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Abstract

One main goal of this thesis is to bring forth a systematic and simple con-

struction of a multiwavelet basis on a bounded interval. The construction that

we present possesses orthogonality in the derivatives of the multiwavelet basis

among all scale levels. Since we are mainly interested in Riesz wavelets, we

call such wavelets mth derivative–orthogonal Riesz wavelets. Furthermore, we

present some necessary and sufficient conditions as to when such a construc-

tion can be done. We show that our constructed multiwavelet bases possess

many desirable properties such as symmetry, stability, and short support. The

second goal of this thesis is to provide some conditions that guarantee a Riesz

wavelet in L2(R) can be adapted so that it forms a Riesz wavelet for L2(I),
where I is a bounded interval. As the third goal of this thesis, we also evalu-

ate the performance of the newly constructed bases in obtaining the numerical

solutions to some differential equations to showcase their potential usefulness.

More specifically, we show how the resulting coefficient matrices are sparse

and have a low condition number.
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Chapter 1

Introduction

1.1 Overview of Wavelet Analysis

The area of wavelet analysis has existed for many decades. The emergence of

this field can perhaps be attributed to Haar’s discovery in 1909, which these

days we recognize as the Haar orthogonal wavelet system. One defining feature

of the Haar orthogonal system is its very simple analytic expression, since it

is just an indicator function defined on a bounded interval. However, the re-

search work in the area of wavelet analysis did not drastically gain momentum

and even accelerate until around the 1980s after the discovery of the famous

Daubechies [18], Meyer [46], and Morlet wavelets [29], and the introduction of

the concept of multiresolution analysis (MRA) by Mallat and Meyer in [49, 50].

While a wavelet is typically derived from a scalar refinable function, a

multiwavelet is derived from a refinable vector function. The concept of mul-

tiwavelets was first introduced by the authors of [27, 28]: Geronimo, Hardin,

Massopust, Goodman, and Lee in the early 1990s. Even though the focus of
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this thesis is on wavelets and multiwavelets, it is essential to note that there

is also one other counterpart of wavelets, namely framelets. One of the pio-

neering studies in multiresolution analysis (MRA) and framelets was done by

Daubechies, Han, Ron, and Shen in [19]. However, the concept of frames itself

was introduced by Duffin and Schaeffer in [25]. Unlike frames and framelets,

wavelet and multiwavelet bases do not have any redundancy and are in fact

minimal.

Currently, the theory of wavelets and framelets have been well developed.

In fact, many wavelets and framelets related theorems and results have been

established and now exist in general settings and conditions [33]. From the

application standpoint, wavelets and framelets have proved themselves to be

a versatile tool. It is impossible to provide an exhaustive list of their applica-

tions. However, we describe a handful of the major ones. In general, wavelets

and framelets have been used in computer graphics, image processing, signal

processing, statistics, machine learning, and numerical analysis. For instance,

in computer graphics, wavelets have been used to construct a representation

of 3D shapes such as different parts of human brain [23]. Framelets have been

used in many facets of image processing such as denoising, inpainting, deblur-

ring, restoration, and compression [38, 48, 53]. In the field of the statistics,

one of the earlier uses of wavelets and the self-similarity property of their asso-

ciated scaling function is in estimating the long range dependence parameter

[1], namely the Hurst parameter. Also thanks to wavelets’ ability in perform-

ing multiscale analysis, wavelets have been used in various types of analysis of

time series data [51]. Given how advanced our present technology and society

are, we face an increasing necessity to process a lot of information and big
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data, which is why data science and machine learning have gained so much

popularity over the last couple of decades. Wavelets and framelets have played

quite an interesting role in some learning algorithms such as pattern recogni-

tion [8], artificial neural network [26], and support vector machine [24]. Above

all things, wavelets and framelets are first and foremost an approximation tool.

Hence, wavelet bases have naturally been used in finding numerical solutions to

differential equations. In fact, the application of wavelets in numerical analysis

serves as one major focus of this thesis.

1.2 Wavelet Analysis and its Application in

Numerical Differential Equations

The amount of literature in the context of wavelet-based numerical solutions

to differential equations is very rich. See [5, 11, 13, 14, 16, 15, 34] for some

pioneering work. On a related note, since the Sobolev spaces are fundamental

in the study of numerical differential equations, we also would like to point

out that the theory of Riesz wavelets in the Sobolev spaces has been well

studied; for example, see [31, 37, 33]. Not only have wavelets been used in

differential equations, they have been employed to provide numerical solutions

for integral equations [47, 56]. In regards to adapting a wavelet basis defined

on R to the unit interval, one of the influential papers is [13]. In fact, we

shall use a generalized version of the operator introduced by the authors of

[13] as a part of our work. In the area of wavelet-based numerical solutions to

differential equations, there are typically 2 major directions towards which a
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research study can go: one is the construction of a wavelet basis on an interval

while ensuring the inclusion of as many desirable properties as possible. See

[3, 7, 16, 22, 34, 41, 43] for some possible constructions. One imperative issue

that arises from constructing a wavelet/multiwavelet basis on the interval is of

course the treatment of the boundary elements. In [2] and references therein,

the authors have provided us with several ways to deal with the boundary

elements for an orthogonal multiwavelet basis. Just like in [41], a common

approach is to simply just cut the boundary elements. Still in the subject of

the construction of wavelets, many papers only consider specific examples of

refinable vector functions, but the methods they use to construct the wavelets

differ. Compare [7, 22, 41] for example. Firstly, one common denominator

of the 3 papers is the usage of Hermite cubic splines as their refinable vector

function. While all three papers impose some sort of orthogonality condition

in the first derivative, the first two replace some of the wavelets at even integer

shifts with a pair of wavelets with a longer support in an attempt to achieve

better sparsity. Researchers have also been interested in the construction of a

wavelet basis in a rectangular domain and even a general bounded domain in a

higher dimension [6, 17, 22, 54]. One method that has been frequently used is

by taking the tensor product of a univariate Riesz wavelet [22, 54]. The general

theory of wavelets and framelets on Rd has been well studied (see [32, 33] and

references therein), but for this thesis we simply focus on the construction on

R. The other major direction that researchers tend to be invested in is more

on the wavelet-based adaptive algorithms [4, 12, 22, 45], which to a certain

extent is more concerned with the level of resolution needed to detect and

approximate singularities that may be present in the solution. However, this
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thesis will not deal with these adaptive algorithms. As a last note, a handful

of these existing wavelet bases in the literature have been used to solve some

engineering problems [9, 21, 55].

Now, we explain why we want to be able to come up with a new type of

multiwavelet bases construction on an interval, and why we choose to study

multiwavelet bases at the first place. In order to elaborate more on the first

point, we discuss some deficiencies that many existing methods seem to have.

Roughly speaking, it has been discovered that having a multiwavelet basis

may lead to a shorter support. This of course is one desirable feature. Hav-

ing multiple refinable functions at our disposal in general presents us with

more freedom to retain or modify some basis properties. Just because a multi-

wavelet basis is orthogonal/biorthogonal on R, it does not automatically mean

the boundary elements derived from this basis are orthogonal/biorthogonal on

a bounded interval. The shorter the support of our basis is the easier time we

have in handling the boundaries. Some methods for handling the boundary

wavelets can be found in the literature [2, 43] and some (like matrix comple-

tion approach [2]) are much harder to implement than others. One of the most

convenient to use is perhaps finding a linear combination of boundary crossing

elements, but the linear combination has to be carefully selected in a way such

that the wavelet basis preserves its original properties on R. Even though

finding such a linear combination is not an insurmountable task, it is always

preferable if we can simply take the restriction of our wavelet basis on the

interval of interest. Furthermore, that way we have more flexibility in preserv-

ing orthogonality/biorthogonality property. Some existing basis constructions

just like in [16], though mathematically elegant, is extremely complicated to
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implement; additionally, checking the relevant assumptions is rather difficult.

Not only is the construction difficult to follow, the condition number of the

basis is very large, which impedes us from performing fast and accurate com-

putations. Also in the context of numerical analysis, many research studies

use refinable functions, which do not have analytic expression [9, 21, 52]; thus,

it adds a layer of inconvenience to the implementation. The calculations may

become less transparent than it should be. Consequently, in many applica-

tions, we want to restrict our attention on wavelet bases that have an analytic

expression.

Two driving motivations to use a wavelet basis in finding numerical solu-

tions to differential equations is its sparse representation and good localization

properties. Thus, we need to be able to exploit its potential so that the lin-

ear system coming from the Galerkin formulation is well conditioned. One

question that we can ask ourselves is what kind of conditions we can impose

to achieve a better sparsity. The construction of a multiwavelet basis on an

interval procedures proposed by [7, 22, 41] are perhaps some of the best avail-

able methods in the literature due to their simplicity and sparsity. Also, what

we observe is that most research papers pick a specific example of scalar re-

finable function/refinable vector function of interest and afterwards construct

the wavelets from it. Thus, the second natural question that still remains

unanswered is if there is an underlying theory that guarantees that the con-

struction method of interest can be applied to all refinable vector functions

satisfying some given conditions. If the answer to the last question is positive,

we are interested in the properties that we are able to retain after adapting a

multiwavelet basis on R to a bounded interval. Overall, there is indeed a lot
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of room for research in the subject of construction.

1.3 Contribution and Structure of This Thesis

One main goal of this thesis is to bring forth a systematic and simple construc-

tion of a multiwavelet basis on a bounded interval. Inspired by [10, 41, 43],

the construction that we present possesses orthogonality in the derivatives of

the multiwavelet basis across all scale levels, which results in an increased

sparsity of the stiffness and mass matrices. Since we are mainly interested in

Riesz wavelets, we shall call such wavelets mth derivative–orthogonal Riesz

wavelets. Furthermore, we present some necessary and sufficient conditions

as to when such a construction can be done. We show that our constructed

multiwavelet bases possess many desirable properties such as low condition

number, stability, short support, and good approximation order. The second

goal of this thesis is to provide some conditions that guarantee a Riesz wavelet

on R can be adapted to a Riesz wavelet on a bounded interval. As the third

goal of this thesis, we also evaluate the numerical performance of the newly

constructed bases in order to study their potential usefulness. Furthermore,

we shall see how easily we can handle the boundaries given the wavelet bases

we use.

This thesis has the following organization. The later part of Chapter 1 con-

tains some preliminaries, which will be pertinent to the discussions that ensue.

Chapter 2 presents the construction method that we propose including the un-

derlying theoretical justifications. A generalized version of folding operator is

introduced in Chapter 3 and we explain how using this operator can transform
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a Riesz wavelet on R to a Riesz wavelet on an interval. In Chapter 4, we con-

sider a condition number optimization problem and obtain appropriate scaling

coefficients such that our wavelet bases are optimally scaled in some sense; ad-

ditionally, we evaluate the performance of our newly constructed wavelet bases

by considering some numerical examples. Finally, we conclude this thesis by

outlining some future work in Chapter 5.

1.4 Preliminaries

This section introduces many definitions that will be used throughout the

entire thesis. We shall also review a few basic properties of B-splines and

Hermite splines, and state a few basic facts on bases and frames. The materials

of this chapter are mostly derived from [33, 44].

Definition 1.1. Suppose φ := (φ1, . . . , φr)
T, where φ� : R → C for all

� = 1, . . . , r. We call φ a refinable vector function if it satisfies the follow-

ing refinability condition

φ = 2
∑
k∈Z

a(k)φ(2 · −k),

where a ∈ (l0(Z))
r×r.

We have presented the definition of a refinable vector function in the time

domain. Once we introduce the definition of Fourier transform, we shall see the

definition becomes even easier to understand and write. In fact, the technical

details and calculations are much more convenient to handle in the frequency

domain.
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Definition 1.2. Let f ∈ L1(R). The Fourier transform of f is defined as

f̂(ξ) :=

∫
R

f(x)e−ixξdx, ∀ξ ∈ R.

Even though we only show the definition for the classical Fourier transform,

Fourier transform can actually be extended and applied to tempered distribu-

tions (i.e., a continuous linear functional on the space of all C∞(R) functions ϕ

satisfying the condition: ‖xαϕ(β)(x)‖C(R) < ∞ for every α, β ∈ N∪{0}) as well.
Meanwhile, the space of distributions on R is the dual of the function space

that contains all C∞ functions with compact support. Sobolev spaces are a

crucial ingredient in our wavelet construction and in the study of differential

equations.

Definition 1.3. A Sobolev space Hτ (R), where τ ∈ R, is a Hilbert space that

contains all tempered distributions f on R satisfying

‖f‖2Hτ (R) :=
1

2

∫
R

|f̂(ξ)|2(1 + |ξ|2)τdξ < ∞.

Assume further that m ∈ N∪{0}, a function f is in the Sobolev space Hm(R)

if and only if f, f ′, . . . , f (m−1) are all absolutely continuous and f , f ′, . . . ,

f (m−1), f (m) ∈ L2(R).

Also, when m = N∪ {0}, recall that the Sobolev norm can also be defined

as

‖f‖2Hm(R) :=
m∑
k=0

‖f (k)‖2L2(R)
=

m∑
k=0

∫
R

|f (k)(x)|2dx.

Now, we shall move on to the concept of frames, Bessel sequences, and Riesz

bases. They are all connected to one another. The last one is in fact a
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fundamental property that we need for our wavelet bases. Henceforth, let H

be a Hilbert space and Λ be an at most countable index set.

Definition 1.4. Suppose {hk}k∈Λ is a sequence in H . If there exists C > 0

such that for all h ∈ H ,

∑
k∈Λ

|〈h, hk〉|2 � C‖h‖2,

then we call {hk}k∈Λ a Bessel sequence.

Below is the definition of a frame. As mentioned before, even though we are

not dealing directly with frames in this thesis, it is very important to keep in

mind that a Riesz basis is roughly speaking a frame without any redundancy.

Definition 1.5. Suppose {hk}k∈Λ is a sequence in H . {hk}k∈Λ is a frame for

H if there exist C1, C2 > 0 such that for all h ∈ H , the following inequality

is satisfied:

C1‖h‖2 �
∑
k∈Λ

|〈h, hk〉|2 � C2‖h‖2.

The definition of a dual frame can be found below.

Definition 1.6. Suppose {hk}k∈Λ and {h̃k}k∈Λ are sequences in H . {h̃k}k∈Λ
is a dual frame of {hk}k∈Λ if each {hk}k∈Λ and {h̃k}k∈Λ is a frame for H and

for all f, g ∈ H , we have

〈f, g〉 =
∑
k∈Λ

〈f, h̃k〉〈hk, g〉. (1.1)

Finally, we present the definition of a Riesz basis.
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Definition 1.7. Suppose {hk}k∈Λ is a sequence in H . Then {hk}k∈Λ is a

Riesz basis if and only if the linear span of {hk}k∈Λ is dense in H and {hk}k∈Λ
is a Riesz sequence. I.e., there are C3, C4 > 0 such that

C3

∑
k∈Λ

|ck|2 �
∥∥∥∥∥∑
k∈Λ

ckhk

∥∥∥∥∥
2

� C4

∑
k∈Λ

|ck|2 (1.2)

for all finitely supported sequences {ck}k∈Λ.

The previous definitions build up to the theorem below, which we shall rely

heavily on when proving the results in Chapter 3.

Theorem 1.1. [33, Corollary 4.2.8] Suppose {hk}k∈Λ and {h̃k}k∈Λ are se-

quences in H . Then ({h̃k}k∈Λ, {hk}k∈Λ) is a pair of biorthogonal bases for

H if and only if ({h̃k}k∈Λ, {hk}k∈Λ) is a pair of dual frames for H and

〈h̃j, hk〉 = δj,k for all j, k ∈ Λ, where δj,k = 1 if j = k and δj,k = 0 if j �= k

(the latter is what we call the biorthogonality condition).

The following three related definitions will be heavily used in Chapter 2.

Definition 1.8. Define the wavelet affine system in the Sobolev space Hτ (R)

by

ASτ
0(φ;ψ) := {φ�(· − k) : k ∈ Z, 1 ≤ � ≤ r}

∪ {2j(1/2−τ)ψ�(2
j · −k) : j ∈ N0, k ∈ Z, 1 ≤ � ≤ s

}
.

By convention, we define AS(φ;ψ) := AS0
0(φ;ψ). It is also worth mentioning

that
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ASJ(φ;ψ) :=
{
2J/2φ�(2

J · −k) : k ∈ Z, 1 � � � r
}

∪ {2j/2ψ�(2
j · −k) : j � J, k ∈ Z, 1 � � � s

}
,

since we shall see ASJ(φ;ψ) a few times in Chapter 3. The definition of a Riesz

wavelet is stated below.

Definition 1.9. {φ, ψ} is a Riesz wavelet in Hτ (R) with τ ∈ R if ASτ
0(φ;ψ)

is a Riesz basis for Hτ (R). I.e, (1) the linear span of ASτ
0(φ;ψ) is dense in

Hτ (R), (2) there exist C1, C2 > 0 such that

C1

( r∑
�=1

∑
k∈Z

|v�,k|2 +
∞∑
j=0

s∑
�=1

∑
k∈Z

|w�,j;k|2
)

�
∥∥∥ r∑

�=1

∑
k∈Z

v�,kφ�(· − k) +
∞∑
j=0

s∑
�=1

∑
k∈Z

w�,j;k2
j(1/2−τ)ψ�(2

j · −k)
∥∥∥2
Hτ (R)

� C2

( r∑
�=1

∑
k∈Z

|v�,k|2 +
∞∑
j=0

s∑
�=1

∑
k∈Z

|w�,j;k|2
)

for all finitely supported sequences {v�,k}k∈Z,1���r and {w�,j;k}j∈N0,k∈Z,1���s.

We clarify what we mean by a biorthogonal wavelet in the definition below.

Definition 1.10. ({φ̃; ψ̃}, {φ;ψ}) is a biorthogonal wavelet in (H−τ (R), Hτ (R))

if (1) ASτ
0(φ;ψ) is a Riesz basis for Hτ (R) and AS−τ

0 (φ̃; ψ̃) is a Riesz basis for

H−τ (R), (2) ASτ
0(φ;ψ) and AS−τ

0 (φ̃; ψ̃) are biorthogonal to each other.

In particular, if ({φ̃; ψ̃}, {φ;ψ}) is indeed a biorthogonal wavelet in

(H−τ (R), Hτ (R)), then it admits the following representation

f =
r∑

�=1

∑
k∈Z

〈f, φ̃�(· − k)〉φ�(· − k)

12



+
r∑

�=1

∞∑
j=0

∑
k∈Z

〈f, 2j(1/2+τ)ψ̃�(2
j · −k)〉2j(1/2−τ)ψ�(2

j · −k)

for all f ∈ Hτ (R) and the representation above converges unconditionally in

Hτ (R).

Whenever we analyze a particular wavelet basis, we always want to know

the following key characteristics: sum rule (polynomial reproduction capa-

bility), vanishing moments, and the smoothness of the filter of the refinable

vector function itself. For the sake of convenience, we review the definitions

of the three aforementioned terminologies below.

Definition 1.11. Suppose a ∈ (l0(Z))
r×r. The mask a has order m sum rules

with a matching filter v if there exists v ∈ (l0(Z))
1×r such that v̂(0) �= 0, and

v̂(2ξ)â(ξ) = v̂(ξ) + O(|ξ|m) and v̂(2ξ)â(ξ + π) = O(|ξ|m) as ξ → 0.

Since the order of sum rules basically indicates polynomial reproduction

ability, it is worth pointing out that these two are directly related to Strang-

Fix condition (see [33, Section 5.5] and references therein). In addition to

the definition of sum rules, there is also an important result [36, Theorem

2.3] that helps us to study the sum rules order in a multiwavelet setting.

More specifically, [36, Theorem 2.3] states that if ϕ is a compactly supported

refinable vector function/distribution and a is its matrix-valued filter satisfying

order m sum rules with a matching filter v ∈ (l0(Z))
1×r and v̂(0) �= 1, then

there exists a strongly invertible r×r matrix Û(ξ) (i.e, det (Û(ξ)) is a nonzero

monomial) whose entries consist of 2π-periodic trigonometric polynomials such
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that

(Û(2ξ))−1â(ξ)Û(ξ) =

⎡⎢⎣2−m(1 + e−iξ)mû1(ξ) 2−m(1− e−i2ξ)mû2(ξ)

û3(ξ) û4(ξ)

⎤⎥⎦ , (1.3)

where û1(0) = 1 and

u1 ∈ l0(Z), u2 ∈ (l0(Z))
1×(r−1), (1.4)

u3 ∈ (l0(Z))
(r−1)×1, u4 ∈ (l0(Z))

(r−1)×(r−1).

In addition, v̂(ξ)Û(ξ) = (1 + O(|ξ|),O(|ξ|m), . . . ,O(|ξ|m)) as ξ → 0. Further-

more, if v̂(0)φ̂(0) = 1 then the refinable vector function φ := (φ1, . . . , φr)
T,

φ̂(ξ) = (Û(ξ))−1ϕ(ξ) satisfies φ̂(2ξ) = (Û(2ξ))−1â(ξ)Û(ξ)ϕ̂(ξ) as well as

φ̂1(0) = 1 and φ̂1(ξ + 2πk) = O(|ξ|m), ξ → 0, k ∈ Z\{0}. (1.5)

Definition 1.12. Define ψ := (ψ1, . . . , ψs)
T. For some ν � 0, a function ψ�

has ν vanishing moments if ψ̂�(ξ) = O(|ξ|ν) a.e. ξ ∈ [−π, π]; or equivalently,

∫
R

xkψ�(x)dx = 0

for all k = 0, . . . , ν − 1. Lastly, we define vm(ψ) := min1���s sup{ν� :

ψ� has ν� vanishing moments}.

Definition 1.13. Let f be a tempered distribution. We define the smoothness

of f as

sm(f) := sup{τ ∈ R : f ∈ Hτ (R)}. (1.6)
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By convention, if the right hand side of (1.6) is empty, then we have sm(f) =

−∞. Additionally, if we have a vector function f := (f1, . . . , fr)
T, then

sm(f) := min(sm(f1), . . . , sm(fr)).

Bracket product serves as an important tool to analyze shift-invariant

spaces. If f ∈ (Hτ (R))r×t and g ∈ (H−τ (R))s×t, then the bracket product

is defined as

[f, g]τ (ξ) :=
∑
k∈Z

f(ξ + 2πk)g(ξ + 2πk)
T
(1 + |ξ|2)τ

for all ξ ∈ R. Define [f, g](ξ) := [f, g]0(ξ). The integer shifts of a compactly

supported refinable vector function/distribution φ are stable if and only if

span{φ̂(ξ + 2πk) : k ∈ Z} = Cr for all ξ ∈ R.

We close this chapter by presenting some basic properties of B-splines and

Hermite splines. Even though our construction method applies to a large

class of refinable vector functions and we never assume that the refinable

vector functions necessarily have an analytic expression, it is worthwhile to

review the properties of these splines. One reason is because these splines

have been used multitudinously in numerical analysis due to their polynomial

expressions. Additionally, in order to avoid being caught in the technicalities

of the construction, we shall apply our construction method to these splines.

Recall that the B-spline function of order n, Bn, is defined as B1 := χ(0,1]

and Bn := Bn−1 ∗ B1 =
∫ 1

0
Bn−1(· − t)dt. Furthermore, the Fourier transform

of B-spline of order n satisfies the following refinement equation: B̂n(2ξ) =

âBn (ξ)B̂n(ξ), where âBn (ξ) := 2−n(1 + e−iξ)n. The filter aBn has order n sum

rules. Later on, we shall see that Hermite cubic splines serve as an important
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example of piecewise polynomial refinable vector function with multiplicity

r = 2. Firstly, recall that Hermite cubic splines take the following form

φ1(x) = (1− x)2(1 + 2x)χ[0,1] + (1 + x)2(1− 2x)χ[−1,0),

φ2(x) = (1− x)2xχ[0,1] + (1 + x)2xχ[−1,0).

(1.7)

The associated filter a of the above refinable vector function is

a(−1) =

⎡⎢⎣ 1
4

3
8

− 1
16

− 1
16

⎤⎥⎦ , a(0) =

⎡⎢⎣1
2

0

0 1
4

⎤⎥⎦ , a(1) =

⎡⎢⎣ 1
4

−3
8

1
16

− 1
16

⎤⎥⎦ , (1.8)

with a(k) = 0 for all k ∈ Z\{−1, 0, 1}. The filter a has order 4 sum rules. One

of the most attractive properties of Hermite cubic splines is its interpolating

property: φ1(k) = δ(k), φ′
1(k) = 0, φ2(k) = 0, and φ′

2(k) = δ(k) for all

k ∈ Z and δ(k) = 1 if and only if k = 0. We shall witness how pivotal this

interpolating property is in satisfying the boundary condition of differential

equation. For r = 2, there are 2 other Hermite splines (quadratic and linear)

that are of interest to us and will be introduced in due course. Even though

this thesis solely considers Hermite splines of multiplicity r = 2, we would

like to point out that there exist Hermite splines (interpolants) with a higher

multiplicity (i.e., with r > 2), which have been well studied in [30, 33, 57].
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Chapter 2

Construction of mth-Order

Derivative-Orthogonal Riesz

Wavelets in Sobolev Spaces

In this chapter, we present our proposed construction. Two crucial conditions

that we impose, when we generate the wavelets from our choice of refinable

vector functions are

〈ψ(m), φ(m)(· − k)〉 = 0, ∀ k ∈ Z, (2.1)

〈ψ(m)(2j · −k), ψ(m)(2j
′ · −k′)〉 = 0, ∀ k, k′ ∈ Z, j, j′ ∈ N0 with j �= j′.

(2.2)

What (2.1) and (2.2) ultimately mean is that we want our Riesz wavelets to

have mth derivative-orthogonality across all levels. For this reason, we call a

Riesz wavelet {φ;ψ} in the Sobolev space Hm(R) satisfying conditions (2.1)
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and (2.2) an mth-order derivative-orthogonal Riesz wavelet in Hm(R).

This type of construction has been used before [7, 10, 22, 41, 43]. However,

the authors only consider a specific example of refinable scalar/vector func-

tions. One major goal of this chapter is to provide necessary and sufficient

conditions as to when such a construction can be applied. At the same time,

the results we present in this chapter essentially give an affirmative answer to

the question whether there exists a theory that unify all construction examples

in [7, 10, 22, 41, 43]. In order to better understand how the construction works,

we apply the mth-order derivative-orthogonal construction to some B-splines

and Hermite splines. All of the results and the proofs in this chapter are taken

directly from [35].

We first need to state a lemma, which will be used multiple times in the

proofs.

Lemma 2.1. [33, Lemma 5.5.6] Let m ∈ N0 and η be a compactly supported

distribution on R such that η̂(ξ + 2πk) = O(|ξ|m), ξ → 0, for all k ∈ Z.

Define [n−, n+] := fsupp(η). Then η := ∇mg, S(η) = S(g), where S(η) =

S((η1, . . . , ηr)
T) := {v1 ∗ η1 + · · · + vr ∗ ηr : v1, . . . vr ∈ l(Z)}, and fsupp(g) ⊆

[n−, n+ − m], where g is a compactly supported distribution defined by g :=∑∞
k=0

(m−1+k)!
(m−1)!k!

η(· − k).

Proposition 2.1. Let φ = (φ1, . . . , φr)
T and ψ = (ψ1, . . . , ψr)

T be vector func-

tions in the Sobolev space Hτ (R) with τ ∈ R such that the refinable structure:

φ̂(2ξ) = â(ξ)φ̂(ξ), ψ̂(2ξ) = b̂(ξ)φ̂(ξ) (2.3)

holds for some a, b ∈ (l0(Z))
r×r. Suppose that {φ;ψ} is a Riesz wavelet in the
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Sobolev space Hτ (R). Then there exist vector functions φ̃ = (φ̃1, . . . , φ̃r)
T and

ψ̃ = (ψ̃1, . . . , ψ̃r)
T in H−τ (R) such that ({φ̃; ψ̃}, {φ;ψ}) is a pair of biorthogo-

nal wavelets in (H−τ (R), Hτ (R)) and

̂̃φ(2ξ) = ̂̃a(ξ)̂̃φ(ξ) and ̂̃ψ(2ξ) = ̂̃b(ξ)̂̃φ(ξ), a.e. ξ ∈ R (2.4)

for some r × r matrices ̂̃a and ̂̃b with entries in L∞(T) satisfying

⎡⎢⎣̂̃a(ξ) ̂̃a(ξ + π)̂̃b(ξ) ̂̃b(ξ + π)

⎤⎥⎦
⎡⎢⎣ â(ξ)

T
b̂(ξ)

T

â(ξ + π)
T

b̂(ξ + π)
T

⎤⎥⎦ = I2r, (2.5)

for almost every ξ ∈ R.

Proof. We first assume that ASτ
0(φ;ψ) is a Riesz basis for Hτ (R). Since

H−τ (R) is the dual space of Hτ (R), ASτ
0(φ;ψ) has a unique dual Riesz ba-

sis for H−τ (R). More specifically, there are vector functions φ̃ := (φ̃1, . . . , φ̃r)
T

and ψ̃ := (ψ̃1, . . . , ψ̃r)
T in H−τ (R) such that

〈φ̃�, φ�〉 = 1 and 〈φ̃�, h〉 = 0 ∀h ∈ ASτ
0(φ;ψ)\{φ�}, � = 1, . . . , r (2.6)

and

〈ψ̃�, ψ�〉 = 1 and 〈ψ̃�, h〉 = 0 ∀h ∈ ASτ
0(φ;ψ)\{ψ�}, � = 1, . . . , r. (2.7)

By the refinable structure in (2.3), each entry in ψ(2j · −k) with j < 0 and

k ∈ Z is a finite linear combination of φ�(· − k), � = 1, . . . , r and k ∈ Z. Now

by applying a similar argument as in the proof of [32, Theorem 8] for the case
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τ = 0, it follows that AS−τ
0 (φ̃; ψ̃) is biorthogonal to ASτ

0(φ;ψ). Because a given

Riesz basis has a unique dual Riesz basis, ({φ̃; ψ̃}, {φ;ψ}) is a biorthogonal

wavelet in the pair of Sobolev spaces (H−τ (R), Hτ (R)). In particular, we have

the following representation for φ̃(2−1·):

φ̃(2−1·) =
∑
k∈Z

〈φ̃(2−1·), φ(· − k)〉φ̃(· − k)

+
∞∑
j=0

∑
k∈Z

〈φ̃(2−1·), 2j(1/2−τ)ψ(2j · −k)〉2j(1/2+τ)ψ̃(2j · −k).

(2.8)

Since ASτ
0(φ;ψ) and AS−τ

0 (φ̃; ψ̃) are biorthogonal, it must be the case that

〈φ̃(2−1·), 2j(1/2−τ)ψ(2j · −k)〉 = 〈φ̃, 2j(1/2−τ)+1ψ(2j+1 · −k)〉 = 0. Hence, (2.8)

yields φ̃(2−1·) =
∑

k∈Z〈φ̃(2−1·), φ(· − k)〉φ̃(· − k). In other words, we havễφ(2ξ) = ̂̃a(ξ)̂̃φ(ξ) with ̂̃a(ξ) := 1
2

∑
k∈Z〈φ̃(2−1·), φ(· − k)〉e−ikξ = [̂̃φ(2·), φ̂](ξ).

Since ASτ
0(φ;ψ) is a Bessel sequence in Hτ (R), each entry in [φ̂, φ̂]τ belongs to

L∞(T). Similarly, each entry in [̂̃φ, ̂̃φ]−τ belongs to L∞(T). We can see that

each entry in ̂̃a belongs to L∞(T) by applying the Cauchy-Schwarz inequality

to the identity ̂̃a(ξ) = [̂̃φ(2·), φ̂](ξ). The second identity in (2.4) can be proved

in the same fashion and every entry in ̂̃b belongs to L∞(T).

Since ASτ
0(φ;ψ) and AS−τ

0 (φ̃; ψ̃) are biorthogonal, we have [̂̃φ, φ̂] = Ir,

[̂̃φ, ψ̂] = 0 and [̂̃ψ, φ̂] = 0, [̂̃ψ, ψ̂] = Ir. By a routine calculation, using (2.3) and

(2.4), we deduce that

Ir = [̂̃φ, φ̂](2ξ) = [̂̃a(·/2)̂̃φ(·/2), â(·/2)φ̂(·/2)](2ξ)
= ̂̃a(ξ)[̂̃φ, φ̂](ξ)â(ξ)T + ̂̃a(ξ + π)[̂̃φ, φ̂](ξ + π)â(ξ + π)

T

= ̂̃a(ξ)â(ξ)T + ̂̃a(ξ + π)â(ξ + π)
T
.
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By a similar fashion, we conclude from [̂̃ψ, φ̂] = 0 that ̂̃b(ξ)â(ξ)T + ̂̃b(ξ +

π)â(ξ + π)
T
= 0; we conclude from [̂̃ψ, ψ̂] = Ir that

̂̃b(ξ)̂b(ξ)T+̂̃b(ξ+π)̂b(ξ + π)
T

=

Ir. Thus, (2.5) holds.

Theorem 2.1. Let φ = (φ1, . . . , φr)
T be a compactly supported refinable vector

function in Hm(R) with m ∈ N0 such that the integer shifts of φ are stable

and φ̂(2ξ) = â(ξ)φ̂(ξ) for some a ∈ (l0(Z))
r×r. Suppose that â(ξ) takes the

form in (1.3) with u1, . . . , u4 in (1.4) and the relation in (1.5) is satisfied.

Then there exists a unique compactly supported function η ∈ L2(R) such that

φ
(m)
1 = ∇mη, where ∇η := η − η(· − 1). Define a compactly supported vector

function φ̊ := (η, φ
(m)
2 , . . . , φ

(m)
r )T in L2(R). Then

(1) φ̊ satisfies the refinement equation
̂̊
φ(2ξ) = ̂̊a(ξ)̂̊φ(ξ) with a filter å ∈

(l0(Z))
r×r defined by

̂̊a(ξ) = 2m(Em(2ξ))
−1â(ξ)Em(ξ) with Em(ξ) :=

⎡⎢⎣(1− e−iξ)m

Ir−1

⎤⎥⎦ ;
(2.9)

(2) The integer shifts of the compactly supported vector function φ̊ ∈ (L2(R))
r

are stable;

(3) Under the extra condition for r > 1 that (1.5) holds with m being re-

placed by 2m, H(ξ) := (Em(ξ))
−1[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T
and

G(ξ) := Em(ξ)[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

−T
are r×r matrices of 2π-periodic trigono-

metric polynomials such that det(H(ξ)) �= 0 and det(G(ξ)) �= 0 for all

ξ ∈ R.
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Proof. Using (1.5), we first show the existence of a unique compactly supported

function η ∈ L2(R) such that φ
(m)
1 = ∇mη. Since φ̂

(m)
1 (ξ) = (iξ)mφ̂1(ξ), we

immediately have φ̂
(m)
1 (ξ + 2πk) = O(|ξ|m) as ξ → 0 for all k ∈ Z from (1.5).

Since φ1 ∈ Hm(R), φ
(m)
1 is a compactly supported function in L2(R). By

Lemma 2.1, there is a unique compactly supported function η ∈ L2(R) such

that φ
(m)
1 = ∇mη, where η is given by η =

∑∞
k=0

(m−1+k)!
(m−1)!k!

φ
(m)
1 (· − k).

By the definition of the filter å in (2.9), (1.3) gives us

̂̊a(ξ) =
⎡⎢⎣ û1(ξ) û2(ξ)

2m(1− e−iξ)mû3(ξ) 2mû4(ξ)

⎤⎥⎦ , (2.10)

which means å is a finitely supported filter in (l0(Z))
r×r. Having φ

(m)
1 = ∇mη

means we have (iξ)mφ̂1(ξ) = φ̂
(m)
1 (ξ) = (1− e−iξ)mη̂(ξ). That is,

η̂(ξ) = (1−e−iξ)−mφ̂
(m)
1 (ξ) = (1−e−iξ)−m(iξ)mφ̂1(ξ),

̂̊
φ(ξ) = (Em(ξ))

−1φ̂(m)(ξ).

(2.11)

By the definition of φ̊, we have
̂̊
φ(ξ) = (iξ)mEm(ξ)

−1φ̂(ξ) and consequently,

̂̊a(ξ)̂̊φ(ξ) = 2m(iξ)m(Em(2ξ))
−1â(ξ)φ̂(ξ) = (i2ξ)m(Em(2ξ))

−1φ̂(2ξ) =
̂̊
φ(2ξ).

This shows the refinable structure of φ̊; i.e.,
̂̊
φ(2ξ) = ̂̊a(ξ)̂̊φ(ξ). Item (1) holds.

We now prove item (2). If m = 0, then φ̊ = φ and item (2) immediately

holds. Assume m > 0. Let ϕ := (φ2, . . . , φr)
T. Suppose that there exist

ξ0 ∈ (−π, π], c1 ∈ C and a row vector c2 ∈ C1×(r−1) such that

(c1, c2)
̂̊
φ(ξ0+2πk) = c1η̂(ξ0+2πk)+c2ϕ̂(m)(ξ0+2πk) = 0, ∀ k ∈ Z. (2.12)
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We want to show that both c1 and c2 have to be zero by analyzing two cases.

Case 1: ξ0 ∈ (−π, π]\{0}. Noting that 1 − e−iξ0 �= 0 and ξ0 �= 0, we have

from (2.11) that η̂(ξ0 + 2πk) = im(ξ0 + 2πk)m(1− e−iξ0)−mφ̂1(ξ0 + 2πk) for all

k ∈ Z. We have from (2.12) and ϕ̂(m)(ξ) = (iξ)mϕ̂(ξ) that

0 = c1η̂(ξ0 + 2πk) + c2ϕ̂(m)(ξ0 + 2πk) = im(ξ0 + 2πk)m(c̃1, c2)φ̂(ξ0 + 2πk)

with c̃1 := c1(1 − e−iξ0)−m. Due to the stability of the integer shifts of φ and

ξ0 + 2πk �= 0 for all k ∈ Z, the above identity yields c̃1 = c1(1− e−iξ0)−m = 0

and c2 = 0. So, c1 = 0 by 1− e−iξ0 �= 0.

Case 2: ξ0 = 0. Then (2.12) implies that we have c1η̂(0) + c2ϕ̂(m)(0) = 0.

Since ϕ̂(m)(ξ) = (iξ)mϕ̂(ξ) andm > 0, we have ϕ̂(m)(0) = 0. Hence, c1η̂(0) = 0.

By (1.5) and (2.11), we must have η̂(0) = φ̂1(0) = 1, which means that

0 = c1η̂(0) = c1. This proves c1 = 0. Plugging c1 = 0 back to (2.12), we have

c2(i2πk)
mϕ̂(2πk) = c2ϕ̂(m)(2πk) = 0 for all k ∈ Z. Hence, c2ϕ̂(2πk) = 0 for

all k ∈ Z\{0}. Let c̃1 := −c2ϕ̂(0). Then c̃1φ̂1(0)+ c2ϕ̂(0) = c̃1+ c2ϕ̂(0) = 0 by

φ̂1(0) = 1. By (1.5) and m > 0, we conclude that c̃1φ̂1(2πk) + c2ϕ̂(2πk) = 0

for all k ∈ Z\{0}. That is, we proved

(c̃1, c2)φ̂(2πk) = c̃1φ̂1(2πk) + c2ϕ̂(2πk) = 0, ∀ k ∈ Z,

from which c2 = 0 by the stability of the integer shifts of φ. Item 2 holds.

We move on to item (3). Since all the entries in φ̊ are compactly supported

functions in L2(R), we conclude that [
̂̊
φ,
̂̊
φ](ξ) =

∑
k∈Z〈φ̊, φ̊(· − k)〉e−ikξ must

be an r × r matrix of 2π-periodic trigonometric polynomials. Item 2 yields
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det([
̂̊
φ,
̂̊
φ](ξ)) �= 0 for all ξ ∈ R. If r = 1, then H(ξ) = (−1)meimξ[

̂̊
φ,
̂̊
φ](ξ) and

G(ξ) = (−1)me−imξ[
̂̊
φ,
̂̊
φ](ξ). Item (3) easily holds for r = 1.

For the case r > 1, we prove item (3) with the extra condition that (1.5)

holds with m being replaced by 2m. By the definition of the matrix H in item

(3), we have det(H(ξ)) = (−1)meimξ det([
̂̊
φ,
̂̊
φ](ξ)) �= 0 for all ξ ∈ R. Since

φ̊ = (η, (ϕ(m))T)T with ϕ = (φ2, . . . , φr)
T, we have

H(ξ) = (Em(ξ))
−1[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T

=

⎡⎢⎣(1− e−iξ)−m

Ir−1

⎤⎥⎦
⎡⎢⎣ [η̂, η̂](ξ) [η̂, ϕ̂(m)](ξ)

[ϕ̂(m), η̂](ξ) [ϕ̂(m), ϕ̂(m)](ξ)

⎤⎥⎦
⎡⎢⎣(1− eiξ)m

Ir−1

⎤⎥⎦
=

⎡⎢⎣ (−1)meimξ[η̂, η̂](ξ) (1− e−iξ)−m[η̂, ϕ̂(m)](ξ)

(1− eiξ)m[ϕ̂(m), η̂](ξ) [ϕ̂(m), ϕ̂(m)](ξ)

⎤⎥⎦ .
Since all η and ϕ(m) are compactly supported functions in L2(R), it follows di-

rectly that [η̂, η̂], [η̂, ϕ̂(m)], [ϕ̂(m), η̂] and [ϕ̂(m), ϕ̂(m)] are all 2π-periodic trigono-

metric polynomials. To prove that H(ξ) is a matrix of 2π-periodic trigonomet-

ric polynomials, we still need to show that all entries in (1−e−iξ)−m[η̂, ϕ̂(m)](ξ)

are 2π-periodic trigonometric polynomials. By ϕ̂(m)(ξ) = (iξ)mϕ̂(ξ) and the

definition of the bracket product,

[η̂, ϕ̂(m)](ξ) =
∑
k∈Z

η̂(ξ + 2πk)(i(ξ + 2πk))mϕ̂(ξ + 2πk)
T

= (−1)m
∑
k∈Z

D̂mη(ξ)ϕ̂(ξ + 2πk)
T
= (−1)m[D̂mη, ϕ̂](ξ),

where Dmη denotes the mth-order distributional derivative of η. Since (1.5)
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holds with m being replaced by 2m, we have that η̂(ξ + 2πk) = O(|ξ|m) as

ξ → 0 for all k ∈ Z\{0} by (2.11) and calculating the Taylor expansion. Since

D̂mη(ξ) = (iξ)mη̂(ξ), we have D̂mη(ξ) = O(|ξ|m) as ξ → 0. Consequently,

we proved D̂mη(ξ + 2πk) = O(|ξ|m) as ξ → 0 for all k ∈ Z. Noting that

Dmη ∈ H−m(R) by η ∈ L2(R) and Lemma 2.1, we conclude that there is a

unique compactly supported function η̊ ∈ H−m(R) such that

Dmη = ∇mη̊, i.e., D̂mη(ξ) = (1− e−iξ)m̂̊η(ξ). (2.13)

Consequently,

(1− e−iξ)−m[η̂, ϕ̂(m)](ξ) = (1− e−iξ)−m(−1)m[D̂mη, ϕ̂](ξ)

= (1− e−iξ)−m(−1)m(1− e−iξ)m[̂̊η, ϕ̂](ξ)
= (−1)m[̂̊η, ϕ̂](ξ)
= (−1)m

∑
k∈Z

〈η̊, ϕ(· − k)〉e−ikξ.

Since both η̊ ∈ H−m(R) and ϕ ∈ (Hm(R))r−1 have compact support, the above

identity proves that [̂̊η, ϕ̂](ξ) is indeed a well-defined vector of 2π-periodic

trigonometric polynomials. So, (1 − e−iξ)−m[η̂, ϕ̂(m)](ξ) must be a vector of

2π-periodic trigonometric polynomials. Consequently, H(ξ) is a matrix of 2π-

periodic trigonometric polynomials. The claim in item (3) for the matrix G(ξ)

can be proved similarly.

Theorem 2.2. Let φ = (φ1, . . . , φr)
T and ψ = (ψ1, . . . , ψr)

T be compactly

supported vector functions in the Sobolev space Hm(R) with m ∈ N0 such that

the refinable structure φ̂(2ξ) = â(ξ)φ̂(ξ) holds a.e. ξ ∈ R for some filters
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a, b ∈ (l0(Z))
r×r. If {φ;ψ} is a Riesz wavelet in the Sobolev space Hm(R)

satisfying the mth-order derivative orthogonality conditions in (2.1) and (2.2)

(i.e., {φ;ψ} is an mth-order derivative-orthogonal Riesz wavelet in Hm(R)),

then

(i) the integer shifts of φ are stable;

(ii) the high-pass filter b satisfies

b̂(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)
T
+ b̂(ξ+π)[φ̂(m), φ̂(m)](ξ+π)â(ξ + π)

T
= 0 (2.14)

and

det({â; b̂})(ξ) := det

⎛⎜⎝
⎡⎢⎣â(ξ) â(ξ + π)

b̂(ξ) b̂(ξ + π)

⎤⎥⎦
⎞⎟⎠ �= 0, ∀ ξ ∈ R. (2.15)

Conversely, if items (i) and (ii) are satisfied, then the refinement filter a must

have at least order 2m sum rules (i.e., sr(a) � 2m) and {φ;ψ} is an mth-order

derivative-orthogonal Riesz wavelet in the Sobolev space Hm(R) satisfying both

(2.1) and (2.2).

Proof. Necessity (⇒). Since ASm
0 (φ;ψ) is a Riesz basis for Hm(R), the se-

quence {φ�(·−k) : k ∈ Z, � = 1, . . . , r} has to be a Riesz sequence in Hm(R).

Consequently, the integer shifts of the compactly supported vector function φ

in Hm(R) must be stable. Item (i) holds.

Proposition 2.1 guarantees the existence of r× r matrices ̂̃a and ̂̃b with all

entries from L∞(T) such that (2.5) holds. From (2.5), we obtain

det({̂̃a; ̂̃b})(ξ)det({â; b̂})(ξ) = 1 for almost every ξ ∈ R. Since all the entries

26



of the matrices ̂̃a and ̂̃b belong to L∞(T), noting that det({â; b̂})(ξ) is a 2π-

periodic trigonometric polynomial, we must have (2.15).

The refinable structure in (2.3) yields

φ̂(m)(2ξ) = 2mâ(ξ)φ̂(m)(ξ) and ψ̂(m)(2ξ) = 2mb̂(ξ)φ̂(m)(ξ). (2.16)

Hence, (2.16) gives us

[ψ̂(m), φ̂(m)](2ξ)

= 22m [̂b(·/2)φ̂(m)(·/2), â(·/2)φ̂(m)(·/2)](2ξ)

= 22mb̂(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)
T
+ 22mb̂(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π)

T
.

(2.17)

Recall that [ψ̂(m), φ̂(m)](ξ) =
∑

k∈Z〈ψ(m), φ(m)(· − k)〉e−ikξ, which means that

(2.1) is equivalent to [ψ̂(m), φ̂(m)] = 0. Thus, (2.14) follows directly from (2.1)

and (2.17).

Sufficiency (⇐). By (2.14) and (2.17), we have [ψ̂(m), φ̂(m)] = 0. Hence,

(2.1) holds. By the refinable structure in (2.3), we see that each entry in

ψ(2j ·−k) with j < 0 and k ∈ Z is a finite linear combination of φ�(·−k), k ∈ Z

and � = 1, . . . , r. Thus, (2.2) directly comes from (2.1).

We shall show that the filter a must have at least order 2m sum rules, i.e.,

sr(a) � 2m. There is nothing to prove for m = 0, since any filter a satisfies

sr(a) � 0. Henceforth, let us assume m > 0.

By (2.15), we can define r × r matrices ̂̃a and ̂̃b of 2π-periodic continuous
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functions through

⎡⎢⎣̂̃a(ξ) ̂̃a(ξ + π)̂̃b(ξ) ̂̃b(ξ + π)

⎤⎥⎦ :=

⎡⎢⎣ â(ξ)
T

b̂(ξ)
T

â(ξ + π)
T

b̂(ξ + π)
T

⎤⎥⎦
−1

, ξ ∈ R. (2.18)

Then (2.5) trivially holds and all the entries in ̂̃a and ̂̃b are continuous functions
taking the form

p(ξ)

q(ξ)
with 2π-periodic trigonometric polynomials p and q, q(ξ) �= 0 ∀ ξ ∈ R.

(2.19)

The first identity in (2.16) gives

â(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)
T
+ â(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π)

T

= 2−2m[φ̂(m), φ̂(m)](2ξ). (2.20)

Combining (2.20) and (2.14) yields

⎡⎢⎣â(ξ) â(ξ + π)

b̂(ξ) b̂(ξ + 2π)

⎤⎥⎦
⎡⎢⎣[φ̂(m), φ̂(m)](ξ) 0

0 [φ̂(m), φ̂(m)](ξ + π)

⎤⎥⎦
⎡⎢⎣ â(ξ)

T

â(ξ + π)
T

⎤⎥⎦
=

⎡⎢⎣2−2m[φ̂(m), φ̂(m)](2ξ)

0

⎤⎥⎦ .
Applying (2.18), the above identity becomes
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⎡⎢⎣[φ̂(m), φ̂(m)](ξ) 0

0 [φ̂(m), φ̂(m)](ξ + π)

⎤⎥⎦
⎡⎢⎣ â(ξ)

T

â(ξ + π)
T

⎤⎥⎦
=

⎡⎢⎣ ̂̃a(ξ)T ̂̃b(ξ)T
̂̃a(ξ + π)

T ̂̃b(ξ + π)
T

⎤⎥⎦
⎡⎢⎣2−2m[φ̂(m), φ̂(m)](2ξ)

0

⎤⎥⎦ ,
from which we obtain

â(ξ)[φ̂(m), φ̂(m)](ξ) = 2−2m[φ̂(m), φ̂(m)](2ξ)̂̃a(ξ), (2.21)

where we recall that [φ̂(m), φ̂(m)](ξ) = [φ̂(m), φ̂(m)](ξ)
T

. Since φ ∈ (Hm(R))r

and the integer shifts of φ are stable, the filter â must have at least order m

sum rules (see [31, Theorem 4.3]); that is, v̂(2ξ)â(ξ) = v̂(ξ) + O(|ξ|m) and

v̂(2ξ)â(ξ + π) = O(|ξ|m) as ξ → 0 with a matching filter v ∈ (l0(R))
1×r and

v̂(0) �= 0. Since the integer shifts of φ ∈ (L2(R))
r are stable, 1 must be a

simple eigenvalue of â(0) by [31, Proposition 3.1]. Consequently, noting that

â(0)φ̂(0) = φ̂(0) and υ̂(0)â(0) = υ̂(0), we must have v̂(0)φ̂(0) �= 0. With-

out loss of generality, we can assume v̂(0)φ̂(0) = 1, which can be achieved

by multiplying φ with a nonzero constant. By [31, Proposition 2.4] or [33,

Theorems 5.6.4 and 5.6.5], without loss of generality, we can assume that â

takes the normal form in (1.3) and the relation in (1.5) is satisfied. Define

φ̊ := (η, φ
(m)
2 , . . . , φ

(m)
r )T as in Theorem 2.1 and the filter å ∈ (l0(Z))

r×r as in

(2.9). Then åmust take the form in (2.10) and items (1) and (2) in Theorem 2.1

hold. Noting that φ̂(m)(ξ) = Em(ξ)
̂̊
φ(ξ) by (2.11), we have [φ̂(m), φ̂(m)](ξ) =

Em(ξ)[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T
. By (2.9), we have â(ξ) = 2−mEm(2ξ)̂̊a(ξ)(Em(ξ))

−1.
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Now the identity (2.21) becomes

2−mEm(2ξ)̂̊a(ξ)[̂̊φ, ̂̊φ](ξ)Em(ξ)
T
= 2−2mEm(2ξ)[

̂̊
φ,
̂̊
φ](2ξ)Em(2ξ)

T̂̃a(ξ).
That is, we have

̂̊a(ξ) = [
̂̊
φ,
̂̊
φ](2ξ)2−mEm(2ξ)

T̂̃a(ξ)Em(ξ)
−T

([
̂̊
φ,
̂̊
φ](ξ))−1. (2.22)

Note that

2−mEm(2ξ)
T̂̃a(ξ)Em(ξ)

−T
=

⎡⎢⎣2−m(1 + eiξ)m̂̃a1,1(ξ) 2−m(1− ei2ξ)m̂̃a1,2(ξ)
(1− eiξ)−m̂̃a2,1(ξ) ̂̃a2,2(ξ)

⎤⎥⎦ .

Since å ∈ (l0(Z))
r×r and det([

̂̊
φ,
̂̊
φ](ξ)) �= 0 for all ξ ∈ R, we conclude from

(2.22) that all the entries in (1 − eiξ)−m̂̃a2,1(ξ) are continuous and take the

form in (2.19).

Since we assumed m > 0, we deduce from (1.3) that the first row of â(π)

is zero and the first row of â(0) is (1, 0, . . . , 0). Since (2.18) implies that (2.5)

holds for all ξ ∈ R, taking ξ = 0 in (2.5) and observing that the first column

of the second matrix in (2.5) is (1, 0, . . . , 0)T, we conclude that ̂̃a1,1(0) = 1,

where ̂̃a1,1 is the (1,1)-entry of ̂̃a. Define û(ξ) := 2−m(1 + eiξ)m̂̃a1,1(ξ). Then

û(0) = 1 and û takes the form in (2.19). Consequently, ĥ(ξ) :=
∏∞

j=1 û(2
−jξ)

is a well-defined continuous function satisfying ĥ(2ξ) = û(ξ)ĥ(ξ) and ĥ(0) = 1.
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Let us define two matching filters υ̊, υ ∈ (l0(Z))
1×r by

̂̊υ(ξ) := (ĥ(ξ))−1(1, 0, . . . , 0)([
̂̊
φ,
̂̊
φ](ξ))−1 + O(|ξ|m), ξ → 0,

υ̂(ξ) := ̂̊υ(ξ)diag((B̂m(ξ))
−1, (iξ)m, . . . , (iξ)m) + O(|ξ|2m), ξ → 0.

(2.23)

Since ĥ(0) = 1 and [
̂̊
φ,
̂̊
φ](0) is invertible, we must havê̊υ(0) = (1, 0, . . . , 0)([
̂̊
φ,
̂̊
φ](0))−1 �= 0. Now by (ĥ(2ξ))−1û(ξ) = (ĥ(ξ))−1 for ξ

near 0 and (2.22), as ξ → 0, we have

̂̊υ(2ξ)̂̊a(ξ)
=(ĥ(2ξ))−1(1, 0, . . . , 0)

⎡⎢⎣ û(ξ) 2−m(1− ei2ξ)m̂̃a1,2(ξ)
(1− eiξ)−m̂̃a2,1(ξ) ̂̃a2,2(ξ)

⎤⎥⎦
([
̂̊
φ,
̂̊
φ](ξ))−1 + O(|ξ|m)

=((ĥ(2ξ))−1û(ξ), 0, . . . , 0)([
̂̊
φ,
̂̊
φ](ξ))−1 + O(|ξ|m)

=(ĥ(ξ))−1(1, 0, . . . , 0)([
̂̊
φ,
̂̊
φ](ξ))−1 + O(|ξ|m)

=̂̊υ(ξ) + O(|ξ|m), ξ → 0.

Noting that û(ξ+π) = O(|ξ|m) by û(ξ) = 2−m(1+eiξ)m̂̃a1,1(ξ) and (1−eiξ)m =

O(|ξ|m) as ξ → 0, we deduce that

̂̊υ(2ξ)̂̊a(ξ + π)

=(ĥ(2ξ))−1(1, 0, . . . , 0)

⎡⎢⎣ O(|ξ|m) O(|ξ|m)
(1 + eiξ)−m̂̃a2,1(ξ + π) ̂̃a2,2(ξ + π)

⎤⎥⎦ ([̂̊φ, ̂̊φ](ξ + π))−1

+ O(|ξ|m) = (O(|ξ|m), . . . ,O(|ξ|m)), ξ → 0.
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That is, å has order m sum rules with the matching filter υ̊ ∈ (l0(Z))
1×r.

On the other hand, noting that B̂m(ξ) = (1 − e−iξ)m/(iξ)m, we have

υ̂(ξ) = (iξ)m̂̊υ(ξ)(Em(ξ))
−1 + O(|ξ|2m) as ξ → 0. Consequently, by â(ξ) =

2−mEm(2ξ)̂̊a(ξ)(Em(ξ))
−1, as ξ → 0, we have

υ̂(2ξ)â(ξ) = (i2ξ)m̂̊υ(2ξ)(Em(2ξ))
−12−mEm(2ξ)̂̊a(ξ)(Em(ξ))

−1 + O(|ξ|2m)

= (iξ)m̂̊υ(2ξ)̂̊a(ξ)(Em(ξ))
−1 + O(|ξ|2m)

= (iξ)m(̂̊υ(ξ) + O(|ξ|m))(Em(ξ))
−1 + O(|ξ|2m)

= (iξ)m̂̊υ(ξ)(Em(ξ))
−1 + O(|ξ|2m) = υ̂(ξ) + O(|ξ|2m), ξ → 0;

in addition,

υ̂(2ξ)â(ξ + π) =(i2ξ)m̂̊υ(2ξ)(Em(2ξ))
−12−mEm(2ξ)̂̊a(ξ + π)(Em(ξ + π))−1

+ O(|ξ|2m)

=(iξ)m̂̊υ(2ξ)̂̊a(ξ + π)(Em(ξ + π))−1 + O(|ξ|2m)

=(iξ)mO(|ξ|m)(Em(ξ + π))−1 + O(|ξ|2m) = O(|ξ|2m), ξ → 0.

This proves that v̂(2ξ)â(ξ) = v̂(ξ) +O(|ξ|2m) and v̂(2ξ)â(ξ+ π) = O(|ξ|2m) as
ξ → 0 with the matching filter υ. To prove that the filter a has order 2m sum

rules, we still need to show υ̂(0) �= 0. Since φ̊ ∈ (L2(R))
r has stable integer

shifts and
̂̊
φ(2ξ) = ̂̊a(ξ)̂̊φ(ξ), by [31, Proposition 3.1], we see that one must be

a simple eigenvalue of ̂̊a(0). Since ̂̊υ(0)̂̊a(0) = ̂̊υ(0) and ̂̊a(0)̂̊φ(0) =
̂̊
φ(0), bŷ̊υ(0) �= 0 and

̂̊
φ(0) = (1, 0, . . . , 0)T, we must have ̂̊υ(0)̂̊φ(0) �= 0. That is, we

proved ̂̊υ(0)(1, 0, . . . , 0)T �= 0. By the definition of υ̂ in (2.23) and m > 0, we
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conclude that

υ̂(0) = ̂̊υ(0)diag(1, 0, . . . , 0) = (̂̊υ(0)(1, 0, . . . , 0)T, 0, . . . , 0) �= 0.

This completes the proof of sr(a) � 2m.

By φ̂1(0) = 1 in (1.5) and the above identity, we have v̂(0)φ̂(0) = ̂̊v(0)̂̊φ(0).
Without loss of generality, we can assume v̂(0)φ̂(0) = 1. That is, we can

assume that â takes the following form:

⎡⎢⎣2−2m(1 + e−iξ)2mv̂1(ξ) 2−2m(1− e−i2ξ)2mv̂2(ξ)

v̂3(ξ) v̂4(ξ)

⎤⎥⎦ with v̂1(0) = 1

(2.24)

and (1.5) holds with m being replaced by 2m, where v1 ∈ l0(Z),

v2 ∈ (l0(Z))
1×(r−1), v3 ∈ (l0(Z))

(r−1)×1, and v4 ∈ (l0(Z))
(r−1)×(r−1). By Theo-

rem 2.1, item (3) of Theorem 2.1 must hold forH(ξ) := (Em(ξ))
−1[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T

and G(ξ) := (Em(ξ))[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

−T
. We need use this fact in the next part

of the proof.

We are ready to prove that ASm
0 (φ;ψ) is a Riesz basis for the Sobolev space

Hm(R). Recall that ϕ = (φ2, . . . , φr)
T. Define φ̆ := (η̊, D2mϕT)T, where η̊ is

given in (2.13) and D2m is the (2m)th distributional derivative. Note that

D2mφ1 = Dmφ
(m)
1 = ∇mDmη = ∇2mη̊. Hence,

̂̆
φ(ξ) = (E2m(ξ))

−1D̂2mφ(ξ) =

(E2m(ξ))
−1(iξ)2mφ̂(ξ). Define

̂̃φ(ξ) := (−1)m(H(ξ))−1̂̆φ(ξ) = (−1)m(H(ξ))−1(E2m(ξ))
−1D̂2mφ(ξ). (2.25)

Since det(H(ξ)) �= 0 for all ξ ∈ R and φ̆ is a compactly supported vector distri-
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bution in H−m(R), we conclude that φ̃ in (2.25) is a well-defined vector distri-

bution inH−m(R). From (2.22) and the fact that ̂̊a(ξ) = 2m(Em(2ξ))
−1â(ξ)Em(ξ),

we have

̂̃a(ξ) =2mEm(2ξ)
−T

([
̂̊
φ,
̂̊
φ](2ξ))−1̂̊a(ξ)[̂̊φ, ̂̊φ](ξ)Em(ξ)

=22m(H(2ξ))−1(E2m(2ξ))
−1â(ξ)E2m(ξ)H(ξ)

(2.26)

and by φ̂(2ξ) = â(ξ)φ̂(ξ) and (2.25),

̂̃a(ξ)̂̃φ(ξ) =22m(H(2ξ))−1(E2m(2ξ))
−1â(ξ)E2m(ξ)H(ξ)(−1)m(H(ξ))−1

(E2m(ξ))
−1(iξ)2mφ̂(ξ)

=(−1)m22m(iξ)2m(H(2ξ))−1(E2m(2ξ))
−1â(ξ)φ̂(ξ)

=(−1)m(i2ξ)2m(H(2ξ))−1(E2m(2ξ))
−1φ̂(2ξ) = ̂̃φ(2ξ).

That is, we showed ̂̃φ(2ξ) = ̂̃a(ξ)̂̃φ(ξ) (the refinable structure of φ̂). Since H

and E2m are 2π-periodic, by the definition of φ̃ in (2.25), we have

[̂̃φ, φ̂](ξ) =(−1)m(H(ξ))−1(E2m(ξ))
−1[D̂2mφ, φ̂](ξ)

=(H(ξ))−1(E2m(ξ))
−1[φ̂(m), φ̂(m)](ξ).

By the second identity in (2.11), we have φ̂(m)(ξ) = Em(ξ)
̂̊
φ(ξ) and hence we

further deduce that

[̂̃φ, φ̂](ξ) = (H(ξ))−1(E2m(ξ))
−1[φ̂(m), φ̂(m)](ξ)

= (H(ξ))−1(E2m(ξ))
−1Em(ξ)[

̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T

= Em(ξ)
−T

([
̂̊
φ,
̂̊
φ](ξ))−1Em(ξ)(Em(ξ))

−1[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T
= Ir,
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where we used (H(ξ))−1 = Em(ξ)
−T

([
̂̊
φ,
̂̊
φ](ξ))−1Em(ξ) and (E2m(ξ))

−1Em(ξ) =

(Em(ξ))
−1. Note that we have showed 〈φ̃, φ〉 = Ir and 〈φ̃, φ(· − k)〉 = 0 for

all k ∈ Z\{0}. Since (2.5) holds, it is a routine calculation to check that

ASm
0 (φ;ψ) and AS−m

0 (φ̃; ψ̃) are biorthogonal to each other. Since φ̊ is a com-

pactly supported vector function in L2(R) and φ̊ is a refinable vector function

with a finitely supported refinement filter å, by [31, Theorem 2.2] or [33,

Lemma 6.3.2 and Corollary 5.8.2], there exists ε > 0 such that all entries in

[
̂̊
φ,
̂̊
φ]ε belong to L∞(T). Since φ̂(m)(ξ) = Em(ξ)

̂̊
φ(ξ), all entries in [φ̂, φ̂]m+ε

belong to L∞(T). By the definition of φ̃ in (2.25) and the fact that all entries

in (H(ξ))−1 are 2π-periodic continuous functions taking the form in (2.19),

we conclude that all the entries in [̂̃φ, ̂̃φ]−m+ε(ξ) = (H(ξ))−1[
̂̆
φ,
̂̆
φ]−m+τH(ξ)

−T

belong to L∞(T). Meanwhile, since a has order 2m sum rules and (2.5) holds,

it is a routine calculation to check that all entries in ψ̃ have order 2m vanishing

moments. In fact, by (2.26) we have sr(ã) = sr(a)− 2m and ψ has sr(ã) van-

ishing moments. Now by [37, Theorem 2.3] or [33, Theorem 4.6.5], ASm
0 (φ;ψ)

must be a Bessel sequence in Hm(R) and AS−m
0 (φ̃; ψ̃) is a Bessel sequence in

H−m(R).

By (2.5) and [32, Theorem 17], (AS−m
0 (φ̃; ψ̃),ASm

0 (φ;ψ)) forms a pair of

dual frames in the frequency domain. Consequently, we conclude that

(AS−m
0 (φ̃; ψ̃),ASm

0 (φ;ψ)) forms a pair of biorthogonal Riesz bases in the pair of

the Sobolev spaces (H−m(R), Hm(R)). More specifically, ASm
0 (φ;ψ) must be

a Riesz basis in the Sobolev space Hm(R). That is, {φ;ψ} is a Riesz wavelet

in the Sobolev space Hm(R).
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Theorem 2.3. Let φ = (φ1, . . . , φr)
T be a compactly supported vector function

in the Sobolev space Hm(R) with m ∈ N0 such that the integer shifts of φ are

stable and φ̂(2ξ) = â(ξ)φ̂(ξ) for some a ∈ (l0(Z))
r×r. Then there exists a

finitely supported filter b ∈ (l0(Z))
r×r satisfying (2.14) and (2.15) if and only

if the refinement filter a has at least order 2m sum rules; i.e., sr(a) � 2m.

Proof. The necessity part (⇒) has been stated and proved in Theorem 2.2.

We now deal with the sufficiency part (⇐). Since φ is a compactly supported

vector function in Hm(R) and has stable integer shifts, by [39, Theorem 1]

and [33, Theorem 5.2.4], there exists a compactly supported vector function

g := (g1, . . . , gr)
T in Hm(R) such that

(i) The integer shifts of g are linearly independent, i.e., span{ĝ(ξ + 2πk) :

k ∈ Z} = Cr for all ξ ∈ C;

(ii) φ̂(ξ) = Θ̂(ξ)ĝ(ξ) for some Θ ∈ (l0(Z))
r×r satisfying det(Θ̂(ξ)) �= 0 for all

ξ ∈ R;

(iii) ĝ(2ξ) = ĉ(ξ)ĝ(ξ) for some c ∈ (l0(Z))
r×r.

Since the integer shifts of g are linearly independent, the rank of the r × (2r)

matrix [ĉ(ξ) ĉ(ξ + π)] must be r for all ξ ∈ C. The Quillen-Suslin Theorem

guarantees the existence of d ∈ (l0(Z))
r×r such that

det({ĉ; d̂})(ξ) := det

⎛⎜⎝
⎡⎢⎣ĉ(ξ) ĉ(ξ + π)

d̂(ξ) d̂(ξ + π)

⎤⎥⎦
⎞⎟⎠ must be a nonzero monomial,

(2.27)
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that is, the above (2r)× (2r) matrix is strongly invertible. Note that

â(ξ)φ̂(ξ) = φ̂(2ξ) = Θ̂(2ξ)ĝ(2ξ) = Θ̂(2ξ)ĉ(ξ)ĝ(ξ) = Θ̂(2ξ)ĉ(ξ)Θ̂(ξ)−1φ̂(ξ).

Since the integer shifts of φ are stable, the above identity gives us â(ξ) =

Θ̂(2ξ)ĉ(ξ)(Θ̂(ξ))−1. Hence, we have

⎡⎢⎣ĉ(ξ) ĉ(ξ + π)

d̂(ξ) d̂(ξ + π)

⎤⎥⎦ =

⎡⎢⎣(Θ̂(2ξ))−1

Ir−1

⎤⎥⎦M(ξ)

⎡⎢⎣Θ̂(ξ)

Θ̂(ξ + π)

⎤⎥⎦
with

M(ξ) :=

⎡⎢⎣ â(ξ) â(ξ + π)

d̂(ξ)(Θ̂(ξ))−1 d̂(ξ + π)(Θ̂(ξ + π))−1

⎤⎥⎦ .
Since det(Θ̂(ξ)) �= 0 for all ξ ∈ R, we conclude from (2.27) and the above

identity that det(M(ξ)) �= 0 for all ξ ∈ R. Define b̊ by

̂̊
b(ξ) := det(Θ̂(ξ)) det(Θ̂(ξ + π))d̂(ξ)(Θ̂(ξ))−1.

Since all the entries in Θ̂ are 2π-periodic trigonometric polynomials, observing

that det(Θ̂(ξ))(Θ̂(ξ))−1 = adj(Θ̂(ξ)), where adj(·) is the adjoint of a matrix,

we conclude that b̊ ∈ (l0(Z))
r×r is a finitely supported sequence. Moreover, we

have ⎡⎢⎣â(ξ) â(ξ + π)̂̊
b(ξ)

̂̊
b(ξ + π)

⎤⎥⎦ =

⎡⎢⎣Ir
det(Θ̂(ξ)) det(Θ̂(ξ + π))Ir

⎤⎥⎦M(ξ).
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Consequently, we have

det({â; ̂̊b})(ξ) := det

⎛⎜⎝
⎡⎢⎣â(ξ) â(ξ + π)̂̊
b(ξ)

̂̊
b(ξ + π)

⎤⎥⎦
⎞⎟⎠

= det(Θ̂(ξ)) det(Θ̂(ξ + π)) det(M(ξ)) �= 0. (2.28)

Since a has order 2m sum rules, without loss of generality, we can as-

sume that â takes the normal form in (2.24) and (1.5) holds with m be-

ing replaced by 2m. Define å ∈ (l0(Z))
r×r as in (2.9) and ă by ̂̆a(ξ) =

22m(E2m(2ξ))
−1â(ξ)E2m(ξ). Since â takes the normal form in (2.24), both

å and ă are finitely supported. Let φ̊ be defined in Theorem 2.1 and G(ξ) :=

Em(ξ)[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

−T
as in item (3) of Theorem 2.1. Since (1.5) holds with

m being replaced by 2m, G is an r × r matrix of 2π-periodic trigonometric

polynomials with det(G(ξ)) �= 0 for all ξ ∈ R by Theorem 2.1. Now we define

b̂(ξ) := det(G(2ξ))̂b̆(ξ) with
̂̆
b(ξ) :=

̂̊
b(ξ)− F (2ξ)(G(2ξ))−1â(ξ), (2.29)

where

F (2ξ) :=
̂̊
b(ξ)G(ξ)̂̆a(ξ)T +

̂̊
b(ξ + π)G(ξ + π)̂̆a(ξ + π)

T

. (2.30)

We observe that F (ξ) is a well-defined matrix of 2π-periodic trigonometric

polynomials. By det(G(ξ))(G(ξ))−1 = adj(G(ξ)) and G(ξ) is a matrix of 2π-

periodic trigonometric polynomials, b̂ is a well-defined matrix of 2π-periodic

trigonometric polynomials, that is, b ∈ (l0(Z))
r×r. We show that b is a desired

filter satisfying both (2.14) and (2.15).
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Since φ̂(m)(ξ) = Em(ξ)
̂̊
φ(ξ) and [

̂̊
φ,
̂̊
φ](ξ) = (Em(ξ))

−1G(ξ)Em(ξ)
T
, we have

[φ̂(m), φ̂(m)](ξ) = Em(ξ)[
̂̊
φ,
̂̊
φ](ξ)Em(ξ)

T

= Em(ξ)(Em(ξ))
−1G(ξ)Em(ξ)

T
Em(ξ)

T
= G(ξ)E2m(ξ)

T
.

Therefore, by φ̂(m)(2ξ) = 2mâ(ξ)φ̂(m)(ξ), we have (2.20), that is,

â(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)
T
+ â(ξ + π)[φ̂(m), φ̂(m)](ξ)â(ξ + π)

T

= 2−2m[φ̂(m), φ̂(m)](2ξ) = 2−2mG(2ξ)E2m(2ξ)
T
,

from which and the fact that both F and G are 2π-periodic lead to

F (2ξ)(G(2ξ))−1â(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)
T

+ F (2ξ)(G(2ξ))−1â(ξ + π)[φ̂(m), φ̂(m)](ξ)â(ξ + π)
T

= F (2ξ)(G(2ξ))−12−2mG(2ξ)E2m(2ξ)
T
= 2−2mF (2ξ)E2m(2ξ)

T
. (2.31)

On the other hand, by â(ξ) = 2−2mE2m(2ξ)̂̆a(ξ)(E2m(ξ))
−1 and [φ̂(m), φ̂(m)](ξ) =

G(ξ)E2m(ξ)
T
, we have

̂̊
b(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)

T
=
̂̊
b(ξ)G(ξ)E2m(ξ)

T
2−2mE2m(ξ)

−T̂̆a(ξ)TE2m(2ξ)
T

= 2−2m̂̊b(ξ)G(ξ)̂̆a(ξ)TE2m(2ξ)
T
.

Doing a similar calculation for ξ + π and summing up the terms, we have

̂̊
b(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)

T
+
̂̊
b(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π)

T
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= 2−2m

(̂̊
b(ξ)G(ξ)̂̆a(ξ)T +

̂̊
b(ξ + π)G(ξ + π)̂̆a(ξ + π)

T
)
E2m(2ξ)

T

= 2−2mF (2ξ)E2m(2ξ)
T
.

Hence, combining the above identity with (2.31), by the definition of b̆, we

eventually get

̂̆
b(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ)

T
+
̂̆
b(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π)

T
= 0.

Since b̂(ξ) = det(G(2ξ))̂b̆(ξ) and G is 2π-periodic, the identity (2.14) follows

trivially from the above identity.

On the other hand, by the definition of b ∈ (l0(Z))
r×r in (2.29), we have

⎡⎢⎣â(ξ) â(ξ + π)

b̂(ξ) b̂(ξ + π)

⎤⎥⎦
=

⎡⎢⎣ Ir 0

− det(G(2ξ))F (2ξ)(G(2ξ))−1 det(G(2ξ))Ir

⎤⎥⎦
⎡⎢⎣â(ξ) â(ξ + π)̂̊
b(ξ)

̂̊
b(ξ + π)

⎤⎥⎦ .
The claim in (2.15) indeed holds by (2.28) and the fact that det(G(ξ)) �= 0 for

all ξ ∈ R.

The previous three theorems finally give us the main result of this chap-

ter, which states the existence of a Riesz wavelet in Hm(R) that satisfies the

mth derivative orthogonality conditions in (2.1) and (2.2) if and only if the

corresponding filter a has at least order 2m sum rules and the integer shifts

of φ are stable. For the scalar case (i.e., when r = 1), we can even do a step

further and present an explicit formula that gives all possible high-pass filters
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satisfying (2.14) and (2.15). This will be further discussed in Section 2.1.

Theorem 2.4. Let φ = (φ1, . . . , φr)
T be a compactly supported refinable vector

function in Hm(R) with m ∈ N0 such that φ̂(2ξ) = â(ξ)φ̂(ξ) for some a ∈
(l0(Z))

r×r. Then

(i) there exists a finitely supported high-pass filter b ∈ (l0(Z))
r×r such that

{φ;ψ} with ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2) is an mth-order derivative-orthogonal

Riesz wavelet in the Sobolev space Hm(R) satisfying (2.1) and (2.2) if

and only if the integer shifts of φ are stable and the filter a has at least

order 2m sum rules (i.e., sr(a) � 2m).

(ii) Under the condition that the integer shifts of φ are stable, for any b ∈
(l0(Z))

r×r, {φ;ψ} with ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2) is an mth-order derivative-

orthogonal Riesz wavelet in the Sobolev space Hm(R) satisfying (2.1) and

(2.2) if and only if (2.14) and (2.15) are satisfied. Moreover, ASτ
0(φ;ψ)

is a Riesz basis in the Sobolev space Hτ (R) for all τ in the nonempty

open interval (2m− sm(φ), sm(φ)).

We are ready to present some examples of mth derivative-orthogonal Riesz

wavelets, where m = 0, 1, 2. The scalar case is presented first before moving

on to the matrix-valued case.

2.1 Derivative-orthogonal Riesz Wavelets from

Scalar Refinable Functions

Let us first deal with the special scalar case, i.e., r = 1. The following theo-

rem provides an explicit formula for the derivative-orthogonal Riesz wavelets
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derived from scalar filters.

Theorem 2.5. Let m ∈ N0 and a ∈ l0(Z) such that â(ξ) = 2−2m(1 +

e−iξ)2m̂̆a(ξ) with ă ∈ l0(Z) and ̂̆a(0) = 1. Define φ̂(ξ) :=
∏∞

j=1 â(2
−jξ) and̂̊

φ(ξ) :=
∏∞

j=1
̂̊a(2−jξ) with ̂̊a(ξ) := 2−m(1+e−iξ)m̂̆a(ξ). Then φ̂(2ξ) = â(ξ)φ̂(ξ)

and
̂̊
φ(2ξ) = ̂̊a(ξ)̂̊φ(ξ). Suppose that the compactly supported scalar refinable

function φ ∈ Hm(R) and the integer shifts of φ are stable. Then a finitely

supported high-pass filter b ∈ l0(Z) satisfies (2.14) and (2.15) if and only if

b̂(ξ) = ei(m−1)ξ̂̆a(ξ + π)[
̂̊
φ,
̂̊
φ](ξ + π)θ̂(2ξ)/d̂(2ξ), (2.32)

where θ ∈ l0(Z) satisfying θ̂(ξ) �= 0 for all ξ ∈ R and d ∈ l0(Z) is defined by

d̂(2ξ) := gcd
(̂̆a(ξ)[̂̊φ, ̂̊φ](ξ), ̂̆a(ξ + π)[

̂̊
φ,
̂̊
φ](ξ + π)

)
. (2.33)

Moreover, {φ;ψ} with ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2) and the high-pass filter b in (2.32)

is a derivative-orthogonal Riesz wavelet in Hm(R) satisfying (2.1) and (2.2)

and ASτ
0(φ;ψ) is a Riesz basis for Hτ (R) for all τ ∈ (2m− sm(φ), sm(φ)).

Proof. Let û(ξ) := ̂̆a(ξ)[̂̊φ, ̂̊φ](ξ)/d̂(2ξ), which we know is a 2π periodic trigono-

metric polynomial from (2.33). We know that φ(m) = ∇mφ̊ and the inte-

ger shifts of φ̊ are stable. Taking the Fourier transform of φ(m), we have

φ̂(m)(ξ) = (1− e−iξ)m
̂̊
φ(ξ). With that in mind,

b̂(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ) = 2−2mb̂(ξ)|1− e−iξ|2m[̂̊φ, ̂̊φ](ξ)(1 + eiξ)2mă(ξ)

= 2−2m(−1)me−iξm(1− ei2ξ)2md̂(2ξ)̂b(ξ)û(ξ).

Carrying out a similar calculation for b̂(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π) and
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summing up the two terms, we have

b̂(ξ)[φ̂(m), φ̂(m)](ξ)â(ξ) + b̂(ξ + π)[φ̂(m), φ̂(m)](ξ + π)â(ξ + π)

= 2−2me−iξm(1− ei2ξ)2m[(−1)mb̂(ξ)û(ξ) + b̂(ξ + π)û(ξ + π)].

For (2.14) to be fulfilled, it must be the case that

(−1)mb̂(ξ)û(ξ) + b̂(ξ + π)û(ξ + π) = 0. (2.34)

We first prove the (⇐) part of the theorem. Given our assumption for b̂(ξ) in

(2.32) and the definition of û(ξ), it follows that

(−1)mb̂(ξ)û(ξ) + b̂(ξ + π)û(ξ + π)

= (−1)mei(m−1)ξû(ξ + π)θ̂(2ξ) + ei(m−1)(ξ+π)û(ξ)θ̂(2ξ) = 0.

So, (2.34) and consequently (2.14) are fulfilled. We show that det({â, b̂}) �= 0.

â(ξ)̂b(ξ + π) = 2−m(1 + e−iξ)m̂̊a(ξ)ei(m−1)(ξ+π)(ξ)û(ξ)θ(2ξ)

= 2−m(1 + e−iξ)m̂̊a(ξ)ei(m−1)(ξ+π)̂̆a(ξ)[̂̊φ, ̂̊φ](ξ)θ̂(2ξ)/d̂(2ξ)
= (−1)m−1e−iξ|̂̊a(ξ)|2[̂̊φ, ̂̊φ](ξ)θ̂(2ξ)/d̂(2ξ),

where we have applied â(ξ) = 2−m(1 + e−iξ)m̂̊a(ξ) and ̂̊a(ξ) = 2−m(1 +

e−iξ)m̂̆a(ξ). This gives
det({â;̂b})(ξ) = â(ξ)̂b(ξ + π)− â(ξ + π)̂b(ξ)

=(−1)m−1e−iξ
(
|̂̊a(ξ)|2[̂̊φ, ̂̊φ](ξ) + |̂̊a(ξ + π)|2[̂̊φ, ̂̊φ](ξ + π)

)
θ̂(2ξ)/d̂(2ξ).
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=(−1)m−1e−iξ[
̂̊
φ,
̂̊
φ](2ξ)θ̂(2ξ)/d̂(2ξ), (2.35)

where we have applied the following identity

̂̊a(ξ)[̂̊φ, ̂̊φ](ξ)̂̊a(ξ) + ̂̊a(ξ + π)[
̂̊
φ,
̂̊
φ](ξ + π)̂̊a(ξ + π) = [

̂̊
φ,
̂̊
φ](2ξ)

to go from the second to the third equality. From our definitions of ̂̊a(ξ) and
d(2ξ), and the fact that ̂̊a(ξ) = 2−m(1 + eiξ)m̂̆a(ξ), we can deduce right away

that d̂ | [̂̊φ, ̂̊φ]. The stability of integer shifts of [
̂̊
φ,
̂̊
φ] gives us [

̂̊
φ,
̂̊
φ](ξ) �= 0 for

all ξ ∈ R. Since d̂ | [̂̊φ, ̂̊φ], this implies that d̂(ξ) �= 0 for all ξ ∈ R. Given that

θ̂(ξ) �= 0 for all ξ ∈ R, we have that the determinant in (2.35) is nonzero for

all ξ ∈ R. Thus, (2.15) holds.

We prove the (⇒) part of the theorem. Due to (2.14), we must have (2.34).

By (2.33) and the definition of û, we observe that gcd(û(ξ), û(ξ+π)) = 1. Since

(2.34) holds, we must have û(ξ+π) | b̂(ξ), or equivalently b̂(ξ) = v̂(2ξ)û(ξ+π)

for some v ∈ l0(Z). Now, equation (2.34) brings us to (−1)mv̂(ξ)+v̂(ξ+π) = 0.

So, v̂(ξ) = ei(m−1)ξθ̂(2ξ) for some θ ∈ l0(Z). We have arrived at (2.32). Since

we have shown that d̂(ξ) �= 0 and [
̂̊
φ,
̂̊
φ](ξ) �= 0 for all ξ ∈ R, as well as we

have assumed that det({â; b̂}) �= 0 (from (2.15)), we conclude from (2.35) that

θ̂(ξ) �= 0 for all ξ ∈ R. Therefore, {φ, ψ} is an mth order derivative-orthogonal

Riesz wavelet in Hm(R) from Theorem 2.2.

For the following examples, we set d̂(ξ) = 1 if we observe that the greatest

common divisor of (2.33) is trivial (a monomial). From our experience, the

greatest common divisor of ̂̆a(ξ)[̂̊φ, ̂̊φ](ξ) and ̂̆a(ξ + π)[
̂̊
φ,
̂̊
φ](ξ + π) is in most

cases a monomial.
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Example 2.1. Let a ∈ l0(Z) be given by â(ξ) = 2−2(1 + e−iξ)2eiξ, i.e., a ={
1
4
, 1
2
, 1
4

}
[−1,1]

. Define φ̂(ξ) :=
∏∞

j=1 â(2
−jξ). Then φ = B2(·−1) is the centered

B-spline of order 2. Note that φ ∈ H1(R) with sm(φ) = 3/2, the integer shifts

of φ are stable, and a has order 2 sum rules with sr(a) = 2.

For m = 0, by ă = a, φ̊ = φ, and [
̂̊
φ,
̂̊
φ](ξ) = 1

3
(2 + cos(ξ)) �= 0 for

all ξ ∈ R, we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = 1 in (2.32), we

have b̂0(ξ) =
1
24
(1 − e−iξ)2(e−iξ + eiξ − 4); i.e., b0 =

{
1
24
,−1

4
, 5
12
,−1

4
, 1
24

}
[−1,3]

.

Note that det({â; b̂0})(ξ) = −1
3
e−iξ(2 + cos(2ξ)) �= 0 for all ξ ∈ R. Define

ψ̂(ξ) := b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a semi-orthogonal Riesz wavelet in

L2(R) with ‖φ‖L2(R) =
√

2/3 and ‖ψ‖L2(R) = 1/2. Moreover, ASτ
0(φ;ψ) is a

Riesz basis for Hτ (R) for all τ ∈ (−3/2, 3/2).

For m = 1, by ̂̆a(ξ) = eiξ and [
̂̊
φ,
̂̊
φ](ξ) = 1, we have d̂(ξ) = 1 in (2.33).

Choosing θ̂(ξ) = −1
2
in (2.32), we have b̂1(ξ) =

1
2
e−iξ; i.e., b1 =

{
1
2

}
[1,1]

. Note

that det({â; b̂1})(ξ) = −1
2
e−iξ �= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂1(ξ/2)φ̂(ξ/2).

Then {φ;ψ} is a first-order derivative-orthogonal Riesz wavelet in H1(R) with

‖φ′‖L2(R) =
√
2 and ‖ψ′‖L2(R) = 2. Moreover, ASτ

0(φ;ψ) is a Riesz basis for the

Sobolev space Hτ (R) for all τ ∈ (1/2, 3/2). This example recovers the Riesz

basis constructed in [10]. See Figure 2.1 to visualize the associated wavelet

functions ψ associated with filters b0 and b1, respectively.

Example 2.2. Let a ∈ l0(Z) be given by â(ξ) = 2−3(1 + e−iξ)3e2iξ, i.e.,

a =
{

1
8
, 3
8
, 3
8
, 1
8

}
[−2,1]

. Define φ̂(ξ) :=
∏∞

j=1 â(2
−jξ). Then φ = B3(· − 2) is

the shifted B-spline of order 3. Note that φ ∈ H2(R) with sm(φ) = 5/2, the

integer shifts of φ are stable, and a has order 3 sum rules with sr(a) = 3.

For m = 0, by ă = a, φ̊ = φ, and [
̂̊
φ,
̂̊
φ](ξ) = 11

20
+ 13

30
cos(ξ) + 1

60
cos(2ξ) �= 0
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Figure 2.1: (a) is the refinable function φ in Example 2.1, which is the centered
piecewise linear B-spline of order 2. (b) is the wavelet function ψ associated with
the filter b0 such that {φ;ψ} is a semi-orthogonal wavelet in L2(R) with supp(ψ) =
[−1, 2]. (c) is the wavelet function ψ associated with the filter b1 such that {φ;ψ}
is a first-order derivative-orthogonal Riesz wavelet for H1(R) with supp(ψ) = [0, 1].

for all ξ ∈ R, we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = eiξ in (2.32), we

have b̂0(ξ) = − 1
960

(1 − e−iξ)3(66e2iξ − 26eiξ − 26e3iξ + e4iξ + 1); i.e., b0 ={− 1
960

, 29
960

,− 49
320

, 101
320

,−101
320

, 49
320

,− 29
960

, 1
960

}
[−4,3]

. Note that det({â; b̂0})(ξ) =

− 1
120

e−iξ(66 + 52 cos(2ξ) + 2 cos(4ξ)) �= 0 for all ξ ∈ R. Define ψ̂(ξ) :=

b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a semi-orthogonal Riesz wavelet in L2(R) with

‖φ‖L2(R) =
√
11/20 and ‖ψ‖L2(R) =

√
23939/8640. Moreover, ASτ

0(φ;ψ0) is a

Riesz basis for the Sobolev space Hτ (R) for all τ ∈ (−5/2, 5/2).

For m = 1, by ̂̆a(ξ) = 2−1(1 + e−iξ)e2iξ and [
̂̊
φ,
̂̊
φ](ξ) = 1

3
(2 + cos(ξ)) �= 0

for all ξ ∈ R, we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = −eiξ in (2.32), we

have b̂1(ξ) = − 1
12
(1 − e−iξ)(1 − 4eiξ + e2iξ); i.e., b1 =

{− 1
12
, 5
12
,− 5

12
, 1
12

}
[−2,1]

.

Note that det({â; b̂0})(ξ) = −1
3
e−iξ(2 + cos(2ξ)) �= 0 for all ξ ∈ R. Define

ψ̂(ξ) := b̂1(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a first-order derivative-orthogonal Riesz
wavelet in H1(R) with ‖φ′‖L2(R) = 1 and ‖ψ′‖L2(R) = 2. Moreover, ASτ

0(φ;ψ1)

is a Riesz basis for the Sobolev spaceHτ (R) for all−1/2 < τ < 5/2. See Figure

2.2 to visualize the associated wavelet functions ψ associated with filters b0 and

b1, respectively.
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Figure 2.2: (a) is the refinable function φ in Example 2.2, which is the shifted
B-spline of order 3. (b) is the wavelet function ψ associated with the filter b0 such
that {φ;ψ} is a semi-orthogonal Riesz wavelet in L2(R) with supp(ψ) = [−3, 2]. (c)
is the wavelet function ψ associated with the filter b1 such that {φ;ψ} is a first-order
derivative-orthogonal Riesz wavelet for H1(R) with supp(ψ) = [−2, 1].

.

Though φ ∈ Hm(R) with m = 2, since its filter a has no more than 3 sum

rules, Theorem 2.5 tells us that there does not exist any finitely supported filter

b2 such the associated wavelet system satisfies the second-order derivative-

orthogonal property, i.e., conditions (2.1) and (2.2) with m = 2.

Example 2.3. Let a ∈ l0(Z) be given by â(ξ) = 2−4(1 + e−iξ)4e2iξ, i.e.,

a =
{

1
16
, 1
4
, 3
8
, 1
4
, 1
16

}
[−2,2]

. Define φ̂(ξ) :=
∏∞

j=1 â(2
−jξ). Then φ = B4(· − 2) is

the centered B-spline of order 4. Note that φ ∈ H3(R) with sm(φ) = 7/2, the

integer shifts of φ are stable, and a has order 4 sum rules with sr(a) = 4.

For m = 0, by ă = a, φ̊ = φ, and [
̂̊
φ,
̂̊
φ](ξ) = 151

315
+ 397

840
cos(ξ) + 1

21
cos(2ξ) +

1
2520

cos(3ξ) �= 0 for all ξ ∈ R, we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = 315
32

in (2.32), we have b̂0(ξ) =
1

8192
(1− e−iξ)4(120e−iξ +2416eiξ − 1191e2iξ − e−2iξ +

120e3iξ − e4iξ − 1191); i.e.,

b0 =

{
− 1

8192
,

31

2048
,−1677

8192
,
247

256
,−9241

4096
,
3033

1024
,−9241

4096
,
247

256
,−1677

8192
,

31

2048
,

− 1

8192

}
[−4,6]

.

47



Also, det({â; b̂0})(ξ) = − 1
512

e−iξ(2416+ 2382 cos(2ξ)+ 240 cos(4ξ)+ 2 cos(6ξ))

�= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a semi-

orthogonal Riesz wavelet in L2(R) wavelet in L2(R) with ‖φ‖L2(R) =
√
151/315

and ‖ψ‖L2(R) =
√
21100677/5242880. Moreover, ASτ

0(φ;ψ0) is a Riesz basis

for the Sobolev space Hτ (R) for all τ ∈ (−7/2, 7/2).

For m = 1, by ̂̆a(ξ) = 2−2(1+ e−iξ)2e2iξ and [
̂̊
φ,
̂̊
φ](ξ) = 1

120
(66+52 cos(ξ)+

2 cos(2ξ)) �= 0 for all ξ ∈ R, we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = −15
4
,

in (2.32), we have b̂1(ξ) = 1
128

(1 − e−iξ)2(26e−iξ + 26eiξ − e2iξ − e−2iξ − 66);

i.e., b1 =
{− 1

128
, 7
32
,−119

128
, 23
16
,−119

128
, 7
32
,− 1

128

}
[−2,4]

. Note that det({â; b̂1})(ξ) =
− 1

32
e−iξ(66 + 52 cos(2ξ) + 2 cos(4ξ)) �= 0 for all ξ ∈ R. Define ψ̂(ξ) :=

b̂1(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a first-order derivative-orthogonal Riesz wavelet

in H1(R) with ‖φ′‖L2(R) =
√
2/3 and ‖ψ′‖L2(R) =

√
17011/68. Moreover,

ASτ
0(φ;ψ1) is a Riesz basis for Hτ (R) for all τ ∈ (−3/2, 7/2).

For m = 2, by ̂̆a(ξ) = e2iξ and [
̂̊
φ,
̂̊
φ](ξ) = 1

3
(2 + cos(ξ)) �= 0 for all ξ ∈ R,

we have d̂(ξ) = 1 in (2.33). Choosing θ̂(ξ) = 3
2
in (2.32), we have b̂2(ξ) =

−1
4
+ e−iξ − 1

4
e−2iξ; i.e., b2 =

{−1
4
, 1,−1

4

}
[0,2]

. Note that det({â; b̂2})(ξ) =

−e−iξ(1 + 1
2
cos(2ξ)) �= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂2(ξ/2)φ̂(ξ/2). Then

{φ;ψ} is a second-order derivative-orthogonal Riesz wavelet in H2(R) with

‖φ′′‖L2(R) =
√

8/3 and ‖ψ′′‖L2(R) = 12. Moreover, ASτ
0(φ;ψ2) is a Riesz basis

for the Sobolev space Hτ (R) for all τ ∈ (1/2, 7/2). See Figure 2.3 to visualize

the associated wavelet functions ψ associated with filters b0, b1, b2, respectively.

The filter b2 and its associated wavelet function ψ that we get are exactly

the same filter and wavelet function that are used in [43]. In other words, Jia

and Zhao in [43] are actually using a second-order derivative-orthogonal Riesz

wavelet in their paper, even though it is not explicitly stated there. We refer
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Figure 2.3: (a) is the refinable function φ in Example 2.3, which is the centered
B-spline of order 4. (b) is the wavelet function ψ associated with the filter b0 such
that {φ;ψ} is a semi-orthogonal Riesz wavelet in L2(R) with supp(ψ) = [−3, 4]. (c)
is the wavelet function ψ associated with the filter b1 such that {φ;ψ} is a first-order
derivative-orthogonal Riesz wavelet for H1(R) with supp(ψ) = [−2, 3]. (d) is the
wavelet function ψ associated with the filter b2 such that {φ;ψ} is a second-order
derivative-orthogonal Riesz wavelet for H2(R) with supp(ψ) = [−1, 2].

interested readers to [43] for the condition numbers of the two-dimensional

tensor product wavelet using B4 and the filter b2 at various scales.
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2.2 Derivative-orthogonal Riesz Wavelets from

Refinable Vector Functions

As we move away from scalar filters and into the realm of matrix-valued fil-

ters, we would like to emphasize that generating derivative-orthogonal Riesz

wavelets from refinable function vectors is significantly harder. Unlike the

scalar case, we do not have any explicit formula that gives all derivative-

orthogonal Riesz wavelets generated from a matrix-valued filter. Currently,

we are not sure if it is even possible to find such a formula. Thankfully, their

existence is already guaranteed by Theorem 2.2. In this section, we are inter-

ested in constructing derivative-orthogonal wavelets with short supports. The

next few examples deal with Hermite splines, which possess multiplicity of

r = 2. They will play a pivotal role in finding the numerical solutions to cer-

tain differential equations, which we shall discuss in Chapter 4. The resulting

wavelets generally have a shorter support compared to the generated scalar

wavelets, particularly as m gets larger. The fact that we are able to obtain a

Riesz wavelet with a shorter support simply illustrates one of the benefits in

using multiwavelet bases.

Example 2.4. Let φ = (φ1, φ2)
T with the Hermite cubic splines φ1, φ2 given in

(1.7) and sm(φ) = 5/2. Recall that the refinement filter a for φ takes the form

of (1.8) with sr(a) = 4 and the integer shifts of φ are stable. In the following,

we denote by b0, b1, and b2 the wavelet filters we obtain by imposing the

mth-order derivative-orthogonality condition in (2.14) on the original function

(m = 0), the first-order derivative (m = 1), and the second-order derivative

(m = 2).
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For m = 0, the filter b0 is supported on [−3, 2] and is given by

b0 =

⎧⎪⎨⎪⎩
⎡⎢⎣ 79

4440
1
10

− 27
2960

− 1
20

⎤⎥⎦ ,
⎡⎢⎣− 419

1110
−11

10

87
740

1
4

⎤⎥⎦ ,
⎡⎢⎣−3871

4440
−2731

185

879
1480

18793
2960

⎤⎥⎦ ,
⎡⎢⎣1367

555
0

0 1621
148

⎤⎥⎦ ,
⎡⎢⎣−3871

4440
2731
185

− 879
1480

18793
2960

⎤⎥⎦ ,
⎡⎢⎣− 419

1110
11
10

− 87
740

1
4

⎤⎥⎦ ,
⎡⎢⎣ 79

4440
− 1

10

27
2960

− 1
20

⎤⎥⎦
⎫⎪⎬⎪⎭

[−3,3]

.

Note that det({â; b̂0})(ξ) = 1
102675

(−7214350+4097408 cos(2ξ)−97370 cos(4ξ)+

592 cos(6ξ)) �= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a

semi-orthogonal Riesz wavelet in L2(R) with ‖ψ1‖L2(R) =
√

166496636/10780875,

‖ψ2‖L2(R) =
√
21439343/7187250 and

[φ̂, φ̂](ξ) =

⎡⎢⎣ 9
70
e−iξ + 9

70
eiξ + 26

35
− 13

420
eiξ(e−2ξi − 1)

13
420

eiξ(e−2ξi − 1) 2
105

− 1
140

e−iξ − 1
140

eiξ

⎤⎥⎦ . (2.36)

Moreover, ASτ
0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all τ ∈

(−5/2, 5/2).

For m = 1, the filter b1 is supported on [−1, 1] and is given by

b1 =

⎧⎪⎨⎪⎩
⎡⎢⎣ 2

21
1

1
9

1

⎤⎥⎦ ,
⎡⎢⎣− 4

21
0

0 4
3

⎤⎥⎦ ,
⎡⎢⎣ 2

21
−1

−1
9

1

⎤⎥⎦
⎫⎪⎬⎪⎭

[−1,1]

.

Note that det({â; b̂1})(ξ) = 8
63
(6− 2 cos(2ξ)) �= 0 for all ξ ∈ R. Define ψ̂(ξ) :=

b̂1(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a first-order derivative-orthogonal Riesz wavelet

in H1(R) with
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‖ψ′
1‖L2(R) =

√
4864
735

, ‖ψ′
2‖L2(R) =

32
√
15

105
,

[φ̂′, φ̂′](ξ) =

⎡⎢⎣−6
5
eiξ(e−iξ − 1)2 1

10
eiξ(e−2iξ − 1)

− 1
10
eiξ(e−2iξ − 1) 4

15
− 1

30
eiξ − 1

30
e−iξ

⎤⎥⎦ . (2.37)

Note that [φ̂′, φ̂′](ξ) =
∑

k∈Z〈φ′, φ′(· − k)〉e−ikξ. Moreover, ASτ
0(φ;ψ) is a Riesz

basis for the Sobolev space Hτ (R) for all τ ∈ (−1/2, 5/2). This recovers the

Riesz wavelet obtained in [41].

For m = 2, we have b2 = {diag(1
2
, 1
2
)}[1,1]. Note that det({â; b̂2})(ξ) =

1
8
e−2iξ �= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂2(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a

second-order derivative-orthogonal Riesz wavelet for H2(R) with

‖ψ′′
1‖L2(R) = 8

√
3, ‖ψ′′

2‖L2(R) = 8,

[φ̂′′, φ̂′′](ξ) =

⎡⎢⎣−12eiξ(e−iξ − 1)2 6eiξ(e−2iξ − 1)

−6eiξ(e−2iξ − 1) 2e−iξ + 2eiξ + 8

⎤⎥⎦ . (2.38)

Moreover, ASτ
0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all τ ∈

(3/2, 5/2). As we shall see in Chapter 4, our choice for the second-order

derivative-orthogonal Riesz wavelet in this example is particularly interesting,

since it has a condition number exactly equal to 1 after introducing a simple

linear combination at the coarsest level. See Figure 2.4 to visualize the wavelet

functions ψ associated with filters b0, b1, b2, respectively.

Example 2.5. Let φ := (φ1, φ2)
T, where the Hermite quadratic splines φ1, φ2
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Figure 2.4: (a) is the refinable vector function φ := (φ1, φ2)
T in Example 2.4. (b) is

the wavelet vector function ψ associated with the filter b0 such that {φ;ψ} is a semi-
orthogonal Riesz wavelet in L2(R) with supp(ψ) = [−2, 2]. (c) is the wavelet vector
function ψ associated with the filter b1 such that {φ;ψ} is a first-order derivative-
orthogonal Riesz wavelet in H1(R) with supp(ψ) = [−1, 1]. (d) is the wavelet vector
function ψ associated with the filter b2 such that {φ;ψ} is a second-order derivative-
orthogonal Riesz wavelet in H2(R) with supp(ψ) = [0, 1]. The solid line is for the
first component and the dotted line is for the second component in a 2 × 1 vector
function.

are given by:

φ1(x) = 2(x− 1)2χ[ 1
2
,1] + (1− 2x2)χ(− 1

2
, 1
2
) + 2(1 + x)2χ[−1,− 1

2
],

φ2(x) =
1

2
(x− 1)2χ[ 1

2
,1] + (x− 3

2
x2)χ[0, 1

2
) + (x+

3

2
x2)χ(− 1

2
,0)

− 1

2
(x+ 1)2χ[−1, 1

2
].

(2.39)

We can check that this particular refinable vector function φ satisfies the re-
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finement equation φ̂(2ξ) = â(ξ)φ̂(ξ) with the filter a ∈ (l0(Z))
2×2 given by

a =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

4
1
2

− 1
16

−1
8

⎤⎥⎦ ,
⎡⎢⎣1

2
0

0 1
4

⎤⎥⎦ ,
⎡⎢⎣ 1

4
−1

2

1
16

−1
8

⎤⎥⎦
⎫⎪⎬⎪⎭

[−1,1]

. (2.40)

This filter a has only order 3 sum rules with sr(a) = 3. In the following, we

denote by b0 and b1 the wavelet filters we obtain by imposing the mth-order

derivative-orthogonality condition on the original function (m = 0) and the

first-order derivative (m = 1), respectively.

For m = 0, the filter b0 is supported on [−2, 2] and is given by

b0 =

⎧⎪⎨⎪⎩
⎡⎢⎣− 7

156
− 5

26

7
450

1
15

⎤⎥⎦ ,
⎡⎢⎣− 8

39
−35

13

23
225

16
15

⎤⎥⎦ ,
⎡⎢⎣1

2
0

0 2

⎤⎥⎦ ,
⎡⎢⎣− 8

39
35
13

− 23
225

16
15

⎤⎥⎦ ,
⎡⎢⎣− 7

156
5
26

− 7
450

1
15

⎤⎥⎦
⎫⎪⎬⎪⎭

[−2,2]

.

Note that det({â; b̂0})(ξ) = − 8
8775

(3006− 1088 cos(2ξ) + 2 cos(4ξ)) �= 0 for all

ξ ∈ R. Define ψ̂(ξ) := b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a semi-orthogonal Riesz

wavelet in L2(R) with ‖ψ1‖L2(R) =
√
87712/1521,

‖ψ2‖L2(R) =
√
2777696/151875 and

[φ̂, φ̂](ξ) =

⎡⎢⎣ 7
60
e−iξ + 7

60
eiξ + 23

30
− 13

480
eiξ(e−2ξi − 1)

13
480

eiξ(e−2ξi − 1) 1
48

− 1
160

e−iξ − 1
160

eiξ

⎤⎥⎦ . (2.41)

Moreover, ASτ
0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all τ ∈

(−5/2, 5/2).
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For m = 1, the filter b1 is supported on [−1, 1] and is given by

b1 =

⎧⎪⎨⎪⎩
⎡⎢⎣1

6
1

1
6

1

⎤⎥⎦ ,
⎡⎢⎣−1

3
0

0 2

⎤⎥⎦ ,
⎡⎢⎣ 1

6
−1

−1
6

1

⎤⎥⎦
⎫⎪⎬⎪⎭

[−1,1]

.

Note that det({â; b̂1})(ξ) = 1
9
(14 − 2 cos(2ξ)) �= 0 for all ξ ∈ R. Define

ψ̂(ξ) := b̂1(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a first-order derivative-orthogonal Riesz
wavelet in H1(R) with

‖ψ′
1‖L2(R) =

√
352
27
, ‖ψ′

2‖L2(R) =
√

512
27
,

[φ̂′, φ̂′](ξ) =

⎡⎢⎣−4
3
eiξ(e−iξ − 1)2 1

6
eiξ(e−2iξ − 1)

−1
6
eiξ(e−2iξ − 1) 1

3

⎤⎥⎦ . (2.42)

Moreover, ASτ
0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all

τ ∈ (−1/2, 5/2). See Figure 2.5 to visualize the wavelet functions ψ asso-

ciated with filters b0, b1, respectively. Though φ ∈ (H2(R))2, since sr(a) = 3,

according to Theorem 2.4, one cannot obtain a compactly supported second-

order derivative-orthogonal Riesz wavelet in H2(R) from φ.

Example 2.6. Let φ := (φ1, φ2)
T, where the Hermite linear splines φ1, φ2 are

given by:

φ1(x) = (2− 3x)χ[ 1
3
, 2
3
] + χ(− 1

3
, 1
3
) + (2 + 3x)χ[− 2

3
,− 1

3
],

φ2(x) = (
2

3
− x)χ[ 1

3
, 2
3
] + xχ(− 1

3
, 1
3
) − (

2

3
+ x)χ[− 2

3
,− 1

3
].

(2.43)

Note that sm(φ) = 3/2. We can check that this particular refinable vector
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Figure 2.5: (a) is the refinable vector function φ := (φ1, φ2)
T in Example 2.5.

(b) is the wavelet vector function ψ associated with the filter b0 such that {φ;ψ}
is a semi-orthogonal Riesz wavelet in L2(R) with supp(ψ) = [−3/2, 3/2]. (c) is the
wavelet vector function ψ associated with the filter b1 such that {φ;ψ} is a first-
order derivative-orthogonal Riesz wavelet in H1(R) with supp(ψ) = [−1, 1]. The
solid line is for the first component and the dotted line is for the second component
in a 2× 1 vector function.

function φ satisfies φ̂(2ξ) = â(ξ)φ̂(ξ) with the filter a ∈ (l0(Z))
2×2 given by

a =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

4
3
4

− 1
12

−1
4

⎤⎥⎦ ,
⎡⎢⎣1

2
0

0 1
4

⎤⎥⎦ ,
⎡⎢⎣ 1

4
−3

4

1
12

−1
4

⎤⎥⎦
⎫⎪⎬⎪⎭

[−1,1]

. (2.44)

This filter has only order 2 sum rules with sr(a) = 2. In the following, let

b0 and b1 be the wavelet filters we obtain by imposing mth-order derivative-

orthogonal condition on the original function (m = 0) and the first derivative

(m = 1), respectively.

For m = 0, the filter b0 is supported on [−2, 2] and is given by

b0 =

⎧⎪⎨⎪⎩
⎡⎢⎣− 113

1411
−1

2

59
459

1

⎤⎥⎦ ,
⎡⎢⎣−1049

1411
−405

83

7
34

5
2

⎤⎥⎦ ,
⎡⎢⎣28

17
0

0 11
2

⎤⎥⎦ ,
⎡⎢⎣−1049

1411
405
83

− 7
34

5
2

⎤⎥⎦ ,
⎡⎢⎣− 113

1411
1
2

− 59
459

1

⎤⎥⎦
⎫⎪⎬⎪⎭

[−2,2]

.
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Note that det({â; b̂0})(ξ) = − 20
38097

(49132+8478 cos(2ξ)−964 cos(4ξ) �= 0 for all

ξ ∈ R. Define ψ̂(ξ) := b̂0(ξ/2)φ̂(ξ/2). Then {φ;ψ} is a semi-orthogonal Riesz

wavelet in L2(R) with ‖ψ1‖L2(R) =
√

1569359008/161264601, ‖ψ2‖L2(R) =√
6927776/1896129 and

[φ̂, φ̂](ξ) =

⎡⎢⎣ 1
18
e−iξ + 1

18
eiξ + 8

9
− 1

54
eiξ(e−2ξi − 1)

1
54
eiξ(e−2ξi − 1) 4

81
− 1

162
eiξ − 1

162
e−iξ

⎤⎥⎦ .
Moreover, ASτ

0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all τ ∈
(−3/2, 3/2).

For m = 1, the filter b2 is given by b2 = {diag(1/6,√2/4)}[0,0]. Note that

det({â; b̂1})(ξ) = −
√
2

24
�= 0 for all ξ ∈ R. Define ψ̂(ξ) := b̂1(ξ/2)φ̂(ξ/2). Then

{φ;ψ} is a first-order derivative-orthogonal Riesz wavelet in H1(R) with

‖ψ′
1‖L2(R) = ‖ψ′

2‖L2(R) =
2
√
3

3
,

[φ̂′, φ̂′](ξ) =

⎡⎢⎣−3eiξ(e−iξ − 1)2 e−iξ − eiξ

eiξ − e−iξ 1
3
e−iξ + 1

3
eiξ + 4

3

⎤⎥⎦ . (2.45)

Moreover, ASτ
0(φ;ψ) is a Riesz basis for the Sobolev space Hτ (R) for all τ ∈

(1/2, 3/2). As we shall also see in the next section of this paper, our choice

for the first-order derivative-orthogonal wavelet in this example is particularly

interesting, since it has a condition number exactly equal to 1 after introducing

a simple linear combination at the coarsest level. See Figure 2.6 to visualize

the wavelet vector functions ψ associated with filters b0, b1, respectively.

We conclude this section with two remarks. We would like to point out
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Figure 2.6: (a) is the refinable vector function φ := (φ1, φ2)
T in Example 2.6.

(b) is the wavelet vector function ψ associated with the filter b0 such that {φ;ψ}
is a semi-orthogonal Riesz wavelet in L2(R) with supp(ψ) = [−4/3, 4/3]. (c) is the
wavelet vector function ψ associated with the filter b1 such that {φ;ψ} is a first-order
derivative-orthogonal Riesz wavelet in H1(R) with supp(ψ) = [−1/3, 1/3]. The solid
line is for the first component and the dotted line is for the second component.

that all of the above examples possess a symmetry (not necessarily about the

y-axis). As we shall see in Chapter 3, symmetry is of paramount importance

in showing that a Riesz wavelet on L2(R) indeed leads to a Riesz wavelet on

L2(I). For the purpose of numerical computations, we can scale differently the

components in our wavelet vector functions from any of the examples above

accordingly to achieve a better condition number hence a more well-behaved

linear system arising from the Galerkin formulation. We shall elaborate more

on this subject in Chapter 4.
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Chapter 3

Riesz Wavelets on a Bounded

Interval

In this chapter, we introduce a generalized version of the folding operator used

in [33]. The general idea of the argument follows [33] with some modifications.

We aim to show that a Riesz wavelet on L2(R) can be adapted in such a way

that it becomes a Riesz wavelet on L2(I), where I is a bounded interval on

R. The use of the folding operator to prove that a Riesz wavelet on R is in

fact a Riesz wavelet on an interval was first introduced in [13]. The difference

between the argument that we are about to lay out and [33] lies on the fact

that instead of having just a single type of symmetry/anti-symmetry applied

to both left and right endpoints of the intervals, we have one for each endpoint.

E.g. we may have symmetry at the left endpoint, and anti-symmetry at the

right endpoint of the bounded interval.

Definition 3.1. Suppose f ∈ L2(R). Let f either be a compactly supported

function or a function that has a nice decay. A two-sided folding operator
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Fc,ε1,ε2 is defined as

Fc,ε1,ε2(f) =
∑
k∈Z

f(·−4k)+ε1f(c−·−4k)+ε2f(c+2−·−4k)+ε1ε2f(·+2−4k),

(3.1)

where ε1, ε2 ∈ {−1, 1}, and c ∈ R.

Example 3.1. We present a simple example to illustrate how the folding

operator works. Consider the following piecewise linear function:

f(x) = (−x− 5

4
)χ[− 5

4
,− 1

4
) + (3− 2x)χ[ 1

2
, 3
2
] + (4x)χ[− 1

4
, 1
2
). (3.2)

See Figure 3.1 to see how the folding operator works visually.

-2 -1 0 1 2
-1

0

1

2

(a)

0 1
0

1

2

3

(b)

-3 -2 -1 0 1 2 3
-3

-1.5

0

1.5

3

(c)

Figure 3.1: (a) shows the original function f in (3.2). (b) shows the function
we obtain from symmetrically folding f |[1,2] and anti-symmetrically folding f |[− 5

4
,0]

onto the interval [0, 1], and summing up each folded piece. (c) shows the resulting
function after we apply the folding operator with ε1 = −1, ε2 = 1, and c = 0. The
red dotted lines correspond to axes of symmetry and anti-symmetry.

Right from the definition of the folding operator itself, we can deduce that

Fc,ε1,ε2(f) is a 4 periodic function. Next, we have 2 propositions, which cater

to the calculations in the subsequent proofs.

Proposition 3.1. Let f2j ;k := 2j/2f(2j · −k), f(cf − ·) = εff , and f2j ;m :=
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εff2j ;−m−cf (−·). The following identities hold:

Fc,ε1,ε2(f2j ;m) =
∑
k∈Z

f2j ;m+2j+1(2k) + ε1f2j ;m−2jc+2j+1(2k)(−·)

+ ε2f2j ;m−2jc+2j+1(2k−1)(−·) + ε1ε2f2j ;m+2j+1(2k−1), (3.3)

Fc,ε1,ε2(f2j ;m) = ε1εfFc,ε1,ε2(f2j ;2jc−cf−m), (3.4)

Fc,ε1,ε2(f2j ;m) = ε2εfFc,ε1,ε2(f2j ;2jc−cf−m+2j+1), (3.5)

Fc,ε1,ε2(f2j ;m) = ε1ε2Fc,ε1,ε2(f2j ;m−2j+1). (3.6)

Proof. The proof relies entirely on definitions and direct calculation. Subsitut-

ing f2j ;k = 2j/2f(2j ·−k) and f2j ;m = εff2j ;−m−cf (−·) to (3.1), we automatically

get (3.3). Next, we know that

εfFc,ε1,ε2(f2j ;2jc−cf−m) =εf
∑
k∈Z

f2j ;2jc−cf−m+2j+1(2k) + ε1f2j ;−cf−m+2j+1(2k)(−·)

+ ε2f2j ;−cf−m+2j+1(2k−1)(−·) + ε1ε2f2j ;2jc−cf−m+2j+1(2k−1)

=
∑
k∈Z

f2j ;m−2jc−2j+1(2k)(−·) + ε1f2j ;m−2j+1(2k)

+ ε2f2j ;m−2j+1(2k−1) + ε1ε2f2j ;m−2jc−2j+1(2k−1)(−·)

=ε1Fc,ε1,ε2(f2j ;m),

(3.7)

from which we get (3.4). Identity (3.5) is obtained by firstly substituting m

for 2jc− cf −m+ 2j+1 in (3.3) and following a similar calculation as in (3.7).

Identity (3.6) is obtained from combining (3.4) and (3.5), and from observing
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that Fc,ε1,ε2(f2j ;m) = Fc,ε1,ε2(f2j ;m+2j+2k) for all k,m ∈ Z.

The following function space was first introduced by [42] and is also used

in [33].

Definition 3.2. Let 1 � p � ∞. Define Lp to be the linear space of all

measurable functions f on R such that if f ∈ Lp, then

‖f‖Lp(R) :=

∥∥∥∥∥∑
k∈Z

|f(· − k)|
∥∥∥∥∥
Lp([0,1])

< ∞.

Note that the Lp space contains Lp functions, which have either compact

supports, or fast enough decay. The decay here can be exponential or even

polynomial among other things. We also know for a fact that the nestedness

property holds: Lp ⊆ Lp for all 1 � p � ∞.

Proposition 3.2. Suppose f, g ∈ L2. Then, the following equalities hold

〈f, Fc,ε1,ε2(g)〉 = 〈Fc,ε1,ε2(f), g〉 = 〈Fc,ε1,ε2(f), Fc,ε1,ε2(g)〉L2([
c
2
, c
2
+1]), (3.8)

where c ∈ R. The first equality means that the folding operator Fc,ε1,ε2 is

self-adjoint.

Proof. We use (3.1) to show the self-adjoint property. Now, let f, g, then

〈f, Fc,ε1,ε2(g)〉 =
∫
R

f(x)
∑
k∈Z

g(x− 4k)dx+ ε1

∫
R

f(x)
∑
k∈Z

g(c− x− 4k)dx

+ ε2

∫
R

f(x)
∑
k∈Z

g(c+ 2− x− 4k)dx

+ ε1ε2

∫
R

f(x)
∑
k∈Z

g(x+ 2− 4k)dx.
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We shall interchange the order of summation and integral numerous times.

Firstly, we justify why this operation can be done. Now, we know for a fact

that

∫ c
2
+1+�

c
2
+�

|Fc,ε1,ε2(g)|2 dx =

∫ c
2
+1+�

c
2
+�

|Fc,ε1,ε2(g)|2dx

�16

∫ c
2
+1+�

c
2
+�

∣∣∣∣∣∑
k∈Z

g(x− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(c− x− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(c+ 2− x− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(x+ 2− 4k)

∣∣∣∣∣
2

dx

�16

∫ 1

0

∣∣∣∣∣∑
k∈Z

g(y +
c

2
+ �− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(
c

2
− y − �− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(
c

2
+ 2− y − �− 4k)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
k∈Z

g(y +
c

2
+ �+ 2− 4k)

∣∣∣∣∣
2

dy

�64‖g‖2L2

for all � ∈ Z. Consequently,

〈|f |, |Fc,ε1,ε2(g)|〉 =
∫
R

∣∣∣fFc,ε1,ε2(g)
∣∣∣ dx =

∑
�∈Z

∫ c
2
+1+�

c
2
+�

∣∣∣fFc,ε1,ε2(g)
∣∣∣ dx

�
∑
�∈Z

(∫ c
2
+1+�

c
2
+�

|f |2dx
)1/2(∫ c

2
+1+�

c
2
+�

|Fc,ε1,ε2(g)|2dx
)1/2

� 8‖g‖L2

∑
�∈Z

(∫ c
2
+1+�

c
2
+�

|f |2dx
)1/2

� C1‖f‖L2 < ∞,

which means that fFc,ε1,ε2(g) ∈ L1. We can change the order of summation

and the integral by appealing to Fubini’s Theorem. Keeping in mind that
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f, g ∈ L2 (thus, f, g should have some nice decay property in L2(R)) and

using a change of variables, we have

ε1

∫
R

f(x)
∑
k∈Z

g(c− x+ 4k)dx = ε1

∫
R

∑
k∈Z

f(x)g(c− x+ 4k)dx

= ε1

∫
R

∑
k∈Z

f(c− x+ 4k)g(x)dx

= ε1

∫
R

(∑
k∈Z

f(c− x+ 4k)

)
g(x)dx.

(3.9)

The other three terms can be found by doing a similar calculation.

∫
R

f(x)
∑
k∈Z

g(x− 4k)dx =

∫
R

(∑
k∈Z

f(x− 4k)

)
g(x)dx, (3.10)

ε2

∫
R

f(x)
∑
k∈Z

g(c+ 2− x− 4k)dx = ε2

∫
R

(∑
k∈Z

f(c+ 2− x− 4k)

)
g(x)dx,

(3.11)

ε1ε2

∫
R

f(x)
∑
k∈Z

g(x+ 2− 4k)dx = ε1ε2

∫
R

(∑
k∈Z

f(x+ 2− 4k)

)
g(x)dx.

(3.12)

Summing up equations (3.9) to (3.12), we have (3.8). We basically use brute

force to prove the second equality. In fact, we apply change of variables nu-

merous times. The fact that f, g have nice decay property (or even possess

compact supports) gives us an abundant of freedom to switch the order of the

integral and the two summations.
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〈Fc,ε1,ε2(f), Fc,ε1,ε2(g)〉L2([
c
2
, c
2
+1])

=

(∫ c
2
+1

c
2

∑
k,l∈Z

f(x− 4k)g(x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c− x− 4k)g(c− x− 4l)dx+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c+ 2− x− 4k)g(c+ 2− x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(x+ 2− 4k)g(x+ 2− 4l)dx

)
+ ε1

(∫ c
2
+1

c
2

∑
k,l∈Z

f(x− 4k)g(c− x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c− x− 4k)g(x− 4l)dx+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c+ 2− x− 4k)g(x+ 2− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(x+ 2− 4k)g(c+ 2− x− 4l)dx

)
+ ε2

(∫ c
2
+1

c
2

∑
k,l∈Z

f(x− 4k)g(c+ 2− x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c− x− 4k)g(x+ 2− 4l)dx+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c+ 2− x− 4k)g(x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(x+ 2− 4k)g(c− x− 4l)dx

)
+ ε1ε2

(∫ c
2
+1

c
2

∑
k,l∈Z

f(x− 4k)g(x+ 2− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c− x− 4k)g(c+ 2− x− 4l)dx+

∫ c
2
+1

c
2

∑
k,l∈Z

f(c+ 2− x− 4k)g(c− x− 4l)dx

+

∫ c
2
+1

c
2

∑
k,l∈Z

f(x+ 2− 4k)g(x− 4l)dx

)

=
∑
k,l∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(y + 4(k − l))dy + ε1
∑
k,l∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(c− y − 4(k + l))dy

+ ε2
∑
k,l∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(c+ 2− y − 4(k + l))dy + ε1ε2
∑
k,l∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(y + 2 + 4(k − l))dy

=
∑
k,l′∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(y − 4l′)dy + ε1
∑
k,l′∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(c− y − 4l′)dy

+ ε2
∑
k,l′∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(c+ 2− y − 4l′)dy + ε1ε2
∑
k,l′∈Z

∫ c
2
−4k+3

c
2
−4k−1

f(y)g(y + 2− 4l′)dy

=〈f, Fc,ε1,ε2(g)〉.

This completes the proof of (3.8).

We arrive at an important theorem, which basically says if we have a Riesz

wavelet in L2(R), it still remains a Riesz wavelet for L2(I).
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Theorem 3.1. Let Φ = {φ1, . . . , φr}, Ψ = {ψ1, . . . , ψs}, Φ̃ = {φ̃1, . . . , φ̃r},
and Ψ̃ = {ψ̃1, . . . , ψ̃s} be finite subsets of compactly supported functions in

L2(R). Suppose that for � = 1, . . . , r,

φ�(cφ� − ·) = εφ�φ
�, φ̃�(cφ� − ·) = εφ� φ̃

�, with cφ� ∈ Z, εφ� ∈ {−1, 1}, (3.13)

and for � = 1, . . . , s,

ψ�(cψ� − ·) = εψ� ψ
�, ψ̃�(cψ� − ·) = εψ� ψ̃

�, with cψ� ∈ Z, εψ� ∈ {−1, 1}. (3.14)

Let ε1, ε2 ∈ {−1, 1} and c ∈ Z. Define I := [ c
2
, c+1

2
]. For j ∈ N0, define

dφj,� :=
⌊
2j−1c− 2−1cφ�

⌋
, dψj,� :=

⌊
2j−1c− 2−1cψ�

⌋
oφj,� := odd(2jc− cφ� ), oψj,� := odd(2jc− cψ� ),

(3.15)

where odd(m) := 1 if m is an odd integer and odd(m) := 0 if m is an even

integer. Let χI denote the characteristic function of the set I. For j ∈ N0,

define
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Ψ�
j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Fc,ε1,ε2(ψ
�
2j ;k)χI : k = dψj,� + 1, . . . , dψj,� + 2j}, if oψj,� = 1,

{Fc,ε1,ε2(ψ
�
2j ;k)χI : k = dψj,� + 1, . . . , dψj,� + 2j − 1}, if oψj,� = 0, ε1 = ε2 �= εψ� ,

{Fc,ε1,ε2(ψ
�
2j ;k)χI : k = dψj,� + 1, . . . , dψj,� + 2j − 1} ∪ { 1√

2
Fc,ε1,ε2(ψ

�

2j ;dψj,�
)χI}

∪{ 1√
2
Fc,ε1,ε2(ψ

�

2j ;dψj,�+2j
)χI} if oψj,� = 0, ε1 = ε2 = εψ� ,

{Fc,ε1,ε2(ψ
�
2j ;k)χI : k = dψj,� + 1, . . . , dψj,� + 2j − 1} ∪ { 1√

2
Fc,ε1,ε2(ψ

�

2j ;dψj,�
)χI},

if oψj,� = 0, ε1 = εψ� �= ε2,

{Fc,ε1,ε2(ψ
�
2j ;k)χI : k = dψj,� + 1, . . . , dψj,� + 2j − 1} ∪ { 1√

2
Fc,ε1,ε2(ψ

�

2j ;dψj,�+2j
)χI},

if oψj,� = 0, ε2 = εψ� �= ε1,

(3.16)

and define Ψ̃�
j, Φ

�
j, Φ̃

�
j similarly. For J ∈ N0, define

BJ := (∪r
�=1Φ

�
J) ∪ ∪∞

j=J(∪s
�=1Ψ

�
j), B̃J := (∪r

�=1Φ̃
�
J) ∪ ∪∞

j=J(∪s
�=1Ψ̃

�
j). (3.17)

Then for every J ∈ N0, the following statements hold:

1. If ({Φ̃; Ψ̃}, {Φ;Ψ}) is a biorthogonal wavelet in L2(R), then (B̃J ,BJ) is

a biorthogonal basis for L2(I). In particular, BJ and B̃J are Riesz bases

for L2(I).

2. If {Φ;Ψ} is an orthogonal wavelet in L2(R), then BJ is an orthonormal

basis for L2(I).

Proof. Let f ∈ L2(I). Since we assume that Φ,Ψ, Φ̃, Ψ̃ are finite subsets

of compactly supported functions in L2(R), we know that Φ,Ψ, Φ̃, Ψ̃ ∈ L2.

Furthermore, following the argument as in the proof of [33, Theorem 7.5.3],

we conclude that there exists N ∈ N such that all elements in Φ,Ψ, Φ̃, Ψ̃ vanish
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outside [−N,N ], I ⊆ [−N,N ], |c| � N , max�=1,...,r |cφ� | � N , max�=1,...,r |cψ� | �
N , and for all j ∈ N0,

h2j ;k = 0, ∀x ∈ [−N,N ], k ∈ Z\[−N(2j + 1), N(2j + 1)],

h2j ;k = 0, ∀x ∈ R\[−3N, 3N ], k ∈ [−N(2j + 1), N(2j + 1)],

(3.18)

for all h ∈ Φ ∪ Ψ ∪ Φ̃ ∪ Ψ̃. Also, since k = dψj,�, . . . , d
ψ
j,� + 2j, we have that

|k| � |dψj,�| + 2j � 2j−1N + 2−1N + 2j = 2j(2−1N + 2−j−1N + 1). For x /∈
[−2N − 1, 2N +1] and j ∈ N0, we have |2jx− k| � 2j|x| − |k| � 2j(2N +1)−
(2j−1N + 2−1N + 2j) � N . As a result, we conclude that ψ�

2j ;k has to vanish

outside [−2N − 1, 2N + 1].

First, we start by proving that if ASJ(Φ;Ψ) is a Bessel sequence in L2(R),

then BJ and B̃J are Bessel sequences in L2(I). Note that

∑
h∈Ψ�

j

|〈f, h〉|2L2(I) �
dψj,l+2j∑
k=dψj,�

|〈fχI , Fc,ε1,ε2(ψ
�
2j ;k)〉|2

=

dψj,�+2j∑
k=dψj,�

|〈Fc,ε1,ε2(f), ψ
�
2j ;k〉|2

=

dψj,�+2j∑
k=dψj,�

|〈Fc,ε1,ε2(f)χ[−2N−1,2N+1], ψ
�
2j ;k〉|2

(3.19)

where we apply (3.18) to move from the second to the third inequality. This

helps us to proceed with the following argument

∑
h∈BJ

|〈f, h〉|2L2(I) =
r∑

�=1

∑
h∈Φ�

J

|〈f, h〉|2 +
∞∑
j=J

s∑
�=1

∑
h∈Ψ�

j

|〈f, h〉|2
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�
r∑

�=1

∑
k∈Z

|〈Fc,ε1,ε2(f)χ[−2N−1,2N+1], φ
�
2j ;k〉|2

+
∞∑
j=J

s∑
�=1

∑
k∈Z

|〈Fc,ε1,ε2(f)χ[−2N−1,2N+1], ψ
�
2j ;k〉|2

�C‖Fc,ε1,ε2(f)χ[−2N−1,2N+1]
‖2L2(R)

�C(4N + 2)‖f‖2L2(R)
.

The transition from the second line to the third is made possible from the

fact that ASJ(Φ;Ψ) is a Bessel sequence in L2(R). We can apply a similar

argument to show that that B̃J is a Bessel sequence in L2(I).
Now, let us proceed to the proof of item (1). Since ({Φ̃; Ψ̃}, {Φ;Ψ}) is a

biorthogonal wavelet in L2(R), by Theorem 1.1, we know that ({Φ̃; Ψ̃}, {Φ;Ψ})
is a pair of dual frames for L2(R) and the biorthogonality condition is satisfied.

Hence, from [33, Theorem 4.3.5], we know that (ASJ(Φ̃; Ψ̃),ASJ(Φ;Ψ)) is a pair

of dual frames for L2(R) for all J ∈ Z. As a first step, we need to show that

{B̃J ,BJ} is a pair of dual frames for L2(I). Since (ASJ(Φ̃; Ψ̃),ASJ(Φ;Ψ)) is a

pair of dual frames for L2(R), by the second identity of (3.18), we must have

the following representation for all f, g ∈ L2(I)

〈f, g〉 =〈f, Fc,ε1,ε2(g)〉 = 〈f, Fc,ε1,ε2(g)χ[−3N,3N ]〉

=
r∑

�=1

N(2J+1)∑
k=−N(2J+1)

〈f, φ�
2J ;k〉〈φ̃�

2J ;k, Fc,ε1,ε2(g)χ[−3N,3N ]〉

+
s∑

�=1

∞∑
j=J

N(2j+1)∑
k=−N(2j+1)

〈f, ψ�
2j ;k〉〈ψ̃�

2j ;k, Fc,ε1,ε2(g)χ[−3N,3N ]〉

=
r∑

�=1

∑
k∈Z

〈f, φ�
2J ;k〉〈Fc,ε1,ε2(φ̃

�
2J ;k), g〉
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+
s∑

�=1

∞∑
j=J

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉,

where we have taken into account of (3.18). Recall that Fc,ε1,ε2(h2j ;m+2j+2k) =

Fc,ε1,ε2(h2j ;m) for all j, k,m ∈ Z. We employ the following decomposition, let

Z = {dψj,� + 1− 2j, . . . , dψj,�, d
ψ
j,� + 1, . . . , dψj,� + 2j, dψj,� + 2j + 1, . . . , dψj,� + 2j+1,

dψj,� + 1 + 2j+1, . . . , dψj,� + 2j + 2j+1}+ 2j+2Z. (3.20)

So, we have

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉

=

dψj,�+2j+2j+1∑
m=dψj,�+1−2j

∑
k∈Z

〈f, ψ�
2j ;m+2j+2k〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

=

dψj,�+2j∑
m=dψj,�+1

∑
k∈Z

〈f, ψ�
2j ;m+2j+2k〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

+

dψj,�∑
m=dψj,�+1−2j

∑
k∈Z

〈f, ψ�
2j ;m+2j+2k〉〈ε1εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −m
), g〉

+

dψj,�+2j+1∑
m=dψj,�+1+2j

∑
k∈Z

〈f, ψ�
2j ;m+2j+2k〉〈ε2εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −m+2j+1), g〉

+

dψj,�+2j+2j+1∑
m=dψj,�+2j+1+1

∑
k∈Z

〈f, ψ�
2j ;m+2j+2k〉〈ε1ε2Fc,ε1,ε2(ψ̃

�
2j ;m−2j+1), g〉

(3.21)
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by applying (3.4), (3.5), and (3.6) to the second, third, and fourth terms.

Consider the case where oψj,� = 1 by keeping in mind that 2dψj,� + oψj,� =

2jc− cψj,�. By (3.21), we have that

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉

=

dψj,�+2j∑
m=dψj,�+1

∑
k∈Z

(
〈f, ε1εψ� ψ�

2j ;2jc−cψ� −m+2j+2k
〉+ 〈f, ε2εψ� ψ�

2j ;2jc−cψ� −m+2j+1+2j+2k
〉

+ 〈f, ε1ε2ψ�
2j ;m−2j+1+2j+2k〉+ 〈f, ψ�

2j ;m+2j+2k〉
) 〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

=

dψj,�+2j∑
m=dψj,�+1

∑
k∈Z

(〈f, ψ�
2j ;m+2j+2k + ε1ψ

�
2j ;m−2jc−2j+2k(−·)

+ ε2ψ
�
2j ;m−2jc−2j+1(1−2k)(−·) + ε1ε2ψ

�
2j ;m−2j+1(1−2k)〉

)
〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

=
∑
h∈Ψ�

j

〈f, hχI〉〈h̃χI , g〉.

Consider the case where oψj,� = 0 and ε1 = εψ� �= ε2. We employ the same

decomposition as in (3.20). Our argument then follows (3.21). At this point,

we would like to pay extra attention on terms dψj,� + 2j and dψj,� + 2j + 2j+1.

Let us consider the term dψj,� +2j first. Note that this term can be included in

the summation that involves the terms m = dψj,� +2j +1, . . . , dψj,� +2j+1 − 1 in

(3.21). Now,

〈f, ψ�

2j ;dψj,�+2j+2j+2k
〉〈Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j
), g〉

= 〈f, ψ�

2j ;dψj,�+2j+2j+2k
〉〈ε2εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −(dψj,�+2j)+2j+1), g〉

= 〈f, ψ�

2j ;dψj,�+2j+2j+2k
〉〈ε2εψ� Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j
), g〉,

(3.22)
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since 2dψj,� + oψj,l = 2jc− cψ� . Since εψ� �= ε2 means εψ� ε2 = −1, (3.22) yields

Fc,ε1,ε2(ψ̃
�

2j ;dψj,�+2j
) = 0. (3.23)

Next, let us look at the term dψj,�+2j+2j+1. Note that this term can be included

in the summation that involves the terms m = dψj,� +1− 2j, . . . , dψj,� − 1 due to

the 4-periodic property of Fc,ε1,ε2 . That is, Fc,ε1,ε2(h2j ;m+2j+2k) = Fc,ε1,ε2(h2j ;m)

for all m, k ∈ Z. Now,

〈f, ψ�

2j ;dψj,�+2j+2j+1+2j+2k
〉〈ε1ε2Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j
), g〉,

=〈f, ψ�

2j ;dψj,�+2j+2j+1+2j+2k
〉〈ε1εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −(dψj,�+2j+2j+1)
), g〉

=〈f, ψ�

2j ;dψj,�+2j+2j+1+2j+2k
〉〈ε1εψ� Fc,ε1,ε2(ψ̃

�

2j ;dψj,�−2j−2j+1+2j+2), g〉

=〈f, ψ�

2j ;dψj,�+2j+2j+1+2j+2k
〉〈ε1εψ� Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j
), g〉.

(3.24)

Since ε1ε2 = −1 and εψ� ε1 = 1, (3.24) yields

Fc,ε1,ε2(ψ̃
�

2j ;dψj,�+2j
) = 0, (3.25)

which is consistent with (3.23). Let us turn our attention to the terms dψj,�, d
ψ
j,�+

2j+1, and observe that

∑
k∈Z

ψ�

2j ;dψj,�+2j+1(2k)
=
∑
k∈Z

ψ�

2j ;2jc−cψ� −dψj,�+2j+1(2k)
= εψ�

∑
k∈Z

ψ�

2j ;dψj,�−2jc+2j+1(2k)
(−·),
(3.26)

∑
k∈Z

ψ�

2j ;dψj,�+2j+1(2k−1)
=
∑
k∈Z

ψ�

2j ;2jc−cψ� −dψj,�+2j+1(2k−1)
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= εψ�
∑
k∈Z

ψ�

2j ;dψj,�−2jc+2j+1(2k−1)
(−·), (3.27)

which means that

∑
k∈Z

ε1ε
ψ
� ψ

�

dψj,�+2j+1(2k)
+ ε2ε

ψ
� ψ

�

2j ;dψj,�+2j+1(2k−1)

=
1

2
ε1ε

ψ
�

(∑
k∈Z

ψ�

dψj,�+2j+2k
+ ε1ψ

�

2j ;dψj,�−2jc+2j+2k
(−·)

+ε1ε2ψ
�

2j ;dψj,�+2j+1(2k−1)
+ ε2ψ

�

2j ;dψj,�−2jc+2j+1(2k−1)
(−·)

)
=
1

2
Fc,ε1,ε2(ψ

�

2j ;dψj,�
), (3.28)

since εψ� = ε1 = 1, ε1ε2 = −1, and εψ� ε1 = 1. In order to put things in a concrete

manner for the case oψj,� = 0 and ε1 = εψ� �= ε2, by (3.21) we have

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉 =

dψj,�+2j−1∑
m=dψj,�+1

〈f, Fc,ε1,ε2(ψ
�
2j ;m)〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

+ 〈f, 1√
2
Fc,ε1,ε2(ψ

�

2j ;dψj,�
)〉〈 1√

2
Fc,ε1,ε2(ψ̃

�

2j ;dψj,�
), g〉.

Consider the case where oψj,� = 0 and ε1 �= εψ� = ε2. We employ the

same decomposition as in (3.20). Our argument then follows (3.21). At this

point, we would like to pay extra attention on terms dψj,� and dψj,� + 2j+1. We

again follow the same arguments as in (3.22) and (3.24) in that we consider 2

representations of the term dψj,� by including it in the summation that involves

the terms dψj,� + 1, . . . , dψj,� + 2j − 1 and the term dψj,� + 2j+1 by including it in

the summation that involves the terms dψj,� + 2j+1 + 1, . . . , dψj,� + 2j + 2j+1 − 1.
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That is we have

〈f, ψ�

2j ;dψj,�+2j+2k
〉〈Fc,ε1,ε2(ψ̃

�

2j ;dψj,�
), g〉

= 〈f, ψ�

2j ;dψj,�+2j+2k
〉〈ε1εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −dψj,�
), g〉,

and

〈f, ψ�

2j ;dψj,�+2j+1+2j+2k
〉〈ε2εψ� Fc,ε1,ε2(ψ̃

�

2j ;2jc−cψ� −dψj,�−2j+1+2j+1), g〉

= 〈f, ψ�

2j ;dψj,�+2j+1+2j+2k
〉〈ε1ε2Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j+1−2j+1), g〉.

What we shall observe is that

Fc,ε1,ε2(ψ̃
�

2j ;dψj,�
) = 0. (3.29)

We may use a similar argument in (3.26), (3.27), and (3.28), which helps us

to arrive at the following equation

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉 =

dψj,�+2j−1∑
m=dψj,�+1

〈f, Fc,ε1,ε2(ψ
�
2j ;m)〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

+ 〈f, 1√
2
Fc,ε1,ε2(ψ

�

2j ;dψj,�+2j
)〉〈 1√

2
Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2j
), g〉.

Consider the case where oψj,� = 0 and ε1 = εψ� = ε2. Then, by (3.3), we have

Fc,ε1,ε2(ψ
�
2j ;k) =

∑
k∈Z

ψ�
m+2j+1k + εψ� ψ

�
2j ;m−2jc+2j+1k(−·),

which boils down to one of the cases considered in [33]. Having ε1 = ε2 allows
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us to take advantage of Fc,ε1,ε2(h2j ;m) = Fc,ε1,ε2(h2j ;m+2j+1k). For this case,

particularly for the boundary elements, notice that for all q ∈ Z

∑
k∈Z

ψ�

2j ;dψj,�+2jq+2j+1(2k)
= εψ�

∑
k∈Z

ψ�

2j ;dψj,�+2jq−2jc+2j+1(2k)
(−·),

∑
k∈Z

ψ�

2j ;dψj,�+2jq+2j+1(2k−1)
= εψ�

∑
k∈Z

ψ�

2j ;dψj,�+2jq−2jc+2j+1(2k−1)
(−·). (3.30)

Keeping in mind that 2j+1k can decomposed into a set of terms that involves

2j+1(2k) and another that involves 2j+1(2k + 1), we have by (3.30)

∑
k∈Z

ψ�

2j ;dψj,�+2jq+2j+1k

=
∑
k∈Z

ψ�

2j ;dψj,�+2jq+2j+1(2k)
+ ψ�

2j ;dψj,�+2jq+2j+1(2k−1)

=
1

2

(∑
k∈Z

ψ�

2j ;dψj,�+2jq+2j+1(2k)
+ εψ� ψ

�

2j ;dψj,�+2jq−2jc+2j+1(2k)
(−·)

+ψ�

2j ;dψj,�+2jq+2j+1(2k−1)
+ εψ� ψ

�

2j ;dψj,�+2jq−2jc+2j+1(2k−1)
(−·)

)
=
1

2
Fc,ε1,ε2(ψ

�

2j ;dψj,�+2jq
).

Hence,

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉

=
1∑

q=0

∑
k∈Z

〈f, ψ�

2j ;dψj,�+2jq+2j+1k
〉〈Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2jq
), g〉

+

dψj,�+2j−1∑
m=dψj,�+1

〈f,
∑
k∈Z

ψ�
2j ;m+2j+1k + εψ� ψ

�
2j ;m−2jc+2j+1k(−·)〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉
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=
1∑

q=0

〈f, 1√
2
Fc,ε1,ε2(ψ

�

2j ;dψj,�+2jq
)〉〈 1√

2
Fc,ε1,ε2(ψ̃

�

2j ;dψj,�+2jq
), g〉

+

dψj,�+2j−1∑
m=dψj,�+1

〈f, Fc,ε1,ε2(ψ
�
2j ;m)〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

=
∑
h∈Ψ�

j

〈f, hχI〉〈h̃χI , g〉. (3.31)

Next, consider the case when oψj,� = 0 and ε1 = ε2 �= εψ� . We simply refer

back to (3.31) and analyze the first summation. Having ε1 = ε2 allows us to

take advantage of the following periodicity Fc,ε1,ε2(h2j ;m+2j+1k) = Fc,ε1,ε2(h2j ;m).

By (3.4) and the fact that 2jc − cψ� = 2dψj,� and Fc,ε1,ε2(ψ
�

2j ;dψj,�+2jq+2j+1k
) =

Fc,ε1,ε2(ψ
�

2j ;dψj,�+2jq
), we have

Fc,ε1,ε2(ψ
�

2j ;dψj,�+2jq
) = ε1ε

ψ
� Fc,ε1,ε2(ψ

�

2j ;2jc−cψ� −dψj,�−2jq
) = −Fc,ε1,ε2(ψ

�

2j ;dψj,�−2jq+2j+1)

= −Fc,ε1,ε2(ψ
�

2j ;dψj,�+2jq
)

for q ∈ {0, 1}. Hence, we have

Fc,ε1,ε2(ψ
�

2j ;dψj,�+2jq
) = 0,

and (3.31) boils down to

∑
k∈Z

〈f, ψ�
2j ;k〉〈Fc,ε1,ε2(ψ̃

�
2j ;k), g〉 =

dψj,�+2j−1∑
m=dψj,�+1

〈f, Fc,ε1,ε2(ψ
�
2j ;m)〉〈Fc,ε1,ε2(ψ̃

�
2j ;m), g〉

=
∑
h∈Ψ�

j

〈f, hχI〉〈h̃χI , g〉.
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Even though the arguments above explicitly involve the wavelets, we can

tailor them so that they remain valid for each component of the refinable vector

function. We can summarize the above 5 cases as an equation stated below

〈f, g〉L2(I) =
r∑

�=1

∑
h∈Φ�

J

〈f, h〉〈h̃, g〉+
s∑

�=1

∞∑
j=J

∑
h∈Ψ�

j

〈f, h〉〈h̃, g〉.

for all f, g ∈ L2(I). With that, we have proved that (B̃J ,BJ) is a pair of dual

frames for L2(I).
In order to complete the proof of item (1), the next is to prove that the

biorthogonality condition for each of the 5 cases. In fact, all of them have the

same starting point, which is stated below

∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx

=〈Fc,ε1,ε2(ψ
�
2j ;m), ψ̃

p
2q ;n〉

=
∑
k∈Z

〈ψ�
2j ;m+2j+1(2k) + ε1ψ

�
2j ;m−2jc+2j+1(2k)(−·) + ε2ψ

�
2j ;m−2jc+2j+1(2k−1)(−·)

+ ε1ε2ψ
�
2j ;m+2j+1(2k−1), ψ̃

p
2q ;n〉.

=
∑
k∈Z

〈ψ�
2j ;m+2j+1(2k), ψ̃

�
2j ;n〉+ ε1〈ψ�

2j ;m−2jc+2j+1(2k)(−·), ψ̃�
2j ;n〉

+ ε2〈ψ�
2j ;m−2jc+2j+1(2k−1)(−·), ψ̃�

2j ;n〉+ ε1ε2〈ψ�
2j ;m+2j+1(2k−1), ψ̃

�
2j ;n〉

=1 + ε1ε
ψ
�

∑
k∈Z

δ(2jc− cψ� − 2m− 2j+2k)

+ ε2ε
ψ
�

∑
k∈Z

δ(2jc− cψ� − 2m− 2j+1(2k − 1)) + ε1ε2
∑
k∈Z

δ(2j+1(2k − 1)),

(3.32)
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whereby the biorthogonality of (ASJ(Ψ̃; Φ̃),ASJ(Ψ;Φ)) essentially forces us to

select p = �, q = j, and m = n. We have m = n because dψj,� � m,n � dψj,�+2j

and m− n ≡ 0 mod 2j+2 forces k = 0 for the first summation.

Recall that for the case oψj,� = 1, dψj,� + 1 � m,n � dψj,� + 2j. Hence, by

(3.32), we have ∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx = 1,

because δ(2jc − cψ� − 2m − 2j+2k) = δ(2dψj,� + oψj,� − 2m − 2j+2k) but m =

dψj,� + 1/2 − 2j+1k /∈ {dψj,� + 1, . . . , dψj,� + 2j} for all k ∈ Z; and similarly,

δ(2jc − cψ� − 2m − 2j+1(2k − 1)) = δ(2dψj,� + oψj,� − 2m − 2j+1(2k − 1)) but

m = dψj,� + 1/2− 2j(2k − 1) /∈ {dψj,� + 1, . . . , dψj,� + 2j} for all k ∈ Z.

Consider the case when oψj,� = 0 and ε1 = εψ� �= ε2. Refer to (3.32) again.

For m = {dψj,� + 1, . . . , dψj,� + 2j − 1},

∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx = 1,

because δ(2jc − cψ� − 2m − 2j+2k) = δ(2dψj,� − 2m − 2j+2k) but m = dψj,� −
2j+1k /∈ {dψj,� + 1, . . . , dψj,� + 2j − 1} for all k ∈ Z and j � 1; and similarly,

δ(2jc − cψ� − 2m − 2j+1(2k − 1)) = δ(2dψj,� − 2m − 2j+1(2k − 1)) but m =

dψj,� − 2j(2k − 1) /∈ {dψj,l + 1, . . . , dψj,l + 2j − 1} for all k ∈ Z and j � 1. For

j = 0, recall from (3.16) that we only have a boundary term, m = dψj,�. Now,

when m = dψj,�,

∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx = 1 + ε1ε

ψ
� = 2. (3.33)

Consider the case when oψj,� = 0 and ε1 �= εψ� = ε2. The only difference
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between this case and the one where oψj,� = 0 and ε1 = εψ� �= ε2 is that now

we have the (boundary) term m = dψj,� + 2j, but we no longer have m = dψj,�.

Refer to (3.32) again. For m = {dψj,� + 1, . . . , dψj,� + 2j − 1},

∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx = 1,

by arguments made for the case oψj,� = 0 and ε1 = εψ� �= ε2. For m = dψj,� + 2j,

noting the summation that involves ε2ε
ψ
� is equal to 1, when k = 0, we have

∫
I
Fc,ε1,ε2(ψ

�
2j ;m)Fc,ε1,ε2(ψ̃

p
2q ;n)dx = 1 + ε2ε

ψ
� = 2. (3.34)

Consider the case when oψj,� = 0 and ε2 �= ε1 = εψ� ; or, o
ψ
j,� = 0 and ε1 �= ε2 =

εψ� . Then, the only terms we have are simplym = {dψj,�+1, . . . , dψj,�+2j−1}. We

just apply the same argument as above. Lastly, consider the case when oψj,� = 0

and ε1 = ε2 = εψ� . The interior terms that involvem = {dψj,�+1, . . . , dψj,�+2j−1}
have been handled before. For m = dψj,�, we are back at (3.33). Meanwhile, we

are back at (3.34) for m = dψj,� + 2j. Therefore, we proved that B̃J and BJ are

biorthogonal. So, item (1) holds. Item (2) follows directly from item (1).

Next, we discuss the refinable structure of the folded wavelets on the inter-

val. Due to the more sophisticated structure of the folding operator, we need

to modify the argument used in [33, Proposition 7.5.4], but the general idea

remains the same.

Proposition 3.3. Let φ = (φ1, . . . , φr)T and ψ = (ψ1, . . . , ψs)T be vectors of
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compactly supported distributions satisfying

φ = 2
∑
k∈Z

a(k)φ(2 · −k), ψ = 2
∑
k∈Z

b(k)φ(2 · −k) (3.35)

for some a ∈ (l0(Z))
r×r and b ∈ (l0(Z))

s×r. Define

S(ξ) := diag(εφ1e
−icφ1 ξ, . . . , εφr e

−icφr ξ)

T(ξ) := diag(εψ1 e
−icψ1 ξ, . . . , εψs e

−icψs ξ)

(3.36)

with cφ1 , . . . , c
φ
r , c

ψ
1 , . . . , c

ψ
s ∈ Z and εφ1 , . . . , ε

φ
r , ε

ψ
1 , . . . , ε

ψ
s ∈ {−1, 1}.

1. If â(ξ) = S(2ξ)â(−ξ)S−1(ξ) for all ξ ∈ R and if 1 is a simple eigenvalue

of â(0) and det(2jIr − â(0)) �= 0 for all j ∈ N, then φ̂(ξ) = S(ξ)φ̂(−ξ),

that is, the first identity in (3.13) holds.

2. If φ̂(ξ) = S(ξ)φ̂(−ξ) and b̂(ξ) = T(2ξ)̂b(−ξ)S−1(ξ), then ψ̂(ξ) = T(ξ)ψ̂(−ξ),

that is, the first identity in (3.14) holds.

3. If φ̂ = S(ξ)φ̂(−ξ) and ψ̂(ξ) = T(ξ)ψ̂(−ξ) (that is, the first identities in

both (3.13) and (3.14) hold) with cφ1 , . . . , c
φ
r , c

ψ
1 , . . . , c

ψ
s ∈ Z, then there

exist (#�Φj−1) × (#�Φj) matrices Aj and (#�Ψj−1) × (#�Φj) matrices Bj

such that

�Φj−1 = Aj
�Φj

�Ψj−1 = Bj
�Φj, j ∈ N, (3.37)

where �Φ and �Ψ are column vectors by listing all the elements in ∪r
�=1Φ

�
j

and ∪s
�=1Ψ

�
j, respectively. Here, Ψ

�
j is defined in (3.16) and Φ�

j is defined

similarly as in (3.16).

Proof. In order to prove item (1), we start by defining η̂(ξ) := S(ξ)φ̂(−ξ).

80



Recall that (3.35) is simply equivalent to having φ̂(2ξ) = â(ξ)φ̂(ξ) and ψ̂(2ξ) =

b̂(ξ)φ̂(ξ) by Fourier transform. Next, â(ξ)S(ξ) = S(2ξ)â(−ξ) implies that

â(ξ)η̂(ξ) = â(ξ)S(ξ)φ̂(−ξ) = S(2ξ)â(−ξ)φ̂(−ξ) = S(2ξ)φ̂(−2ξ) = η̂(2ξ).

By the refinability of η, the fact that η̂(0) = S(0)φ̂(0), our assumption in that

1 is a simple eigenvalue of â(0) and det(2jIr − â(0)) �= 0 for all j ∈ N, and

the uniqueness of solution to compactly supported refinable distribution [33,

Theorem 5.1.3], we have η = φ. Thus φ̂(ξ) = S(ξ)φ̂(−ξ).

From item (1), we know that φ̂(ξ) = S(ξ)φ̂(ξ). Rearranging our assump-

tion, we have T(2ξ)̂b(−ξ) = b̂(ξ)S(ξ). With a straightforward calculation, we

get

T(2ξ)ψ̂(−2ξ) = T(2ξ)̂b(−ξ)φ̂(−ξ) = b̂(ξ)S(ξ)φ̂(−ξ) = b̂(ξ)φ̂(ξ) = ψ̂(ξ),

which brings us to item (2). We shall do the proof for the wavelets. The argu-

ment for each component of the refinable vector function proceeds identically,

we just need to change ψ to φ and the filter b to filter a. Let us start with

ψ2j−1;n =
√
2
∑
k∈Z

b(k)φ2j ;k+2n, j ∈ N (3.38)

Let us denote [b(k)]p,� the p-th row and and �-th column of matrix b(k). Then,

applying the folding operator to (3.38), we can rewrite (3.38) further as

Fc,ε1,ε2(ψ
p
2j−1;n

) =
√
2

r∑
�=1

∑
k∈Z

[b(k)]p,�Fc,ε1,ε2(φ
�
2j ;k+2n)
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=
√
2

r∑
�=1

dφj,�+2j+2j+1−2n∑
m=dφj,�+1−2j−2n

∑
k∈Z

[b(m+ 2j+2k)]p,�Fc,ε1,ε2(φ
�
2j ;m+2j+2k+2n)

=
√
2

r∑
�=1

dφj,�+2j+2j+1−2n∑
m=dφj,�+1−2j−2n

∑
k∈Z

[b(m+ 2j+2k)]p,�Fc,ε1,ε2(φ
�
2j ;m+2n) (3.39)

Recall the decomposition that we have in (3.21).

dψj,�+2j+2j+1∑
m=dψj,�+1−2j

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�
2j ;m)

=

dφj,�+2j∑
m=dφj,�+1

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�
2j ;m)

+ ε1ε
φ
�

dφj,�∑
m=dφj,�+1−2j

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�

2j ;2jc−cφ� −m
)

+ ε2ε
φ
�

dφj,�+2j+1∑
m=dφj,�+1+2j

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�

2j ;2jc−cφ� −m+2j+1)

+ ε1ε2

dφj,�+2j+2j+1∑
m=dφj,�+2j+1+1

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�
2j ;m−2j+1).

(3.40)

For the case when oφj,� = 1, we have

dψj,�+2j+2j+1∑
m=dψj,�+1−2j

∑
k∈Z

[b(m+ 2j+2k − 2n)]p,�Fc,ε1,ε2(φ
�
2j ;m)
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=

dφj,�+2j∑
m=dφj,�+1

∑
k∈Z

(
[b(m+ 2j+2k − 2n)]p,�

+ ε1ε
φ
� [b(2

jc− cφ� −m+ 2j+2k − 2n)]p,�

+ ε2ε
φ
� [b(2

jc− cφ� −m+ 2j+1(2k + 1)− 2n)]p,�

+ ε1ε2[b(m+ 2j+1(2k + 1)− 2n)]p,�
)
Fc,ε1,ε2(φ

�
2j ;m)

=

dφj,�+2j∑
m=dφj,�+1

∑
k∈Z

[bnj,�(m)]p,�Fc,ε1,ε2(φ
�
2j ;m),

where

bnj,�(m) :=b(m+ 2j+2k − 2n) + ε1ε
φ
� b(2

jc− cφ� −m+ 2j+2k − 2n) (3.41)

+ ε2ε
φ
� b(2

jc− cφ� −m+ 2j+1(2k + 1)− 2n)

+ ε1ε2b(m+ 2j+1(2k + 1)− 2n),

where m ∈ Z.

For the case when oφj,� = 0, recall that we have 4 subcases. In the following,

we deal with a large part that all 4 subcases share. This consists of all the terms

m = {dφj,� + 1, . . . , dφj,� + 2j − 1}. In order to find the new filter bnj,�, we simply

apply similar decomposition and the identical change of variables as in (3.40),

which allow us to reach (3.41) form = {dφj,�+1, . . . , dφj,�+2j−1}. Let us proceed
to the boundary terms, which are m = {dφj,�, dφj,� + 2j}. Suppose ε2 �= ε1 = εφ� .

Then, since (3.23) holds, we shall only considerm = dφj,�, d
φ
j,�+2j+1 from (3.40),

∑
k∈Z

(
ε1ε

φ
� [b(d

φ
j,� + 2j+2k − 2n)]p,�
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+ε2ε
φ
� [b(d

φ
j,� + 2j+1(2k + 1)− 2n)]p,�

)
Fc,ε1,ε2(φ

�

2j ;dφj,�
)

=
1

2
ε1ε

φ
�

∑
k∈Z

(
[b(dφj,� + 2j+2k − 2n)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�
)

+ ε1ε
φ
� [b(d

φ
j,� + 2j+2k − 2n)]p,�Fc,ε1,ε2(φ

�

2j ;2jc−cφ� −dφj,�
)

+ ε2ε
φ
� [b(d

φ
j,� + 2j+1(2k + 1)− 2n)]p,�Fc,ε1,ε2(φ

�

2j ;2jc−cφ� −dφj,�
)

+ε1ε2[b(d
φ
j,� + 2j+1(2k + 1)− 2n)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�
)

)
=
∑
k∈Z

1

2
[bnj,�(d

φ
j,�)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�
) (3.42)

where we have applied identity (3.4) and a change of variables to move from

the second inequality to the third inequality.

Suppose ε1 �= ε2 = εφ� . Then, since (3.29) holds, we shall only consider

m = dφj,� + 2j, dφj,� + 2j + 2j+1 from (3.40),

∑
k∈Z

(
[b(dφj,� + 2j + 2j+2k − 2n)]p,�

+ ε1ε2[b(d
φ
j,� + 2j + 2j+1(2k + 1)− 2n)]p,�

)
Fc,ε1,ε2(φ

�

2j ;dφj,�+2j
)

=
1

2

∑
k∈Z

(
[b(dφj,� + 2j + 2j+2k − 2n)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�+2j
)

+ ε1ε
φ
� [b(d

φ
j,� + 2j + 2j+1 + 2j+2k − 2n)]p,�Fc,ε1,ε2(φ

�

2j ;2jc−cφ� −dφj,�−2j−2j+1)

+ ε2ε
φ
� [b(d

φ
j,� + 2j + 2j+2k − 2n)]p,�Fc,ε1,ε2(φ

�

2j ;2jc−cφ� −dφj,�+2j
)

+ ε1ε2[b(d
φ
j,� + 2j + 2j+1(2k + 1)− 2n)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�+2j
)

)
=
∑
k∈Z

1

2
[bnj,�(d

φ
j,� + 2j)]p,�Fc,ε1,ε2(φ

�

2j ;dφj,�+2j
),

(3.43)
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where we observe that Fc,ε1,ε2(φ
�

2j ;2jc−cφ� −dφj,�−2j−2j+1
) = Fc,ε1,ε2(φ

�

2j ;dφj,�+2j
) by the

periodicity of the folding operator; additionally,

∑
k∈Z

[b(dφj,� + 2j + 2j+1 + 2j+2k− 2n)]p,� =
∑
k∈Z

[b(dφj,� − 2j + 2j+2(k + 1)− 2n)]p,�.

These two items help us to arrive at (3.41), where m = dφj,� + 2j.

Lastly, since the case ε1 = ε2 = εφ� requires two boundaries, we naturally

include (3.42) and (3.43). Due to (3.39), the existence of a #�Ψj−1×#�Φj matrix

Bj such that �Ψj−1 = Bj
�Φj is guaranteed from which item (3) follows.

Before we present our last theorem for this section, we state two significant

results, which are [33, Corollary 6.4.7] and [33, Corollary 6.4.8] respectively.

The formal definition of sm(a) is defined in [33]. However, by [33, Theorem

6.3.3], we have a result that says (φ) = sm(a) given that the integer shifts of

φ are stable, and φ is an r × 1 compactly supported distribution satisfying

φ̂(0) �= 0 and φ̂(2ξ) = â(ξ)φ̂(ξ). Also, recall that sm(φ) := sup{τ ∈ R : φ ∈
Hτ (R)}, where φ here is assumed to be a tempered distribution.

Lemma 3.1. [33, Corollary 6.4.7] Let a, b, ã, b̃ ∈ (l0(Z))
r×r such that the

following statement holds for a and ã: 1 is a simple eigenvalue of â(0) and

det(2jIr−â(0)) �= 0 for all j ∈ N. Let φ and φ̃ be r×1 vectors of compactly sup-

ported distributions satisfying φ̂(2ξ) = â(ξ)φ̂(ξ) and ̂̃φ(2ξ) = ̂̃a(ξ)̂̃φ(ξ). Define

ψ̂(ξ) = b̂(ξ/2)ψ̂(ξ/2) and ̂̃ψ(ξ) = ̂̃b(ξ/2)̂̃ψ(ξ/2). For τ ∈ R, ({φ̃; ψ̃}, {φ;ψ}) is
a biorthogonal wavelet in (Hτ (R), H−τ (R)) if and only if
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1. ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank satisfying

⎡⎢⎣ ̂̃a(ξ) ̂̃a(ξ + π)̂̃b(ξ) ̂̃b(ξ + π)

⎤⎥⎦
⎡⎢⎣ â(ξ)

T
â(ξ + π)

T

b̂(ξ)
T

b̂(ξ + π)
T

⎤⎥⎦ = I2r; (3.44)

2. sm(a) > τ and sm(ã) > −τ ;

3. ̂̃φ(0)Tφ̂(0) = 1.

Lemma 3.2. [33, Corollary 6.4.8] Let a, b ∈ (l0(Z))
r×r. Let φ be an r × 1

a vector of compactly supported distributions satisfying φ̂(2ξ) = â(ξ)φ̂(ξ) for

all ξ ∈ R. Define ψ by ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2). Then {φ;ψ} is an orthogonal

wavelet in L2(R) if and only if

1. {a; b} is an orthogonal wavelet filter bank; that is, (3.44) holds with ã = a

and b̃ = b;

2. sm(a) > 0;

3. ‖φ̂(0)‖2l2 = φ̂(0)Tφ̂(0) = 1.

Theorem 3.1 and Proposition 3.3 culminate in the following theorem. The

argument is pretty much verbatim from [33, Theorem 7.5.5] or [3, Theorem

2.1], since most of the calculations have been handled in Theorem 3.1 and

Proposition 3.3.

Theorem 3.2. Let φ := (φ1, . . . , φr)T, ψ := (ψ1, . . . , ψs)T, φ̃ := (φ̃1, . . . , φ̃r)T,

ψ̃ := (ψ̃1, . . . , ψ̃s)T. Assume that ‖φ̂(0)‖L2 = 1 and φ̂(0)
T̂̃φ(0)T = 1. Suppose

that there exist a, ã ∈ (l0(Z))
r×r and b, b̃ ∈ (l0(Z))

s×r such that

φ̂(2ξ) = â(ξ)φ̂(ξ), ̂̃φ(2ξ) = ̂̃a(ξ)̂̃φ(ξ), ψ̂(2ξ) = b̂(ξ)ψ̂(ξ), ̂̃ψ(2ξ) = ̂̃b(ξ)̂̃ψ(ξ).
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Then, there exist matrices Aj, Bj, Ãj, B̃j such that

�Φj−1 = Aj
�Φj, �Ψj−1 = Bj

�Φj,
�̃Φj−1 = Ãj

�̃Φj,
�̃Ψj−1 = B̃j

�̃Φj, (3.45)

for all j ∈ N. Moreover, for every J ∈ N,

1. if ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank satisfying (3.44)

and if sm(a) > 0 and sm(ã) > 0, then ({Φ̃; Ψ̃}, {Φ;Ψ}) is a biorthogonal

wavelet in L2(R), (B̃J ,BJ) is a pair of biorthogonal bases for L2(I), and

the square matrix

⎡⎢⎣Aj

Bj

⎤⎥⎦ has the inverse

[
Ãj

T

, B̃j

T
]
; i.e.,

Ãj

T

Aj + B̃j

T

Bj = Id; (3.46)

2. if {a; b} is an orthogonal wavelet filter bank and sm(a) > 0, then Ψ is an

orthogonal wavelet in L2(R) and BJ is an orthonormal basis for L2(I).

Proof. We know that ({Φ̃; Ψ̃}, {Φ;Ψ}) is a biorthogonal wavelet in L2(R) due

to Lemma 3.1 with τ = 0. Hence, {B̃J ,BJ} is a pair of biorthogonal bases for

L2(I) by Theorem 3.1. Furthermore, for all f ∈ L2(I),

〈f, �̃Φj−1〉�Φj−1 + 〈f, �̃Ψj−1〉�Ψj−1 = 〈f, �̃Φj〉�Φj. (3.47)

Inserting (3.45) to the identity above, we have

〈f, �̃Φj〉
(
Ãj

T

Aj + B̃j

T

Bj

)
�Φj = 〈f, �̃Φj〉�Φj. (3.48)
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In order to show Ãj

T

Aj + B̃j

T

Bj = Id is indeed true, we note that the en-

tries of Φj and the entries of Φ̃j have to be linearly independent due to the

biorthogonality of Φ̃j and Φj. Since the entries in
�̃Φj are linearly independent,

the mapping f ∈ L2(I) �→ 〈f, �̃Φj〉 ∈ (l2)
1×#�̃Φj is onto. Identity (3.46) then

is obtained, because the entries of �Φj are also linearly independent. From

(3.47), we have that #�Φj � #�Φj−1 + #�Ψj−1. At the same time, we know

that �Φj−1 ∪ �Ψj−1 is biorthogonal to �̃Φj−1 ∪ �̃Ψj−1. So, (3.47) again gives us

#�Φj � #�Φj−1 + #�Ψj−1. We can conclude that #�Φj = #�Φj−1 + #�Ψj−1.

Therefore,

⎡⎢⎣Aj

Bj

⎤⎥⎦ and

[
Ãj

T

, B̃j

T
]
have to be square matrices.

Lemma 3.2 and item (1) finally give us item (2).
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Chapter 4

Assessing the Numerical

Performance

The goal of this chapter is twofold: firstly, we show how we can introduce a

simple scaling factor to our wavelet bases in order to obtain a quasi-optimal

condition number for the energy norm. Secondly, by taking into account this

scaling factor, we evaluate the numerical performance of our wavelet bases.

The examples discussed in Section 4.2 are taken directly from [35].

4.1 Minimizing the Condition Numbers of

Wavelet Bases

For the purpose of finding the numerical solution to a differential equation,

we certainly want to have a Riesz wavelet that has many nice features. One

feature that we desire is a small condition number in the energy norm. Since

we have a Riesz wavelet, this condition number is simply the ratio of the upper
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bound and lower constants. More practically speaking, if A is a matrix of inner

products (i.e. A is symmetric positive definite), the condition number is just

the ratio of the maximum and minimum eigenvalues of A.

When generating a Riesz wavelet that satisfies the mth order derivative–

orthogonality in Chapter 2, there is one degree of freedom that typically re-

mains. Indeed, we can scale our wavelet basis in a way such that we obtain

a quasi-optimal condition number. Scaling is probably the most effortless op-

eration that we can employ to reduce the condition number, while preserving

the shift-invariant and localization properties. It should not come as a surprise

that the optimization problem we are headed is almost the same as finding the

optimal pre-conditioner.

Proposition 4.1. Suppose det([ψ̂(m), ψ̂(m)](ξ)) �= 0 for all ξ ∈ R, where m ∈
N ∪ {0} and ψ(m) := (ψ

(m)
1 , ψ

(m)
2 )T. Let θ > 0. If

[diag(θ, 1)ψ̂(m), diag(θ, 1)ψ̂(m)](ξ) :=

⎡⎢⎣θ2η11(ξ) θη12(ξ)

θη21(ξ) η22(ξ)

⎤⎥⎦ ,

then the condition number of [diag(θ, 1)ψ̂(m), diag(θ, 1)ψ̂(m)](ξ) can be reduced

by considering the following problem

sup
θ∈R,θ>0

inf
ξ∈R

4θ2 det([ψ̂(m), ψ̂(m)](ξ))

(θ2η11(ξ) + η22(ξ))2
. (4.1)

Proof. We first note that [ψ̂(m), ψ̂(m)](ξ) = [ψ̂(m), ψ̂(m)](ξ)
T

for all ξ ∈ R, which

means that [ψ̂(m), ψ̂(m)](ξ) is a Hermitian matrix. Hence, all eigenvalues are

real.

90



Now, det([diag(θ, 1)ψ̂(m), diag(θ, 1)ψ̂(m)](ξ)−λI) = λ2−λ(θ2η11(ξ)+η22(ξ))+

θ2 det([ψ̂(m), ψ̂(m)](ξ))=0 if and only if

λ1,2 =
θ2η11(ξ) + η22(ξ)±

√
(θ2η11(ξ) + η22(ξ))2 − 4 det([ψ̂(m), ψ̂(m)](ξ))

2
.

Since the condition number (denoted by κ(·)) is just the ratio of the largest

and smallest singular values and the singular values in our case can be found

by taking the absolute value of the eigenvalues, we have that

κ([diag(θ, 1)ψ̂(m), diag(θ, 1)ψ̂(m)](ξ))

=
θ2η11(ξ) + η22(ξ) +

√
(θ2η11(ξ) + η22(ξ))2 − 4θ2 det([ψ̂(m), ψ̂(m)](ξ))

θ2η11(ξ) + η22(ξ)−
√
(θ2η11(ξ) + η22(ξ))2 − 4θ2 det([ψ̂(m), ψ̂(m)](ξ))

,

=
1 +

√
1− 4θ2 det([ ̂ψ(m), ̂ψ(m)](ξ))

(θ2η11(ξ)+η22(ξ))2

1−
√

1− 4θ2 det([ ̂ψ(m), ̂ψ(m)](ξ))
(θ2η11(ξ)+η22(ξ))2

.

(4.2)

We note that the current condition number can be found by setting θ = 1 and

taking the supremum of (4.2) with respect to ξ ∈ R. In order to reduce the

condition number, we want to consider the following problem

inf
θ∈R,θ>0

sup
ξ∈R

κ([diag(θ, 1)ψ̂(m), diag(θ, 1)ψ̂(m)](ξ)). (4.3)

That is for a given scaling θ, we want to find the associated condition number,

which entails finding the supremum with respect to ξ ∈ R. Given ξ(θ), we

want to find the infimum of all possible condition numbers with respect to θ.

We note that 1+
√
1−x

1−√
1−x

is a decreasing function of x, which means we want x to
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be as large as possible. Hence, (4.3) and (4.2) give (4.1).

Our experiments suggest that a good choice for the scaling factor is θ∗ =√
η22(π/2)
η11(π/2)

. The next section requires us to find the Galerkin formulation of

a differential equation, which gives rise to a linear system that needs to be

solved. Now, in order for such a linear system to have a small condition

number, Proposition 4.1 and the preceding discussion suggest that we should

normalize the wavelet basis such that the L2 norm of the mth order derivative

of the wavelet basis is equal to 1.

4.2 Numerical Results

In this section, we present some examples to demonstrate the performance of

our constructed derivative-orthogonal Riesz wavelets constructed in Section 2.

In order to showcase the flexibility of our constructed wavelet bases, we use

different types of Riesz wavelets to solve one-dimensional Sturm-Liouville dif-

ferential equations and biharmonic equations with various types of boundary

conditions. That is, we do not first transform the differential equations to

make their boundary conditions homogeneous. This shows the flexibility of

our constructed wavelets.

We shall use themth-order derivative-orthogonal Riesz wavelets constructed

from Hermite linear splines withm = 1, Hermite quadratic splines withm = 1,

and Hermite cubic splines with m = 2. Since all of those wavelets have sym-

metry and are supported inside [−1, 1], we shall mainly use Theorem 3.1 for

building Riesz wavelet bases on the interval [0, 1] derived from wavelets on the

real line. As can be seen in a moment, the boundary elements are obtained
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by a simple restriction operation on the interval [0, 1]. This simple restric-

tion operation is primarily induced by the folding operator in Theorem 3.1

and the short support of our Riesz wavelets. Referring back to the notations

used in Theorem 3.1, we have c = 0, cφ1 = cψ1 = cφ2 = cψ2 = 0, εφ1 = εψ1 = 1,

and εφ2 = εψ2 = −1 for the Riesz wavelets constructed from Hermite linear

and quadratic splines we shall use momentarily. Additionally, for the Riesz

wavelet constructed from Hermite cubic splines, we have c = 0, cφ1 = cφ2 = 0,

cψ1 = cψ2 = 1, εφ1 = εψ1 = 1, and εφ2 = εψ2 = −1.

We shall follow the same set-up as in [41] in that the coarsest scale level

that we will use is 1 instead of 0. Let n be the scale or resolution level

in our numerical scheme. At the coarsest scale, we have only four elements

Φ0 := {φL(2·), φ1(2 · −1), φ2(2 · −1), φR(2·)} and at every scale level j � 1

we have only one left boundary wavelet function ψL and one right boundary

wavelet function ψR such that all the boundary elements

φL ∈ {φ1|[0,1], φ2|[0,1]}, φR ∈ {φ1(· − 1)|[0,1], φ2(· − 1)|[0,1]},

ψL ∈ {ψ1|[0,1], ψ2|[0,1]}, ψR ∈ {ψ1(· − 1)|[0,1], ψ2(· − 1)|[0,1]}
(4.4)

are chosen according to the boundary conditions of a given differential equa-

tion. To simplify our notation, we enumerate our basis as follows using n

scale level in our numerical scheme to find the weak solution u ∈ Hm(R).

Define g1, . . . , g4 at the coarse scale such that span{g1, . . . , g4} = spanΦ0 and

{g(m)
1 , . . . , g

(m)
4 } is an orthonormal system in L2(R). For 1 � j � n, we define

g2j+1+1 := 2j(1/2−m)ψL(2j·)/‖[ψL](m)‖L2(R),

g2j+1+2j := 2j(1/2−m)ψR(2j · −2j)/‖[ψR](m)‖L2(R),

(4.5)
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and for all k = 1, . . . , 2j − 1,

g2j+1+(2k−1) := 2j(1/2−m)ψ1(2
j · −k)/‖ψ(m)

1 ‖L2(R),

g2j+1+2k := 2j(1/2−m)ψ2(2
j · −k)/‖ψ(m)

2 ‖L2(R).

(4.6)

Keeping Theorem 4.1 in mind, we have used the normalization ‖g(m)
k ‖L2(R) = 1

for all k = 1, . . . , 2n+2. Since φ has symmetry, if φL = φ�|[0,1] for either � = 1

or 2, then it is trivial to have ‖[φL](m)‖L2(R) = ‖φ(m)
� ‖L2(R)/

√
2 and the same

relation holds for ‖[φR](m)‖L2(R), ‖[ψL](m)‖L2(R), and ‖[ψR](m)‖L2(R).

Because the linear systems we are dealing with are well conditioned, we

simply use the conjugate gradient (CG) method to find the solution for each

linear system without any preconditioning. More specifically, we use an er-

ror tolerance of 10−14 for the MATLAB built-in CG function. Let u be

the true solution and un be the numerical solution with a scale level n of

a given differential equation. We calculate the error L∞ and L2 norms of

en := u − un as follows: (1) fix a sufficiently large discretization level J > n

(we shall use J = 19), create a dyadic grid {0, 2−J , . . . , (1 − 2−J), 1} =

2−JZ ∩ [0, 1], (2) calculate ‖en‖∞ := max0≤k≤2J |u(k/2J) − un(k/2
J)| and

‖en‖L2 :=
(
2−J
∑2J

k=0 |u(k/2J)− un(k/2
J)|2
)1/2

. Using the central difference

of un for the first derivative, we also calculate the error in H1 norm and give

the convergence rates log2 (‖en−1‖L2/‖en‖L2) and log2 (‖en−1‖H1/‖en‖H1).

We also would like to point out that the calculation of the stiffness and

mass matrices (as we shall see in (4.9) and (4.14)) can be done very efficiently.

It suffices for us to find the eigenvector of the transition operator defined below
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[φ̂(m), φ̂(m)](ξ) = 22m
(
â(ξ/2)[φ̂(m), φ̂(m)](ξ/2)â(ξ/2)

T

+â(ξ/2 + π)[φ̂(m), φ̂(m)](ξ/2 + π)â(ξ/2 + π)
T
)
,

and use the refinability structure of our wavelet basis. Moreover, the compu-

tation of the right hand sides of (4.9) and (4.14) can be similarly carried out

in an efficient manner by using the following approximation:

〈f, φ2j ;k〉 ≈
n−1∑
�=0

2−j(�+m+1) c�
�!

f (�)(2−jk)

‖φ(m)‖L2(R)

,

where the coefficients c� can be recovered by computing the Taylor expansion

ĝ(ξ) ≈∑n−1
�=0

c�
�!
(−iξ)�, and using the refinability structure of the wavelet basis

again. Further details can be found in [33]. We can indeed show that the

accuracy of the approximation is controlled by the smoothness of the function

f and the scale level j.

4.2.1 Applications to Sturm-Liouville Differential Equa-

tions

Example 4.1. Consider the following Sturm-Liouville differential equation

with nonhomogeneous boundary conditions:

−u′′+5u = f on (0, 1) with u′(0) = 100(1−e−1), u(1) = 200e−1−100,

(4.7)

where f(x) = −100e−x − 500(1 − e−x) + 500e−1x. The exact solution to this

differential equation is u(x) = −(100(1 − e−x) − 100e−1x). Using the scale

level n > 1, we have the dimension N = 2n+2 and the corresponding Galerkin
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formulation of (4.7) is just

N∑
l=1

Ak,lcl = 〈gk, f〉, k = 1, . . . , N (4.8)

with the N ×N coefficient matrix A given by

Ak,l := 〈g′k, g′l〉+ α〈gk, gl〉, k, l = 1, . . . , N, (4.9)

where α = 5. We use the first-order derivative-orthogonal Riesz wavelet {φ;ψ}
for H1(R) derived from the Hermite quadratic spline in Example 2.5 with

m = 1. According to the boundary conditions in (4.7), we choose the boundary

elements as follows:

φL = φ2|[0,1], φR = φ1(· − 1)|[0,1], ψL = ψ2|[0,1], ψR = ψ1(· − 1)|[0,1].

Using the norms in (2.41) and (2.42), the first four elements are given by

g1 =
φL(2·)√

2‖[φL]′‖L2(R)

, g2 =
φ1(2 · −1)√
2‖φ′

1‖L2(R)

,

g3 =
φ2(2 · −1)√
2‖φ′

2‖L2(R)

, g4 =
φR(2 · −2)√
2‖[φR]′‖L2(R)

.

As mentioned earlier, the coefficient matrix A can be easily generated using

the fast wavelet transform and the bracket products in (2.41) and (2.42), since

[φ̂(m), φ̂(m)](ξ) =
∑

k∈Z〈φ(m), φ(m)(· − k)〉e−ikξ. For all n = 3, . . . , 9, we notice

that the condition numbers of A are approximately 3.2106 and 15 iterations

are sufficient by CG scheme with tolerance 10−14.
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Level Size Iteration κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2

3 32 15 3.2106 2.7040e-04 1.1825e-05 —

4 64 15 3.2106 3.3781e-06 1.4602e-06 3.0176

5 128 15 3.2106 4.2213e-07 1.8141e-07 3.0089

6 256 15 3.2106 5.2757e-08 2.2607e-08 3.0044

7 512 15 3.2106 6.5948e-09 2.8215e-09 3.0022

8 1024 15 3.2106 8.2152e-10 3.5243e-10 3.0011

9 2048 16 3.2106 1.1396e-10 4.5919e-11 2.9402

Table 4.1: We use Example 2.5 with m = 1 to solve the differential equation in
(4.7) for Example 4.1 at scale levels n = 3, . . . , 9. Size is the dimension of the linear
system. Iteration is the number of CG iterations needed with tolerance 10−14. κ is

the condition number of the coefficient matrix A in (4.9) with α = 5. log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order sr(a) = 3.
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Figure 4.1: (a) is the left boundary wavelet ψ2(2·)|[0,1] at the scale level 1 for
Example 4.1. (b) is the elements at the coarsest scale level 1, where the black line
is φ1(2 ·−1), the red dotted–dashed line is φ2(2 ·−1), the blue dashed line is the left
boundary scaling function φ2(2·)|[0,1], and the blue dotted line is the right boundary
scaling function φ1(2 · −2)|[0,1]. (c) is the right boundary element ψ1(2 · −2)|[0,1] at
the scale level 1.

Example 4.2. We revisit [41, Example 1] with the homogeneous boundary

conditions:

− u′′ = f on (0, 1) with u(0) = u(1) = 0, (4.10)
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Figure 4.2: (a) shows the sparsity of the 128 × 128 stiffness matrix in Example
4.1. The usage of the first derivative–orthogonal Riesz wavelet is clearly reflected
by the block diagonal structure of the stiffness matrix. (b) shows the sparsity of
the 128× 128 mass matrix in Example 4.1 after some thresholding (rounding down
entries smaller than 10−14 to 0).

where f(x) = (53.7π)2 sin(53.7πx) + (2.3π)2 sin(2.3πx) for x ∈ (0, 1). The

exact solution to this differential equation is u(x) = sin(53.7πx) + sin(2.3πx).

Instead of using the Riesz wavelet derived from Hermite cubic splines in [41],

we use Example 2.5 with m = 1 derived from Hermite quadratic splines.

Taking the scale level n > 1, we have the dimension N = 2n+2 and the

corresponding Galerkin approximation of this problem is (4.8) with α = 0 in

(4.9). According to the boundary conditions in (4.10), we choose the boundary

elements as follows:

φL = φ2|[0,1], φR = φ2(· − 1)|[0,1], ψL = ψ2|[0,1], ψR = ψ2(· − 1)|[0,1],

where j = 1, . . . , n. Using the norms in (2.42), the first four elements are given

by

g1 =

√
210

56
g2 −

√
14

56
g4 +

√
15

14

φ2(2·)|[0,1]√
2‖[φL]′‖L2(R)

, g2 =
φ1(2 · −1)√
2‖φ′

1‖L2(R)

,
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g3 =
φ2(2 · −1)√
2‖φ′

2‖L2(R)

, g4 = − 1√
15

g2 +
4√
15

φ2(2 · −2)|[0,1]√
2‖[φR]′‖L2(R)

.

The condition numbers of the resulting linear systems are approximately half

of the condition numbers of the Riesz wavelet used in [41].

Level Size Iteration κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2

6 256 16 1.7496 2.4874e-03 1.3123e-03 —

7 512 16 1.7499 2.9267e-04 1.4990e-04 3.1300

8 1024 16 1.75 3.6039e-05 1.8302e-05 3.0339

9 2048 16 1.75 4.4881e-06 2.2742e-06 3.0086

10 4096 16 1.75 5.6049e-07 2.8385e-07 3.0022

11 8192 16 1.75 6.9984e-08 3.5468e-08 3.0005

12 16384 16 1.75 8.7469e-09 4.4331e-09 3.0001

Table 4.2: We use Example 2.5 with m = 1 to solve the differential equation
in (4.10) for Example 4.2 at scale levels n = 6, . . . , 12. Size is the dimension of
the linear system. Iteration is the number of CG iterations needed with tolerance
10−14. κ is the condition number of the coefficient matrix A in (4.9) with α = 0.

log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order sr(a) = 3.

Example 4.3. Consider the following differential equation with mixed bound-

ary conditions:

− u′′ = f on (0, 1) with u′(0) = 0, u(1) = 0, (4.11)

where f(x) = x ln(x + 1). Its exact solution is u(x) = (5x3 − 12x2 − 12x +

19 − 24 ln(2) − 6(x − 2)(x + 1)2 ln(x + 1))/36. Let us use the Hermite linear

splines in Example 2.6 with m = 1. According to the boundary conditions in
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Figure 4.3: (a) is the left boundary element ψ2(2·)|[0,1] at the scale level 1 for
Example 4.2. (b) is the four linear transformed elements at the coarsest scale level
1, where the black line is g2, the red dotted–dashed line is g3, the blue dashed line
is g1, and the blue dotted line is g4. (c) is the right boundary element ψ2(2 ·−2)|[0,1]
at the scale level 1.

(4.11), we choose the boundary elements as follows:

φL = φ1|[0,1], φR = φ2(· − 1)|[0,1], ψL = ψ1|[0,1], ψR = ψ2(· − 1)|[0,1].

Using the norms in (2.45), the first four elements are given by

g1 =

√
5

2
g2 −

√
5

2
g3 − 1

2
g4 +

√
5

φ1(2·)|[0,1]√
2‖[φL]′‖L2(R)

, g2 =
φ1(2 · −1)√
2‖φ′

1‖L2(R)

,

g3 =
φ2(2 · −1)√
2‖φ′

2‖L2(R)

, g4 = −
√

2

5
g2 − 1√

5
g3 +

2√
5

φ2(2 · −2)|[0,1]
‖[φR]′‖L2(R)

.

Notice that coefficient matrix A is exactly an identity matrix. Hence, there is

no need to use any linear solver to compute the solution of (4.8). It is sufficient

to just compute 〈gk, f〉, where k = 1, . . . , N .
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Level Size κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2

6 256 1 2.3188e-06 6.6489e-07 —

7 512 1 5.8364e-07 1.6689e-07 1.9942

8 1024 1 1.4640e-07 4.1807e-08 1.9971

9 2048 1 3.6662e-08 1.0462e-08 1.9985

10 4096 1 9.1733e-09 2.6169e-09 1.9995

11 8192 1 2.2943e-09 6.5439e-10 1.9996

12 16384 1 5.7370e-10 1.6363e-10 1.9997

Table 4.3: We use Example 2.6 with m = 1 to solve the differential equation
in (4.11) for Example 4.3 at scale levels n = 6, . . . , 12. Size is the dimension of
the linear system. Iteration is the number of CG iterations needed with tolerance
10−14. κ is the condition number of the coefficient matrix A in (4.9) with α = 0.

log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order sr(a) = 2.
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Figure 4.4: (a) is the left boundary element ψ1(2·)|[0,1] at a scale level 1 for Ex-
ample 4.3. (b) is the four linear transformed elements at the coarsest scale level 1,
where the black line is g2, the red dotted–dashed line is g3, the blue dashed line is
g1, and the blue dotted line is g4. (c) is the right boundary element, ψ2(2 · −2)|[0,1],
at the scale level 1.

4.2.2 Applications to Biharmonic Equations

For numerical solutions to biharmonic equations, we shall use the second-order

derivative-orthogonal Riesz wavelets derived from Hermite cubic splines that
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are discussed in Example 2.4 with m = 2.

Example 4.4. Consider the following differential equation with homogeneous

boundary conditions:

u(4)+11u = f on (0, 1) with u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0,

(4.12)

where f(x) = −4π4 cos(2πx) + 11
4
(1 − cos(2πx)). The exact solution to the

differential equation is u(x) = 1
4
(1− cos(2πx)). Using the scale level n > 1, we

have the dimension N = 2n+2 and the corresponding Galerkin approximation

of the problem in (4.12) is

N∑
l=1

Bk,lcl = 〈gk, f〉, k = 1, . . . , N, (4.13)

with the N ×N coefficient matrix B given by

Bk,l := 〈g′′k , g′′l 〉+ α〈gk, gl〉, k, l = 1, . . . , N, (4.14)

where α = 11. As mentioned earlier, the coefficient matrix B can be easily

generated using the fast wavelet transform and the bracket product in (2.36)

and (2.38). According to the boundary conditions in (4.12), we choose the

boundary elements as follows:

φL = ∅, φR = ∅, ψL = ∅, ψR = ∅. (4.15)
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Using the norms in (2.38), the first four elements are given by

g1 = ∅, g2 = 2−3/2φ1(2 · −1)

‖φ′′
1‖L2(R)

, g3 = 2−3/2φ2(2 · −1)

‖φ′′
2‖L2(R)

, g4 = ∅. (4.16)

Since both ψ1 and ψ2 are supported on [0, 1], no boundary wavelets are present.

Notice that the matrix B has a condition number around 1.0220 and 4 itera-

tions are sufficient by the CG scheme with tolerance 10−14.

Level Size Iteration κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2
‖en‖H1 log2

‖en−1‖H1

‖en‖H1

3 30 4 1.0220 1.5147e-05 6.9273e-06 — 3.8595e-04 —

4 62 4 1.0220 9.6241e-07 4.3380e-07 3.9972 4.8324e-05 2.9976

5 126 4 1.0220 6.0397e-08 2.7126e-08 3.9993 6.0430e-06 2.9994

6 254 4 1.0220 3.7787e-09 1.6956e-09 3.9998 7.5546e-07 2.9999

7 510 4 1.0220 2.3623e-10 1.0596e-10 4.0001 9.4434e-08 3.0000

8 1022 4 1.0220 1.4765e-11 6.6267e-12 3.9991 1.1804e-08 3.0000

Table 4.4: We use Example 2.4 with m = 2 to solve the differential equation in
(4.12) for Example 4.4 at scale levels n = 3, . . . , 8. Size is the dimension of the linear
system. Iteration is the number of CG iterations needed with tolerance 10−14. κ is

the condition number of the coefficient matrix B in (4.14) with α = 11. log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order sr(a) = 4.

Example 4.5. Consider the following differential equation with homogeneous

boundary conditions:

u(4) = f on (0, 1) with u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0,

(4.17)

where f(x) = −4π4 cos(2πx). Its exact solution is u(x) = 1
4
(1−cos(2πx)). The

corresponding Galerkin approximation of this problem is (4.13) with α = 0

in (4.14). Since (4.17) has the same homogeneous boundary conditions as
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Figure 4.5: (a) is the first left interior wavelets ψ1(2·) and ψ2(2·) at the scale level
1 for Examples 4.4, 4.5, and 4.7, since they are originally supported on [0, 1]. (b) is
the elements at the coarsest scale level 1, where the black line is φ1(2 · −1) and the
red dotted-dashed line is φ2(2 · −1) (c) is the last interior wavelets ψ1(2 · −1) and
ψ2(2 · −1) at the scale level 1.

in Example 4.4, we use the same Riesz wavelet as in Example 4.4. Notice

that matrix B is exactly an identity matrix. Hence, there is no need to use

any linear solver to compute the coefficients in (4.13). It is sufficient to just

compute 〈gk, f〉 for k = 1, . . . , N .

Level Size κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2
‖en‖H1 log2

‖en−1‖H1

‖en‖H1

6 254 1 3.7787e-09 1.7037e-09 — 7.5546e-07 —

7 510 1 2.3623e-10 1.0649e-10 4.0000 9.4434e-08 3.0000

8 1022 1 1.4765e-11 6.6555e-12 4.0000 1.1804e-08 3.0000

9 2046 1 9.2293e-13 4.1600e-13 3.9999 1.4761e-09 2.9995

10 4094 1 5.8009e-14 2.6024e-14 3.9987 1.8864e-10 2.9681

Table 4.5: We use Example 2.4 with m = 2 to solve the differential equation in
(4.17) for Example 4.5 at scale levels n = 6, . . . , 10. Size is the dimension of the
linear system. κ is the condition number of the coefficient matrix B in (4.14) with

α = 0. log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order

sr(a) = 4.

Example 4.6. Consider the differential equation with nonhomogeneous bound-

104



ary conditions:

u(4) = f on (0, 1) with u(0) = 16, u(1) = 0, u′(0) = −64, u′(1) = 0,

(4.18)

where f(x) = 24(15x2 − 50x + 41). The exact solution to this differential

equation is u(x) = (x− 2)4(x− 1)2. The corresponding Galerkin formulation

of (4.18) is just

∑
l 	={1,...,N}\{1,4}

〈g′′k , g′′l 〉cl = 〈gk, f〉 − u(0)〈g′′k , g′′1〉 − u′(0)〈g′′k , g′′4〉, k = 2, 3,

and (4.13) with α = 0 for k = {5, . . . , N}. According to the boundary condi-

tions in (4.18), we choose the boundary elements as follows:

φL
1 = φ1|[0,1], φL

2 = φ2|[0,1], φR = ∅, ψL = ∅, ψR = ∅.

where φL
1 and φL

2 are the first and second boundary coarse-scale elements

respectively. Using the norms in (2.36) and (2.38), the first four elements are

given by

g1 = 2−3/2 φ1(2·)|[0,1]
‖[φL

1 ]
′′‖L2(R)

, g2 = 2−3/2φ1(2 · −1)

‖φ′′
1‖L2(R)

,

g3 = 2−3/2φ2(2 · −1)

‖φ′′
2‖L2(R)

, g4 = 2−3/2 φ2(2·)|[0,1]
‖[φL

2 ]
′′‖L2(R)

.

Since ψ1 and ψ2 are supported on [0, 1], no boundary wavelets are present.

Notice that the matrix B is exactly an identity matrix. Hence, there is no need

to use any linear solver to compute the coefficients in (4.13). It is sufficient to

just compute 〈gk, f〉 for k = 1, . . . , N .
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Level Size κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2
‖en‖H1 log2

‖en−1‖H1

‖en‖H1

5 126 1 1.5129e-07 5.5402e-08 — 1.2283e-05 —

6 254 1 9.5006e-09 3.4627e-09 4.0000 1.5354e-06 3.0000

7 510 1 5.9521e-10 2.1642e-10 4.0000 1.9193e-07 3.0000

8 1022 1 3.7247e-11 1.3528e-11 3.9998 2.4004e-08 2.9992

9 2046 1 2.3306e-12 8.4696e-13 3.9975 3.1070e-09 2.9497

Table 4.6: We use Example 2.4 with m = 2 to solve the differential equation in
(4.18) for Example 4.6 at scale levels n = 5, . . . , 9. Size is the dimension of the linear
system. κ is the condition number of the coefficient matrix B which is the identity

matrix. log2
‖en−1‖L2
‖en‖L2

is the convergence rate which agrees with the sum rule order

sr(a) = 4.
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Figure 4.6: (a) is the first interior wavelets ψ1(2·) and ψ2(2·) at the scale level 1
for Example 4.6. (b) is the elements at the coarsest scale level 1, where the black
line is φ1(2 · −1)|[0,1], the red dotted-dashed line is φ2(2 · −1)|[0,1], the blue dashed
line is the left boundary element φ1(2·)|[0,1], and the blue dotted line is the second
left boundary element φ2(2·)|[0,1]. (c) is the last interior wavelets ψ1(2 · −1) and
ψ2(2 · −1) at the scale level 1.

Example 4.7. Let us present one last example with a solution having a sharp

change/jump. Consider the following differential equation with homogeneous
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boundary condition:

u(4) = f on (0, 1) with u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) = 0,

(4.19)

where

f =7
(
(2π)4 sin (2π (x− 1/2)) + 2(4)3π4 sin (4π (x− 1/2))

+ 2(6)3π4 sin (6π (x− 1/2)) + 2(8)3π4 sin (8π (x− 1/2))

+ 2(10)3π4 sin (10π (x− 1/2)) + 2(12)3π sin (12π (x− 1/2))

+ 2(14)3π4 sin (14π (x− 1/2)) + 2(16)3π4 sin (16π (x− 1/2))
)
.

The exact solution to the differential equation is

u(x) =7 sin(2π(x− 1/2)) + 7
2
sin(4π(x− 1/2)) + 7

3
sin(6π(x− 1/2))

+ 7
4
sin(8π(x− 1/2)) + 7

5
sin(10π(x− 1/2)) + 7

6
sin(12π(x− 1/2))

+ sin(14π(x− 1/2)) + 7
8
sin(16π(x− 1/2)).

Its corresponding Galerkin approximation is (4.13) with α = 0 in (4.14). Since

(4.19) has the same homogeneous boundary conditions as in Example 4.5, we

use the same Riesz wavelet as in Example 4.5. Notice that the matrix B is

exactly an identity matrix. Hence, there is no need to use any linear solver to

compute the coefficients in (4.13). It is sufficient to just compute 〈gk, f〉, where
k = 1, . . . , N . We have also included the plots for the numerical solutions at

scale levels 1, 2, and 4 in Figure 4.7. As one can see, even at scale/resolution

level 4 - which is considerably low- our wavelet approximation scheme to the

theoretical solution with a sharp change/jump behaves pretty well in the sense
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that it is able to capture the jump and follow the oscillation of the theoretical

solution well.

Level Size κ ‖en‖L∞ ‖en‖L2 log2
‖en−1‖L2

‖en‖L2
‖en‖H1 log2

‖en−1‖H1

‖en‖H1

6 254 1 1.3056e-04 3.1823e-05 — 1.4114e-02 —

7 510 1 8.1498e-06 1.9923e-06 3.9976 1.7669e-03 2.9978

8 1022 1 5.1071e-07 1.2457e-07 3.9994 2.2094e-04 2.9995

9 2046 1 3.1936e-08 7.7865e-09 3.9998 2.7621e-05 2.9999

10 4094 1 1.9977e-09 4.8667e-10 4.0000 3.4527e-06 2.9999

11 8190 1 1.2635e-10 3.0429e-11 3.9994 4.3194e-07 2.9988

12 16382 1 9.3863e-12 2.1441e-12 3.8270 5.6709e-08 2.9292

Table 4.7: We use Example 2.4 with m = 2 to solve the differential equation in
(4.19) for Example 4.7 at scale levels n = 6, . . . , 12. Size is the dimension of the
linear system. κ is the condition number of the coefficient matrix B in (4.14) with

α = 0. Note that B is the identity matrix. log2
‖en−1‖L2
‖en‖L2

is the convergence rate

which agrees with the sum rule order sr(a) = 4.
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Figure 4.7: (a) is a plot for the numerical solution to Example 4.7, when we
use approximation scheme only with the coarsest resolution level 1. (b) is a plot
for the numerical solution to Example 4.7, when we use approximation scheme
only with the coarsest resolution 1 and highest resolution level 2. (c) is a plot for
the numerical solution to Example 4.7, when we use approximation scheme with
the coarsest resolution level 1 and highest resolution level 4. The black line is the
theoretical solution to Example 4.7 and the red dotted line is the numerical solution.
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We close this section with one final remark. The wavelet-based finite el-

ement method is actually related to the multigrid method in the sense that

they are both multiscale methods and their main goal is to accelerate the com-

putational speed by minimizing the condition numbers of the linear system.

The first method requires us to handle different scale levels simultaneously

(from the coarsest to the highest). Furthermore, the usage of our mth order

derivative-orthogonal Riesz wavelet increases the sparsity of the stiffness ma-

trix so that it is block diagonal. Since the resulting coefficient matrix is well

conditioned, we are able to find the numerical solutions efficiently. On the

other hand, the multigrid method traverses back and forth between fine and

coarse scale levels to refine our approximated solutions. I.e., an approximated

solution for the linear system (stemming from the discretization of the prob-

lem) is computed at a fine scale level, but the residual is further processed

at a coarse scale level by restriction. Afterwards this information is returned

to the fine scale level by interpolation and updates the initial approximated

solution. The general idea of the multigrid method and some hybrid wavelet

multigrid methods have been studied in [20, 40] and references therein.
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Chapter 5

Conclusion

Let us recapitulate what we have done in this thesis. Firstly, we propose

a systematic Riesz wavelet construction procedure by imposing derivative–

orthogonality condition. Furthermore, we present some necessary and suffi-

cient conditions from [35] to help us determine under which circumstances

our construction procedure can be applied. Afterwards, we apply this con-

struction to B-splines and Hermite splines, and obtain some examples of Riesz

wavelets that have an analytic expression in certain Sobolev spaces. This is

because we would like our Riesz wavelet examples to be potentially useful in

many applications (e.g., numerical differential equations). Ensuring that our

Riesz wavelets have an analytic expression typically leads to a much easier

implementation process. Thirdly, we show that a Riesz wavelet on L2(R) is

indeed leading to a Riesz wavelet on L2(I), where I is a bounded interval on

R, given that it satisfies some symmetry property. Fourthly, we show that

normalizing the mth order derivative of the wavelet basis with respect to L2

norm is important to achieve a well conditioned energy norm. Lastly, we test
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the numerical performance of our Riesz wavelets by using them to solve some

simple differential equations. The results are indeed very encouraging in that

the condition numbers of the stiffness matrix (or the sum of stiffness and mass

matrices) are very close to 1 and some are even identically equal to 1. More

importantly, the implementation can be done easily and quickly. In particular,

we see that the boundary construction does not pose any additional difficulty.

There are still many issues that we would like to answer as part of our

future work. Firstly, we want to know how the tensor product of a univariate

derivative-orthogonal Riesz wavelet performs in finding the numerical solution

of higher dimensional differential equations. This is because the observed

performance in 1D setting is very encouraging. Secondly, in some cases (after

a linear combination), we observe that the stiffness matrix of certain Riesz

wavelets is exactly the identity matrix, we want to see if there is a family of

Riesz wavelets that exhibits such an interesting property. Thirdly, we still

need to come up with a proof for a Riesz wavelet Hm(R) having symmetry is

indeed leading to a Riesz wavelet for Hm(I). We hypothesize that the general

idea and procedure of the proof remain mostly the same as the one we use

to prove the L2 case. One technical problem that may arise is when the dual

basis is a Dirac distribution. Because we rely heavily on the folding operator,

we are still unsure as to how to fold a Dirac distribution. Fourthly and still

related to the folding operator, even though it is well defined for f ∈ L2, we

still need to figure out a proper technique (or additional conditions) to show

that a folded wavelet basis having an infinite support and satisfying certain

decay conditions is still a Bessel sequence on a bounded interval.
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