulatory marks (using DeepSEA variants that consider likelihood of the 

presence of histone marks, DNase hypersensitive regions or TF binding for a given 1 kb 

sequence.)  Using the same 15-core state chromatin annotation as in our analysis, they found 

their identified CpG sites were enriched in heterochromatin, repressed Polycomb, TSS and 

enhancer marks.  Besides their finding regarding heterochromatin, our results overlap.   
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Another recent study used over 2000 database and publication sources to examine the 

correlation between gene expression and methylation across different tissues and ages (Wang, 

K., 2019).  Thousands of significantly correlated CpG-gene expression pairs were found in each 

tissue using FDR correction, however, only 37 sites were consistently ranked highly in at least 

three tissues.   This small number may reflect the tissue specific nature of CpG methylation and 

impact on gene regulation.  We speculate this also alludes to the limitation of sequence-based 

annotation of methylation in providing indication of local chromatin architecture, another caution 

again single site-based analysis.  Interestingly, the significant CpG-gene expression pairs 

demonstrated a commonality regardless of tissue in their enrichment for 15-core state chromatin 

annotation.  This study found that pairs with negative methylation-expression correlation were 

enriched in active regions containing active transcription and enhancer marks while positively 

correlated ones were enriched in bivalent enhancer and repressed polycomb marks.  This 

enrichment overlaps with the enrichment found in our DNAm patterns and supports the 

molecular viability of these patterns in modifying cellular phenotype.   

Because our goal was to uncover patterns of DNAm differences related to the exposure 

composite that delineate changes to chromatin structure leading to stable MSP related changes 

in cell fate, the proximal relation of the DNAm component loci to local gene annotations is less 

relevant. For example, Figure 75 shows results from gene set analysis of Component 11 sites.  

Not surprisingly, few categories were significantly enriched and most were related to generic cell 

functions.   

We wonder at our finding of significant depletion in the DNAm components of quiescent and 

heterochromatin marks.  This is in keeping with the study by (Bauer et al., 2016).  These 

inactive states, especially heterochromatin, are typically associated with constitutive gene 

silencing such that these areas are laden with repressive marks and are highly condensed.  

They also tend to be physically separated from transcriptional factories.  So far, inactive 

chromatin is less frequently reported to be involved in dynamic, environment sensitive changes 

compared to active chromatin.  However, it is a thriving area of interest in cancer and toxicology, 

where dramatic changes in the distribution of such areas of relative safety from DNA damage 

can pre-dispose a cell to apoptosis or aberrant replication (Liu, W. & Irudayaraj, 2020; 

Williamson, Zhu, & Yuan, 2018).  It is reasonable that MSP is an overall chromatin activating 

event given that DNA damage is one of the hallmarks of tobacco toxicity.   
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We did attempt to compare mapping of our components with the candidate sites identified in 

previous studies.  For instance, using the 28 MSP differentially methylated CpGs found in cord 

blood by (Richmond et al., 2015) in ARIES, we found 5 sites overlapped with PAI sites 

(permutation testing p = 0.001.)  None overlapped with loop structures.  However, is analyzing 

all 28 sites at once correct?  We struggled with how to group the candidate sites: by region or 

chromosome? By CpG density or proximity to genes?  Do they represent a single process or 

reflect multiple processes?  Because of our a priori hypothesis that we could “bait” the extraction 

of clinically-relevant DNAm patterns with specific vulnerability profiles, the relation of CpG sites 

identified in the DNAm patterns can be subjected to logical interrogation of function.  Without 

this a priori context, an unguided mining of statistical associations may render the discovery of 

the clinical and functional relevance of isolated sites or regions elusive. 

At this point, there is a paucity of techniques to combine multi-omic data to estimate functional 

relevance.  Giambartolomei et al. developed the method multiple-trait-colocalization (moloc) to 

colocalize omic data and genetic variants within a user defined genomic region to draw 

statistical estimates of causality (Giambartolomei et al., 2018).  The moloc method uses 

summary level data of the association of a given trait with SNPs from public databases, (i.e. 

effect size estimates and standard errors from quantitative trait locus (QTL) mapping.) These 

traits could be DNAm, gene expression, or phenotype.  The moloc algorithm estimates the 

probability of a relation between the posited causal trait and one or more traits within the same 

region.  In this way, the authors used brain tissue data to find 52 novel candidate genes that 

were related to three traits: schizophrenia diagnosis and DNA methylation and RNA levels 

(posterior probability > 0.8). This could be interpreted as finding genetic variants that influence 

schizophrenia phenotype through methylation.  However, this relation could also be due to 

pleiotropy where the variant influenced each trait independently and there is no functional 

relation between the traits.  The moloc method has been applied in various contexts, including 

making causal inferences regarding DNAm-mediated effects of MSP on complex traits in the 

ARIES cohort.  A recent study employed Mendelian randomization to link MSP-related 

differential methylation at 412 CpG sites (FDR<0.01) to 643 complex traits using GWAS data 

(Richardson et al., 2019).  Of the 22 CpGs-trait associations that passed multiple testing 

correction (p < 1.89 × 10−7), they discovered two gene regions where the same variant linked 

CpG methylation, gene expression and lung function measures using moloc.  The authors 

further showed using Mendelian randomization that the direction of association was likely MSP 

methylationlung function.  As well, they observed a relation between DNAm and lung 
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function at age 8 and 15, however, the relation was stronger at age 15.  The authors interpreted 

this to mean reverse causation i.e. that possible adolescent initiation of smoking or SHS was 

responsible for this observation. 

Another method using QTL data to improve functional mapping is EpiXcan (Zhang, W. et al., 

2019).  This method seeks to improve transcriptomic imputation methods that model the 

combined effect of multiple SNPs in proximity to the TSS on local transcription.  EpiXcan 

leverages chromatin state annotation data by converting the association between state and 

SNPs into penalty factors to inform the gene expression imputation algorithm.   This 

improvement leads to better annotation of genetic risk variants that are in noncoding regions.  

As well, the authors found improved tissue- and disease-specific relevance of identified 

candidate genes compared to previous transcriptomic imputation methods.   

The moloc method assumes the causal genetic variant lies within the genomic region with the 

other traits and that at most one variant is responsible for each trait in the region i.e. only 

pairwise relations are considered.  As well, the use of QTL data as the basis of association and 

using distance-based analysis units introduces two issues: 1) gene-centric bias and 2) the 

assumption that for a trait to be relevant, it should affect the traits nearby, (e.g. a relevant CpG 

site should impact the transcription of proximal genes.)  This may limit the ability to detect multi-

way interactions and interactions that may fall outside the user-defined genomic window, (such 

as due to a chromatin looping structure.)  While QTL mapping based methods may limit context-

based relevance of methylation on chromatin architecture, these techniques all leverage 

publically available data.  This is a major advantage given the limitations of cost and feasibility in 

amassing enough data in prospective human cohorts.  Our pattern finding technique fits this 

need to optimize use of global efforts to characterize cross-tissue and cross-population omic 

profiles if we are to find functional and thus medically useful links.   

Pre-existing databases are also being leveraged to elucidate the relation between traits and 

toxins or pharmaceuticals.  For example, this can facilitate high volume scanning of thousands 

of environmental pollutants for potential links to a trait of interest.  The Comparative 

Toxicogenomics Database (CTD) has collated over a million relations between chemicals and 

33 biologic substrates, (e.g. mRNA, proteins, etc.) As a recent example, Smith and colleagues 

paired chemical and mRNA data from CTD to overlap a candidate set of differentially expressed 

genes during sensitive periods of neuroplasticity using enrichment analysis (Smith, M. R. et al., 

2020).  They identified 50 chemicals that consisted of both known neurotoxins as well as novel 
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candidates. Given the high prevalence of childhood neurodevelopmental disorders, the authors 

argue this type of analysis could systematically prevent far-reaching harms on a societal level 

by drawing attention to potential toxins, especially commonly used chemicals like antimicrobials, 

(e.g. applied directly or through agricultural applications.)  Similar to CTD, there are databases 

generated by computational pharmacology that integrate information from electronic health 

records, clinical trial data, and drug interaction and adverse effect reporting with biologic data 

such as gene expression, protein networks and genes.  One such repository is the Connectivity 

Map (Lamb, J. et al., 2006), a library of 1.5M gene expression profiles linked to about 8000 

pharmacologic compounds.  Initially, such data was used to better predict drug-related adverse 

effects.  However, these databases are increasingly mined for drug repurposing, a field aimed at 

finding new uses for existing drugs.   This relatively new area has garnered much excitement 

given its potential to provide rapid benefit to society, financial benefit to the pharmaceutical 

industry and benefit to the development of treatments for rare diseases that are by nature 

hampered by low numbers of patients (Hodos, Kidd, Shameer, Readhead, & Dudley, 2016) .  

For instance, the authors of the EpiXcan study discovered 43 gene-trait links (Zhang, W. et al., 

2019) in their database scan.  They curated 1309 compounds from the Connectivity Map library 

which they considered “capable of perturbing the expression” of those 43 candidates.  Using 

enrichment analysis, they found a number of compounds with plausible links to the trait in 

question.  For instance, the “Coronary Artery Disease” trait was enriched for drug targets that 

have genetic association with heart disease, hypercholesterolemia, abdominal obesity, and 

myocardial infarction.  Zhang and colleagues went on to overlap the identified trait-compound 

candidates with compounds likely to have a disease modifying effect on the trait.  They found 

several enrichments, for example they found an overlap between compounds for coronary 

artery disease that are considered disease modifying for childhood obesity.  They authors 

believe this supports the use of their pipeline for predicting drug repurposing and overall the 

utility of integrating gene-based data to understand the biologic networks underpinning disease 

processes to systematically guide therapeutic discovery.   

In the end, genes are the archetypal tether that links multiple omic layers.  We are wary of gene-

centric views of data because we simply “don’t know what we don’t know” and could 

unknowingly neglect a whole space of biologically important information.  We look to the exciting 

field of mapping 1D epigenomic data to surmise 3D chromatin structure (Xu, H. et al., 2020).  As 

well, there is also the ever growing are of code biology to shed more light on the functional 

implications of molecular mapping in CCD.  Code biology is dedicated to delineate the relation 
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between two “worlds of organic molecules” through a set of rules (for a review, see (Barbieri, 

2003).  Though arguably the most famous success of code biology is the genetic code, this field 

has enthusiastically tackled the neural code, the sugar code, the cytoskeleton codes, and the 

splicing codes, as examples.  We take the work of Prakash et al. in the histone code to illustrate 

the 3 steps in this methodology (Prakash & Fournier, 2018): “Here code is identified, where an 

input system (histone modifications) is translated into an output system (chromatin states) via 

adaptors (epigenetic regulators or TFs). Such a code has distinct importance in gene regulation 

and consequently for the cellular phenotype.”  It is hoped that this formal methodology will soon 

crack the “epigenetic code” and advance the efforts to assess and modify patient-specific 

disease risk in CCDs by judiciously mining the expanding universe of omic information. 

 

 Impact 

 

Patient-specific recognition of disease susceptibility is the key to resource-efficient prevention.  

By using individual biologic susceptibility obtained before overt cellular damage in childhood, 

one can deliver targeted intervention during the most sensitive and formative periods of human 

development.  This “front loaded” investment narrows the chance of organ dysfunction and 

spread to other organs, thus offering optimal and compounded health gains population wide. 

This work links phenotypic mapping between clinical and epigenetic features of children from 

birth to mid and then late childhood.  This mapping localized DNAm patterns that may be 

relevant to both physical and mental health outcomes.  We show that the clinical composite 

relates to outcomes in later childhood in a similar manner to the DNAm maps.  As well, we 

demonstrate that these DNAm maps can be transferred to an independent cohort.  Last, these 

DNAm patterns map to areas of chromatin structure previously implicated in environment-

sensitive regulation.  We believe this supports proof of concept that DNAm maps may replace 

the use of smoking-related risk data and localize clinically-relevant molecular pathways 

underlying the origins of complex traits.  We suggest that the approach to estimate the 

importance of DNAm patterns taken in this study should be seen as complementary to the 

conventional statistical techniques used in EWAS in CCD.  

Machine based learning is becoming the norm rather than the exception in high dimensional 

omic data analysis (see Rauschert et al. (2020) as a very recent example.)  This work also 
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employs machine learning but we do not at all suggest this is or will be the panacea to the 

translation gap between epigenetics and CCD research. Our study is novel in that we avoid 

exposing the selection of DNAm signals to any single MSP-related variable and/or outcome 

variable.   In doing so, we aim to attenuate exposure to the inherent assumptions, biases and 

errors of any single measurement tool.  Instead, our goal with the data available is to best 

describe the clinical and molecular constellation of MSP-related events that relate to complex 

traits.  Among conventional and machine learning techniques, we selected the method that best 

matched this goal with the data currently available in the discovery cohort.  We are hopeful that 

as cohort databases and analytic methods evolve, so will approaches to finding clinically 

relevant molecular targets.  Most importantly, we call for new modes of evaluating biomarker 

utility beyond relative risk or dose-response effects.  Such metrics require individual-

independent categorization that sacrifices the clinical information embedded in individual-

context measures.  In the study of CCDs, we fear this risks putting the cart before the horse.  

The ethical dilemmas of the post-genomic era pose a fascinating and at times perplexing realm 

of research (see Dupras, Joly, & Rial-Sebbag (2020) for a recent review.)  Cautionary 

perspectives evoke sombre images of epigenetic markers being wielded to stigmatize certain 

populations.  For instance, this work could fuel accusations that smoking mothers are harming 

their children as if adversity is due to free and voluntary choices.   In another example, the 

possibility that molecular vulnerability can pass from one generation may lead to insinuations of 

hopelessness for the future generation of that group.  While our hope is that epigenetics can 

reduce health disparities, the just use of scientific research requires constant vigilance and care. 

 Limitations 

 

This work suggests a potential MSP associated epigenetic network rooted early in life that 

relates to later physical and cognitive differences in childhood. However, it cannot differentiate 

between whether MSP-related DNAm patterns are causally related to later outcomes, the 

consequence of outcome or merely coincidental.   

The thrust of our work is to improve delineation of a given individual’s multifactorial vulnerability 

to adverse contexts.  This vulnerability concept begs a discussion of the contrast between 

quantitative or biochemical measures of smoking versus self-report.  The qualitative aspect of 

the situation of a mother who would report smoking and her consistency in reporting this at 

different times in her pregnancy is clearly distinct from attempts to quantify fetal exposure.  The 
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correlation between maternal self-report and biochemical markers of smoking and their 

consequent net tobacco-related chemical exposure of the fetus is a field unto itself.  Actual 

clinically-relevant fetal exposure requires consideration of a plethora of factors, including 

tobacco product and delivery choice, gestational developmental stage, duration, concurrent 

exposure to prescribed or illicit agents as well as xenobiotic interactions including 

pharmacogenetics involving the mother, placenta and fetus (for examples, see (Agrawal et al., 

2010; Knopik et al., 2019; Marceau et al., 2016; Werler, Pober, & Holmes, 1985).  The 

landscape of this research is changing rapidly. For example, the increased use of vaping and 

the legalisation of marijuana in Canada have had a major impact on women of child-bearing age 

in recent years and it is known smoking is associated with other substance use (Rodriguez & 

Smith, 2019).  One limitation of our study is that we have used self-reported data as the single 

source of information regarding smoking during pregnancy.  Various studies comparing self-

reported smoking with biochemical measures provides reassurance for using this measure in 

terms of its clinical correlation with offspring outcomes (Gorber et al., 2009; Guerrero-Preston et 

al., 2010; Keskitalo et al., 2009). At the same time, other studies estimate that around 20% of 

mothers under-report smoking in pregnancy (Dietz et al., 2011; Shipton et al., 2009). We are 

interested by the misclassification correction performed by (Valeri et al., 2017) in the MoBa 

cohort which resulted in a contradiction of the mediation effect of MSP on birth weight by DNAm 

found by (Kupers et al., 2015).  MoBa had the benefit of both self-report and cotinine levels to 

estimate MSP.  However, that is not to say that biochemical markers are “better”.  For example, 

markers like cotinine measured at only a few intervals of pregnancy do not necessarily translate 

100% to fetal MSP effects.  We speculate that a more nuanced composite of MSP would 

integrate both these markers as well as various clinical and genetic data.  For instance, one 

could attempt to characterize the “dose”, the “mediator” (i.e. the placenta) and the “recipient” to 

better estimate clinical relevance.  First, the “dose” of exposure on the fetus may include SNPs 

of xenobiotic enzymes of mothers and infant, as well various maternal SNPs previously used in 

IV analysis as a proxy for smoking quantity and ease of quitting ( for example, maternal 

rs1051730 was used in (Brand et al., 2019).)  This genetic data was available in ARIES and it is 

becoming common for epigenetic cohorts to also collect genotype data simultaneously given the 

relative low costs and high-throughput of SNP microarray chips.  Second, indication of placental 

effects (e.g. placental thickness and umbilical blood flow on Doppler based on sonography or 

treatment of maternal hypertension) may be accessible through health databases.  However, 

such data may only be available in resource-rich urban settings where such prenatal 

management is part of routine standard of care.  Last, the impact on the fetus can be extracted 
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from routine prenatal visits in most developed countries including gestational weight gain in 

different trimesters and basic fetal ultrasound biometry like estimated fetal weight, femur length, 

and head and abdominal circumference.  This work’s vulnerability composite suggests that 

transgenerational, historical and environmental smoking variables and birth weight variables are 

relevant.  Thus, including such variables along with the aforementioned would be an important 

exploration of a richer, multiclass mapping of MSP vulnerability.  With such a composite, self-

reported and/or biologically estimated MSP would be but one of many factors forming the child’s 

multidimensional profile and thus MSP associated error would be attenuated.   

Future work should also examine the interaction of concurrent smoke exposure, for example 

through SHS, third hand smoke (exposure to residue left on surfaces exposed to smoke) and 

adolescent smoking.  A previous ARIES study found that differential DNAm by MSP in cord 

blood at 5 CpGs persisted in adolescence whether the data included or excluded adolescents 

exposed to personal smoking or SHS (Richmond et al., 2015).   However, the relevance of this 

finding on physical or cognitive outcomes is unknown and warrants investigation.  SHS is less 

often directly studied but more often a control variable.  In our work, the vulnerability composites 

Dimensions 3 and 5 were the only dimensions to include relations to smoking in non-maternal 

line relationships.  These dimensions made interesting contributions to our results, particularly in 

considering potential resilience factors at play.  As well, Dimension 5 is among the most 

represented profiles in cord DNAm.  Our work strongly supports further direct study of all 

sources of smoking to clarify this phenomenon.  The entity of third-hand smoke (THS) is 

particularly relevant to childhood exposures and has received very little research attention in 

epigenetics thus far.  Children are particularly susceptible to THS compared to adults given their 

oromotor developmental stage that increases their proximity to high exposures surfaces like 

carpet and walls and the transfer of residue from surfaces, toys and hands to their mouths and 

eyes.   

The reader may recall we struggled to include several variables that have direct relation to 

placental function and infant outcomes.  These included factors like gestational diabetes, 

hypertension and weight gain.  There are several possible reasons.  First, these variables 

suffered the most missing data.  This would very likely affect composite construction.  Second, it 

may be that these variables together truly do not form reliable latent constructs.   Third, this may 

have been a specific limitation of our factor analysis method.  It could possibly affect the model 

algorithm and estimate convergence when categorical variables, particularly those with merely 2 

or 3 levels, outnumber continuous ones by such a large margin. The methodologies for multi-
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class data analysis is evolving with better accommodation of data types especially nominal 

versus ordinal non-continuous variables (see the PLS-correspondence analysis-regression 

method proposed by (Beaton et al., 2019) as an example.)  We also look forward to more 

sophisticated developments in this area with regards to missing data given the strong influences 

of non-random missingness and selection bias in MSP research (Fang et al., 2010; Fertig, 2010; 

Knopik, Valerie S., 2009; Valeri et al., 2017).  It is clear that deeper consideration of the 

properties of such vulnerability-related variables and multiclass multivariate data analysis is 

needed in future work. 

Another limitation is that we have no confirmatory or functional assessment of the DNAm 

patterns, such as targeted pyrosequencing, profiling of TF binding, 3C of chromatin structure or 

gene expression.  These data are unavailable in ARIES.  We acknowledge that the DNAm 

patterns identified in this work are purely due to statistical estimations.  One possible reason for 

the observed relations is that these dimensions coincide with another MSP-unrelated variable, 

(e.g. a covariate such as batch,) that also has a molecular signal.  This “covariate” signal 

becomes the easiest manner for DNAm data to explain the variance of the MSP composite.  We 

used state-of-the-art techniques to remove variability due to known batch effects and ARIES 

employs a purpose built laboratory information management system as well as a semi-random 

approach in plating the 450K BeadChip to attenuate batch effects.  However, it remains that 

other known and unknown technical artifacts may overlap with the MSP composite.   

There are a number of animal models demonstrating clear methylation-mediated gene 

expression differences between nicotine exposure groups, (for recent examples, see (Buck et 

al., 2019; Zeng et al., 2020).)  Human studies are far more limited.  We found only two studies 

that attempted to complete the circle from discovery to functional relevance.  Bauer and 

colleagues employed RNA-seq, WGBS and ChIP-seq to determine genome wide gene 

expression, DNAm and histone modifications in cord blood in children of smoking versus non-

smoking mothers (Bauer et al., 2016).  Comparing smoking versus non-smoking in pregnancy 

groups, they discovered 8409 DMRs in cord blood using a moderated t-statistic (p > 0.1) and 

permutation analysis.  This group also found some DMRs were genotype associated.  After 

removing these, 1404 DMRs remained.  These DMRs were associated with significant 

chromatin state changes from birth to age four when comparing non-smoking to smoking 

mothers. 
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The authors also followed up the observation that the JNK gene appeared to have both genetic 

and methylation-mediated differential expression. They noted a relation between JNK2 

enhancer demethylation in both cord and age 4 blood with increased risk of wheeze after age 4. 

They used an in vitro model with peripheral blood mononuclear cells to confirm enhancer 

demethylation upon exposure to cigarette extract.  They also used a JNK2-/- mice to 

demonstrate less airway inflammation compared to wild type. 

They found very few differentially expressed genes in children by smoking category, (<10 genes 

identified using multiple testing threshold of 10% FDR, BH correction.)  The paucity of 

differentially expressed genes led the authors to instead target the downstream pathways 

targeted by DMRs.  The authors did not directly state how many of these pathways 

demonstrated differential expression among gene members between the smoking and non-

smoking group.  However, they pointed out that the Wingless-Type MMTV Integration Site 

Family (WNT) pathway gene members did distinguish the two groups of children.   

This study found very low correlation (ranging between 5-10%) between DMR methylation and 

gene expression. This study also found that the correlation between RNA expression of target 

genes and differential DNAm sites increased over time, suggesting that DNAm changes 

precede functional change such as transcription.  However, only 16 children had all three of the 

above omic data extracted.   

More recently, Vives-Usano and colleagues used data from the large Human Early-life 

Exposome project that represents the collaboration of six population based birth cohorts across 

Europe (Vives-Usano et al., 2020).  Using DNA methylation and gene and miRNA transcription, 

plasma proteins, and sera and urinary metabolites data from up to 1203 children, this group 

found 41 differentially methylated CpGs that localized to 18 unique loci based on a 5% FDR 

comparing 2 groups: any or sustained maternal smoking in pregnancy versus non-smoking.  All 

loci have been previously reported but one (Formin 1 gene).  Of these, only differential DNAm at 

five loci were related to proximal gene expression.  Interestingly, this association was not with 

the “closest” gene by base pair distance except in one case.   Despite finding a link between 

MSP to DNAm, and then DNAm to gene expression, this group found no link between MSP and 

child serum metabolites or blood gene/miRNA expression.  The only further association with 

MSP found was with urinary alanine and lactate levels in childhood.  The authors did not report 

any testing for association between methylation and metabolites.  Despite having by far the 
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largest pool of children of any MSP-related multi-omic study, the authors suspect that the lack of 

overall novel findings was due to inadequate power. 

This brings us to the point that cost is a major barrier to obtaining biological data.  As well, the 

study by Bauer et al. (2016) illustrates the importance of follow-up over time in order to unearth 

the molecular seeds that underlie pathogenesis.  This cost of adequate sample size in 

longitudinal over cross sectional data is multiplicative in the discovery stage, rendering 

confirmation of biologic functional relevance of possible candidates out of reach of most 

research budgets.  Another major barrier to collection of biological data is feasibility.  For this 

reason, numerous studies use methylation patterns in blood as the surrogate for the target 

tissue like brain, adipose, liver, pancreatic and muscle tissues (for examples, see Bansal et al. 

(2017), Shanthikumar et al. (2020), Forest et al. (2018), Keller et al. (2017), Yuen et al. (2011) 

and Horvath et al. (2012)).  As in these studies and discussed in Section 2.1.2.2(a), researchers 

note that the greatest source of methylation variation in human EWAS is cell type (Horvath et 

al., 2012; Roadmap et al., 2015).  Given the tissue specificity of DNAm, it begs what, if any, 

relation our findings have to cellular poise of the target organ?  Studies employing animal 

models and post-mortem human samples demonstrate some concordance between blood and 

target tissues.  This is unsurprising in disorders involving the immune system like oncologic, 

allergic, and autoimmune (the latter which include certain forms of diabetes, rheumatoid arthritis 

and inflammatory bowel disease,) diseases (for examples, see Reinius et al., 2012).   As well, 

studies show blood-brain correlation of differential DNAm for psychiatric outcomes (Fuchikami 

et al., 2011; Melas et al., 2012; Unternaehrer et al., 2012).  Together, these disease groups 

account for a prominent majority of CCDs globally. Thus, whether as a direct actor, mediator or 

bystander of various disease processes involving diverse organ systems, blood is a major organ 

that taps into nearly every part of the human body.  This is unlike buccal or sperm cells, for 

which DNAm data has also been non-invasively collected but with much more limited theoretic 

or experimental connections to CCDs.   There is also the growing potential of DNAm data 

obtained from cell-free DNA for various diseases (Lehmann-Werman et al., 2016).  Studies 

have isolated cell-free DNA from non-invasive sampling of saliva, sputum, urine, stool and 

seminal fluid, for example.   However, at this time, blood and specifically circulating immune 

cells, remains one of the most promising human tissues to study CCD-related shifts in 

epigenetic poise.  That said, tissue specificity remains an important consideration when 

evaluating the clinical relevance of blood-based DNAm biomarkers.    



 

 239 

Fortunately, unlike biological data with its inherent cost and feasibility restraints, clinical data 

availability is surging.  We are in the age of electronic medical records and high consumer 

interest in self-monitoring of health status.  As well, the sophistication of behaviour analysis, 

especially through the internet and hand held devices, has become both increasingly effortless 

and invasive in terms of privacy.  While the ethics of this is beyond our scope, it is a fact that 

there is no end of novel and rich clinical data that extends far beyond standardized 

questionnaires and clinical checkpoints.  The ability to mine more comprehensive and 

continuous data may rapidly overcome the errors and assumptions that plague data that is 

sparse in detail and time points.   

A recurring issue throughout this work is the limited coverage the 450K chip.  Even the newer 

chip created by the same company, the EPIC BeadChip,  covers under 3% of approximately 28 

million CpG sites in the human genome (Jiao et al., 2018; Solomon et al., 2018; Wang, X. M. et 

al., 2019; Zhou, W. et al., 2017).  Moreover, non-genic CpG remain relatively under-represented 

though this coverage is improved relative to the 450K chip.  Using WGBS, Bauer and 

colleagues found that less than 5% of MSP-related DMRs were covered by the 450K chip.  

Given the current track record, it is fair to question whether pursuing CCD research with this 

technology will ever be clinically fruitful.  The study of CCDs requires population based data and 

enough statistical power.  At this time, microarrays are the only viable option.  Gene expression 

related to tobacco exposure fades with time, while DNAm differences studies with microarrays 

are still notable up to 40 years later.  Chromatin conformation is simply too costly and low 

throughput to be useful for population-based exploratory studies.  DNA methylation is stable yet 

environment sensitive.  It is unique among biomarkers.  This study in many ways is looking at 

how we can most efficiently and effectively extract useful information from limited resources.  

However, it is unlikely at this state of knowledge that DNAm arrays alone will provide enough 

information to guide clinical action. 

During the writing of this thesis, the next generation of Illumina DNAm BeadChips was released, 

the EPIC BeadChip (Jiao et al., 2018; Solomon et al., 2018; Wang, X. M. et al., 2019; Zhou, W. 

et al., 2017).  This chip covers >90% of sites covered by the 450K chip, but has several 

technical differences including a highly different ratio of Type I:Type II probes.  Illumina no 

longer supports the 450K chip so opportunities for replication in future cohorts using the same 

tool will increasingly diminish.  The 450K BeadChip covered about 98% of genes but only 1.7% 

of CpGs present in the human genome.  This means the DNAm patterns represent an 

incomplete shadow of methylation topography across the genome.  The EPIC array assays 
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nearly double the number of CpGs (>850,000).  A wider appraisal of methylation, especially in 

non-genic regions, using the EPIC BeadChip may reveal more functionally and clinically 

relevant relations.   

Methods are constantly being developed and refined to include various species of RNA and 

various sequence, expression, or functional data, (e.g. proteomics, microbiome, lipomics, etc.,) 

to better characterize the human molecular profile.   We look forward to techniques that can 

accommodate these layers of high dimensional data along a lower dimensional individual axis 

and then a sparse time axis, such as in non-negative tensor factorization.  Such multi-axis and 

multi-layer analysis is common in fields like functional neurophysiology.  We highly anticipate 

the adaption of such techniques in omic research to provide richer and more dynamic individual 

mapping. 

We also must be wary of making generalizations from potentially non-representative samples.  

The ARIES cohort contained about half as many mothers who reported smoking than in the 

whole ALSPAC, (14.3% versus 30.2%.)  An important next step for this work is the “re-

discovery” of DNAm patterns in a population representative dataset rather than convenience 

sample.   

Studies have shown poor reproducibility between platforms of certain individual CpG 

methylation of the same sample.  This has been found in both solid and blood tissues (Solomon 

et al., 2018) and regardless of normalisation procedures (Cheung, Burgers, Young, Cockell, & 

Reynard, 2019).  For instance, Cheung and colleagues found that about half of CpG sites 

showed low correlation (r < 0.2) between the 450K and EPIC arrays within the same cartilage 

samples.  This phenomena is believed to be a technical artefact.  It most severely affects low 

variance and extreme value (i.e. 0% or 100%) methylation sites, as well as those measured by 

Type 1 probes (the 450K uses two types of probes.)  Low reproducibility will make future 

comparisons and meta-analyses with different assays more challenging.  CpG sites with poor 

reproducibility vary between tissue types and therefore the specification of a common list of 

CpGs to exclude is unavailable.  Researchers must exercise caution when investigating hits and 

perform confirmatory testing with methods such as targeted pyrosequencing and in independent 

samples (Solomon et al., 2018). 

RF regression is a powerful exploratory tool in data mining given its three-pronged ability to 

handle high-dimensional data, compute measures of importance and account for interactions 

between predictors. This matches well with the environment responsive epigenetic changes 
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thought to underlie CCD etiology.  Our goal was not to optimize predictive power per se – but to 

explore contributors to the continuum of disease manifestation generated by genetic-epigenetic-

environmental influences present in children.  However, the interpretability of RF results has 

been criticized as more challenging than conventional regression analyses.  For instance, while 

the latter can be relatively easily probed by plotting the association between variables on the 

basis of the regression coefficients, the former provides the importance of a predictor that 

contains its complex interaction structure with all other predictors included. Simulation studies 

have further shown that small interaction effects contribute to the overall predictive accuracy, 

but that current measures are unable to specifically isolate these effects (Wright, Ziegler, & 

König, 2016).  

Therefore, the clinical outcome results of this study must be couched in context of the other 

variables entered into the model.  Thus, exact replication is unexpected in different cohorts with 

different variables measured with varying error.  However, we suggest that exact replication is 

neither necessary nor even proof of validation.  Exact replication could still be the result of 

chance.  We tender that reliable validation is finding compatible and consistent results even with 

the use of different methods and data.   

We wish to clarify that our use of context-based detection is emphatically not to dodge 

identifying one or more specific factors associated with high levels of harm.  It would be highly 

useful to find a clear “X leads to Y via Z” solution.  For instance, individuals with a variant of the 

D-aminolevulinic acid dehydrogenase gene are highly susceptible to environmental lead 

exposure, a neurotoxin with potent effects on fetal and child development.  In the US starting in 

the 1960’s, studies found that the prevalence of this variant was as high as 20% in some 

populations (Lustberg & Silbergeld, 2002).  This led to a federal level drop in the lead safety 

threshold from 60 to 10 μg/dl.  This move has been subsequently mirrored by numerous 

countries worldwide, such that severe pediatric lead poisoning in developed countries is now 

rare.  This is one of the most dramatic examples of how molecular identification of a specific 

diathesis lead to a major health impact worldwide. Exposure to MSP and its related factors is a 

long-standing and complex global health problem – to remove its root causes is an unfortunate 

impossibility.  However, elucidating why and how some individuals suffer more than others is 

feasible.  Understanding the molecular basis of vulnerability would allow the development of 

targeted counter measures that could viably lead to change in public health and/or industry 

standards.  While it is unlikely tobacco manufacturers would cease to employ key neuroactive 

substances such as nicotine in their products, pragmatic and enforceable standards can only 
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come from understanding if and how the origins of harm overlap with the business bottom line. 

We argue that at our current state of knowledge, characterization of molecular vulnerability to 

MSP is the key to unlocking resilience on a population level.   

Chapter 5 Summary 

 

As a science, medicine adopts many of its principal tenets from the scientific method originating 

from the 1600s.  For example, there is a strong distinction in the use of language describing the 

patient history and physical exam compared to the diagnostic assessment.  In its best form, the 

former should collate information with no attribution of cause or relevance to the patient 

complaint.  On the other hand, the latter involves judgement and its associated assumptions.  It 

also accounts for potential errors by including a differential diagnosis.  The poor translation of 

epigenetics to CCD may relate to a neglect of basic scientific method and believing we can jump 

to the diagnosis without a careful and complete assessment of information.  The main thrust of 

this work stems from acknowledging ignorance of the clinical and molecular implications of the 

origins of health risk.  We attempt to minimize assumptions about what we do not know while 

optimizing the description of what we do know.   

We ventured to sharpen the overlap of clinical data with genome-wide shifts in methylation to 

visualize the molecular architecture underlying various profiles of vulnerability to adversity.  We 

mapped vulnerability using a composite measure that combined multiple views of clinical 

exposure while also offering the statistical advantages of a continuous measure.  We used the 

MSP exposure composite to express not only in utero tobacco exposure, but also familial and 

individual susceptibility to MSP related effects.  We purposefully selected mapping methods to 

minimize researcher assumptions.  We avoided imposing if and what “levels” of MSP-related 

risk are considered clinically contributory, as well as what and where are relevant sites of 

DNAm.  While these posed challenges to data integration and computational cost during the 

exploratory phase, in the end our pipeline is very feasible and would be easily up-scaled to 

higher throughput studies.  This work could be translated to further develop understanding of 

pathologic mechanisms associated with other risks and hopefully to re-train research focus on 

the biological roots of disease rather than the after-effects of accumulating system damage.   

It is implausible that epigenetics can offer a single, parsimonious explanation of all the 

interconnections between risks and disease.  This work suggests epigenetic mechanisms are a 
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promising crossroads to probe the early origins of disease vulnerability– but there are boundless 

opportunities to improve the precision and comprehensiveness of clinico-biological mapping.   In 

the ever-expanding universe of omic study and human disease, the new challenge is to 

converge and interpret these data as accurately as possible, humbly wary of bias and error.  

Our endeavour advances new practical and theoretical considerations to address the formidable 

problem of connecting multi-omic signals with complex traits – a critical obstacle to forging 

diagnostic and therapeutic translation. 
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Appendix A Random Forest tuning  

 

Table 36: Performance of random forest models for different tuning parameters.  (Example using outcome 

Height (z-score) at age 10.) 

mtry 
mtry 

(numeric) 

Split 

train:test 
ntree 

Train data 

% var 

explained 

Test Data 

RMSE 

Test Data 

% var 

explained 

p 10 70:30 500 64.78 0.3 63.32 

p/3 (default) 3 70:30 500 65.13 0.29 64.59 

p/3 (default) 3 70:30 200 64.48 0.29 63.98 

p 10 50:50 500 59.4 0.3 68.4 

p/3 (default) 3 50:50 500 60.2 0.31 67.02 

p/3 (default) 3 50:50 200 58.8 0.3 67.45 

p 10 80:20 500 64.4 0.33 65.1 

p/3 (default) 3 80:20 500 64.99 0.32 65.8 

p/3 (default) 3 80:20 200 64.3 0.33 64.7 
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Appendix B Comparison of maternal baseline characteristics in 

ALSPAC mothers included and excluded from ARIES  
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Table excerpt from (Sharp et al., 2015). IoM categories of GWG: recommendations for 

gestational weight gain: Mothers were categorized as having gained the recommended, less 

than recommended and in excess of the recommended weight during gestation depending on 

their pre-pregnancy BMI.  IoM: Institute of Medicine. 
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Appendix C Additional information: Cord blood and cell type 

composition 

 

Comparison of models using either reference (using R package meffil) versus reference-free 

(using R package reFACTor) estimates of cell composition.  Shown are examples using models 

for height outcomes at various ages.  Other outcomes available upon request. 

Cord results 

Correlation table between DNAm components (cord blood) and reFACTor estimated cell count.  We trialed 

both n=6 and n=7, the latter because newborns have an additional DNA-containing blood cell, nucleated red 

blood cells compared to the typical blood cell population of non-infants. There are only minor differences 

between the two.  For Age 7 and Age 15 DNAm, we used n=6.   

N = 6 N = 7 

row column cor p 

Comp8 Comp11 -0.07 0.026 

Comp5 Comp12 0.14 0.000 

Comp5 Comp16 0.07 0.047 

Comp12 Comp16 0.15 0.000 

Comp15 Comp19 0.07 0.032 

Comp1 PC1 0.12 0.000 

Comp2 PC1 -0.19 0.000 

Comp3 PC1 0.22 0.000 

Comp10 PC1 0.09 0.006 

Comp12 PC1 0.08 0.017 

Comp1 PC2 -0.20 0.000 

Comp2 PC2 0.09 0.008 

Comp3 PC2 0.26 0.000 

Comp9 PC2 0.07 0.037 

Comp16 PC2 -0.08 0.023 

Comp17 PC2 -0.07 0.034 

Comp6 PC3 0.10 0.004 

 

row column cor p 

Comp8 Comp11 -0.07 0.026 

Comp5 Comp12 0.14 0.000 

Comp5 Comp16 0.07 0.047 

Comp12 Comp16 0.15 0.000 

Comp15 Comp19 0.07 0.032 

Comp1 PC1 0.11 0.001 

Comp2 PC1 -0.19 0.000 

Comp3 PC1 0.23 0.000 

Comp10 PC1 0.09 0.006 

Comp12 PC1 0.08 0.015 

Comp1 PC2 -0.21 0.000 

Comp2 PC2 0.09 0.005 

Comp3 PC2 0.25 0.000 

Comp9 PC2 0.07 0.035 

Comp16 PC2 -0.08 0.022 

Comp17 PC2 -0.07 0.032 

Comp6 PC3 0.09 0.004 
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Comp7 PC3 0.21 0.000 

Comp10 PC4 0.09 0.010 

Comp13 PC4 -0.22 0.000 

Comp15 PC4 0.17 0.000 

Comp17 PC4 -0.08 0.019 

Comp18 PC4 -0.08 0.011 

Comp19 PC4 0.08 0.020 

Comp4 PC5 -0.09 0.005 

Comp7 PC5 0.08 0.013 

Comp9 PC5 -0.11 0.001 

Comp10 PC5 0.08 0.016 

Comp12 PC5 0.07 0.025 

Comp13 PC5 -0.12 0.000 

Comp15 PC5 -0.07 0.023 

Comp17 PC5 0.08 0.017 

Comp19 PC5 -0.16 0.000 

Comp7 PC6 0.07 0.034 

Comp14 PC6 0.07 0.031 

Comp15 PC6 0.07 0.044 

Comp16 PC6 0.08 0.010 

Comp7 PC3 0.21 0.000 

Comp10 PC4 -0.08 0.016 

Comp13 PC4 0.21 0.000 

Comp15 PC4 -0.17 0.000 

Comp17 PC4 0.08 0.015 

Comp18 PC4 0.09 0.008 

Comp19 PC4 -0.08 0.012 

Comp4 PC5 0.09 0.005 

Comp7 PC5 -0.08 0.013 

Comp9 PC5 0.10 0.003 

Comp10 PC5 -0.08 0.015 

Comp12 PC5 -0.07 0.034 

Comp13 PC5 0.13 0.000 

Comp15 PC5 0.07 0.028 

Comp17 PC5 -0.08 0.017 

Comp19 PC5 0.16 0.000 

Comp7 PC6 -0.07 0.042 

Comp16 PC6 -0.10 0.003 

Comp3 PC7 0.09 0.008 

Comp14 PC7 0.12 0.000 

 

Table below: random forest model performance metrics for anthropometric outcomes at various ages - Cord 

DNAm components with ReFACTor estimated cell counts (k = 6).  Compared to values for same model using 

the meffil estimated cell counts (Table 26), values are similar. 
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For Age 7 and Age 15 DNAm data, we trialed two adult blood references, blood gse35069 and 

blood gse35069 complete, the latter of which differs by replacing granulocytes with eosinophils 

and neutrophils.  We found that the former generated fewer negative cell composition estimates.  

We report results using the former reference in all analysis with meffil below.  

Age 7 results  

Table below: random forest model performance metrics for height outcomes at various ages – Age 7 DNAm 
components with meffil estimated cell counts.   
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Variables selected by Boruta for height measured at various ages (model using meffil estimated cell 
counts):  

 

Table below: random forest model performance metrics for height outcomes at various ages – Age 7 DNAm 
components with reFACTor estimated cell counts (k = 5).   

 

 

Variables selected by Boruta for height measured at various ages (model using reFACTor estimated 
cell counts) from Age 7 DNAm data:  
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Age 15 results 

Table below: random forest model performance metrics for height outcomes at various ages – Age 15 DNAm 
components with meffil estimated cell counts.   

 

 

Variables selected by Boruta for height measured at various ages (model using meffil estimated cell 
counts) from Age 15 DNAm data:  

 

 

Table below: random forest model performance metrics for height outcomes at various ages – Age 15 DNAm 
components with reFACTor estimated cell counts (k = 5).   
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Variables selected by Boruta for height measured at various ages (model using reFACTor estimated 
cell counts) from Age 15 DNAm data:  

 

 

Model metric values are are similar between models using meffil (with reference) as with 

reFACTor (reference-free) estimated cell counts.  There may be a trend to slightly smaller 

standard deviations in the reFACTor models for the age 7 height outcomes.   

There are slight differences between Boruta selected variables.  For example in Age 7 DNAm 

data, Component 11 is selected in models of height at age 7, 8, 9 and 11 using reFACTor 

estimated cell counts.  Models using meffil estimated counts are similar except Component 11 is 

not selected for height outcome at age 9.  Whether these observed shifts are due to the cell 

count estimation method or a degree of variability in the random forest process is unclear. 
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Figure 79: Correlation matrix between cord DNA methylation components (from MSP composite), MSP 
composite dimensions and estimated cell type composition using meffil R package and MSP composite 
dimensions.  Pearson correlations that have p<.05 are indicated with a circle.  Colour scale indicates r-value. 
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Figure 80: Correlation matrix between DNA methylation components at Age 7 (from MSP composite), MSP 
composite dimensions and estimated cell type composition using meffil R package (Reference: blood 
gse35069 - adult.)  Pearson correlations that have p<.05 are indicated with a circle.  Colour scale indicates r-
value. 
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Figure 81: Correlation matrix between DNA methylation components at Age 7 (from MSP composite), MSP 
composite dimensions and estimated cell type composition using reFACTor R package (k = 5.)  Pearson 
correlations that have p<.05 are indicated with a circle.  Colour scale indicates r-value. 
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Figure 82: Correlation matrix between DNA methylation components at Age 15 (from MSP composite), MSP 
composite dimensions and estimated cell type composition using reFACTor R package (k = 5.)  Pearson 
correlations that have p<.05 are indicated with a circle.  Colour scale indicates r-value. 
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Figure 83: Correlation matrix between DNA methylation components at Age 15 (derived from MSP 
composite), MSP composite dimensions and estimated cell type composition using meffil R package 
(Reference: blood gse35069 - adult.)  Pearson correlations that have p<.05 are indicated with a circle.  Colour 
scale indicates r-value. 

Appendix D Chromatin characteristics of component 1. 
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Appendix E Comparison of results with reFACTor 

 

Tables show correlation with DNAm components with reFACTor components. Only correlation with p < 0.05 

displayed.  Left: k = 6, Right: k = 7 

 

k=6, ncomp = 6 
  

k = 7, ncomp = 7 
  

row column cor p row column cor p 

Comp8 Comp11 -0.07 0.026 Comp8 Comp11 -0.07 0.026 

Comp5 Comp12 0.14 0.000 Comp5 Comp12 0.14 0.000 

Comp5 Comp16 0.07 0.047 Comp5 Comp16 0.07 0.047 

Comp12 Comp16 0.15 0.000 Comp12 Comp16 0.15 0.000 

Comp15 Comp19 0.07 0.032 Comp15 Comp19 0.07 0.032 

Comp1 PC1 0.12 0.000 Comp1 PC1 0.11 0.001 

Comp2 PC1 -0.19 0.000 Comp2 PC1 -0.19 0.000 

Comp3 PC1 0.22 0.000 Comp3 PC1 0.23 0.000 

Comp10 PC1 0.09 0.006 Comp10 PC1 0.09 0.006 

Comp12 PC1 0.08 0.017 Comp12 PC1 0.08 0.015 

Comp1 PC2 -0.20 0.000 Comp1 PC2 -0.21 0.000 

Comp2 PC2 0.09 0.008 Comp2 PC2 0.09 0.005 

Comp3 PC2 0.26 0.000 Comp3 PC2 0.25 0.000 

Comp9 PC2 0.07 0.037 Comp9 PC2 0.07 0.035 

Comp16 PC2 -0.08 0.023 Comp16 PC2 -0.08 0.022 

Comp17 PC2 -0.07 0.034 Comp17 PC2 -0.07 0.032 

Comp6 PC3 0.10 0.004 Comp6 PC3 0.09 0.004 

Comp7 PC3 0.21 0.000 Comp7 PC3 0.21 0.000 

Comp10 PC4 0.09 0.010 Comp10 PC4 -0.08 0.016 

Comp13 PC4 -0.22 0.000 Comp13 PC4 0.21 0.000 

Comp15 PC4 0.17 0.000 Comp15 PC4 -0.17 0.000 

Comp17 PC4 -0.08 0.019 Comp17 PC4 0.08 0.015 

Comp18 PC4 -0.08 0.011 Comp18 PC4 0.09 0.008 

Comp19 PC4 0.08 0.020 Comp19 PC4 -0.08 0.012 
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Comp4 PC5 -0.09 0.005 Comp4 PC5 0.09 0.005 

Comp7 PC5 0.08 0.013 Comp7 PC5 -0.08 0.013 

Comp9 PC5 -0.11 0.001 Comp9 PC5 0.10 0.003 

Comp10 PC5 0.08 0.016 Comp10 PC5 -0.08 0.015 

Comp12 PC5 0.07 0.025 Comp12 PC5 -0.07 0.034 

Comp13 PC5 -0.12 0.000 Comp13 PC5 0.13 0.000 

Comp15 PC5 -0.07 0.023 Comp15 PC5 0.07 0.028 

Comp17 PC5 0.08 0.017 Comp17 PC5 -0.08 0.017 

Comp19 PC5 -0.16 0.000 Comp19 PC5 0.16 0.000 

Comp7 PC6 0.07 0.034 Comp7 PC6 -0.07 0.042 

Comp14 PC6 0.07 0.031 Comp16 PC6 -0.10 0.003 

Comp15 PC6 0.07 0.044 Comp3 PC7 0.09 0.008 

Comp16 PC6 0.08 0.010 Comp14 PC7 0.12 0.000 
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Appendix F Measures of sampling adequacy for factorization 

 

We examined the factorability of the eight composite variables using standard criteria. First, four 

out of eight items correlated at least .3 with at least one other item (see correlation matrix 

below). Second, the Bartlett’s test of sphericity was significant (χ2 (28) = 98.2, p = 9.98 x 10-10).  

Third, the overall Kaiser-Meyer-Olkin factor adequacy was 0.53. Given these overall metrics, we 

proceeded with factor analysis with these eight items. 
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