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Abstract

The National Council of Mathematics Teachers (2000), in an effort to reform school 

mathematics programs, has called for a greater emphasis on mathematical poof and 

proving in the classroom. Student teachers, given their status as novice instructors, are 

likely to find this directive challenging. Student teachers’ conceptions of, confidence in, 

and attitudes towards proof and proving are sure to influence their instructional choices. 

In this study, I investigate (1) student teachers’ belief about the nature and role of proof 

in secondary school mathematics and (2) student teacher’s ability to complete correct 

mathematical proofs. Participants in the study included 17 student teachers with 

Mathematics majors, registered in the final semester of their teacher education— at a 

large Canadian university. Each participant completed a questionnaire comprised of 

written response questions, four mathematical proving tasks, and a representational task 

(concept map). Findings indicate that these student teachers have limited understanding 

of the nature and role of proof in secondary school mathematics. They would seem to 

need more experience completing secondary school level mathematical proofs, greater 

exposure to different functions of proof and the different processes of proving, and 

deeper understanding of the logic inherent in proving. A greater emphasis on proof and 

proving as part of the teacher education curriculum may improve the proving skills of 

future secondary mathematics teachers. Moreover, the findings suggest a need for further 

study in school mathematics classrooms where students need rich proving experiences in 

order to understand the value and benefits of developing proving skills.
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1

CHAPTER 1. A CONTEXT OF REFORM 

The Call for Reform

The call for reform in mathematics education is as old as the history of school 

itself. Over the past three decades, the National Council of Teachers of Mathematics 

(NCTM) has published several documents (1989,1991,1995, & 2000) that have 

stimulated discussion and debate about reform in mathematics education. In 2000, the 

NCTM proposed a revision of their own content standards with the purpose of making 

mathematics more meaningful for both teacher and learner. The NCTM documents 

remind us that learning mathematics requires more than simply solving exercises by 

working with symbols, performing desired calculations, and doing routine proofs; rather, 

learning mathematics is fundamentally about “developing a mathematical view point”, 

“communicating mathematically”, “making connections” among mathematical 

experiences and with “other disciplines”, and enhancing “mathematical reasoning'’ 

(emphasis added; NCTM, 2000, p. 56). It emphasizes that the ability “to reason is 

essential to understanding”: “proof and reasoning,” it suggests, are powerful ways of 

communicating mathematically, developing insights, and making connections between 

different mathematical domains and among other subjects (p. 56). Hence, developing 

student proficiency in mathematical proof and reasoning needs to become an integral part 

of all mathematics education.

The teacher plays a critical role in the development of a student’s skill in 

mathematical reasoning. As the NCTM (2000) points out, “students learn mathematics 

through the experiences that teachers provide” (p. 16). In other words, teaching shapes
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students’ understandings of math, their ability to use it to solve problems, and their 

attitude towards mathematics as a discipline. As well, many researchers point out that the 

teacher’s knowledge and beliefs play a critical role in successfully enacting classroom 

practices (Fennema & Franke, 1992; Thompson, 1992). Teachers must be flexible in their 

teaching practices, drawing upon their mathematical knowledge appropriately and 

creatively as they instruct their students (NCTM, 2000). Ultimately, they must accept 

responsibility for establishing and negotiating an acceptable mathematical explanation 

and justification within the classroom (Yackel & Cobb, 1996). This goal can best be 

achieved I feel if  the teacher feels secure in his/her own understanding of the concept of 

“mathematical proof’.

Whether or not a person who enjoys math becomes an effective mathematics 

teacher depends, to a large extent, upon that person’s understanding of mathematical 

concepts and his/her ability to clarify and communicate that understanding. The goal of 

teacher education programs is to provide the foundation that will enable novice 

instructors to grow into effective teachers. This can only be achieved by first 

understanding the student teacher’s conceptions, beliefs, and ability with regard to 

mathematics. Hence, within the current context of reform—a context in which teachers 

are expected to support their students in achieving the Standards set out by the NCTM 

(2000)—it is critical that teacher educators ensure that future mathematics teachers 

possess this foundational understanding of proofs and proving.

Proof: An Introduction

Proof is fundamental to mathematics. As Davis and Hersh (1981) point out, 

mathematical proof has been regarded as one of the key distinguishing characteristics of
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the discipline of mathematics since the nineteenth century. Indeed, Raman (2002), in her 

study, Proof and Justification in Collegiate Calculus, observes, “since the 6th century BC 

when Greek mathematicians established the axiomatic method, mathematicians have 

considered proof to be the sine qua non of mathematics” (p. 1). And mathematician 

Michael Atiyah identifies proof as “the glue that holds mathematics together” (as cited in 

Dunham, 1994, p. 15). Given its significance to mathematicians themselves, it is 

important that students and teachers understand what is meant by the term mathematical 

proof

The term mathematical proof is not limited to a single definition: hence, it can be 

difficult to know, in any given context, exactly how the term is being used. The Oxford 

American Dictionary defines proof as “a demonstration of the truth of something” (1980, 

p. 535). Leddy (2001) offers one of the simplest and most practical definitions of proof: 

“a reasoned argument from acceptable truths” (p. 13). Yet, once one leaves simplistic 

definitions behind, the matter becomes more confusing. For example, a proof that is 

acceptable to a physicist might not be acceptable to a mathematician. Polya (1960) writes 

that:

in mathematics as in the physical sciences we may use observation and induction 

to discover general laws. But there is a difference. In the physical sciences, there 

is no higher authority than observation and induction, but in mathematics there is 

such an authority: rigorous proof.

(as cited in Leddy, 2001, pp. 11-12)

In other words, as soon as there is sufficient evidence to support a scientist’s 

hypothesis—and as long as there is no evidence against it—s/he accepts the hypothesis;
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but among most mathematicians, a claim to proof involves more stringent criteria. The 

mathematician reasons that observation cannot prove by itself because eyes can deceive 

us, measurement cannot prove because the certainty of the conclusion we arrive at 

depends upon the precision of the measuring instrument and the care of the measurer 

(both variable factors), and experiment cannot prove because the conclusions can only be 

considered probable and not invariable (Johnson, 2007).

Even within the mathematical community itself, standards of proof vary due to 

the autonomous development of mathematical specialties and their subsequent isolation 

from each other (Almeida, 1996). A number of key words, long used within the 

mathematics education literature to refer to elements of proof—such as “explanation”, 

“verification”, and “justification”—convey different meanings depending upon who is 

using them. This multiplicity of meaning implies fundamental differences in how 

mathematicians conceptualize proof. Specifically, definitions tend to vary according to 

the mathematician’s perception of what constitutes an “appropriate formal system” 

(Hanna, 1991, p. 55).

Since the closing years of the nineteenth century, mathematicians have narrowly 

defined proof in terms of logic (Davis & Hersh, 1981; Moreira, 1999). Frege 

(1884/1950), for example, defined proof as a finite sequence of statements such that 

each statement in the sequence is either an axiom or a valid inference from previous 

statements. Many decades later, Alonzo Church (1956) demonstrated the same 

adherence to formal logic. According to Church:

a finite sequence of one or more well-formed formulas is called a proof if  each of 

the well-formed formulas in the sequence either is an axiom or is immediately
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inferred from proceeding well-formed formulas in the sequence by means of one 

of the rules of inference. A proof is called a proof of the last well-formed formula 

in the sequence.

(as cited in Moreira, 1999, p. 93) 

Joseph (2000) provides a more recent and succinct take on proof as logical formalism. 

Proof, he claims, “is a procedure, [an] axiomatic deduction, which follows a chain of 

reasoning from the initial assumptions to the final conclusion” (p. 127).

Over the years, however, many mathematicians have come to define proof in 

broader terms. Thirty years ago, Lakotos (1976) described mathematics as an open 

subject that is constantly being developed and changed through proofs and 

refutations. He suggested that the definition of proof should be expanded to include 

explanations, justifications and elaborations of any conjecture subjected to counter 

examples. Lakotos’ view reflects the assumption that proof depends on the insights of the 

active mathematician and not on mechanistic rules and procedures. Indeed, perceptions of 

what proof is have changed to such a degree that, little more than a decade ago, 

mathematician William Thurston (1995) claimed, “for the present, formal proofs [in the 

sense of symbolic logic] are out of reach and mostly irrelevant” (p. 34). Even more 

inclusive is Hanna’s (1995) definition. She insists that the best proof is one that helps us 

understand the meaning of the theorem that is being proved. She notes that such proofs 

help us to see, not only that a theorem is true, but also why it is true. These, Hanna 

claims, are more convincing and more likely to lead to further discoveries. Hence, in 

school mathematics, the proofs that explain—narrative proofs— are much more 

important because they facilitate understanding (Hanna, 1990). In the end, whether
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one defines proof narrowly or broadly, it is important to remember that proof is an art 

and the act of proving can “evoke a profound sense of beauty and surprise” (Moreira, 

1999, p. 349).

Given that mathematicians differ in their perception of what it is that constitutes a 

mathematical proof, it follows that they would also differ in their understanding of the 

role played by proof within mathematics. Indeed, one’s view of what it is that proofs do 

typically influences how one defines the term. Listed below are some of the many 

functions of proof and proving as identified by various mathematics educators (Bell, 

1976; de Villiers, 1990,1999; Hanna, 2000; Hanna & Jahnke, 1996; Lucast, 2003; 

Luthuli, 1996; Marrades & Gutierrez, 2000):

• verification or justification (concerned with the truth of a statement);

• explanation (providing insight into why a statement is true);

• systemization (the organization of various results into a deductive system of 

axioms, major concepts and theorems);

• discovery (the discovery or invention of new results);

• communication (the transmission of mathematical knowledge);

• construction of an empirical theory;

• exploration of the meaning of a definition or the consequences of an assumption;

• incorporation of a well-known fact into a new framework, viewing it from a fresh 

perspective;

• providing an intellectual challenge to the author of the proof.

Obviously, mathematical proof is a complex matter both in terms of the multiplicity of 

definitions that have been offered to specify the concept and in the variety of functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

that have been attributed to it. We see this complexity played out within educational 

contexts in a number of ways. How educators define proof and expect it to function 

depends upon the specific factors associated with the educational context including the 

teacher’s understanding of and experience with proof and the student’s age, grade level, 

and mathematical abilities. As Leddy (2001) notes, what is defined and accepted as 

mathematical proof for a Grade 5 student may very well no longer count as mathematical 

proof for a high school student.

A Brief History of Proof

If one defines proof broadly, one can find evidence of mathematical proof in the 

extant computations of various cultural groups that pre-date the ancient Greeks. Of 

course, few would disagree with Szabo’s (1972) assertion that the concept of deductive 

science was unknown to the eastern people of antiquity before the development of Greek 

culture. He maintains that:

in the mathematical documents which came down to us from these [Eastern] 

people, there are no theorems or demonstrations and the fundamental concepts of 

deduction, definition and axiom have not yet been formed. These fundamental 

concepts made their first appearance in Greek Mathematics.

(as cited in Siu, 1993, p. 345) 

Indeed, if one defines “mathematical proof as a deductive demonstration of a statement 

based on clearly formulated definitions and postulates” (Siu, 1993, p. 345), then one must 

conclude that no proofs can be found in the surviving mathematical texts of the ancient 

Chinese, Indian, Egyptian or Babylonian peoples (Joseph, 2000). However, one does see 

within these texts a technical facility with computation, recognition of the applicability of
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certain procedures to a set of similar problems, and an understanding of the importance of 

verifying the correctness of a procedure (Joseph, 2000). If one defines proof generally as 

an explanatory note that serves to convince or enlighten the reader, then one can, in fact, 

identify an abundance of mathematical proofs and proving within these ancient texts. As 

Wilder (1978) reminds us, “we must not forget that what constitutes proof varies from 

culture to culture, as well as age to age” (p. 69).

The Greeks, in an attempt to lay solid foundations for geometry, were the first to 

introduce a version of the axiomatic method in mathematics (Hanna, 1983). Hence, the 

deductive approach in mathematics came to be referred to in the nineteenth century as the 

geometrical or Euclidean method. According to Grabiner (1974; cited in Hanna, 1983), 

during those years, a desire to focus and narrow mathematical results and avoid errors, as 

well as a need to formalize mathematical results, all played a part in stimulating a 

growing interest in formal proof. Over time, this Greek-inspired method of deductive 

proof came to play a central role in mathematics, though considering the lengthy history 

of mathematical thought and practices, a greater emphasis on rigor is a relatively recent 

phenomenon (Hanna, 1983).

Types of Proof

An awareness of the ways in which mathematicians have categorized proof can help 

in understanding the concept. Many classification systems have been put forth; however, 

there are four types of proof that mathematicians commonly identify.

1) Proof by counter-example. This type of proof involves finding at least one 

example in which a generalization is false. The counter-example will disprove the 

generalization or indicate its negation. A student, for instance, may conclude that a
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negative number plus a positive number is always a negative number, prompting 

another student to prove the conjecture wrong by offering a counter-example, 

say -3 +7 = 4.

2) Direct/Deductive proof. In this case, one shows that a given statement is deducible 

by inferring patterns from given information, previously studied definitions, 

postulates and theorems. Traditionally, direct proofs have been expressed using two- 

column or paragraph formats. They can also be presented in the “flow-proof format” 

suggested by McMurray (1978).

3) Indirect Proof. With this type of proof, one assumes that the negation of a 

statement yet to be proven is true, then shows that this assumption leads to a 

contradiction. The following situation illustrates the process of an indirect argument. 

On arriving at the darkened library, Angela thinks, “The library must be closed”. The 

logic behind her thought is this: When libraries are open, patrons and employees 

require light; thus, the lights are likely to be turned on. Right now, the lights are not 

on; therefore, the library must be closed. Additionally, the process of proving a proof 

by proving its contra-positive can be thought of as a special case of indirect proof 

through contradiction. Paragraph formats are often used to show indirect proofs.

4) Proof by induction. According to O’Daffer and Thomquist (1993), this is the most 

complex type of proof. It is based on the principle of mathematical induction and can 

be stated as follows: If a given property is true for 1 and if for all n > 1, the property 

being true for n implies it is true for n + 1. Thus, we can conclude that the property is 

true for all natural numbers.
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In addition, mathematicians have suggested various other ways of classifying students’ 

justification and thought processes while they are involved in proving a mathematical 

task. One well-known classification—that offered by Balacheff, 1988—serves as a key 

component in the methodology of this study.

Proof and Curriculum

Gardiner and Moreira (1999) claim that “mathematics is not proof; mathematics is 

not spotting patterns; mathematics is not calculation. All are necessary, but none is 

sufficient’ (emphasis added; p. 19). Thus, they underscore that one cannot teach 

mathematics without teaching proof. Furthermore, Wu (1996) reminds us that:

producing a proof of a statement is the basic methodology whereby we can 

ascertain that the statement is true. Any one who wants to know what 

mathematics is about must therefore learn how to write down a proof or at least 

understand what a proof is.

(p. 222)

Wu elaborates:

in a broader context, mathematics courses are where the students get their 
rigorous training in logical reasoning; this is where they learn how to cut through 
deceptive trappings to get at the kernel of truth, where they learn how to 
distinguish between what is true and what only seems [emphasis in original] to be 
true but is not. They would need all these skills in order to listen to the national 
debate and make up their minds about such knotty issues as the national deficit 
and the environment, for example. Learning how to write proofs is a very 
important component in the acquisition of such skills.

(p. 224)

In mathematics education, as Maher and Martino (1996) have argued, we are interested 

ultimately in student understanding, not just of mathematical principles but of the world 

itself, and proof and proving offer a means by which teachers might enhance student
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understanding. Educators, both practicing teachers and educational researchers, must now 

address the importance of mathematical proof in the classroom. In fact, Marrades and 

Gutierrez (2000) insist that helping students “to [come to] a proper understanding of 

mathematical proof and [so] enhance their proof techniques” has become “one of the 

most interesting and difficult research fields in mathematics education” (p. 87).

Although proofs “are the guts of mathematics” (Wu, 1996, p. 222), proofs and 

proving have played a peripheral role at best in secondary school mathematics education 

(Knuth, 2002a). Unfortunately, many secondary school students have little experience 

and even less understanding of proof (Bell, 1976; Chazan, 1993; Hadas, Hershkowitz & 

Schwarz, 2000; Senk, 1985). Knuth (2002a) observes that teachers tend to introduce 

students to mathematical proof solely through the vehicle of Euclidean geometry. Given 

this narrow application, it is not surprising that students develop little skill in identifying 

the objectives or functions of mathematical proof, or that both teachers and students come 

to perceive mathematical proof as a formal and meaningless exercise (Alibert, 1988; 

Knuth, 2002a). In general, students learn to imitate and memorize specific proof 

structures by observing the teacher and studying the textbook, but fail to understand the 

diverse nature, function, and application of mathematical proof (Hadas, Hershkowitz & 

Schwarz, 2000). There is no doubt that proving is a complex task that involves a range of 

student competencies such as identifying assumptions, isolating given properties and 

structures and organizing logical arguments. If teachers wish to teach students to think for 

themselves, and not simply fill their minds with facts, then as Hanna and Jahnke (1996) 

stress, it is essential that they place greater emphasis on communication of meaning
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rather than on formal derivation. In this respect, the teaching and learning of 

mathematical proof appears to have failed. (Hadas, Hershkowitz & Schwarz, 2000).

Since 1989, the NCTM has called for substantive change in the nature and role of 

proof in secondary school mathematics curricula. The NCTM published the Curriculum 

and Evaluation Standards for School Mathematics (1989) at a time when the teaching of 

mathematical proof—specifically within the US— had almost disappeared from the 

curriculum or sunk into meaningless ritual (Knuth, 2002a). In that document, the NCTM 

recommended that less emphasis be given to two-column proofs and to Euclidean 

geometry as an axiomatic system. In general, recommendations call for a shift in 

emphasis from (what has often been perceived as) an over-reliance on rigorous proofs to 

a conception of proof as convincing argument (Hanna, 1990). Unfortunately, the NCTM 

document encouraged educators and students to think that verification techniques could 

substitute for proof (Latterell, 2005). In that sense this document failed to utilize the 

broader perspectives of proof in the teaching and learning of mathematics. In contrast, a 

more recent NCTM document, Principles and Standards for School Mathematics (2000), 

identifies proof as an actual standard and assigns it a much more prominent role within 

the school mathematics curriculum. Accordingly, curriculum developers and program 

designers have come to expect that all students experience proof as an integral part of 

their mathematics education. Notably, the 2000 document recommends that reasoning 

and proof become a part of the mathematics curriculum at all levels from pre

kindergarten through grade 12. The section entitled Reasoning and Proof outlines for the 

reader that students should be able to recognize reasoning and proof as fundamental 

aspects of mathematics, make and investigate mathematical conjectures, develop and
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evaluate mathematical arguments and proofs, and select and use various types of 

reasoning and methods of proof. Given the greater status assigned to proof within the 

mathematics curriculum, it is essential that teachers plan curricular experiences that can 

help students develop an appreciation for the value of proof and for those strategies that 

will assist them in developing proving skills.

Any improvement in mathematics education for students depends upon effective 

mathematics teaching in the classroom. This includes providing students with 

opportunities to interact in the classroom, to propose mathematical ideas and conjectures, 

to evaluate personal thinking, and to develop reasoning skills. Teachers’ knowledge and 

beliefs will play an important role in shaping students’ understanding of math and their 

ability to solve mathematical problems (NCTM, 2000). Again, let me emphasize, 

mathematics teachers must thoroughly understand the mathematics they are teaching and 

be able to draw on that knowledge as needed, adapting in appropriate ways to each 

moment of instruction. Hence, it is crucial that teachers, especially the uninitiated, 

understand the mathematical concepts that they are expected to teach to adolescents. Pre

service teachers, in particular, must be well-prepared in this respect: if  they fail to 

understand the nature of mathematical proof, they are far less likely to teach the concept 

in a manner that fosters mathematics reform within the schools. Thus, it becomes critical 

for teacher educators to assess, and if necessary, address, the understanding and abilities 

of student teachers in constructing mathematical proof (NCTM, 2000).

Research Purpose and Research Question

The goal of recent reform efforts in mathematics education is to foster the 

development of students ’ understanding and uses of proof; but success in achieving this
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goal depends upon teachers ’ understanding of and uses of proof. Jones (1997) notes that 

the teaching of mathematical proof places significant demands on both the subject matter 

knowledge and the pedagogical knowledge of secondary mathematics teachers. 

Furthermore, Knuth (2002a) affirms that a teacher’s conception of proof influences both 

the role that s/he assigns to proof in her/his mathematics classrooms and her/his 

instructional approach in teaching such a concept. It follows that a student teacher’s 

understanding of and experience working with proof will certainly influence the manner 

in which he or she approaches teaching the concept, both pedagogically in terms of 

method and emotionally in terms of confidence. In turn, the poise that student teachers 

demonstrate or fail to demonstrate in teaching mathematical proof will enhance or impair 

the soundness of their curricular judgments, the effectiveness of their response to student 

questions, and the level of skill they demonstrate in making connections, both within the 

mathematics curriculum and among other academic disciplines. Hence, it is important to 

examine the prospective secondary teacher’s conceptions of proof, for it will be these 

conceptions and understandings that will shape classroom practice in the future.

The responsibility for enhancing student teachers’ conceptions of proof lies with 

both mathematicians and mathematics educators. Teachers in the field have access to in- 

service training and professional conferences to help prepare them for enacting the 

expectations identified within NCTM reform documents; student teachers, on the other 

hand, must rely, at least initially, upon their own teachers to prepare them for this 

challenge. University-level educators recognize that there is a need to prepare future 

mathematics teachers to meet the current challenge of reform (Cuoco, 2001; Ma, 1999; 

Stigler & Hiebert, 1999). Based on personal experience, I can attest that university
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educators are attending to the task of introducing student teachers to a deeper 

understanding of proof, the production of proof, and an appreciation for proof as an 

instructional goal within the secondary mathematics classroom.

My research examines the degree to which student teachers feel secure in their 

understanding and conceptions of mathematical proof. The fundamental question that 

drives this study is, “ What understandings do student teachers possess concerning the 

notion o f mathematical proof?” In order to answer this question, I must determine what 

student teachers believe about the nature and function of proof and assess their abilities in 

applying it. Therefore, I must address two preliminary questions:

1) What do student teachers believe about the nature and role of proof?

2) How able are student teachers when it comes to completing mathematical 

proofs?

From the perspective of curriculum development, it will be instructive to determine 

whether or not student teachers have adequately learned mathematical proof. This study 

will provide data of interest to curriculum developers of teacher education programs in 

secondary mathematics. My findings should assist them, first, in determining whether or 

not the program needs revision, and, second, in directing future efforts to revamp and/or 

revitalize the existing curriculum.

Plan of the Thesis

The remaining chapters of this thesis are organized as follows. Chapter 2 details 

my research orientation and the basic philosophical assumptions that I bring to the work 

of research. Chapter 3 offers a literature review which examines the various roles that 

proof plays in mathematics as well as those aspects of proof that are relevant to its
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teaching in schools. In Chapter 4 ,1 take a closer look at the literature relevant to my 

research, especially those publications that have inspired me to carry out my study on 

prospective secondary school teachers. Chapter 5 provides a description of the research 

methodology that I employ in the study. Chapter 6 reports and discusses the results of the 

study with respect to the written responses and interview questions. In Chapter 7 ,1 

describe the mathematical tasks that I selected for the study and justify my choices. 

Chapters 8, 9,10, and 11 present a task-by-task analysis of the student teachers’ work. 

Chapter 12 takes a close look at the concept maps that were generated. In Chapter 13,1 

compare my findings with those of Balacheff (1988), Healy and Hoyles (2000), Knuth 

(2002a), and Jones (1977). These are the primary authors whose work inspired my efforts 

and the source of some of the mathematical tasks included within my study. I will also 

revisit my research questions in this chapter. Chapter 14 concludes with a summary of the 

study and suggestions for further research in this area.
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CHAPTER 2. PERSPECTIVES AND PARADIGMS 

The Student Becomes a Statistician

My first encounter with a mathematical proof was in Junior High School. I  cannot 

remember the grade in which this happened, but I  do recall that it was in relation to 

Euclidean geometry. Only after memorizing various definitions, properties, and axioms 

was the class deemed ready for the proof. Proofs were presented in the “two column 

form at”, and that is how we were expected to write them. In the first column (on the left) 

we wrote the statements and in the second column (on the right) we were instructed to 

write the corresponding reasons. Reasons were all based on the definitions, properties 

and axioms that we had already committed to memory. I  do not recall anyone in the class 

asking our teacher why it was that we had to write the proofs in this column format; 

perhaps because at that time, and in that place, we believed that knowledge flowed from  

above, from the all-knowing teacher, to the lowly student. I  recall that we resented how 

our teacher made us go about the whole exercise o f  constructing proof and, indeed, about 

mathematics in general. I  slogged through lots o f  memorization, lots o f practice, and lots 

o f homework. It was all a great deal o f hard work. Yet, a few  years later, when I  enrolled 

as a university student, I  was glad that my teacher had exposed me to formal models o f  

proofs, taught me to write proofs, and insisted upon all that hard work Despite its 

drudgery, this experience prepared me quite well fo r  my university-level courses. 

Understanding the Past—Received Knowledge: Groundings in Positivism

It is clear to me now that my early understandings of knowledge were grounded in 

a belief system that valued natural science as the sole source of true knowledge
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(Newman, 2000). A person discovered knowledge by formulating hypotheses and 

conducting experiments; when knowledge had been amassed it was passed down to 

younger generations. Thus, knowledge was something separate from the knower, 

something taken in, acquired in chunks and then linked into linear chains by means of 

reason and judgment (Davis, 2004). Later, I would learn that Descartes’ analytic method 

(in his Discourse on Method, 1637) sought to reduce all claims to truth to their 

fundamental assumptions, and became, for many, the means by which all uncertainty 

could be removed (Davis, 2004). Bacon (in Novum Organum, 1620) argued, instead, for 

careful controlled and replicable experimentation as the means of establishing certainty 

(Davis, 2004). Although Descartes’ rationalism and Bacon’s empiricism differed in 

method, both aimed to uncover the fundamental principles and laws of the universe. The 

scientific method, as I came to know it, combined deductive logic with precise empirical 

observations in order to discover and confirm a set of probalistic causal laws that could 

be used to predict fixture events (Newman, 2000). The domain of science, governed as it 

was by logic and rational thought, reigned supreme while the arts and humanities, 

particularly philosophy, were not considered important. I remember a story that I heard 

when I was young. When God created the world, he gave people the tools they needed to 

survive: to the Westerners, He gave science; to the peoples of the Middle East, He gave 

oil; and to the Indians (Hindustanis), He gave philosophy. Over time, the Westerners 

prospered because of their science, the people of the Middle East prospered because of 

their oil, and the Indians sank into poverty because of their philosophy.

When I was a child, it was generally believed that researchers conducting rigorous 

experiments while working in laboratories were responsible for the discovery of
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knowledge. Scientists were respected and highly regarded. They conducted studies using 

precise quantitative data obtained by means of surveys or experiments; then they 

conducted a complex statistical analysis to uncover Truth. I recall that one of our 

chemistry teachers at school had received a doctoral degree in Chemistry. Although he 

taught only the senior students, those of us at the junior high level came to know all about 

“Dr.” Nair because our school headmaster publicly congratulated him on his 

achievement. I heard from other students that he was a very serious man who seldom 

talked about anything other than Chemistry, and students never dared to open their 

mouths once he stepped into the classroom. For me, Dr. Nair’s manner reinforced a 

stereotype of the scientist—someone who was deadly serious, someone who never 

laughed and never smiled.

Scientists who conducted work as researchers, I reasoned, must be equally 

somber, particularly because their work was so serious. They had to solve problems, 

replicate experiments, and verify past results. Validity, reliability, and generalizability 

were serious matters (Newman, 2000). Their efforts determined what we could know and 

how well we could address the serious social problems that we lived with. In school, even 

those teachers who taught arts and humanities stressed that science was the way to get at 

Truth, the way to understand the world well enough to predict and control it. 

Consequently, most students, following their secondary school education, tried to get into 

Medical School, Engineering or other science-based programs. Even if the students 

themselves had no great interest in science, parents constantly reminded them of the 

importance of SCIENCE in the “real” world. As a student, I enjoyed reading Malayalam 

literature, but older and seemingly wiser people in my society reminded me that having a
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good education in science and/or mathematics would be the key to success in life. So I 

concentrated on my studies in mathematics and science and all of those “soft” interests of 

mine slowly disappeared. It was only much later, after I had begun studies in Canada, that 

I came to understand that I had grown up in a society governed by a system of beliefs 

known as Positivism (Newman, 2000).

The Statistician Becomes A Teacher

After receiving a doctoral degree in Statistics and teaching at a university fo r  a 

short time, I  left my home country, India, and accepted a position teaching mathematics 

at a secondary school in Brunei Darussalam. At first, I  was not pleased with this career 

change. In India and other parts o f Asia, a move from university lecturer to secondary 

school teacher was considered a demotion. But, in fact, my experience teaching school 

was an eye opener. I  came to understand the saying, “to learn something, you need to 

teach i t”. As a high school mathematics teacher, I  realized that mathematics did not 

need to he compartmentalized into Arithmetic, Algebra, Geometry and Trigonometry: 

proofs, explanation and justification need not be reserved for Geometry alone. Students 

and teachers could experience the beauty o f proofs—the “Ah ha! ” moment that comes 

with the proving—in all areas o f mathematics.

But, as a teacher I  did not act upon this realization. Instead, Ifollowed the set 

curriculum and introduced students to proofs using the traditional two-column format. 

Like my own teachers, I  asked my students to memorize all o f  the definitions, properties, 

axioms and theorems thought necessary for solving proofs. And, just as my teachers had 

done with me, I  insisted that my students do lots o f examples and a great deal o f  

homework. I  continued to act according to the traditional belief that, in mathematics,
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practice makes perfect. My contribution to expanding the role o f proofs in secondary 

school mathematics was nil. I  simply did my job, followed the curriculum and “helped” 

my students receive high grades on their final examination. My teaching style was best 

described as lecture format balanced by classroom discussion and lots ofpractice: at 

that time I  was unaware o f other methods.

One thing I  was very much aware o f however, was what it fe lt like to struggle 

and persist. I  fe lt compassion for those students who struggled with mathematics. I  

established a small-group extra class for further instruction and worked with students 

one-on-one, and I  tried to help all o f these students to succeed where they had previously 

failed. Almost six years o f working with adolescent students generated within me a strong 

passion for secondary school teaching—so strong that I  totally forgot about my previous 

career as a university lecturer o f statistics.

Understanding the Past—Constructed Knowledge: Arriving at Constructivism

Although my philosophy of teaching was grounded in an understanding of 

knowledge as some “thing” passed down from higher levels (teachers) to lower levels 

(students), I slowly began to recognize that students varied tremendously in how they 

understood concepts. I still saw myself as the transmitter of knowledge, but my desire to 

help students learn the subject matter led me to discover that, even as I delivered the 

same subject matter in the same manner to similar students, what went on in one 

student’s head could be very different from what went on in another’s. Still, it never 

occurred to me that because of differences in individual thinking styles and processes, 

students could benefit from working together.
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I recall that a lecturer from the Universiti Brunei Darussalam once came to our 

school to conduct an in-service training session. She gave a presentation that introduced 

us to the concept of cooperative learning and argued passionately for its importance. We 

were confused: we had come to see group work as something that teachers did when they 

did not want to teach, or as something that occurred during extracurricular hours while 

working with the Mathematics Club. For us, group work was allowing students to help 

each other with a math problem only after they had struggled on their own to answer it 

and, no matter what they had tried, could not find the solution. After many minutes of 

independent seatwork, we typically gave students the correct answer rather than 

encouraging and making time for them to work together to discover the answer. Group 

work was time-consuming—a strategy used by teachers when they wanted to kill time! 

We had very little time: constrained by the tight deadlines that were imposed upon us, 

and the enormous syllabus that we had to cover before the final comprehensive exam, the 

General Certificate Examination, we had little time to “waste” on discovery learning. 

Besides, we had been taught that a “good” teacher demonstrates excellent class control; 

given our value system, to allow the noisy group interaction of exploratory activity was 

out of the question.

My colleagues and I, therefore, found the idea of approaching mathematical 

problems through group work totally incomprehensible. We continued to teach 

according to the principles of positivism, regarding each student as a separate entity, 

isolated from his/her fellow learners. Nonetheless, I had begun to question the wisdom 

that taught me to expect from each student the same subjective understanding of the
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concepts that I taught them: I could not help but wonder if there might be a better way to 

assist my diverse students in learning mathematics.

The Teacher Becomes a Student

The cycle o f  life took another turn when, as a family, we decided to emigrate. I  

resolved that, once in Canada, I  would be a compassionate Mathematics schoolteacher, 

and nothing else. I fe lt such empathy for students who struggled with Mathematics that I  

knew this was my calling. Consequently, I  enrolled in a B Ed program at a Canadian 

university and soon discovered those “other” theories o f  teaching and learning about 

which I  knew nothing when I  first began teaching in Brunei. In every education course 

that I  completed I  came across the term “constructivism ”. I  did not quite understand this 

approach nor its methodology, but I  was eager to try it out in my own classroom i f  it 

could help my struggling students. When I  completed my B Ed, I  felt that there was still 

so much I  wanted to learn about Mathematics Education. Thus, I  decided to continue my 

studies and pursue a Master’s degree. I  submitted a briefstatement o f intent as part o f  

my application and wrote earnestly about the value o f  different teaching methods in 

mathematics classrooms. I  was passionate about identifying teaching methodologies that 

would help ensure that I  was connecting with every student.

Understanding the Past—Constructed Knowledge: Exploring Constructivism

Those early years in the teacher education program began a process that has been 

unnerving, yet exciting. As a teacher trainee, I experienced more exploratory 

mathematics—it was quite a change since I had always associated mathematics with 

certainty. I began to recognize value in the group work that I had once considered so 

problematic. I was willing to adopt these methods if they would truly help my students.
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But it was difficult to let go of my beliefs, my philosophy of teaching, and assumptions 

about knowledge and the learning process.

After my initial practicum experience, I came to the conclusion that cooperative 

learning and discovery approaches to mathematics did have some value, not necessarily 

intrinsic value, but value based on their usefulness within specific social contexts. I 

determined that group work and discovery learning could work well in Canadian schools 

where students had been socialized to be more open in the classroom, more willing to 

question what they did not think was right. I still questioned the relevance and 

effectiveness of group work in Indian and Asian contexts where students had long been 

accustomed to independent learning.

When I began to contemplate what I might focus on in my research on teaching 

methods in mathematics education, the first idea that sprang to mind came out of my 

positivist background: I would control for students and teacher, apply different teaching 

methods, and see which one yielded the best result. As I learned more in my courses on 

curriculum theory and research methodology, however, I came to understand that 

educational research is about far more than simply manipulating variables and applying 

statistical methods. I reconsidered the positivist position. Skinner had argued that 

researchers could only study positive and negative re-enforcers of behavior. He claimed 

that what the subject thinks is irrelevant because thoughts cannot be measured. I could no 

longer accept this. I realized now that no two students would experience social or 

physical reality in the same way; I needed to shift my focus to what was meaningful and 

relevant to my students. Cognitive theorist Jean Piaget suggested that the learner 

constantly revises his or her understandings of the world in accordance with new
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experience (Davis, 2004). The Constructivists who followed Piaget focused on the 

learner’s attempts to make sense of the world, to construct reality and knowledge (Davis, 

2004). I began to wonder if  it was even possible, as I had been taught, to study classroom 

practice as one studied the natural world, with deductive axioms, theorems, and 

interconnected causal laws (Newman, 2000). It became clear to me that I was now at 

least equally concerned with achieving an empathetic understanding of the feelings and 

views of the students as I was with determining effective teaching methods. I did not yet 

understand that the two were intimately connected.

The Student Becomes a Researcher

During my first semester as a graduate student, I  had an opportunity to work as a 

research assistant fo r a professor o f mathematics education. It was my responsibility to 

collect materials relating to “proofs and reasoning” in school mathematics. As I  carried 

out this library research, memories o f  my experiences with proof both as a student and a 

teacher came back to me. I  read research studies indicating that students encounter 

difficulty with proof no matter what their level o f  mathematical ability. I  also read that it 

is important for students to develop a solid understanding o f  mathematical proof—that 

proof was “the guts o f  mathematics ” (Wu, 1996, p. 222). All o f this reading kindled my 

interest in mathematical proof and changed the direction o f  my research efforts.

My initial plan for my master’s thesis was to conduct a study on the proof 

experiences o f  secondary school students. When I  read that “students learn mathematics 

through the experiences that teachers provide” (NCTM, 2000, p. 16), and that a 

teacher’s knowledge can have a major impact upon student learning, my interest shifted 

towards the student teacher. About that time, I  came across Knuth ’s study on practicing
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Mathematics teachers. His finding that these teachers actually had limited experiences 

with mathematical proof caught my attention. I  became concerned that students taught by 

teachers with “limited” experience in mathematical proof would have an especially 

difficult time learning the concept. Immediately, I  speculated what would be the results i f  

someone conducted a parallel study here in Canada. I  realized that I  could apply Knuth ’s 

methodology to a study, not with practicing teachers, but with student teachers. Although 

I  did recognize elements ofpositivistic thinking in the idea o f replication, I  thought that I  

would aim, not so much to recreate the study, but to apply the research design to a 

different group ofparticipants and a different context. Such a study would be useful for  

mathematicians and mathematics educators because it would assist them in identifying 

problems within the mathematics teacher education curriculum and, i f  necessary, 

refining and revamping the program. As an education undergraduate, I  had noticed that 

teacher educators do pay attention to the role o f “proof and reasoning” in mathematics 

as part o f their curriculum. Ife lt it important that a study be conducted examining the 

degree to which student teachers feel prepared for and confident about teaching “proof 

and reasoning” to their future students. With this in mind, I  requested and completed an 

independent study course titled “Proof and Reasoning in School Mathematics. ” 

Understanding the Past—Arriving at Interpretive Inquiry: Bridging Two

Paradigms

As I continued to take graduate courses in curriculum theory and research 

methods, I found myself more and more interested in interpretive inquiry. I accepted the 

idea that people construct their own meanings and exist within shared meaning systems: I 

had experienced this first hand as an immigrant. Aspects of interpretive inquiry such as
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this made sense to me. Rather than focusing on quantitative data, applying rigid 

procedures, and performing a statistical analysis of data, I decided to include qualitative 

data in the form of semi-structured conversational interviews that I would later transcribe. 

I would also try to examine those very processes that Skinner said would be impossible to 

study—the thought processes of student teachers as they worked to prove a number of 

different types of proof. I found myself moving towards a sensible, yet strange, new 

paradigm; but I resisted. I was not yet prepared to dismiss the importance of cause and 

effect relationships.

I moved closer to accepting the social learning aspect of Interpretive Inquiry when 

I read Lakatos’s (1976) “Proofs and Refutations”. Lakatos argues that mathematics 

develops by means of a process of “conscious guessing” and that proofs take a “zig-zag” 

path originating from conjectures (conscious guesses) and moving forward with the help 

of counter examples. I found this intriguing. Lakatos’ ideas had a great deal in common 

with what reformists in mathematics education were now advocating—that all students 

should be making conjectures, abstracting mathematical properties, explaining reasoning, 

validating assertions, and discussing their own thinking and the thinking of others 

(NCTM, 1989, 2000).

At that point, I decided I would explore in my study the thought processes of 

student teachers by examining the written work they produced as they proved various 

proofs. I determined that concept maps would also help me in assessing student teachers’ 

understandings of the nature and role of proof, and I reasoned that interviews would 

make it possible for the participants to elaborate upon and explain their thinking 

processes. As I proceeded I found myself attempting to bridge positivism and more
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interpretative inquiry: I could not completely let go of all that I had believed and 

practiced for so much of my life; at the same time, I wanted to move in this new and 

exciting direction. My research methodology and my philosophical assumptions 

ultimately reflect this reality. I had learned that interpretative researchers rarely ask 

objective survey questions or aggregate the answers of many people (Newman, 2000). I 

did not abandon survey questions but limited the number of them considerably and then 

prepared for students to expand upon their written responses in interviews. Interpretative 

researchers recognize that each person’s interpretation of a survey question must be 

placed in a context such as the person’s previous experiences or the survey interview 

situation (Newman, 2000). I acknowledged this as well, unearthing to some extent 

(though not always sufficiently) my participants’ mathematical and school-based 

experiences as well as considering the impact of my limited experience as an interviewer 

and my own experiences with mathematics and mathematics education. I recognized that 

each participant would assign a somewhat different meaning to both the questions that I 

posed and the answers that were given, and I knew that values, both those of the 

participants and my own, had to be made explicit. This chapter reflects my desire to make 

my philosophical assumptions as a researcher clear. As I reflect on the path of the past 

and the place of the present, I see that I have moved from positivism towards interpretive 

inquiry, though I currently find myself somewhere between the two paradigms.
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CHAPTER 3. LITERATURE REVIEW 

The Notion of Proof in the Literature

The literature on mathematical proof is vast and comes from many different 

sources including the philosophy of mathematics, the history of mathematics, and 

mathematics education (Raman, 2002,2003). This explains—in part—the multiplicity of 

definitions, which in turn, explains—in part—the confusion concerning proof that one 

often finds among mathematics educators. In Chapter 1 ,1 listed several functions of proof 

and proving as identified by various mathematics educators (see p. 6). In the following 

sections, I discuss these in more depth, specifically in relation to what I have discovered 

in the literature.

Proof as Verification and Convincing

The historical roots of proof, dating back to the time of the ancient Greeks, 

indicate that the role of proof is to verify mathematical results. As Hanna (1983) 

observes, the main role of proof in mathematics has been to demonstrate the correctness 

of a result or the truth of a statement. Proof as verification is often associated with formal 

proof (mathematicians’ proof)—often considered “real proof’—that is, proof that is 

rigorous and certain. A mathematician uses this mode of proof to communicate her/his 

new result to the mathematical community; the community then may verify it. Thurston 

(1995) describes his own experience of working with mathematical proof as a process 

involving effort on the part of both self and community—the former arrives at the 

mathematical result, while the latter verifies it. He recalls that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

mathematicians were actually very quick to accept my proof, and to start quoting 

it and using it based on what documentation there was, based on their experience 

and belief in me, and based on acceptance by opinions of experts with whom I 

spent a lot of time communicating the proof.

(P- 37)

However, if  one regards verification as the only function of mathematical proof, 

one must reconsider the inclusion of proof in the school mathematics curriculum and its 

presumed value within educational contexts. It is evident from the literature that students 

are convinced more by examples than rigorous /formal proofs (Coe and Ruthven, 1994; 

Harel & Sowder, 1998). Students, it would seem, are less convinced by the symbols and 

operators associated with formal proofs than they are by illustrative instances. This is one 

of the reasons why many mathematicians and mathematics educators have become 

advocates for less formalism in school mathematics programs.

Proof as Systemization

Proof also helps to build mathematical knowledge. It functions “as a means of 

connecting mathematical results into an integrated body of knowledge” (Leddy, 2001, p. 

21). As de Villiers (1990) notes, “the main objective clearly is not to check whether 

certain statements are really true but to organize logically unrelated individual statements 

which are already known to be true, into a coherent unified whole” (p. 21). Proof 

functions as a means to systemize known results into a logical system of definitions, 

axioms and theorems. Proof plays a major role in expanding mathematical knowledge 

because it is by proving theorems that mathematical knowledge is developed, 

communicated and advanced (Thurston, 1995). Thus, according to the literature, one
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important function of mathematical proof is to integrate mathematical knowledge into a 

coherent body. This process, in turn, develops and strengthens the discipline.

Proof as Explanation

Hanna (1990) insists that mathematicians value proof far more for revealing 

essential mathematical relationships than for demonstrating the correctness of a result.

She uses the terminology proofs that explain to signify proofs that not only prove, but 

also explain why. She contrasts this with proofs that prove: in other words, proofs that do 

not have a high degree of explanatory power. Proofs that explain, she argues, have more 

value for mathematics education than do proofs that merely prove. As Leddy (2001) 

suggests, not all proofs explain well. Formal proofs are good for verification and/or 

systemization, but may be of little use in providing explanations. “Proofs that only 

prove”, Leddy adds, “do not hold much value either aesthetically or informatively” (p. 

25). Few would disagree with the statement that the main purpose of proof in any school 

mathematics program is to foster student understanding rather than convincing students 

of a correct result. Hence, the use of proof to explain becomes extremely important 

within the school classroom.

Proof as Discovery

Lakatos (1976) identifies proof as a “social process”, one used to discover new 

mathematical results. Obviously, if  proofs serve only to verify results, they are not likely 

to generate new knowledge. In his classic book, Proofs and Refutations, Lakatos writes 

“mathematics does not grow through the monotonous increase in the number of 

indubitably established theorems but through the incessant improvement of guesses by 

speculation and criticism, by the logic of proofs and refutations” (p. 5). Lakatos
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describes proof as explanations, justifications and elaborations that serve to make a

conjecture (posed by potential doubters) more convincing. Proof helps one discover

whether or not initial and successive conjectures make sense. This notion of proof aligns

well with the views of the NCTM (2000): “Doing mathematics involves discovery.

Conjecture—that is, informed guessing—is a major pathway to discovery” (p. 57). The

NCTM document also reminds mathematics educators that

Students can learn to articulate their reasoning by presenting their thinking to their 
groups, their classmates, and to others outside the classroom... .The particular 
format of a mathematical justification or proof, be it narrative argument, “two- 
column proof’, or a visual argument, is less important than a clear and correct 
communication of mathematical ideas appropriate to the students’ grade level.

(p. 57)
Proof as Communication of Mathematical Knowledge

The literature also discusses proof as a particular method for communicating 

results to others, a method or means that is clear and direct. The NCTM (2000) 

encourages students to participate in mathematical practices that can lead to new 

discovery. As one discovers new understandings, one finds it necessary to persuade, first, 

him/herself, and second, others, that what has been discovered is, indeed, true. This social 

process necessarily entails that the student communicate the proof to his or her 

community. The NCTM describes “communication...  [as] an essential part of 

mathematics and mathematics education. It is a way of sharing ideas and clarifying 

understanding” (p. 60). The NCTM document reminds teachers that “the particular 

format of a mathematical justification or proof, be it narrative argument, two-column 

proof, or a visual argument, is less important than a clear and correct communication of 

mathematical ideas appropriate to the students’ grade level” (p. 57). Therefore,
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mathematics educators need to pay close attention to proof as a vehicle to communicate 

mathematical knowledge.

Proof as Problem Solving

Lucast (2003) argues that proof and problem solving are closely linked. She 

laments that this conception of proving is too often overlooked in school mathematics. 

Proving requires that one work towards a solution. Hence, the act of proving can be 

considered an act of problem solving. Students who demonstrate effective problem

solving skills tend to be skilled at proving as well (Schoenfeld, 1994). Epp (1994) 

observes that in order to solve a proof, one must be able to use deductive and intuitive 

reasoning, and both of these mental skills are typically evident in the student who is an 

effective problem-solver. In problem solving, students must drawn upon their knowledge 

and skill in the subject area and then apply that to a novel situation. By means of this 

process, students build new understandings. Proving as part of problem solving requires 

the same approach. The person who proves a task also draws on past knowledge of the 

subject and applies it to a new situation. Effective problem solvers, of word-based and 

formula-based problems such as proofs, analyze the situation carefully, identify 

assumptions, consider simple case and/or patterns and relationships, and organize logical 

arguments; then they apply that understanding to future situations. Proving also requires 

the similar skill- exploration of task, developing mathematical conjectures, and reasoning 

through the task by providing mathematical arguments.
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History of Reform Efforts in Mathematics Education as They Pertain to Proof

In the 1930s, educators identified efficiency in logic and reasoning as a desirable 

and important goal within the high school mathematics program. In 1938, Fawcett 

observed that the inefficient use of logic and reasoning among students constituted a 

serious problem, a problem that could only be adequately addressed by reform in 

mathematics education. His recommendations focused on using mathematics as a means 

to an end: to develop within the student critical and reflective thinking. Fawcett 

considered geometry the ideal context for learning critical thinking skills (Williams, 

1979). Many mathematics educators welcomed this new direction in mathematics 

curricula; however, they questioned whether it would be possible to achieve this 

objective by using traditional approaches to instruction (Latterell, 2005)

From the 1950s until the 1980s, there followed wave after wave of new math 

initiatives. In the 50s, a “New Math” movement gained momentum, giving birth to the 

School Mathematics Study Group (SMSG), an organization established, not by teachers, 

but by mathematicians. As the decade passed, professional mathematicians working 

under the auspices of the SMSG came to be more and more involved with school 

mathematics, intent upon improving the school curriculum by emphasizing logic, 

methods of deductive proof, and the role of axiomatic structures in mathematics. 

Educators, on the other hand, denounced, on pedagogical grounds, such an extreme 

emphasis upon axiomatic structures and rigorous proof. Ultimately, the New Math 

Movement failed. Its focus on exaggerated formalism, the lack of success that teachers 

experienced teaching students in this way, and the ongoing criticism from various 

stakeholders of schooling (Hanna & Jahnke, 1993) all contributed to the movement’s
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demise. By the early 1980s the NCTM, responding to the failure of the New Math 

Movement, proposed another set of reforms for school-based mathematics curricula. 

Although the specifics of the NCTM’s reform plan (1989) had limited success in 

application, the directions and recommendations outlined in the more recent NCTM 

document titled may prove more effective.

Proof and the Alberta Curriculum

The Alberta Program of Study (PoS) for Mathematics Education (1996) emerged 

out of the Common Curriculum Framework developed for the provinces of Alberta, 

British Columbia, Manitoba, Saskatchewan and the Northwest and Yukon Territories.

The PoS recognizes that mathematics is increasingly important in a rapidly advancing, 

technological society. Philosophically, it rests upon the premise that students learn by 

attaching meaning to what they do—by constructing their own meaning of mathematics. 

When students are permitted to learn in this manner, the struggle to leam mathematics—a 

worldwide phenomenon (Hadas, Hershkowitz & Schwarz, 2000)—will diminish. The 

Alberta PoS calls for a classroom environment in which learners feel comfortable taking 

intellectual risks, asking questions and posing conjectures (Alberta Learning, 1996). It 

encourages classroom procedures that cultivate critical and reflective thought.

Notably, the PoS identifies reasoning as one of the primary goals of a 

mathematics education, and proof and proving serve as a fundamental means by which to 

develop critical thinking skills. In fact, the curriculum document does not explicitly 

address the concept of “proof’. The PoS, published in 1996—prior to the NCTM 

standards document of 2000—obviously does not represent a response to the NCTM 

recommendations; however, it does cite the NCTM standards document of 1989, and,
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indeed, builds upon the 1989 standards by highlighting the need for students to develop 

confidence in their abilities to reason and to justify their thinking. The PoS encourages 

“testing of conjectures”, “formulation of counter examples”, and “construction and 

examination of valid arguments.” It underlines the need for students to exercise logical 

thinking, inductive reasoning and deductive reasoning. The mathematical process R 

(reasoning) appears in the Alberta PoS, on and off, beginning with Grade 1. However, 

explicit references to the use of reasoning are very much confined to the Grade 11 

Coordinate Geometry section within the mathematics textbooks that are used in Alberta 

(namely, Math Power and Minds on Math). Here again, one encounters an emphasis on 

proof as two-column structure, with statements in one column and reasons in the other. In 

the Alberta PoS, reasoning and proof seem to be compartmentalized within Euclidean 

Geometry. Knuth (2002a, 2002b) noted a similar emphasis in the US curriculum, and I 

observed the same phenomenon teaching secondary mathematics in Brunei. My 

experience teaching students the concepts of proof and proving have confirmed what 

many researchers have shown: teaching proof and reasoning in such a rigid manner 

within such a narrow context tends to generate among students negative attitudes towards 

mathematical proof (Knuth, 2002a). Had I asked any of my former high school students 

what they felt about proof and proving, I would have been sure to hear comments like 

“proof is a necessary evil”, “I hate proof’ and “I’ve got to do it anyway.” I believe it is 

time to expand upon the role of proof in the Alberta school mathematics program of 

study. In line with the NCTM recommendations of 2000, proof needs to be considered 

throughout the curriculum; but it also needs to be introduced to students in more effective 

ways. Classroom teachers are far more likely to develop and extend student learning by
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structuring mathematical experiences so that students have ample opportunity to create 

and validate proofs. I believe that this needs to become a fundamental goal of 

mathematics instruction. Although classrooms that function like this will differ 

significantly from traditional mathematics classrooms, establishing them will be well 

worth the effort.

Summary

The literature contains multiple definitions of proof, each definition determined 

on the basis of how a proof can function. Not surprisingly then, mathematics educators 

seem confused about how best to go about the practice of teaching proof. Over the years, 

proof has played a peripheral role within the secondary school classroom with teachers 

limiting discussions of proof to Euclidean geometry (Knuth, 2002a, 2002b). Given this 

narrow and limited application, it is not surprising that students are rarely able to identify 

the objectives or functions of mathematical proof (Knuth, 2002a). In fact, teachers 

themselves have limited knowledge about the role and function of mathematical proof 

(Knuth, 2002a). It appears, then, that schools and teachers—in North America and the 

United Kingdom at least—have failed in their efforts to teach students mathematical 

proof (Hadas, Hershkowitz & Schwarz, 2000).

Recent documents call for a greater emphasis upon proof and proving within 

school mathematics programs (NCTM, 1991,2000). Provincial programs of study, for 

the most part, have taken up the NCTM lead. In Alberta, sweeping curricular changes in 

the school mathematics program took place in the late nineties (Alberta Learning, 1996). 

However, since documents were completed prior to the NCTM’s explicit 

recommendations concerning proof (2000), curriculum documents and teaching resources
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do not emphasis proof to the degree that they could. Following the lead of the NCTM 

(2000), a number of university educators have revised the teacher education curriculum 

to incorporate the notion of proof. Now, several years since the NCTM first prompted a 

greater emphasis upon proof and proving, it will be useful to determine the extent to 

which student teachers understand mathematical proof and feel confident about teaching 

proof and proving skills in the classroom.
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CHAPTER 4. FINDING DIRECTION 

Relevant Literature

In this chapter, I take a closer look at literature that is relevant to my study, 

especially reports that have inspired my own research. In preceding chapters, I have 

argued that mathematical proof, given its numerous functions and tendency to develop 

diverse thinking skills, is particularly important to the school mathematics program. In 

fact, there are quite a few studies reported within the literature that have examined school 

students’ conceptions of mathematical proof. I will discuss two, one by Balacheff (1988) 

and the other by Healy and Hoyles (2000). Other researchers have focused on practicing 

teachers and how they conceive of proof. Since teachers will be instrumental in 

implementing current reform principles within the classroom, assessments of their 

competence and proficiency with proof and proving are timely. In this respect, I discuss 

the work of Knuth (2002a).

Studies such as these in mathematical proof, and their unmistakable findings, 

have alerted mathematics educators to the difficulties associated with developing, among 

both teachers and students, proficiency in the construction of mathematical proofs. It is 

encouraging to see that faculties of education are responding to the NCTM call for 

reform: mathematics educators have recently incorporated into their teacher education 

programs topics that are relevant to mathematical justification, principally mathematical 

proof (Cuoco, 2001). Now is an appropriate time, I suggest, for educators to study the 

impact that these changes have had on student teachers’ conceptions of and facility in 

working with mathematical proof. Mathematics educators, as well as government bodies,
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professional associations and the public, should all find the results of such a study helpful 

in practical ways. Within the literature, however, there are few studies that focus entirely 

upon student teachers—two exceptions include Cyr (2005) and Jones (1997). I will take 

a closer look at the study conducted by Jones.

Studies on Secondary School Students’ Conceptions of Proof

1. Balacheff (1988)

Nicolas Balacheff (1988) conducted an experimental study of secondary students’ 

conceptions of mathematical proof. He observed students as they were engaged in the 

process of generating proofs, noting the various ways in which his participants— 28 

secondary school students, 13 and 14 years of age—approached a specific mathematical 

assignment. He permitted students to work in pairs as they set about completing the 

following task: "Provide a means o f  calculating the number o f diagonals o f a polygon 

when you know the number o f vertices it has ” (p. 221). Balacheff facilitated interaction 

between the partners by providing only one pen for each pair. Students were allowed to 

work on the problem until they arrived at a solution; but both students had to agree that 

their answer did, in fact, provide a solution to the problem before they could claim to 

have finished. In this study, Balacheff focused on both the reasons that students gave for 

selecting the examples that they did and how they used those examples. He was keen to 

understand the processes involved in arriving at the product, but he understood that social 

interaction could either assist or hinder students in arriving at a solution to the proof (p. 

222). After analyzing the results, Balacheff classified the student responses into four 

different types o f proofs and argued that these categories represented four increasing 

sophisticated levels of thinking.
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Almost a decade later, Simon and Blume (1996) argued that Balacheff s hierarchy of 

proofs was, in fact, an extension of van Dormolen’s (1977; as cited in Simon & Blume, 

1996) taxonomy of proof. According to Simon and Blume, van Dormolen differentiated 

among proofs by establishing three distinct categories: proofs that (1) focus on a 

particular example, (2) use an example as a generic embodiment of a concept, and (3) use 

general and deductive argument. Balacheff, subsequently, identified four categories of 

proofs: (1) naive empiricism, (2) crucial experiment, (3) generic example and (4) thought 

experiment. Balacheff also situated his taxonomy within a developmental model of 

proving skills. In addition, Balacheff argued that each of these four levels of 

mathematical proof could be classified within one of two broad categories that he termed 

pragmatic justifications and conceptual justifications. He called all justifications 

pragmatic when they focused on the use of examples, actions or showings. He called 

justifications conceptual when they demonstrated abstract formulations of properties and 

relationships among properties.

The first three levels in Balacheff s proof scheme are all examples of pragmatic 

justifications. In the case of naive empiricism, the first level in Balacheff s taxonomy of 

proofs, the student arrives at a conclusion concerning the validity of an assertion on the 

basis of only a small number of particular cases. Balacheff exemplifies this level in his 

description of the efforts of school students Pierre and Mathieu. Working together, these 

boys examined a square, a hexagon and then an octagon. They concluded that they could 

arrive at the number of diagonals by dividing the number of vertices by two. In this 

example of naive empiricism, the boys checked the statement to be proved against a few 

particular examples and, on this basis, made a universal assertion. With crucial
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experiment—the second level in Balacheff s taxonomy of proofs—the student deals with 

the question of generalization after generating a claim based on a few examples by 

examining a case that is not very particular. If the assertion holds in the considered case, 

the student will conclude that it is valid. Balacheff illustrated critical experiment by 

referring to the efforts of Nadine and Elisabeth. These girls chose a polygon of many 

sides (15) believing that the assertion they came up with could be proved in this instance, 

then the assertion would be universally true. In other words, at the level of crucial 

experiment, the student checks the statement by means of a carefully selected example.

A defining characteristic of crucial experiment is the intentionality of the student: 

deliberate choices must be made (Knuth & Elliot, 1998). Notably, both naive empiricism 

and crucial experiment deal with actual actions or showings; the main difference between 

the two rests with the status of the specific example that is selected to validate the 

assertion—the example used in crucial experiment proof is often based on carefully 

selected extreme cases. I came to know through my work that one is more able to 

distinguish between crucial experiment and generic example while observing the student 

as s/he actually works through the task.

In the case of generic example—the third level in Balacheff s taxonomy of proofs— 

the proof rests upon the properties. Here, the example is a generalization of a class, not a 

specific example. Although the focus is once again a particular case, it is not used as a 

particular case, but as an example of a class of objects. The student selects such an 

example as representative of the class and performs operations/transformations on the 

example in order to arrive at a justification. Then, the student applies these operations and 

transformations to the whole class. Balacheff mentions Georges’ exploration of the
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proposition f(n) = n*s(n) (where s(n) is the number of diagonals at each vertex) as an 

example corresponding to this category. However, it is quite interesting to note that 

Balacheff does not give an explicit reason as to why this represents a generic example 

(see Balacheff, 1988, pp. 224-225).

Only with the fourth and highest level of proof in Balacheff s taxonomy do 

students move from the practical—pragmatic justification—to the intellectual— 

conceptual justification. At the level of thought experiment, students are able to distance 

themselves from action and make logical deductions based only upon an awareness of the 

properties and the relationships characteristic of the situation. At this level, actions are 

internalized and dissociated from the specific examples considered. The justification is 

based on the use of and transformation of formalized symbolic expressions. Balacheff 

provides an example of thought experiment in his description of Olivier. This student 

asserted that “In a polygon i f  you have x vertices there are automatically y  diagonals 

from each point because in a boundary o f the polygon there are two points which join it; 

in conclusion there are x-3 which are the diagonals Olivier was able to express the 

properties of a polygon by observing one specific example. It is important to note that 

Balacheff categorized all assertions that de-contextualize themselves from the traces of 

formulation of their arguments, even if  they are not but are not necessarily fully correct, 

as thought experiments. It is the students’ approach to the task of proving that he is 

categorizing not the validity of the outcome.

Knuth and Elliott (1988) later expanded on Balacheff s taxonomy. They set about 

providing examples that would demonstrate each of the four levels of thinking. They 

used power chord theorem in their efforts to show how students thinking at any one of
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these levels might approach the task of proving the proof. In examining both Balacheff s 

original study and the work of Knuth and Elliott, it has become clear to me that 

distinguishing between naive empiricism and crucial experiment is a difficult task, 

especially if  one looks only at the end product of the student’s writing. I also observe that 

Knuth and Elliott could not provide a concrete instance of generic example. Hence, 

despite the neatness of the Balacheff model, in practical application one may have some 

difficulty both in distinguishing between naive empiricism and crucial experiment and in 

coming across instances of generic example.

The four levels in Balacheff s taxonomy represent a hierarchy through which 

students are expected to progress as their notions of mathematical justification develop. 

Balacheff reasoned that students’ understandings of mathematical justification are likely 

to proceed from the inductive toward the deductive and toward greater generality.

Hence, those with increased mathematical maturity are most likely to be the students who 

generate deductive proofs. Balacheff also stressed that students will move back and forth 

between inductive and deductive reasoning depending on the task that they are 

completing. In other words, a student capable of thought experiment in one situation may 

regress to naive empiricism in another. This observation will be verified by instances 

from my study.

Balacheff s framework provides a way to analyze and classify both the various 

processes involved in generating conjectures and producing justifications as well as the 

justifications themselves. A complete assessment of students’ justification skills has to 

take into consideration both products (the justifications produced by students) and 

processes (the ways by which students produce justifications). Thus, in my study I
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selected three students and conduct interviews with each following the task completion 

stage. My goal was to acquire better understanding of the mental processes used in 

solving the mathematical tasks (discussed further in Chapters 7, 8 ,9 ,10 and 11).

2. Healy and Hoyles (2000)

A more recent article published by Healy and Hoyles (2000) details the procedure 

and results of a study that the authors conducted exploring students’ conceptions of proof. 

Healy and Hoyles undertook a massive study examining the mathematical abilities of 

2459 high school students from England and Wales. Although all of these 16 year olds 

had been classified as high achievers (within their schools, all placed within the top 25% 

in student achievement scores), nonetheless they performed poorly in a proof 

construction task (and the few who were successful presented their proofs in everyday, 

explanatory language). Healy and Hoyles observed that those participants who, despite 

being identified as high achievers, found it difficult to produce proofs, commonly took an 

approach based on empirical verification, even though they understood that they could 

not generalize from the results obtained in this manner. When presented with problems 

that challenged their ability to generate empirical examples, these students were unable to 

move on to a different approach in solving the proof. Overall, student responses were 

influenced by curricular factors, their views of proof, and their gender, but mainly by 

their mathematical competence (Healy & Hoyles, 2000).

Studies on Elementary School Students’ Conceptions of Proof

I also draw on a study that Harding (1999) conducted with her elementary school 

students. After completing a “Proof and Justification” module as part of a university 

course, Harding realized that she could introduce logical and deductive reasoning into the
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lower-level mathematics curriculum. Accordingly, she incorporated a number of 

justification activities into classroom instruction, both at the primary and elementary 

levels. She writes that when she “tried out some activities related to proof’ she was 

“amazed” at the level of reasoning that some of her 9- and 10-year old students were 

capable of (p. 12). Her study focuses on the mathematical abilities of Year 5 students 

(ages nine and ten), although her analysis includes references to some of the tasks she 

completed as a student in her University class. I selected, for the purposes of my study, 

one of the tasks that she used with her Year 5 students. It was a number theory task that 

required at least a junior high school level of mathematical competence; hence, I thought 

that my participants should certainly find it accessible. In her analysis, Harding notes that 

the ways in which her students’ grappled with mathematical justification could be 

categorized in the following manner:

1) one group of children established the rules using specific examples, but 

provided no generalization;

2) a second group inferred that the rules were generally true since they did work 

for a variety of examples; and

3) a third group was able to show without endless checking of specific examples 

that the rules were generally true.

While most of the students tackled the task by using examples, one student came up with 

a proof that involved algebraic manipulation. It is interesting to note that similarities exist 

between Harding’s categorization of students’ proofs and Balacheff s (1988) taxonomy 

of proof. Harding’s work illustrates that primary and elementary school students are 

capable of logical reasoning; therefore, primary and elementary teachers must ensure that
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children develop these logical skills by structuring specific and appropriate classroom 

activities for these students.

Studies on Practicing Teachers’ Conceptions of Proof

When Healy and Hoyles (2000) confirmed Senk’s earlier findings (1985,1989) 

that secondary school students rely, for the most part, on what Balacheff identifies as the 

lowest level in a developmental taxonomy of proving skills, mathematics educators began 

to take notice. Soon the focus turned from students to their teachers. In order to help 

students master mathematical proof, a teacher must diagnose the level at which the 

student is currently operating; then, s/he must structure diverse curricular experiences that 

will work to develop higher-level skill within each student. Clearly, this is a challenging 

task and an important responsibility. The question now becomes: Do teachers possess the 

understanding and skills that are essential for this task? Given the limited skills 

demonstrated by secondary-level students, one must examine the particular conceptions 

and beliefs about mathematical proof held by practicing teachers.

In an effort to address this question, Knuth (2002a) conducted a research study 

with 16 in-service teachers, using written response and interview as data collection 

method. Knuth gave the participants two take-home assignments. The first—what Knuth 

referred to as the first round—required teachers to complete three mathematical tasks. In 

the case o f the first task, only 11 of the 16 teacher-participants succeeded in completing a 

valid proof; five teachers constructed invalid proofs. (Knuth considered all empirically 

based proofs to be invalid.) In the second case, only four of the 16 generated a complete 

and valid proof. However, in completing the third task, the majority was able to generate 

a valid proof. The second assignment—the second round—required teachers to prove a
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statement using indirect proof. Knuth reports that only four of 14 teachers who attempted 

this task were able to produce a valid justification. It is interesting to note that Knuth used 

two different frameworks—those proposed by Balacheff (1988) and Harel and Sowder 

(1998)—in analyzing his data. He also observed that these teachers did not recognize 

proof as a means for promoting mathematical understanding.

Knuth discovered that most of his teacher-participants demonstrated a limited 

understanding of proof in terms of its role and function in the classroom and a limited 

facility with the different approaches to proof (1999,2002a, 2002b). As a result of these 

findings, Knuth concluded that such limited proficiency in applying mathematical proof 

would make it challenging for these teachers to implement, with any degree of reasonable 

success, the recommendations for reform. Knuth suggested that the most likely 

explanation for this limited skill with mathematical proof was the nature and limitations 

of the mathematics education received by these teachers when they were students. Many 

researchers now agree that changes in current school practice can best be achieved, not 

by targeting teachers in the field, but by reforming teacher education programs at post

secondary institutions (Cuoco, 2001; Ma, 1999; Stigler & Hiebert, 1999). University 

mathematics educators have examined both the findings of studies such as those 

mentioned above and the recommendations put forth by the NCTM. Consequently, they 

have taken steps to address this concern by changing the mathematics curriculum for 

prospective secondary-level mathematics teachers (Cuoco, 2001). What remains unclear 

at this point is the extent to which these efforts have succeeded.
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Studies on Student Teachers’ Conceptions of Proof

1. Jones (1997)

Among those studies documented within the literature that examine secondary- 

level student teachers and their conceptions of mathematical proof, the work of Jones 

(1997) is directly relevant to my own research. Jones grounded his study in the belief that 

success in teaching depends upon the subject knowledge of the teacher. Secondary-level 

teachers are typically viewed as subject specialists. Course requirements for students 

enrolled in a secondary education program, regardless of the academic discipline 

involved, usually include a number of courses in the subject area itself. These courses 

are mandatory even though they are not, strictly speaking, courses dealing with 

pedagogy. Student teachers who will eventually be teaching challenging concepts at the 

secondary level are expected to have acquired considerable understanding of and 

experience working with these difficult concepts. Within the context of school 

mathematics programs, one such challenging concept is mathematical proof. As Jones 

suggests in this paper, teaching proof at the secondary level requires extensive knowledge 

on the part of the teacher, both subject knowledge and pedagogical knowledge. Noting 

that the limited subject knowledge of both pre-service and in-service mathematics 

teachers is cause for concern, Jones undertook a small-scale investigation of pre-service 

secondary school mathematics teachers within the United Kingdom and the ways in 

which they conceived of mathematical proof and proving. He wanted to know just how 

confident student teachers felt about the prospect of teaching mathematical proof.

Of particular interest to me was the fact that, Jones utilized the concept maps both 

as a research and an evaluation tool. A concept map is an explicit, graphical
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representation of domain material understanding as generated by the learner. The 

mapmaker uses nodes to represent key domain concepts and links to denote the 

relationships between these concepts. Jones invited the group of student teacher 

participants to brainstorm a list of key terms that they associated with the concept of 

mathematical proof. The students produced a list of 24 terms. Jones then asked each 

student teacher to create a concept map that represented his/her understanding of 

mathematical proof. Students were permitted to use any or all of the key terms 

previously brainstormed. Using a blank sheet of paper, participants arranged the terms 

as each saw fit, joining terms in what each perceived as a meaningful way. Then each 

student indicated the relationships among the key terms by drawing lines and/or writing 

descriptive words on the map. Jones analyzed student maps in terms of three criteria: the 

specific terms used, the frequency of terms used, and the nature of the relationship (if 

specified) between any two terms. According to Jones, the higher the student’s Grade 

Point Average (GP A), the more terms the student was likely to use in constructing the 

map. Furthermore, the student teacher with the highest GPA produced the most 

sophisticated map: this student added terms that were not on the original list of 24. Jones 

concludes that the degree of confidence a student teacher experiences, and the likelihood 

of his/her future success in teaching mathematical proof, depends upon the construction 

of sound knowledge at the all-important undergraduate level both in terms of subject area 

and pedagogy.

2. Martin and Harel (1989)

Martin and Harel (1989) also studied prospective elementary teachers’ 

conceptions of mathematical proof. They enlisted the assistance of 101 pre-service
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elementary teachers who were enrolled in a required sophomore-level mathematics 

course at Northern Illinois University. These students had gained considerable 

experience working with mathematical proof, both in the university course that they were 

then taking, and in a prerequisite course, a high school geometry class. During the tenth 

week of the university semester, the researchers assessed the student teachers’ skills in 

dealing with mathematical proof by asking them to judge the verification of a familiar 

and an unfamiliar mathematical generalization.

Martin and Harel found that these future elementary teachers failed to distinguish 

between inductive and deductive reasoning when it came to mathematical proof. Many of 

them accepted as true what the researchers called “false proof’. Martin and Harel define 

false proof as “a fallacious proof of the generalization, including statements purporting to 

justify each step [ .. .]  Although not a deductive argument, it may be incorrectly viewed 

by students as a deductive argument based on its ritualistic aspects” (p. 44). They 

provided the following example of “false proof’: “Let a be any whole number such that 

the sum of its digits is divisible by 3. Assuming its digits are x, y  and z, then a = xyz. 

Since x + y  + z is divisible by 3, also xyz is divisible by 3. Therefore, a is divisible by 3” 

(p. 45). I observed something similar with the participants in my study: secondary-level 

student teachers (who apparently did not know how to produce a valid proof) tried to 

illustrate their proficiency in mathematical proof by including irrelevant algebraic 

expressions or some other ‘ritualistic’ format (for example, a two column format). I 

provide examples of this in Chapters 8, 9,10 and 11.

Significantly, Martin and Harel found that pre-service teachers accepted as true 

both inductive and deductive arguments; both types of proofs, it seems, were equally
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persuasive. Students who were apparently convinced by deductive proof wanted further 

empirical verification. It seems that they were more influenced by the quantity of 

evidence than by the type of reasoning called upon to prove the proof. According to 

Martin and Harel, the everyday experience of forming and then evaluating hypotheses by 

using evidence to support or refute them serves to reinforce inductive reasoning among 

people, particularly among those who lack high-level mathematical skill. Again, I 

observed a similar tendency among the student teachers in my study. Students who at 

first devised some form of deductive argument in response to a task felt the need to 

confirm the result by subsequently conducting further empirical verification.

Summary

Studies indicate that a vast majority of secondary school students, pre-service 

mathematics teachers, and in-service math teachers lack a deep understanding of, and 

proficiency in dealing with, mathematical proof. What all of these groups seem to have 

in common is the experience of learning proof by means of imitation and memorization 

within the narrow context of the geometry lesson. Students would develop greater 

proficiency in mathematical proof if mathematics educators could abandon the perception 

that the teacher and the textbook must be the sole source of truth in the classroom, and 

instead encourage in students a willingness to explore and seek truth by means of 

conjecture and discussion. This will not be an easy shift. In particular, it will require 

tremendous effort on the part of teachers, for it demands nothing less than rejecting long

standing classroom tradition.
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CHAPTER 5. RESEARCH METHODOLOGY 

Why Student Teachers?

Since the teacher’s conception of the subject matter significantly impacts 

instructional practice (Ball, 1990; Fennema & Franke, 1992; Thompson, 1984), a teacher 

who possesses a narrow understanding of a key concept like proof is unlikely to provide 

satisfactory instruction. Indeed, as Knuth (2002a) has shown, most of the participants in 

his study of practicing secondary school teachers possessed limited understanding of 

mathematical proof. This may be why, in part, traditional approaches to teaching 

mathematical proof at the high school level have not been very successful (Senk, 1989). 

Moreover, Knuth (2002a) contends that practicing teachers are not likely to spearhead 

large-scale reform given the strong tradition of compartmentalizing proof within school 

classrooms. In-service training can be intense but brief (often a one or two day workshop 

scheduled at irregular intervals) and, therefore, unlikely to challenge firmly-established 

practices. Thus, expecting practicing teachers with traditional teaching styles and 

methods, limited in-service training, and heavy teaching loads to lead reform efforts in 

mathematics education seems impractical. Professional documents and research articles 

that promote an increased emphasis on mathematical reasoning will be of little benefit if 

teachers are unwilling or unable to comply.

It may be far more productive to focus on future teachers whose experiences with 

traditional approaches have been typically limited to their years as elementary and 

secondary school students. Student teachers, given their recent experience with post

secondary mathematics courses, will have become familiar with a new approach to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

mathematics instruction that places proof front and center. As well, their recent 

mathematics education courses will, no doubt, have prompted considerable discussion 

around issues of current reform. Thus, student teachers who are transitioning into the 

career role of practicing teacher may be less likely to restrict application of mathematical 

proof within the mathematics curriculum and more likely to take on the challenge of 

implementing curricular reform; hence, university teacher preparation programs seem an 

ideal place to determine the results of early efforts at implementing mathematical reform. 

This is one reason why, in my study, I focus on prospective teachers who are at the end of 

their teacher education program.

Proposed Study

Numerous studies related to mathematical proof, undertaken with participants at 

different levels of schooling and from quite different perspectives, have been reported in 

the literature. Studies extend from the university-level perspective of students and 

teachers (Raman, 2003; Housman & Porter, 2003) to the secondary-level point of view of 

students and teachers (Balacheff, 1988; Healy and Hoyles, 2000; Knuth, 2002a, 2002b) to 

the perspective of prospective elementary-level student teachers (Martin & Harel, 1989). 

With the exception of Jones (1997) and Cyr (2005), little work has been done on 

secondary-level student teachers’ conceptions of proof. I aim to contribute to reducing 

this gap in the literature: the purpose of this study is to report on the conceptions of 

mathematical proof held by student teachers who will soon be teaching mathematics at 

junior high school or high school level. I take a case-study approach in this research, 

using written response and interviews as methods for data collection. The study itself
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involves two-phases: Phase 1: Participants’ responses to Written Tasks, word-based, 

mathematical, and representational; and Phase 2: Interview of selected students.

Why Case Study?

A case study involves the “exploration of a ‘bounded system’ or a case (or 

multiple cases) over time through detailed in-depth data collection involving multiple 

sources of information rich in context” (Creswell, 1998, p. 61). Yin (1984) identifies five 

components within a case study research design: (1) research question; (2) its 

propositions, if any; (3) its unit of analysis; (4) the logic linking the data to the 

propositions; and (5) the criteria for interpreting findings. The fourth and fifth 

components, namely the “Logic linking the data to the propositions” and “Criteria for 

interpreting findings”, represent the data analysis steps of this research design. A case can 

consist of an event, a process, a program or a group of people. A case-study strategy is 

useful in my situation because my study entails “an examination of [a] contemporary 

event” (Yin, 1984, p. 14) and involves the exploration of a particular system bounded by 

time and geography.

Advantages of Case Study

A case study approach offers many advantages. Cohen and Manion (1995) list the 

following:

1) Case studies are drawn from people’s experiences and practices and so represent 

what is perceived to be strong reality.

2) Case studies allow for generalizations from a specific instance to a more general 

issue.
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3) Case studies allow the researcher to show the complexity of social life. Good case 

studies built on this can explore alternative meanings and explorations.

4) Case studies can provide a data source from which further analysis can be linked 

to action.

5) The data collected by means of a case study are close to people’s experiences and 

typically more persuasive and accessible.

Furthermore, a case-study approach offers the unique strength of being able to deal with a 

variety of evidence including such items as documents, artifacts, and interviews (Yin, 

1984; Creswell, 1998). It is also ideally suited to the needs and resources o f a small-scale 

researcher (Blaxter, Hughes & Tight, 2001). Finally, case study is often the best approach 

when one poses a “how or “why” question about a contemporary set of events over 

which the researcher has little or no control (Yin, 1984). Since one aspect of my study 

involves a how question—how able are student teachers when it comes to completing 

mathematical proof—a case study approach seems appropriate.

Research Question

The fundamental question that drives this study is “ What understandings do 

student teachers possess concerning the notion o f mathematical proof? ” Two primary 

research questions focus and guide this examination:

1) What do student teachers believe about the nature and role of proof?

2) How able are student teachers when it comes to completing mathematical 

proofs?

Early on, I determined that in order to reach my target subjects at an appropriate 

time in their education program, I would need to seek permission of the instructor of the
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final professional term to enter into this person’s classroom in order to collect data 

collection. The professional term, as it is called at this university, offers methodology 

courses in a student’s teaching major over an intensive full-day, six-week period. I went 

into the classroom on two occasions towards the end of this six-week period. On my first 

visit, I explained to the student teachers both the nature of my study and my reasons for 

conducting the research. I stressed that there is no obligation on their part to participate in 

this study and they could withdraw at any time. I also outlined the nature of the tasks that 

I would be asking them to complete. One week later, I made a second visit. At that point, 

I gave the consent form first and asked them to fill in the form if  they were willing to 

participate in the study. After that I administered a questionnaire involving written 

responses: three word-based; four mathematical; and one representational (concept map), 

provided students with adequate time to complete the tasks. The student teachers used 

their time effectively and made a sincere effort to complete questionnaire. All of the 

student teachers who were present that day participated in my study.

Data Collection: Questionnaire

I developed a questionnaire that would enable me to collect data to answer my 

central research question, “ What understandings do student teachers possess 

concerning the notion o f mathematical proof? My aim was to assess both student 

teachers’ conceptions of proof and their ability to prove mathematical tasks. Hence, the 

Questionnaire (Appendix I) consists of two parts. Section A is designed to provide 

answers to the question “What do student teachers believe about the nature and role of 

proof?” Section B of the Questionnaire is designed to yield data that addresses the 

question, “How able are student teachers when it comes to completing mathematical
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proof?” I administered this questionnaire to my 17 student teacher participants at a point 

in time when most of them were completing the final semester in their teacher education 

program; in two weeks, they would be off to begin their long practicum in the field. As 

intended, the data collected did provide information about student teachers’ conceptions 

of, and their proficiency with, mathematical proofs.

I posed three questions in Section A:

a. Describe what the notion of proof means to you.

b. In your opinion, what is the best way to develop students’ abilities when it 

comes to writing to proof?

c. In your opinion, after all, is it important for high school students to learn 

how to write proof? Why?

In Section B, I asked students to complete five different tasks. Of these, four were 

mathematical (proving tasks) and the fifth representational (students were to generate a 

concept map that represented their understanding of mathematical proof). I identify the 

mathematical tasks below:

1) Prove that when you multiply any 3 consecutive numbers, your answer is

always a multiple of 6.

(Taken from Healy and Hoyles [2000])

2) Provide a means of calculating the number of diagonals of a polygon when you

know how many vertices it has.

(Taken from Balacheff [1988])

3) Prove that the sum of the exterior angles of a polygon is 360°.
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(Selected from memory; one of the unit-test tasks that I gave my Form 5 students

[Grade 11])

4) How do you know whether there exists a two-digit number ab such that the

difference between ab and ba is a prime number?

(Taken from Harding [1999])

Rather than generating all of the tasks myself, I decided to incorporate three tasks 

from past research studies. Since highly skilled researchers had approved these tasks for 

purposes that were similar to my own, I felt confident that these tasks would be 

appropriate and effective choices for my study. I wanted to ensure that my data would 

provide representative and relevant measures of what I intended to assess. Moreover, 

since these tasks had been tested with other subject groups, results would be more 

reliable and any comparison between the studies more valuable. I selected both number 

theory and geometrical tasks drawing upon secondary school content. I reasoned that 

student teachers, having now moved well beyond the secondary level in mathematics, 

should have little difficulty completing these tasks, particularly since they were now 

nearing the completion of their teacher education program. What I was hoping to see was 

different categories of proof- specifically whether they will use any particular format in 

their proofs or not. If they use any particular format and will that be consistent across the 

tasks.

In addition, I selected the concept map task to study the student teachers’ depth of 

knowledge in the area of mathematical proof because a concept map can provide a 

graphic and compelling representation of knowledge. I provided each of my participants 

with a list of the 24 terms generated by the student teachers involved in Jones’ (1997)
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study, then asked each to create a concept map that represented his or her personal 

understanding of mathematical proof. Students could use any or all of the terms on the 

list and/or other terms that seemed appropriate. I reproduce the list below.

Using this method, Jones (1997) successfully identified those student teachers possessing 

deeper understandings of mathematical proof. As noted in Chapter 4, Jones correlated 

student GPAs with the level of sophistication that was evident in the maps. Since I did 

not have access to GPA information, I was unable to establish that correlation in my 

study. It is interesting to note that, in general, my participants generated concept maps 

that were less sophisticated than those created by Jones’ subjects 

Data Collection: Interviews

My aim for this second phase in the research design was to gain more insight into 

the participants understanding of proof. Following the completion of Sections A and B of 

the Questionnaire, students left campus for their teaching practicum. They were engaged 

in the field for almost two months. Hence, I found it difficult to contact participants and, 

consequently, to schedule interviews within a week or two of the completion of the first 

phase of the study. Thus, approximately two months passed between the initial task work 

and the interviews intended to discuss the task work. During this period, I extended an

Euclidean
Logic
Trail and Improvement
Graphical
Axioms
Syllogism
Definitive
Lemma
Explanation
Examples
Precision
Reasoning

Observation 
General Case 
Theorem
Assumptions
Irrefutable
Deduction
Postulate
By contradiction
Hypothesis
Implies
Proposition
Abstraction
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invitation by e-mail to all student participants. Although I had hoped to interview all of 

those students whose responses warranted further exploration and explanation, only three 

students in total responded, even after repeated requests via email. I called the three 

respondents and conducted a semi-structured interview with each. The following 

questions were typical of those posed: What does the notion of proof mean to you? How 

would you introduce proof to students? Is proof necessary in school mathematics? Why?

I included these questions in an effort to prompt students to elaborate upon their written 

responses in Section A. Questions varied somewhat from participant to participant. 

Analysis

I then analyzed all of the data: written responses to Section A of the 

questionnaire; mathematical responses to the proof tasks in Section B; graphical 

responses to the representation task (that is, the concept maps) in Section B; and verbal 

responses to the interview questions. A detailed account of the data analysis for Section 

A and the Interviews follows in Chapter 6. A detailed account of the data analysis for 

Section B of the Questionnaire follows in Chapters 7, 8 ,9 ,10,11, and 12. Before I 

started analyzing student data, pseudonyms were assigned to students. However, I 

preserved sex and the ethnicity of the students in accordance with research protocol. 

Assumptions

The student teachers that I worked with had completed at least 12 advanced-level 

mathematics courses. Hence, I assumed that each had acquired a broad base of 

mathematical knowledge and an in-depth understanding of mathematical proof that 

would enable him or her to complete high school level mathematical tasks without much 

difficulty. Notably, these student teachers received their education—both in secondary
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school and at university—at a time when reform efforts in mathematics education were a 

curricular issue and an instructional concern. Since participants were in the final stage of 

their teacher education programs, it was reasonable to assume that they had developed a 

fair understanding of the school mathematics curriculum via their classroom lectures, 

assignments, and discussions with peers, professors and guest speakers. Given all of these 

circumstances, I assumed that it would be appropriate to administer high school level 

tasks drawn from two mathematical areas, geometry and number theory. I expected to 

see each of the student teachers demonstrate his/her knowledge in these different areas of 

mathematics and apply that knowledge to solving the tasks. I believed that the manner in 

which each participant approached the proof tasks would also suggest his/her level of 

confidence in dealing with mathematical proof. I assumed that all of the student teachers 

would have a knowledge base enabling them to complete successfully all four of the 

secondary-level proof tasks. I chose not to include mathematical tasks aligned with 

postsecondary level work because I did not want to cause the participants additional 

difficulties such as a concern with “not getting correct answers”. Moreover, knowing 

that they would be facing secondary school students in two weeks time, I wanted to keep 

them focused on the high school mathematics curriculum and its expectations. 

Limitations of the Study

In this study, I intended to look at, first, my participants’ belief systems by asking 

what they thought about proofs, second, their proof making skills by examining the 

product they produced, and third, their specific approaches to solving the proof tasks by 

discussing the strategies that they used. All of this, I hoped, would help me to discover 

the extent to which the student teachers understood the nature, role, and function of
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mathematical proof in the classroom. I achieved my aims to a large degree; however, in 

the end, I was unable to adequately uncover the student teachers’ thinking processes due, 

in part, to the factors identified below.

1. Scheduling

Scheduling proved to be a major challenge in this study. In order to access a 

suitable group of student teacher participants at an appropriate time (given my aims for 

the study), I decided that the most effective course of action would be to obtain 

permission from the professional term instructor to enter into the students’ classroom and 

use some of that instructional time. The instructor explained that s/he would be able to 

give me some time but only near the end of the term. I realized that this timing might 

have a negative impact upon the interview process, but I understood the concerns and 

needs of the primary instructor and so made the best of the situation

Following the completion of Sections A and B of the Questionnaire, students left 

campus for their teaching practicum. They were engaged in the field for almost two 

months. Hence, I found it difficult to contact participants and, consequently, to schedule 

interviews within a week or two of the first phase of the study. Thus, approximately two 

months passed between the initial task work and the interviews that focused on the task 

work. During this period, I extended an invitation by e-mail to all student participants. 

Although I had hoped to interview all of those students whose responses warranted 

further exploration and explanation, only three students in total responded, even after 

repeated requests via e-mail. All three students mentioned that they had forgotten what 

they had written. They also admitted that they had forgotten the thought processes that 

had prompted them to complete the mathematical tasks in the manner that they had.
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Hence, during the interview they could not talk much about what made them prove the 

tasks the way that they did. (However, immediately following completion of the tasks 

themselves, I made a point to note the verbal comments that students exchanged while 

informally discussing their work. I include this data in Chapters 6, Results and Analysis 

of Data: Written and Interview Responses).

2. Data Collection

I failed to collect information about the specific number of mathematics courses 

taken by each student. This would have been relevant and useful data. Although I did not 

record each student’s previous course history in mathematics, I did notice that one 

participant, calling himself a “mathematics geek” and claiming more experience with 

mathematics courses than any other member of the research group, also produced the 

most complex concept map. However, because I did not collect past course data 

including GPA results, I cannot establish a correlation, as does Jones (1997), between the 

number of mathematics courses taken/GP A and the level of sophistication evident in the 

construction of the map.

As concerns the interview data, my final collection was insufficient in quantity, 

limited in depth, and restricted to male perspectives. All three of the students that 

responded to my request for an interview were male. I realized that this could be 

problematic: I did, in fact, intend to collect perspectives from both males and females. 

However, scheduling difficulties impacted my data collection and this was not to be the 

case. In the end, I felt that given the circumstances I would need to consider the interview 

data as supplementary, and not primary, data.
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3. Concept Maps

One of the limitations in this study is that I did not review or remind the group 

what a “concept map” was. In fact, I deemed this unnecessary because these students had 

already received instruction about concept maps and had applied their learning within, at 

least one compulsory educational psychology course.

4. Student Interaction

Balacheff (1988) facilitated interaction between the partners by providing only 

one pen for each pair. Students were allowed to work on the problem until they arrived at 

a solution; but both students had to agree that their answer did, in fact, provide a solution 

to the problem. My aims, however, were diagnostic rather than instructional. I isolated 

the student teachers, reasoning that at this stage in their teacher education program they 

should be able to demonstrate basic proficiency with mathematical proof. Constructing 

understanding by means of interaction was not the focus; demonstrating current 

understanding was. The fact that I deviated from Balacheff s research design in this 

respect may be regarded as problematic, particularly because I analyze the data collected 

in the study against that collected by Balacheff in his study.

Summary

By and large, despite the difficulties I experienced with the interview process, I 

collected sufficient data to take a diagnostic look at student teachers’ abilities to construct 

mathematical proof. My research design appropriately utilized a case study format and 

my data collection methods were diverse in their focus upon word-based written 

responses, mathematical tasks, a representational—concept map—task, and semi

structured interviews. The 17 student teachers involved in this case study cooperated well
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on sections A and B of the Questionnaire. Although the two-month interval between task 

work and interview resulted in less useful interview data than I had anticipated, I 

nevertheless, collected enough data of interest during the three interviews to supplement 

the students’ written responses. My assumptions concerning the student teachers’ 

knowledge and ability in proving and in mathematics in general were reasonable. Even 

so, as subsequent chapters detailing my analysis will show, these student teachers, for the 

most part, failed to demonstrate the degree of knowledge and skill that one would expect 

of mathematics majors nearing the completion of a teacher education program.
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CHAPTER 6. RESULTS AND ANALYSIS OF DATA: WRITTEN AND
INTERVIEW RESPONSES

Questionnaire

1. Student Teachers’ Conceptions about the Meaning of Proof

This chapter reports and discusses the results of the study with respect to student 

teachers’ beliefs about mathematical proof. The first part of my analysis draws primarily 

upon the written responses to questions posed in Section A of the Questionnaire. Once 

again, the questions were as follows:

a. Describe what the notion of proof means to you.

b. In your opinion, what is the best way to develop student’s abilities when it 

comes to writing mathematical proofs?

c. In your opinion, after all, is it important that students in high school learn 

how to write proof? Why?

I categorized my findings into three key areas: (1) meanings/definitions of proof; (2) 

ideas concerning how one should go about teaching proof; and (3) ideas concerning the 

value of teaching proof at the high school level.

As one delves into the literature it becomes immediately apparent that educators 

of mathematics cannot settle upon one clear meaning of proof; indeed, Reid (2002) 

claims that mathematical proof cannot be defined because it will inevitably mean 

different things to different people given different contexts of use. My data supports this 

claim. The meanings assigned to “proof and proving” depend upon specific and varied 

experiences and perceived uses. As Reid notes, a definition can be based on the concept 

of proof, the purpose of teaching proof, the kinds of reasoning involved, or the needs that
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the process of proving is seen to address. The participants in my study considered 

meaning in terms of how proof seems to function within a mathematics classroom. 

(Notably, Knuth’s [2002a] research group also defined proof in terms of its function.) 

Hence, the student teachers’ definitions are broadly similar, differing only in specific 

details. The table below provides a break down of how students defined proof.

Table 6.1. Student teachers’ meanings of proof.

# Categories # of student teachers
1 Proof as Verification 9
2 Proof as Derivation 2
3 Proof as Logical Argument 2
4 Proof as Justification 2
5 Proof as Discovery 1
6 Proof as Explanation 1

1) Proof as Verification

As noted in Chapter 3, from the time of the ancient Greeks, the fundamental role 

of proof has been to verify mathematical results. The findings noted in Table 6.1. indicate 

that the student teachers in this study understand proof primarily in terms of this function. 

Of 17 student teachers, nine—approximately half—defined proof as the verification of a 

statement or an algorithm. For these students, the main role of proof in mathematics is to 

demonstrate the correctness of a result or truth of a statement. Some of these responses 

are noted below.

“Proof means that you have shown the relationship you are exploring is true, no (George)
matter what.”

“Verifying that an algorithm or mathematical statement is correct.” (Clare)

“A proof is showing that the concept is true for all cases.” (Chandelle)
(emphasis in the original)
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I am not surprised that more than half of these student teachers understand proof as 

something used for verification; this is, after all, its most commonly used meaning. Reid 

(1995) terms verification the ‘traditional’ concept of proof precisely because proof as 

verification goes back so far in time both in general use and in the research literature. 

That this perception of proof is so prevalent among the student teachers of my study, I 

contend, reflects “traditional” mathematics experiences at both the high school and 

college/ university levels.

2) Proof as Derivation

Only two student teachers explicitly used the terms “derivation ” and “derive ” in 

their definitions of proof.

“detailed (though not necessary) derivation.” (Tahira)

“a proof is a system of equations/relationships that are used to derive another (Brandon)
equation /relationship from a previous understanding.”

Likely, these two participants had in mind the derivation of the quadratic equation that 

they had experienced in their mathematics classroom (Knuth [2002a] suggests this 

possibility with his own participants). They might have used the term to show that proof 

is something that demands abstraction, formal vocabulary, and symbols, and that it is 

founded on a set of formal axioms that satisfy the requirements of a professional 

mathematician (Hersh, 1993; Marrades & Gutierrez, 2000). I infer from this that they had 

“rigorous proof’ in mind.

3) Proof as Logical Argument

For research mathematicians, a proof of a statement is synonymous with the 

logical reasoning that makes the statement true. One needs only a series of logical
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arguments for a proof to function in this manner. The responses below demonstrate an 

understanding of proof as logical argument:

“A proof is a solution to why a theorem is true.” (Deanna)

“A statement, based on logic, that indisputably ‘proves’ a theorem to be true or (Philip)
un-true, so long as there is no fault in underlying logic or assumption.”

4) Proof as Justification

When one considers proof, what comes to mind immediately is its role in ensuring 

the truth of some fact. Proof demonstrates to us the truth of intuitively correct facts 

(Lucast, 2003). The following responses suggest an understanding of proof as 

justification:

“A mathematical justification of a statement using previously proven facts.” (Sara)

“The mathematical process that justifies a formula or fact.” (Grace)

Most students find examples more convincing than rigorous proofs (Coe and Ruthven, 

1994); therefore, it seems that, for students, examples would provide justification more 

effectively than would proof. Formal proof, then, does not effectively justify or convince 

students. Besides, students are often confused about what it means to justify. As Rodd 

(2000) notes Justification is often used in a non-technical way to mean “a rationale for a 

belief’. Therefore, considering proof in terms of justification alone seriously limits one’s 

use of proof within the classroom

5) Proof as Discovery

Proof plays an important role in the discovery or creation of new mathematics 

(Knuth, 2002a). Indeed, one may argue that the “discovery function” of proof is 

especially important in the mathematics classrooms. The NCTM (2000), for example, 

stresses the importance of using discovery to learn mathematics. Interestingly, according
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to Chazan and Yerushalmy (1998), proof plays a greater role as discovery in secondary 

classrooms where students are able to utilize geometry software. The research data, 

unfortunately, suggest that student teachers do not commonly understand proof in terms 

of discovery. Only one of 17 student teachers recognized that proof could also be used for 

this purpose:

“Discover of a concept, formula, identity, theory.” (Gita)

6) Proofs as Explanation

In school mathematics, the main purpose behind introducing proof to students, 

most would agree, must be to enhance understanding. Hence, the explanatory value of 

proof is of great importance in the school context (Leddy, 2001; Hanna, 1990). Yet, only 

one student alluded to this function. The participant, Spencer, writes that . .  You can 

do a proof for a law, algorithm or a relationship [ . . .  ] It is meant to be an explanation of 

why this law, algorithm or relationship is the way it is.” I find it extraordinary that only 

one student teacher out of 17 considered this meaning of proof. I am prompted to ask, 

“Does this reflect reality within school classrooms?” and “What emphasis do classroom 

teachers place on explanatory proofs?” Based on the responses of my participants, I 

would suggest very little.

7) General Comments

Since the student teachers generated definitions that were based on their 

experiences and practice, and because the majority of those definitions involved 

verification, derivation, logical argument or justification, my data would seem to confirm 

that even after introducing reform in mathematics teacher education courses, these 

student teachers continue to understand proof largely in terms of verification and not so 

much as a tool for teaching and learning mathematics (see Table 6.1). Just as Knuth
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(2002a) found with his practicing teachers, none of my student teacher participants saw 

proof as a means to promote understanding. As Knuth (2002a, 2002b) notes, students are 

rarely able to identify the main objectives or functions of mathematical proof, likely 

because they are only exposed to proof within the realm of geometry as the verification 

of an already known result. My study validates this finding.

2. Student Teachers’ Conceptions About the Best Way to Develop Students’ 
Ability to Write Proof

Table 6.2. Student teachers’ suggestions about the way to write up a proof.

# Categories # of student teachers
1 Step by Step Procedure 

(or teacher-assisted examples)
13

2 Constructivist 3
3 Social Process 1

A considerable majority of the students thought it best to teach proof by mean of 

teacher-assisted examples and step-by-step procedures. I quote some of the responses 

below:

“Practice, show examples of proofs, give steps for determining what direction to take 
the proof in.”

“Assisted stage by stage implementation and simple individual proofs.”

“Give a few examples of a proof and explain. Give them the structure of a proof. Then 
give them a very simple proof they can do on their own so they can get the feel of them.
“Going through numerous examples in class.”

“The best way to develop students’ ability to write proof is to start with easy proofs that 
they understand.”

“First develop a good understanding of what constitutes a proof. Second -  understand 
some common strategies like: Third -  practice deductive reasoning. Fourth -  practice 
proving identities using axioms.”

“Exposure to some basic proofs; Description of step by step process of proofs. (Brandon)
Practice, Practice, Practice.”

(Grace)

(Cathy)

(John)

(Daniel)

(Brian)
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“Have them practice with simple versions then work their way to more complicated (Sara)
questions.”

“Practice. Teach them how to reason.” (Gita)

“To introduce the idea early using simple examples. Challenge students to ask how they (Philip) 
know something is true, rather than always just assuming it is. Ask students to proceed 
from one step in the logic to the next”

The only method for learning proof suggested in all of these responses is “more practice.”

In traditional mathematics classrooms, teachers, and, therefore, students, consider

mathematics synonymous with the memorization of procedures and mechanistic answer

finding. Students who have experienced math in this manner often believe that one can

only master the subject by treating it as a body of isolated concepts and procedures that

have to be committed to memory.

Yet, as student teachers reflected on possible teaching methods for introducing

mathematical proof, their responses suggested that, on some level, they sensed something

lacking in this age-old approach. Even though they were unsure about how “to do it

better”, I found it encouraging that they were questioning the value of what was familiar.

This is reflected in Deanna’s suggestion that

“Students should be exposed to different ways that theorems can be proved, so they realize there 
is more than one way to write a proof. In this sense students will not be anxious or nervous when 
they need to prove something.”

(Deanna)

Some of the students were familiar with the word “Constructivism” and the

phrase “Constructivist approach,” though they were often quite vague in their use of these

terms. A few of them, such as Gita, were not sure what “constructivist” teaching entailed:

“Using constructivism, guiding them to discover idea [sic].” While Clare’s idea of a constructivist

approach is a

Step by step procedure
(1) Write what you know
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(2) What are you trying to show
(3) What do you know that can help simplify or make the statement easier and so on.

Not only did she specifically use the phrase “constructivist approach” in her written

response, but she also explained constructivism in terms of step-by-step procedures.

In general, teachers teach mathematics to the individual within the group; most 

students learn mathematics by watching and listening to the teacher, reflecting upon the 

ideas and engaging in plenty of practice. Not surprisingly then, few of the participants 

viewed mathematical understanding as something that develops out of the collective 

energy of groups of individuals. Only one participant, Sara, understood proof as arising 

from, or as a product of, social inter-action: “I think the best way to get students to come 

up with a proof [is] as a group”. Sara’s perspective has something in common with the 

complexivist view. Complexivists suggest that learning takes place, not within the 

individual mind, but within “an ongoing structural dance—a complex choreography—of 

events which, even in retrospect, cannot be fully disentangled and understood, let alone 

reproduced” (emphasis in the original; Davis, et al., 1996, p. 153). By framing the 

classroom as a “complex, emergent system, as an individual collective learner rather than 

as a collection of individual learners” (Davis & Upitis, 2004, p. 126), teachers are able to 

observe the “thinking” of the collective,. . .  [that is,] the interactions and prompts that 

trigger new possibilites and insights for the collective” (Davis & Simmt, 2003, p. 144). 

However, given that only one of 17 students stressed co-construction of knowledge, I 

infer that few of them have experienced cooperative and/or discovery-based mathematics 

instruction in their secondary classrooms. Although social acceptability is an important 

aspect of mathematical proof—as Manin (1977) writes, “a proof becomes a proof after 

the social act of accepting it as a proof’ (as cited by Knuth, 2002b, p. 64)—co-creation of
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proof through social problem solving seems not to be something that these student 

teachers have deeply considered.

3. Student Teachers’ Conceptions About the Importance of Learning Proof

Student responses indicate three lines of thought concerning this point. In

response to the question, “Is it important to learn proof in high school?” a few students

responded with an emphatic “No.” A second group of students, also low in number, said

that proof should be taught in every mathematics class and then elaborated by offering

reasons for their belief. A third group of students believed that proof should be part of

the curriculum; however, they also expressed reservations about making it a dominant

element. Most of those in this third group also mentioned that mathematical proof should

only be introduced to select groups of students, including those who plan to study

advanced mathematics. As Hanna (2000) notes, the idea that proof should be reserved for

a “certain group of students” is highly problematic. This attitude implies that it is possible

to learn mathematics, without ever needing to prove a theorem. Hanna writes that:

the basis for this idea seems to be the erroneous assumption that proof is, in fact, a 
specialized branch of mathematics, even an arcane branch so complicated that it is 
best avoided by all who do not absolutely require it. [...] Reserving proof for 
those planning post secondary studies cannot but send the message to the bulk of 
the students that for them there is really no point in proof at all.

in High School

(p. 25)

I list below some of the responses that reflect this belief:

“... formal proofs are very complicated and mostly confusing and frustrating to (George)
high school students.”

‘in geometry proof is a must, but trigonometric proof[s] are above most students. (Sara)

‘Not formal proofs, but proofs that explain.’ (Spencer)

‘Only students going to university should be taught proof.’ (Daniel)

‘It should only be used in pure stream.' (Gita)
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“No unless they are planning to take advanced mathematical courses.” (Beth)

“ Introduce proof -  let them not be asked to write. High school topics are difficult (John)
even without proof.”
“No -  it is far too complex.” (Tahira)

“It is important for verification purpose. They [students] should not necessarily be (Chandelle)
[with able to come up proof] on their own.”

Overall, these students consider “mathematical proof’ a waste of time at the secondary 

level. Most participants regard proof as something written in two columns by the teacher 

on a black/white board for students to copy and memorize for an exam. They also believe 

that adolescents are unlikely to use mathematical proof outside of a classroom. As 

Terrance stated: “No—because after high school the large [emphasis in the original] 

majority will never use the knowledge of the proof ever again”.

Of particular interest are the responses of those student teachers that want to 

retain proof as a part of the high school curriculum. What is especially intriguing is their 

ambiguity. They do not wholeheartedly endorse the teaching of proofs at the high school 

level, but they argue that inclusion will improve fluency in problem solving, and for this 

reason, as Spencer stated, “proofs should be retained.” They are also aware of the fact 

that, in post-secondary education, mathematical proof is a must, and low-level skill in 

completing mathematical proofs will be costly for students, especially if  their major is in 

mathematics or related subject areas. George mentioned that “[i]t is important to teach 

our students to be able to logically discern information much like proof’; Clare said 

students should be introduced to“[v]ery basic proof such as trigonometric proofs . . .  

otherwise no”; and Sara thought that trigonometric proofs “are above most students.” By 

trigonometric proofs, Clare might have meant trigonometric identities. She continues: “I 

feel students should be able to reassure themselves that what they are doing will lead to a
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correct result. . .  I think proofs allow practice with problem solving, except only with the 

basic proof.” Additional responses are listed below:

“Yes students should be able to write proofs so that it will aid in developing (Deanna)
their understanding.”

“It [proof] helps not to memorize a theory or concept.” (Gita)

“proofs should be taught as it increases confidence in mathematics.” (Gita)

“students going to university should be taught proof.” (Daniel)

“Important as it develops helps in deductive reasoning skills which can be (Daniel)
applied to every day logic problems gives insight to how an algorithm
was developed”

“Yes- because students should not look at some pattern and believe the (Philip)
pattern is universal.”

“Yess [s/c], helps understanding prepares them for post secondary school. Helps (Grace)
in deeper thinking. Helps to make connection.”

Finally, some student teachers suggested that proof should be taught in high 

school because, once it has been learned in geometry, the method could be transferred to 

other contexts. Reid (2005) disagrees with this idea, arguing that the criterion of 

acceptability of explanation that defines mathematics as a domain of explanation cannot 

be transferred to other domains. He suggests that the motivation for teaching/learning 

proof must be a better understanding of the nature of mathematics itself, not better 

reasoning in other domains.

The responses o f the student teachers in this study substantiate Knuth’s (2002a) 

observation that the teaching of proof is restricted to certain areas and topics in the 

secondary school curriculum. In the secondary school curriculum, proof is most 

commonly relegated to the role of verification. Since proofs are, therefore, largely about 

verifying an already known mathematical result, students find proof of little use in school 

mathematics. Responses provided by the participants in this study suggest that these
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prospective teachers are unsure about what would constitute an effective strategy for 

learning and/or teaching mathematical proofs. One of the complications associated with 

teaching proof is the difficulty of communicating an effective strategy for proving 

(Hadas, Hershkowitz & Schwarz, 2000). Yet, it is important to assist student teachers in 

learning how to make proof accessible to high school students. Knuth (2002c) notes that 

teachers should experience proof as a learning tool so that they can then use proof as an 

effective teaching tool. University educators who take this into consideration will make 

mathematics more meaningful for both teacher and student.

Interviews: Clarification and Elaboration

I made phone calls to the three students who agreed to meet with me, scheduled 

appropriate times, and conducted semi-structured interviews with each. I structured the 

interview around the following questions: What is proof? Is proof essential in schools? 

What experiences did you have with proof as a secondary student and as a classroom 

teacher-in-training? Phrasing of the questions varied somewhat from interview to 

interview. Some variations on the three guiding questions that I constructed include the 

following: What does the notion of proof mean to you? How would you introduce proof 

to students? Is proof necessary in school mathematics? Why? I posed these questions in 

an effort to prompt students to elaborate upon the written responses that they had 

provided in Section A.

In the sections below, I provide an analysis of each of the three interviews. I 

decided to paraphrase rather than to transcribe the conversations verbatim to assist in 

readability and to highlight the points relevant to the study. A paraphrase approach 

allowed me to cut the unnecessary parts of the conversation and to focus on critical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

information. However, in paraphrasing I also quote brief words and phrases just as they 

were spoken.

1. George

George believes that one can consider anything used to “prove” as a proof (even a 

picture, he says, can be considered a proof in this “general sense”); but in mathematics 

(no matter what level), mathematical proof should be something that is “systematically 

laid on”. His comment suggests that he is separating the general proof (proof term that is 

commonly used) from the mathematical proof. He states that the best way to write a proof 

is to use a systematic approach: that is, a step-by-step approach in which one begins with 

an already proven theorem or an accepted statement or axiom, uses this as the basis for 

step one, and then bases each subsequent step upon the one that preceded it. If one does 

this, George reasons, it will difficult to find fault in the work. He considers proof by 

induction to be the best method of writing proof since it is well displayed through its 

systemization. He recognizes that there is no one single way to write proofs. He also 

believes that once proven, a proof is proved forever: results will never change. Such an 

attitude reflects what Ernest (1998) calls an absolutist philosophy of mathematics: the 

view that mathematics is a body of absolute, certain and infallible truths. Non-absolutists, 

according to Ernest, regard mathematics as a “corrigible, fallible, and changing social 

product” (p. 2).

George believes that proof has little importance in high school. He reasons that 

most students struggle with basic arithmetic, so why introduce proof and make them even 

more likely to develop low-self esteem when it comes to mathematics. He believes that 

the role of proof within school mathematics programs should be to teach students that
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mathematics is not mysterious, that proof is simply the medium through which students 

learn that results can be proved, that there are steps involved in arriving at a result.

George thinks that most students find proof a difficult topic because they receive little 

exposure to it. Furthermore, George suggests that both secondary and junior high 

mathematics curricula convey the idea that proofs are of little importance to the student. 

As a secondary student, he had little experience with proofs. His math teachers presented 

proof as a special topic within the Grade 10 and 11 Math curricula. They taught him only 

one proof format, the two-column approach.

George regards the ability to leam and understand proof as a “sign of excellence” 

in mathematics. From the perspective of a prospective teacher, George strongly 

recommends that proof be reserved for the “smarter ones” in the class. Students who 

demonstrate excellence will likely be the ones who become the mathematicians in 

society. Therefore, teachers should only introduce proof to those who excel in math and 

who plan to take advanced mathematics courses at university. None of his preliminary 

teaching experiences in various classrooms have involved teaching proof.

Finally, when I asked George what could be done to improve the teaching and 

learning of mathematical proof within the school system, he suggested that more 

mathematics courses directly related to the curricular content that he and his colleagues 

will be teaching in the schools should be incorporated into the teacher education program. 

He believes that mathematics is not given its due role in mathematics education courses: 

“all they talk about is how to teach mathematics and that too in a very limited time of five 

weeks”. The professional term, as it is called at this university, offers methodology 

courses in a student’s teaching major over an intensive six-week period. It is to this that
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George refers. It is interesting to note that Wu (1997) made a similar observation about 

teacher preparation programs in the U.S.. Quoting from A Nation at Risk, Wu notes that, 

“The teacher preparation curriculum is weighted heavily with courses in ‘education 

methods’ at the expense of courses in subjects to be taught.” (p. 1). Although the student 

teacher participants in my study were required to take twelve 3-credit courses in 

mathematics, these were advanced classes dealing with content that limited direct 

relevance to the secondary mathematics curriculum. Perhaps what student teachers 

would most appreciate are courses offering an extensive and expansive application of the 

very concepts that they will be expected to teach in the near future.

2. Spencer

Spencer fails to see how proof is relevant to students studying high school 

mathematics. He argues that students tend to dislike mathematics precisely because of 

“complications like proof’. As a high school student, he experienced proof in geometry 

class, most likely grade 11 (though he can not recall with certainty), and only within one 

unit. Spencer believes that proofs are important only to those who specialize in math at 

university. Thus, he concludes that proof should not be emphasized at the secondary 

level.

Spencer claimed that proofs must follow a format in order to be valid, though he 

could not explain what he meant by the term ‘format’. However, he was certain that 

simple pictures and examples could not serve as proofs. Like George, Spencer admitted 

that, in the two-month interim between completing the task and discussing his work, he 

had forgotten much about the tasks and the questionnaire; consequently, he could not say
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a great deal about how he had approached the task, nor explain why he had taken that 

approach.

3. Brian

Brian was excited about my research, and quite happy that he would be 

participating in the study. He was interested in the possibility of an article and its future 

publication, and keen to read about his contribution to the research within its pages. As 

with both George and Spencer, Brian had no recollection of what he had written in 

response to the questions, nor how he had approached the mathematical tasks. I handed 

him the questionnaire document and he briefly skimmed through it to refresh his memory 

prior to our discussion.

Brian defines proof as a mathematical process showing that something is done in 

certain way. Brian believes that proof is “why we do a certain process or application or 

formula [and] how we come about a result and why it works all the time”. He believes 

that there should be a mathematical authority to decide the status of proof, and stated that 

for the student, this authority resides in the teacher. He added that among university 

professors and mathematicians, authority resides in the collective formed by all of one’s 

colleagues. Brian thinks that proofs can be changed, but since mathematics is an ancient 

subject, chances are that proofs will not undergo significant change

He admits that many students have problems completing proofs. Brian refers to 

the “way it is now in schools” meaning the way in which proof is currently introduced as 

a separate topic within the Grade 11 Geometry unit. Proof, therefore, he adds, needs to be 

introduced to every one. Brian had no memory of working on proofs at any other time 

during his secondary schooling other than in Grade 11 and within the context of
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geometry. Brian thinks that proofs should be introduced at an earlier stage of schooling, 

even, if  possible, in Grade 1. Students, he insists, should be focused on why not how. This 

will help them later in post-secondary school. He confessed that his greatest struggle with 

completing a proof is that he cannot always determine a starting point.

Brian thinks that there should be a certain format for a proof, though he is not sure 

what the format is—he thinks something like “two-column proofs”. A simple show of 

examples does not make a proof as far as Brian is concerned; however, if  the examples 

include a line of reasoning then that work can be considered a proof. Brian believes that a 

proof must show why it works for a general case before it can be considered complete. A 

complete form must also demonstrate algebraic symbols and more detailed mathematics; 

simply noting patterns does not constitute proving.

Brian suggests that working at mathematical proof enhances critical thinking. He 

believes that teachers emphasize critical thinking more in social studies and language arts 

than in mathematics. In mathematics classes, students depend a lot on calculators. 

Technology, he argues, has handicapped critical thinking in the math classroom. Student 

depend too much on calculators; they do not visualize or think. He stresses that the more 

often teachers expose kids to different ways of proving, the more likely that kids will 

develop proving skills. Most students, he says, are “not ready” for university because 

university requires that students think “outside the box”. Brian thinks that proof is one 

way to encourage students to think “outside the box”.

Brian initially stated that teachers should teach proof at all levels, to all students. 

After reflecting on the frustration that students experience with even basic mathematics, 

he changed his position. Proof, he suggested, need not be mandatory in high school,
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though it could be included in the curriculum for students who are proficien in 

mathematics. Brian shared that he had introduced proof to students while student- 

teaching in the schools, but his cooperating teacher told him not to “go into those areas”.

4. The Interviews Considered Together

All three participants were frustrated with the nature of their limited secondary- 

level exposure to proofs. Each recalls working with mathematical proof only in Grade 

11: they agree that proof tends to exist only as a part of the geometry curriculum. Even 

though they regret not having spent more time on proof in high school, they remember 

well their resentment in having to do proofs, and so conclude that proofs should not be 

made compulsory in secondary school mathematics, although those who feel comfortable 

with proof and proving should be given opportunities to work with it. All admit that in 

university math classes, skill with proof comes in quite handy. If proof is to be “reserved” 

for the “smart kids” in school, however, I suggest that it may eventually disappear from 

the lived-curriculum. Denying all students experience with proof also suggests that it is 

possible to learn mathematics without ever needing to prove a theorem. As Hanna 

(2000a) notes, these views are based on an incorrect assumption, the idea that proof is 

some sort of specialized and unknowable branch of mathematics so tricky that, if  one 

does not specifically need to know it, one would be better off avoiding it entirely. 

Summary

My analysis of the data collected indicates that student teachers’ conceptions of 

mathematical proof are narrowly grounded in traditional understandings of its nature, 

function, and value. Given that reform efforts in mathematics education have been 

underway for some time, this is problematic. Most of the participants in my study
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regarded proof as a means of verification; only one person understood proof as a means 

of explanation. Even though the teacher education program emphasizes the explanatory 

value of proof in school mathematics curricula, student teachers continue to 

conceptualize proof primarily as a means of verifying an already known mathematical 

result. I consider this a serious concern.

Many student teachers also believe that proof should only be introduced to select 

groups of students such as those who plan to study advanced mathematics. The fact that 

student teachers today would take such a position raises a red flag, for it sends the 

message that there is no need for the majority of students to study proof and proving in 

the classroom, and so little need for future teachers to teach proof to all of their future 

students. For the most part, their responses suggest that these student teachers continue 

to regard proof as a formal, and often meaningless, exercise performed by the teacher. 

(Interestingly, Alibert [1988] conducted a study twenty years earlier with a similar result: 

those participants also regarded proof as a formal, and often meaningless, exercise 

performed by the teacher.) All three of the student teachers that I interviewed spoke with 

some frustration about their high school experiences with proof and proving.

My conclusions, though they pertain to student teachers, support Knuth’s (2002a, 

2002b) findings concerning practicing teachers. Most student teachers believe that 

teacher-assisted practice is the best way to learn proof. Although some students referred 

to “constructivist approaches,” most were unclear about what a “constructivist approach” 

entails. My sense is that students included the term in their responses to prove that they 

were aware of current educational trends. As students within post-secondary education 

classrooms, they are likely to have heard about the benefits of using “constructivist

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



approaches” to learning; even so, they seem confused about what “constructivism” 

actually means.
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CHAPTER 7. THE MATHEMATICAL TASKS 

Context

As already noted, I administered the tasks during the final weeks of the 

professional term. Students were given an hour to complete the entire questionnaire, with 

additional time available to whomever wanted it. Participants were not allowed to discuss 

the tasks while attempting them. They could ask me any question regarding the 

questionnaire: one or two students asked me questions about concept maps, but no one 

asked questions about the mathematical tasks. Once students were done, they formed 

small informal groups and began to discuss their work, sharing the different ways in 

which they had approached the tasks, and seeking clarification on the meaning of key 

concepts (for example, I overheard students asking each other for the definition of an 

exterior angle).

Once again, the specific tasks as they were presented to the students in Section B 

of the Questionnaire are listed below.

1) Prove that when you multiply any 3 consecutive numbers, your answer is

always a multiple of 6.

(Taken from Healy and Hoyles [2000])

2) Provide a means of calculating the number of diagonals of a polygon when you

know how many vertices it has.

(Taken from Balacheff [1988])

3) Prove that the sum of the exterior angles of a polygon is 360°.
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(Selected from memory; one of the unit-test tasks that I gave my Form 5 students 

[Grade 11])

4) How do you know whether there exists a two digit number ab such that the 

difference between ab and ba is a prime number?

(Taken from Harding [1999])

These four tasks challenged the students in two particular mathematical domains: 

geometry (questions 2 and 3) and number theory (questions 1 and 4).

Classifying The Tasks On the Basis of Mathematical Domain

1. Geometry

I chose geometry tasks for my study because proofs are usually seen in 

connection with geometry. In secondary schools, students commonly learn to write 

rigorous mathematical proofs within the context of a geometry unit. They are typically 

taught to solve this type of proof using a two-column format, the column on the left 

consisting of statements, and the column on the right consisting of reasons. The two 

geometry tasks that I selected require an understanding of the properties of polygons. 

Both tasks—2) “provide a means of calculating the number of diagonals of a polygon 

when you know many vertices it has” and 3) “prove that the sum of the exterior angles of 

a polygon is always 360°”—represent, in fact, two well-known properties o f polygons. I 

phrased the one task as “prove that . . . ” and deliberately selected, for the other, a task 

already worded as “provide a means o f ...” (from Balacheff, 1988). In essence, the 

wording in Task # 2 requires that the student approach this task in the reverse order that 

he/she approached Task #3.1 wanted to see how the difference in wording would affect 

the results, specifically, whether or not students would prove both geometry tasks using a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

two-column format. I assumed that students would explore the tasks in various ways, but 

then come up with a correct formal proof.

In order to complete these proofs, students would need some basic 

mathematical knowledge. Clearly, for both tasks, they would need to understand 

the concept of “polygon.” The word "polygon" derives from the Greek poly, 

meaning "many," and gonia, meaning "angle." A polygon is defined as a closed 

plane figure with n straight sides. If all sides and angles are equivalent, the polygon 

is called a regular polygon A polygon can be classified as concave or convex. A 

polygon is convex if it contains all of the line segments connecting any pair of its 

points. A polygon that is not convex is termed a concave polygon. At least one of 

the internal angles of a concave polygon must be greater than 180°. See the 

following figure.

Figure 7.1: Polygons

concave polygon

Interestingly, all of the students opted for the convex polygon when it came to 

providing examples. In order to complete Task # 2, students also had to be able to define 

“diagonal”. A diagonal is defined as “a line joining two nonadjacent vertices of a
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polygon”. With Task # 3, students also needed to know and understand the concepts of 

“exterior angle” and “interior angle”. An exterior angle of a polygon is defined as the 

angle between one side of a polygon and the extension of an adjacent side. Angles that 

are greater than 180° and less than 360° are called reflex angles. (See the diagram below.)

Figure 7.2: Reflex Angles

The interior angle o f a polygon is defined as “the angles on the inside of a polygon 

formed by each pair of adjacent sides”. In addition, students needed to be familiar with 

the following result: an “interior angle is always supplementary to the exterior angle at 

that vertex”. Once again, just as with Task # 2, students worked on Task # 3 using 

examples of convex polygons. Not a single student referred to non-convex polygons.

Figure 7.3: Exterior Angles(Definition 1)

S
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Notably, in Task # 3 there are two exterior angles per vertex. Yet, almost all geometry 

textbooks state that “the sum of the exterior angles of a polygon equals 360°”. This 

statement, however, can only be true if  (a) only one exterior angle per vertex is 

considered and (b) all the exterior angles that point in the same direction around the 

polygon are considered. I assumed that the student teachers would consider these 

conditions since geometry textbooks commonly assume them. If the participants assume 

exterior angles as noted below—as angles formed externally between two adjacent sides 

(definition 2)—then the sum of the exterior angles will be 720°, and not 360°.

Figure 7.4: Exterior Angles (Definition 2)

f t
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If one were to answer the question "What is the sum of the exterior angles of a 

polygon?" without taking into account these conditions, an answer of 360° would be 

incorrect. The question as I posed it specifically reads “prove that the sum of the exterior 

angles of a polygon is always 360°” (emphasis added). Hence, the question implies that 

the sum of the exterior angles will never be anything other than 360° and that 360° is an 

already known result—one just needs to prove it by drawing on the necessary 

assumptions.

Since the interior angles of a polygon are those angles at each vertex that are on 

the inside of the polygon, there is one interior angle per vertex. The interior angle is 

always supplementary to an exterior angle at that vertex. For a polygon with sides, 

there are “n” vertices and interior angles. Students also need to know the “sum of the 

interior angles of a polygon theorem”. This theorem is as follows: If a polygon has n 

sides, the sum of its interior angles is 180x(« - 2)°. If the student was unable to remember 

the theorem, s/he could still derive the total interior angles by applying the following 

reasoning: A polygon with “n” sides can be partitioned into (n - 2) triangles; the sum of 

the angles in a triangle is 180°; therefore, the total angles in a polygon is (n - 2) xl800.

Both Knuth (2002a) and Zazkis and Campbell (2006) note that teachers and 

textbooks typically use geometry as the sole context and vehicle for introducing the 

concept of proof. Indeed, Wu (1996) argues “ [when] learning to prove something for the 

first time, most people find it easier to look at a picture than to close their eyes and think 

abstractly” (p. 228). Thus, it makes sense that I use geometry tasks in my study: the 

chances that participants will successfully solve this type of proof would seem to be quite
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high both because of the students’ familiarity with it and because of its concrete, visual 

aspect.

2. Number Theory

Number theory is another area rich in proofs and proving. It is the branch of 

mathematics that studies the properties of whole numbers. Primes and prime factorization 

are very important in number theory. Zakis and Campbell (2006) note that the basic 

concepts of number theory provide a rich venue for learners of all ages to explore 

mathematical patterns, formulate conjectures, test generalizations, provide justifications 

and prove theorems. They also observe that topics dealing with such items as factors, 

divisors and multiples can serve as “springboard[s] toward appreciation and ability to 

construct formal mathematical proof’ (p. 9). Over the years, Zakis has conducted 

considerable research on number theory with prospective elementary school teachers 

(Zazkis & Khoury, 1994; Zazkis, 1999; Zazkis & Campbell, 1996; Zazkis & Campbell, 

2006). The Conference Board on Mathematical Sciences’ (CBMS, 2001) report on The 

mathematical education o f teachers states that one can easily disprove the idea that proof 

is relevant only in geometry when one begins to explore proof in relation to number 

theory, specifically in conjecturing and proving simple theorems about numbers.

Granting this position, I include two number theory tasks in my study: Task # 1: “Prove 

that when you multiply any three consecutive numbers your answer is always a multiple 

of 6” and Task # 4: How do you know whether there exists a two-digit number ab such 

that the difference between ab and ba is a prime?
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A person attempting to solve these two number theory tasks would require some 

basic mathematical knowledge. In the case of Task # 1, students would benefit by 

knowing the following facts:

a) One whole number is divisible by another if, after dividing, the remainder is 

zero.

b) If one whole number is divisible by another number, then the second number 

is a factor of the first number.

c) A number is divisible by 2 if  the last digit is 0 ,2 ,4 ,6  or 8.

d) A number is divisible by 3 if  the sum of the digits is divisible by 3.

e) A number is divisible by 6 if  it is divisible by 2 and it is divisible by 3.

In the case of Task # 4, students would benefit by knowing the following facts:

a) A two digit number ab is in fact 10*a + b and ba is 10*b + a.

b) The digits of a two-digit number ab are reversed to form a second two-digit 

number ba and the lesser of the two numbers is subtracted from the greater.

c) a and b must be comprised of only counting numbers 0 , 1 , 2 , . . . ,  9.

d) A prime number (often simply called a "prime" for short) is a whole number that 

has no whole number divisors other than 1 and the number itself.

e) A composite number is a positive integer that has positive integer divisors other 

than 1 and the number itself.

Classifying the Tasks On the Basis of Mathematical Function

1. Verification

In addition to conceptualizing the tasks in terms of relevant mathematical domain 

knowledge, I also consider the tasks in terms of their function. The four tasks selected
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for my study serve as either verification or exploration tasks (see Chapter 3, Literature 

Review). The verification tasks are as follows: Task # 1: “Prove that when you multiply 

any three consecutive numbers your answer is always a multiple of 6” and Task # 3: 

“Prove that the sum of the exterior angles of a polygon is always 360°. I use the same 

argument for including proofs that verify as I did in selecting proofs that are geometric. 

Since mathematicians and educators concur that proofs have been used mostly for 

purposes of verification (Hanna, 1983), my participants were likely to be most familiar 

with proofs with this function. In other words, I expect that students will feel comfortable 

dealing with proof tasks that ask them to verify already known results. Specifically, as 

pertains to Tasks # 1 and # 3, the known results include a) the sum of the exterior angles 

of a polygon is always 360°, and b) the product of three consecutive numbers is always a 

multiple of 6. Since students generally apply the two-column format when proving for 

the purpose of verification (Hanna, 1983), I was keen to observe whether or not the 

verification tasks would yield two-column proofs.

2. Exploration

The tasks that ask the students to prove for the purpose of exploration include 

Task # 2: “Provide a means of calculating the number of diagonals of a polygon when 

you know how many vertices it has”; and Task # 4: “How do you know whether there 

exists a two-digit number ab such that the difference between ab and ba is a prime? I 

selected exploration tasks with the aim of determining whether or not this type of 

question would yield formats for solving/proving proofs other than the standard two- 

column format.
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Classifying The Tasks On the Basis of Mathematical Reasoning

Generally, the participants are familiar with two methods of proving: inductive 

and deductive. Inductive reasoning begins with particular cases and produces a 

generalization from these cases. In other words, inductive reasoning goes from the small 

to the large. One makes observations about individual parts and those observations lead 

to subsequent conclusions about the whole. In deductive reasoning one starts with the 

general major premises and from them deduces the truth about individual parts of the 

whole.

1. Inductive Justifications

The first two stages in Balacheff s (1988) taxonomy of proofs are inductive 

because justification is based on checking by means of particular examples. In their 

discussion concerning empirical justifications, Marrades and Gutierrez (2000) distinguish 

two classes of proofs based on the way that examples are selected:

i) When the conjecture is justified by showing that it is true in one or several 

examples, usually selected without a specific criterion, it falls under naive 

empiricism. The checking may involve visual or tactile perception of 

examples only (perceptual type) or may also involve the use of mathematical 

elements or relationships found in examples (inductive type).

ii) If the conjecture is justified by showing that it is true in a specific, carefully 

selected example, it falls under crucial experiment. Students are aware of the 

need for generalization, so they choose the example as non-particular as 

possible. Although it is not considered as representative of any other example, 

students assume that the conjecture is always true if it is true in this example.
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2. Deductive justifications

These are characterized by the de-contextualization of the arguments used. In 

other words, the proving is detached from the specific examples that the student uses to 

make sense of the task. They are based on generic aspects of the problem, mental 

operations, and logical deductions that aim to validate the conjecture in a general way. 

Balacheff s final stage in his taxonomy of proof, the thought experiment provides an 

example of deductive justification.

General Observations

Data collected by means of written responses and interviews demonstrated that 

students could define proof reasonably well, in the process referring to various functions 

of proof (see Chapter 6, Analysis of Written and Interview Responses); yet, data detailing 

student efforts to complete proving tasks suggests that theoretical understanding is not 

always deployed in practice (Rodd, 2000). Many of the student teachers found the four 

mathematical tasks challenging. Almost all of the participants attempted direct proofs by 

inferring patterns from the information and/or previously studied definitions, postulates 

and theorems. It would be well, at this point, to recall O’Daffer’s and Thomquist’s 

(1993) observation that deductive proofs are less complex than inductive proofs.

Although many students could start a proof, and knew the form  required for a proof, they 

frequently were unable to complete it correctly (see pages: 150,152,154). The work of a 

number of participants, in fact, provided little evidence of a chain of reasoning that could 

lead to a valid proof. There were five correct proofs (out of 17) for Task # 1 and 6 (out of 

17) for Task # 2. There was only 1 correct proof (of 14 attempted) for Task # 3; and 4 

correct proofs (of 9 attempted) for Task # 4. The written responses containing correct
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proofs include both pragmatic and conceptual justifications. I found it surprising that not 

a single student teacher was able to provide complete and correct proofs for all four tasks. 

The table below provides further information. A detailed analysis of each of the four 

tasks follows in Chapters 8, 9, 10, and 11.

Table 7.1. Observations of the tasks taken together

Categories
Task 1 Task 2 Task 3 Task 4

Correct Proof 5 6 1 4

Partially Correct 12 7 5 5

Formula/Diagram only 0 4 6 0

No Attempt
0 0 3 8

Total 17 17 17 17

Exemplars

I begin each of those chapters by providing examples of how one might 

successfully complete the proof if  approaching it in a particular manner. I have devised 

these exemplars in line with Balacheff s hierarchy of proofs: naive empiricism, crucial 

experiment, generic example, and thought experiment. I divide the thought experiment 

proofs into two categories a) verbal and b) symbolic. In the category of thought 

experiment-symbolic, I place efforts that are especially sophisticated: in other words, the 

proof is enriched by the use of algebra or axioms or any other type of formalism and 

there is a minimal use of natural language. Given their age and their limited mathematical 

exposure, the examples of thought experiment in Balacheff s (1988) study are verbal. As

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

this group of students are adults and are mathematically sophisticated they seem to have 

an image of a proof form in mind. Hence, I included an additional category: thought 

experiment-symbolic.

I found it quite challenging to generate examples that would illustrate the various 

levels of thinking in Balacheff s taxonomy of proofs, even for the problem that Balacheff 

himself used in his 1988 study (Task # 2: Provide a means of calculating the number of 

diagonals of a polygon when you know how many vertices it has.) In particular, I found it 

difficult to generate illustrative examples of the approach to proving categorized as 

generic example. My research has taught me that unless the student uses some extreme 

examples (like a very large number or a polygon with a very large number of sides), or 

the student specifically mentions (aloud during the process or, less likely, in writing) that 

the example is intentionally selected, it is quite difficult to differentiate between naive 

empiricism and crucial experiment on the basis of written work alone. Balacheff, aided 

by a research assistant, studied thirteen- and fourteen-year-olds as they worked on the 

proving tasks; whereas I analyzed the work after it had been completed. Balacheff also 

facilitated students’ verbalization of their thinking processes by grouping participants in 

pairs, providing only one pencil and written copy per pair, and insisting that both 

individuals agree on the solution prior to handing their work in. I had only the 

participants’ written responses and mathematical calculations to work with.

Notably, Balacheff s categories focus on the type of argument that the student 

presents rather than on whether or not the argument itself is correct; however, I take both 

factors into consideration in my analysis. First, I examine the type of argument that the
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student has used; and second, I note the success, or lack of success, that the student has 

achieved in applying that argument.

Summary

The mathematical task data demonstrates that the student teacher participants had 

difficulty with both the geometry and number theory tasks. I cannot speculate as to why 

student teachers, all Math majors with at least twelve university-level math courses 

behind them, would have had so much difficulty proving these high school level 

mathematical proof tasks. Further study, I suggest, is required. A systematic exploration 

of when, where, and how proofs associated with different mathematical domains are 

introduced in both mathematics text books and classrooms within the province of Alberta 

would appear to be a valuable endeavor.
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CHAPTER 8. RESULTS AND DATA ANALYSIS: TASK # 1.

Task # 1.

Prove that when you multiply any three consecutive numbers your answer 
is always a multiple of 6.

(Taken from Healy and Hoyles [2000])

Exemplars

1. Approach: Naive Empiricism

1*2*3 = 6 6 = 6*1
2*3*4 = 24 24 = 6*4
3*4*5 = 60 60 = 6*10

Since these all work, when I multiply any three consecutive numbers, my answer will 

always be a multiple of 6.

2. Approach: Crucial Experiment

1*2*3 = 6 6 = 6*1
2*3*4 = 24 24 = 6*4
3*4*5 = 60 60= 6*10

Since these all work, I will try once more using a larger trio of numbers. If it works for 

this case, then it must be true for every case.

Using a calculator,

1136*1137*1138 = 1469877216 1469877216 =6*244979536

Since the assertion works in this case, too, whenever I multiply any three consecutive 

numbers, the answer will always be a multiple of 6.
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3. Approach: Generic Example

I will try this assertion for 8, 9 and 10, which is of the form even, odd, even.

8*9*10 = 720 720 = 6*120

6 is 2x3. The factor of 2 comes from the 8 (or the 10) while the factor of 3 comes from 

the 9.

I will try this assertion for 9,10 and 11, which represents the form odd, even, odd.

9*10*11 =990 990 =6*165

The factor 2 comes from the 10 and the factor 3 comes from the 9 and 6 = 2*3.

It will be like one of these in any case.

So when you multiply any three consecutive numbers together, your answer is always a 

multiple of 6.

4. Approach: Thought Experiment 

Let “ft”, “(ft + 1)” and “(ft + 2)” be 3 consecutive numbers. These numbers can take the 

form odd, even, odd or even, odd, even. Therefore, in any three consecutive numbers 

there will be at least one number divisible by 2, as the factor of 2 comes from the even 

number. Every third number is a multiple of 3; hence, at least one of any three 

consecutive numbers will be divisible by 3. Since two and three are factors of 6, the 

product of three consecutive numbers is always a multiple of 6.
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Analysis

Table 8.1. Observations of student work Task # 1.

Categories *
Correct Failed Partially

Correct
Total

Naive Empiricism 0 0 2 2

Thought Experiment -  verbal 2 2 5 9

Thought Experiment -  symbolic 3 3 0 6

Total 5 5 7 17

* In his study, Balacheff (1988) did not consider the correctness or incorrectness of the 

mathematical proof. Nevertheless, no matter what approach the student takes, the work 

that results can be classified in one of three ways: as fully mathematically correct; as 

partially mathematically correct; and as mathematically incorrect. In this study, I 

categorize the students’ efforts as correct only if the work is fully mathematically correct. 

In the case of Task # 1, as noted above, the work of the two students who took the 

approach of naive empiricism can only be categorized as partially correct. As noted 

before, Knuth (1999) in his study considered all proofs under the category of “naive 

empiricism” as invalid. I maintain these distinctions throughout my analysis (see 

Chapters 9,10, and 11).
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Gita

1. Naive Empiricism

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6,
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Gita explored this task using three different groups of numbers. In the first group, 

she considered 4 sets of three consecutive numbers and found their product; then she 

showed that for such a set of numbers, the product will be a multiple of 6 .1 see an error
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in the product of the second set of three numbers: 2x3x4 should have been 24 not 6. In 

the second group of numbers, I see her multiplying 3 numbers which are not consecutive. 

In the first set, she considers three same numbers (2x2x2) and illustrates that the product 

is not a multiple of 6. In the second set of numbers, she selects three numbers with a 

difference of 3 between them (2x5x8) and illustrates that the product is not a multiple of 

6. In the third (3x5x6) and fourth sets (4x7x2), she selects numbers randomly and 

illustrates that they are not multiples of 6. Based on the manipulation of the two groups of 

numbers noted above, I conjecture that she is trying to prove that the product of any three 

consecutive numbers will be a multiple of 6 and, if that is not the case, then the product 

will not be a multiple of six.

With the last group of numbers I see her trying to illustrate further her argument 

pertaining to the first group of numbers. She seems to be trying to show that if  three 

consecutive numbers are considered, there will be multiples of 6 in their product. I infer 

this from the reversed square bracket she drew below two selected numbers. This can be 

easily verified from the third and the fourth set of numbers (3x4x5 and 5x6x7). 60 is 

shown as 12x5 and 210 is shown as 30x7. Here, she also notes that “2, 6,12 and 30 are 

all common multiples of 6”. Common multiples are defined as multiples that are common 

to two or more numbers; consequently, her reference to “common multiple of 6” is 

incorrect; it should be common multiples of 2 and 3 or common multiples of 2, 3 and 6 .1 

categorize this proof as naive empiricism because I see an assertion of the truth “of a 

result after verifying several cases” (Balacheff, 1988, p. 218). Even though she tries to 

further justify her observations regarding the first group of numbers, using the third group 

of numbers, she fails to give “explicit reasons for the truth of an assertion by means of
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operations or transformations on an object [example] that is not there in its own right, but 

as a characteristic representative of its class” (Balacheff, 1988. p 219). Hence, this cannot 

be seen as a generic example.

Tahira

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

tot-2-)
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She defined the three numbers as n, n + 1 and n + 2 and found the product. She 

made sense of the question by rephrasing it as (n3 + 3n2 + 2n) / 6 = no remainder which 

indicates that for a number to be a multiple of 6, it should be divisible by 6 evenly (with 

no remainder). Then she factorized (n3 + 3n2 + 2n) as n (n2 + 3n + 2n). I think the “2w” 

term is a simple mistake: it should be 2. Even though she provided some algebraic 

manipulation, her proof is ultimately based on examples. It seems that she decided to 

substitute for n = 1, n = 2 and n = 3 and then simplified to show that the product is 

divisible by 6 .1 conjecture that when she got stuck with this algebraic approach, she 

decided to show three examples (n = 1, n = 2 and n = 3). This proof demonstrates a great 

deal of algebraic manipulation and, therefore, looks very “mathematical”.

There are other mathematical flaws in this work as well. Tahira substituted n as 1 

in the equation n {n + 3 n+ 2n)/6. Her idea seems to be to substitute for the n that is 

outside the bracket. However, she multiplied the n outside of the bracket with the first 

term inside the bracket, n2; then she post-multiplied the product, n3, by 1 and retained it 

as n 16. For the other two terms, she substituted 1 for the outside the bracket and 

retained the rest. The she simplified the equation and came up with n3/6 + n/2 + n!3. Her 

argument “since [in] each denominator [there is a] prime factor of 6, [the] answer [is] 

always a multiple of 6” is incorrect. I categorize this as naiive empiricism because, even 

though she provides algebraic manipulations at the beginning of the proof, she bases her 

argument on three examples.
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2. Thought Experiment - Verbal

a. failed thought experiment-verbal

Deanna

2. For th e  fo llow ing  g iven  ta s k s ,  p le a se  sh o w  all y o u r w ork .

a )  P rove  th a t  w h e n  you  m ultip ly  a n y  3 c o n sec u tiv e  n u m b e rs , 
y o u r  a n s w e r  is a lw a y s  a  m u ltip le  o f  6.
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Deanna misread the question: instead of multiplying her numbers, she adds them 

and then tries to prove the result for the sum. However, she could not complete the proof 

because she got stuck. It is interesting to note that for the set of integers her notation is 

“I”. It is difficult to determine whether she used “I” as a variable or as a symbol to denote 

the set of integers. If she did, in fact, use “I” to denote the set of integers then she has 

demonstrated a common misconception among students. I have come across many 

students who use the notation “I” for the set of integers. The set of all integers is usually
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denoted in mathematics by a boldface Z or . I categorize this as failed verbal 

thought experiment.

Clare
■ ■ ■ . . .  “T

2. For the following given tasks, please show all your work, 

a) Prove that when you multiply any 3 consecutive numbers,
your answer is always a multiple of 6.
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It seems that Clare also misread the question. Instead of multiplying the three numbers a, 

a+  1 and a + 2, she added them and then argued that to be a multiple of 6 the product 

should be divisible by 3. She forgot to mention that, in addition to being divisible by 3,
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the product must also be divisible by 2, if  that product is to be divisible by 6 .1 categorize 

this as a failed verbal thought experiment

b. partially correct thought experiment-verbal

Daniel

2. For the following given tasks, please show all your work.

a ) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.
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Daniel defines the three numbers as n, « + 1 and « + 2. He paraphrases the task as 

“«(« + l)(n + 2) is a multiple of 6”. His proof can be considered a partially correct 

verbal thought experiment since he fails to state explicitly why the three consecutive 

numbers that are multiplied have to be multiples of 2 and 3. It is evident from his 

justification that he understands that in order to be a multiple of 6, the number should be 

a multiple of 2 and also 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Il l

Philip

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.
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Philip initially explored the problem by defining the three numbers as a (a + 1) 

and (a + 2), and then multiplying them together. Although he failed to define the 

numbers as such, his scribbles (later crossed through) show that he was trying to explore 

the task in an algebraic way. I conjecture that when he realized that he would not succeed 

with this algebraic approach, he resorted to a thought experiment. This makes his proof 

similar to Daniel’s; Philip, however, uses more symbols than Daniel. In this proof, Philip
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mentions that, for any three consecutive numbers, “at least one must be divisible by 3” 

and “at least one must be divisible by 2”; but he does not explicitly state the reason why. 

Hence, I categorize it as a partially correct verbal thought experiment.

Terrence

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

v l

\„  JUlJA »  W W ‘^ 1 1'1

Wiwd 41 ^  /W 2. 3 ^
f a  I W W s  4  lo ^

CCvA r.v G 2.a.v-.<î 5r S

i A * .  ^  * *  ,  ,
\ oHva, ■&. 'Hm-

2 , 0 ^ / ^  ^  iVill

\yv -<x. vw JiJe tpU  c | k  ^  

boil! p y o d lb u u  u - ^ f-

(L-Jfi=35i U. OuCaaJLI

Terrence wrote 7 sets of 3 consecutive numbers. In each set he noticed factors of 

2 and 3 and then made the argument that “ in each case and extending it beyond these #s” 

there are factors of 2 and 3. Even though he made sense of his proof with several 

examples, his understanding of the concept of divisibility by 6 in terms of being divisible 

by 2 and 3 is “detached from particular examples”; in other words, we can see his
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movement “from practical to intellectual proofs” (Simon & Blume, 1996, p. 8). However, 

he fails to state explicitly the reason why the product of three consecutive numbers has 

factors of 2 and 3; hence, I categorize this proof as a partially correct verbal thought 

experiment.
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Chandelle

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

vXl-t A- (K •

 ̂ ■ :h (Vi+ tcvv^fa.u.'hirc.

-VolaC-
f v \7 ■+ S i<  * !̂ fl

k 3 4 3 - * •  n.7 + P -  ^  v >. ru  Vj.jGuc rv\ un ! be

^ j" )  . /- ,
\P n  >5 iVoe-r-.; (n-t i) iSocM  a  n d  C n t - 'o j r

« >-.-c )-N
^  l S  o d d  , <+W ^  6 w  0  ^  ^ ^  ( ! A 4 - ^ , s

* O d d
■ d ' W . s e  o .  <zji_ " T k s u  a n l c ^  " b c > c >  c l c s i ^ c ^  • C  ^  f  S - )  

) n loo-+V\ l ) '  ^  ~0 \<̂  ^  c % v .  d-OjO
l> €  tv  ̂ m. o^-o o\_>J.

(iXrzjj. e J \ )J  ̂ •s l Lc.. b> u-j dn_>0 <2 ^ k  \r\O ĉ j

1-0 d 3 ^  -V O -  U-Cu U C x J u ^ c x ^ - j^ ,

Her proof is well written, but incomplete. All of her arguments for the divisibility by two 

are clearly suggested, but the second part of the proof remains incomplete. I place this 

proof in the category of partially correct verbal thought experiment.
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Sara

7 $

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

i d  i/our 3 rumJufs b t 

^  >(j> 3 ]  f l*  t f u  p r o d u c t. 

x  - ■ first ruimbtr' 

3 ^  t W L m b t r :z *

■' f y^cjcndio flvi/c VM^

/  6 ! + f y x < 2 V ^ n

X^hSxN-zx =-<£n.
- fo r. r u x m h e r , e r a  ofr J M m

Im i) ifttuct he cUuuuJoie by z  is!&\ number)
U)t cubo 3 ruim-Un Uo a. muBipu?■

&i 3. 4H product XUJ must Contour)
d u jU lJ o U  b y  2  a n d  c m  r j u ^ h e r  oU uU obi*  

b y  s .  f t n  cl f w n t u r  Vo h z d M tU tb l^  h u  bJ dJ>

d M tu C h ^  b y  i  ^  z . S u w  z  c o r & c ld m  

yiounbcrs m  c d u f^  m b jp L y  Qfo Z . *3  bhuo p d u d

6

Sara rephrased the proof task with her three numbers “x”, and “z” and a 

product Later she writes xyz = 6n, to imply the product is a multiple o f 6 . She could
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not go much beyond this point, so she redefined y  as x + 1 and z  as x + 2. Again, she 

made little headway; so then she provided a general argument. I categorize this proof as 

partially correct thought experiment because the proof is incomplete. She makes the 

claim “we know that every three numbers is a multiple of 3” which is, in itself, incorrect. 

However, based on the rest of her work it seems that she used the word “every” to mean 

“every three consecutive numbers”—and not every possible three numbers—are a 

multiple of 3; but, she fails to provide a reason for this argument. She also continues to 

write that “the product xyz must contain one number divisible by 2 and one number 

divisible by 3”, but does not give an explicit reason why. However, her understanding 

about the divisibility of 6 such that numbers are evenly divisible by 6 if  they are evenly 

divisible by both 2 and 3, is evident from the last sentence of the proof. I categorize this 

proof as a partially correct verbal thought experiment because the proof is not 

complete.
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c. correct thought experiment-verbal

Cathy

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

a!koCU.S W  puA  Jr >«*V

4 U v  ^  W k S  O . C - 4 r  »% 1

P / V
U| o f lf t  W s..W i. (V.vuA'V^ll<?. ^

(f<Ĵ O'5 C. £ ^ A J  "iy

H - S 6
n  ' ( u  3  e A M A .^ 5 ,  S i, 4 « .

' regjlV>va .paiAj<A »V i  
\  e ^ n '

D
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John

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

la t r
3

✓> y\

( o ) ^ r ^  + Z *

? , . , c .. ♦ v *  - i ~ . . \ z  t T 1 3( 1*7, Idt '* M f i/l^ ■w' /

^  j* <w>. Cv̂ *v  ̂ ■'')■»'£ <*> CCM

ihA  'v n ^ r3*a^ + " ^ ; l| be -e****
<x-l ^  '&c4ryt ft

eviê A SiVet. ^

.-fic/V’ c £  } r\% + 3 r r  + w , ' / r  fe< clb)\>',bU
Aiy 2 .

(£  w ,<, ^ 4 -  ave,* t i<7 evc^  t W
JcawC k ^ l J i  'h'sj-f

|£  n ^ iv i^ ib lc  (3Y 3   ̂ A l f t f t ± 2 - ^  , /

^  (-*> #i t M U  b ^3 > . 1 ^  *_ A < 4 ^ )

^  ^  A i- f tb U  Ay 3  . f u ^  ^

h H  o«r ^ 2 , ,V  X + ^ ’b tl J* f 3

^  <rtc>r - tU .: .,/ *''**&<*' so  ^  - f i . ^ c ,

[pA^0>^H 'W ^W *? f w e *\*e,4 W «- Î o 'lb 'fk  0^ 3 )  

5o <d ^  3 ^  .■-* f,<7 A jd fttb lt ^ y

A  ^ iacc  - V *  3 r ^  i1' c H v i v ^ k -  ^  2 - ^  3

11 A  t?  *1'ft 1*7 t/y (/ ^yft

John’s proof, with its variety of variables and its expression of the product of three 

numbers (n), (n + 1) and (n + 2) as a polynomial, looks more mathematically rich than
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Cathy’s proof. However, the language of the argument itself is very plain. I categorize 

this as a correct thought experiment.

3. Thought Experiment - Symbolic

a. failed thought experiment-symbolic

Beth

I categorize this as failed symbolic thought experiment mainly because of the 

algebraic manipulation and the absence of natural language.

a) Prove th a t when you multiply any 3 consecutive num bers, 
your answ er is always a multiple of 6.

O o A ' tb x f f s  = n  , n t i  , n - + 9

n  C n i - i H m s )

-  i v V  ^  n

l - A r l
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Spencer

Z> for me iwiiwm—b

a, Prove that when you mu,«p.y enV 3 con~cu.lv. numbers, 
your answer is always a m u lt ip le ^ . ^

/ Y o c .

a b * - -  d  &

4  H Cl 1>C C- ^  ^  ^  £}

( j  g If' y i ow  ”/ b c t d '  Gil&C- .. _Q -̂,

■ > ' ^  6

5 e  cv k c -  f  *S-

~ T '  6

^  ■ _  4
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e  —  a -

i < 5> f / W e  ^ h e r e

' f y a - f  r *  w t  e f y w d  4  4 o

[opg_ T  /v^/ ^  c t h  & d  c tn  d  •

Spencer’s work looks like a formal mathematical proof with all the variables and 

the mathematical operators evident. However, this proof does not yield much 

information. It seems that Spencer is trying to prove by contradiction. Proof by 

contradiction is also known as reductio ad absurdum, Latin for "reduced to the point o f  

absurdity". This proof establishes the truth of a given proposition by the supposition that 

it is false and then draws a conclusion that is contradictory to it to prove the proposition 

(Koshy, 2002). I conjecture that this is proof by contradiction because Spencer writes that
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“suppose abc = e and e ^ d ’’ then goes on to say, in the end, that “there is no number e 

that is not equal to d. Therefore abc = d  and d/6”. These statements do not agree since 

they imply that abc = d = d/6. Possibly what he had in mind is what he had started with: 

“abc = d and d/6 = x”. Despite the formal look of this proof, it reveals little. I have 

classified this as a failed symbolic thought experiment.

Brandon

a) Prove tha t when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

Brandon’s scribbles (later crossed out) indicate that he initially multiplied x, (x + 

1) and (x + 2) and noted the product as 6x. The symbols x, x + 1 and x + 2 represent 

three consecutive numbers. However, the use of “x” with 6 (6x) on the right hand side of 

the equation does not mean the same as the “product of the three consecutive numbers is 

a multiple of 6”. He may have used “6x” to remind himself that the product is a multiple 

o f  6. In this regard, Brandon’s attempt is similar to Sara’s proof (see pp. 114 -115). 

Brandon used algebraic manipulations including the factorization of the polynomial, but
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had little success in arriving at a solution. It seems that he then rephrased the question as 

“must always be divisible by 6”. This is correct reasoning. To be a multiple of 6 , the 

number should be divisible by 6 . Despite its formal look due to algebraic manipulations 

and symbols, this proof reveals little. He also failed to come up with a general argument.

I categorize this as failed symbolic thought experiment.
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b. correct symbolic thought experiment

George

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.
W f cyr f 'o'* ? r c •'*(■ w i t ' h t r f . .  ■-£.  ̂f 1/ (
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w r  U i o v  *■ ^  ^ s *
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,  t  . TV* j  ■; 1 ^  • T V « ... . 5 e u • t  “ ?i ■• ,■ ■ A*>r .
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■k e £ I r.X 3>
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T^u*. ly 3 1 f j c )  C r ,  l )  f w  1 )

X  i 5 “2 - 1 f  r . )  ( t * i ) ( *i l  )

<* Cy ) C>,n f r ;-i -)
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George defines the three numbers as x, x + 1 and x + 2. His first argument implies 

that there will be an even number in any three consecutive numbers and even numbers
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are divisible by 2. He also introduces division algorithm in his argument concerning 

divisibility by 3. Since he uses more symbols and provides a proof that is more 

mathematical than the rest of the group members, I categorize this as a correct symbolic 

thought experiment. George ended his proof with a hollow black square. This is a 

simple way of stating that the proof is complete. This symbol is usually used to end proof 

when it is done in a formal way. In other words, this hollow black square or sometimes a 

dark black square (also called tombstone) is used instead of writing Q.E.D. which is an 

abbreviation of theLatin phrase “quod erat demonstrandum" (literally, "which was to be 

demonstrated").
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Grace

2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, 
your answer is always a multiple of 6.

Y •v ’+W+Jlvy
^  i  >!,

evw' '«** evtvt
since. oJUt a/*, even j-ttvt-soli/Won 
rvws t  be, e v o \ ; J t e  ditfisi bli? bu.2.

—̂  rvu/^l provt % s  0  WVod 3

II < * y

Owed?
or

I mod 3 iWl3 OnrtfldO 
*r

Owod  ̂ iModvZ IttodS

o a f o4- 2> <̂6ngtcUJi‘v€_
luJfwJbe/s, wvt. will aUocu^> 
bt a YvwUiplC of 3,

^  "X is  a mttipk ol dtasid S ^ ' X  is 

w w ll ipk  of 6  •

The mod operator is often used in discrete mathematics and computer science to 

divide two numbers and retain only the remainder. So, a mod b = remainder when a is 

divided by b. I classify Grace’s work as a correct symbolic thought experiment because 

of the formal language.
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2. For the following given tasks, please show all your work,

a) Prove that when you multiply any 3 consecutive numbers,
your answer is always a multiple of 6.
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Brian’s proof can also be categorized as a correct symbolic thought experiment.

14  \p U  £  \oe-c**r^%c
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Summary

Of the 17 student teachers that attempted this task, 11 produced either correct or 

partially correct proofs. Most of those 11 (10 students) opted for conceptual justification: 

only one person preferred a pragmatic justification. Even though a great many of the 

students approached this task at the level of thought experiment, example-based 

mathematical proofs were also evident. Six student teachers found this task especially 

difficult. I categorized their work as “failed” proofs. Each of these failed proofs made 

little sense. Since only six people achieved a fully correct proof, I conclude that this 

group of student teachers experienced considerable difficulty when it comes to proving 

this type of mathematical proof task.
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CHAPTER 9. RESULTS AND DATA ANALYSIS: TASK # 2.

Task # 2.

Provide a means of calculating the number of diagonals of a polygon when 
you know how many vertices it has.

(Taken from Balacheff [1988])

Exemplars

1. Approach: Naive Empiricism

A rectangle has four vertices and two diagonals.

Vertices = v = 4 
Diagonals = d = 2

A pentagon has five sides and five diagonals.

Vertices = v = 4  
Diagonals = d =2

Hence, if “v” is even, the number of diagonals d  = v / 2.

And if  “v” is odd, the number of diagonals d - v .

2. Approach: Crucial Experiment

Balacheff (1988) distinguishes between crucial experiment and naive empiricism on 

the basis of the student’s selection of the example. Both Balacheff (p. 224) and Knuth
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and Elliot (1998) note that students at the level of crucial experiment intentionally select 

an extreme case, and if  the proof works for that example, they will then conclude that 

their conjecture is correct and the proof proved. Thus, I approach Task # 2 task at the 

level of crucial experiment in the following manner.

I conjecture that the # of diagonals = # of vertices and will use the extreme case of 

the pentagon to verify my conjecture. I use the pentagon (as an extreme case) because it 

is the polygon with the greatest number of sides that I can still draw with relative ease.

The pentagon has five sides and five diagonals

vertices = v = 5 
diagonals = d =5

Hence d = v

3. Approach: Generic Example

The pentagon has five sides and five diagonals.

Vertices = v = 5 
Diagonals = d -  5

A pentagon has 5 sides (n = 5) and so 5 vertices (v = 5). From each vertex, I can draw

only 2 diagonals because there are no diagonals from a vertex back to itself and there are
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no diagonals to the vertices on either side. Thus, there will be three fewer diagonals than 

the total number of sides (namely 2 at each vertex). Since there are 5 sides and 5 vertices,

I can draw 5* 2 (= 10) diagonals in total.

Diagonals have two ends; counting both ends of the same diagonal I would arrive at a 

total of 10. However, I need only count one end; therefore, I must divide 10 by 2 to get 

the correct number of diagonals, which equals the number of vertices.

This exemplar illustrates generic reasoning because the calculations and answers are 

specific to the fact that one is considering a pentagon, although the same reasoning would 

apply whatever the number of sides involved. (The conjecture of course is false). Arguing 

from the specific to the general distinguishes the generic example from the thought 

experiment. Let me reiterate that Balacheff also failed to provide a concrete example of 

generic example (see Balcheff 1988 & 1991). When Knuth and Elliot (1998) elaborated 

on Balacheff s taxonomy of proofs, they did not provide a concrete example either. One 

reason why none of these researchers could provide a ready example of generic example 

may be because it is difficult to find a representative polygon that will consider all the 

different polygons of the same number of sides and all the different polygons 

simultaneously.

4. Approach: Thought Experiment 

Consider a polygon with “v” sides. If there are “v” sides, there are “v” vertices. Beginning 

with each vertex, I will draw (v - 3) (again, recall that there is no diagonal from a vertex 

back to itself and there are no diagonals to the vertices on either side). Thus, there will be 

three fewer diagonals than the total number of sides—that is, (v - 3) diagonals from each 

vertex. As there are sides, there will be a total of v(v - 3) diagonals. My approach,
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however, counts both ends of the diagonal. That means I am counting each diagonal 

twice. Hence, to get the correct number of diagonals, I will divide the product by 2. 

Therefore, the formula for the number of diagonals is d -  v(v - 3) / 2.

Analysis

Table 9.1. Observations of student work Task # 2.

Categories
Correct Partially

Correct
Failed Total

Formula Only 4 0 0 4
Naive Empiricism 0 2 0 2
Generic Example 2 1 0 3
Thought Experiment- verbal 3 0 3 6
Thought Experiment-symbolic 1 1 0 2

Total 10 2 3 17

1. Formula Only

Daniel

b) Provide a m eans of calculating the number of diagonals of 
a polygon when you know how many vertices it has.

£
, Z -  ..

u J

f  t
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In addition to providing a formula for his work, Daniel also mentioned that one 

could count the number of diagonals in any given polygon. His choice of word— 

“counting”—suggests that he is responding to the wording of the task—“provide a means 

of calculating.. in other words, one other means of calculating is by “counting”.

Beth

Beth came up with a formula and minimal justification using natural language. 

She calculated the total number of connections between vertices using „C2 and then 

subtracted the number of outer edges (n). Her justification also correctly implies that the 

number of vertices = number of sides. This is a possible thought experiment. However, I 

decided to categorize her work under “formula only” because of the minimal use of 

language and explanation.

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.

Iro Ui-pp. v £ f  f ) ( £  ^  / f i \  r>* v e r t ic e s - -

—* Q o ^ - c r  & d
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John

b) Provide a means of calculating the number of diisgonals of 
a polygon when you know how many vertices it has.

(_ot 4  '  i'.-M - k*'' A  d  '

^  M C 'l  "  V

John’s formula below is similar to that of Beth’s (above). 

Philip

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.

Philip evidently explored the task using four different polygons. It seems clear 

that he counted the number of diagonals in the pentagon (twice, in fact, with two 

differently sized polygons), the hexagon, and the heptagon. Again, one could argue that
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Philip might have arrived at this correct formula through a possible thought experiment. 

However, I decided to include it in the “formula only” category because of the minimal 

use of language and explanation. Balacheff (1991) indicated that his student participants 

were able to provide a correct formula for this task because they correctly understood the 

concepts of polygon and diagonal. He assumed that students were able to produce these 

formulas by means of a deductive process.
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2. Naive Empiricism 

Tahira

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.

n  C?

J L ' ? > 
^  2-

/ jf. odd fa-Cr' jq±L d bt &

Tahira explored three polygons—a square, a pentagon and a hexagon. She 

wrongly counted the number of diagonals for the pentagon and the hexagon; however, 

her incorrect counting fitted her conjecture very well since “If even m/2, if  odd then
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« + 1/2 would be # [of] vertices”. There is another error in her conjecture. The question 

asks that she provide a means for calculating the number of diagonals, given the vertices. 

However, it seems that in her answer she provides a means for calculating the number of 

vertices. Her approach to proof suggests the first category in Balacheff s taxonomy as she 

explores a few polygons and comes up with a conjecture that she assumes to be true for 

all cases. I classify this as na’ive empiricism.

Gita
b) Provide a means of calculating the number of diagonals of 

a polygon when you know how many vertices it has.

(

Gita explored the task using three polygons—a square, a pentagon, and a 

hexagon. Other than the exploratory particulars, there is not any conjecture as such. 

While exploring the quadrilateral, she arrived at 4 diagonals for 4 vertices. I am not sure 

how she arrived at 4 diagonals for a quadrilateral. Later she explored the pentagon and 

came up with the correct number of diagonals. However, with these two polygons, I 

suspect that she came up with a conjecture such that the number of vertices = number of
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diagonals. Again, I conjecture that she explored an additional polygon—the hexagon— 

when she realized that the number of diagonals is more than the sides (6) because she 

strikes through the diagram of the hexagon and leaves the task at that point. I see that she 

counted more than 6 diagonals, and when she realized this polygon does not conform to 

her conjecture (number of vertices = number of diagonals), she “adjusted the monster” 

(Lakatos, 1988) by simply ignoring it; or, possibly she “surrendered” after not being able 

to fit her conjecture with what she found through exploration. I classify this as naive 

empiricism.
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3. Generic Example

a. Generic Example with correct generalization

Grace

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has*

diâ oWaH ~ I (V"2>) t  ('v-f?} + ( v-M') t, .. + (v-V N

A N"3 r6rv\ovt Iwti\4&eiF ■•■r
ad\actw\ v«y+tt€£.

, 1  - +0 reocVx aA  veyVices cwce.Hus is W t

3 5 £ *

Assuming that she worked from top left to bottom right, Grace counted the 

number of diagonals for the pentagon and found it to be 5. She notes on the page the 

number of diagonals next to the pentagon figure. Then, she seems to have moved to the 

triangle, noting that the number of diagonals is 0. Next, she likely drew a square and
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counted the number of diagonals, but did not bother to note the number. Then she moved 

to a hexagon and counted the number of diagonals correctly. She drew a heptagon and 

tried to count the number of diagonals, but left it undone. At that point, she seems to have 

tried an “extreme” polygon with 12 sides. However, she may have realized that it is not 

an easy job to count the number of diagonals of a 12-sided polygon. Whatever the reason, 

she left it undone after drawing only a few diagonals. It is apparent that she was trying to 

spot a pattern that would allow her to predict further results. Generating examples, 

looking for regularities in the data, making and articulating conjectures are the first steps 

towards generalization (Rowland, 2001).

I notice that Grace also draws another hexagon, bigger in size than the other, and 

drawn with all the diagonals correct. This suggests that she returned to the hexagon and 

drew a larger diagram in order to make sense of the structure. This time she did not 

simply count the number of diagonals arriving at a sum of 9; instead, she wrote the 

structure as 3, 3 ,2  1. Since there are six sides in a hexagon there will be six vertices 

(v = 6); hence (v -  3) = (6-3) = 3 (there are two “3s” in the formula, “(v - 3) + (v - 3)”). 

The next number in her structure is “2”, which agrees with her proposition “v - 4” = 6-4 

and so on. “3 + 3 + 2 + 1” will yield the same result as “3 + 3 + 2 + 1 + 0”; hence, the 

formula is (v - 3) + (v - 3) + (v - 4) + ...+ (v - v) where “v - v” is 0 .1 conjecture that she 

was attending to the hexagon when she wrote the formula. In other words, she uses the 

hexagon as a generic example in order to reach the general structure and the formula 

(v - 3) + (v - 3) + (v - 4) + ...+ (v - v). I believe I can reasonably assume that after she 

generated the formula for the number of diagonals, she wrote a partially complete general 

argument “v-3 to remove lines to itself or adjacent vertices. This is twice to reach all
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vertices once and then the lines start to repeat”. Her argument is quite unclear to me. I 

suspect that she was trying to explain how she arrived at the formula.

Sara

5

b) h ° r ,s of
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\J d fi J u m  

■ f a b i t k t o j  w r n u w / jA A W  
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^  .   Jv« n->̂

, V ^- * : ' : -: " 
ivH ^
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Sara clearly states in her proof that the variable “»” refers to the number of 

vertices. After defining the variable she writes: “we know that the polygon will have 

edges between adjacent points”. This is an incorrect statement: there can only be one 

edge between two adjacent vertices. A further analysis of her justification suggests that

CP
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what she, in fact, meant was “if there are vertices then there are edges. It seems 

at this point, she considers drawing the number of diagonals from each vertex. She notes 

that “if  all diagonals are drawn will have n -1 edges coming from it”. Again, this is an 

incorrect statement because a diagonal is defined as “a line joining two nonadjacent 

vertices of a polygon”. Here, what she seems to mean by the phrase “all diagonals” is all 

possible lines that can be drawn from a vertex.

Eventually, she came up with the correct formula for the number of diagonals that 

can be drawn from a vertex as “n -3”. She also correctly reminds herself “not to count a 

diagonal twice”. If she had developed this idea, she could have arrived at n(n - 3) 12. 

However, she arrives at a different formula. This indicates that her intital thought proces 

did not help her to arrive at the correct formula; consequently, she had to provide another 

means of justification. Her actual formula proved to be quite different from the formula 

that could have developed out of her initial thought process. Her new forumula is 

“diagonals = 2(n - 3) + (n - 4) + ...+ (n -« )”.

Sara possibly arrived at this formula with the help of the polygons that she had 

drawn (square, hexagon, heptagon, and pentagon). I notice that she drew the hexagon 

twice and the heptagon thrice. I suspect that she did this not just to count the diagonals, 

but so as to understand the structure. She did not use one generic example, but rather 

several generic examples. By writing “« -  3”, “n - 4” and so on at the vertices of the 

polygons that she explored. Her work suggests that she is searching for a structure that 

conforms to the number of diagonals that can be drawn from each vertex. Sara is clearly 

looking “generally” at the particular examples; hence, I categorize her proof under 

generic example. However, she uses not one, but several generic examples.
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b. Generic Example with incorrect generalization

Clare
b e 

ta) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.

v e ch 'c e s  
2 . d  la o p n c x l

5“ v e r-^ 'c e s
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V %

\  ( l y - e V  ( v - ; > v

\'-  ( v > 0

c o K e r e

V  ^  v e c 4 f c e $

\  ^ 6 $ d io g sn o tlS .

Clare ‘s work is similar to that of both Sara and Grace (noted above). Clare also 

tries to spot a pattern by using the square, the pentagon and the hexagon. I suspect she
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uses the hexagon both to discover the number of diagonals that can be drawn given that 

polygon and to visualize the structure in which the diagonals could be drawn. Notably, 

she incorrectly counts the number of diagonals: instead of 9 diagonals for a hexagon, she 

ends up with 10. I infer this from her notation alongside the structure: “4 + 3 2 + 1 ” 

(though she seems to have forgotten to put a “+” between numbers 3 and 2). She defines 

her variables: “v” as # of vertices and D  as # of diagonals. Even though she drew an 

octagon, Clare left it unexplored, which suggests that, when she was writing the 

generalized formula, she was referring back to the structure for the hexagon“4+3 2+1”. I 

suspect that she was attending to the hexagon, even though the formula is placed next to 

the octagon because the term “v-2” in her formula corresponds to the first term of 4+3 

2+1 which is “4”. If the number of vertices is 6 , then (6 -  2) = 4 agrees with the first term 

of the structure noted alongside the hexagon. Her final formula is (v - 2) + (v - 3) +

(v - 4) + ...+ (v- (v+1)) = D. There is an error in this generalization. She does not realize 

that (v - (v + 1)) will not yield 1. When she recorded the generalization a second time, she 

decided to write “1” instead of “(v - (v + 1))”, and rewrote the formula as (v - 2) + (v - 3) 

+ (v - 4) + ...+ (v - (v + 2) +1 = D. However, “(v - (v + 2))” will not yield 2. This suggests 

that she got her algebra wrong when she translated her observation into a formula.
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4. Thought Experiment -  Verbal

a. correct verbal thought experiment 

Chandelle

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chandelle tried 3 different polygons—square, pentagon and hexagon—in her 

efforts to make sense of the problem. She counted the vertices and the number of 

diagonals for each of these three polygons. Once she acquired a sense of the problem and 

the structure for generalization, she arrived at and justified a formula. She then verified 

her formula to determine whether or not she had arrived at the correct one. Since 

Chandelle uses the same examples that she had used earlier to explore the problem, I 

infer that she is now engaged in verification. Jahnke (2005) notes that some students will 

verify a statement, even after it has been proved, by means of examples (an observation, 

he claims, made also by Fishbein [1982]). I categorized this proof as a correct verbal 

thought experiment because Chandelle had developed a general explanation detached 

from the specifics of all her individual examples.
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Terrence
b) Provide a means of calculating the number of diagonals of 

a polygon when you know how many verticeslFlias.
y •5* 2-X.
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Terrence explored the task using the square, the pentagon and the hexagon. He 

examined the number of vertices and diagonals and provided a formula representing the 

relationship between the vertices and the diagonals: “4v = 2 d \  “5v = 5d” and “6v = 9 d \  

His formula and argument, though, are not related to any of the specific examples that he 

provided or to the initial way in which he wrote the relationship. He notices from his
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drawings of the polygon that from each vertex “there are v-1 # of lines”. However, it is 

difficult to identify which polygon he was looking at when he made that observation. He 

distinguishes the “number of diagonals” from the “number of lines” by subtracting 2 

from v-1 (he does not use the term number of diagonals explicitly). Later he multiplies v- 

1-2 with v and gets (v2 - v - 2v). Finally, it seems that he divided (v2 - v - 2v) by 2 to 

arrive at “the # of vertices that share the diagonals”. It is interesting to note that he did 

not simplify the formula, but left it as (v2 - v - 2v) / 2 . 1 infer from his paperwork that he 

then applied his formula to the square, pentagon and hexagon; hence, it seems that he 

engaged in a process of verification in an effort to establish the “correctness” of the 

formula for these additional examples. In that respect, his work is similar to Chandelle’s. 

I categorized this proof as a correct verbal thought experiment because Terrence 

developed a general explanation detached from the specifics of any individual example.
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Spencer

g j

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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Spencer defines the number of vertices as “«”. He evidently explored the task by 

working with the square, the pentagon and the hexagon. Based upon the notations in the 

top comer, it appears that he worked the problem out mentally, arriving at the formula
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n(n - 3)/ 2 and, at that point, decided to write a “formal” proof. In writing up the proof, he 

specifically uses two examples, the square and the pentagon. Spencer counted the vertices 

and the number of diagonals and noted them clearly. In the next step he tries to establish 

an explicit relationship between the vertices and the diagonals. He introduces two new 

variables, “a” and “6”, though he fails to define them. He writes “The number of vertices 

that vertex a is not in contact with already is b = n - 3”. Although the statement is 

awkwardly constructed, his idea is correct. I think he is trying to specify a particular 

vertex by using the variable “a ” since he said “you need to multiply b by the number of 

vertices” which turns out to be “nb I do notice an error in this proof in the following 

statement: “But then you must divide “nb ” by 2 because of the symmetries in a polygon. 

Some of the diagonals would be repeated without this last step”. His last step is dividing 

the product "nb ’’ by 2. He seems aware that each diagonal has two ends, so he should 

have referred to counting each (not some) diagonal twice. However, he has the idea—that 

one must divide the product by 2 in order to adjust for counting each diagonal twice. So 

the formula for the number of diagonals is d = nb/ 2 = n (n - 3) / 2. I categorize this as a 

correct verbal thought experiment.
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b. failed thought experiment - verbal

Brian

I n, i  ^
■ if ^ ^  ^

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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I sense Brian trying to come up with a formula for the first “n” natural numbers 

with 1, 2, 3 and 4. Based on Brian’s scribbles above the question (writing the four 

numbers in reverse order below 1,2, 3 and 4), I infer that he tried the “Gaussian” 

approach, but arrived at the wrong formula (n + 1) /2. His formula suggests that the sum 

of the first “n” numbers is (first number + last number) / 2. He uses this formula to 

arrive at a general expression for the number of diagonals. He also explores the task with 

the rectangle and the pentagon. He incorrectly draws the pentagon, then strikes through 

his diagram (see the middle portion of the diagram). He uses his diagrams both to count 

the number of diagonals and to see how the diagonals are distributed from each vertex. I 

note that he incorrectly counts the number of diagonals for the pentagon: I see one 

diagonal missing. Brian then phrases his explanation as follows: “each vertex cannot 

have a diagonal to the adjacent vertex. Also, for each remaining vertex you cannot have a 

diagonal to a vertex that has already been considered”. His statement demonstrates that 

he understands how diagonals should be counted. However, he does not go much further 

with this. He arrives at an expression for calculating the number of diagonals as 

d(x) = X i -  (x - 2 + 1) / 2 = (x -1) / 2 ( i = takes values from 1 to x - 2 , and x is the 

number of vertices); however, this expression does not really connect with what he 

observed about how diagonals are distributed in a polygon. Thus, I categorize Brian’s 

effort as a failed verbal thought experiment.
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Deanna

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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Deanna clearly defined the variables that she proposed to use, “v” for vertices and 

“cf” for diagonals. Deanna’s exploration pattern is similar to that of both George (pp. 152- 

154) and Brandon (pp. 155-156). She did not draw polygons but only the polygon’s 

vertices. She explored the number of diagonals for the triangle, square, pentagon,
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hexagon, heptagon and octagon. She expresses the relation between the diagonals and

vertices with the following “ratio pattern”:

For triangle -  0v = d 
Square -  Viv= d 
Pentagon -  v = d 
Hexagon -  3/2v= d 
Heptagon -  2v= d
Octagon - 3 v - d .  I notice an error in this last step, this should have been 2.5v = d.

The last item in the pattern is obviously a mistake: she incorrectly counted the 

number of vertices and diagonals for the octagon as 7 and 21, respectively. However, her 

incorrect counting resulted in her conjecture 3 v = d. Also of interest, there is a very clear 

pattern here: 0, lA, 1, 3 /2 ,2 , . . .  I wonder why the inconsistency in this pattern did not 

strike the student teacher when she wrote 3v = d in the last step. However, in arriving at 

her justification she failed to use this pattern. It is interesting to note that the argument 

she provides is detached from the pattern that she developed using the diagrams. Deanna 

eventually came up with a general argument. If I elaborate upon her argument (which is 

“the number of diagonals are “v - 2” for the first vertex, “v - 3” for the second vertex and 

so on...”), I would conjecture that her formula is: d = (v - 2) + (v - 3) + and so on.
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Cathy

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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Cathy examined a particular polygon—a hexagon—in order to organize her proof. 

Even though she used the hexagon to get a sense of the problem, she presented a general 

argument, one detached from the specifics of the polygon that she observed. Since her 

argument is detached from the polygon she observed and she arrives at an incorrect 

formula, I categorize this as a failed verbal thought experiment.
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5. Thought Experiment - Symbolic 

a. correct symbolic thought experiment

George

b) Provide a means of calculating the number of diagonals of 
a polygon when you know how many vertices it has.
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George made sense of the problem with the help of a triangle, square, pentagon, 

hexagon and heptagon. Even though he fails to specify his variables, it is evident that “v” 

stands for the vertices and “d” for the diagonals. The triangle does not have a diagonal; 

hence, v = 3 and d -  0. Regarding the square, v = 4 and d = 2. The curved arrow pointing 

downwards and the +2 next to it indicate the difference in the number of diagonals 

between the triangle above and the square below. This pattern repeats with each new 

figure as the mathematical work proceeds down the page. When he arrives at the 

pentagon, he represents the number of vertices as v = 5 and the number of diagonals as 

d = 5. The difference in the number of diagonals between the square and the pentagon is 

3; hence, he wrote +3. In the case of the hexagon, v = 6 and d = 9. The difference in the 

number of diagonals between the pentagon and hexagon is 4; hence, he wrote +4. In the 

case of the heptagon, v = 7 and d  = 14. The difference in the number o f diagonals 

between the hexagon and heptagon is 5; hence, he wrote +5.

At the right hand side he writes “0”, “0.5”, “1”, and “1.5” in an effort to

establish a relation between vertices and diagonals. This is, in fact, the ratio format, and

is similar to Deanna’s work (pp. 149-150). The pattern is provided below:

For triangle- 0 v - d  
Square -  Viv = d 
Pentagon - v - d  
Hexagon -  3/2 v = d 
Heptagon -  2v = d

George did not go any further with the ratio relation between “vertices” and 

“diagonals”. He could not arrive at a generalized formula with the ratio pattern, so he 

introduced a recursive relation dn = dn.\ + n - 2. This relation is identical to that noted by 

Balacheff as f(n -1) + n - 2. It is interesting that George used “v” and “d” all the while,
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and then suddenly switched to “d ” and The way in which he spotted the pattern and 

the formula that he later developed from the pattern both represent sophisticated thinking. 

George put into play a number of different ideas in arriving at the general formula. At 

that point, it appears that he left that particular formula and, on the left side of the page, 

derived a formula for da+\. His derivation of dn+\ = [(n + 1) - 3(n + 1)] / 2 is, in fact, 

correct and does yield the correct number of diagonals, for we substitute (n -1) for I

found it quite interesting that George made great efforts to derive <4 +1, but then did not 

simplify this complicated expression. If simplified, the expression yields (n + 1 )(n- 2)12.

On the right side of the recursive formula, I also see n/2 (n-3) = n2-3n / 2, which is 

the correct formula for calculating the number of diagonals. He seems to have developed 

this as another expression for the number of diagonals. I conjecture that 2(ra-3) comes 

from what he initially observed (as noted in the upper right side)—that is, (as (4-3) +(4- 

3),, (5-3) (5-3) and so on). The ratios 0, 0.5, 1, and 1.5 are transformed into and 

expressed as (n-4) / 2 and the increment in the number of diagonals that occurs each time 

is (n-3). Thus, his formula is 2(n-3) + (n-4)/2 * (n-3), which will yield n/2 (n-3) = 

n -3n / 2 when simplified. I consider this high level thought, indeed. George generates a

mathematical proof based on induction and uses examples to demonstrate how the 

number of diagonals increases as the number of sides increase. His expressions 

demonstrate high-level mathematical thinking. Hence, I categorize this as fully correct 

mathematical proof. I also notice the hollow black square in this proof also.
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b. partially correct symbolic thought experiment

Brandon

b) Provide a m eans of calculating the number of diagonals of
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Brandon did not provide a general verbal explanation for the proof, but he did 

generate a general formula that is very mathematical because of its symbolism:
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d = [X(i - 3)] + v - 3. This formula would have been the correct generalization of the 

pattern he observed if  in the formula could take values from 4, instead of 1. He 

correctly noted the relation between the number of vertices and the number of diagonals. 

In exploring the task, he used 4 polygons: the rectangle, the pentagon, the hexagon, and 

the heptagon. He noted the relation between the vertices “v” and diagonals “cT for these 

different polygons as 4v = d ; 5v =5 d; 6v  = 9d.

Using these three equations, he tried to generate several other equations in an 

effort to find one general equation that could give the number of diagonals from the 

number of vertices. However, he could not arrive at a successful equation in terms of the 

ratios, so he scribbled them out. He seems then to have provided another formula based 

on factorial notation: d  = (v - 3)! + v - 3 .1 also see him testing this formula for each of the 

four different polygons in which he counted diagonals. Even though he used the factorial 

notation, what he seems to have had in mind is the summation because he eventually 

strikes through the factorial notation as he worked out the examples. This realization— 

that it is the sum of the numbers and not the product—might have led him later to change 

the factorial notation to summation. When he used factorial notation he must have had in 

mind the need to add; if  not, why would he have taken the factorial notation off the 

formula? Interestingly, at the bottom of the page, he also strikes through another formula 

with factorial notation. Evidently, Brandon was playing with a number of mathematical 

ideas. I categorize his work as partially correct symbolic thought experiment. 

Summary

Not all participants attempted Tasks # 3, and # 4; but, here, with Task #2, as in the 

case of Task # 1 all of the student teachers attempted the task. Four of 17 students
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provided the correct formula alone while a further six of 17 student teachers produced 

correct proofs. Of the 13 participants who showed their work, five used pragmatic 

justifications and eight used conceptual justifications. Interestingly, a number of student 

teachers used an explanatory way of proving this task. Task # 2 proved to be a successful 

exploration task since most of the students explored and made sense of it by using 

different polygons. Furthermore, most of the proofs were of explanatory nature, rich in 

natural language. It is generally assumed that once students realize that a task is 

geometrical, they will opt for a two-column format; my data suggests that this is a false 

assumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

CHAPTER 10. RESULTS AND DATA ANALYSIS: TASK # 3.

Task #3 .

Prove that the sum of the exterior angles of a polygon is always 360°.

(Selected from memory; one of the unit-test tasks that I gave my Form 5 students 
[Grade 11])

Exemplars

1. Approach: Naive Empiricism

Consider an equilateral triangle. The interior angles are 60° each. The exterior angle at 

each vertex is 120° each. Therefore, the sum of the exterior angles of a triangle is 120° 

+120° + 120° -  360°

Consider a square. The interior angles are 90° each. The exterior angle at each vertex is 

also 90° each. The total of the exterior angle is 90° + 90° + 90° + 90° = 360°.

Since both these work, the sum of the exterior angles of a polygon is always 360°

2. Approach: Crucial Experiment

Consider an equilateral triangle. The interior angles are 60° each. The exterior angle at 

each vertex is 120°. Therefore, the sum of the exterior angles of a triangle is 120° + 120° 

+ 120° = 360°

Consider a square. The interior angles are 90° each. The exterior angle at each vertex is 

also 90° each. The sum of the exterior angle is 90° + 90° + 90° + 90° = 360°.

I will try one more polygon, a regular hexagon. If I get the same answer with this 

example, I can conclude that the answer will always be the same. The interior angles are
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120° each. The exterior angle at each vertex is 60°. Therefore, the sum of the exterior 

angles of a triangle is 60° + 60° + 60° + 60° +60° + 60° = 360°

Since all three cases worked, the sum of the exterior angles of a polygon is always 360°.

3. Approach: Generic Example 

Consider a triangle. Let “a”, “b”, and “c” represent the interior angles of a triangle: 

a + b + c = 180°. The the exterior angles at each vertex will be (180 - a )0, (180 - b)°,

(180 - c) °, respectively, as the interior and exterior angles are supplementary at each 

vertex. The sum of the exterior angles is (180 - a )0 + (180 - b) 0 + (180 - c) 0 =

540 - {a + b + c) °. But (a + b + c) 0 = 180°; therefore, the sum of the exterior angles = 

540° -180° = 360°.

OR

At each vertex, there is an interior angle and an exterior angle. The interior angle is 

always supplementary to an exterior angle at that vertex. Since there are 3 sides, the total 

of interior and exterior angles is 180*3 = 540°. The sum of the interior angles in a triangle 

is 180°. Therefore, the sum of the exterior angles is 360°.

OR

In a regular pentagon, the interior is made up of five triangles. The total of all the angles 

in 5 triangles is 180*5 = 900°. The sum of the angles of the triangles includes all the 

angles where the common vertex is a point in the interior of the polygon. The angles add 

up to 360° as they encircle a point. So the sum of the interior angles o f a pentagon is 900- 

360 = 540°.

Since there are 5 interior angles there will be 5 exterior angles. The interior and exterior 

angle form a linear pair. Hence, the total of all the interior and exterior angles is
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180*5 = 900°. The sum of interior angles alone is 540°. Therefore, the sum of all the 

exterior angles = 900° - 540° = 360° and, hence, proved.

NOTE: All of the above arguments are partially general within one particular class of 

figures (namely triangles in the first two cases and pentagons in the third case).

4. Approach: Thought Experiment 

Consider a convex polygon of “n” sides. A convex polygon of sides can be divided 

into triangles. The sum of the angles in a triangle is 180°. Therefore, the sum of the 

angles of “n” triangles in the polygon is 180n°.

The sum of the angles of the triangles includes all the angles where the common vertex is 

a point in the interior of the polygon. The angles add up to 360° as they encircle a point. 

So the sum of the interior angles of a polygon is 180«°-360°.

An exterior angle of a polygon is the angle formed by the side of a polygon and an 

extended adjacent side. The exterior angle and the corresponding interior angle together 

form a linear pair; hence, the sum of all the interior angles with all the exterior angles is 

180«. (At each vertex, there is an interior angle and an exterior angle. The interior angle 

is always supplementary to an exterior angle at that vertex).

There are “n” vertices as the polygon is of sides. Hence, the total of all the interior 

and exterior angles is 180«°.

Sum of interior angles + Sum of exterior angles = 180/7 

Sum of interior angles = 180«° -  360°.

Hence, the sum of all the exterior angles is 180n°-(180«°-360°) = 360°. And so it is 

proved that the sum of the exterior angles of a polygon is always 360°.
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Analysis

Table 10.1. Observations of student work Task # 3.

Categories
Correct Incorrect Almost

Correct
Total

Diagram Only 1 5 0 6
Generic Example 0 1 0 1
Thought Experiment- Verbal 1 2 0 3
Thought Experiment-Symbolic 0 2 2 4

Total 2 10 2 14

1. Diagram Only

Grace

d) Prove th a t the sum  of th e  exterior angles of a polygon is 
always 360°.

h

Grace simply drew a triangle. The diagram itself provides little information. 

However, one may assume that she drew the smallest polygon in order to get a sense of 

the problem.
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Gita

d) Prove that the sum of the exterior angles of a polygon is
always 360°.

Gita drew four different circles, three of which are inscribed polygons (that is, a 

polygon placed inside a circle so that each vertex of the polygon touches the circle). The 

diagram provides little information about how she was planning to prove this task; 

however, it seems that she was trying to relate polygons and the circle.
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Brandon

d) Prove th a t the  sum of the  exterior angles of a polygon is
always 360°.

Brandon drew an irregular pentagon. He could not go further. His diagram reveals 

little information.

Clare

d) Prove th a t the sum of the exterior angles of a polygon is 
always 360°.

Clare’s diagram provides more information than those above. It indicates that she 

knows what an exterior angle of a polygon is. Clare could go no further.
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Philip

d) Prove that the sum of the exterior angles of a polygon is

/  \ 
. / / ' •

\ \

Here, I see three different diagrams. Two of them are circles. In one of the circles 

I see a pentagon. This diagram indicates that the student brought in the following 

theorem: the sum of the angles at a center point is 360°. The two diagrams—the circle 

with the pentagon at the center and the triangle—indicate that Philip defines an exterior 

angle as a “360 -  interior angle”; in other words, a reflex angle. We form the exterior 

angle for a polygon by extending one side of the polygon from one of its endpoints.
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Exterior and interior angles together form a linear pair of angles. The work produced by 

others shows that many of them share Philip’s understanding/definition of an exterior 

angle.

Cathy

d) Prove th a t the sum of the exterior angles of a polygon is

Cathy’s diagram indicates that she wanted to work with an irregular octagon. She 

divided the octagon and different triangles. The common vertex of all the triangles inside 

the octagon is marked and 360 is noted there. This indicates that she was trying to find 

the sum of the interior angles. It also seems to me that she is not sure what an exterior 

angle is, even though her definition of exterior angle is similar to that of the student 

teacher noted above. I notice an angle marked as y  that is an extension of one of the sides 

of a polygon. This concept is correct. However, in another diagram, a quadrilateral, she 

marks another angle as the exterior angle when that angle is really “360°- interior angle”. 

She could go no further with these drawings. The two diagrams in which she marks the 

exterior angle differently suggest that she was unclear about what precisely the term 

exterior angle means.

always 360°.

f
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2. Generic Example

Sara

ttV »>* 
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PLEASE COMPLETE THE FOLLOWING TASKS, IF TIME PERMITS. V

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.
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She starts off the proof by saying: we know that “360 = a + b + c + d+ e + / ’. 

This is an incorrect assumption. In her diagram, a, b, c, d, e and f  are interior angles of a 

hexagon. Hence, she clearly assumes that the sum of the interior angles of a hexagon is 

360. Even though she divided 360 by 6 , arriving at 60, suggesting that it would be a
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regular hexagon, and even though her drawing shows the hexagon as a regular hexagon, 

Sara used six different letters to show the angles. The other results that she brings in are 

a) vertically opposing angles are equal, b) adjacent angles, when added, will total 180, 

and c) the angle sum of a triangle is 180. Although the proof looks very ritualistic in 

terms of its mathematical manipulations, the student has not provided a meaningful 

response.

I categorize this as failed generic example. The students’ perception of the case 

is important at the level of generic example: students should see the particular example as 

a representative of all such cases (Knuth & Elliot, 1998). The written work alone may not 

lead one to conclude that this particular case is generic example, but it does seem that 

here the student is bringing in several theorems and trying to see the general in the 

particular example. In other words, she is using this hexagon as a generic example
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3. Thought Experiment-Verbal

a. failed verbal thought experiment 

Terrence

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.

a t i c k
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Terrence’s proof pertaining to this task is based on an incorrect argument. He 

argues the following: “As the circle measures 360 in full and the polygon’s vertices lie on 

a circle’s perimiter [sic] As the circle measures 360 in full or can be used to construct a 

circle the angle thus need to be equal [to] that of a circle. Thus leading all exterior angles 

of a polygon equaling 360”. Since this is a general argument, I categorize the attempt 

under failed verbal thought experiment.
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Daniel

d) Prove that the sum of the exterior angles of a polygon is
always 360°.

5  jv \- e -e  o  y

J ^ o

Daniel provides an incorrect justification for his proof. He argues that for all 

closed figures the sum is 360. He also connects his justification to a circle, presumably 

because he associates the term, 360°, with the circle. I categorize this as a failed verbal 

thought experiment.
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Brian
b. correct verbal thought experiment

PLEASE COMPLETE THE FOLLOWING TASKS, IF TIME PERMITS.

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.
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It is evident from his diagram that Brian understands the concept of an exterior 

angle. His scribbles indicate that he wanted to prove the task mathematically, rather than
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by general argument. It also seems that he tried to prove this task for a regular polygon 

since he produced drawings for the equilateral triangle, rectangle, regular pentagon, 

regular hexagon, and so on. He also provided a general formula for the size of an interior 

angle within a regular polygon. However, he got “stuck” and could not proceed. At that 

point, he likely resorted to the general argument. I categorize his proof as a correct 

verbal thought experiment.
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4. Thought Experiment -  Symbolic

a. failed symbolic thought experiment

Tahira

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.
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Tahira provides two methods of proof. In her first proof, she suggests to “measure 

them” to prove that the sum of the exterior angles is always 360. Recall that Chazan 

(1993) claimed students are more convinced by examples (three are more than enough) 

than by formal proofs. Tahira’s second proof looks formal with traces of the two-column 

format. I recognize, as well, statement and reason in each step. She uses a very particular
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polygon for her proof. This is a pentagon with an isosceles right triangle placed on the 

top of a rectangle. She appears to have introduced two different theorems into her proof: 

a) the interior angles of a square are 90° each and b) the sum of the angles of a triangle is 

180°. Even though the task directed the student to develop the proof for exterior angles, 

Tahira seems to work on the interior angles. Based on the assumptions she brings to the 

task and the formal look of the proof, I categorize this proof as a faded symbolic 

thought experiment.

George

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.

1 r

•7 ‘P'X.re

George’s disproof is correct for his definition of exterior angle. He is well aware 

that one single example (counter example) is enough to establish that something is false. 

However, because his definition of an exterior angle is wrong, I categorize this as a failed 

symbolic thought experiment.
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b. almost correct symbolic thought experiment

Beth

d) Prove that the sum of the exterior angles of a polygon is 
always 360°. _ f X

CL

<xtb

/ a .

\  Q Q - Z  ^

o '

Beth tried several polygons to prove this task. Her diagrams indicate that she is 

aware of the assumptions that need to be considered in order to prove this task. She is 

also one of a small group of participants who could correctly define an exterior angle. I 

infer from the placement of her work upon the page that she drew the hexagon first (I see 

that on the top left hand side of the page, and since westerners are taught to write from 

left to right and top to bottom this seems a logical supposition). Her diagram suggests that
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she tried to divide the polygons into triangles so as to prove the theorem with the help of

triangles. However, this attempt does not succeed in the case of the hexagon, so she

moves on to the pentagon and, then, on to the square, though still with no success. In

other words, she decreases the number of sides of a polygon until she finds a polygon for

which she can prove her strategy. Then she resorts to a triangle and proves the theorem

beautifully for that. However, her proof for the triangle does not prove the task for any

polygon. Beth beautifully uses two results in proving the theorem: a) the sum of the

angles in a triangle is 180° and b) the exterior angle of a triangle is equal to the sum of the

interior angles at the other two vertices. Her proof is correct for any triangle; but a proof

for a triangle does not prove the task for any polygon. Hence, I categorize her effort as an

almost correct symbolic thought experiment. 

John
*

d) Prove that the sum of the exterior angles of a polygon is 
always 360°.

' I ti r\ '  * / t I ■ |
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John’s proof format is correct. He applied correct assumptions, but unfortunately

could not remember the formula for the sum of the interior angles of a polygon. He 

considered the sum of the interior angles of a polygon of “n” sides to be 360 (n-2), rather
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than 180 (n-2). Also of interest, he left the proof incomplete: rather than writing it as 

180«-720, he left the sum of the exterior angles as 360«-720-180«. At this point I think it 

interesting to compare this proof with that completed by George. George persevered, and 

eventually disproved the task (see p. 176) while John left it incomplete. This suggests that 

George felt quite confident about his definition of exterior angle (which is, in fact, 

incorrect) while John, perhaps, felt insecure about his formula for the sum of the interior 

angles of a triangle. I suspect that if  John had the same confidence that George seems to 

have had in the result that he brought in to prove the task, John would not have left it 

incomplete. I categorize this as almost correct symbolic thought experiment.

Summary

Of the 14 student teachers who attempted Task # 3, only four correctly recalled 

the concepts (or results) that were needed in order to prove this task correctly. One of 

those four students was able to provide a fully correct proof, and that was in the form of a 

general argument. There were, however, two almost correct proofs. Of these, Beth’s 

proof would have been fully correct if  the question had referred exclusively to triangles 

rather than to polygons. I conclude from this analysis that the student teachers had great 

difficulty proving this task.
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CHAPTER 11. RESULTS AND ANALYSIS: TASK # 4.

Task #4 .

How do you know whether there exists a two-digit number ab  such that the 
difference between ab  and ba  is a prime number?

(Taken from Harding [1999])

Exemplars

1. Approach: Naive Empiricism

Consider a two-digit number, 13. The reverse is 31.

The difference is 31-13  = 18.18 is not a prime number.

Consider another two-digit number, 25. The reverse is 52.

The difference is 52 - 25 = 27. 27 is not a prime number.

Since both examples worked, the difference between ab and ba is never a prime number.

2. Approach: Crucial Experiment

Consider a two-digit number, 13. The reverse is 31.

The difference is 3 1 - 1 3  = 18. 18 is not a prime number.

Consider another two-digit number, 25. The reverse is 52.

The difference is 52-25 = 27. 27 is not a prime number.

Since, in these two examples, the difference between the number and its reverse is not a 

prime number, I will try one more example. If the answer is not a prime number here, 

either, it will never be prime.

Consider another two-digit number, 19. The reverse is 91.

The difference is 91 - 19 = 72. 72 is not a prime.
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As the difference between this two-digit number and its reverse is a composite number 

here too, the difference between ab and ba is never a prime number.

3. Approach: Generic Example 

Consider a number, 36. The reverse of it is 63.

The difference between 63 and 36 is 27. 27 is not a prime number.

63 = 60 + 3 
36 = 30 + 6

Subtracting the two gives 30 - 3 = 3x10 -  3 = 9x3 = 27.

It will be the same for any pairs of such numbers.

4. Approach: Thought Experiment

Let “ab” be a two-digit number and its reverse be “ba”.

The number “ab” can be written as 10a + b 

The number “ba” can be written as \0b  + a 

The difference “ab” - “ba” = (10a + b) - (106 + a) = 9(a - b)

As the difference is 9 * (a - b), it is never a prime.

Hence it is proved that that the difference between “ab” and “ba” is not a prime number. 

Analysis

Table 11.1. Observations of student work Task # 4. *

Categories
Correct Failed Total

Naive Empiricism 0 1 1
Crucial Experiment 2 0 2
Generic Example 1 0 1
Thought Experiment- Verbal 0 2 2
Thought Experiment - Symbolic 1 1 2
Other 0 1 1

Total 4 5 9
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*NOTE: this is the only task in which I was able to collect student work illustrating all of 

Balacheff s four categories.

1. Naive Empiricism

Brian

Brian’s argument is that “as there are finite number of possibilities, we could 

count”. In other words, try out all the possibilities, if  it works then it is proved. This 

argument places him in the category of naive empiricism. However, he does not 

explicitly state whether such a difference exists or not. I see some scribbling on the side 

of the page, but the observation was not transformed into a result. Hence, I classify it as 

naive empiricism.

e) How do you know whether there exists a two digit 
number "ab" such that the difference between "ab" and 
"ba" is a prime number?
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2. Crucial Experiment

Clare
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e) How do you know whether there exists a two digit 
number "ab" such that the difference between "ab" and 
"ba" is a prime number?
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Clare tried several examples to prove this task. Her conclusion is “tried trial and 

error [;] based on the pattern it does not exist”. Naive empiricism encompasses the 

process of testing several examples and considering those examples as a proof. However, 

I categorize this proof as crucial experiment, not naive empiricism, because her selection 

of sets of numbers is not random. The sets are a deliberate choice. I notice one set, where 

she tries 11,12,13, and so on, up to 19. In another set, I see her testing the conjecture 

with numbers 10,20, and so on, up to 90. In the third set, I see her trying out numbers 

like 32,42, 52, and so, up to 92. I note that Clare carefully selects the numbers, and I see 

some extreme two-digit numbers such as 91 and 11 being tested. Consequently, I 

categorize this effort as an example of correct crucial experiment.
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Cathy
e) How do you know whether there exists a two digit 

number "ab" such that the difference between "ab" and 
"ba" is a prime number?
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I notice a list of prime numbers at the beginning of Cathy’s proof. Much like 

Clare, Cathy tries to prove this conjecture by trying out several two-digit numbers. With 

the exception of two sets of numbers (11,22, 33 and so on, and 13 and 15), the numbers 

are randomly selected. In other words, the intentional selection of numbers (as noted in
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the case of Clare) can be seen in the two sets of selected numbers that I have noted above. 

Furthermore, Cathy tests a large number (94). Hence, this proof is classified as an 

example of correct crucial experiment.

3. Generic Example

Daniel
e) How do you know whether there exists a two digit

number "ab" such that the difference between "ab" and
"ba" is a prime number? u  ’ y* -

y j
t ’ f  ■ / <  ^  ^

- c  A ;  •

A ,  r / ^  '  ^  1  f 3^  t ~
. r  a - b  «  /  ^  , =  21

/ +  _ , 3  . .  ;;

• ' - . > r  “  .. -• 6 3 J

Daniel starts his proof with the statement “the difference between a & b can’t be 

2”. He is rephrasing the question to make sense of it. However, his paraphrase does not 

match the meaning within the question. The difference between a and b is, in fact, the 

difference between the digit at the tens place and the digit at the units place. Daniel is 

saying that this difference cannot be two (emphasis added). The rest of the proof indicates 

that he is using a particular number—“2”—to represent the general term “prime number”. 

Following that statement, he shows ab-ba as +/- 9 (x), but does not define “x”. He 

elaborates upon his argument with three or four examples. However, he is not trying out
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three specific examples; instead, each example represents a class of two-digit numbers. 

The first class is the set of numbers where the difference between “a” and “b” in “ab” is 

1, then ab -ba  will be 9. The second class is the set of numbers where the difference 

between “a” and “b” in ‘ah’ is 3, then ab -ba  will be 27. The third class is the set of 

numbers where the difference between “a” and “b” in ‘ah’ is 5, then ab-ba will be 63. 

Daniel only considered the class of two-digit numbers in which the differences between 

the two digits are the first three odd numbers. I wonder why he did not give an example 

for even numbers. I categorize this as a correct generic example in which the student 

considers not simply one, but three generic examples.
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4. Thought Experiment -  Verbal 

Deanna
8

e) How do you know whether there exists a two digit 
number "ab" such that the difference between "ab" and 
"ba" is a prime number? <=*5

°\\ =• ^  & . a \n d

\T\ o V  p  V t v'V) <

^ 2 -  =  ^ " 2 . ^  c , ; 2. b 'u -17 .

!/<>«<;
- IK ' S  -  r

TV -v^v c f le v e v ' i s+r

C X V  'S'w '-Ab > -V V v o -rV  f X - V ,  -  f s w , ■_ „ v  |  IU- p v (VAAC o w  l o '
O' v INA V>«. L.

^  r c u . i  ^  ^  Vve v -e a  U

CA n e ^ c v ^ i w  \ s  ncrV
p>V H > V  .

f t ' i o  \HV-,ev^ a  > \ =) b - e v  =  - v ^ v ^ W  a , v J

« W i c  cv_-H v e  ^ v A A b e v  '(S' n o 4 ' p v i v > ^ ,

Deanna used two examples to make sense of this task. Unfortunately, she also 

misread the question. She mistakes the meaning in the words “difference between ab and 

ba”, and instead reads the phrase to mean “difference between a and b.” Her argument 

demonstrates traces of thought experiment; hence, I categorize it as failed verbal 

thought experiment.
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Philip

I e) How do you know whether there exists a two digit 
number "ab" such that the difference between "ab" and 
"ba" is a prime number?

I cwl ^  /
C\\> -  \o J

■<=*?. > '• V W  'A  ^
SUcV Oik eOi-

If! . 'I-

£ &  ©*-« ^ iV Na* J‘w " 
■V̂ e. O^** G<i ^

Philip’s proof also demonstrates traces of thought experiment; but, the argument 

that he uses does not help him much in terms of proving the task. Hence, I categorize this 

proof as failed verbal thought experiment.
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5. Thought Experiment - Symbolic

a. correct symbolic thought experiment 

George
s) H ow  d o  y o u  k n o w  w h e th e r  t h e r e  e x is ts  a  tw o  d ig it

n u m b e r  " a b "  s u c h  t h a t  t h e  d if fe re n c e  b e tw e e n  " a b "  a n d  
" b a "  is  a  p r im e  n u m b e r?

-  to *>

A/o d\  f P ft

George’s proof is a correct symbolic thought experiment.
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b. failed symbolic thought experiment
Tahira

■ 8

e) How do you know whether there exists a two digit 
number "ab" such that the difference between "ab" and 
"ba" is a prime number?

( l -  f n W  S t

i c  01 ~/ O b  +- b  "£a ^  b .

) ok-b) * f -  y/ ^
*i(c{~ b) -  "  *

0 ( ? - J )  ( t i - b ) .

c # t  n o t  h(J e f r t i b b / e  f  .

( t f ~ b ) <oio(iM/d A / M i l i  A .n  - f i lm - ?  n u - M b z i .
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Tahira’s proof is similar to George however; she was not able to complete the 

proof as George did. Tahira’s argument is that for the task to be true, a-b should be a 

prime number. She doesn’t see the difference between ab and ba will always be (10-1)* 

(a-b), hence the difference won’t be prime. I categorize this as failed symbolic thought 

experiment.

6. Other

e) How do you know w hether th e re  ex ists a tw o digit 
num ber "ab " such th a t th e  difference betw een  "ab" and 
"ba" is a prim e num ber?

primes -- 3, 3, 5 , 1 , 9,  ||v. I3/ |7; ^ .3 5 ,3 1 ,

Beth

Beth listed all the prime numbers up to 31, but she forgot that the number 9 is a 

composite and not a prime. She also missed number 29. Since she did not do much with 

this list, I categorize this attempt as other.

Summary

Only nine of the 17 participants attempted Task # 4. This may because it was the 

final task and the student teachers were becoming fatigued or simply tired of 

mathematical proving. It is interesting to note that this was the only task for which 

students provided work that illustrated all of Balacheff s (1988) proof categories. Only 4 

out of the 9 students who attempted the task were able to prove it. One person had a fully 

correct symbolic thought experiment. The remaining three used pragmatic justification.
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CHAPTER 12. RESULTS AND ANALYSIS OF DATA: CONCEPT MAPS

The Concept Map as a Research Tool

It is not an easy task to assess student understanding of specific concepts. When 

high-level concepts, particularly abstract, mathematical concepts, are involved, the task 

becomes especially difficult. Researchers have long used paper and pencil tests as tools to 

assess the learning of mathematical concepts. However, the need for a better way to 

represent conceptual understanding has led to the development of concept maps as an 

alternative tool (Novak & Canas, 2006). Within the realm of mathematics education, 

some researchers (Schimittau, 2004; Afamasa-Fuatai 2004a, b) specifically promote the 

use of concept maps as an means by which one can accurately assess a student’s 

mathematical knowledge.

A concept map is an explicit, graphical representation of knowledge. Concept 

maps can effectively map what is inside the mind to the outside (Tergan, 1988) and 

reveal conceptual understandings that are not generally identifiable by other assessment 

tools (Hasemann & Mansfield, 1995). They provide research participants with a useful 

means for demonstrating understanding and the researcher with an opportunity to witness 

how the student-participant connects ideas and groups or organizes information. In other 

words, concept maps effectively reveal the overall integrated knowledge of the learner.

The theoretical foundation of concept mapping rests upon Ausbel’s theory of 

learning. This theory posits that meaningful learning takes place by assimilating new 

concepts into existing conceptual frameworks held by the learner (Ausbel, 1963; 1968; 

Ausbel et al., 1978). Learners who are asked to draw a concept map must choose visual
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symbols and/or details to represent concepts and to clarify the nature and relationships 

among these concepts. Details and connections between concepts can be added in any 

order. Generally maps are drawn with concepts contained in oval shapes and linking 

words noted on the lines connecting concepts/shapes as below:

Figure 12.1. Concept map: shapes.

proposition

Fiftue I The baenc element of * concept amp is a 

a link that 'hoard the relationship between them. ^

(Source: Rebich and Gautier, 2005, p. 358)

As a visual representation of learning, cognitive maps provide an effective device and 

opportunity for metacognitive reflection.

My aim in using concept maps was to assess the student teacher participants’ 

levels of conceptual understanding pertaining to the task of proving mathematical proofs. 

I assume that high levels of conceptual understanding will be associated with high levels 

of confidence in attacking a proving task and, conversely, low levels of conceptual 

understanding with low levels of confidence in completing a proving task. I established 

two primary indicators for high-level understanding. First, I examined the form and 

structure of the concept map that the student produced. Specifically, I examined three key 

features: the different forms/shapes of the maps; the number of different key terms used 

in the maps and the number of specified relationships among key terms as indicated by 

cross-links. Second, I analyzed the manner in which the construction of the map reflected 

a hierarchy of ‘proving’ skill as established by Balacheff (1988). Briefly, once again, his
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four types of proofs include naive empiricism in which the truth of a result is verified 

with a few examples, crucial experiment in which a result is verified on a particular case 

which is recognized as typical, generic example in which the truth of assertion is made 

explicit using a prototypical case, and thought experiment in which operations and 

foundational relations of the proof are dissociated from the specific examples considered 

(in this case, the proofs are based on the use of and transformation of formalized 

symbolic expressions). Thus, I mapped the conceptual understanding as displayed within 

the student concept maps onto Balacheff s (1988) taxonomy of proofs.

It is important to repeat at this point that participants produced these maps at the 

end of their teacher education program (two weeks prior to the start of their final 

practicum). At least one of their compulsory educational psychology courses includes 

within its curricular content, the concept, nature and function of concept maps. Hence, all 

of the study participants came to the study familiar with concept maps and how to 

construct them. Furthermore, they were Mathematics majors who had completed at least 

twelve 3-credit courses in math. Since the participants had already taken several 

university-level mathematics courses dealing with proofs and proving, it was logical to 

assume that they would recognize and understand most of the concepts/terms provided.

It was likely that they had already developed mental models of mathematical proof as a 

result of their previous exposure to advanced proof and proving within various 

mathematics courses, models that very likely contained some of the twenty-four 

terms/concepts presented to them. By engaging in the concept map process, participants 

were able to embark on a cognitive process of constructing meaning and making sense by 

integrating unfamiliar terms into their pre-existing conceptual frameworks or models. By
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providing a list of terms in advance and offering participants an opportunity to apply all 

or none in their concept maps, I hoped that I would be able to help these student teachers 

broaden their perceptions and expand their abilities to process information (Rebich & 

Gautier, 2005).

Considerations Concerning Analysis

There are a number of important considerations when one undertakes to analyze a 

concept map. First, there is no such thing as a single correct map; rather, there will 

always be a multitude of possible ways in which one can generate a concept map, with 

some maps serving as more informative representations of conceptual understanding than 

others (for example, labels and/or connecting verbs that make relationships explicit and 

relationships that are clearly appropriate reflect considerable conceptual understanding). 

Next, in addition to analyzing what has been included in the concept map, one may 

analyze what is lacking. In other words, analysis can proceed on the basis of the absence 

of essential concepts. Finally, one can analyze a concept map on the basis of its general 

form and structure.

My analysis focuses mainly on the structure of the map, especially the degree of 

complexity indicated by the general form. Vanides, Yin, Tomita and Ruiz-Primo (2005) 

identify four typical structures for concept maps: 1) Linear, 2) Circular 3) Tree and 4) 

Network. The College of Agricultural, Consumer and Environmental Sciences, at the 

University of Illinois also offers four general categories of concept maps: 1) Spider Maps 

2) Hierarchy Maps, 3) Flow Chart Maps and 4) Systems Map (found on-line at 

http://classes.aces.uiuc.edu/ACES 100/Mind/c-m2.html) According to the College, 

concept maps that have a central theme or unifying factor placed in the center and sub
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themes radiating from it can be called a “spider map”. The map that presents information 

in descending order of importance (from top to bottom) is a hierarchy map. A concept 

map that organizes the concept in a linear format is called a flow chart map. And the 

map that organizes information in a similar flow-chart format with the addition of 

“inputs” and “outputs” can be termed a systems map. Classification systems are by no 

means definitive; nor are they exhaustive. A conceptual map will ultimately take 

whatever form best serves the cognitive needs of the individual constructing it—hence, 

structure/form in concept maps is always variable.

More critical than the choice of form is the extent to which the map illustrates 

complex conceptual relationships. One must analyze concept maps carefully in terms of 

how the key terms are used and the way in which relationships among them are specified 

(Jones, 1997). Concept maps that incorporate multiple ideas/concepts in ways that clarify 

conceptual relationships and cross-relationships (commonly referred to as network maps) 

demonstrate sophisticated levels of understanding (Jones, 1997; Vanides, Yin, Tomita & 

Ruiz-Primo, 2005). Vanides, Yin, Tomita and Ruiz-Primo (2005) note that both 

proficient students and subject experts tend to create highly interconnected maps, while 

novices tend to create simple structures that are linear, circular, or organic. Network 

maps, that also include important propositions that correctly describe the conceptual 

relationships that are foundational to the main ideas, demonstrate extremely sophisticated 

conceptual understanding.

Analysis

Three of the 17 students did not attempt the task. Of the remaining 14 who did, 

not one generated a high-level structure—that is, a complicated structure with extensive
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interconnectedness among concepts. See Table 12.1 for a detailed analysis of the student 

teachers’ concept maps with regards to their shape, terms, relationships, and links.

Table 12.1 Observations: Concept Maps.

Name
Form/ Shape of the 
Map

# of key terms 
used (# of 
relationships 
indicated is noted 
in brackets)

Specific
Relationship
shown
(Yes/No)

# of cross 
links between 
concepts

Terms outside the list 
used

Daniel Solar system 19(18) No 0 Proof
Grace Tree 21 (20) Yes (by arrow) 0 Proof
Clare - - - - -

Chandelle Solar system 19(18) no 0 Mathematical Proof

Sara Solar system 11(10) No 0 Proof
Prior Knowledge 
Patterns & Relations 
Puzzle put together

Cathy Crunched different 
terms together (4 
categories for 17 
terms). No 
identifiable shape

19(18) Just once 
(used the term 
deduction)

0 Proof

Terrence Linear 19(18) Yes (by arrow) 0 Problem, Grouping, 
Theory, Special Case

Gita Linear 7(7) Yes (by arrow) 0 -

Deanna Tree 13 (12) No 0 Proof
Tahira Solar system 11(10) Using verbs 0 Proof
Brian Tree 29 (29) 0 0 Proof

Specific cases 
Negative Examples 
Plan
Induction

John Input- Output 17(17) Yes (with 
arrows)

0 Proof

George No particular shape 10(5) Yes With 
verbs

0 -

Spencer Spread out 24 (24) - 0 Proof
Brandon - - - - -

Beth Input-Output 8(5) - -

Philip - - - - -
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Discussion

The task of generating a concept map as a means of demonstrating conceptual 

understanding of “mathematical proof’ proved a challenge for the pre-service teachers. I 

anticipated that participants would be familiar with most of the 24 terms provided since 

most of them are commonly used in the study of mathematical proof. This was not 

necessarily the case. One participant used only seven of the 24 terms listed (the fewest 

used by any participant); she also neglected to include the key term, proof (see Figure 

12.1). This map took a simple linear form. In contrast, another student utilized all 24 

terms from the list plus five more of his own selection (see Figurel2.2). This map took 

the form of a branching tree.

Concept maps were typically simple in structure. For the most part, their shape 

conformed to one of the following structures: a line, branching tree, input-output figure, 

or solar system (see Figures 12.1,12.2,12.3,12.4, and 12.5 below). In most examples, 

the student placed the word “proof’ or “mathematical proof’ at the center of the map and 

then added other terms around and about it. This formation often reflects unsophisticated 

thinking because students can place terms around the central word without necessarily 

considering where they are best positioned in relation to each other. However, one may 

demonstrate complex understanding even with a fairly simple map structure, such as the 

solar system, as long as one thoughtfully adds connecting verbs (see p. 209).

In general, student teachers mapped concepts within oval shapes and then 

connected the shapes by linking them with lines; however, few students made these 

connections explicit by using arrows or labels. I found it especially interesting that none 

of the participants in my study produced maps showing interconnections among the
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terms/concepts. According to Jones and Vanides, et al. (2005), interconnections 

demonstrate high-level understanding of the concept. Only two student teachers used 

linking terms to connect the main concepts with the others (see Figure 12.6 for one such 

example). As well, few students used propositions (verbs) to describe the relationship 

between the concepts.

In his study, Jones (1997) used concept maps to identify those student teachers 

possessing extensive subject knowledge of proof. He discovered that student teachers 

who had completed more mathematics courses than their peers, and who had received 

higher grades, were able to produce sophisticated maps containing a high number of key 

terms. I did not collect data on the exact number and type of mathematics courses taken 

by each participant; however, I did notice that the pre-service teacher who claimed to 

have taken more mathematics courses than any of his classmates, and who referred to 

himself as a “mathematics geek,” also produced the most complex map. His map took the 

form of a tree with branches and sub-branches. He utilized all 24 terms from the list; 

what is more he included five additional terms (see Figure 12.2). This is consistent with 

Jones’ findings (1997): those who excel at mathematics typically produce the most 

complex conceptual maps.

The concept maps produced by the student teachers can be categorized into four 

major types: 1) Linear Maps, 2) Tree Maps, 3) Input-Output Maps and 4) Solar system 

maps. I provide, below, four student generated concept maps, each as an example that 

will illustrate one of these four basic shapes/forms.
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1. Linear Map

Figure 12.1. Linear concept map

GitHnx I C blp&vwflibn f  ~~—P Curd

m p m tm d  — ?  _ >  7 7 , tx o m

Although the College of Agricultural, Consumer and Environmental Sciences 

Website identifies this type of concept map as a “Flow Chart,” I prefer to call it a linear 

map because this term more accurately describes the map’s structure. Vanides, Yin, 

Tomita and Ruiz-Primo (2005) also favour the term “linear”.

Based on this linear concept map, it seems that the student begins by observing 

from a general case (probably what the student teacher had in mind is a general 

observation or a conjecture), and then indicates that one must try another example. If the 

example works, one must provide an explanation for the result. If it does not work, one 

must try “trial and improvement”. The structure of this map suggests conceptual 

understanding that is in line with Balacheff s (1988) crucial experiment. At this level, 

one deals with the question of generalization by examining a case that is not very 

particular. If the assertion holds in the considered case, the student will argue that it is 

valid. Balacheff (1988) notes an example in which two students, in the process of 

working out a mathematical proof, decide to test a polygon with many sides (15). They 

proceed under the assumption that if the proof works in the case of the extreme polygon, 

it will work for all cases. In other words, at this level the thinker checks the statement 

with a carefully selected example that is representative of a certain class.
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This mapmaker did not include in the map either the term “proof’ or 

“mathematical proof;” rather, s/he substituted the term “explanation.” This may be 

because the words “proof’ and “mathematical proof’ had not been included in the list of 

given terms. The inclusion of the “term” explanation may imply that this student teacher 

believes that explanation is one of the functions of mathematical proof. However, it is 

interesting to note that this mapmaker, when completing the first part of the 

questionnaire, did not define proof in terms of “explanation”.
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2. Tree Map

Figure 12.2. Tree concept map

c) Below given is a list of 24 terms associated with 
"mathematical proof". The terms are:

Euclidean 
G$i»FaKa5r 
Graphical 

—Irrefutable ~

-r— Observation
Trial and Improvement ^jneorer 

___3ssumpliun5" ’ ^JteddHis
JSyllogtstir- Deduction

,^-Delinttive _f>astulate- ^ J L em m S ~
B̂Y-contradictioir  ~ —Explanation Hypothesis

-Examines- ' _______^-Tmpnes^ Ptecishnr^
Proposition" Abstraction

Produce a concept map for "ProofVith ANY or ALL of the termC 
given above. You can also use any other term (terms) that ’

. think appropriate.

\cJz-r~-0le< 3 3001

C ^€  S

S*.
7

The concept map above (Figure 12.2) closely resembles a “tree” and constitutes 

the most complex concept map produced by any one participant (as noted earlier, it is the
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work of the student who self-identified as a “mathematics geek”). Yet despite its relative 

complexity, the map lacks the verbs needed to link the concepts. One notable feature of 

this concept map is that it does not progress from an initial stage/start point towards a 

final stage/end point, as did the example noted above (Figure 12.1). Consequently, it is 

difficult to position this student’s understanding within Balacheff s hierarchy of thinking 

and proving skill. It is clear that the student carefully and deliberately lays out all of the 

concepts in a meaningful manner. This suggests that the student teacher has a holistic 

understanding of the concept. This holistic presentation of the concepts as well as the 

extensive detail of the map suggest that this student’s understanding of mathematical 

proof is akin to the level of thought experiment. As noted before, when students operate 

at the thought experiment level they are able to distance themselves from action and 

make logical deductions based upon an awareness of the properties and the relationships 

inherent within the situation. In other words, holistic understanding is necessary if one is 

to operate at the level of thought experiment. It is at this level that students move from 

practical to intellectual proofs.

3. Input-Output Map

The following concept map (see Figure 12.3) takes the form of, what I call, an 

“Input -Output Map”. The inputs are “Hypothesis, “Trial and Improvement” and 

“Theorem”, and the Output is “irrefutable proof.” The mapmaker arrives at output as 

s/he processes the concepts of general case, axioms, reasoning, and logic. I interpret the 

message conveyed by this concept map as follows: Based on the “hypothesis” and using 

“trial and error” (or examples) a theorem can be formulated. One can then prove the 

theorem using either a “Direct Method” or an “Indirect Method”. Whether one uses a
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“direct method” or an “indirect method,” axioms, reasoning, and logic will play a major 

role in the “proving” or the “disproving”.

Figure 12.3. Input-output concept map

This concept map provides one major insight into this student teacher’s 

conception of mathematical proof: s/he believes that once a theorem is proved, it is 

irrefutable—this belief suggests an absolutist philosophy of mathematics (Ernest, 1999). 

Even though far fewer concepts are evident in this map than in the more sophisticated 

‘tree’ map noted above, the mapmaker places the concepts in a deliberate manner.

As noted earlier, research indicates that the greater the number of terms in the 

map and the interconnectedness between them, the deeper the conceptual understanding
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of the mapmaker. Based on the number of terms/concepts used by this student teacher, I 

conclude that his/her understanding of mathematical proof is fairly unsophisticated. The 

input section includes the phrase “trial and error” (that is, trying out various examples); 

but the student teacher also includes the words “general case”. I suggest that the student 

teacher, in his/her use of the term “general case”, means a “generalization of several 

cases observed through trial and error”. This would indicate that the student’s 

understanding of mathematical proof likely corresponds to level three in BalachefFs 

taxonomy of proof —generic example. With generic example, the proof rests upon the 

properties, and the example, and, rather than being specific, represents a generalized 

class. The particular case is not used as a particular case but as an example of a class of 

objects. Justification is based on operations or transformations on the representative 

example and then made upon the whole class.

4. Solar System Map

The most popular format for constructing a concept map proved to be the “solar 

system map” (or “spider map”, if  one prefers the College’s nomenclature; see p. 196). 

Here, the mapmaker places the central theme or unifying factor in the center of the map 

and then organizes related items around the center (see Figure 12.4). In my view, this 

sort o f mapping typically indicates low-level thinking: any number o f terms/concepts can 

be placed around a main concept in no time at all and with little thought. Researchers 

consider Linear Maps (see Figure 12.1) to be the most simplistic of all concept maps; 

however, some degree of careful thought is necessary even at this level since the 

mapmaker must determine where to place each concept “in relationship”. In other words, 

the mapmaker must place each concept term in relation to what has come before, what
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immediately precedes it, what immediately follows it, and what will follow down the 

linear line of relationship. When constructing a solar system map, however, the 

mapmaker need not consider relationships as carefully: concepts placed around a given 

term are usually considered only in relationship to the word placed in the center and not 

in terms of their relationships with the other items in the circle.

Figure 12.4. Solar system concept map

LC

I suggest then, that solar system maps typically reveal less sophisticated thinking than  

linear maps. I align this solar system mapmaker’s level of understanding with one of the 

lower levels in Balacheff s (1988) hierarchy of proofs.
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However, having said that, I do include one example of a solar system map in 

which it seems apparent that the mapmaker gave some thought to the relationships among 

the items in the circle (Figure 12.5). As would be expected with a solar system structure, 

the central concept, “proof’, has been placed in the center of the map with related terms 

around it in a circle. The mapmaker uses various linking verbs to connect the 

terms/concepts that s/he has selected. Unlike other examples of the solar system structure, 

however, here the mapmaker employs a clockwise direction to assist in explaining what a 

proof is. I infer his/her thinking process from the concept map as follows: Proof always 

starts off with “hypothesis/ abstraction/ assumption, proposition”. Proof is accomplished 

by “logic”; it uses “theorems”, “axioms”, “examples” and “reasoning”. Proofs can be 

proved either by “deduction” or by “contradiction”. Proofs require “precision”. A process 

that could be used to improve “proof’ is “trial and error”. Proofs can be learned by 

“observation”. Proofs should apply to the “general case” and should be “definitive”. 

“Nice” proofs are obtained by “Euclidean” and “graphical” methods. Proofs end with 

“postulates” and “explanation”. This example demonstrates that even with a relatively 

simple solar system form, a mapmaker can generate a sophisticated map as long as he/she 

possesses a deep understanding of the concept. I suggest that this mapmaker displays 

high-level understanding of mathematical proof.
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Figure 12.5. Solar system concept map with linking verbs

c) Below given is a list of 24 terms associated with 
"mathematical proof". The terms are:

Euclidean 
General Case 
Graphical 
Irrefutable 
Definitive 
By contradiction 
Examples 
Reasoning

Observation
Trial and Improvement
Assumptions
Syllogism
Postulate
Explanation
Implies
Proposition

Logic
Theorem
Axioms
Deduction
Lemma
Hypothesis
Precision
Abstraction

Produce a concept map for "Proof with ANY or ALL of the terms 
given above. You can also use any other term (terms) that you

f r i l l *

i

General Comments

Among the different structures generated as concept maps, the solar system form 

proved to be the most popular. The reason, I surmise, is because the solar system format 

best accommodates a large number of terms, and students were given 24 terms with 

which to work. As noted earlier, only two student teachers used verbs to specify the 

relationships. Among those terms added by the mapmakers (that is, terms that were not 

included in the original list of 24), the most common was “proof’ or “mathematical
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proof’. Most of the student teachers placed, in a logical manner, only a few of the 

original 24 terms. Those who used a high number of the 24 terms opted for the “solar 

system” format, which, by virtue of its visual design, can easily accommodate quite a 

number of terms. If one uses the following criteria—a high number of terms used in a 

deliberate and logical way—to establish high confidence levels in understanding and 

teaching mathematical proof, then most of the student teachers in this group can be seen 

to operate within the bounds of pragmatic justification.

Summary

Although familiar with concept map structures, these student teachers had 

difficulty generating sophisticated representations of their understandings of 

mathematical proof. They could not effectively incorporate into their maps (even with 

their thinking stimulated by 24 relevant terms) the various sub-concepts and ideas 

associated with proofs and proving. I offer two possible explanations for this. First, 

student teachers may have had difficulty, not with the mathematical concepts per se, but 

with the task of visually representing their understanding of the concepts in the form of a 

concept map. These student teachers were first introduced to concept maps in a class 

setting that had little or nothing to do with mathematics. Now they were being asked to 

apply their learning within a different context, a mathematics classroom. They might 

have found this quite difficult. If this was, indeed, the case, one must ask: Does this 

reflect the degree to which mathematics is compartmentalized and set apart from other 

subjects and basic learning strategies and tools? Second, many of these student teachers 

may, in fact, lack the deep understanding of mathematical proof that would enable them 

to generate sophisticated concept maps. My analysis of the mathematical tasks indicates
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that the student teachers had great difficulty completing the tasks correctly. If one takes 

the concept maps that these students produced as an accurate indication of their depth of 

understanding of mathematical proof, then the results of this representation task clearly 

serve to reinforce my earlier observations pertaining to the mathematical tasks: students 

have difficulty with the concept of mathematical proof.
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CHAPTER 13. LOOKING BACK

Balacheff (1988) in Relation to My Research

Balacheff s (1988) study is one of the most quoted in scholarly and professional 

publications dealing with mathematical proof. His work has influenced many researchers 

and his findings have long been a source of interest and debate. For all of these reasons, I 

wished to conduct a study that would resonate with Balacheff s work. Hence, I adopted 

his research design, carefully considered his findings, and devised a similar study, though 

within a different context. Like Balacheff, I place a great deal of importance on the 

concept of mathematical proof. Also like Balacheff, my interest was to study how 

participants engage in the proving process. Balacheff gave his students ample time to 

complete the task and would only accept their work when both students had agreed that 

they had completed the task; in my case, I also provided sufficient time for the 

completion of all tasks and permitted participants extra time if they needed it.

Yet despite the similarities between Balacheff s work and my own, it is the 

distinctions between Balacheff s study and my own study that warrant particular 

attention. Balacheff conducted his study with junior high school students; in contrast, I 

conducted my study with secondary-school student teachers. Balacheff asked his 

participants to complete just one mathematical task, and allowed them to work in pairs; 

instead, I asked my student teacher participants to complete four different proof tasks and 

had the students work individually. Balacheff enlisted the aid of a research assistant and 

closely observed and recorded student comments as the participants were engaged in the 

process of proving the task; I worked primarily from the mathematical work left on the
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page, the end product of the proving process, and interpreted, from the evidence, how the 

process may have unfolded. I also included an element that Balacheff did not: the use of 

concept maps as a strategy for assessing the depth of conceptual understanding of 

mathematical proof of my student teacher participants. In this component of my study as 

well, I focused my efforts on the analysis of an end product. Consequently, my research 

work includes an interpretative dimension that, one may argue, commonly marks 

research work situated within a paradigm of interpretative inquiry rather than a paradigm 

of positivism.

Context is always critical. It is understandable, then, that contextual changes 

would result in some interesting differences between Balacheff s and my own findings. 

Based on the efforts of his teenage participants, Balacheff outlined a proof hierarchy 

reflecting four increasingly more sophisticated levels of thought and skill pertaining to 

mathematical proof. Moreover, he managed to place all of his students into one of these 

four levels with relative ease. I adopted Balacheff s taxonomy of proof and attempted to 

place each of my student participants into one of these four categories. I worked with 

students who had completed a minimum of 12 university-level mathematics courses: their 

understandings of and experience with proof, likely, far exceeded that of Balacheff s 

thirteen and fourteen year old participants. Since the student teachers were familiar with 

the expected forms for mathematical proof, they tended to try and make their work look 

‘mathematical.’ I found that almost all of the proof work that these student teachers 

placed on the page of the questionnaire reflected traces of thought experiment, the 

highest level in Balacheff s hierarchy of proof. But traces did not necessarily mean that 

the students had successfully operated at the sophisticated level of thought experiment as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



214

they attempted to complete the proof task. There was also evidence of lower levels of 

thought. Indeed, the data indicates that most of these young adults did not operate 

predominately nor successfully at the highest level in Balacheff s taxonomy of proofs. 

Hence, it was difficult to categorize their work and place their proofs into the neat 

categories afforded by Balacheff s well-defined taxonomy

Balacheff s four levels of proof—naive empiricism, the crucial experiment, the 

generic example, and the thought experiment—are developmental. Implicit in this 

hierarchy is the notion that students move from one level to the next, progressing to more 

mature and more sophisticated levels of thinking while embodying what has come before. 

The role of the teacher is to lead the students, by means of classroom discourse, towards 

higher and higher levels. Since I administered the questionnaire at one point in time 

only, my research design did not address student movement from one level to the next. 

Although I administered the various proof and proving tasks towards the end of the 

student teachers’ course w ork, and students had already covered their curricular segment 

on mathematical proof, it is clear that students had considerable difficulty successfully 

completing proof tasks designed for the secondary school level. This is a concern that 

merits further investigation.

I thought it enlightening to compare the various formulas generated by my student 

teacher participants with those generated by Balacheff s much younger and more 

mathematically inexperienced student participants. (Since Balacheff modified many of 

his students’ formulas, what I include below does not reflect the exact formulas that the 

students themselves produced.) For example, compare the formulas of Daniel, Spencer,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



215

Chandelle, and Philip from my study with the formula arrived at by Balcheff s two 

students, Christopher and Bertrand (see below).

Daniel

2 _

C

—•

Spencer

d  -  h j n - 2 )  

2

Chandelle

y

d '  v  ( V ' 3 )

Philip

~ T
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These formulas are similar to the formula that Christopher and Bertrand arrived at: 

n(n-3)/2 . In discussing his findings, Balacheff refers to this particular solution as the one 

that reached the “classical formulation”.

Note as well the formulas of Grace and Sara and how they are similar to the formula 

devised by Martine and Laura in Balacheff s study (see below).

Grace

vhe

d 'a g o n o J js  = Cn-5^ v . . .

The formula that Marine and Laura arrived at was 

(n) = (n-3)+(n-3)+(n-4)+(n-5)+.. .+2+1 

Although less similar, C lare’s formula (a student teacher participant in my study) bears 

some similarity to the formula noted by Marine and Laura above.

Sara

D stands for the number of diagonals
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Consider another instance. Even though Gita (my study) did not give an explicit 

formula, it can be inferred that what she had in mind is that # of diagonals = # of vertices.

Gita’s implicit argument can be compared both to the work of Lionel and Laurent and the 

efforts of and Pierre and Mathieu (Balacheff s study). Both pairs suggested that the 

number of diagonals is n. Notably, Oliver and Stephane and Georges and Olivier 

(Balacheff s study) also had a similar answer. As well, Tahira’s argument (my study), as 

noted in the formula below, is comparable to that put forth by Blandine and Elisabeth 

(Balacheff s study) who argued that the answer is “«/2 or («-l)/2”.

Tahira

One can also draw a parallel between Brian’s answer and that of Blandine and Elisabeth.

. ■ /  '

'2-
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Brian

2 -

>£ ~ 1 

JL

Here, Brian used a functional notation to indicate the number of diagonals rather than

using a variable “n ” or “d ”. He further explained that x stands for the number of

vertices. Compare this again with the work of by Blandine and Elisabeth (Balacheff s

study) who argued that the answer is “n/2 or (n-l)/2”.

There aren’t any formulas in Balacheff s study that gave similarity with 
Cathy

Of particular interest to me were the following formulas. These were unique to my study 

group; none of Balacheff s student participants produced formulas like them.

Terrence

-  2 v /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



219

Deanna

• f i n d  = !f o - f  v €  v V  \c_a_£v SsO ^  n  rvd  V-y\ovN •VV\^

'Ourr\V>€v o f  i< ^ o n .d J ! - r  K  )tq>v  Y \\-c

f i tr^  Vevt-^K -Hoe.t-> 'Zv“* Vtv'j^K \ / -3>-4 .  

Deanna could not come up with a formula, and so could not generalize further.

George

( n n l 3  ,C*>0 □

George did not define n. I assume that he meant n as the # of vertices

John

n| i-~ vXltTW y t e s h  (A *

* * ^  0 ^ .  -  v

Brandon

He defined d  as diagonals and v as vertices
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Beth

C l 'a g 0 / \o o 4 -  iA0*\ a o tjo je f t tc t  GlCfHc**,  

tro (-&£‘jzp v t f  f ) . ^ .  ^ o ^ / v « c f / o  tys ^  O ^  V ' ^ r ' b c ' ^ s  ■

(■5 J

O o -t-c r  e  ^

Beth did not define D and V.

I make these various comparisons to show that even after five or so years of 

advanced mathematics courses, my student teacher participants produced formulas that in 

some respects, are quite similar to those produced by the teenage student participants in 

Balacheff s study. This observation maybe interpreted into two ways: first, it may reflect 

the way in which students embody the lower levels of thinking (as identified in 

Balacheff s taxonomy of proving skill) as they move on to the higher levels of thinking; 

second, it may be interpreted as an indication of similar levels of thinking among the 

participants within the two groups. Given that the participants in my study group were all 

young adults with training in advanced mathematics and that Balacheff s teenage 

participants were, apparently, not students noted for being gifted in mathematics, these 

similarities suggest cause for concern. Are student teachers demonstrating the level of 

thinking skill that one would expect of them as they enter into the classroom as 

mathematics teachers who will be responsible for teaching mathematical proof to 

students much the same age as the young people in Balacheff s study? The data of my 

study suggests that this question warrants further investigation.
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Healy and Hoyles (2000) in relation to My Research

Healy and Hoyles (2000) investigated how high achieving students (top 20% in 

their school populations in England and Wales) understand and evaluate the effectiveness 

of various approaches to proving. The researchers examined proof and proving skill as it 

pertains to only one mathematical domain—that of algebra—whereas my study focused 

on the domains of both geometry and number theory. In their study, they collected data 

using three types of instruments:

1) Students were asked to provide written descriptions about proof;

2) Students were presented with mathematical conjectures and a range of different 

types of arguments in support of them; then they were asked to select from among 

the arguments that which was closest to their own approach and that which they 

believed would receive the best mark from the teacher;

3) Using a multiple-choice format, students were presented with two conjectures, 

one familiar and the other unfamiliar, and the arguments associated with each 

conjecture; students were then asked to evaluate the various arguments offered, 

once again by selecting the best answer based on each multiple choice question 

stem. (In this respect, Healy and Hoyles employed a strategy similar to the one 

used by Martin and Harel (1989) in their study with pre-service teachers.)

Of the three instruments that I used in the collection of data in my study, one 

corresponds to the first instrument used by Healy and Hoyles while the other two differed 

from the those used in that 1989 study. In my study, I posed three questions about the 

nature, role, and function of proof and asked participants to provide written responses. 

Hence, my instrument, so similar to that employed by Healy and Hoyles, also served to
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collect similar types of data. However, when it came to assessing the participants’ ability 

to identify and evaluate effective forms of proof, Healy and Hoyles presented students 

with a variety of already solved proofs and asked them to differentiate among, identifying 

those that made sense that those that did not. In contrast, I asked the student teachers to 

complete the proofs themselves; thus, the participants in my study not only needed to 

identify the best or most effective argument (that which made the most sense), they also 

had to demonstrate an ability to construct those effective arguments.

Our respective findings also bear some scrutiny. Healy and Hoyles (2000) found 

that majority of the students were unable to construct valid proofs in the domain of 

algebra. My study led me to conclude that, in the mathematical domains of both geometry 

and number theory, the student teacher participants experienced considerable difficulty 

constructing correct proofs. Also of note, Healy and Hoyles determined that students 

predominantly use empirical arguments for their own proofs; I noted the same tendency 

among the participants in my study. This was the case even though a majority of the 

participants in both studies realized that empirical proofs sit lower on the hierarchy of 

proof difficulty. Quite a few participants within each of the study groups shared that they 

believe once a proof is established, it is final and cannot be changed. Healy and Hoyles 

came to the conclusion that students firmly believe that teachers expect them to 

demonstrate, in their proof work, complicated algebra. The student teacher participants in 

my study seemed to share a similar point of view: many of them attempted to incorporate 

into their work both complicated formats and various algebraic manipulations with the 

apparent aim of making the proof look “ritualistic”. Healy and Hoyles noted that students 

prefer explanatory arguments most of all; I see a similar tendency among the participants
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in my study. In instances where students failed to prove the proof by means of 

“ritualistic” manipulations, those students typically then opted for narrative form.

Knuth (2002a) in Relation to My Research

Knuth’s (2000a) study and my own were similar with regards to, first, sample size 

and attributes, and, second, aims and focus. Knuth worked with 16 in-service teachers 

and I worked with 17 pre-service teachers. The participants in both studies had close 

associations with secondary level school mathematics and were former mathematics 

majors. One of the central concerns in Knuth’s study was to determine how teachers 

perceived the role and function of proof within the context of the school classroom. My 

study also asked students to consider the role and function of proof as it pertained to 

mathematics instruction at the secondary level. The participants in both Knuth’s study 

group and my own described various roles for proof in the math classroom. These results 

suggest that teachers and student teachers the role of mathematical proof to be multiple 

and diverse. Of particular interest, not one participant in either of the two studies 

mentioned that one function/role of proof is to promote understanding. Knuth explains 

this oddity by pointing out that students’ experiences with proof typically involve 

arriving at a correct final product by means of deductive reasoning; hence, when these 

practicing teachers where students themselves they would have been unlikely to have 

been introduced to proof as a means for developing and enhancing understanding. It is 

not surprising, given this context, that Knuth’s teacher participants also tended to identify 

as correct arguments, those arguments employing symbolic manipulation or particular 

expected formats.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



224

Empirical evidence proved to be important to participants in all studies. After 

having testing their proofs with empirical evidence, a number of participants in Knuth’s 

study developed strong convictions as to the correctness of the conclusion. Both Martin 

and Harel (1989) and Healy and Hoyles (2000) recorded similar observations, even 

though their participants had less extensive backgrounds in mathematics than did 

Knuth’s. My student teacher participants, who, like Knuth’s teacher participants, had 

received an extensive education in mathematical concepts, also seemed to derive a great 

deal of confidence from testing their proofs by means of empirical evidence.

Knuth summarized his study with the statement that teachers’ conceptions of 

proof are somewhat limited; I have come to a similar conclusion. In his doctoral 

dissertation The nature o f  secondary school mathematics teachers ’ conceptions ofproof 

Knuth (1999) noted that “the teachers’ facilities with proof, as well as their proof 

schemes, were in many cases, not what one would expect from individuals who are 

knowledgeable about mathematics and, in particular, from teachers of secondary school 

mathematics” (p. 161). He also notes that reform efforts in mathematics education will 

place serious demands on secondary school mathematics teachers. He concludes: “Their 

[teachers’] success in responding to these demands depends largely on their own 

conceptions of proof. .. .The results of this study suggest that such success may be 

difficult for teachers given aspects of their current conceptions of proof in secondary 

school mathematics” (p. 162) The results of my study, suggest that student teachers who 

are about to begin their teaching careers may experience a similar difficulty.
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Jones (1997) in Relation to My Research

The main similarity between my study and that conducted by Jones is the fact that 

we both used concept maps as a tool to assist us in analyzing prospective secondary 

school teachers’ conception of mathematical proof. Jones administered his task to a 

group of 25 student teachers. The task consisted of generating concepts maps around the 

concept of mathematical proof. Following a brainstorming session, the student teachers 

came up with 24 different terms all related to the idea of mathematical proof. Jones 

aimed to see how student teachers with varying GPAs (the terminology he uses is Pass, 

Third Class Honours, and Second Class Honours) differ in their ability to construct 

concept maps. He based his analysis on the following factors:

(1) number of key terms;

(2) number of relationships;

(3) number of specified relationships;

(4) number of cross links/multiple relationships.

His study led to two findings: first, the higher the student’s qualifications, the 

more terms the student used in constructing the map; and second, the higher the student’s 

qualifications, the more sophisticated the map. Indeed, the most highly qualified student 

teacher produced the most sophisticated map by adding other relevant terms, terms that 

were not on the original list of 24. Jones’ student teacher participants created their 

concept maps during week number 16 in a 36 week-long course.

My study, when set next to that conducted by Jones, offers some interesting 

insights. I opted to use the list of terms as compiled by Jones’ student teachers. I shared 

all 24 terms with my student teacher participants and instructed them to use whatever
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terms they found helpful in constructing their concept maps: they could use all 24, none 

of the 24, or any combination of the 24. There were also welcome to incorporate terms of 

their own choosing, terms that were not present in the original list of 24.

Concept maps, as I noted earlier, are part of the secondary education curriculum 

at this university; yet, for the most part, student concept maps were fairly simplistic, with 

most students selecting one term, placing it in the middle of the page, and adding other 

terms as satellites around it. If one regards complexity of design and extensive detail as 

indicators of sophisticated understanding, then most of the student teachers that generated 

concept maps within my study could be said to have demonstrated rather unsophisticated 

understandings of mathematical proof. If one also regards interconnectedness and clearly 

specified links among the terms as further indicators of high-level understanding, then 

most of the student teachers in my study, by not specifying links, could be said to have 

demonstrated rather simplistic understandings of mathematical proof. Finally, if  one 

considers the clear presence of a high number of terms as an indicator of high-level 

conceptual understanding, then, on the basis of the various ways in which the student 

teachers incorporated terms, I suggest that some demonstrated deeper understandings 

than others. The person who referred to him self as a “mathematical geek” managed to 

incorporate all 24 terms, plus five more that were not on the list, generating a map in the 

shape of a tree with branches and sub-branches. This proved to be the most structurally 

complicated map of any participant. On the other hand, the participant who used the least 

number of concepts—seven—chose them all from the list. This student generated a fairly 

simple, linear concept map. The data provided by the concept maps supports my 

observations based on the data provided by the mathematical tasks: these student teachers
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have difficulty conceptualizing the complex nature of mathematical proof. In general, my 

findings also substantiate Jones’ observations.

The Research Process: Lessons Learned, Lessons Pending

The literature refers to only a few studies conducted with the aim of examining 

the conceptions of proof and the proving skills of prospective secondary-level 

mathematics teachers. Given that student teachers will soon be instructing these very 

concepts to secondary students in the classroom, it is vital that educational researchers 

and teacher educators identify the extent to which student teachers are prepared for this 

challenge. The aim of my research study was to provide a snap shot of future secondary 

school mathematics teachers’ conceptions of proof and their ability to construct proof as 

they neared the end of their preparation programs. I believe I have achieved my goal.

Some of the most important lessons learned in this study, and some of the critical 

areas upon which I shall focus my attention in future research efforts, pertain to research 

methodology. My intention in conducting interviews was to record—in the words of the 

students themselves—the participants’ understandings of how and why they approached 

the various proof tasks in the manner that they did. I wanted to provide students with an 

opportunity to consider the tasks and the completion of the tasks in a meta-cognitive way. 

I believed that such an exercise would be valuable not only to me as the researcher, but to 

each of them, especially at a point in time when they were about to take those first steps 

in establishing their teaching careers in the field.

Unfortunately, the lapse of time between the completion of the task and the 

interview itself prevented me from achieving my goal. I was limited in both the number 

of interviews that I was able to conduct (only three male students responded to my
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request for interviews) and by the lengthy interval between the time when the tasks were 

completed and the time when I was able to sit down with students to discuss the work 

that they had completed. My aim was to interview all students whose task work had 

prompted me to ask questions about what they had done and why; however, this was not 

achieved.

However, I did learn a great deal from and about the interview process. Most 

importantly, I learned that in future I must conduct interviews either immediately 

following the task-work or while the student progresses through the task. Otherwise, 

participants forget, not only what they have done, but also how and why it was done. 

When this happens, the interview fails to fulfill its purpose. Transcripts of the 

conversations reveal my inexperience as an interviewer. I frequently follow the 

participant as he leads us into other areas of discussion; consequently, the interviews 

often deviate from my central concerns. While there is value in the meanderings that 

circle around a topic, at times the interviews moved into clearly irrelevant areas.

Similarly, with the concept map task, it may have been more effective if  I had 

reviewed the concept map process before I administered the task. I learned that the 

students’ experiences with concept maps had been largely limited to non-mathematical 

areas of study: had I discussed the use of concept maps in a mathematical context, and 

provided students with examples of how one might use the concept map as means of 

demonstrating one’s understanding of a particular mathematical concept, the students 

would have been better prepared to tackle the specific concept map representation task 

that I asked of them—the task dealing with mathematical proof.
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Revisiting the Research Question

I began this research study by posing the question “What understandings do 

student teachers possess concerning the notion of mathematical proof?” Now, I have 

sufficient data to provide an answer. In response to my first of two secondary questions- 

“What do student teachers believe about the nature and role of proof’—I have 

determined that the majority of the student teacher participants in this study view proof as 

an integral part of mathematics. Most of them defined proof in terms of its function, and, 

in fact, typically noted both a primary and a secondary function within the scope of their 

definitions. (Note: I identify only primary responses in Table 6.1: secondary definitions 

were not included). Such a response is consistent with findings reported within the 

literature on mathematics education: when asked to define proof, virtually all studies 

show that the participants defined the concept in terms of its function. This suggests that 

student teachers do understand that proof can play different roles in mathematics, even 

though they typically identify verification as the most critical role.

However, participants varied in their views of the role that mathematical proof 

should play in school mathematics. A number of the student teachers regard 

mathematical proof as something that only “smart kids” can comprehend. The goal of 

reform efforts in mathematics education is to assist all students in developing 

sophisticated understandings of proof (NCTM, 2000); but, according to most of these 

student teachers, proof should be reserved for those who are mathematically ‘bright’ 

and/or intending to enroll in advanced-level university mathematics courses. In this 

respect, the student teachers’ beliefs do not reflect the foundational philosophy of reform 

in secondary school mathematics. Moreover, many of the participants stated that the best
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way to learn proof is by “more and more practice”. Such a belief, I contend, suggests that, 

as secondary students themselves, these young people had little, if any, exposure to 

reform principles. Clearly, they do not conceive of the mathematics classroom as a 

learning community in which teacher and students collaboratively construct knowledge. 

In accordance with tradition, quite a few student teachers identified geometry as the true 

home of mathematical proof. This suggests that traditional approaches to mathematical 

proof are still commonplace. Certainly, this is consistent with the findings reported in the 

mathematics education literature.

No matter which of the four mathematical tasks student teachers were engaged in 

proving, they typically, first tried out examples, and then formulated and investigated 

conjectures. This is an important mathematical practice for it develops within students a 

drive to understand why a conjecture is true (Hoyles, 1997). Furthermore, after coming 

up with a conjecture, students then tried to formalize the argument with algebra or with 

natural language. However, when they got stuck and were not sure how to proceed with 

the conceptual argument, they resorted to proving the task by means of empirical 

evidence. It is interesting to note that student teachers who used empirical evidence in 

proving one task did not necessarily use that same approach in other tasks. In other 

words, a student who used empirical evidence to prove one task may have very well have 

used an algebraic approach, a geometric method or, even, a verbal argument to prove 

another task. Tahira, for example, illustrates this. She provided empirical justification for 

the first two tasks (see p. 106 and p. 135); then she took a thought experiment approach 

in proving the third (see p. 175) and the fourth (see p. 191). Similarly, Brian set out to 

prove the first two tasks by means of thought experiments (see p. 150 and p. 173) and
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then provided empirical evidence for the final task (see p. 182). The fact that students 

proved these tasks in various ways (and not simply by providing empirical justifications) 

indicates that students do understand that examples are not always sufficient when it 

comes to proving. (Indeed, I suspect that some students opted for empirical justifications, 

not because they believed these to be the way to generate a valid proof, but because they 

felt that examples were ‘better than nothing.’) It also suggests that students select what 

they deem to be the most appropriate approach to solving the proof on the basis of the 

nature of the task itself. Students did not approach these tasks by applying one 

predetermined, all-purpose proving format.

Student teachers also understand that one may apply different techniques in 

solving proofs, techniques that reflect different ways of reasoning. A number of the 

student teachers in my study believe that proving activities can help students develop 

logical thinking skills that can then be applied to both mathematical and non- 

mathematical contexts. In solving these four tasks, students generally used either 

inductive or deductive justification. In one instance, the student teacher employed proof 

by contradiction, and, in another, the student teacher provided a counter example that 

disproved the task. I observed that when student teachers did not know how to prove the 

task, they resorted to using irrelevant algebraic expressions or the traditional two-column 

format (see p. 175). I also noticed that some students who managed to prove the task by 

means of deductive argument, later verified their result with empirical justifications (for 

example, see pp. 144, 146 and 158).

My study also suggests that logical assumptions about proof and proving are not 

necessarily correct. I included two geometry tasks in my study. Given the fact that, in
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general, teachers introduce geometry proofs to their students by using the two-column 

format, one might assume that students would routinely apply a two-column format when 

asked to complete geometric proofs. Similarly, since teachers introduce proof not only 

with a two-column format, but also as a means of verifying already proven results, one 

might assume that students would routinely approach all verification tasks using a two- 

column format. My study indicates that such assumptions are problematic. Sometimes the 

assumption holds true; but at other times it does not. Student teachers did not always 

apply a two-column format when proving a geometry task; nor did they when seeking 

verification. Instead, they seemed to prefer an explanatory type of proof, one grounded in 

plain language; what is more, they tended to prefer explanatory formats regardless of the 

task involved. In addition, students who employed a thought experiment approach tended 

to favor verbal over symbolic forms. I assumed that most of the students, given their 

extensive backgrounds in mathematics, would opt for a symbolic type of thought 

experiment. However, that was not the case. Hanna (1990; 1995), Hanna and Jahnke 

(1993), and other researchers claim that the explanatory power of proof has more 

pedagogical value than the formalistic. My study supports their assertion. Yet, this 

obvious preference, clearly evident in their mathematical work, was not evident in their 

definitions of proof. It seems there is dis-connect between belief and practice.

The answer that I have arrived at in response to my other secondary research 

question (“How able are student teachers when it comes to completing mathematical 

proof?”) concerns me a great deal. When it came to constructing secondary school-level 

mathematical proofs, this group of student teachers lacked proficiency. Neither did their 

work suggest more proficiency proving one type of task as opposed to another
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(specifically, geometric over number theory, or vice versa). Although student teachers 

understand the role of proof and its various functions both within and beyond 

mathematics, they have great difficulty when it comes to applying that understanding in 

practical ways. Theoretical and practical competencies are not aligned. My answer to this 

question, therefore, leads me directly to another: “How can one develop and enhance 

student teachers’ capabilities and skills when it comes to solving mathematical proofs?” 

Since proof and proving are both central to mathematics and difficult to master, this 

becomes an important question. Quite simply, the concept of mathematical proof is a 

challenging one—it does not matter if the ‘learner’ is a junior high school, secondary, or 

post-secondary student or perhaps a prospective or even a practicing teacher. How can we 

make the difficult do-able? Mathematicians and mathematics educators, by establishing a 

culture o f  proving in all classrooms, may eventually assist learners by shifting their 

perceptions of mathematical proof from ‘that which is impossible’ to ‘that which is 

positively possible.’
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CHAPTER 14. LOOKING AHEAD

Areas for Further Research

The findings of my study raise key questions for teacher educators engaged in the 

important task of assisting student teachers in learning and implementing new methods 

and strategies for introducing mathematical proof to secondary students in the classroom. 

First, what teaching strategies will be most effective when introducing students to proof? 

Educators must develop instructional alternatives to traditional methods of writing the 

proof on the white/black board and asking students to copy it down and memorize it. 

Many of the students in my study used pictorial representation to provide a link between 

the concrete and the abstract/symbolic. Teacher educators would do well to investigate 

how visual representations can assist students in deepening their understanding of proof.

Second, how can teachers identify the critical moments in the proving process 

that are most likely to cause students to become ‘stuck’? Although many of my student 

teacher participants could start a proof, they were unable, in a number of cases, to 

complete it correctly. When they were only one or two steps away from successfully 

completing the proof, they dropped their ideas and turned to a very different approach in 

their effort to prove the task. What signs or indications, evident in the early stages of the 

proving process, might assist teachers in anticipating subsequent moments of ‘mental 

paralysis’? And, how can students themselves learn to anticipate these moments, work 

through them and persevere, ultimately moving on to the next step in the proving process 

and so eventually arrive at a correct proof?
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Third, how can teachers ensure that students become aware of the various 

functions of proof? Clearly, the uses of proof go far beyond verification; yet most student 

teachers continue to view proof precisely in these terms. The data I collected from both 

Section A and Section B of my questionnaire suggest a need for a systematic exploration 

of the occurrence of proofs and proving tasks in different mathematical domains both in 

text books and in classrooms within the province of Alberta. But, an examination of 

where and when proof shows up in the curriculum is not sufficient. Researchers also need 

to address variability. Are teachers and textbooks introducing proof in terms of its 

multiple and diverse functions? And, if  the answer proves to be ‘no’, how can we rectify 

the situation? If proving is to play an instrumental role in the mathematics classroom, 

teachers must go beyond simply making students write more proof exercises, in the same 

manner, for the same purpose as they have done in the past. Only then will we prevent 

what Galbraith (1982) calls a “recycling effect”—when teachers, who lack fundamental 

skills, fail to teach students those fundamental skills, and those students, becoming 

teachers themselves, then perpetuate the process.

My findings also identify a need for further scholarly research in mathematics as 

it relates to cognition. Much of the data collected in this research study consists of failed 

proof attempts that I found difficult to analyze. The data clearly indicates that mastering 

proof is far more challenging than, perhaps, educators generally realize. The student 

teachers in my study often failed to complete a proof correctly because they eventually 

reached an impasse; at this point, they simply did not know what to do. In order to 

understand these failures, it will be necessary to study the processes that students use 

when constructing proofs. More cognitive-based research on proof construction needs to
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be done. In addition, since the proving tasks asked of these students were all drawn from 

or reflective of secondary school level mathematics, further study in student teachers’ 

understanding of content areas and mathematical tasks other than proof and proving 

would be beneficial. Only by addressing precisely what it is that student teachers need to 

understand about mathematics, mathematical thought, and the skills necessary for 

effective instruction of mathematical concepts will teacher educators be able to prepare a 

new generation of teachers for the challenge of introducing a new generation of students 

to the complex mathematical and technological world in which we now live. 

Recommendations: Focus on the Student Teacher

Knuth’s (1999, 2002a, 2002b) research indicates that many practicing teachers 

possess limited understanding of and skill in the area of mathematical proof. Other 

studies—for example, that conducted by Martin & Harel (1989)—report similar findings. 

Hence, my results should not come as a surprise. However, we must remember that 

teachers’ subject matter conceptions represent one of the most important influences on 

their instructional practice and, ultimately, on what students learn (Thompson, 1984). If 

student teachers are to be successful in enhancing the role of proof in secondary 

mathematics classrooms, they must be assisted in constructing a strong understanding of 

the nature and role of proof in the school mathematics curriculum. In other words, as 

Knuth (2002c) notes, teachers/student teachers need to experience proof as a meaningful 

tool for teaching and learning mathematics.

If teacher educators expect student teachers to develop a ‘reformed 

understanding’ of what it means to learn and teach mathematics, then student teachers 

themselves must be offered a wealth of experiences with this mode of learning and with
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this new approach to teaching. I suggest that prospective teachers become involved in the 

process of learning mathematics while they are learning to teach the content: they must be 

challenged both pedagogically and mathematically. However, more mathematics content 

does not necessarily produce mathematical vitality (Ball, 1990; Galbraith, 1982).

Teacher educators need to think about developing a number of mathematical courses 

within the faculty of education, courses geared specifically to the concepts within the 

secondary school mathematics curriculum, courses that allow student teachers to explore, 

extend, and elaborate upon these curriculum concepts so as to construct deep 

understandings of what it is that they must later teach to children and adolescents. By 

grounding these math courses in learning approaches and teaching methods that are 

deliberately aligned with the current reform movement in mathematics education, teacher 

educators will model what student teachers themselves need to learn as they begin to 

explore the possibilities within instructional practice: a new way of teaching mathematics 

that emphasizes the role that math can play in exploring, understanding, and creating the 

world in which we live. This is how teacher educators in mathematics can best meet the 

pedagogical needs of future mathematics teachers.

Mathematics Education: Directions for the Future

Reasoning and proof skills form a pivotal fulcrum in any efforts to reform 

mathematics education. As the NCTM (2000) stresses “Reasoning and proof are not 

special activities reserved for special times or special topics in the curriculum; [rather 

they] “should [be] a natural, ongoing part of classroom discussions, no matter what topic 

is being studied” (p. 342). The effective teaching of “proof and reasoning”, as the NCTM 

(2000) underscores, will develop and promote critical thinking skills in the mathematics
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classroom, skills that can then be applied to various and diverse contexts. Will student 

teachers who have not yet refined their own critical thinking skills when it comes to proof 

and proving be able to teach those skills effectively to their students? I suggest not.

Current reform efforts in mathematics education and curriculum will continue 

to call for an increased emphasis on “reasoning and proof’ as key stepping-stones 

towards a better understanding of mathematics. But this directive cannot be fulfilled if 

teachers themselves lack a solid understanding of “reasoning and proof.” It should be 

clear by now that if  teachers lack such understanding, so too will most of their students. 

The role of the teacher is critical since the instruction that students receive in school 

influences impacts their understandings of mathematics and their ability to solve 

problems and develop logical reasoning and justification skills. Teacher educators must 

remember that when student teachers, demonstrating incomplete understandings of proof 

and proving, return to the educational system as mathematics teachers, they are unlikely 

to rise to one of the central challenges of mathematics education in the early decades of 

the twenty-first century: achieving system-wide reform through a greater emphasis upon 

and wider application of proof and proving in the mathematics curriculum.

Galbraith (1982), some twenty-five years ago, expressed concern about the 

quality of an educational system in which students, failing to master essential 

mathematical concepts, eventually return to the system as mathematics teachers. Clearly 

the quality of education diminishes as incomplete understandings become recycled from 

teacher to student to a new generation of teachers and students. Few, I am certain, would 

doubt the destructive impact of such a “recycling effect” (Galbraith, 1982, p. 90). What I 

find especially distressing, however, is that researchers and educators today continue to
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voice such concerns (see, for example Jones, 2000). This fact suggests how very much 

reform in school mathematics is needed. As the current wave of reform in mathematics 

education begins to flow from the academy into the classroom we must remember that 

ongoing research can serve to facilitate the process. Indeed, further research addressing 

specifically the issues identified within my study is not only necessary, but also vital, if 

teacher educators, practicing teachers, and student teachers are to revitalize the 

mathematics curriculum and implement reforms that will ensure effective teaching and 

effective learning for both teachers and students in mathematics education.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



240

References

Afamasa-Fuatai, K (2004a). An undergraduate student’s understanding of differential 
equations through concept maps and vee diagrams. In A.J. Canas, J.D. Novak, 
&F.M Gonzalez (Eds.) Proceedings o f the First International Conference on 
Concept Mapping. Retrieved January 10, 2007 from 
http://cmc.lhmc.us/papers/cmc2004-208.pdf

Afamasa-Fuatai, K (2004b). Concept maps and vee diagrams as tools for learning 
newmathematics topics. In A.J. Canas, J.D. Novak, & F.M Gonzalez (Eds.), 
Proceedings o f the First International Conference on Concept Mapping. 
Retrieved January 10, 2007 from http://cmc.ihmc.us/papers/cmc2004-208.pdf

Alberta Learning (1996). Program o f study for mathematics. Edmonton, Canada: Alberta 
Learning.

Alibert, D. (1988). Towards new customs in the classroom. For the Learning o f  
Mathematics, 8(2), 31-35.

Almeida, D. (1996). Variation in proof standards: Implications for mathematics
education. International Journal o f Mathematical Education in Science and 
Technology, 27(5), 659-665.

Ausbel, D.P. (1963). The psychology o f meaningful verbal learning. New York: Grune & 
Stratton.

Ausbel, D. P. (1968). Educational psychology: A cognitive view. New York: Grune & 
Stratton.

Ausbel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive 
view (2nd ed.). Holt, Rinehart and Winston: New York.

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. 
Pimm (Ed.) Mathematics, teachers and children, (pp. 216-235). (Trans. By D. 
Pimm). London: Hodder & Stoughton.

________ . (1991). Treatment of refutations: Aspects of the complexity of a
constructivist approach to mathematical learning. In E.von Glassersfeld 

(Ed.) Radical Constructivism in Mathematics Education, (pp. 89-110). Dordrecht: 
Kluwer Academic Publishers.

Ball, D. L. (1990). The mathematical understanding that prospective teachers bring to 
teacher education. The Elementary School Journal, 90(4), 449-466.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cmc.lhmc.us/papers/cmc2004-208.pdf
http://cmc.ihmc.us/papers/cmc2004-208.pdf


241

Bell, A. (1976). A study of pupils’ proof-explanations in mathematical situations.
Educational Studies in Mathematics, 1, 23-40.Blaxter, L., Hughes, C., & Tight,
M. (2001). How to research (2nd ed.). Open University Press: Buckingham.

Chazan, D. (1993). High school geometry students’ justification for their views of
empirical evidence and mathematical proof. Educational Studies in Mathematics, 
24, 359-387.

College of Agricultural, Consumer and Environmental Sciences, University of Illinois. 
Retrieved December 15, 2006 from, 
http://classes.aees.uiuc.edu/ACES 100/Mind/c-m2.html

Conference Board of the Mathematical Sciences. (2001). The mathematical education o f  
teachers. Providence, RI: American Mathematical Society.

Chazan, D & Yrushalmy, M. (1989). Charting a course for secondary geometry. In R. 
Lehrer & D. Chazan (Eds.) Designing learning environments for developing 
understanding o f geometry and space, (pp. 67-90). Mahwah, NJ: Erlbaum.

Coe, R. & Ruthven, K. (1994). Proof practices and constructs of advanced
mathematicsstudents. British Educational Research Journal, 20, 41-53.

Cohen. D. (1987). The use of concept maps to represent unique thought process: toward 
more meaningful learning. Journal o f Curriculum and Supervision, 2, 285-289.

Cohen, L. & Manion, L. (1994). Research methods in education. Routledge: New York.

Creswell, J. W. (1997). Qualitative inquiry research design: Choosing among five 
traditions. Sage Publications: Thousand Oaks.

Cuoco, A. (2001). Mathematics for teaching. Notices o f the American Mathematical 
Society, 48(2), 168-174.

Cyr, S. (2004). Conceptions of proof among pre-service high school mathematics
teachers. In D. E. McDougall & J. A. Ross (Eds.) Proceedings o f  the Twenty-Sixth 
Annual Meeting o f North American Chapter o f the International Group for the 
Psychology o f Mathematics Education, (pp. 569-574). Toronto: Canada.

Davis, B. (2004). Inventions o f teaching: a genealogy. Mahwah, NJ: Lawrence Erlbaum.

Davis, B., D. J. Sumara, & T.E. Kieren. (1996). Cognition, co-emergence, curriculum. 
Journal o f Curriculum Studies, 28, 151-169.

Davis, B. & E. Simmt. (2003). Understanding learning systems: mathematics education 
and complexity science. Journal for Research in Mathematics Education, 34(2), 
137-167.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://classes.aees.uiuc.edu/ACES


242

Davis, B. & Upitis. R. (2004). Pending knowledge: on the complexities of teaching and 
learning. Journal o f Curriculum Theorizing, 20(3), 113-128.

Davis, P. J. & Hersh, R. (1981). The mathematical experience. New York: Viking 
Penguin Inc.

de Villers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24,17- 
24.

__________ . (1999). Rethinking proof with the geometer’s sketchpad. Key Curriculum
Press: Emeryville, CA.

Dunham, W. (1994). Mathematical universe. New York: John Wiley & Sons Inc.

Epp, S. (1994). The role of proof in problem solving. In A.H. Schoenfeld (Ed.) 
Mathematical thinking and problem solving, (pp. 257-269). Hillsdale, NJ: 
Lawrence Erlbaum Associates Publishers.

Ernest, P. (1998). Social constructivism as a philosophy of mathematics: Radical 
constructivism rehabilitated. Retrieved May 14, 2007 from 
www.neonle.ex.ac.uk/PEmest/soccon.htm

Fawcett, H.P. (1938). The nature ofproof. Thirteenth yearbook of the National Council 
of Teachers of mathematics. NY: Columbia University Press.

Fennema, E. & Franke, M. (1992). Teachers’ knowledge and its impact. In D. Grouws 
(Ed.), Handbook o f Research on Mathematics Teaching and Learning, (pp. 147- 
164). New York: Macmillan

Fishbein, E. (1982). Intuition and proof. For the Learning o f Mathematics, 3(2), 9-24.

Frege, G. (1950/1884). The foundations o f arithmetic: a logical-mathematic 
investigation into the concept o f number. Oxford: Blackwell.

________ . (1984). Collected papers on mathematics, logic, and philosophy. Brian
McGuiness (Ed.) Trans. By Max Black. Oxford: Blackwell.

Hasemann, K. & Mansfield, H. (1995). Concept mapping in research on mathematical 
knowledge development: Background, methods, findings and conclusions. 
Educational Studies in Mathematics, 29(1), 45-72.

Galbraith, P. (1982). The mathematical vitality of secondary mathematics graduates and 
prospective teachers: A comparative study. Educational Studies in 
Mathematics, 13(1), 89-112.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.neonle.ex.ac.uk/PEmest/soccon.htm


243

Gardiner, T & Moreira, C. (1999). Proof matters. Mathematics Teaching, 169,17-
21.Hadas, N., Hershkowitz, R., & Schwarz, B.B. (2000). The role of contradiction 
and uncertainty in promoting the need to prove in dynamic geometry 
environments. Educational Studies in Mathematics, 44 (1&2), 127-150.

Hanna, G. (1983). Rigorous proof in mathematics education. OISE Press: Toronto.

________ . (1989). More than formal proof. For the Learning o f Mathematics. 9(1), 20-
23.

________ . (1990). Some pedagogical aspects of proof. Interchange. 21(1), 6-13.

________ . (1991). Mathematical proof. In D. Tall (Ed.) Advanced mathematical thinking,
(pp. 54-61). Dordrecht: Kluwer Academic Publishers

________ . (1995). Challenges to the importance of proof. For the Learning o f
Mathematics, 15(3), 42-49.

________ . (2000). Proof, explanation and exploration: An overview. Educational
Studiesin Mathematics, 44(1), 5-23.

________ . (2000a). A critical examination of three factors in the decline of proof.
Interchange, 31(1), 21-33.

Hanna, G. & Jahnke, H.N. (1993). Proof and application. Educational Studies in 
Mathematics, 24(4), 421-438.

________ . (1996). Proof and proving. In A.J. Bishop, et al. (Eds.) International
handbook o f mathematics education, (pp. 877-908). Kluwer Academic Publishers, 
Dordrecht.

Harding, B. (1999). Proof and justification: A primary teaching perspective. Mathematics 
Teaching. 169, 12-16.

Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for  
Research in Mathematics Education, 31(4), 396-428.

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in 
Mathematics, 24, 389-399.

Housman, D. & Potter, M. (2003). Proof schemes and learning strategies of above
average mathematics students. Educational Studies in Mathematics. 52(3), 139- 
158.

Hoyles, C. (1997). The curricular shaping of students’ approaches to proof. For the 
Learning o f Mathematics, 17(1), 7-15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244

Jahnke, N.H. (2005). A genetic approach to proof. Retrieved January 10,2007 from 
www.lettredelapreuve.it/Newsletter/05Automne/CERME4Jahnke.Ddf

Johnson, M. (2007). Number theory and proving real theorems. Retrieved March 27, 
2007 www.stanford.edu/class/csl03a/handouts/24.%20Real%20Theorems.pdf.

Jones, K. (1997). Student teachers’ conceptions of mathematical proof Mathematics 
Education Review, 9, 21-32.

Joseph, G.G. (2000). The crest o f the peacock: Non-European roots o f mathematics. 
Princeton University Press: Princeton.

Koshy, T. (2002). Elementary number theory with applications. Harcourt Science and 
Technology Company: San Diego.

Knuth, E. J. (1999). The nature o f secondary school mathematics teachers’ conceptions 
ofproof. Unpublished doctoral dissertation. University of Colorado.Denver, 
Colorado.

________ . (2002a). Secondary school mathematics teachers’ conceptions of proof.
Journal for Research in Mathematics Education, 33(5), 379-405.

________ . (2002b). Teachers’ conceptions of proof in the context of secondary school
mathematics. Journal for Mathematics Teacher Education, 5, 61-88.

________ . (2002c). Proof as a learning tool. Mathematics Teacher, 95(7), 486-490.

Knuth, E.J. & Elliot, R.L. (1998). Characterizing students’ understandings of 
mathematical proof. Mathematics Teacher, 91(8), 714-717.

Lakatos, I. (1976). Proofs and refutations: The logic o f mathematical discovery. 
Cambridge, UK: Cambridge University Press.

Latterell, C.M. (2005). Math wars: A guide for parents and teachers. Westport: Praeger.

Leddy, J.F.J. (2001). Justifying and proving in secondary school mathematics. 
Unpublished doctoral dissertation. OISE, University of Toronto, Canada.

Lucast, E.K. (2003). Proof as method: A new case for proof in mathematics curricula. 
Unpublished masters’ thesis. Carnegie Mellon University, Pittsburgh, United 
States.

Luthuli, D. (1996). The proof of Euclidean geometry riders as an exercise in 
mathematical creativity. Pythagoras, 41, 17-26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.lettredelapreuve.it/Newsletter/05Automne/CERME4Jahnke.Ddf
http://www.stanford.edu/class/csl03a/handouts/24.%20Real%20Theorems.pdf


245

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers understanding 
o f fundamental mathematics in China and the United States. Mahwah, NJ: 
Lawrence Erlbaum.

Marrades, R., & Guiterrez, A. (2000). Proofs produced by secondary school students 
learning geometry in a dynamic computer environment. Educational Studies in 
Mathematics, 44, 87-125.

Maher, C.A. & Martino, A.M. (1996). The development of the idea of mathematical 
proof: A five year case study. Journal for Research in Mathematics Education. 
27(2), 194-214.

Manin, Y. (1997). A course in mathematical logic. New York: Springer Verlag.

Martin, W.G. & Harel, G. (1989). Proof frames of preservice elementary teachers. 
Journal for Research in Mathematics Education, 20(1), 41-51.

McMurray, R. (1978). Flow proofs in geometry. Mathematics Teacher, 71(11), 592-595.

Moreira, C. (1999). Reflections on proof in mathematics and mathematics education. In 
Ahmed, H. Williams, and J.H. Kraemer (Eds.) Cultural diversity in mathematics 
(education): Cheaem 51, (pp. 347-353). Chichester: Horwood Publishing.

National Council of Teachers of Mathematics. (1989). The curriculum and evaluation
standards for school mathematics. Reston, VA: National Council of Teachers of 
Mathematics.

________ . (1991). Professional standards for teaching mathematics. Reston, VA:
National Council of Teachers of Mathematics.

________ . (1995). Assessment standards for school mathematics. Reston, VA: National
Council of Teachers of Mathematics.

________ . (2000). Principles and standards for school mathematics. Reston, VA:
National Council of Teachers of Mathematics.

Newman, L. (2000). The meanings of methodology, Chapter 4. Social research methods: 
Qualitative and quantitative approaches. Needham Heights, MA: Allan & 
Bacon.

Novak, J.D. (1990). Concept mapping: A useful tool for science education. Journal o f  
Research in Science Teaching, 27, 937-949.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



246

Novak, J. D. & Canas, A. J. (2006). The theory underlying concept maps and how
toconstruct to construct them. Technical Report IHMC Cmap Tools 2006-01. 
Florida Institute for Human and Machine Cognition. Retrieved January 10, 2007 
from
http://cmap.ihmc.us/Publications/ReserachP apers/TheorvUnderlvingConcentMap 
s.pdf

O’Daffer, P.G. & Thomquist, B.A. (1993). Critical thinking, mathematical reasoning 
andproof. In P.S. Wilson, (Ed.) Research ideas for the classroom: High school 
mathematics, (pp. 39-56). New York: Macmillan Publishing Company:

Polya, G. (1960). How to solve it. In J. R. Newman (Ed.) The world o f mathematics (Vol. 
III). Soho, London: Novello & Co., Ltd.

Philip, D.C. (2000). An opinionated account o f the constructivist landscape. In D.C. 
Philip (Ed.). Constructivism in Education: opinions and second opinions on 
controversial issues, (pp. 1-15). Chicago, IL: National Society for the Study of 
Education.

Rebich, S., & Gautier, C. (2005). Use of concept mapping to reveal prior knowledge and 
conceptual change in a mock summit course on global climate change. Journal o f  
Geosciences Education, 53(4), 355-366.

Raman, M. J. (2002). Proof and justification in collegiate calculus. Unpublished doctoral 
dissertation. University of California, Berkeley.

________ . (2003). Key ideas: what are they and how can they help us understand how
people view proof? Educational Studies in Mathematics, 52(3), 319-325.

Rodd, M.M. (2000). On mathematical warrants: Proof does not always warrant, and a
warrant may be other than proof. Mathematical Thinking and Learning, 2(3), 221- 
244.

Reid, D. A. (1995). The need to prove. Unpublished doctoral dissertation. University of 
Alberta, Canada. (2002). What is proof? International Newsletter on the teaching 
and learning o f mathematical proof. Retrieved Nov 23, 2006 from 
http://www.didactique.imag.ff/preuve.

________ . (2005) The meaning ofproof in mathematics education. Paper presented to
working group 4: Argumentation and proof. Fourth annual conference of the 
European Society for Research in Mathematics Education, (pp. 17-21). Sant 
Feliu de Guixols, Spain. February 2005.

Rowland, T. (2001). Generic Proofs: Setting a good example. Mathematics Teaching, 
111, 40-43.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cmap.ihmc.us/Publications/ReserachP
http://www.didactique.imag.ff/preuve


247

Schimittau, J. (2004). Use of concept mapping to reveal prior knowledge and conceptual 
change in mock summit course on global climate change. Journal o f Geosciences 
Education, 53, 355-366.

Schoenfeld, A.H. (Ed.) (1994). Mathematical thinking and problem solving. Hillsdale,
NJ: Lawrence Erlbaum Associates Publishers.

Senk, S. L. (1985). How well do students write geometry proofs? Mathematics Teacher, 
78(6), 448-456.

________ . (1989). Van Hiele levels and achievement in writing geometry proofs. Journal
for Research in Mathematics Education, 20(3), 309-321.

Simon, M. & Blume, G. (1996). Justification in the mathematics classroom: A study of 
prospective elementary teachers. Journal o f Mathematical Behavior, 15(1), 3-31.

Stigler, J.W. & Hiebert, J. (1999). The teaching gap: Best ideas from the world's teachers 
for improving education in the classroom. New York, NY: Free Press.

Siu, M. (1993). Proof and pedagogy in ancient china: Examples from liu hui’s
commentary on jiu zhang suan shu. Educational Studies in Mathematics, 24, 345- 
357.

Sowder, L. & Harel, G. (1998). Types of students’ justifications. Mathematics Teacher, 
91(8), 670-675.

Tergan, S.O. (1988). Qualitative wissenanalyse. Methodogische Grundlage, In H. Mandl 
and H. Spada (Eds.). Wissenpsychologie. Munchen: Psychologic Verlags Union.

Thompson, A.G. (1984). The relationship of teachers’ conceptions of mathematics and 
mathematics teaching to instructional practice. Educational Studies in 
Mathematics, 15(2), 105-127.

Thurston, W.P. (1995). On proof and progress in mathematics. For the Learning o f  
Mathematics. 15(1), 29-37.

Vanides, J., Yin,Y., Tomita, M., & Ruiz-Primo, M.A. (2005). Using concept maps in the 
science classrooms. Science Scope, 28(8), 27-31.

Yackel, E. & Cobb, P. (1996). Socio-mathematical norms, argumentation and autonomy 
in mathematics. Journal for Research in Mathematics Education, 27(3), 458-477.

Yin, R. K. (1984). Case study research: Design and methods. Beverly Hills, CA: Sage 
Publications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



248

Wilder, R. (1978). Evolution o f Mathematical Concepts. Milton Keynes: Open University 
Press (original date of publication: 1968; New York: Wiley).

Williams, E. R. (1979). An investigation o f senior high school students understanding o f  
the nature o f mathematical proof Unpublished doctoral dissertation. University 
of Alberta, Canada.

Winchester, I. (1990). Introduction: Creativity, thought and mathematical proof. 
Interchange, 21(1), i-vi.

Wu, H. (1996). The role of euclidean geometry in high school. Journal o f Mathematical 
Behavior, 15,221-237.

________ . (1997). On the education of mathematics teachers. Retrieved March, 23, 2007
frommath.berkeley.edu/~wu/teacher-education.pdf.

Zazkis, R. (1999). Challenging basic assumptions: Mathematical experience for pre
service teachers. International Journal o f Mathematical Education in Science and 
Technology, 30(5), 631-650.

Zazkis, R., & Campbell, S. R. (1996). Divisibility and multiplicative structure of natural 
numbers: Preservice teachers’ understanding. Journal for Research in 
Mathematics Education, 27(5), 540-563.

________ . (2006). Number theory in mathematics education. Perspectives and prospects.
Mahwah, N.J: Lawrence Erlbaum.

Zazkis, R., & Khoury, H. (1994). To the right of the decimal point: Pre-service teachers’ 
concepts of place value and multi-digit structures. Research in Collegiate 
Mathematics Education, 1, 195-224.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



249

Appendix -I  
Questionnaire

Student Teachers’ Conceptions of Mathematical Proof

General Information 

Name:

Sex: M F

E mail:

Phone number (if you prefer to be contacted by phone):
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1. For the past two decades, mathematics education circle have witnessed a world 
wide trend toward a gradual return to the teaching of proof in high school 
program of studies.

a) Describe what the notion of proof means to you.

b) In your opinion, what is the best way to develop students’ ability to write proof?
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c) In your opinion after all, is it important for high school students to learn how to 
write proof? Why?

d) Additional comments on teaching and learning of proof.
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2. For the following given tasks, please show all your work.

a) Prove that when you multiply any 3 consecutive numbers, your answer is always 
a multiple of 6.
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b) Provide a means of calculating the number of diagonals of a polygon when you 
know how many vertices it has.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



254

c) Below given is a list of 24 terms associated with “mathematical proof’. The terms
are:

Euclidean Observation Logic
General Case Trial and Improvement Theorem
Graphical Assumptions Axioms
Irrefutable Syllogism Deduction
Definitive Postulate Lemma
By contradiction Explanation Hypothesis
Examples Implies Precision
Reasoning Proposition Abstraction
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d) Prove that the sum of the exterior angles of a polygon is always 360°.
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e) How do you know whether there exists a two digit number “ab” such that the 
difference between “ab” and “ba” is a prime number?
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Appendix -II

Sample Information Letter for students involved in the study

Date

Dear

I am inviting you to take part in a small research study entitled “Student Teachers’ Conception of 
Mathematical Proof’. The aim of this study is to understand how student teachers perceive the 
notion of mathematical proof. Investigating and describing how student teachers understand proof 
will enable university educators to reformat their curricula that focus on enhancing and guiding 
student conceptions of mathematical proof (if needed). The results of this research will be 
disseminated as a Thesis submitted to the University of Alberta, at academic and teacher 
professional conferences and workshops and through academic and professional journals. 
Knowledge gained from this study can provide student teachers an insight into their own 
understanding of mathematical proof. This insight will also help student teachers formulate 
instructional practice that complies with NCTM (2000) standards.

During the course of this research, you will be invited to participate by completing a 
mathematical task. You will respond to this task in writing. The task will be administered on a 
week day after your class and it should not take more than 60 minutes of your time. You will be 
informed of the time and venue in advance. The mathematical task WELL NOT BE USED to 
test your mathematical ability, but to simply see the way you respond to a task about 
mathematical proof.

All data will be handled in compliance with the standards reflected in the GFC Policy Manual 
section 66 entitled “Human Research -University of Alberta Standards for the Protection of 
Human Research Participants”. This document is available on the University website at 
http://www.ualberta.ca/~unisecr/policv/sec66.html. Names of all participants will be changed to 
ensure anonymity, and the name of the section or class and other identifiers will also be kept 
anonymous. Information collected -documents, tapes, transcripts etc. will be kept for a minimum 
of 5 years following completion of this research in a secure locked cabinet.

You may withdraw from this project at any time without any negative consequences. Any 
information related to your participation would be destroyed and not used within the written 
report, or any follow up publications or presentations.

This study has been reviewed and approved by the Faculties of Education and Extension 
Research Ethics Board (EE REB) at the University of Alberta. For questions regarding participant 
rights and ethical conduct of research, contact the Chair of the EE REB at (780) 492 3751. If you 
have any questions or concerns about the research study, please feel to contact me (Thomas 
Varghese: thomasv@ualberta.ca~) or my supervisor Dr David Pimm (dpimm@ualberta.ca~).

Thank you for your co-operation.

Sincerely,

Thomas Varghese
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Appendix-III

Sample Information Letter for those being interviewed

Date

Dear

I am inviting you to take part in a small research study entitled “Student Teachers’ 
Conception of Mathematical Proof’. The aim of this study is to understand how student 
teachers perceive the notion of mathematical proof. Investigating and describing how 
student teachers understand mathematical proof will enable university educators to 
reformat their curricula that focus on enhancing and guiding student conceptions of proof 
(if needed). The results of this research will be disseminated as a Thesis submitted to the 
University o f Alberta, at academic and teacher professional conferences and workshops 
and through academic and professional journals.

Knowledge gained from this study can provide student teachers an insight into their own 
understanding of mathematical proof. This insight will also help student teachers 
formulate instructional practice that complies with NCTM (2000) standards.

During the course of this research, you will be invited to participate in a semi structured 
interview. The interviews will be audio taped. The purpose of the interview IS NOT to 
test your mathematical ability, but to see the way you understand mathematical 
proof.

All data will be handled in compliance with the standards reflected in the GFC Policy 
Manual section 66 entitled “Human Research -University of Alberta Standards for the 
Protection of Human Research Participants”. This document is available on the 
University website at http://www.ualberta.ca/~unisecr/nolicv/sec66.html. Names of all 
participants will be changed to ensure anonymity, and the name of the school and other 
identifiers will also be kept anonymous. Information collected -documents, tapes, 
transcripts etc. will be kept for a minimum of 5 years

This study has been reviewed and approved by the Faculties of Education and Extension 
Research Ethics Board (EE REB) at the University of Alberta. For questions regarding 
participant rights and ethical conduct of research, contact the Chair of the EE REB at 
(780) 492 3751. If you have any questions or concerns about the research study, please 
feel to contact me (Thomas Varghese: thomasv@ualberta.cal or my supervisor Dr David 
Pimm (dpimm@ualberta. cat.

Thank you for your co-operation.

Sincerely,

Thomas Varghese
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Appendix-IV

Sample Consent Letter for students involved in the study

I,__________________________________________ , herby consent to participate
(print name)

in the research “Student Teachers’ Conception of Mathematical Proof’ conducted by 
Thomas Varghese at the University of Alberta. By signing this form I agree to:

Take part in the written task regarding the notion o f mathematical proof.

I understand that:

• The task is not to test my mathematical ability and will not be used in the course 
or anywhere else to decide my grades.

• I may withdraw from the research at any time without penalty.

• All information gathered will be treated confidentially and discussed only with 
the researcher’s supervisors).

• Any information that identifies me will be destroyed upon completion of this 
research.

• I will not be identifiable in any documents resulting from this research.

I also understand that the results of this research will be used only in the thesis produced 
and in presentations, written articles in various scholarly journals

(Signature)

(Date)

If you have any questions or concerns about the research study, please feel to contact the 
researcher (Thomas Varghese: thomasv@ualberta.cal or his supervisor Dr David Pimm 
(dnimm@,ualberta. cat.
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Appendix-V

Sample Consent Letter for those being interviewed

I,__________________________________________ , herby consent to participate
(print name)

in the research “Student Teachers’ Conception of Mathematical Proof’ conducted by 
Thomas Varghese at the University of Alberta.

By signing this form I agree to:

Take part in a one-on-one interview regarding the notion o f mathematical
proof

I understand that:

• The task is not to test my mathematical ability and will not be used in the course 
or anywhere else to decide my grades.

• I may withdraw from the research at any time without penalty.

• All information gathered will be treated confidentially and discussed only with 
the researcher’s supervisor(s).

• Any information that identifies me will be destroyed upon completion of this 
research.

• I will not be identifiable in any documents resulting from this research.

I also understand that the results of this research will be used only in the thesis produced 
and in presentations, written articles in various scholarly journals

(Signature)

(Date)

If you have any questions or concerns about the research study, please feel to contact the 
researcher (Thomas Varghese: thomasv@ualberta.ca) or his supervisor Dr David Pimm 
(dpimm@ualberta.cal.
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