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Abst}act.

This thesis deals with the problem of describing the unit group of specific group rings over the
integers. After a brief introduction to remind one of some of the properties of the group ring,
we start to discuss the unit groups. A few of the basi¢ results as presented by Sehgal [6],

~ Chapter 2, are shown.‘ After this int;oduction, we talk ‘more specifically.

The ﬁrst method to determine .a unit group is then discussed. It is a general method,
apphcable to any group. However, in practlce, we see tHat it is unsuitable for any but a small
number of groups. In this section we talk in an exposxtory manner as the proofs of the results
are normally very dependent on the particular group. The ones presented by this method later
on are S;, D, Dg and A,. ' d

Next, we present the method for groups of order p*, where p is an odd prime. These
come-from the paper by Ritter and Sehgal [5]."In this paper, they also present a method for
determining the unit group of a particular group of order pr. This will not be treated here. I
consider both non-abelian groups of order p’ and descriptions of the unit groups of both of
their respective group rings are presented. Later on in the paper, I present the method as
appliéd to the groups of order 27. '

The last theoretical results are on determining the unit group of the group ring over a
group of order pq where p=1(mod q). These res are due to Gallovich, Reiner, and Ullom |

(7).
t

The next part deals with presenting actual groups and détermlmng the umt structure
of their integral group ring. The first two, S, and D,, are from previous authors. The first was

" done by Hughes and Pearson [2], the second by C. Polcino-Miliés {4]. The case D, is new.

" The last one is merely an expository account of Alldn and Hch)by s [1} rendering of U(ZZA,).
Our other concrete examptes deal with the two hon-abelian groups of order 27 as presented in
a paper by Ritter and Sehgal [5]. ‘ o P '

iv
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I. Preliminaries

A, Generahtles
Throughout this paper the term group rmg shall be taken as follows: The group ring
KG of the group G over the ring K (which posesses an identity) is the ring of all formal sums

a=2\{g)g
A} », . . ' k -

where geG and A(g) € K so that supp(a) = {g A(g)#0}is a finite set.

The ring structure is inherited from the structures of the group and the ring. Bhe
operaﬁdns on KG are defined as follows: .
L - IN(g)g = Zu(g)g <=> for all geG Mg) = u(g)
2. INQ@)g t Zu(@)g =Z\(@)+ul@)e:
3.7 ZINg)g * ZTulglg = Iv(g)g - “

N

where »(g) = ZX(x)u(y) with the last sum being over all (x,y)' e GXG with xey = g.-

In this papet, we are interested in a particular object that occurs-in a gfodp rifig. This °
is the unit group. The unit group of a group ring KG is the group of all elements invertible
under the multiplication of KG. (It should be noted that the multlphcatlve identity in KG is

the element 1le, where 1 is the multiplicitive identity of K and e the group identity.) )
- Obviously, the unit group of KG contams +G. More extensive research becomes increasingly
dlfficuw ' ) ;
N . ~ : Vi
' )
B. Notation , . /
& -t

Throughout this paper the following will be assumed.
"7Z :- the ring of integers.
Q :- the ring of rational numbers.
R, :- the ring of n by n matrices with entries from R.
<c¢> :- The group generated by the element c.
A(GN) - <x-1:x e N> in ZZG, where N is normal in G. Thls also is
{ Sug)ge G:T u(gx) = OforallgeG}. -

geG xeN



C. General results.

. Proposition.
If G is abelian of order n, then
UZG = +G X F,
where F is a free abelian group of a determinable rank. This rank is dependent on the number

of cyclic subgroups of various orders in G.

The above theorem helps a great deal when dealing with groups, as it is often possible
to get a factor or sub-group of your group to fall in this particular category. In particular, this
proposition can be used to show that the unit grogp of ZZ<x> where x*=1 is just + <x>.

This fact is used later.

. This proposition along with others can be used to prove the more powerful theorem
that is stated now.

" Theorem. ?

If G is a torsion group then UZZG = =G if and only if G is one of
1. an abelian group with G* = {1} or

2. an abelian group with G* = {1} or

3. a Hamiltonian 2-group.

This theorem completely characterizes torsion groups that have trivial % 7Z2G. (A
Hamiltonian 2-group is a group of the form E X quaternions, where E? = 1).

In conclusion, we note that there are many different areas one ean explore when
determining unit groups. These range from finding unit groups of particular integral group
rings to determining when torsion-free groups have trivial unit groups in their integral group

ring.



I1. Theoretical c?nside rations

A. Representation theory method. : .

This method enables us to give a concrete description of the unit groups of certain
integfal group rings. The first two, S, and D, were done by Hughes and Pearson, and
Polcino-Milies, respectively: The third, which is D, was done by myself and involves a minor
extension to the method. The last one, A,, which is included only in an expository way, was
dor\w.by Allen and l:!obby. The general manner in which to apply this method is described

below.

Consider the group G. We may use representation theory to determine its
non-squivalent irreducible representations. Call these 9,. These will be maps from QG to

magtriceg over Q.

If one takes these 4, that we have obtained, one may now define a map #: QG — Q,, ®
... ® Q,, by, if a ¢ QG, then 8(a) = (8,(a),...,0,(a)). Considering both sides of the mapping as R
vector spaces over @, it is readily seen that 8 is a linear mapping. Let A be the matrix of §. It
will be noticed that 872 C D7ZZ,. Next, by using the matrix A and its inverse we will be able to
deduce a system of linear congruences that give us the restrictions needed for an element of
OZZ, to be in ZZG. These, together with the fact that a matrix with coefficients in ZZ has to

have an intqgral determinant in order to have an integral inverse determine the proper group.

Naturally one sees that a significant problem with this method is the size f the
matrix A involved. It is a square matrix of size o(G). Another problem is that we have no
guarantee that the system of congruences will lead to a usable situation. Despite these

difficulties, the method is sufficiently useful enough to apply it to a few groups of small size.

B. Second Method - Groups of order p®. o ' T
In this section, we intend to study the unit groups of the integral group rings of
groups of order p*, where p is an odd prime. The first type, the commutative groups of order

p*, are known to us.

In dealing with the non-commutative groups of order p* we note that there are two

non-isomorphic groups of that order. They are:

H=<abla”=e=br, b'ab=a**'> and -
G=<a,b,d (a,b) = a'blab = ¢, ca=ac, cb=Dbc, ap = e = bp = ¢P>.

Throughout this section we reserve the letters G and H to mean these two groups.



Fibre product
We must now define the concept of the fibre product.

To understand what a fibre product of rings is, consider the ring R with the two ideals
I,J of R such that INJ=0. Then we have the diagram

R -—————= R/J

]

R/l =——————— R/(1+J)

Then R is the fibre product of I and J in the sense that

R {(a.8) | a ¢ R/1, 8 ¢ R/J,a=~B},

- where " is the map from R/I to R/(I+J) and ~ is the map from R/J to R/(I1+J).

From the above we can deduce a fibre product of the unit groups as is given by the

following diagram.

UR) —————UR/])

UR/M) UR/AT+T)) .

Use of Fibre Product

In this section, we are goigg to apply this to the Group Ring ZX withJ = A(X,N) as
the kernel of the natural homomorphism of ZX—ZZX/N with N normal in X and I = NZZG,
where N =3 x. From here on in, we shall write % for <;>.

xeN
-

Pseudo-diagonals of matrices.
To present the proofs of this section, we will need to number certain matrices by their
pseudo-diagonals. If the nXn matrix A={a;] is considered, then the j-th pséudo-diagonal is

given by the elements

By g 18y greBng 1B

where the second subscript is considered modulo n and j=0,1,2,3,...,n-1.

e
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Some of the matrices that we will be dealing with from here on will be numbered via
their pseudo-diagonals. As an example the matrix B=[b, |, if humbered by paeudo diagonals
means that the element b, | is located on the i-th pseudo-diagonal at the j-th spot. When using

this indexing scheme, we have 0<ij<n-1.

For conveniex{ce, since we will be dealing with many diagonal-like matrices, we

'duce the following notation:

A = PDIAG (x,,....x, ;)
will represent the nXn matrix that has the elements x,,....x, , on the i-th pseudo-diagonal and
zeroes elsewhere. If we are talking of the 0-th pseudo-diagonal, we then mean the main

diagonal and refer to it as
A = DIAG(xg,.... Xy )

Preliminary b'x:ii;o‘;ivtiyons.
Throughout this section we let w denote a primitive p-th root of unity.

Proposition 1.
Suppose X,,....x,, ¢ ZZ{w] then there exists t, ¢ Z[w) satisfying

p-1
2 ter=x,0=<j<p-1

i=0 '

if and only if
1

p-
2 xwiepZZw] for all 0<k=<p-1
L i=0

Proof.
The system of equations is equivalent to -

.

[tov"-’tp-llw - [x()y---yxp.]]

where W={a, ], with a,, = w&-00-D. Now as W is a character matrix, the orthogonality
relations of a primitive root of unity tell us that

&
£
1

W = (1/p)aid .
- Qur system is equivalent to
N
[torortpr] = [Xgpex, | JW-L




e kS »

Therefore, there exists a solution if and only if we have

(1/p§E w "‘x, € Z[w] _ o -
1-0 )

- for all 0<k=<p-1. This, of course, is the same as saying

E ow'kx, € pE[w] .<_;p-1. - _ ¢
l’- . .

s . : 1. .
Proposmon 2 D s -
Let A and B be po matrices over Q[w], w1th A= DIAG(l,w w?,.. ,wP 1) and B as the matrix
with ones on pseudo dxagonal number one, (where numbermg of pseudo-diagonals start at
zero) and zeroes elsewheré thatis B = PDIAG,(1,1,...,1).

Then the E[w] span of the matrices {A'BJ 0=<ij=<p- 1} consists of all elements of the
form M=([x;], where the numbermg 1s via the pseudo-diagonals,-and such that for each jk .
with 0=<j, k<p-1 we have '

B . ~ : .

E x; w‘“epﬂ[w]
i=0
~
Proof ’ T A ,
We see that for a'fixed j, the matrices A'BJ 0=i,j=p-1, have non-zero entnes only in the j-th
suedo dlagonal The vector (XgrXernXpy) in ZZ[w] is @ dlagonal in the span of {A'BJ} if and

only if there’ exists t ¢ 7ZZ[w) such that a

o o * . . °

.

p-1 -
Z tAl = DIAG(x4,X),..-, X1}

i=Q
This, we see, means that" I
E tiﬁ)” = Xj, OSjSp-l

i=0
and now applying the last proposition we have our answer.

Proposition 3.
Let 0, Co, be ZZ-orders in a rational algebra. Then, if an element « ¢ o, has an inverse in oy,

0 o '
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’
then a already has an inverse in 0,.

Proof. - \&'
As groups, we have that the indices behave in the followmg manner:
' (0g:00;) = (@05:20,;) = (05:0,)
which implies that ac;,=ol, and therefore shows us that « is a unit in o,.

Now we digress before continuing with our list of propositions. Let us recall our group
H with the two generators a and b. Let us write ¢ = a''b'1db = aP ’. Then we have H' = <¢>
of order p. Thus H = H/<c>=<&> X <b>. As before, w is a primitive p-th root of unity.
Then ' ’ : '

QH =~ QFI ® Qw)

As well as this we have

QH = QH/A(H.<c>) = QHéand ’
Q(w), = QH/eQH. _ . ,

- Clearly this gives us

ZH/AH,<c>) = 7ZZH and the mapping
ZH -ZH © Z[«],

We:note that this map is onto the first component. Let us proceed with the calculation of the -
map with respect to the second component. We easily see that '

SIZHA+ (1-0)ZH = pZZH +(1-¢)ZH .

. Also, it is obvious that

cZH N (1-c)ZZH =0,
Thus, it is obviou®" that’ we have the fibre product

Z ZH

- ZH/ZZH—> ZH/pZH §
with all the maps belng natural.

The po matrices A- = PDIAG,(1,1,..,1,w) and B = DIAG(I r ,@,...;wP1) obviously
. satisfy the relations Ar= wl, Br=], B1AB = AP'*,



[t The matrices \{BiAi 10=<i;j<p-l1} are lineaﬂj independant over ZZ[w] as is shown in

the following: Assume

‘ E z;BAI =0 . “
.,J ~

As Aj has non-zero entries only in the j-thv pseudo-diagonal we have
2 z;BiAi = 0 for each j, 0<j=p-1.

As A is a non-singular matrix we have that . S
zZ B =0 . , : -

. which immediately implies that z;; = 0 for all 0<1,15p -1.

Let T ZH/cEH and Sp be the Z[w] -span of the matrices {B AJK)<1,J<p 13, from |
above ‘The claun here is that T = Sp. Consxdjr the map

¢:EH-—.Sp, ¢>(a) = A, ¢>(.b) = B.

(1+c+c +.. +cN) is mapped by ¢ to (1 +w+w’+ +wP1)I which is zero, we have the

°

: 1nduced map ¢0 T-.SD.

Smce ¢(aPka*bJ) wkAIBI, we have that ¢, is onto Sp Also we see that ¢ is 1 1, for if
we tensor both T and Sp with @ we see that both of them have Q-dimension of p*-p*

X

Proposztlon 4. ‘ .
. A matrix Zeﬂ[w] is in Sp if and only 1f the matrlx X Z’ satisfies

2 X0k e pZ[w] for all 0=<j,k=p-1.
i=0

where 7’ is obtai_ned from Z by d‘ivi‘ding all the entries below the main diagonal by w.

vProof
We make the observation that Ai= PDIAG (1, 1, ,1 Wy ), where w is repeated i umes Thus,
"to compute Sp it is enough to find the span of {BiAi:r 0=<i,j=<p-1} separately faor each i.
Therefore, all we need ‘do is to find all ZZ[w] vectors of the form (Ziore+1Zip) SUCh that

pl o
5 {BDIAG(L, 1, L) = DIAG(Zig02i5)
=0 ‘ o

which is equivalent to

o e B o e A8 4K St 1 P



p-1 o ’ L
2 th] = DIAG(ZiO"“"zip-i-l’w-lzip-i"'"w.lzil}l)
j=0

@ . R T
And the result therefore .follozvs from proposition 2.

Now let us consider a fibre product of ZZH. We have the diagram

ZZH ~—eee—— T

ml‘ ———— (ZpZ)H
" / w

with all the maps natural, qbo being used to map T to Sp Also,if we let the map from T to
DZ)H be called 8,, then let the map ¢;: Sp —_ (Z/pE)H be defined as ¢,——01¢0 Then the,
am above is commutatlve

A Conéidér ¢ If MeSp we wish to write M as Za; BAJ oeZl[w), 0<i,j<p-1. Let M’ be
obtained from M by dividing all the elements below the- main diagonal by w. Then the j-th
pseudo-diagonal x 07K pe1 of M’ 1is the same as the main diagonal of Za;;B!. ‘

We then have
[ao'j,...,ap_','j] W = [x'j.()""’xj,p-l]
where W = [w;;], w;; = wil, OSi,jSp;l;
= (1/p)2 w'ijxi_j.
Recalling that we ‘hav,e

M = ZaBAI
-, then from the above commutative diagram we have

¢1(M) = Z§;bial ' -
where &; ; is obtamed from «;; by taking w = 1 and going mod p.

In consideration of Proposition 3, we have the following theorem.



Main result for type 1 groups of order p°.

Theorem
a) 7ZH = {(a,M) ¢ ZH X ZZ[w], | M’ satisfies’ (") and 8,(a) = ¢1(M)}
b) UZH = {(a,)M) ¢ UZZH X ZZ{w],| M is a unit of Z[w]p, M satlsfies (*) and
02(01) = ¢,(M)}.

Iir the theorem we have, : ’ .
(i) M’ is obtained from M by dividing every element below the mam diagonal by w,
where w is a primitive p-th root of unity.
(ii) The condmon (*) is the one we have encountered many times already
i
E;& Wi ¢ pZZlw], 0=j, k<p -1, wP=1.
=

i} are numbered according to the pseudo-diagonials of M. ‘
(ii) 6, ZH — (Z/pZZ)H is the natural map Mod p. _
(iv) ¢,(M) =2Z&;;bai where a; (1/p)2w g € ZZ[w] and & ; is obtained from a;; by

~where {x;;

iJ
putting @ = 1 and going mod p

L

Groups of type 2 of order P
' We now consider our second group of order p* which we refer.to as G. Recall

.G=<a,b,c! (a,b) = a‘blab = ¢, ca=ac, cb=bc, a? = e = bp = P>,

We note that the factor commutator group, G = G/<c> is elementary abelian of order p*,
G = <a>X<b>. This gives us the decomposition
Q =_QG & Q(w),.

In fact, we have

QG = QG/A(G,<c>)=QGé and
Q(w), = QG/EQG. .
Clearly this gives us - _ L
. Lo !

772G/ A (G, <c>)=ZZG and the 'mappirlg.
7ZG-ZGOZ[w),

10
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with the mapping being onto on the first component. Our next step will be, as before, to
compute the projection into the second component. We consider the fibre product diagram

»

UG ————> TG

-

) Co G ¢7LG =————v(7Z/pZZ)

where all the maps are the natural projections excepting the map on the bottom which is
8, TZGeZ2G — (Z/pZ)C with ‘ L
8,(Zzciaibk) =X zaibk, with z ¢ ZZ.

wastmg of Group Rings .

In order to continue, we need to mtroduce the notxon of twisted group rings at this
point. A twisted group ring is constructed in the same manner as an ordinary gfoup ring
except that the definition of multlphcatxon dlffers In the twisted group ring, there is a
twisting factor that is used to multiply elements

Let us take the twisted group ring of aring R and a group G. This is then written as
R°G. Using this notation, it is easy to see that ZZG/¢ZZG is isomorphic as a ring to the twisted
group ring Z[w]°G with ba = wib. After this identification, we see that the map 6, may be

written as : . : -

9,(Zadibi) = Zadibi, a € Zlw].
where we get & from a by substituting w = 1, and going mod p.

Let us now define the map ¢, from ZZ{w]°G to Z[w}, by

, i— A = DIAG(Lw,..w?), b — B = PDIAG,(1,...1).
" We noté that'BA = wAB and that Ap = I.= B». - o )

.

We claim tHaﬁ {AiB}} is a linearly independent set over ZZ[w] for 0=<ij=<p-1. This can
easily be seen as follows. Let «;; be in Z[w] for 0=<i,j=<p-1. Then we see that.

- EEa AiBi = 0 1mplxe52a,JABJ =0,
as Bi has non-zero eﬁtrles only in the j- th diagonal. Smce B is non-singular, we may remove
the Bi from the above result, which implies that «;; = 0 for all 0=i,j <p -1. Therefore, we now
have that if Sp = span{A' 0<1,J<p 1}, then
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ZGITG = Zw]°C = s}‘

From proposmon 2 it follows that K ‘

Sp = (M e Z[w]) M satxsﬁesz X ,wk' € pZZ[w] for all 0<_] k<p-1}.

i=0 1

.

'Let us consider the following fibre product diagram and extension to Sp. =

(¢ aG——7G

22(w])°G=AGIRTG —— (ZIpZZ)G

In the above, the map from Sp to (ZZ{p72)G is denoted by ¢, and the map from EG/CZG to
Spis denoted by ¢,. Obviously, as before in a similar dxagram, we define ¢, to be the map

0! . : : o .

A

-

Sp

As before, given M in Sp we wish to find ¢g'(M) e E[w]°G Let M = {x } be

numbered by the pseudo-diagonals. We wish to find a; ;eZ[«] such that Za;AB = M. It i is
\ ij

,,,,,

necessary to find a;; such that
\ . .
Zai_in = DIAG(xj.O"'«:!’xj,p-l)’ Oﬁjﬁp-l.
i ‘. :

~ Again as before we get this is equivalent to the matrix equation

[aOJ! ) p-lJ]W = [xJ01 ,x“H]
" where W = [w;;] numbered by columns and rows star}mg at zero and w;; = w¥. Again, by

following the previous procedure, we see that

.

! " (l/p)Z ‘-‘-‘k‘x

From the above we have that k=0

‘ ¢>g(M) = ;ai Jai b and ¢,(M) = ;@,@ibj, '
where & is obtained from a;; by substltutmg w = 1 and going mod p-

The above constitutes the first part of the next theorem. The second part follows

directly from proposition 3 as Sp is an order in ZZ{w],,. .
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Main result for type 2 groupﬁ of order p®
T)izeorem ' ‘ )
a) Z2G = {(a,M) ¢ ZGXZZ[w],| M’ satisfies (*) and 8,(c) = ¢,(M)}.
b) UZG = {(a,M) ¢ ‘ZIECXE[w]pI Mis a unit of ZZ[w],, M satisfies (*) and
By(@) = ¢,(M)}. - B

ar

In the theorem we have, _
() 0, 22G—(ZZ/pZ2)G is the natural map mod p;
(ii) The condition (*) is the one we have encount_ered many times already

p-1 " :
Tx; ki ¢ pZZ[w], 0=<jk=<p-1, wp=1.
i=0 " :
where {x;;} are numbered according to the pseudo-diagonals of M.
(iii) $,(M) = Za,;ab where a;; = (1/p)Zwkix;, ¢ Z[w] and &, i§ obtained from a;, by
putting «’= 1 and going mod p. k i

[y

Concluding remarks on groups of order p* ’ , \

This concludes our section on groups of order p°. It should be noted that there are
striking similarities in the derivations for both types of groups: Howevér, the proofs do need
_to be presented separately due to the underlying differences. In a paper by Sehgal and
Ritter[5], the method presented here for type 1 groups of order p° is.extended to similar type
groups of order p~. : '

[ . : -
At the end of this paper, I will present examples of the methods shown in this section,

using groups of order 27. )

_C. Third method - Groups of order pq

Generalities

In this section, we shall study the unit group of groups of order pq, where p and q are
~ primes p=1 (mod q). We shall restrict our attention to the non-abelian group of this order.
Recall, ‘

G = <ablar = ba = 1,bab! = aj,"j =/ 1 (mod p), j9 = 1 (mod p)>.
In this case, we will need to consider the map
CUZGC — UL <b> = TUG/<a>). 1
o(a) = 1,0(b) =b. ' :

3

Let us denote by N the units of the kernel of this map. We note that any unit of ZZG
can be written as the product of an element of A and a unit of ZZ<b>.

AN
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Now ’:e the units of E<b> may be assumed to be known to us and we have the

. equation

: ba = ab
we only need to determine the set V.

Let w be a primitive p- th root of unity. Then the field k = Q(w) is a cyclic extension
,of Q of order p-1, Let k, be the fixed field of the automorphism tiw — wi, Then k, is of degree
" (p-1)/q over Q. For any element « of klet .

L
Ly

-

all), a@®, ..., ael

be the succesive applications of the automorphism t.

‘ Let R and R, denote the rings of int;ager's of k and k,, respectively. We note that R is
" a free Ry-module with the basis '

1, %,X% - - . ,x%?
where
k x=w-1. )
is the prime in R over the rational prime p. The corresponding prime inRq is
X0 = (w-1) (w2-1) ... (wai-1) \
As (wi-1)/(w-1) is & unit, we have that (xo) = (x9) as ideals. i
Recall from number thedry that in the above situation we have that
. ' 7Z2/pZL = Ry/x:Ro = R/xR.
Therefore, in particular, we have that each element of R modulo x is congruent to a rational

mteger.

-

At this point, we present a lemma.
Lemma.
Suppose a¢eR, with a=s (mod x), with 8 ¢ ZZ. Then « can be written uniquely as
S Sa = a0+a,w+...+ap,,wl”. :
w1th2a, - 3, and the a,e 7Z. '
Proof.
Write

a = ¢yt cwtcuwtt.. ey Wt
where the c; are rational integers. Since a = s (mod x). we therefore have
82 ' ¢yt +.. e, =s(mod p) '

f ’ -
.

In fpil generality the first equation may be rewritten as
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a = (c,+m)+(c,+mwt(c,+m)wit+..+(c,, +mwp!
where m is a rational integer. The sum of the new coefficients is s if and only if
cote t..te, 4—pm= 8. ' '
Considering (T) above, the relation gives us a unique value for m such that the equality does

hold.

The unit group as matrices over R. :
-Recall that it is obvious that ZZG =m<a><b> and, therefore, an element x of EG

can be written as g

x(a,b) = xo(a)+x,(a)b+.. +x,,(a)ba!
where x,(a) is an element of ZZ<a>. Therefore, if x,y,z are in ZZG, written as above, and
z = xvy, then we would have (upon recalling the definition of multiplication in a group ring)

" the equations

20(8) = Zo(@)yo() + Xy ()Y, 1(@)+ ..t x, @)y (a™)
z,(a) = xy(a)y,(a) +x,(a)yy(ai) +... +x,(a)y,(a"™")

z,.1(a) = xo(a)yq_l(a),+ x,(a)yq.2(ad) +... + x4, (a)y,(a™)

Recallmg that Z<a> = ZZ[X]/(Xr- 1) we can therefore assocmte to an element x(a b) of EG

the elements : . ’ :
ay = xg(w), oy = x,(w),..., Q. = xq_l(w), .

with o in R.. | ‘

( Consider the matrix

"y Mgy o v e ,aq_l

all, aff). . . ot}
A= . .‘,, 7
L
. /S e
. .

afa ), a&‘l‘”,...,a{)q'li
. - |

with entries in R. We shall call matrices with this form matrices of type 1.

From our previous calculations, we see that the obvious map x(a,b)—A is a

homomorphism from ZZG into the matrices of type 1.

[
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Let us consider what happéns when A is invertible in R. Denoting the first row of A
by Bo---8,.1 and we would then have the system of equations
Boxo + Brall| .+ B afr =1
Boaty + Biof) + B =0

’
[

Botgr + Biafl} + By iafr=0

If we apply the automorphism t:iw—wi to these relations successively we see that

BO) ﬂh ... 1/3q.1
| B B8 - . 8L :
A= 1] . .

By, B, B

is once again of the same type. Therefore, our conclusion is that the invertible matrices of the

type 1 form a group.

* Let us restrict the homomorphism from ZZG to type 1 matrices down to W. Let us
‘further restrict it to matrices of type 1 that satisfy the following conditions:

() agm1, =0, =0 (mod x) or A=I (mod x).
(ii) det A is a unit in R,,. o

We claim that the homomorphism is actually an isomorphism. First,. we show that it is
one-to-one. Let x(a,b) be in N, with x(a,b) being mapped to the identity. Then

Xp(w) =1, x,(w) =0,...,xq_l(é) =().
Since x(a,b) is a n_ormalizéd unit we also have

xo(l);—— 1, xl(i) =0,...,xq_1(1) '%0
which means ‘that

xy(a)=1, x,(a)=0,...,x,.,(a) =0.

That shows that“the map is one-to-one.

1.
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We now show that it is onto. Let A be invertible of type 1 and satisfy conditions (i)
d (ii). Let B be the inverse of A. Let ’

¥

= (@), &y = X (@)yeirqy = xq_,(w). .

where the x,(X) are polynommls thh ratlonai mtéger coefficients of degree < p-1, the sum of
8 to i=0, or i=1,2,..,q-1. Form the element

the coefficients of 1r.i =1, or =0, correspondi
x(a,b)-= xy(a) + x,(a)b Fot xq_l(a)b‘rl

and the corresponding element for B

y(a,b) = yo(a) + y,(a)b +..+ y, (a)be!

»

which is derived in a similiar manner.

Since AB = I we have )

: z X (w)y{w) =1lor0 \ o
. i+mmi(mod p} :

according as to i=0 or i=1,2,3,..,q-1.
Also we see that )

z x(1)y,(1) = 1l.0or 0
l+mm=i(mod p) v y
accordin_g as to i=0 or i=1,2,3,...,q-1. Therefore, x{a,b)y(a,b) = 1. In the same manner as

above we see that y(a,b)x(a,b) = 1.

Therefore, we have proven that the subgroup N of ZZG is isomorphic to the type 1
‘matrices in R that/satisfy conditions (i) and (ii).

The unit group as matrices over R,
In this section, we continue from where we left off at the end of the last section and
extend our description of V. '

Let us put

5(X) = (X-x1) (X-x)...(X-xaD)..
=Xo1+§,Xa2+...+8g,

?

Also let
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5 == 5(x).
Since we obviously have X-4 = X(mod x), we have that

N (X-x) = Xa(mod x,),

L

and, therefore, if we compare coefficients in (X-x)8(X) = N, (X-x), we will have

1

89 5 = x' (mod xo)-

Let §, = 1 and
' —
1 x X1
1 D e (x)art
P= ' . .
1 X(q-l) "_(x(q—l))q-l

With some work, we can see that P-! is [p;;] 1=i,j=q, where the numbering is by rows and

columns and p;; = (aq,i/é)‘“‘) where a'©® is, of course, just a.

¥
. Let E = PDIASGl(l,l,...,l) be a q X q matrix. It is quite obvious that
Ei1 = PDIAG_,(1,1,..,1) = E+. For a matrix M with entries in k, we shall denote by M the
matrix obtained from M by applying the automorphism t to the entries of M. In consideration

of this, it is obvious that P’ = EP, and (P!)’ = P-1E-.. Therefore if A has its entries in k, then

P-1AP has entries in k; if and only if

A’=EAEL
This is equivalent to the matrix A being a type 1 matrix from the previous section. That is

—
Qg Qyy + o o 40y
alll, of)). .. alt}
A= . .
L] .
L ] L]
afel, aft D afaD
hmas

where the elements are in k.

N | ~ :
It then follows that the map from A to X=P-1 A P is an isomérphism of the ring of
matrices A of type 1 having entries in k with the ring of 9 X q matrices X with entries in k.
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Let X = [x,,] O=i,)=:q-1. Suppose that X with entries in R, satisfies the congruence

(tt) Xw= (mod x,(= x4)).
* 1
Then the entries in the first row of the corresponding matrix A = P X P! are

ap = (10 25008, ) + x,00)(8, ) +...+ x,,(x) ()] = 3,/8
a - (1/5(1))[ x()(x)(aq“)m + xx(x)(5q42)"‘ +...+ 1.,.1()()(50)“’ ] - d,/é“’

oy, = (1/6“"”)[ xo(X)(tsq.l)(q'” + x](X)(aq.z)(q'” +...+ Xq_l(x)(ﬁ,))“"“ ] - ﬁq |/6‘q'l'-

where, for 0<i=q-1, (

() = x5, + xx +..t ‘q‘l.;x"'k-x'(mod XY,

This implies, if we consider the congruences } involviflg the 8;'s and the congruences that one

can derive by successive applications of the automorphism t to them we have

Bo= qx*! (mod x,)
and :

Bim (xM)a + x(xMa? +...+ x3¥Hx'M) + xa! (mod x,)

Since § and its conjugates via the isomorphism t are all associates of xa!, this means
that the q; are all elements of R. As well, (mod x) we will have the following holds true:

Bt = [1-GaV0NL-(x /0] [1-(xs /)]
= (j-1)(j*-1)...(j31-1) =g (mod x).
Therefore, we have that

ap = (8,/8) = 1 (mod x). g
Since

OV /x)9 - 1 = [(wi-1)/(w-1)]o-1 = jo-1 = 0 (mod x),
‘tlherefore, (xM)a-xa=0 (mod x**'), and therefore, noticing that x‘“—j( is an associate of x, we

have
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(4

By= (¢ 1)3-x9)/(xV-x)) = 0 (mod x),

giving us the relation A ‘ -

A

| & 2 B,/ % 0 (mod ). |
SLm1larly, we can contmue to show that o =0 (mod x) for 2<1<q 1.

' - . ) - . . i
Now let us do the converse. Suppose we have a matrix A of type 1 with entries in R
that satisfy the conditions

‘ay=lor 0 (mod x) . v
depending as i=0 or i=1,2,...,9-1. Let X = P-1 A P. Number the matrix X as above, X=[x; ;]
0=<ij=q-1, the numbering 'aé\cording to columns and rows. In consideration of the above, we
note that o

/
o x; = z (‘Sq.l/‘s)( )( )(\l)(xj)(v)

/

= E (2[(6q -i- 1/5)%1 u+v(xj yv- u)]) (uy
=2 (2[(6q.i.1(a)av(xl)(v)] ) (u)
=Tr ( (6;1-i<1/5) Eav(xj)(v)) ;

- where Tr is the trace of k over k. Since § is the different of the extension k over k,, we have
that x;; is in Ry. As well, in view of the congruences involving the § and the o, we would have
that if j=i,

.xu =Tr((Xq i 1/6)Eav(x’ <v)) =Tr((xq N 1/5)0‘0)(’) -—Tr(xq "y /6) =1 or 0 (mod Xo)

according to whether i=j or i<j. This means that_ the matrix X has entries in R, satisfying
_the conditions (3). Therefore, we have proven the following theorem.

THEOREM
The subgroup N of ZZG is isomorphic to the group of q Xq matrices X in R, that are
invertible in R, and satisfying the congruences :

X . (mod xy(=x9)).
* .1 ‘

This concludes our section on the groupé of order PQ.
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II1. Applications of Representation Method.

In this section, we shall use the first method described in this paper to describe the unit .
groups of S;, D, and Dg, and, as well, give a brief expository account of the findings for A,.

A. The Unit Group’of ZZS;.

The first thing we do is consider a map deduced from a representation of S; given by

| 1, -1 o
8(1 2) =( 1, -1,( 0, 1)) .
' -/ 0, -1 :
(1 2 3) =( 1, 1,( 1, 1))

As one can see from the above this gives rise to a map
‘ QS ~-QOQOQ, ° .
'We define the map by linear extension usihg the convention that cycles multiply from the
righf to the left (for‘example (1 2)(1 23) = (2 3)). Sincg we have defined 6 by linear extension

we see that this map is a homomorphism. \\

~ . - -
- . - N

vLet B, = {e, (12),(23), (13),(123),(132)}] be a basis of @S, and let &« = (e,
Qg,--,g) be an element of @S; with respect to the basis B,. Similarly let B, be the canonical
l@iﬁ for QPQDQ, with X = (x,,X;...,Xs) being an element of that space with respect to B..

Then we may consider X = fa = aA where,

PR

111001
1-11-10-1
1-1-10-1 1

A= 11011 0
1 10-11-1
1 1-1 1-1 0

-and upon further calculation we see that .

&~

21
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111111
1-1-1-111
N 222020
>*=1/6 0 0-2 2-2 2
' 0202 2-2

2-2 2 00 2 |
e -

As A is invertible, it is readlly seen that 01is an 1somorphlsm Moreover from the - .

elements of A it is readily seen that
0728, C E@ZZ@ 7Z,.

Furthermore, if we consider A'l, then for x; ¢ ZZ, we have §1x¢ZZS, if and only if

x1+x2+2x3 +2x5=0(mod 6) . -
- x,+2x, - 2%, - 2xg=0(mod 6)
X, - Xp - 2%3 - 2%, +2x4=0(mod 6)
X - X, +2x,+ 21:5 =(0(mod 6)
x, +x; - 25 - 2X,+2x; © =0(mod 6)
x,+x, +2x, - 2%, -‘216=10(¥mod, 6)

After s:mple row reductlon we see that this reduces to the followmg set of three equatlons

Cxhx +2x4+4x5+4x6=0(mod 6).
4x, . +4x;+2x,=0(mod 6) “
4x,+ 2114 +4x5+2x;=0(mod 6)

The second and third reduce respectlvely to:

' X;=X; - X5(mod 3) and

v x4+x6=x3+x5(mod 3)
Inspectlon of the first equation shows us that
X, +x,=0(mod 2) ,
If we also cbnsider our first equation aé an equation modulo 3 and combine it with-the result
of the second equatxon we get ‘
=x4+x6(mod 3) .

Therefore, the final result is as follows:

x1+x2=0(mod 2) |
X, =X, - X5(mod 3)
X, =X, + x5 =x,+x4(mod 3)
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!

Keéping all this in mind, we next consider the projection operator ¢:Q PQDQ,—®,. Then we
can see that

POZLS;= . (x3 ) Ix3+x5=x4+x6(mod 3)
X5 Xg

.

Let us call this space Y. - ‘ : ,

Let X=(i1,...,xﬁ)eﬁﬂsa, with xs=x;+x, - x,(mod 3). Let §=1x,X¢ - X,X5. Consider
(x5 - x)(x3+%5) = x3(x3+ %5 - X,) - XX = X3Xg - XX, =5(mod 3) .

~

In consideration of our row reduced equations it follows that X! exists and is in 6728,

<=2 X3%g - X Xy=0==*1, x,==*1, x, = 8x,.

.We see by éomposition of maps, that ¢8 is a homomorﬁhism of ZZS; into Y, and
therefore induces a homomorphlslm of the unit group of ZZS; into the unit group of Y. We
w1ll now show that this induced homomorphism is one to one and onto, proving that it is an .

-

z—(xs K‘)e‘uy. | o ,
x5 xS . >‘ . l Av ,' i

Also let 6=x;x - x4x5.- + 1 and if x,,x, € { -1,0,1} are defined by the congruences

isomorphism.

Let

X, =Xq - X5 (mod-3) and
x, =x;+x, (mod 3) § ,
“then neither x, nor x, is zero and all the above conditions are satlsxﬁed Therefore a=61X isa -
unit in ZS3 with ¢a=12Z. Therefore, by the above we have that ¢0 is orie to one and onto

therefore we have

Theorem 1.
The umt group of ZS3 is 1somorph1c to:

?(a d) ¢ U(Z;)1a+c = b+d (mod 3)
cda B .
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B. The units of ZZD, _
In this section, we will determine the group of units of ZZD,, where D, is the dihedral
group of order 8. This group is determined by the generators a,b together with the relations

a‘=b?=baba=1.
Before proceeding with the construction, we give a few definitions. The homomorphlsm
& EG-—.E with £(g) =1 for all geG is called the augmentation function. Denote by V(ZZG) the .
- normal subgroup of the units u'¢ ZLG such that £(u)=1. If u is in V(ZG), it is called a )
'normalzzed umt Flnally an automorphism 6§ of ZZG is said to be normahzed if EO(g) =1 for all
g in G.

* Now, as before, we determme our map from @D, to a dlrect sum of" matnx rings over

Q In this case, the map w1ll be
6:QD,—QOQP P QDQ,

given by ' - ‘ ‘ |
- 0,41\
0(a)=( L'1,-1,-1, ( 1,_0))
. L)
A 0,1
'e(b)=( 1,-L1,-1, ( 1, o))

. . ) o ¢
In the same manner as before, consider D, as the basis of D, and use the canonical

basis for the right hand side of the above mapping. Then the map § can be represented by A

" where A is the following matrlx . : _ N
; 11111001 )
1 1'-1-1 0-1 1 0
11’1 1-1 0 0-1
1 1-1-101-10
. ? 1-11-1 0110
r-1-11-10 01
1-11-10-1-1°0
1-1-1 1.1 0 O0-1
A M —

Cohtinuing our calculations we ﬁnd that Alis % times the followirig matrix.
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11111111 \
' 1111 -1--1"° '
1-1 11 1- 1-1
11 11-11-1 1
2020020 2
0-2 022 0-20
0 2,0-2 2.0 -2-0
2 0-200 2 0-2
s ’ —

In the same manner as before, we see that if

. Xs Xg
X=(x, XX, X,{ )
: X; Xg

{with XZOZOZOZOZ,, then X belongs to §(ZD,) <=>
< X, +x,+X;+x,+2x,  +2x,=0(mod8)

X - Xy - x,+x,+F 2x, - 2x3=0(m6d 8)

. Applying row reduction in the same manner as the last example we get

1) xptxo+x;+txg+2x, +2x8§0(mod 8)
ii) x,+x;3 +2x,=0(mod 4)
iii) X; - X4 - Xg - Xg - Xy +Xg=O(mod 4)
iv) : x,+txg +x;,  =0(mod 2)
v) X5 +x8-0(mod 2)
vi) . ' x6+x7' =(0(mod 2)

In addition, if X is to belong to B(U(Bw, then x,= %1, for i=1,2,3,4 and we must

have x;xg - X4x;=* 1.

Consider X¢GL(2,7Z), with

. o ' X5,.Xg .
. . €x=
‘ A X7, Xg . :
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which satisfy equations v) and vi). Then there exists x;, i=1,2,3,4 with
X =(X,,%0,%3,%,26) € 8(U(ZZD,)<="> one of a, b, or c hold.

a) xz=1(mod 2); x5 +x5+Xx; - xg=0(mod 4); x5+ xg=2(mod 4)
b) xg= 1(mod 2); x5 +xg+ X, - Xg=2(mod 4); x5+ xg = 0(mod 4)
c) xg=0(mod 2); x5+ x5 =0(mod 4) ’

Let us do the calculations that show this. Consider; ‘if X is in 6UZLD,, then, as note_d
before, we must have x,,x,,x; and x, =+ 1. Let § =+ 1. Then there are only certain
combinations of the above thatfatlsfy equations i) through vi). In particular, it should be
noted that either all of x, to x, are either of the same sign or there are two of one sign and
~ two of the other. To see this, consider equations i) and v). If three of x, to x, were +1 and the
fourth -1, then we would have that x5+x8=1(mod 4). This is an obvious contradiction to

equation v).

' Therefore, let us consider the cases separately If X, =X, =X3=X, =9, then equation i)
xmphes that ‘ ‘ ®
_ 2x,+ 2x; = 4(mod 8) which implies that
v - - . x;+x3=0(mod 4).

P ¥

Equation iii) tells us that ‘ ‘ ’ o .
- X5 - X - Xt Xg =(0(mod 4) which implies that
x5 +xg+X; - xg=0(mod 4).
Finally, equation ii) gives\us that
' " xz=1(mod 2).

-

. It can be readily seen that the above is condition a).
: '
- Let us now consider x, =x,= - X, - X,=0. Here we _ﬁee that equation i) i‘n_ipli'es
x5 +xg=0(mod 4)., ’
Equation ii) implies
v 5= O(mod 2).

We see that we now have condition c) In addltlon, however, we ca;l'see that equatlon 111)
implies that :

' ‘ x'5+x6+x7 - x8=0’(mod 4).

Now suppose ‘that x,= - X,=%X;= - x,=9. Then, we will have equation i) 1mplymg
x5+x5=0(m0d 4). ' o v

’

Equa’tionii) gives us
e xz=0(mod 2).
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5

Again, we have condition c). This time, though, Equation iii) shows us
X5+ X5+ Xg - Xg=2(mod 4).

Finally the last combination to consider is x,= - x,= - x,=x,=34. In this case we get
equation i) showing that » ‘
l ‘ ‘ x5 +%g=0(mod 4).
Equation ii) implies that ‘
xg = 1(mod 2).

Equation iii) implies that -
. x5 +X5+X; - Xg=2(mod 4).
This finally is condition b).

To show the other direction of the if and only if.above is qui\te simple given the above

~ calculations. What one needs to dp is to simply choose the particular x; (i=1,2,3,4) as is given '

above. These will then satisfy all the equations.

o~

Let us denote by Q those matrices of GL(2,7ZZ) that satisfy equations v) and vi) above
and any one of a), b) or c). It is obvious by the linearity of the constraints that Q is a
subgroup of GL(2,7ZZ). For any element XeQ we can see by the above computatlons ‘that there
are e‘iactly two elements of B‘ZI(EDQ with X as the last member. '

S

Let 6 +1 as above.
If a) holds, then X=1(5,6,6,6,26) ¢ 8 (‘ll(ZD4))

I b) holds, then x=(5,-5,-a,a,§c) ¢ 0 (U(ZZD,).

“If ¢) hplds, there are two cases to ‘cor.lsider. If we have the first, which is
 xgt+x+x, - xg=0(mod 4) |
holding, then : , ‘
X = (8,5,-5,-8,%) ¢ 0 (U(ZZD,)). -
Otherwxse, we have
X5+ x5+ X, - x8=2(mod 4)
holding which gives us

{ X =(5,-,5, 6%) eo(‘IJ(ED4))

Now, we are in a position to describe the unit group of ZZD,. If we choose aé‘U(ZD,,)
such that 8(a) = (xl,xr_,,xs,x,,%') then we can observe that E(a) x;. From this and the preceding

information it is easy to see that since for any element 9 in Q there are exactly two elements

vm 6U(ZZD,) we have the theorem. - . : -

- Theorem.
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U(ZZD Y= | £ 1} XQ.

 C. Units of ZZD ,

In this section, we will show how a minor extension to the method of this section can
be used to describe unit groups of group rings  over ZZ, where the groups are of higher orders.
A¢ this point, we wi\ll determine the unit group of ZZDg where Dy is the dihedral group of »
order 12 given by the generators a,b .tog'ether with the relations

| { a?=bt=ababi=e }

Now if we applied the method of this section blindly we would be dealing with matrices of
order 12. Thls, to say the least, is'inelegant. In addition to this the description of U(ZZDy)
would include a dlrect product of twb matrix groups. This does not give us a very satisfying
description, as determining properties of this type of product is not very easy.

Instead what we do in this section is to consider D6 : C;X8;, where C, is the cyclic
group of order 2 ={ +1, -1} ‘under multiplication. 83 is, as before, the symmetric group on 3
elements. Keepmg this in mind, we have ZZDg = (ZZC,)S;, where ZIC, is the group ring of the
group C, over the ring 7Z, and the whole thmg is the group ring of the group S; over the ring
. ZC,.

v

At this point, let us, denote QC, by R. Then what we mtend to do is to apply the -
method used previously, replacmg Q by ® and ZZ by ZZC,. Thxs brmgs us to the pomt where
we may now define the map ‘ ) : . _

8:RS;—ROROR; "
by '

T A

vay
81 2)=(1,-1,(0, 1)) o o
6(1 2 3)= (1 1( ))
¢

At this point, one must keep in mind that the elements of the above vectors are in R

and

not in Q as before.

_ " Now, let us consider the two modules RS, and RO RS R,. The first RS, is obviously
a free module over R with basis the elements of S;. The second is again a free module over A



being a direct sum of matrix rings over R. We will use the standard basis for this module.

Considering this, we may look at # as a module homomorphism between two free
modules. We may therefore represent it as a matrix A, in this case, a 6 by 6 matrix. Obviously
this matrix is going to have the same entries as the one we obtained when loof;ing at ZZS,,
with the distinction that these elements will be in /& and not just in Q. For the sake of
convenience I will rewrite A and A-. .

11100 1
"1.-1 1 -1 0 -1
1-1-10-1 1
A= 110110
1101 1-1
RIRIRIRIS 0_
and
111111 ,
1-1-1-1 11
_ 2 22 0-2.0
A1=1/6 0 0-2'2-2 2 ,
0-2 02 2-2
2.2 2 0 0 2 -

As before, since A is invertible we see that 6 is an isomorphism. Also, as before, we dre led to a
set of six congruences that describe when an element of (Z'ZCl,)EB(ECz)$(ZCz)2 mépped by 8
is in (ZZC,)S;. It is not neccessary to re-write the original equations. The result after row
reduction are the equations:

x,+x2_-0(mod 2)>

x, =xg-X5(mod 3)

X, =x;+x;=x,+x5(mod 3)

At the risk of being repetitious, we note that the above congruences are in ZZC,.
Namély that we are considering modulo the ideals generated by 2 or 3 in ZCz in the above
equations. | / '

Let ¢ denote the projection map of #ORD R, onto ‘Ry. Then we have that
. . N

[}
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®

X, X
o 0(ZZCSy) = ( : ;): Xy x5 m X+ xg(mod 3)°
x)
Let us call the above set ¥/.

Let us now pal;se for a moment to consider some of the properties of ECz, where e is
the identity of C, and 7 is the other element with n*=e. The units of the group ring ZZC, are
easy to determine as they are only +C,. Therefore, for a matrix to be in the units of (ZZC,),
the determinant must be one of *e or xn. '

If X?'(xl,...,x,,) is in'0(ZZC,)S;, then, if we let § represent any one of te, + 7, then as
was calculated before, we have that X exists and is in 8(ZZC,)S; if and only if

X3Xg-X4X5 =0, X; =0, X;= x4. -

The mapping ¢4 is 4 ring homomorphism of (ZZC,)S, into % and thus induces a homorphism
from U ((ZZCy)S,—U(Y). I claim that this is an isomorphism. To see this let

- ’=( % x‘)e?!. o
X5 Xg
Then §=x3%4-X,x,= t e or =*yand if we choose x,,x, which are in {e, 0, -e, n, -1} to satisfy
| X, mx, - X5(mod 3) ' R v
] x, = x,+x,(mod 3), o
it follows from this that neither X, NOT X, is 0 and that the above conditions are all satisfied.

Thus a=6-'X is a unit in (ZLC,)S,; with ¢8a=pu. Furthermore, we can see that from the
preceding conditions that ¢0 is one-to-one. '

Therefore, remembering that ZZDg=(ZZC,)S; and that U(ZZDg) =U((7ZC,)S,) we have
the following theorem. . :

THEOREM.

U(ZD )= (::)e‘u((zzcz);):a+c-b+d'(mod3) .

D. The Unit Group of ZZA,,(expository) .

In this section, we will preseht the characterization of U(ZZA,) as presented by Allen
and Hobby([1]. We will not include the proofs, as it is felt that nothing new is to be gained
from presenting the method a fourth time. V T '

As is known A  has 4 irreducible fepresqntations, call thexﬁ 6,i=1,234. Also A, is
. generated by the two elements a=(1 2)(3 4) and b=(1 2 3). The representations 6, i=1,2,3 are
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easily described as follows. §,(a)=1 and 6,(b)=w"'. The fourth, 8,, is given as follows

1017 110

g@= [-101| andf(b)= |-100 A
-110 -101

Let 0:QA,—Q®QDQDQ; be defined by 8(x) = (6,(r),0,(r),0;5(r),0,(r)). Thén we may use
this map as in the preceding sections to determine the unit group. The characterization

arrived at by Allen and Hobby is as follows.

THEOREM
U(ZZA ) = { £ 1} X {XSL(3,Z): such that X satisfy the below conditions 1, 2, and

Every column sum of X is congruent to 1(mod 4).

No row contains all odd elements, and ’ _

One pseudo-trace is congruent to -1(mod 4) while the other two are congruent to
0(mod 4).

_ There are three psé‘udo-traces on a three by three matrix; they are the sums of the
elements on the pseudo-diagonals that have been discussed previously. ‘

ﬁ/



IV. Groups of order 27

In this section, we. wﬂ! m MM piddented earlier in the paper to determine the unit
group of the mtegxnl ;nMp tlngn of the two non-commutative groups of order 27,
Recall,

G = <a,bl (ﬁ.h) = ¢, cq = ac, cb = be, a* = b? = ¢ = 1>, and

H = <abla® =5 =1, blab = a*>.
As is true in general, we have that G = <> X <b>, and H = <a>X <b> are both
elementary abelian 3-groups. Recall, from our previous work that U ZG = +G and
UZZH = +H. The object of this section is to give a concrete description of both UZZG and -
UZZH. :

A. First group of order 27.
Let us consider G first. Referring back to our general proof we would let
A=DIAG(1,w,w®) and B = PDIAG,. Our fibre product diagram would become

”~

UG ————— uG

ZZ[w]"G:ElG/éZG (Z/372)G
Sp /

In the‘abbve the map from Sp to (22/372)G is denoted by ¢, and the map from ZZG/eZZG to
Sp is denoted by ¢,. These maps are defined in the same way as they were in general.
Specializing the condition (*) from the general theorem we see that the matrix

Xo,0 X1,0 X2,0

M= X)Xy X101 € Zlwl,

X12X29 Xg2
belongs to our Sp if and only if for each 1, 0=<i<2, the conditions

X + x4 F X € 3Z[w]
X + X0 + x00* € 3ZZ[w]
x;, + x,&° + X0 € 32Z[w)
hold. To find ¢,(M), we need a; JeZ[w] such that M =Za; AiBi. This will give us the matrix

equatlons



a 1 11 X0
ay, -l 1
a,, : 1 w W L
and this is equivalent to
g, = Ya(xjotx;;+ X;2)
(**) a;;= Y3 (x; o tw’x) twx;,)

agJ- l/3 (x,‘0+wx1'1 +w2xj_2) B "

From our previous work we know that ¢,(M) = Za a'b. Also, we know that the units
of ZZG are pairs (a,M), with ae%ZZG and M in Sp with ¢,(M) = ¢,(a). However, since we
know that UZZG = + G, we need matrices M such that

¢ (M) =& @b = 8,(+ambn)

for some m,n. If we put x = w-1 then’we get
1.  For two values of i and all j, a;;=0 {mod x).
2. Considering the third value for i, either a,, = *1, a;; =a,,=0 (mod x) or
‘ 8, = *1, a,,ma,,=0 (mod x) or
8, = 1, a,ma,;=0 (mod x).

This proves the following theorem. -

THEOREM.
UZLG = {McUZZ[w];| M satisfies 1. and 2. where a,; are given by (**)}.

From the above it is clear that the matrices in &/ ZZ[w]; which are congruent to
I (mod x°) are contained in UZZG and therefore, ¥ZZG is a congruence subgroup in
SL(3,ZZ[w}). ~
Second group of order 27
Now, let us describe WZZH. If we have a matrix
A ,\ |
Xo,0 X10 X20
X21 xo,x. X1

X2 X922 Xo.2

X=Z=

satisfying (*) then the corresponding matrix in Sp is .

X00 X10 X20

Z= WXy X9y X5

wX; s WXy Xgo

N
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’ ~ If we write A =24, JBiAj, then 6:(Z) = +h, heH if and only if the matrix X satisfies 1. and'2. :

from above. Then we have the the following theorem. :
: &

THEOREM.

fllZH = {ZeUZL[w]{Z' satisfies 1. and 2. where g, are given by (**)}.

Agair it ia easily seen that %YZZH is a congruence subgroyp in SL(3,Z[w]).
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