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Abstract

The problem of moving heat sources is central to a wide range of industrial fields, in-

cluding welding, surface heat treatment and additive manufacturing. However, there

are few general and easily applicable solutions to predict critical thermal character-

istics of heat flow such as the cooling rate and dimensions of the heat affected zone,

which have a decisive effect on the metallurgical and mechanical properties of the

workpiece. Design rules in the form of asymptotes and correction factors have been

obtained for the first time to predict critical thermal characteristics in welding and

other moving heat source processes.

Design rules are presented for 13 critical thermal characteristics based on Rosen-

thal’s point heat source model. Related thermal characteristics are: maximum isotherm

width and its location, leading and trailing lengths of isotherm, centerline heating rate

and cooling rate, peak temperature and its gradient at the maximum width, aspect

ratio of isotherms, melting efficiency, cooling time from 800◦C to 500◦C, solidifica-

tion time, thickness of the heat affected zone, and modification criteria to account for

the effect of joint preparation. Dimensional analysis suggests that all dimensionless

characteristics depend on a single dimensionless parameter that captures all possible

cases. This dimensionless number is the Rykalin number (Ry), except for the dimen-

sionless maximum temperature, which depends on the distance from the centerline.

Ry can be interpreted as a Peclet number, and it reflects the effect of advection rela-

tive to conduction. The obtained design rules are accurate to within 7% of the exact

analytical solutions.

Although the point heat source model captures isotherm characteristics for all
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values of Ry, it cannot provide reliable estimations in the vicinity of the heat source

because of the singularity at the origin, which is intrinsic to the assumption of point

heat source. For the first time, design rules for the peak temperature and the pen-

etration depth have been obtained based on a moving Gaussian surface heat source

on a thick substrate. In dimensionless form, peak temperature depends on the di-

mensionless distribution parameter. Penetration depth depends on two dimension-

less quantities: Ry and the dimensionless heat distribution parameter. Conventional

blending techniques are extended to multiple dimensionless groups. Correction factors

associated with the heat distribution parameter have been developed to improve the

accuracy of point heat source solutions. The maximum error of estimation from the

exact solution is below 0.19% for the peak temperature and 9.7% for the penetration

depth. Prediction of peak temperature and the penetration depth is accurate within

the range of validity of the assumptions in the moving Gaussian surface source model.

The obtained design rules have an excellent agreement with published measurements

and simulation data for various processes and material systems.

This research has addressed the problems associated with applying sophisticated

numerical simulations that are often challenging for practitioners to use and empirical

expressions that can hardly be generalized to other processes due to the lack of the-

oretical foundation. Derived from the first principles, the obtained design rules are

general and capable of reflecting quantitative effects of operating parameters (e.g.,

power and velocity of the heat source) on resulting thermal characteristics. They are

simple enough to be calculated with a calculator or spreadsheet and can also verify

numerical models. The systematic methodology of asymptotic analysis and blending

can be extended to other disciplines besides welding.
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3.7 Centerline Heating Rate Ṫf . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Maximum Temperature Tmax . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Gradient of Maximum Temperature dTmax/dy . . . . . . . . . . . . . 72

3.10 Aspect Ratio AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Melting Efficiency ηm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 Cooling Time t8/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.13 Solidification Time at Centerline tsl . . . . . . . . . . . . . . . . . . . 78

3.14 Thickness of the Heat Affected Zone ∆yHAZ . . . . . . . . . . . . . . . 80

3.15 Effect of Joint Preparation Geometry . . . . . . . . . . . . . . . . . . 81

3.16 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.17 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Prediction of Peak Temperature under a Moving Gaussian Surface

Heat Source 94

x



4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Normalization and Dimensional Analysis . . . . . . . . . . . . . . . . 99

4.5 Asymptotic Analysis, Blending and Correction Factors . . . . . . . . 100

4.6 Scaling Analysis of Peak Temperature Tmax . . . . . . . . . . . . . . . 102

4.7 Scaling Analysis of Maximum Distribution Parameter σmax . . . . . . 107

4.8 Scaling Analysis of the Location of Peak Temperature xmax . . . . . . 109

4.9 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 Example of Application . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.A Derivation of Asymptotic Behaviors . . . . . . . . . . . . . . . . . . . 125

4.B Data Collected from the Literature Survey . . . . . . . . . . . . . . . 130

5 Penetration Depth under a Moving Gaussian Surface Heat Source

on a Thick Substrate 131

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Methodology of Asymptotic Analysis and Blending . . . . . . . . . . 136

5.4.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.2 Blending of Asymptotic Solutions . . . . . . . . . . . . . . . . 139

5.5 Asymptotic Analysis and Blending of Maximum Isotherm Depth . . . 141

5.5.1 Asymptotic Analysis of Maximum Isotherm Depth . . . . . . 141

5.5.2 1D blending in Contiguous Regimes . . . . . . . . . . . . . . . 142

5.5.3 Blended Equation Applicable to all Regimes . . . . . . . . . . 145

xi



5.6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7 Example of Application . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.A Location of z∗max in Regime V and VI . . . . . . . . . . . . . . . . . . 159

5.A.1 Regime VI Ry → 0, σ∗/σ∗
max → 1 . . . . . . . . . . . . . . . . 160

5.A.2 Regime V Ry → ∞, σ∗/σ∗
max → 1 . . . . . . . . . . . . . . . . 161

5.B Data Collected from the Literature . . . . . . . . . . . . . . . . . . . 164

6 Conclusions and Future Work 165

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendix A: MATLAB Codes 183

A.1 Calculating the peak temperature induced by a moving Gaussian sur-

face source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.2 Calculating the maximum isotherm depth under a moving Gaussian

surface source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Appendix B: Supporting figures for blending results in Chapter 3 191

B.1 Asymptotes, error map and correction factors for the maximum tem-

perature at y∗c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Asymptotes, error map and correction factors for the gradient of max-

imum temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.3 Asymptotes, error map and correction factors for aspect ratio of isotherms199

B.4 Asymptotes, error map and correction factors for melting efficiency . 203

xii



List of Tables

2.1 Variables used in Chapter 2 with the units and description . . . . . . 54

3.1 Variables used in Chapter 3 with the units and description . . . . . . 60

3.2 Summary of characteristic values and correction factors for welding on

thick plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Variables used in Chapter 4 with the units and description . . . . . . 95

4.2 The laser absorptivity, heat distribution parameter, thermal proper-

ties, processing parameters and reported peak temperature used in the

validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1 Variables used in Chapter 5 with the units and description . . . . . . 132

5.2 The heat source efficiency, heat distribution parameter, thermal prop-

erties, processing parameters and the maximum isotherm depth re-

ported in the validation. . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.1 Summary of thermal characteristics and correction factors derived from

a moving point heat source model. . . . . . . . . . . . . . . . . . . . 168

6.2 Summary of thermal characteristics and correction factors derived from

a moving Gaussian surface source model. . . . . . . . . . . . . . . . . 169

xiii



List of Figures

1.1 Point heat source moving with constant velocity on a semi-infinite solid 5

2.1 Costs of simulation, prototypes, and design rules. For the aerospace

industry, a prototype is much more expensive than simulations. For

welding, a prototype is often cheaper than simulations, resulting in

trial-and-error approaches. Design rules are much less expensive than

simulations, and should enable a design approach where it is seldom

done currently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Comparison between Equation 2.12 and Equation 2.13. The solid

line is u∗
c({Π}) = 1 + 1

2
[1 + tanh (Π)], and the dash line represents

u∗
c({Π}) = 1 + 1

2

[
1 + π

2
arctan

(
π
2
Π
)]
. Two constant asymptotics are

1 and 2,respectively. The center point Π = 0 and its slope is the same

for both functions but the dash line is less steep than the solid line. . 36

2.3 Correction factors for maximum isotherm width ymax [96] . . . . . . . 45

2.4 Characteristic hardness in HAZ as a function of cooling time between

800◦C and 500◦C [160]. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Characteristic values of isotherm T = Tc for a moving point heat source

on a semi-infinite solid . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Dimensionless leading length as a function of Ry. The exact solution

and the approximation of Equation 3.28 overlap within the thickness

of the line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiv



3.3 Aspect ratio of the isotherm T = Tc for different Ry values under a

moving point heat source on a semi-infinite solid . . . . . . . . . . . . 75

3.4 Schematic of V-groove joint preparation (a), and single bevel joint

preparation (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Dimensionless peak temperature T ∗
max as a function of dimensionless

heat source distribution parameter σ∗. . . . . . . . . . . . . . . . . . 103

4.2 Relative error of blending for dimensionless peak temperature as a

function of dimensionless heat source distribution parameter σ∗ for

the optimal value n = −1.946. The error tends to zero for both high

and low σ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Maximum error for dimensionless peak temperature as a function of

blending parameter n. Minimized maximum error is 0.19% at the

optimal value n = −1.946. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Correction factors to estimate peak temperature. For σ∗ < σ∗
VI =

0.1480 or σ∗ > σ∗
V = 3.098, the maximum error of directly using asymp-

totic is less than 10%. The correction factors cross over at σ∗
c = 0.6638. 106

4.5 Dimensionless maximum distribution parameter of the heat source as

a function of T ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Correction factors to estimate the maximum distribution parameter.

For T ∗ < T ∗
V = 0.3960 or T ∗ > T ∗

VI = 8.994, the maximum error of

directly using simple formulas is less than 10%. The correction factors

cross over at T ∗
c = 1.887. . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Dimensionless location of peak temperature x∗
max as a function of di-

mensionless heat source distribution parameter σ∗. . . . . . . . . . . . 111

4.8 Relative error of blending for the location of peak temperature as a

function of dimensionless heat source distribution parameter σ∗ near

the optimal value n = −0.9347. . . . . . . . . . . . . . . . . . . . . . 112

xv



4.9 Maximum error for the location of peak temperature as a function

of blending parameter n. Minimized maximum error is 0.47% at the

optimal value n = −0.9347. . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Correction factors of two simple formulas to estimate the location of

peak temperature. For σ∗ < σ∗
VI = 0.07089 or σ∗ > σ∗

V = 8.532, the

maximum error of directly using simple formulas is less than 10%. The

correction factors cross over at σ∗
c = 0.7650. . . . . . . . . . . . . . . 115

4.11 Comparison of explicit blending solution Equation 4.21 with published

data for peak temperature in laser processing. . . . . . . . . . . . . . 117

4.12 Plot of the integrand exp[f(θ)] at σ∗ = 1000, x∗ = −1000, y∗ = 0

over [0, π
2
). exp[f(θ)] increases with increasing θ until θmax and then

decreases exponentially. Interval over [0, δ) where θmax ≪ δ ≪ 1,

contributes the most part of the integral. . . . . . . . . . . . . . . . . 126

4.13 Plot of the integral in Equation 4.34 (
∫∞
0

exp

{
−1

2

[(√
σ∗θ

)2
+ x∗

σ∗

]2}
d
(√

σ∗θ
)
)

as a function of x∗/σ∗. When x∗/σ∗ = -0.7650, the integral reaches its

maximum of Im = 1.280. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Dependence of dimensionless isotherm depth z∗max on σ∗/σ∗
max in Regime

II and VI. For a given Ry, z∗max decreases with increasing σ∗/σ∗
max.

When σ∗ = 0, z∗max converges to the solution of a point heat source.

The asymptote in Regime II and Regime VI shown by the dashed line

and dotted line are derived from asymptotic analysis of Equation 5.12. 143

5.2 Dependence of dimensionless isotherm depth z∗max on Ry in Regime

V and VI. The asymptotes in Regime V and Regime VI are derived

from asymptotic analysis of Equation 5.12. The exact solution and its

blended counterpart are undistinguishable in this graph. . . . . . . . 145

xvi



5.3 Error map of Equation 5.30 as a function of σ∗/σ∗
max ≤ 0.9 and Ry ≤

1000. When n1 = −1.465, n2 = −1.960, n3 = −3.223, n4 = −2.459,

the maximum error is below 9.7% compared to the exact analytical

solution. Within area bounded by dash lines, using asymptotes only

yields an error smaller than 10% compared to the analytical solution. 148

5.4 Comparison of a point heat source solution with published data for the

maximum isotherm depth. . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Validation of the blended expression for a Gaussian heat source (Equa-

tion 5.30) against published experimental data for the maximum isotherm

depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.1 Dimensionless maximum temperature as a function of y∗c . . . . . . . 191

B.2 Blending error for the maximum temperature as a function of y∗c for

exponents n at or near the optimal value . . . . . . . . . . . . . . . . 192

B.3 Maximum blending error for the maximum temperature as a function

of blending parameter n . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.4 Correction factors for the maximum temperature . . . . . . . . . . . 194

B.5 Dimensionless gradient of maximum temperature as a function of Ry 195

B.6 Blending error for the gradient of maximum temperature as a function

of Ry for exponents n at or near the optimal value . . . . . . . . . . . 196

B.7 Maximum blending error for the gradient of maximum temperature as

a function of blending parameter n . . . . . . . . . . . . . . . . . . . 197

B.8 Correction factors for the gradient of maximum temperature . . . . . 198

B.9 Aspect ratio of isotherms as a function of Ry . . . . . . . . . . . . . . 199

B.10 Blending error for aspect ratio of isotherms as a function of Ry for

exponents n at or near the optimal value . . . . . . . . . . . . . . . . 200

B.11 Maximum blending error for aspect ratio of isotherms as a function of

blending parameter n . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xvii



B.12 Correction factors for aspect ratio of isotherms . . . . . . . . . . . . . 202

B.13 Melting efficiency as a function of Ry . . . . . . . . . . . . . . . . . . 203

B.14 Blending error for melting efficiency as a function of Ry for exponents

n at or near the optimal value . . . . . . . . . . . . . . . . . . . . . . 204

B.15 Maximum blending error for melting efficiency as a function of blending

parameter n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.16 Correction factors for melting efficiency . . . . . . . . . . . . . . . . . 206

xviii



Chapter 1

Introduction

1.1 Background

Welding is a common fabrication process of permanently joining two pieces of com-

ponents into one and has widespread applications across several industrial sectors to

make metal parts, tools, machines and equipment used in construction and manufac-

turing plants as a reliable and inexpensive joining method. From a microscopic point

of view, welding can be defined as the processes of making atoms (or ions, molecules)

from separate components close enough to share bonds under the combined action of

heat and pressure, sometimes with an intermediate or filler metal[101].

Welding processes can be categorized into three types according to distinctive

mechanisms, diffusion welding (diffusion), solid-state welding (plastic deformation),

and liquid welding (melting). For instance, in fusion welding, one of the liquid weld-

ing processes, a fraction of base materials, edges or surfaces typically, is heated up to

melting by various sources of energy. Since the emergence of welding as a manufac-

turing process in the late nineteenth century with the development of arc welding and

oxy-fuel welding, various advanced welding methods such as electric resistance weld-

ing (ERW), shielded metal arc welding (SMAW), gas metal arc welding (GMAW),

submerged arc welding (SAW), flux-cored arc welding (FCAW) have been developed.

Typical thermal cycles in welding contain several time intervals as follows. The

temperature remains at the ambient temperature (or preheat) before the supply of
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heat. Once the heat arrives at the point of interest, the temperature rises rapidly until

it reaches the melting point of the substrate and then cools down to the initial tem-

perature at a rate dependent on process parameters and thermal-physical properties

of the substrate [101]. A large number of parameters relative to involved physics such

as heat and mass transfer, fluid dynamics, electromagnetism, thermodynamics make

welding very difficult to understand at an intuitive level. Practical questions about

heat flows in welding are not easily answered by existing knowledge; for example, the

question “what is the size of a weld by a given set of welding parameters?” is difficult

to answer, even as a rough approximation. Similar questions are: “what are tempera-

ture cycles occurring during welding under given welding conditions” (have a decisive

influence on the quality of weld), “what is the maximum temperature?” (important

in almost all applications and materials systems). In all these cases, the answers

depend on the welding conditions (typically the preheat, heat from the source, heat

dissipation to the environment, the chemistry of the base material, and travel speed

of the heat source). The answers are not the same for different types of welds or

welding processes.

Design rules in the form of simple formula and correction factors abound in heat

transfer and fluid dynamics, such as calculating stress concentration in solid mechanics

and fluid dynamic drag. However, there are very few of these design rules in the field

of materials processing. Current codes and standards are material-specific or process-

specific. One of the most commonly used codes, American Welding Society (AWS)

D1.1, was specifically developed for welded structure made from the commonly used

carbon and low-alloy constructional steels[9]. One consequence is that the answers to

practical questions provided by these codes or standards are difficult to be extended

or synthesized into basic rules applicable for another case of different weld material

despite that they all respond to very similar heat transfer phenomena. A compilation

of design rules applicable to general welding conditions and materials is essential at

the initial design stage to save time and effort in trial-and-error tests.
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A good example of design rules is the following formula in European Union stan-

dards [18] to estimate cooling time t8/5 , which is defined as the time it takes for the

weld metal to cool from 800◦C to 500◦C and typically used as a metric of cooling

rate in the welding of steels:

t8/5 =
q

2πkU
×

(
1

T500 − T0
− 1

T800 − T0

)
(1.1)

where q is the net heat absorbed by the base material, U is the travelling speed

of the heat source, k is the thermal conductivity of the substrate, and T0 is the

ambient temperature. T500 and T800 is 500◦C and 800◦C, respectively. Equation 1.1

is modified with the appropriate shape factors for unalloyed and low alloyed steels

with a different joint preparation:

t8/5 = (6700− 5T0)×
q

U
×
(

1

T500 − T0
− 1

T800 − T0

)
× F

The relationship between the welding conditions and the cooling time t8/5 can be

described in closed-form as a simple formula (Equation 1.1), which is the solution to

the most idealized case and a correction factor F to capture the effects of different

joint geometries. For example, F = 1 for a run on plate weld, and F = 0.9 for a

butt weld [18]. The empirical term, (6700 − 5T0), is added to take account of the

variations on the value of thermal conductivity with temperature. However, source of

the empirical term and the applicability of Equation 1.1 are not identified in European

Union standards.

The ultimate goal of this research is to develop a set of design rules in the stan-

dardized form of simple formula and correction factors that can predict (or reason-

ably estimate) important weld properties valid for general welding procedures with

different alloys, process conditions and operating parameters. This research will sig-

nificantly reduce the money and effort put in the trial and error stage and provide

general guidance for the satisfactory production and control of welds.
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1.2 Literature Review

Heat flow studying and modelling is essential in welding research to describe and un-

derstand the effects of welding parameters, such as preheat, heat input and travelling

speed on the heat distribution, which directly impacts the properties and qualities of

welds [37, 108]. There are numerous publications in the thermal modelling of weld-

ing and other manufacturing processes, such as surface heat treatment and additive

manufacturing [42, 48, 73, 76, 84, 96, 100, 126, 128, 157]. Because of constraints in

length, only appropriate literature where derivations, examples, and comprehensive

literature surveys are treated in great detail will be briefly reviewed.

Moving Point Heat Source

Starting from the 1930s and continued to the 1960s, the theory of moving heat source

model was introduced and expanded for general treatments of metals by Rosen-

thal [126–128], Boulton [17] and Rykalin [131], but that had been solved before in

1904 by Wilson [154] and in 1923 by Roberts [125] for the case of mass transfer. The

model is illustrated in Figure 1.1 and consists of a point heat source of intensity q

moving in steady state along a straight line (x-axis) with constant velocity U on the

flat surface of a semi-infinite solid with constant thermophysical properties.

Assumptions

Assumptions involved in the point heat source model are an infinitesimal size of heat

source, quasi-steady state, infinitely thick plate, constant travel speed and heat inten-

sity, no change in physical state and constant thermal conductivity and diffusivity.

• Point heat source

The temperature value is infinity as the heat is approximated as a single con-

centrated point on the plate surface. Rosenthal and Schmerber [129] cautioned

the application of this 3D model and the obtained temperature solution for lo-
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Figure 1.1: Point heat source moving with constant velocity on a semi-infinite solid

cations in the vicinity of the heat source of less than a few millimetres (≈ 6 to

8 mm) based on their measurements of seven temperature isotherms in welding

of mild steel with thermocouples. The singularity is not observed in practical

systems, and preliminary study [36, 67] has indicated that the application of

a distributed heat source can improve the accuracy of prediction for area near

the heat source. A circular Gaussian distributed surface source which includes

the additional parameter of heat distribution parameter σ would be used as the

next step in complexity beyond a point heat source.

• Quasi-steady state

A complete welding process can be divided into three intervals by sequence:

the initial transient stage, quasi-stationary state, and the transient termination

state. The quasi-steady state is a steady state condition to the moving heat

source and develops quickly after the initiation and before the termination of

the heat source. The time required to reach the quasi-steady state is in the

order of seconds for the common arc welding processes [72, 144]. No change in

the size or shape of the isotherms can be noticed if an observer stationed at the
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location of the heat source. This assumption can be justified experimentally

when the length of the weld is long compared to the extent of heat.

• Infinitely thick plate

The assumption is valid for a small bead-on-weld pass deposited on thick ma-

terial, such as most root pass welds, single or multipass welds with partial

penetration in arc welding processes [66]. Numerical results show that the tem-

perature distribution of the area close to the centre of the weld is determined by

three-dimensional heat flow [109]. Following this work, a criterion to distinguish

between thick or thin plates is proposed in [84].

• Constant travel speed and the heat intensity

The thermal power from the heat source absorbed by the solid can be estimated

based on the nominal power of the heat source and thermal efficiency. For the

case of arc welding, the heat absorbed by the substrate can be estimated as

q = ηV I, where V and I are the voltage and current of the welding process.

• No change of physical state in the substrate

The physical state of the base material remains solid during the processes, i.e.,

there is no melting of the substrate. Absorption of latent heat at the front of

the weld pool and its release at the rear is not considered. For typical structural

steel, the Stefan number, defined as the ratio of sensible heat to latent heat, is

approximately 3 [102]. For the case of steels in typical welding conditions, it

was demonstrated in [86, 147] that solidification and solid-state phase transfor-

mations cause only small departures on the prediction of maximum isotherm

width.

• Adiabatic surface: no convection or radiation heat loss

The heat dissipation on the plate surface to the external atmosphere in con-

vection or radiation is usually considered negligible. Experimental work by
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Tekriwal and Mazumder [139] estimated that the heat loss due to convection is

less than 5% of the total amount of heat involved. A criterion to ignore sur-

face heat loss within 10% error compared to Rosenthal’s thin plate solution is

proposed in [83].

• Constant thermal conductivity and diffusivity of the substrate

In reality, these thermal properties vary considerably with temperature and

particularly, thermal conductivity is also sensitive to the composition of the

base material. A closed-form solution to the temperature distribution is difficult

to obtain considering variable thermal properties with temperature. Effective

values of thermal properties can be used to mitigate the influence of temperature

dependence. They can be calculated as average values for both the thermal

conductivity and specific heat over the range from room temperature to the

melting point [129], or values of thermophysical properties that correspond to

some intermediate temperature [72, 73, 139].

Model Refinement and Validation

Hess [57] proposed a modification of the cooling rate given by fitting Rosenthal’s

solution with the experimental measurements of the cooling curves under various

welding conditions. Grosh [54] derived an analytical solution for temperature distri-

bution of a moving point heat source on the substrate with a linear dependence of

thermal properties on temperature. Adams [3] proposed an empirical relationship for

centreline cooling rate and peak temperature distribution as functions of geometric,

thermal and welding variables based on Rosenthal’s moving point heat source model.

It confirmed that the cooling rate is not sensitive to the distance from the weld cen-

treline. Centreline cooling rate is only 5% to 10% higher than that in the weld HAZ

and can be therefore treated as the representative of the cooling rate in the entire

weld region [67]. The same conclusion can also be found in [61, 69]. Jackson [64]
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provided an extension of Rosenthal’s solution and obtained the temperature field in

an infinite slab with phase changes. Myers [108] summarized a comprehensive review

on Rosenthal’s moving point theory and found that reasonably good predictions can

be made for the width of the heat-affected zone, and trends of cooling rates can be

well predicted.

Among the all the experimental validations of Rosenthal’s thick solution, Chris-

tensen’s work [22] was especially thorough, and validated the exact solution for the

case of welding using many characteristic values in common with those presented here

(experiments tested ymax both as width and depth, xmax, xf−xb, xmax−xb, Tmax, Ṫb)

and put experimental measurements in dimensionless form to validate multiple weld-

ing processes and materials over wide ranges of heat input. The reference temperature

considered was the melting temperature, which is beyond the range of validity of the

model, and the results were still consistent with the model. Predictions for width,

trailing length, and cooling rate are typically useful for engineering purposes, while

the predictions for leading length at the melting temperature tend to be underesti-

mated because the size of the heat source is typically larger than the leading length.

An estimate of weld penetration is also typically unreliable because convection in the

molten metal plays a significant role. Remarkably, Rosenthal’s idealized solution was

proved to be effective despite its simplicity.

Malmuth [86] presented mathematical solutions for thermal cycles and weld ge-

ometry by considering the effect of the latent heat of fusion and concluded that

the latent heat has negligible effects on the maximum bead width and penetration.

A similar conclusion was made in [147] by solving the free boundary problem of

conduction and taking account of the emission and absorption of the latent heat.

Nunes [114] proposed an extended Rosenthal weld model, taking account the effects

of phase changes by thermal dipoles and circulations in the weld pool by thermal

quadrupoles. The obtained temperature field may be represented approximately in

multi-polar expansion form. Eagar and Tsai [36] developed a solution to the size of
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weld pools induced by a travelling two-dimensional Gaussian distributed heat source

on a semi-infinite plate as a function of process parameters and material properties,

and the agreement with experiments was improved over the original Rosenthal model.

Niles [112] reported that an increase in travel speed or current level results in an in-

crease in melting efficiency in GTAW processes. This relationship was correlated

quantitatively by Okada [115] based on Rosenthal’s moving point heat source model.

The maximum melting efficiency is 36.8% at high travel speeds for three-dimensional

heat flow. Fuerschbach [44] proposed a dimensionless parameter that correlated well

with the measured melting efficiencies and developed a simple monomial equation for

melting efficiency of three-dimensional heat flow empirically, which was later adopted

by DuPont [33, 34] and achieved a good representation of his experimental results,

where single pass welds of 308 stainless steel were deposited on a 6.4-mm-thick A36

steel substrate. Fuerschbach [43] used dimensionless parameters (Ry number and Ch

number) to relate the size of a laser weld to the net heat absorbed by the substrate

with thermal properties chosen at the liquidus temperature. The proposed empiri-

cal expression achieved excellent correlation with the melting efficiency of continuous

power laser welding.

Myhr and Grong [109] established dimensionless maps numerically as a general

outline to predict temperature distributions of a moving heat source on plates of dif-

ferent thickness and thermal properties. The accuracy of the maps was tested against

in situ thermocouple measurements and numerical analysis of stringer bead welds.

Fuerschbach [45] used the moving point heat source model to calculate the effective

values of thermal conductivity and diffusivity by least square fitting and generated

useful dimensionless parameters (including the Ry number studied in this research

analytically) to compare with the experimental data. The generation of dimensionless

parameters is remarkable because it allows direct comparisons between experimental

data collected from different welding conditions. Poorhaydari [121] modified Rosen-

thal’s thick solution to estimate the cooling rate with a weighting factor developed
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empirically from the width of the HAZ to account for the effect of intermediate plate

thickness.

1.3 Methodology of Asymptotic Analysis and Blend-

ing

The methodology of asymptotic analysis and blending is well suited for multiphysics

and multicoupled problems. It has been widely applied in many engineering disci-

plines such as heat transfer and fluid dynamics [123]. It focuses on characteristic

values, not every point in the domain, and consists of a simple formula derived from

a simplified problem and correction factors for the neglected phenomena in the sim-

plified problem. The methodology of asymptotic analysis and blending consists of six

steps in general [96, 100, 149]:

1. List all physics considered relevant.

2. Identify dominant factors. Identification of dominant factors can be investigated

analytically, experimentally, numerically or conceptually based on engineering

understanding and experience. When an exact solution is available, dominant

factors can be identified directly from asymptotic analysis of the analytical

solution, which is the case of the moving heat source problems solved in this

thesis. Another example of analytical approaches is the order of magnitude

scaling analysis (OMS) by comparing the order of dimensionless groups revealing

the relative significance of different phenomena [91]. Another approach is to

postulate dominant factors when the exact solution is unknown and check for

self-consistency in Step 4 [100].

3. Solve approximate problem considering only dominant factors to obtain a simple

formula, typically in the form of power laws.

4. Check for self-consistency.
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5. Compare predictions to “reality”, where “reality” are characteristic values from

experiments or numerical simulations.

6. Create correction factors

The maximum width of isotherm produced by a moving point heat source on a thick

plate is used here as an example to illustrate these six steps in detail. Asymptotes and

correction factors were developed considering the following analytical temperature

field as the “reality” [65, 128, 154]:

T (x, y, z) = T0 +
q

2πkr
exp

[
− U

2α
(r + x)

]
(1.2)

where x, y and z constitute the independent spatial variables and r is the radial

coordinate defined as r =
√

x2 + y2 + z2. The heat source is considered stationary

and the substrate moves in the −x direction. The temperature, T = T (x, y, z), is the

dependent variable and also depends on the problem parameters. U is the velocity

of the heat source relative to the substrate. q is the thermal power from the heat

source absorbed by the solid, k and α is the thermal conductivity and diffusivity of

the substrate, respectively. T0 is the ambient temperature.

Equation 1.2 is a reasonable representation of welding under a wide range of oper-

ating parameters and materials, often termed as the “Rosenthal thick plate solution”.

The singularity at the origin (r = 0) is a consequence of the point heat source as-

sumption.

Equation 1.2 can be rewritten in a normalized form as:

T ∗ =
1

r∗
exp (−r∗ − x∗) (1.3)
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where

T ∗ =
4πkα (T − T0)

qU
(1.4)

x∗ =
Ux

2α
(1.5)

y∗ =
Uy

2α
(1.6)

z∗ =
Uz

2α
(1.7)

r∗ =
Ur

2α
(1.8)

where the ∗ superscript indicates a dimensionless quantity. The methodology of

asymptotic analysis and blending is now applied to illustrate how asymptotes to

simplified problems can be combined with a constant blending parameter to obtain a

closed-form solution with high accuracy.

Step 1: List All Physics Considered Relevant. The list must include domi-

nant physics and may include secondary phenomena. Phenomena that are considered

especially relevant in this example include conduction in the solid substrate, advection

caused by the motion of heat source, surface heat losses via convection and radiation,

latent heat associated with phase changes, electromagnetic, fluid dynamics, surface

physics, and many more.

Step 2: Identify dominant factors. Assumptions in the point heat source model

on a thick plate instinctively indicate two dominant factors: conduction in the work-

piece and advection by the motion of the heat source. The following physics are

considered secondary:

• Point heat source assumption: the shape and heat flux distribution of the heat

source have negligible effects on the temperature field.

• Infinitely thick plate: the effect of plate thickness is secondary.
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• Adiabatic surfaces: surface heat losses through convection and radiation are

considered negligible.

• No phase transformations: phase transformations from solid to liquid have little

effect on the resulting isotherms.

• Constant thermal properties: temperature dependence of thermal conductivity

and diffusivity has little effect on the temperature profile.

Two dominant physics establishes two asymptotic regimes: Regime I, where advec-

tion dominates and Regime II, where conduction dominates. The division of regimes

is not sharp, and it can be determined where a dominant factor has the same magni-

tude as the largest secondary term [100, 148]. These asymptotic regimes yield simple

expressions for the characteristic values, usually in the form of power laws. The

vicinity near the separations of asymptotic regimes is the “intermediate regimes”.

Dimensional analysis states that a problem can be described with dimensionless

groups, and the number of these groups is fewer than that of parameters plus system

variables [100]. The number of dimensionless groups in a problem is given by the num-

ber of magnitudes with dimension minus the number of independent units involved

and minus one when the temperature is not measured in absolute terms [152]. Equa-

tion 1.2 involves nine magnitudes with units: x, y, and z, temperature T (x, y, z), T0,

q, k, U , and α and four independent units for the magnitude with dimension: m, kg,

s, ◦C. Because all temperatures in the case have an arbitrary zero, the number of di-

mensionless groups is 9−4−1 = 4. Three of them can be associated with independent

dimensionless groups x∗, y∗ and z∗, one with the dependent variable T ∗(x∗, y∗, z∗).

The dimensionless maximum isotherm width y∗max of the isotherm at the temper-

ature of interest T = Tc depends only on one dimensionless group. It is important

to keep in mind that Tc is an additional parameter that constrains the temperature

field T (x, y, z) to a constant value. Equation 1.3 involves four degrees of freedoms

(DOFs), related to the four independent dimensionless groups (x∗, y∗, z∗, T ∗). One
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constraint is T = Tc. The definition of y∗max contains two more constraints: z∗ = 0,

and y∗max = max(y∗), leaving only one DOF. This DOF can be assigned to the Rykalin

number (Ry) proposed by Fuerschbach [43]:

Ry =
qU

4πkα (Tc − T0)
(1.9)

Ry relates the effect of advection caused by the motion of the heat source relative to

conduction in the solid substrate. Therefore, a high Ry value can be interpreted as a

“fast heat source” where advection dominates over conduction. A low Ry value can be

interpreted as a “slow heat source” with heat transfer dominated by conduction [96,

148, 149].

Step 3: Solve approximate problem considering dominant factors Approx-

imate problems are often obtained manually, and recent progress has contributed

algorithms to implement the solving process with commercialized software. There

are four typical approaches to obtain a solution to an approximate problem [100].

The approach of asymptotics of closed-form expressions is employed here because the

analytical temperature field is available.

Asymptotic analysis of Equation 1.3 yields the following power laws [96, 148, 149]:

ŷ∗maxI
(Ry) =

√
2Ry

e
for Regime I (fast) (1.10)

ŷ∗maxII
(Ry) = Ry for Regime II (slow) (1.11)

where the symbol ̂ indicates that the magnitude is an asymptotic approximation.

Step 4: Check for self-consistency. In this simple and uncoupled example, self-

consistency is easy to check. Because only two physics are considered as the dominant

phenomena, it is assured that when one physic dominates the system behaviour, the

other one is negligible. For complex cases where three or more phenomena are cou-

pled, it is necessary to check that secondary physics is of secondary magnitude com-

pared to the dominant ones. This can be done by calculating the value of secondary
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physics using estimated characteristic values and comparing with the magnitude of

the dominant physics.

Step 5: Compare predictions to “reality”. Derived from the analytical tem-

perature field under a moving point source on a thick plate, the “reality” used here to

calibrate the deviations from the idealized behaviour is the maximum isotherm width

calculated from Equation 1.2 numerically.

The obtained asymptotes for each asymptotic regime are less accurate in inter-

mediate values (Ry=O(1)). For these intermediate values, an explicit and accurate

solution can be obtained using the blending functions proposed by Churchill and Us-

agi [23, 26]. A blending function proposed for the dimensionless maximum isotherm

width is:

y∗max(Ry) ≈ ŷ∗
+

max(Ry) =
[
ŷ∗maxI

(Ry)n + ŷ∗maxII
(Ry)n

]1/n
(1.12)

where n is the blending parameter and the + superscript indicates improvement over

the asymptotic approximations. Equation 1.12 remains the exact asymptotic be-

haviour for both asymptotic regimes for any finite value of n. The error is not zero

for intermediate values of Ry and is defined as:

error = ln
ŷ∗

+

max

y∗max

(1.13)

The definition of error is consistent with [91, 93, 98]. It can generate comparable

magnitudes for large errors, especially convenient for power-law functions.

The blending parameter n was determined using a minimax optimization approach

as detailed in [96]. When n = −1.731, the maximum error of Equation 1.12 compared

to the analytical solution over the whole domain of Ry is less than 0.7236%.

Step 6: Create correction factors. Equation 1.12 can also be used to create

correction factors that extend the usefulness of the asymptotic expressions. The

correction factors fymaxI
(Ry) and fymaxII

(Ry) for the characteristic value ymax have the
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following expressions [96]:

ymax ≈ ŷ+max = ŷmaxI

{
1 +

[
ŷ∗maxII

(Ry)

ŷ∗maxI
(Ry)

]n}1/n

= ŷmaxIfymaxI
(Ry) for Regime I (fast)

(1.14)

ymax ≈ ŷ+max = ŷmaxII

{
1 +

[
ŷ∗maxII

(Ry)

ŷ∗maxI
(Ry)

]−n}1/n

= ŷmaxIIfymaxII
(Ry) for Regime II (slow)

(1.15)

Equations 1.14 and 1.15 are exactly equivalent and they are the same approximation

to the exact solution, but based on different starting regimes. As Ry approaches

infinity (Regime I), fymaxI
(Ry) tends to 1 and for Ry approaching 0, fymaxII

(Ry) tends

to 1. The value of n for Equations 1.14 and 1.15 are the same as for Equation 1.12.

Substituting the two asymptotics (Equation 1.10 and Equation 1.11) into Equa-

tion 1.14 and Equation 1.15, the following expression for the correction factors of the

maximum isotherm width are obtained [96]:

fymaxI-II
(Ry) =

[
1 +

(√
eRy

2

)±n]1/n

(1.16)

where the exponent +n corresponds to Regime I, and -n corresponds to Regime II.

The maximum error of approximation is always smaller than 0.7236% at the optimal

value of n = −1.731.

1.4 Objectives

The ultimate objective of this research is to develop a set of design rules for welding

on thick plates in the form of simple formula and correction factors to predict crit-

ical thermal characteristics of interest to practitioners and engineers. The following

objectives have been fulfilled:

• Establish a general and rigorous methodology of asymptotics and blending to

model materials processing with a focus on dimensional analysis and character-

istic values.
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• Identify critical thermal characteristics of interest to engineers and develop de-

sign rules in the form of simple formula and correction factors based on the

most idealized analytical model in welding: a moving point heat source on an

infinitely thick plate (Rosenthal’s thick plate solution).

• Establish design rules for the peak temperature of the workpiece based on the

moving Gaussian distributed surface heat source model to quantify the role of

heat distribution parameter. Validate the obtained design rules against pub-

lished experimental measurements and simulation data.

• Establish a closed-form design rule to predict the penetration depth under a

moving Gaussian surface source and develop a correction factor for the heat

distribution parameter. Validate the applicability of the obtained design rules

against experimental measurements and simulation results from the literature.

1.5 Thesis Outline

An outline of each chapter included in this thesis (excluding the introduction) is listed

below:

• Chapter 2 describes a novel methodology of asymptotic and blending that has

never been applied in the field of welding to predict critical thermal characteris-

tics values of heat flow in the modelling of welding. The proposed methodology

has the applicability to correlate experimental measurements, numerical simu-

lations, or theoretical values.

• Chapter 3 lists design rules for 13 critical characteristic values of heat flow in

welding using the methodology proposed in Chapter 2. Simple formula and

correction factors have been derived based on Rosenthal’s thick plate solution.

The design rules developed in dimensionless form have only one dependence on
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a dimensionless group, the Rykalin number (Ry). All design rules are accurate

to within 7% of the exact analytical solutions.

• Chapter 4 presents an application of the methodology of asymptotic analysis

and blending to predict the peak temperature rise and its location and the

maximum distribution parameter to reach a certain peak temperature based

on a moving Gaussian distributed surface heat source model. The obtained

expressions remain the exact asymptotic behaviour in asymptotic regimes. The

maximum error of approximation in the domain is 0.19%, and 0.47% for the

peak temperature and its location, 1.4% for the maximum feasible heat distri-

bution parameter. The proposed design rules have an excellent agreement with

experimental and simulation data collected from the literature for a wide range

of processes and materials.

• Chapter 5 presents a correction factor associated with the heat distribution pa-

rameter to improve the accuracy of prediction for the maximum isotherm depth.

Based on a moving Gaussian surface source model, the dimensionless isotherm

depth depends on Ry and the dimensionless heat distribution parameter, σ∗.

Conventional blending techniques have been extended to blend functions de-

pendent on two dimensionless groups. The maximum error compared to the

analytical solution is smaller than 9.7%. Despite the considerable simplifica-

tions instinct in the employed analytical model, the obtained design rules are

accurate, at least as accurate as measurements.

• Chapter 6 is a summary of the main findings in this thesis, conclusions, and

recommendations for future work.

• Appendix includes supporting figures and Matlab codes for the related thermal

characteristics.
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Chapter 2

Asymptotics and Blending in the
Modeling of Welding

2.1 Abstract

Important welding questions are often easy to ask and difficult to answer. For exam-

ple, the question “what is the width of the weld?” is essential for understanding the

strength of a weld, but it is currently answered through trial and error, or through

sophisticated numerical modeling. In this work, it is proposed that there is a third

approach based on a deep understanding of physics, and a basic command of mathe-

matics. From the point of view of the practitioner, the answer can be approximated

using formula, tables, and graphs of great generality. In this approach, the aspect of

interest of the weld is reduced to its minimal representation, neglecting all secondary

physical phenomenon. Mathematically, this corresponds to an asymptotic regime. In

contrast with other asymptotic techniques such as perturbation analysis, in the pro-

posed methodology, blending techniques are applied. The advantage of these blending

techniques is that they approach the exact solutions (typically within a few percent-

age points) but involve only a few constants that are suitable to be transmitted in

print. Much of the existing work on heat transfer outside welding is summarized in

this form, but the approach has not been applied to welding yet. Some welding prob-

lems are outside the range of standard blending techniques, and an extension of the

techniques will be discussed. The application of this approach will also be discussed
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using the width of the weld and other related problems.

2.2 Introduction

The complexity of an engineering problem can be decomposed into the complexity of

its physics, which can be assessed by the number of parameters related to the physics

of the problem, and the complexity of its geometry, given by the number of parameters

necessary to capture the shape of the problem [140]. In the field of welding, the

geometry of welding processes (e.g. bead geometry and joint preparation) is generally

not complex; however, the large number of parameters relative to relevant physics

such as heat and mass transfer, fluid dynamics, electromagnetism, thermodynamics,

as well as their tight coupling make welding very difficult to understand at intuitive

level and more complex than most other engineering fields.

Typically, there are three approaches to analyze welding problems: trial and error

(making a prototype), numerical simulation and design rules. Trial and error is the

most common and reliable way in welding procedure development as it is capable

of producing the reality with complex geometries and provides direct measurements

from experiments. However, case-by-case results of specific processes are difficult

to be synthesized for the next trial or extended to new operating parameters. The

horizontal axis in Fig. 2.1 is the cost of making a prototype and the vertical axis

represents the total cost.

Sophisticated computer simulations are cost effective in the fields such as aerospace

and nuclear industry where the prototype is time-consuming and expensive to make.

In welding, running a weld may cost on the order of one to thousand dollars and within

this range of cost, making a prototype or trial and error usually costs much less money

than developing or implementing a comprehensive simulation. Numerical models excel

at dealing with the complexity of geometries, but implementing multicoupled physics

is often challenging.

Design rules (the red horizontal line in Fig. 2.1) can significantly lower costs, and
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enable a design approach to welding procedures which are usually done by trial and

error. Typically, the design rules can be expressed in the form of simple formulae and

correction factors. The simple formulae are the asymptotic solutions to ideal case and

their correction factors are developed to capture the departures from the ideal cases.

Instead of considering every point in the space-time domain, the target of the

design rules is to predict the characteristic values such as a maximum velocity, or

maximum temperature. The concept of characteristic values was discussed in detail

in [93] to normalize the governing equations into proper magnitudes and it is typi-

cally chosen as the maximum absolute value of the function of interest. Asymptotic

analysis and blending do not present convergence problems and they are well suited

for multiphysics problems.

The use of design rules can provide guidelines for follow-up tests and significantly

reduce the money and effort put in the trial and error stage. There are very few of

these design rules in the field of welding; for example, the practical question “what

is the resulting width of a weld bead by a given set of parameters” is difficult to be

answered quickly within the existing knowledge.

Expressions in explicit form which are general, accurate, easy-to-calculate are con-

venient for transmission and amenable to be used by practitioners in industry. This

paper proposes a systematic methodology based on asymptotics and blending tech-

niques to develop a set of formulae in standardized form (asymptotics and correction

factors) that can predict (or estimate reasonably) important weld properties valid

for general welding procedures with different alloys, process conditions and operating

parameters. The predictions sought would target the size of the weld pool, heating

and cooling rates, melting efficiencies, etc., such that they could be coupled with

metallurgical and performance models.

The systematic methodology advocated here to obtain engineering formulas of

interest can be roughly summarized as a six-step procedure call the Minimal Rep-

resentation and Correction Factors (MRCF) [92]. MRCF considers the dominant
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Figure 2.1: Costs of simulation, prototypes, and design rules. For the aerospace indus-
try, a prototype is much more expensive than simulations. For welding, a prototype is
often cheaper than simulations, resulting in trial-and-error approaches. Design rules
are much less expensive than simulations, and should enable a design approach where
it is seldom done currently.

phenomena and the deviations from the ideal case using the exact analytical solu-

tions, experimental measurements or results from numerical models. Once a complex

multicoupled problem is minimally represented by its dominant mechanisms, explicit,

closed-form expressions can be developed.

Blending techniques will be applied to extend the asymptotic solutions to the

whole domain of dimensionless groups capturing the characteristic values of interest.

Blending has been widely applied in many disciplines such as heat transfer [24, 25],

including moving heat sources [96], mass transfer [40], and fluid dynamics [35]. With

blending, correction factors can be rigorously derived to capture the deviation from

asymptotic behavior and define the validity of the asymptotics. Blending techniques

and their extension are the main focus of this paper.

26



2.3 MRCF: Minimal Representation and Correc-

tion Factor

The approach presented here for asymptotic analysis of engineering problems is the

Minimal Representation and Correction Factor (MRCF). It was first proposed in [92]

and has been successfully implemented to construct general expressions for thermal

characteristics of moving heat sources in [96, 156]. The MRCF approach consists of

the following six steps:

1. List all physics considered relevant

2. Identify dominant factors

3. Solve approximate problem considering only dominant factors (Minimal Repre-

sentation)

4. Check for self-consistency

5. Compare predictions to “reality”

6. Create correction factors

The minimal representation of a problem corresponds to the formulation of the

problem with parameters such that all secondary phenomena become negligible.

There are various techniques for obtaining the minimal representation. They can

be roughly divided into manual and computational techniques. Manual Asymptotics

include “Informed” Dimensional Analysis: generate dimensionless groups based on

knowledge about system [43, 44, 104–106, 130], Inspectional Analysis: dimensionless

groups from normalized equations[22, 55, 124, 161], Order of Magnitude/Balancing

Techniques [13, 31, 77]. Computational Asymptotics include Statistical analysis/data

mining[95, 98, 122], and analysis of the Governing equations[92, 93, 159]

The MRCF is an iterative approach of identifying dominant phenomena and solve

the simple solutions of this minimal represented problem by considering only domi-
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nant factors and characteristic values of the simplified problem can be addressed by

asymptotics to capture the behavior of the system for combinations of parameters

that result in the same dominant phenomena (which is called a Regime). Thus, a

multicoupled complex problem will be decomposed into its minimal representation

of the dominant mechanisms. The dominant factors are typically unknown and need

ingenuity and expertise to make a reasonable postulation. The advantage of the

MRCF is that this iterative process transverses all possible choice of dominant fac-

tors and self-consistency is checked for the obtained results to assure the neglected

phenomenon are secondary. Departure from the reality caused by the neglect of

secondary phenomenon will be accounted by the correction factors, which capture

the deviation from the ideal solutions. Correction factors can be calibrated with

experimental numerical results to account for secondary phenomena not considered

explicitly.

2.3.1 Important concepts and notation in MRCF

Because of the complexity of the concepts involved in MRCF, careful notation is essen-

tial. We will call here {U} the set of dependent variables with elements u({X}, {P}),

where {X} is the set of independent variables, and {P} is the set of problem param-

eters.

When the parameters of an engineering problem change, the resulting characteristic

values will be influenced even if the independent variables remain unchanged. Thus,

the set of problem parameters {P} is also included as arguments of the solution

functions. Accordingly, uc represents the characteristic value of u({X}, {P}).

For the sake of greater generality, normalization will be applied to transform rel-

evant variables into dimensionless form and thus, results in different units or from

different operating parameters can be generalized and compared within the same

scale. The magnitude ûc,i is the asymptotic behavior of uc({P}) in Regime i (e.g.

Regime I, Regime II) where the value of the dimensionless groups based on parameters
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is asymptotically large or small. Very often, the asymptotic behavior has power-law

dependence on the dimensionless groups.

In normalized form, u∗({X∗}, {Π}) is the dimensionless dependent variable where

{X∗} is the set of normalized independent variables, and {Π} is a set of independent

dimensionless groups based only on the problem parameters. u∗
c({Π}) is the charac-

teristic value of u∗({X∗}, {Π}). Similarly, û∗
c,i ({Π}) is the asymptotic behavior of

u∗
c({Π}) in Regime i (often in the form of a power law).

Dimensional analysis indicates that a problem can be captured by a set of n di-

mensionless groups, where n = m − k, m is the number of independent physical

magnitudes involved in the problem, and k is the set of independent reference units

of the problem [19]. Typically, the functional dependence between the characteristic

value targeted (uc) and the dimensionless groups is monotonic, thus the number of

regimes is two per dimensionless group (close to zero, and close to infinity, then the

number of regimes nr is:

nr = 2n (2.1)

2.4 Foundations of Blending Techniques

Blending is the general description of a family of techniques of interpolation between

two asymptotic solutions. In this work, the focus is on techniques that use a very

small number of parameters (typically one or two). The advantage is that they are

very easy to communicate and implement. Surprisingly, in many practical cases these

techniques have a very small error (typically few percentage points) against the exact

solution they are interpolating.

The oldest technique of interest for this work was first described by Acrivos [1,

2] for the rate of heat and mass transfer in several laminar boundary layer flows

and was later extended and generalized by Churchill and Usagi [23, 26] as the CUE

(Churchill-Usagi equation).

In this work we will use the notation B to represent the blending of asymptotics
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û∗
c,i ({Π}), corresponding to regime i (Regime I, Regime II, etc.) using the set of

blending parameters {B}, thus:

u∗
c({Π}) ≈ û∗

c

+
({Π}) = B

(
û∗

c,I ({Π}), û∗
c,II ({Π}), û∗

c,III ({Π}) . . . {B}
)

(2.2)

where the symbol̂ indicates that the magnitude is an asymptotic approximation and

the + superscript represents the improvement over the asymptotics after blending.

There are several approaches to determine the set of blending constants {B} and

the minimax optimum procedure [96] applied in this paper is used to determine the

optimum set of blending constants which minimizes the maximum error defined as:

max error = maxΠ

[
ln

û∗
c

+
({Π})

u∗
c({Π})

]
(2.3)

where u∗
c({Π}) is the target dimensionless characteristic value, which can be an exact

analytical solution, experimental measurements or numerical simulation results. The

maximum value is explored over the whole domain of {Π}, and the minimum is

explored over the blending parameters {B}.

Equation 2.3 has the advantage of revealing the comparable magnitudes for large

errors and it is equivalent to the definition of relative error when the error is small.

The set of blending constants {B} needs be determined only once for each blending

function.

One essential property of the blending function B is that it shares the asymptotic

behavior of the original function:

u∗
c({Π}) → û∗

c,i ({Π}) when {Π} → {Π}i (Regime i)

2.5 Development of Correction Factors

Based on the blending of Equation 2.2, correction factors can be established for

each asymptotic regime to capture the departure of the blended approximation from
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asymptotic behavior. In dimensionless form:

u∗
c({Π}) ≈ û∗

c,i
+
({Π}) = û∗

c,i ({Π})B
(
û∗

c,I ({Π})
û∗

c,i ({Π})
,
û∗

c,II ({Π})
û∗

c,i ({Π})
,
û∗

c,III ({Π})
û∗

c,i ({Π})
. . . {B}

)

= û∗
c,i fuc,i(Π) for Regime i (2.4)

and its dimensional counterpart:

uc({Π}) ≈ ûc,i
+({Π}) = ûc,i ({Π})B

(
ûc,I ({Π})
ûc,i ({Π})

,
ûc,II ({Π})
ûc,i ({Π})

,
ûc,III ({Π})
ûc,i ({Π})

. . . {B}
)

= ûc,i fuc,i(Π) for Regime i (2.5)

where the ith term inside the correction factor is equal to 1 and the set of blending

constants {B} is the same as in Equation 2.2 and fuc,i(Π) is a shorthand notation for

the blending function that leads to correction factors. In the shorthand notation, the

set of blending parameters is not stated explicitly, but it is present.

As the blending function B maintains the asymptotic behavior of the original func-

tion, the value of the correction factor fuc,i(Π) tends to the value of 1 or at the same

order as 1 in its corresponding Regime i:

fuc,i(Π) → 1 when {Π} → {Π}i (Regime i)

Equations 2.4 and 2.5 capture the deviation of the blended approximation from

the asymptotic behavior. These equations can also be used to determine the range

of validity of the asymptotic equations for a given acceptable error, and can also be

used to account for systematic errors from the mathematical treatment of the asymp-

totics, or random errors from the physics caused by neglected secondary phenomenon.

The correction factors developed are explicit and can typically be calculated with a

handheld calculator or a spreadsheet.

2.6 1D Blending

When the target function depends on only one dimensionless group, the system has

two asymptotic regimes (Equation 2.1). Thus, according to Equation 2.4:

u∗
c({Π}) ≈ û∗

c

+
({Π}) = B

(
û∗

c,I ({Π}), û∗
c,II ({Π}), {B}

)
(2.6)
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Blending in 1D (when blending depends on only one dimensionless group) is the

simplest case and the basis of the extension of blending to more complex scenarios.

Standard 1D blending was treated in [1, 2, 23, 26]; however, these studies could not

account for the case when the asymptotes did not cross. Also, the standard blending

technique could result in high errors when the functions involved are not power laws.

2.6.1 Standard 1D Blending

In the case where the two asymptotic solutions are known and intersect with each

other only once, the two asymptotes can be blended with only one blending constant

(in this case {B} = {n}):

u∗
c({Π}) ≈ û∗

c

+
({Π}) =

[
û∗

c,I ({Π})n + û∗
c,II ({Π})n

]1/n
(2.7)

where the optimal value of n needs to be determined only once for each blending

function. A sufficient (more restrictive than necessary) condition to permit the use

of Equation 2.7 is that the target function is monotonous on its dependence on the

dimensionless group. A vast number of engineering problems have an asymptotic

behavior in the form of power laws. Equation 2.7 can also be used to create the

correction factors fuc,I(Π) (based on asymptotic in Regime I) and fuc,II(Π) (based on

asymptotic in Regime II) as follows:

fuc,I(Π) = B
(
1,

û∗
c,II ({Π})

û∗
c,I ({Π})

, n

)
=

{
1 +

[
û∗

c,II ({Π})
û∗

c,I ({Π})

]n}1/n

(2.8)

fuc,II(Π) = B
(
û∗

c,I ({Π})
û∗

c,II ({Π})
, 1, n

)
=

{
1 +

[
û∗

c,II ({Π})
û∗

c,I ({Π})

]−n
}1/n

(2.9)

Equations 2.8 and 2.9 are exactly equivalent and they capture the difference be-

tween the blended approximation and different starting asymptotic expressions. They

tend to the exact value of 1 in their corresponding limits for all finite values of n.

The value of n for Equations 2.8 and 2.9 are the same as for Equation 2.7.

Standard 1D blending provides a new paradigm to obtain a general solution over

the whole domain in terms of simple, known, limiting solutions with minimal degree
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of explicit empiricism, which is typically caused by the additional introduction of the

blending constants {B}. Equation 2.7 is a canonical expression for the formulation of

correlating equations and has the advantage of simplicity, generality, inherent accu-

racy, and convergence to theoretical solutions in the limits. Nevertheless, it must be

applied with an understanding of its restrictions. It can not represent processes with

irregular transition in the non-asymptotic part and Equation 2.7 only applies for the

situation where asymptotes in the limiting regimes have a single intersection. What’s

more, the asymptotic solutions must be free of singularities because the existence of

singularity will persist and disrupt the prediction even though the singularity occurs

outside asserted range of the asymptote [23, 26].

2.6.2 1D Blending of Non-Crossing Asymptotics

Equation 2.7 is not applicable for non-crossing asymptotics. For any finite positive

value of n, the blended result will always be the asymptotic of larger magnitude and

the smaller asymptotic would be chosen as the approximation for any negative value

n.

A modified blending technique is proposed here to extend the applicability of Equa-

tion 2.7, by applying a factor exp(aΠb) to either of the asymptotes to force the two

asymptotics to have a single intersection. This approach is useful for asymptotic be-

havior weaker than exponential; for example, it can not be used in the case such as a

Γ function. The 1D blending function for non-crossing asymptotics has the following

expression:

u∗
c({Π}) ≈ û∗

c

+
({Π}) = B

(
û∗

c,I ({Π}), û∗
c,II ({Π}), {n, a, b}

)

=
{
û∗

c,I ({Π})n +
[
û∗

c,II ({Π}) exp(aΠb)
]n}1/n

(2.10)

where in this case, {B} = {n, a, b}.

The reason of choosing exponential function as the form of modification factor is

due to its simplicity and that its dependence on the dimensionless group is stronger
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than any power law or other common functional relationships in engineering design.

The sign of the coefficient a determines the type of the modification factor: when

a > 0, the modification factor is always larger than 1 while for a < 0, the modification

factor exp(aΠb) varies within the interval of (0, 1]. Both the sign and the magnitude

of b matter as the modification factor has increasing dependence on the independent

variable for ab > 0 while for the case of ab < 0, it decreases as the independent variable

increases. An appropriate magnitude of b should be chosen to ensure the modified

asymptote intersects the other. With a suitable selection of the blending constants

{n, a, b}, the modified asymptote still maintains its asymptotic behaviour, while the

exponential term changes its intermediate behavior such that the two asymptotes

intersect. A similar approach was made in [40] to obtain a general correlation of

three functions, with the applied modification factor using b = 1.

2.6.3 1D Blending of Constant Asymptotics

Many phenomena demonstrate the asymptotic behaviour of two limiting solutions of

different constant values, for example, in the field of welding, the maximum hardness

of the heat affected zone [6, 160] and in heat transfer, the temperature distribution

of a slab heated on both surfaces at different constant temperatures. Although the

treatment of non-crossing asymptotes could apply to constant asymptotics, a spe-

cific treatment of this particular problem results in convenient solutions of smaller

complexity.
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The following three blending functions are explored:

u∗
c({Π1}) ≈ û∗

c

+
({Π1}) = B

(
û∗

c,I , û∗
c,II , {a1, b1}

)

= û∗
c,I+

û∗
c,II −û∗

c,I
2

(
1 +

1− a1Π
b1
1

1 + a1Π
b1
1

)
(2.11)

u∗
c({Π2}) ≈ û∗

c

+
({Π2}) = B

(
û∗

c,I , û∗
c,II , {a2, b2}

)

= û∗
c,I+

û∗
c,II −û∗

c,I
2

[1 + tanh (a2Π2 + b2)] (2.12)

u∗
c({Π3}) ≈ û∗

c

+
({Π3}) = B

(
û∗

c,I , û∗
c,II , {a3, b3}

)

= û∗
c,I+

û∗
c,II −û∗

c,I
2

[
1 +

2

π
arctan (a3Π3 + b3)

]
(2.13)

where Π1, Π2, Π3 represents three different blending expressions, not implying multi-

variable dependence, and {a1, b1}, {a2, b2}, {a3, b3} are the corresponding sets of

blending constants. Equations 2.11, 2.12, and 2.13 converge to exact asymptotics

in both regimes for all finite values of {a, b}. Equation 2.11 is consistent with the

correlation method proposed by Churchill [26] when only limiting values are known

by replacing the constant asymptotic behaviour of either regime with a postulated

functional dependence (typically power functions) and then blending the constructed

function with constant asymptotic in the other regime with a blending exponent n.

Equation 2.11 is the special case with n = 1. Equation 2.11 and Equation 2.12

are essentially equivalent with the transformation of variables: Π2 = −1

2
ln (Π1),

a2 = −1
2
b1 and b2 = −1

2
ln (a1).

The two blending constants {a, b} capture the two degrees-of-freedom of the func-

tional behaviour after blending: the location of the midpoint u∗
c (Π) =

(
û∗

c,I+û∗
c,II

)
/2

and the slope of tangent at the midpoint, dû∗

c

+
({Π})

dΠ
, which represents the steepness of

the transformation between the two asymptotics.

The differences in the form of the three blending expressions make them applicable

for different scenarios. The main difference between Equation 2.11 and Equation 2.12

is the domain, which is (0,∞) of Equation 2.11, and (−∞,∞) of Equation 2.12.

Equation 2.12 and Equation 2.13 share the same domain of (−∞,∞) and but the
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curvature is different, with the same slope at the value of 1 and the same location of

midpoint, Equation 2.13 is less sharp than Equation 2.12 as shown in Figure 2.2.
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Figure 2.2: Comparison between Equation 2.12 and Equation 2.13. The solid
line is u∗

c({Π}) = 1 + 1
2
[1 + tanh (Π)], and the dash line represents u∗

c({Π}) =
1 + 1

2

[
1 + π

2
arctan

(
π
2
Π
)]
. Two constant asymptotics are 1 and 2,respectively. The

center point Π = 0 and its slope is the same for both functions but the dash line is
less steep than the solid line.

2.6.4 Asymptotes with Changes in the Sign

The blending techniques proposed require that all asymptotes are positive over the

whole domain; however, in some cases the asymptotic function might be negative

outside its range of asymptotic validity. For example, when the asymptotic behavior

towards infinity is logarithmic (e.g. û∗
c,II ({Π}) = ln (Π) as Π → ∞), the asymptotic

tends to minus infinity as Π tends to zero, which is invalid for the techniques proposed.

One possible solution in this case is replacing the asymptote ln(Π) with ln(1 + Π),
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such that asymptotic behavior keeps unaffected as ln(1 + Π) ≈ ln(Π), when Π → ∞

and the modified expression is always positive over the whole domain of (0,∞).

2.6.5 Addition of Intermediate Terms

The blending function Equation 2.7 guarantees the limiting solutions in asymptotic

regions and estimates values of the intermediate region by optimization of the blending

constant n. For power-law functions, this approach is simple and accurate; however,

when the functions to be blended are not power-laws, such as logarithmic or expo-

nential functions, Equation 2.7 converges very slowly towards small errors. When

convergence is slow, the blending error is small at unrealistically large or small orders

of magnitude. An alternative approach is proposed here to deal with these functions

while preserving simplicity and accuracy. To improve the accuracy of estimation in

the intermediate regime, an additive term G(Π) can be introduced as:

u∗
c({Π}) ≈ û∗

c

+
({Π}) =

[
û∗

c,I(Π)
n
+ û∗

c,II(Π)
n +G(Π)n

]1/n
(2.14)

where the choice of G(Π) is flexible as long as it does not change the asymptotic

behavior, i.e., for the case of n > 0, G(Π) ≪ û∗
c,I(Π) as Π→ ∞, andG(Π) ≪ û∗

c,II(Π)

as Π → 0. Although the blended result could be more accurate with a sophisticated

G(Π), the format of G(Π) should be as simple as possible to minimize the number of

involved blending constants.

The added term can be interpreted as the departure between normal blending

equation and the exact value of the intermediate regime, or the “asymptote” of the

intermediate regime. As the absolute value of blending constant n is typically of the

order of magnitude of 1, it is reasonable to set the blending parameter n = ±1 to

reduce the number of optimization variables to two. These variables can be optimized

by the proposed minimax optimum procedure of minimizing the maximum error de-

fined in Equation 2.3. The sign of n is chosen based on the asymptotic solutions.

When both asymptotes are the lower bounds in their corresponding regimes, n = 1
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while the dependent variable, u∗
c({Π}), has a decreasing power of Π, n = −1.

For the case of two power asymptotes, the additive term can be chosen in the form

of power law as G(Π) = aΠb, with blending constants {B} = {a, b,±1}. Denoting

the two power asymptotes as û∗
c,I(Π) = cIΠ

dI and û∗
c,II(Π) = cIIΠ

dII , the exponent of

the additive term b has to be set between dI and dII to make sure G(Π) is negligible

in the asymptotic regions. It is not clear in what cases this approach is more accurate

than Equation 2.7. One obvious difference is that this approach needs to optimize

two variables instead of one.

For the case of logarithmic asymptotes (e.g. û∗
c,II ({Π}) = ln (Π)), G(Π) = aΠb

fails in maintaining asymptotic behavior, because ln (Π) is always smaller than power

laws when Π tends to infinity, no matter the value of exponent. In this case, additive

term G(Π) can be expressed in the fractional form as G(Π) = aΠ/(b + Π) instead

with blending constants {B} = {a, b,±1}, such that the additive term can be smaller

than the logarithmic asymptote in the limiting regime when Π→ ∞.

2.6.6 An Extension of 1D Blending: Parametric 1D Blending

Some problems involve multiple dimensionless groups, so they are not 1D blending

problems. However, when the some dimensionless groups have a reduced range of

variation, they can be considered as another parameter in the blending problem, as

opposed to another dimensionless group to be blended. For example, solid mechanics

problems involve the dimensionless parameter ν (Poisson’s ratio), which is seldom far

from 0.3 for most engineering materials. In this case, it is convenient to consider ν

as a constant instead of performing blending over unrealistic values.

This approach is especially valuable when the dimensionless groups that can be

considered as parameters is such that blending can be reduced to 1D.
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2.7 Challenges beyond 1D Blending

The 1D blending describes many engineering problems concerning to one independent

variable with much rigor and elegance, however, in some cases, the secondary factors

play a significant role and are not negligible indeed, for example, welding on a plate of

medium thickness[109, 121], or where the size of a Gaussian distributed heat source

can not be neglected [36]. It is necessary to develop a series of practical and systematic

2D blending methods on the basis of current 1D blending theory.

In normalized form, 2D blending problem can be defined as u∗
c (Π1,Π2), where u∗

c

is the target characteristic value dependent on two dimensionless variables {Π} =

{Π1,Π2}. The 2D blending problem can also be addressed with an equivalent expres-

sion in implicit form: F (u∗
c, {Π}) = F (u∗

c,Π1,Π2) = 0, which could be one equation

or a group of equations associated with problem parameters. The general strategy

to construct 2D blending is to decompose the 2D blending problem into several 1D

blending branches, where 1D blending theory is well-developed, and then combine the

solved 1D blending equation of each branch to assemble the solution to 2D problem.

Asymptotes in 2D problems are typically derived with limitation theorems, but the

limitation theorems of two variable or multi-variable functions are much more complex

than functions of single dependence. The complexity includes but not restrict to

the division of limiting regimes, different types of asymptotics, relationship between

double limits and iterated limits, and so on. The decomposition of 2D blending

into 1D blending problems and the assembly of 2D blending solution based on 1D

blending functions have high demand on mathematical skills and are never trivial.

The simplest case of 2D blending is that the target function u∗
c (Π1,Π2) is assumed

variable separable over its entire domain, which means u∗
c (Π1,Π2) = v (Π1) · w (Π2),

and the 2D blending could be directly split into two 1D blending functions of v (Π1)

and w (Π2). Thus the assembled 2D blending is in form of the product of both

1D blending equation û∗
c

+
(Π1,Π2) = v̂+ (Π1) · ŵ+ (Π2), where v̂+ (Π1) ŵ+ (Π2) are
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relatively simple and easily tractable with in 1D blending theory proposed in this

paper. Systematic 2D blending methods to obtain general estimation of the target

characteristic value in terms of asymptotics and correction factors with high accuracy

are the focus of current research.

2.8 Case Studies

Four case studies are be presented to demonstrate the application of MRCF approach.

Target characteristic values of interest are expressed in terms of asymptotics (simple

case solutions in the extreme cases) and the type of the blending approach for each

case will be identified and applied to generate correction factors in explicit form.

Case A: Estimation of Maximum Bead Width Based

on Rosenthal 3D Model

Step 1: List all physics considered relevant

Relevant physics involved in the shape of the weld pool include heat transfer, heat

dissipation on the surface to the environment, convective flow, the effects of fluid

dynamics and so on. It is impossible to list all relevant mechanisms but the dominant

phenomenon and the best practice is to list typical and essentially relevant approxi-

mations, which can be suggested by published papers and experimental observations.

Step 2: Identify dominant factors

For the case of the maximum bead width, the dominant mechanism is postulated

as heat transfer via conduction and the classic Rosenthal 3D model [126, 128] was

utilized to calculate thermal characteristics which assumes the heat source as a point

moving with constant velocity in a straight line on the surface of the semi-infinite

base materials with constant thermal properties. Heat dissipation on the mental sur-

face, convective flow, and the effects of fluid dynamics are neglected as secondary

phenomenon. This Rosenthal 3D model assumes the heat source as a infinitely small
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point(which is actually not), and considers everything as solid by neglecting the effect

of fluid dynamics and phase changes. What’ more, it only focuses on the conduction

within the solid base metal and the advection due to the relative motion between

the heat source and the substrate without considering the effects of convective heat

transfer in the molten metal and heat dissipation to the external environment (con-

vection and radiation). Due to the huge simplifications, this idealized model and the

obtained estimations must check self-consistency which will be discussed in step 4.

Step 3: Solve approximate problem considering only dominant factors (Minimal

Representation)

Starting from the Fourier’s law and the boundary conditions of the moving system,

the simplified problem has been solved in [96] and the obtained analytical solution of

the temperature field has the following expression:

T (x, y, z) = T0 +
q

2πkr
exp

[
− U

2α
(r + x)

]
(2.15)

where q is the net thermal power absorbed by the base material, k is the thermal

conductivity of the base material, and T0 is the temperature of the substrate far from

the heat source or the preheat temperature. In welding, the power q is estimated as

the product of nominal power of the heat source and its thermal efficiency.

Equation 2.15 provides the value of temperature for each point in the domain with a

singularity at r = 0, which is the location of the point heat source and the temperature

value there is infinite. It is the theoretical solution of the temperature field as a

function of position to the simplified welding problem by considering conduction

as the dominant mechanism. However, in practical applications, temperatures of

interest always appear as known conditions, for example, melting temperature and

the A1, A3 where phase transformations typical occur are readily known beforehand.

Characteristic values which capture the essence of thermal history such as maximum

bead width and the location where it occurs are unknown and difficult to obtain.

In this idealized model, dependent variable is the temperature {U} = {T}, and

41



there are three spatial independent variables {X} = {x, y, z}, and five parameters

{P} = {T0, q, k, U, α}. The characteristic value of interest is the maximum isotherm

width: uc({P}) = ymax. After normalization and dimensional analysis of Equa-

tion 2.15, the conclusion is that if we denote the temperature value of the isotherm

under consideration as T = Tc, the dimensionless characteristic values associated with

T = Tc depend only on one dimensionless group (more details can be found in [96]):

The Rykalin number (Ry), first proposed by Fuerschbach [45] and has the following

expression in terms of parameters:

Ry =
qU

4πkα (Tc − T0)
(2.16)

where the constant of 1/4π is added to simplify the final expressions detailed below.

All dimensionless characteristic values associated with an isotherm T = Tc can be

captured with functions depending only on Ry, thus the set of independent dimension-

less groups based only on parameters turns into {Π} = {Ry} and the dimensionless

characteristic value u∗
c({Π}) = y∗max({Π}) can be expressed with sole dependence on

Ry as y∗max(Ry). As Ry is the only one dimensionless group necessary to capture all

characteristic values, the number of asymptotic regimes is given by 21 = 2 and they

are Regime I, corresponding to large values of Ry (“fast heat source” where advec-

tion dominates over conduction), and Regime II, corresponding to small values of Ry

(“slow heat source” with heat transfer dominated by conduction) and the two asymp-

totics can be represented as û∗
c,I ({Π}) = ŷ∗maxI

(Ry) and û∗
c,II ({Π}) = ŷ∗maxII

(Ry),

respectively. These asymptotic regimes yield simple expressions for the characteris-

tic values, usually in the form of power laws. Asymptotic analysis of Equation 2.15

yields the following two asymptotics of the dimensionless maximum isotherm width

dependent only on Ry [96]:

ŷ∗maxI
(Ry) =

√
2Ry

e
for Regime I (fast) (2.17)

ŷ∗maxII
(Ry) = Ry for Regime II (slow) (2.18)
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Step 4: Check for self-consistency

As Equation 2.15 comes directly from the postulated model, the validity of calcu-

lations based on Equation 2.15 (Equation 2.17 and 2.18) will remain in the limit of

the validity of this model itself. The self-consistency of this idealized model has been

accomplished by comparison with experiments as it is impossible to prove the accu-

racy of the Rosenthal 3D model from the mathematical point of view. Christensen in

the 1960s has done a series of experiments to test the validity of this Rosenthal 3D

model [22] of different operating parameters and materials. It has shown that despite

of the great simplifications, the model by considering conduction and advection as the

dominant phenomena can still generate reasonable results for points far away from

the heat source at temperatures below the melting temperature.

Step 5: Compare predictions to “reality”

Equations 2.17 and 2.18 are less accurate for intermediate values (Ry=O(1)). As

the obtained two asymptotics are in the form of power laws, Standard 1D Blending

method is applicable for this case. For the non-asymptotic region, simple and accurate

expressions can be obtained with Equation 2.7.

Substitute Equation 2.17 and 2.18 into Equation 2.7, the blended function of the

maximum isotherm width in dimensionless form is obtained:

y∗max(Ry) ≈ ŷ∗
+

max(Ry) =
[
ŷ∗maxI

(Ry)n + ŷ∗maxII
(Ry)n

]1/n
(2.19)

The optimal blending constant n was determined using a minimax approach with two

nested optimizations as detailed in [96]. With Rosenthal 3D model and the resulting

temperature field, the ”reality” used here to calibrate the deviations from the idealized

behavior is the maximum value of the isotherm width calculated from Equation 2.15

numerically. When n is equal to -1.7312, the maximum error over the whole domain

of Ry is less than 0.7236%.

Step 6: Create correction factors

Substituting the two asymptotics û∗
c,I ({Π}) = ŷ∗maxI

(Ry) and û∗
c,II ({Π}) =
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ŷ∗maxII
(Ry) into Equations 2.8 and 2.9, the following expression for the correction

factors are obtained:

fymax
(Ry) =

[
1 +

(√
eRy

2

)±n]1/n + for Regime I (fast)

− for Regime II (slow)

(2.20)

where the exponent +n corresponds to Regime I, and −n corresponds to Regime II.

The minimax error is always smaller than 0.7236% at the optimal value of n=-1.7312.

Correction factors based on both asymptotics are plotted in Figure 2.3 and the

reflected symmetry is consistent with Equation 2.20 as expected. They can also be

used to check the validity of both asymptotics. The intersection of the correction

factors, Ryc = 0.7359, can be considered as the rough divider of the two asymptotic

regions: Regime I, Regime II and the intermediate region (the vicinity of Ryc) where

the typically the maximum departure occurs.

Case B: Predictions of the Maximum Hardness of

the HAZ

One of the major challenges in the welding industry is predicting the maximum hard-

ness of the heat affected zone that depends the chemical composition and the welding

parameters. During the 1970s and the 1980s, many empirical models (based on sta-

tistical regression of experimental data) were proposed to address this problem [69,

160]. Although each proposed model is different, they all treat the problem with a

similar nature using asymptotic values to obtain a hardness value as a function of the

cooling rate.

Basically, the hardness of a specific point on heat affected zone depends on the

present microstructures and their volume fraction. At the same time, the type and

amount of each microstructure is a function of the thermal history and chemical

composition. In the case, the characteristic value of interest is the the maximum

hardness of the HAZ, and many variables can be discarded as the assumptions are

44



10
-9

10
-6

10
-3

10
0

10
3

10
6

10
9

Ry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
rr
ec
ti
on

fa
ct
or

fo
r
y
m
a
x

fymaxII
fymaxI

RyII RyI

Ryc
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Figure 2.4: Characteristic hardness in HAZ as a function of cooling time between
800◦C and 500◦C [160].

made. For example, austenitization peak temperature, which plays an important role

in the kinetics of austenite decomposition, can be assumed to be equal for all cases

by considering that the maximum hardness will be found adjacent to the fusion line

where the peak temperature is maximum, very close to the fusion temperature (i.e in

the coarse grain heat affected zone). By making this simplification, hardness can be

written down as a function of the cooling rate at 700 ◦C (or cooling time, t8/5), and

the nominal chemical composition of the welded plate.

One clear example of using asymptotes to address this problem is given by Yu-

rioka’s model [160] and a proposed Continuous Cooling Transformation Structure

Hardness (CCTSH) curve is represented in Figure 2.4. In this case, the maximum

hardness in HAZ depends only on the cooling time between 800◦C and 500◦C . With

only one dependence on the cooling time, there are in total two regimes and the char-
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acteristic points given by the hardness upper (HM) and lower limits (HB) and their

characteristic times are used to develop a equation able to predict the hardness value

for any time between τM and τB.

Upper and lower hardness asymptotes are easy to picture when this problem is

addressed, if the different possible microstructures are considered. The upper limit

is directly related with the hardness of the martensite, which means ûc,II = HM . No

other microstructure is harder than the fresh martensite obtained from cooling from

the austenite region with cooling rates higher than a critical value τM . On the other

hand, the lower limit can be quite more complicated to picture, since different criteria

used by the author. However, the main idea resides on using a lower limit, ûc,I= HB,

that represents a microstructure with no martensite, τB. After the formulation of the

two limiting constant hardness values empirically, a blended expression in the form

of Equation 2.13 was proposed:

HV =
HM +HB

2
− HM −HB

2.2
arctan x (2.21)

where x is defined as:

x(rad) = 4
log

t8/5
τM

log tB
τM

− 2

It is important to remark that, when blending two constant asymptotics (point

A and B in Figure 2.4), Equation 2.13 must be applied with a understanding of its

applicable scope as for cooling times that are not between τM and τB, Equation 2.21

is not applicable. Equation 2.11 and Equation 2.12 can also be applied for this case

and there are many other types of functions proposed by different authors.

Case C: Thermal Stress Field in the Vicinity of a

Moving Point Heat Source

Step 1: List all physics considered relevant

The thermal stress field produced by a non-uniform temperature field surrounding
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a moving point heat source is of significant interest in welding research due to the

implications for the size and magnitude of the residual stress field. This example will

focus on estimation of the thermal stresses produced by a moving heat source in a thin-

plate (i.e. 2D material). The characteristic values (uc) which are of primary interest in

the analysis of thermal stresses are the longitudinal stress (σx,c) and transverse stress

(σy,c) produced by some critical temperature change (∆Tc).
1 The dimensionless form

(u∗
c = {σ∗

x, σ
∗
y}) of the characteristic values is obtained by normalizing with respect

to the product of the elastic modulus (E), coefficient of thermal expansion (a), and

critical temperature change (∆Tc):

{u∗
c} = {σ∗

x,c, σ
∗
y,c} = {σx,c/(Ea∆Tc), σy,c/(Ea∆Tc)}

The mathematical formulation for the thermal stress field in a 2D plane composed

of a homogeneous, isotropic, linear elastic material involves a total of six dependent

variables, three independent variables and six fixed parameters. The dependent vari-

ables are: {U} = {ǫx, ǫy, γxy, σx, σy, τxy}

which represent the x, y, and shear components of the strain and stress fields; the

independent variables are:

{X} = {∆T, x, y}

where ∆T is the temperature field at a given location (x,y) in a 2D cartesian plane;

and the parameters are:

{P} = {∆Tc, xc, yc, E,G, a}

where ∆Tc is some characteristic temperature change, xc is the maximum length of

the characteristic temperature isotherm, yc is the maximum width of the characteristic

temperature isotherm, G is the shear modulus of the material, E is the elastic modulus

of the material, and a is the linear coefficient of thermal expansion.

Step 2: Identify dominant factors

Applying the Buckingham Π theory, it is found that there can only be exactly

1by convention stresses/strains oriented parallel to the heat source movement (i.e. x direction)
are termed longitudinal, and stresses/strains oriented perpendicular to heat source movement (i.e.
y direction) are referred to as transverse
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two independent dimensionless groups in this analysis. Any 2 dimensionless groups

that form an independent set may be selected. In this example, the dimensionless

parameters are chosen as:

{Π} = {E/G, xc/yc}

where E/G is the ratio of the elastic modulus to shear modulus which can be

equivalently expressed in terms of the Poisson’s ratio (ν) as E/G = 2(1 + ν) and

xc/yc =A is defined as the aspect ratio of the critical isotherm ∆Tc.

Note that in this example, since there are two dimensionless groups (G/E andA),

there will be four asymptotic regimes:

• Regime I: A→ ∞, E/G → 0

• Regime II: A→ 1, E/G → 0

• Regime III: A→ ∞, E/G → ∞

• Regime IV: A→ 1, E/G → ∞

Note that the lower asymptotic value of the aspect ratioA is 1, which corresponds

to a perfectly circular temperature isotherm (i.e. an infinitely slow or stationary heat

source).

For all isotropic materials it is necessary that −1 ≤ ν ≤ 0.5[51], which constrains

the allowable range of the modulus ratio to 0 ≤ E/G ≤ 3. For all commonly welded

metallic materials, Poisson’s ratio is approximately ν = 0.3 and the modulus ratio

is approximately E/G = 2.6. Since for all practical problems, the modulus ratio is

relatively small in Regime I and Regime II , which are of practical interest.

Step 3: Solve approximate problem considering only dominant factors (Minimal

Representation)

The asymptotic solutions for the dimensionless stresses in Regime I are [49]:

σ̂∗
x,c,I = 1

σ̂∗
y,c,I = 1/A2
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and the corresponding dimensional stress values are:

σ̂x,c,I = aE∆Tc

σ̂y,c,I = aE∆Tc/A
2

Analytical expressions for the asymptotic solutions of the dimensionless stresses in

Regime II will have the general form:

σ̂∗
x,c,II = σ̂∗

x,c,II({A, ν})

σ̂∗
y,c,II = σ̂∗

y,c,II({A, ν})

Step 4: Check for self-consistency

For single-pass full-penetration welding of plain carbon and low-alloy steel, the

aspect ratio is expected to vary between 2 - 20 depending on the welding process.

Although the asymptotic equations may provide reasonable estimates in some of these

cases, it is clearly an issue of practical interest necessary to obtain estimates of the

characteristic stresses at intermediate values of the aspect ratio. The asymptotic

blending technique provides a powerful and convenient method to develop a closed

form equation for estimating the stresses at these intermediate values.

Step 5 and 6: Compare predictions to “reality” and create correction factors

In this case, the standard approach for 1D asymptotic blending may be applied

with only one minor modification. Although the asymptotic solutions in Regime I

depend only onA, this will not necessarily be the case in Regime II. If the asymptotic

expressions in Regime II are found to depend on the value of Poisson’s ratio, it

will be necessary to optimize the value of the set of blending constants {B} over

a range of typical values of ν (ex. 0.25-0.35) using Parametric 1D blending. In

this case, the value of ν is treated as a parameter and the optimization for the 1D

blending coefficients is evaluated in the 2D space defined by 1 < A < ∞ and ν is

around the value of 0.3. The 1D parametric blending technique provides a simple and

powerful alternative to full 2D blending in 2-parameter systems where the range of

one parameter is relatively restricted.
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Although significant challenges are associated with obtaining experimental mea-

surements of thermal stresses, the “reality” for the critical stress at a selection of

intermediate values used in the optimization may be readily obtained from finite-

element analysis (FEA). A limited number of experimental measurements may then

be performed to validate the final solution and aid in the development of additional

correction factors for secondary effects.

Case D: Maximum Temperature in Friction Stir

Welding (FSW)

Step 1: List all physics considered relevant

Relevant physics involved in FSW are the plastic flow near the pin and the gen-

erated heat, heat conduction into the base material, heat loss to the environment,

inertial factors, kinematics and forces related in the deformation.

Step 2: Identify dominant factors

For the case of FSW, the dominant factors are identified as the heat diffusion in a

localized soft layer in [99, 140]. Four groups of competing phenomena are considered:

heat diffusion vs. heat advection, kinematics of rotational flow vs. translational flow,

thickness of the soft shear layer vs. the radius of the pin and the peak temperature

jump caused by shoulder vs. the contribution of plastic area around the pin. Among

the four groups, dominant factors are identified as the heat diffusion, rotational flow,

thickness of the shear layer and the dominance of the pin on peak temperature.

Self consistency will be checked for the secondary factors in step 4 by comparing

the obtained expression for maximum temperature against experiments published in

literature.

Step 3: Solve approximate problem considering only dominant factors (Minimal

Representation)

The problem is greatly simplified to its minimal representation by considering

only dominant factors listed above. The target characteristic value is the maximum
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temperature developed during process can be expressed as uc = Ts and asymptotics

obtained have the following form[99]:

T̂s = T0 +∆Tm

[
3

2

ηs
AB∆Tm

(
ηK0

∆T0

)n−1(
a2τR
k

)n

ωn+1

] 1
2

(2.22)

where Ts is the maximum temperature achieved at the pin-shear layer interface, T0

is the temperature at the interface between shear layer and the base plate, ∆Tm =

Tm−T0 and Tm is the melting temperature of the substrate, ηs is the efficiency which

considers mechanical energy converted into heat, excluding the mechanical energy

accumulated in the form of dislocations, A is the constant of constitutive behavior of

the alloy and η is the total efficiency of the process, accounts for energy stored in the

form of dislocations in the shear layer and heat lost to the tool, K0 is the Modified

Bessel function of second kind and 0 order, ∆T0 = T0 − T∞, a is the pin radius, τR is

the reference shear stress of the alloy, k is the thermal conductivity of the alloy at T0

and ω is the angular velocity of rotation of the pin.

Step 4: Check for self-consistency

All predictions based on the minimally represented problem must be checked for

self-consistency. For the case of FSW, Equation 2.22 was evaluated by comparing the

effect of assumed secondary factors on the accuracy of the estimation. The relative

magnitude of the selected secondary factor can be represented by its value to that of

the dominant factors. In this way, a value of 1 indicates that the secondary factor is

of similar magnitude than the dominant factor. Very small values on the horizontal

axis correspond to the self-consistent regime, while high values correspond to incon-

sistent cases in which the factors considered secondary are actually larger than the

dominant factors. There are four independent dimensionless groups that characterize

the secondary phenomena {Π} = {Pe, V/ωδ̂, δ̂/a, (Tp − T∞)/(T+
s − T∞)}

Step 5: Compare predictions to “reality”

Equation 2.22 must be validated through comparisons with reality. In summary,

three factors considered secondary (advective heat transfer, pin translation on max-
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imum temperature and shoulder heat input on the peak temperature in FSW) have

been proved indeed secondary for the vast majority of cases in [99, 140], and that

for those valid cases, Equation 2.22 predicts the proper order of magnitude and de-

pendence on process parameters. However, the approximation by considering the

shear layer thickness on peak temperature as secondary phenomena is not always

valid, and correction factors for the estimation of maximum temperature are neces-

sary. The 4D blending problem can be simplified into Parametric Blending of one

dependence: {Π} = {Pe, V/ωδ̂, δ̂/a, (Tp − T∞/T+
s − T∞)} ≈ { ˆδ/a}

Step 6: Create correction factors

In this FSW case, systematic errors in the math and physics can be accounted

for by the correction factor in Standard 1D blending form with blending constants

{B} = {C1, C2, C3}:

f+
T = C1

(
1 + C2

δ̂

a

)C3

Blending constant C1 takes care of the systematic error in the mathematics while

C2 and C3 are used to account for the secondary phenomena. When C1=0.764,

C2=0.259, and C3=-0.857, optimal match between Equation 2.22 and the published

experimental values has been achieved with 12% standard deviation.

2.9 Conclusions

Design rules in the form of a simple formula (asymptotic behavior of the simplified

problem by considering only dominant mechanisms) and correction factors which

capture the deviation from the ideal cases are proposed. This approach is of much

help to solve complex multiphysics problems such as welding and is based on a six-

step framework we termed Minimal Representation and Correction Factor (MRCF).

The formulation of the design rules makes it convenient to couple them to represent

multi-coupled phenomena and embed them in numerical models and control systems.

It is shown through examples that the technique of blending has wide applicability
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for correlating experimental or numerical data or theoretical values for processes with

known asymptotic solutions.

The proposed blending theory extends the applicability of standard blending ap-

proaches to obtain general, accurate and explicit expressions in terms of known

asymptotic solutions and blending constants determined with a systematic optimiza-

tion procedure. The blending expressions are also used to develop correction factors

that capture the deviations from ideal cases.

Blending is also useful in summarizing isolated experimental results and numerical

data from simulation. The general and systematic formulation can be extended to

other multi-coupled phenomena besides welding.

2.10 Appendix: Notation

Table 2.1: Notation

Symbols Description

Variables

a Blending constant

b Blending constant

f Correction factors

k Number of independent reference units

m Number of independent physical magnitudes

n Blending exponent

nr Number of regimes

u Dependent variable and related function

v Varaible separated function of u

w Varaible separated function of u

B Blending constants

F Implicit Function

Continued on next page
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Table 2.1 – continued from previous page

Symbols Description

P Problem parameter

X Independent variable

U Dependent variable

Π Independent dimensionless groups

B Blending functions

Superscripts

∗ Normalized value

̂ Asymptotic behavior

+ Blended approximation

Subscripts

I Corresponding to Regime I

II Corresponding to Regime II

III Corresponding to Regime III

i Regime i

c Characteristic values

Others

{· · · } Set
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Chapter 3

Scaling Expressions of
Characteristic Values for a Moving
Point Heat Source in Steady State
on a Semi-Infinite Solid

3.1 Abstract

Engineering expressions for characteristic values of a moving point heat source on

a semi-infinite solid are presented. Related characteristic values are: maximum

isotherm width and its location, leading and trailing lengths of isotherm, centerline

heating rate and cooling rate, maximum temperature and its gradient at maximum

width, aspect ratio of isotherms, melting efficiency, cooling time from 800 ◦C to 500 ◦C

(often used for studying steels), solidification time, the thickness of zone affected by

the heat source, and modification criteria to account for the effect of joint preparation.

All engineering expressions proposed are accurate to within 7% of the exact analyt-

ical solutions, and are obtained with a systematic approach. Dimensional analysis

indicates that the expressions developed depend on a single dimensionless parameter

that captures all possible cases. This dimensionless number is typically the Rykalin

number (Ry), which characterizes three dimensional heat flow induced by a moving

point heat source. The obtained engineering equations are of great practical value for

very diverse fields where moving heat sources are involved, and are simple enough to
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be calculated with a calculator or spreadsheet.

Table 3.1: Notation

Variables Unit Description

AR 1 Aspect ratio of isotherm

cp J kg−1 K−1 Specific heat

k Wm−1 K−1 Thermal conductivity

q W Power of heat source absorbed by sub-
strate

r m Distance from the heat source

Ry 1 Rykalin number

St 1 Stefan number

t s Time

tsl s Solidification time at centerline

t8/5 s Cooling time from 800◦C to 500◦C

T K Temperature

T0 K Initial temperature

Tc K Temperature of interest

THAZ K Temperature of edge of HAZ

Tmax K Maximum temperature

Ṫb K s−1 Centerline cooling rate

Ṫf K s−1 Centerline heating rate

dTmax/dy Km−1 Gradient of maximum temperature

U m s−1 Travel speed of moving heat source

W0 - Lambert function

x, y, z m Cartesian coordinates

xb m Trailing length of isotherm

xf m Leading length of isotherm

xmax m Location of maximum isotherm width

Continued on next page
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Table 3.1 – continued from previous page

Variables Unit Description

ymax m Maximum isotherm width

∆yHAZ m Thickness of the affected zone

Greek symbols

α m2 s−1 Thermal diffusivity

ηm 1 Melting efficiency

φ ◦ Actual heat flow angle

ρ kg m−3 Density

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Correction for intermediate values

˙symbol Time derivative

Subscripts

I Corresponding to Regime I

II Corresponding to Regime II

3.2 Introduction

This paper applies the methodology of scaling analysis, asymptotic analysis, and cor-

rection factors based on blending techniques to the calculation of 13 technologically

relevant characteristic values of moving point heat sources (represented in Figure 3.1)

associated with the isotherm T (x, y, z) = Tc. The method of analysis is explained in

detail in [96] where the maximum isotherm width and its location (ymax and xmax)

were analyzed as demonstration examples. This paper focuses on 6 new primary char-

acteristic values, and 5 secondary characteristic values associated with the primary

ones. The primary characteristic values studied are: the trailing length of isotherm
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xb, the leading length of isotherm xf, the centerline cooling rate Ṫb, the centerline

heating rate Ṫf, the maximum temperature of a point in the cross section Tmax and the

transverse temperature gradient at the maximum isotherm width dTmax/dy. The sec-

ondary characteristic values are the aspect ratio AR of the chosen isotherm (indicating

how elongated it is), the melting efficiency ηm (in this case as a rough approximation

useful to estimate the dilution of filler metal in welding), cooling time from 800◦C to

500◦C (t8/5, a standard metric of rate of cooling in the welding of steels), solidification

time tsl, (the time interval for the base material to solidify over a range of tempera-

ture) and the separation between the maximum width of two isotherms ∆yHAZ (useful

to assess thickness of the heat affected zone in welding). The cylindrical symmetry of

the idealized problem formulation also enables the generalization of results to other

geometries with cylindrical symmetry, such as edges, corners, and bevels.

The methodology employed here is based on the solution for a moving point heat

source in quasi-stationary state on a semi-infinite solid presented in [125, 126, 154],

and typically called “Rosenthal solution”

T (x, y, z) = T0 +
q

2πkr
exp

[
− U

2α
(r + x)

]
(3.1)

where x, y, and z are the independent variables illustrated in Figure 3.1, q is the

intensity of the point heat source, k is the thermal conductivity of the substrate,

T0 is the temperature of the substrate far from the heat source, U is the velocity

of the heat source relative to the substrate, and α is the thermal diffusivity of the

substrate. The radial coordinate r is defined in relation to the independent variables

as r =
√
x2 + y2 + z2. Equation 3.1 can be rewritten in normalized form as

T ∗ =
1

r∗
exp (−r∗ − x∗) (3.2)
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where

T ∗ =
4πkα (T − T0)

qU
(3.3)

x∗ =
Ux

2α
(3.4)

y∗ =
Uy

2α
(3.5)

z∗ =
Uz

2α
(3.6)

r∗ =
Ur

2α
(3.7)

In Equations 3.3-3.7 the ∗ superscript indicates a dimensionless quantity. Dimen-

sional analysis indicates that for a selected isotherm T = Tc, all dimensionless char-

acteristic values depend only on the Rykalin number (Ry) [97]

Ry =
qU

4πkα (Tc − T0)
(3.8)

A high Ry value can be interpreted as a “fast heat source,” and a low Ry value

as a “slow heat source.” In the following sections, closed-form expressions of charac-

teristic values in high and low Ry asymptotic regimes are presented, and blending

functions are used to provide estimates at the intermediate regime with high accuracy

and simplicity. The blending then becomes the basis of correction factors suitable for

engineering applications. Finally, engineering expressions suitable for use by practi-

tioners are presented.

3.3 Maximum Isotherm Width ymax and its loca-

tion xmax

The maximum isotherm width is a parameter of much practical value, since it can

be measured from cross sections of samples. Temperatures of relevance include the

melting temperature (for the case of welding) and the austenitization temperature

(for the case of moving heat sources on steel). Explicit estimates and associated

correction factors were derived in [97]. For maximum isotherm width, the asymptotic
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Figure 3.1: Characteristic values of isotherm T = Tc for a moving point heat source
on a semi-infinite solid
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behavior in dimensionless form is

ŷ∗maxI
(Ry) =

√
2Ry

e
for Regime I (fast) (3.9)

ŷ∗maxII
(Ry) = Ry for Regime II (slow) (3.10)

and the corresponding practical engineering expressions with correction factors are

ŷ+max = ŷmaxIfymaxI
(Ry) =

√
2

πe

αq

Uk (Tc − T0)
fymaxI

(Ry) for Regime I (fast) (3.11)

ŷ+max = ŷmaxIIfymaxII
(Ry) =

1

2π

q

k (Tc − T0)
fymaxII

(Ry) for Regime II (slow)

(3.12)

fymaxI-II
(Ry) =

[
1 +

(√
eRy/2

)±n
]1/n

n = −1.731 (3.13)

where the value of the exponent n was determined through the optimization process

described in [97]. For the location of maximum isotherm width, the asymptotic

behavior in dimensionless form is

x̂∗
maxI

(Ry) = − Ry

e
for Regime I (fast) (3.14)

x̂∗
maxII

(Ry) = − Ry2 for Regime II (slow) (3.15)

resulting in the following practical engineering expressions

x̂+
max = x̂maxIfxmaxI

(Ry) = − q

2πek (Tc − T0)
fxmaxI

(Ry) for Regime I (fast)

(3.16)

x̂+
max = x̂maxIIfxmaxII

(Ry) = −2U

α

[
q

4πk (Tc − T0)

]2
fxmaxII

(Ry) for Regime II (slow)

(3.17)

fxmaxI-II
(Ry) =

[
1 + (eRy)±n]1/n n = −0.9990 (3.18)

In Equations 3.13 and 3.18, the positive sign corresponds to Regime I (fymaxI
,

fxmaxI
), and the negative sign corresponds to Regime II (fymaxII

, fxmaxII
).

3.4 Trailing Length of Isotherm xb

The trailing length of an isotherm, xb, is the length of the “hot tail” trailing the heat

source. In the case of welding, the trailing length of the isotherm of melting tem-
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perature estimates the length of the molten tail (which is often protected with inert

gases of limited reach). The trailing length, together with the maximum isotherm

width, are geometrical parameters often used to characterize the shape of the melt

pool in welding and laser cladding [56, 81], and has been used as a variable in elec-

tron beam manufacturing (EBM) processes [38, 136]. For the problem formulation

captured by Equation 3.2, x∗
b is calculated by solving the equation at the centerline

(y∗ = 0, z∗ = 0), and T = Tc. This equation has two roots; x∗
b is the negative root,

while the positive root is x∗
f , which will be discussed later. For both roots, the exact

solution is in closed form, and covers the whole range of Ry from Regime I (Ry→ 0)

through Regime II (Ry→ ∞); therefore, asymptotic approximations and blending are

not necessary. In dimensionless form, the expression of x∗
b is

x∗
b(Ry) = − Ry Regime I (fast) and II (slow) (3.19)

where the ̂ symbol is not used because the above equation is an exact expression, not

an asymptotic approximation. The corresponding engineering expression with units

is obtained by replacing Equation 3.4 and Equation 3.8 into Equation 3.19, obtaining

xb = − q

2πk (Tc − T0)
Regime I (fast) and II (slow) (3.20)

3.5 Centerline Cooling Rate Ṫb

The centerline cooling rate, Ṫb, is one of the most important characteristic values

associated with moving heat sources, and in most practical cases, the centerline cool-

ing rate is representative of the cooling rate of the whole area affected by the heat

source [3, 57]. The centerline cooling rate is crucial to determine the microstructure

and mechanical properties such as hardness and strength in metals. For example,

for the case of steels, for a given composition and austenite grain size, their hard-

ness is almost completely determined by the cooling rate at a temperature near the

transformation temperature (approximately 700◦C) [50, 62].
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To calculate the rate of temperature variation at a particular point in the substrate

(which is moving relative to the heat source), the concept of material derivative is

needed

DT

Dt
=

∂T

∂t
− U

∂T

∂x
(3.21)

where ∂T/∂t = 0 in the pseudo-steady state of the problem formulation. Equa-

tion 3.21, together with Equations 3.3 and 3.4 yield the following normalization for

time t

t∗ =
U2t

2α
(3.22)

resulting in

DT ∗

Dt∗
= −∂T ∗

∂x∗ (3.23)

The derivative ∂T ∗/∂x∗ at the centerline is directly derived from Equation 3.2.

Similarly to the case of xb, an exact closed-form solution covers the whole range of Ry

and neither asymptotic approximations nor blending are necessary. In dimensionless

form

DT ∗

Dt∗

∣∣∣∣
b

(Ry) = − Ry−2 Regime I (fast) and II (slow) (3.24)

The corresponding engineering expression with units can be obtained by replacing

Equation 3.3, Equation 3.8 and Equation 3.22 into Equation 3.24

Ṫb = −2πkU(Tc − T0)
2

q
Regime I (fast) and II (slow) (3.25)

Equation 3.25 is identical to the expressions presented in [3, 128], and it has been

widely used in practice in applications such as welding[52], laser processing[59, 63],

and many other more. Empirical approximations based on modifications of this for-

mula have been proposed in[14, 61, 121, 138]; for example, a modification of the

exponent of temperature difference as follows [61, 138]

Ṫb ∝ (Tc − T0)
n (3.26)
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where the proposed value of n for the welding of steels is approximately 1.8, very

close to the theoretical value of 2. This modified exponent captures in a rough form

the physical effects beyond the limitations of Rosenthal’s model (finite heat source,

latent heat, non-insulated surface, convection in the melt, etc.). It is remarkable that

the extremely idealized Rosenthal model yields a dependence on temperature so close

to what is seen in practice.

3.6 Leading Length of Isotherm xf

The leading length of an isotherm, xf, is an indication of how far the heat travels by

conduction (and against advection) ahead of the heat source. If the melting isotherm

is considered, xf is a metric of how much the molten bead “leads” the heat source.

The leading length is of much technological relevance in welding, laser cladding, and

additive manufacturing [119, 120].

As mentioned in the discussion of x∗
b, x

∗
f involves solving Equation 3.2 for T = Tc

at the centerline, but in this case, using the positive root. The exact solution can

be expressed in a simple form using the Lambert W0 function and covers the whole

range of Ry; therefore, no blending or correction functions are necessary.

x∗
f (Ry) =

1

2
W0 (2Ry) Regime I (fast) and II (slow) (3.27)

The Lambert function is implemented into common scientific software such as

Matlab, Maple, Mathematica, and online calculation tools such as WolframAlpha.

Although the Lambert function is non-elementary, it can be approximated using

elementary functions 3.28 [12] as shown below

Ŵ0(x) ≈ (1 + ǫ) ln





1.2x

ln
[

2.4x
ln(1+2.4x)

]



− ǫ ln

[
2x

ln (1 + 2x)

]
(3.28)

where ǫ ≈ 0.46, and the relative error is below 2× 10−3.

The dimensional engineering expression for leading length can be obtained by re-
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Figure 3.2: Dimensionless leading length as a function of Ry. The exact solution and
the approximation of Equation 3.28 overlap within the thickness of the line.
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placing Equation 3.4 into Equation 3.27, obtaining

xf =
α

U
W0

[
qU

2πkα (Tc − T0)

]
Regime I (fast) and II (slow) (3.29)

3.7 Centerline Heating Rate Ṫf

The centerline heating rate ahead of the heat source, Ṫf, is relevant to understand

phase transformations in thermal processes. For example, during heating, steels ex-

perience a phase transformation from ferrite to austenite around 700◦C (The temper-

ature at which the transformation starts depends on the alloy, and it is called AC1,

and the temperature at which the transformation is complete AC3). Both tempera-

tures are significantly affected by the heating rate, and in the ignorance of the rate

of heating, these temperatures are assumed to be those measured in near-equilibrium

conditions, resulting in predictions of transformed region larger than seen in reality.

Another example of relevance of the heating rate is the case of welding of Zn-coated

steels. The Zn coating tends to evaporate ahead of the weld, preventing porosity in

the weld; however, if the rate of heating is faster than the rate of evaporation, Zn

might remain on the surface and become entrapped in the melt, causing porosity.

The centerline heating rate Ṫf shares the same derivation process as centerline

cooling rate Ṫb. The temperature evolution at the leading length of an isotherm when

the heat source approaches is also captured by Equation 3.23. The exact solution can

be calculated in exact form using the first derivative of Lambert W function [29], and

it covers the whole range of Ry, so neither asymptotic approximations nor blending

are necessary. In dimensionless form, the expression of DT ∗/Dt∗ is

DT ∗

Dt∗

∣∣∣∣
f

=
2

Ry

[
1

W0 (2Ry)
+ 1

]
Regime I (fast) and II (slow) (3.30)

The corresponding engineering expression with units can be obtained by replacing

Equation 3.3, Equation 3.8, and Equation 3.22 into Equation 3.30

Ṫf =
U2 (Tc − T0)

α

[
1

W0 (2Ry)
+ 1

]
Regime I (fast) and II (slow) (3.31)
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3.8 Maximum Temperature Tmax

The maximum temperature reached at a given point in a cross section gives an in-

dication of possible phase changes, phase transformations, thermodynamic effects, or

practical defects that might happen. With the cylindrical symmetry of the formu-

lation used, any point on the cross section is equivalent to a point on the surface

(z∗ = 0) at the same radial distance from the centerline y∗ = y∗c . In this case, the

target characteristic value T ∗
max depends only on the dimensionless group y∗c , rather

than Ry as in the previous cases. The reason is that dimensionless temperature T ∗

and Ry are directly related by T ∗
c = 1/Ry; therefore, this case can be interpreted as

the reverse of the calculation of y∗max(Ry) studied in [97]. The location of the max-

imum temperature at y∗ = y∗c is x∗ = x∗
max, such that x∗

max = x∗
max(y

∗
c). This way,

max [T ∗(x∗, y∗c , 0)] = T ∗(x∗
max, y

∗
c , 0) = T ∗

max(y
∗
c ). Asymptotic analysis of Equation 3.2

yields the following power laws for Regime I (fast) and Regime II (slow)

T̂ ∗
maxI(y

∗
c) =

2

ey∗2c
for Regime I (fast) (3.32)

T̂ ∗
maxII(y

∗
c) =

1

y∗c
for Regime II (slow) (3.33)

Equation 3.32 is in agreement with the expression derived by Adams in [3] for fast

welds. Adams expression, despite an apparent attempt at blending, breaks down for

slow welds. The blending techniques detailed in [97] result in the following correction

factors

fTmaxI-II
(y∗c) =

[
1 +

(
ey∗c
2

)±n
]1/n

+n for Regime I (fast)

−n for Regime II (slow)
(3.34)

The optimal value of n for Equation 3.34 is n = -1.246, with an error always

less than 3.880%. The crossover point for the correction factors is y∗c = 0.7363.

Asymptotic expressions without correction factors result in an error less than 10%

for y∗cI > 2.809 or y∗cII < 0.1050 in their corresponding regimes.
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The corresponding engineering expression with units can be obtained by replacing

Equation 3.8 into Equations 3.32 and 3.33 and combining with Equation 3.3

T̂+
max = T̂maxIfTmaxI

(y∗c ) = T0 +
2αq

eπkUyc2
fTmaxI

(y∗c ) for Regime I (fast) (3.35)

T̂+
max = T̂maxIIfTmaxII

(y∗c) = T0 +
q

2πkyc
fTmaxII

(y∗c) for Regime II (slow) (3.36)

3.9 Gradient of Maximum Temperature dTmax/dy

The gradient of maximum temperature is a useful intermediate step to approximate

the distance between two important temperatures that can be identified in a cross

section, for example, this gradient can be used to estimate the thickness of the heat

affected zone (HAZ) in welding. Because the HAZ is typically thin, the error of using

the gradient instead of the exact subtraction is typically negligible. The advantage

of using the gradient instead of subtracting the maximum widths corresponding to

the two target temperatures is that the gradient yields a power-law answer, which is

convenient to see intuitively the interplay of parameters.

The dimensionless form of the gradient of maximum temperature can be analyzed

by expanding the derivative of T ∗
max = T (x∗

max(y
∗), y∗, 0), and evaluating it at point

(x∗
max, y

∗
c , 0)

dT ∗
max

dy∗
=

∂T ∗

∂x∗
dx∗

max

dy∗
+

∂T ∗

∂y∗
(3.37)

where ∂T ∗/∂x∗ = 0 at x = x∗
max, by definition; therefore dT ∗

max/dy
∗ = dT ∗/dy∗

yielding the following power laws

d̂T ∗
max

dy∗

∣∣∣∣∣
I

(Ry) = −
√
2eRy−

3
2 for Regime I (fast) (3.38)

d̂T ∗
max

dy∗

∣∣∣∣∣
II

(Ry) = − Ry−2 for Regime II (slow) (3.39)
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with the following correction factors

fdTmax/dy|I,II(Ry) =

[
1 +

(√
1

2eRy

)±n
]1/n

+n for Regime I (fast)

−n for Regime II (slow)
(3.40)

The optimal value of n for Equation 3.40 is n = 3.079, with an error always less than

6.141%. The crossover point for the correction factors is Ryc = 0.1839. Asymptotic

expressions without correction factors result in an error smaller than 10% for RyI >

0.3897 or RyII < 0.05530 in their corresponding regimes.

The corresponding engineering expression with units can be obtained by replacing

Equation 3.5 into Equations 3.38 and 3.39, and combining with Equation 3.3

d̂Tmax

dy

+

=
d̂Tmax

dy

∣∣∣∣∣
I

fdTmax/dy|I(Ry) = −
√

2eπkU

αq
(Tmax − T0)

3
2 fdTmax/dy|I(Ry) for Regime I (fast)

(3.41)

d̂Tmax

dy

+

=
d̂Tmax

dy

∣∣∣∣∣
II

fdTmax/dy|II(Ry) = −2πk

q
(Tmax − T0)

2 fdTmax/dy|II(Ry) for Regime II (slow)

(3.42)

3.10 Aspect Ratio AR

The aspect ratio of an isotherm is a metric of how elongated the isotherm is, and

because it depends only on Ry, the aspect ratio is also a proxy for Ry. In many

practical applications, such as welding, key isotherms are visible; for example the

melting isotherm can be observed easily, and the isotherm of 600◦C is often seen

in steels as the line at which the steel starts to turn red hot; this way, a simple

observation becomes a practical assessment of travel speed. Previous attempts at

obtaining an explicit expression were made in [120] using a polynomial fitting over a

limited range of speeds, and a linear correlation for slow speeds. The aspect ratio,

AR, is defined as the ratio of isotherm length (xf − xb) to isotherm width (2ymax)

AR =
xf − xb

2ymax
=

x∗
f − x∗

b

2y∗max

(3.43)
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Asymptotic analysis of Equation 3.43 yields the following power laws for Regime I

and Regime II

ÂRI(Ry) =

√
eRy

8
for Regime I (fast) (3.44)

ÂRII(Ry) = 1 for Regime II (slow) (3.45)

The aspect ratio of 1 in Regime II is consistent with the spherical symmetry of the

pure conduction problem when there is no motion of the heat source. The correction

factors using blending are the following

fARI,II
(Ry) =

[
1 +

(√
8

eRy

)±n
]1/n

+n for Regime I (fast)

−n for Regime II (slow)
(3.46)

The optimal value of n for Equation 3.46 is n = 1.904, with an error always

less than 1.994%. The crossover point for the correction factors is Ryc = 2.943.

Asymptotic expressions without correction factors result in an error less than 10%

for RyI > 19.07 or RyII < 0.6756 in their corresponding regimes. The corresponding

engineering expression with units can be obtained by replacing Equation 3.8 into

Equations 3.44 and 3.45 to obtain

ÂR

+
= ÂRIfARI

(Ry) =

√
eqU

32πkα (Tc − T0)
fARI

(Ry) for Regime I (fast) (3.47)

ÂR

+
= ÂRIIfARII

(Ry) =fARII
(Ry) for Regime II (slow) (3.48)

Figure 3.3 presents the aspect ratio as a function of Ry, and displays the isotherms

corresponding to Ry equals to 0.01, 1, 10 and 100, showing how the isotherm becomes

progressively more elongated with Ry.
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Figure 3.3: Aspect ratio of the isotherm T = Tc for different Ry values under a moving
point heat source on a semi-infinite solid

3.11 Melting Efficiency ηm

Melting efficiency ηm is a magnitude defined for fusion welding processes, in which

melting is essential to accomplish the joining operation. The superheat above melting

is unnecessary for joining, and in the ideal case, the molten material reaches the

melting point but does not exceed it, leaving the rest of the substrate unaffected. For

a given cross section of a weld, a lower melting efficiency implies that more heat will

affect the substrate, resulting in distortions, residual stresses, and grain coarsening.

When the welding process involves a filler material, different melting efficiencies can

result in different mixtures of filler and base material in the melt (dilution). Dilution is

a critical factor in the welding of wear-resistant overlays [16], the welding of carbon to

75



stainless steels [10, 11] and the welding of aluminum [28]. Beyond welding, if critical

temperatures other than melting are considered, the melting efficiency is an applicable

parameter to other relevant thermal processes. For example, if the characteristic

temperature considered is the austenitization temperature, the adapted concept of

melting efficiency yields insight into the excess heat applied and potential distortions

and residual stresses in laser or flame heat treating.

The melting efficiency is defined as the energy used to reach melting relative to the

total energy deposited from the heat source, and it can be approximated using Rosen-

thal’s model, acknowledging its limitations, especially the lack of proper accounting

for latent heat. Despite its limitations, the conclusions obtained are qualitatively

correct, and quantitatively not far from reality as shown by previous studies on melt-

ing efficiency [34, 44, 112, 115]. Some rough corrections can be used to improve the

calculations, such as using an average specific heat which includes the effect of latent

heat.

For the model considered, the volumetric energy to reach melting is given by

ρcp(Tm − T0), where ρ, cp, and Tm are the density, specific heat, and melting tem-

perature of the substrate respectively. The cross section of fusion zone has a cross

sectional area of π
2
y2max,m, where ymax,m is the maximum width of the isotherm of

melting temperature. The melting efficiency can then be calculated as

ηm =
ρcp(Tm − T0)U

π
2
y2max,m

q

which can be rewritten using Equations 3.8 and 3.5 as

ηm =
1

2

y∗2max,m

Rym
(3.49)

where Rym correspond to Tm. Replacing the asymptotic expressions for ŷ+max from [97]

into Equation 3.49 yields the following power laws

η̂mI
(Ry) =

1

e
for Regime I (fast) (3.50)

η̂mII
(Ry) =

Ry

2
for Regime II (slow) (3.51)
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The blending expressions for ηm are based on those for y∗max, resulting in

fηmI,II
(Ry) =

[
1 +

(
eRy

2

)±n
]1/n

+n for Regime I (fast)

−n for Regime II (slow)
(3.52)

The optimal value of n for Equation 3.52 is n = -0.8655, with an error always

less than 1.450%. The crossover point for the correction factors is Ryc = 0.7359.

Asymptotic expressions without correction factors result in an error smaller than

10% for Ryc > 11.85 or Ryc < 0.05388 in their corresponding regimes.

Equation 3.50 indicates that for the model considered, the melting efficiency reaches

a maximum value of 36.79% for very fast heat sources, but it never approaches 100%.

This is a consequence of the superheat inside the molten region and the gradients on

the substrate outside the molten region. Equation 3.51 indicates that for slow welds,

the heat lost by conduction reduces the melting efficiency significantly.

Equations 3.50 and 3.51 suggest that the melting efficiency is never zero, regardless

of the power of the heat source; however, experience indicates that for weak heat

sources sometimes there is no melting and the melting efficiency should be zero. This

discrepancy is a consequence of the model being based on a point heat source reaching

infinite temperature at the point of application, regardless of the power of the heat

source. More sophisticated models that account for distributed heat sources such

as [36] are needed to capture this phenomenon correctly, and are the focus of current

research.

The corresponding engineering expressions with units can be obtained by replacing

Equation 3.8 into Equations 3.50 and 3.51, obtaining

η̂+m = η̂mI
fηmI

(Ry) =
1

e
fηmI

(Ry) for Regime I (fast) (3.53)

η̂+m = η̂mII
fηmII

(Ry) =
qU

8πkα (Tm − T0)
fηmII

(Ry) for Regime II (slow) (3.54)
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3.12 Cooling Time t8/5

The characteristic value t8/5 is typically used as a metric of cooling rate in the welding

of steels, and it is defined as the time it takes for the centerline to cool from 800◦C to

500◦C. For steels, austenite decomposition occurs in this temperature range, resulting

in a variety of microstructural constituents such as ferrite, pearlite, bainite, and

martensite, depending on the cooling rate [75]. Similar to cooling rate Ṫb, cooling

time t8/5 is also insensitive to the location in the vicinity of weld centerline [61, 69].

For a fixed point on the centerline, the time to cool from 800◦C to 500◦C, is the

time it takes for the heat source to travel the distance between the trailing length xb

of the 800◦C and 500◦C isotherms; thus

t8/5 =
1

U
∆xb

∣∣∣∣
800

500

=
q

2πkU

(
1

T500 − T0
− 1

T800 − T0

)
(3.55)

The time t8/5 can be approximated as

t8/5 ≈ − 1

Ṫb,i
∆T

∣∣∣∣
800

500

=
q (T800 − T500)

2πkU(Ti − T0)
2 (3.56)

where Ṫb,i is the cooling rate evaluated at a temperature Ti intermediate between

500◦C and 800◦C. This equation is equivalent to that presented in [128]. Typically,

the error is small for any Ti, and it is shown in the Appendix that Equation 3.56 is

exact when

Ti − T0 =
√
(T800 − T0)(T500 − T0) (Ti =632◦C for T0 =20◦C) (3.57)

The parameters q and U appear combined and never independently in the calcu-

lation of t8/5 Equation 3.55 (and also in the determination of cooling rate). For this

reason, in practice only the ratio q/U termed “linear heat input” is typically used,

and embodied in codes and standards such as [7, 9, 18, 30]

3.13 Solidification Time at Centerline tsl

The model used here can be extended to capture aspects of phase transformations

when their presence does not affect significantly the solution. For the case of steels in
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typical welding conditions, it was demonstrated in [147] that solidification and solid-

state phase transformations cause only small departures from the exact solution shown

in Equation 3.1. To deal with phase transformations, an enthalpy-based formulation

is convenient. In the original solution, the hypothesis of constant properties means

that the enthalpy formulation and the temperature formulation are equivalent, and

enthalpy variations can be calculated based on temperature variations. This way, in

the original formulation of the problem, it is possible to state the following rate of

enthalpy loss at the trailing length of the weld based on Equation 3.25

Di

Dt

∣∣∣∣
b

= − 2πkcpU(Tc − T0)
2

q
Regime I (fast) and II (slow) (3.58)

where i is enthalpy per unit mass, and cp is the effective specific heat considered

constant in Rosenthal’s formulation, and for this reason is not necessary to attribute

it to solid or liquid. Because phase transformations have a small effect on the solu-

tion, this rate of enthalpy loss can be used to estimate the time associated with the

dissipation of enthalpy from a phase transformation. For the case of solidification,

the latent heat of solidification isl would take a time tsl to be dissipated, which can

be estimated as

tsl = − isl
Di/Dt|b

=
qisl

2πkcpU(Tm − T0)
2 Regime I (fast) and II (slow) (3.59)

where Tm ( “melting temperature”) is a temperature representative of the solidifica-

tion. Because of the approximate nature of the calculation, it is not possible to give

an exact number; however, solidification typically happens over a relatively narrow

range of temperatures, and for practical calculations it can be considered that Tm is

an intermediate between the liquidus and solidus temperature of the alloy in question.

Equation 3.59 has also been presented in [80, 101] and has been applied in[33, 113]

to study nonequilibrium solidification conditions. The dimensionless counterpart of

Equation 3.59 is

t∗sl =
Ry

St
Regime I (fast) and II (slow) (3.60)
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where time is normalized according to Equation 3.22, Ry is considered at Tm, and St

is the Stefan number

St =
cp (Tm − T0)

isl
(3.61)

For typical structural steel, the Stefan number is approximately 3 [102]. The

analysis above can be extended to other phase transformations such as austenite de-

composition, and Equation 3.58 could be the basis to extend the calorimetry analysis

of phase transformations of [46, 68] to in-situ analysis of transformations in welding

and surface heat treating.

3.14 Thickness of the Heat Affected Zone ∆y
HAZ

The heat affected zone (HAZ) is an extremely important concept in welding and

thermal cutting of all metals, and it is defined as the layer of material surrounding

the fusion line that is affected by the heat. In steels, it typically corresponds to the

material that was exposed to temperatures between slightly below the beginning of

austenitization (Ac,1) and melting (Tm) [75]. The microstructures in the HAZ are

typically undesirable, and a narrower HAZ can often enable welds that would not

have been performed acceptably otherwise.

Mathematically, the thickness of the heat affected zone can be defined as

∆yHAZ = yHAZ,m − ymax,m (3.62)

where ymax,HAZ is the width of the isotherm THAZ that marks the edge of the HAZ; for

example Ac,1 in steels, and ymax,m is the width of the melting isotherm (Tm, marking

the width of the weld). Substituting THAZ and Tm into Equations 3.11 and 3.12 results

in the following predictions for thickness of the HAZ

∆yHAZ =

√
2αq

πekU

[
fymaxI

(RyTHAZ
)

√
THAZ − T0

−
fymaxI

(RyTm
)

√
Tm − T0

]
for Regime I (fast) (3.63)

∆yHAZ =
q

2πk

[
fymaxII

(RyTHAZ
)

THAZ − T0
−

fymaxII
(RyTm

)

Tm − T0

]
for Regime II (slow) (3.64)
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For a relatively thin HAZ, its thickness approximated also as

∆yHAZ ≈ − 1

dTmax/dy|i
∆T

∣∣∣∣
Tm

THAZ

=

√
qα

2eπkU

Tm − THAZ

(Ti − T0)
3
2

for Regime I (fast) (3.65)

∆yHAZ ≈ − 1

dTmax/dy|i
∆T

∣∣∣∣
Tm

THAZ

=
q (Tm − THAZ)

2πk(Ti − T0)
2 for Regime II (slow) (3.66)

where dTmax/dy|i is the gradient of maximum temperature in a cross section evaluated

at a temperature Ti intermediate between THAZ and Tm. Typically, the error is small

for any Ti, and using the expression derived in the Appendix, Equation 3.65 and

Equation 3.66 is exact when

Ti − T0 =

[√
(THAZ − T0)(Tm − T0)

√
THAZ − T0 +

√
Tm − T0

2

]2/3
for Regime I (fast)

(3.67)

Ti − T0 =
√
(THAZ − T0)(Tm − T0) for Regime II (slow)

(3.68)

Typical values for plain carbon steel are THAZ ≈750◦C and Tm ≈1500◦C, and for a

starting temperature T0 =20◦C, this results in Ti =1070◦C for Regime I, and a very

similar Ti =1059◦C for Regime II (11◦C apart). In comparison, the arithmetic mean

of temperatures results in Ti = (THAZ + Tm)/2 =1125◦C (55◦C and 66◦C above the

exact intermediate temperatures). Given the simplicity of calculation of intermediate

temperature for Regime II, and how it also represents the intermediate temperature

in Regime I much closer than the arithmetic mean, it is practical (and typically

accurate) to use Equation 3.68 for all values of Ry when estimating an intermediate

temperature when using a temperature gradient to estimate the width of the HAZ.

3.15 Effect of Joint Preparation Geometry

Equation 3.1 has symmetry of revolution around the x-axis. The implication of this

symmetry is that the problem formulation is the same for other configurations with

symmetry of revolution such as a full solid, or a wedge of angle φ with its edge along
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the x-axis (which is a good representation of a beveled weld joint preparation in a

thick plate). All problems with the same “angular heat intensity” defined as q/φ

will have the same solution; for the case of a semi-infinite solid, φ = 180◦. The

formulae presented above for a semi-infinite solid can be applied without additional

mathematical error to the other related problems replacing the heat intensity q with

an “effective heat intensity” qeff that accounts for the different angle covered in the

cylindrical symmetry.

qeff =
180◦

φ
q (3.69)

where φ is in degrees. A particular practical application of this extended analysis

is weld joint preparations, for which the analysis is valid as long as the isotherm of

interest (Tc) is well inside the beveled edges, and far from the edge where the bevel

meets the top surface of the plate. For example, for the 75◦V-groove joint preparation

shown in Figure 3.4a, assuming that the heat is divided evenly between the two halves

of the joint preparation, all formulae derived above are applicable when q is replaced

by qeff = (q/2)× (180◦/52.5◦) = 1.714q. The division by 2 is because only half of the

heat goes to each plate, and the 52.5◦correspond to the angle covered by the solid

for each plate (52.5◦=90◦-75◦/2). Predicted cooling time from 800◦C to 500◦C, t8/5,

and cooling rate Ṫb at 650◦C in root pass welding of steel plates with the groove joint

preparation are in agreement with general experience[5].
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(a)

(b)

Figure 3.4: Schematic of V-groove joint preparation (a), and single bevel joint prepa-
ration (b)

For the case in which the two sides of a joint have different preparation, such as the

single bevel groove joint of Figure 3.4b, the distribution of heat is typically not even

between the two sides. If the same characteristic values (e.g. cooling rate or width of

melting isotherm) are desirable for both sides of the joint, the effective heat intensity

should be the same on both sides, resulting in a distribution of heat proportional to

the wedge angle of each side

qj
q

=
φj

φ1 + φ2
(3.70)

where j = 1, 2 identifies each side of the joint, such that q1 and q2 are the amounts of

heat on each side of the joint, and φ1 and φ2 are their corresponding wedge angles.

For example, for the 30◦single bevel of Figure 3.4b, φ1 = 90◦ for the square side,

and φ2 = 60◦ for the beveled side, resulting in q1 = 0.6q and q2 = 0.4q. In this

case, if similar properties are desired for both sides of the joint, the partition of

heat for welding should be 60% on the square side, and 40% on the beveled side.

This partition is typically accomplished in practice by making an asymmetric weave
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and/or having different dwell times on each side during the weave. The width of the

weave is small, of the order of the width of the molten metal, and a weaved weld is

typically considered a straight line in practice. Equation 3.70 can be of much help in

anticipating the different dwell times needed.

3.16 Discussion

The results presented here are novel, with the main difference with previous attempts

is the use of blending techniques to provide explicit solutions for the entire range of

parameters; this had never been accomplished before. Another important difference

is the identification of a single dimensionless group that determines all characteristic

values (instead of two as in [22]). This dimensionless group is typically the Rykalin

number, which had been proposed before [44] based on the analysis of experiments,

but had not been adopted by the community.

The expressions developed are based on fundamental principles, are simple and

general, and are within 7% of the exact solution. Such combination is desirable, and

uncommon. For values of Ry larger than 20 or smaller than 1/20, the correction

factors account for less than 10% and can be omitted; in these cases, the final expres-

sions are even simpler. Many practical applications, such as heat sources based on

lasers and electron beams are consistently at Ry much larger than 20. The mathe-

matical analysis is proven in detail in this work; however, the next obvious question is

whether the exact solution (Equation 3.1) is close enough to reality for the expressions

presented to be of practical use.

The accuracy of the exact solution has been validated through intensive testing [22,

53, 108–111, 131] and numerical analysis [32, 118, 147, 151]. The effect of variable

materials properties and latent heat was analyzed numerically in [147], where it was

shown that these effects resulted in variations below 10% in the trailing length.

Christensen’s work [22] was especially thorough, and validated the exact solution

for the case of welding using many characteristic values in common with those pre-
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sented here (experiments tested ymax both as width and depth, xmax, xf−xb, xmax−xb,

Tmax, Ṫb). The validation considered multiple welding processes and materials. The

reference temperature considered was the melting temperature, which is beyond the

range of validity of the model, and the results were still consistent with the model.

The predictions for width, trailing length, and cooling rate are typically useful for

engineering purposes, while the predictions for leading length for the melting tem-

perature tend to be underestimates, because the size of the heat source is typically

larger than the leading length. Estimate of weld penetration is also typically unreli-

able because convection in the molten metal plays a significant role. It is remarkable

that Rosenthal’s idealized solution was proved to be effective despite of its simplicity.

The accuracy of the expressions presented here is limited by the limitations of the

exact solution. Some of this limitations can be overcome in practical ways. The lim-

itation of constant thermophysical properties can be addressed in a practical way by

using effective values, such as those proposed in [45]. The limitation of a point heat

source can be addressed with the consideration of distributed heat sources, which

would add precision and physical meaning with as little as a single extra parameter

(dimensionless size of the heat source). The limitation of considering only conduction

can be addressed by accounting for the effect of fluid flow as in [123], which would

add two dimensionless groups (Prandtl number and Marangoni number). The con-

sideration of infinite thickness of the substrate can be addressed by blending with

the 2D solutions for moving heat sources (often called the “thin plate solution”).

The challenge in this case is that blending must be extended to asymptotic behaviors

beyond power laws and to two or more dimensionless groups. Blending under these

conditions is beyond the capabilities of [23, 26]. All these are current focus of intense

research.

The ultimate goal of the estimates and correction factors presented here is to serve

as accurate predictors of actual processes, in a similar way that moving heat source

equations from [62] are used in [133]. In these references, the asymptotic solutions
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are modified with empirical correction factors. These empirical modifications are not

based on fundamental analysis, resulting in two important drawbacks: first, these

modifications are valid only for the materials and processes used in the calibrations,

and second, the range of parameters for which these calibrations are valid is not

clearly defined.

3.17 Conclusions

Equations for characteristic values are listed in Table 3.2, including maximum isotherm

width and its location, leading and trailing lengths of the isotherm, centerline heating

and cooling rates, maximum temperature and its gradient, aspect ratio of isotherm,

cooling time t8/5, solidification time, thickness of the affected zone, and modification

coefficient for joint preparation geometry. As a general rule of thumb, for Ry < 1/20

or Ry > 20, the asymptotic solutions alone yield an error below 10% for all listed

characteristic values. Key characteristics of isotherms produced by a given set of

experimental parameters can be calculated with ubiquitous means such as scientific

calculators or spreadsheets. In addition to predictive estimations, the engineering

expressions also enhance intuition and reflect quantitative effects of different process

parameters and their combination on resulting thermal conditions. The methodology

and engineering expressions obtained can be applied into a number of processes and

materials in different disciplines since they capture the inherent essence of complex

physical phenomena based on fundamental physics.
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Appendix: Relationship between the derivatives and

variations in power-law asymptotic regimes

Consider a problem in which the characteristic values depend on a single dimensionless

group Π (in this paper, the single dimensionless group is typically Ry). Consider also

two characteristic values with power-law dependence on Π

uc(Π) = AΠm (3.71)

vc(Π) = BΠn (3.72)

There is an intermediate value of Π for which the following calculation is exact

duc

dvc

∣∣∣∣
Πi

=
uc(Π2)− uc(Π1)

vc(Π2)− vc(Π1)
(3.73)
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where Π1 and Π2 are two separate values and Πi is the intermediate value sought. To

calculate the value of Πi where Equation 3.73 is exact, we can analyze the derivative

and the ratio of variations

duc

dvc

∣∣∣∣
Πi

=
duc/dΠ

dvc/dΠ

∣∣∣∣
Πi

=
A

B

m

n
Πm−n

i (3.74)

∆uc

∆vc
=

A

B

Πm
2 − Πm

1

Πn
2 − Πn

1

(3.75)

Combining Equations 3.73 through 3.75 results in the following value for Πi, for

which the derivative and the ratio of variations give exactly the same result

Πi =

(
n

m

Πm
2 − Πm

1

Πn
2 − Πn

1

) 1
m−n

(3.76)

This expression is exact only for power-law asymptotic regimes, but it is still a

useful approximation for intermediate regimes. As an example of application of Equa-

tion 3.76, consider the case of cooling rate and t8/5 , where Π = Ry, uc = T ∗
b , and

vc = x∗
b. From Equation 3.3, we obtain m = −1, from Equation 3.19, n = 1, resulting

in

Ryi =

(
−Ry−1

2 − Ry−1
1

Ry2 − Ry1

) 1
−1−1

=
√

Ry1Ry2 (3.77)

which becomes Equation 3.57 when the definition of Ry is used.
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Table 3.2: Summary of characteristic values and correction factors for welding on
thick plates

Variable Regime Asymptotic Correction factor n Error[%] Eq.

ymax

I

√
2

πe

αq

kU (Tc − T0)

[
1 +

(√
eRy

2

)n] 1
n

-1.73 0.7
3.11

II
1

2π

q

k (Tc − T0)

[
1 +

(√
eRy

2

)−n] 1
n

3.12

xmax

I − q

2πek (Tc − T0)
[1 + (eRy)n]

1
n

-1.00 1.9
3.16

II −2U

α

[
q

4πk (Tc − T0)

]2 [
1 + (eRy)−n] 1

n 3.17

xb I and II − q

2πk (Tc − T0)
3.20

Ṫb I and II −2πkU(Tc − T0)
2

q
3.25

xf I and II
α

U
W0

[
qU

2πkα (Tc − T0)

]
3.29

Ṫf I and II
U2 (Tc − T0)

α

[
1

W0 (2Ry)
+ 1

]
3.31

Tmax

I T0 +
2αq

eπkUyc2

[
1 +

(
eUyc
4α

)n] 1
n

-1.25 3.9
3.35

II T0 +
q

2πkyc

[
1 +

(
eUyc
4α

)−n
] 1

n

3.36

dTmax/dy
I −

√
2eπkU

qα
(Tm − T0)

3
2

[
1 +

(√
1

2eRy

)n] 1
n

3.08 6.1
3.41

II −2πk

q
(Tm − T0)

2

[
1 +

(√
1

2eRy

)−n
] 1

n

3.42

AR

I

√
eqU

32πkα (T − T0)

[
1 +

(√
8

eRy

)n] 1
n

1.90 2.0
3.47

II 1

[
1 +

(√
8

eRy

)−n
] 1

n

3.48

ηm
I

1

e

[
1 +

(
eRy

2

)n] 1
n

-0.87 1.4
3.53

II
qU

8πkα (Tm − T0)

[
1 +

(
eRy

2

)−n
] 1

n

3.54

t8/5 N/A
q

2πkU

(
1

T500 − T0

− 1

T800 − T0

)
3.55

t8/5
N/A t8/5 ≈

q (T800 − T500)

2πkU(Ti − T0)
2 3.56

Ti − T0 =
√

(T800 − T0)(T500 − T0) * 3.57

tsl N/A
qisl

2πkcpU(Tm − T0)
2 3.59

∆yHAZ

I

√
2αq

πekU

[
fymaxI

(RyTHAZ
)

√
THAZ − T0

−
fymaxI

(RyTm
)

√
Tm − T0

] [
1 +

(√
eRy

2

)n] 1
n

-1.73 0.7
3.63

II
q

2πk

[
fymaxII

(RyTHAZ
)

THAZ − T0
−

fymaxII
(RyTm

)

Tm − T0

] [
1 +

(√
eRy

2

)−n] 1
n

3.64

∆yHAZ

I ∆yHAZ ≈
√

qα

2eπkU

Tm − THAZ

(Ti − T0)
3
2

[
1 +

(√
1

2eRy

)n] 1
n

3.08 6.1 3.65

Ti − T0 =

[√
(THAZ − T0)(Tm − T0)

√
THAZ − T0 +

√
Tm − T0

2

]2/3
* 3.67

II ∆yHAZ ≈
q (Tm − THAZ)

2πk(Ti − T0)
2

[
1 +

(√
1

2eRy

)−n
] 1

n

3.08 6.1 3.66

Ti − T0 =
√

(THAZ − T0)(Tm − T0) * 3.68

* using these intermediate temperatures the calculation using the derivative is exactly the same as that using differences
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Chapter 4

Prediction of Peak Temperature
under a Moving Gaussian Surface
Heat Source

4.1 Abstract

This paper presents a systematic scaling analysis of a steady-state temperature field

under a Gaussian distributed surface heat source on a semi-infinite solid. Dimension-

less maximum temperature and its location are functions dependent only on the heat

source distribution parameter (σ∗). Maximum temperature and its location are de-

termined for the first time in closed-form over the entire range of σ∗. The maximum

error of estimation from the exact solution is below 0.19% for the peak temperature

and 1.4% for its location. The methodology employed consists of normalization, di-

mensional analysis, asymptotic analysis, and blending techniques. Comparisons of

the proposed equations are conducted with experimental data. The expressions ob-

tained can be calculated using a calculator or a basic spreadsheet and are useful for

engineers to verify numerical models.
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Table 4.1: Notation

Variables Unit Description

d m Thickness of the substrate

Im 1 Asymptotic constant Im = 1.280

k Wm−1 K−1 Thermal conductivity of the substrate

q W Power absorbed by substrate

t s Time

T K Temperature

T0 K Initial temperature or preheat

Tc K Temperature of interest

Tmax K Peak temperature

U m s−1 Travel speed of the moving heat source

x, y, z m Cartesian coordinates

xmax m Location of peak temperature

Greek symbols

α m2 s−1 Thermal diffusivity of the substrate

σ m Standard deviation of a Gaussian func-
tion

σmax m Maximum heat source distribution pa-
rameter

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Improvement over asymptotic approxi-
mation

Subscripts

V Regime V of broad heat sources

VI Regime VI of concentrated heat sources

Continued on next page
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Table 4.1 – continued from previous page

Variables Unit Description

Acronyms

DOF Degree of Freedom

GTAW Gas Tungsten Arc Welding

SAW Submerged Arc Welding

4.2 Introduction

The modelling of temperature fields is required to predict dimension of isotherms,

microstructures, residual stresses and distortions of workpiece in a number of indus-

trial applications including cutting [70, 134], tribology [60, 107, 143], welding [126,

128, 131], heat treatments [74, 76], and additive manufacturing [141, 155]. Previous

analyses based on the classic point heat source model have been performed to predict

isotherm characteristics such as width and length of isotherms, cooling and heating

rate [82, 84, 96, 149]. Although the point heat source model can capture isotherm

characteristics over several orders of magnitude, it cannot provide an estimate of max-

imum temperature because of the singularity at the origin, intrinsic to the model [22,

32, 109].

The answer to the practical question “What is the peak temperature of the sub-

strate?” is essential in many processes, especially heat treatment and additive man-

ufacturing of materials sensitive to temperatures[4, 94]. Real-time monitoring of the

temperature field by thermal image processing requires specialized equipment and

necessary training to set up [39], and it is plagued by uncertainties such as radiative

emissivity, interference by radiation from the arc or laser, and the presence of surface

contaminants and surface oscillations in the case of melting.

First-order predictions of the maximum surface temperature have been obtained

for square uniform, circular uniform and parabolic heat sources using a heuristic (but
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not systematic) methodology over a range of Peclet number from 0.01 to 20 [143], and

uniform and parabolic moving heat sources of several geometries were studied using

dimensional analysis and blending in [107]. A power-law approximation for the onset

of surface melting under a top-hat (uniform rectangle) heat source was determined

by least square regression of simulation data [76]; however, the range of validity of

the proposed power-law was not identified.

A variety of models were developed to improve the accuracy of predictions [36,

47, 73, 88, 111, 117]. Among all these refinements, the Gaussian heat source model

is a widely applied surface heat source model with close resemblance to the heat

distribution in arc welding [146] and laser processes [15]. By using a Gaussian heat

distribution, the obtained temperature distribution has no singularities [27, 36] and it

is proven to be more accurate than the point-heat source theory to predict dimensions

of isotherms and thermal profile in the vicinity of heat source [36, 84, 146]. Despite

previous investigations on peak temperature problems, no explicit, accurate expres-

sions exist to predict the peak temperature under a moving Gaussian distributed heat

source applicable to a broad range of processes and materials.

This paper presents for the first time such explicit and accurate expressions to pre-

dict the peak temperature rise and its location in the workpiece scanned by a Gaussian

distributed heat source. Asymptotic analysis was employed to derive asymptotic so-

lutions in closed-form for the extreme cases of broad and concentrated heat sources.

Blending functions [23, 84, 149] were applied to extend rigorously the usefulness of

the asymptotic expressions to intermediate cases, developing correction factors for

each asymptotic regime. The resulting asymptotics are in power-law form, making

the resulting blended equations and correction factors easy to calculate in a calculator

or spreadsheets.
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4.3 Governing Equation

The moving Gaussian heat source model describes a Gaussian distributed heat source

moving along a straight line (x-axis) at a constant velocity U on the surface of a

semi-infinite substrate. Thermophysical properties of the substrate are assumed in-

dependent of temperatures. In an Eulerian coordinate frame, where the heat source

is stationary, and the substrate moves in the −x direction, the governing equation

can be written as:

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
+

U

α

∂T

∂x
= 0 (4.1)

where x, y and z are the independent variables. The temperature, T = T (x, y, z), is

the dependent variable, and α is the thermal diffusivity of the substrate.

The boundary conditions for Equation 4.1 are:

∂T

∂z
=

q

2πkσ2
exp

(
−x2 + y2

2σ2

)
For z = 0 (4.2)

T → T0 For x2 + y2 + z2 → ∞ (4.3)

where q is the heat absorbed by the substrate, k is the thermal conductivity of the

substrate, and T0 is the initial temperature or preheat. The distribution parameter

σ is the standard deviation of Gaussian function. For problems such as welding,

typical values of σ varies from 1 mm (for the case of GTAW) to 7 mm (for the case of

SAW) [146]. The solution to Equation 4.1 with boundary conditions in equations 4.2

and 4.3 is [27, 36]:

T = T0 +
qα

1
2

2kπ
3
2

∫ ∞

0

t−
1
2

2αt + σ2
·

exp

(
−x2 + 2xtU + U2t2 + y2

4αt+ 2σ2
− z2

4αt

)
dt

(4.4)
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4.4 Normalization and Dimensional Analysis

The original equations are transformed to their dimensionless counterparts by nor-

malization. In this case, Equation 4.4 can be rewritten in a normalized form as:

T ∗ =
1√
2π

∫ ∞

0

t∗−
1
2

t∗ + σ∗2 ·

exp

(
−x∗2 + 2t∗x∗ + t∗2 + y∗2

2t∗ + 2σ∗2 − z∗2

2t∗

)
dt∗

(4.5)

Equation 4.6 and Equation 4.7 describe the dimensionless time and distribution

parameter in terms of dimensional parameters:

t∗ =
U2t

2α
(4.6)

σ∗ =
Uσ

2α
(4.7)

where t has the physical meaning of time elapsed since the start of the application

of the moving heat source. The current steady-state calculations, involve a range of

time between 0 and infinity.

Equations 4.8 to 4.11 are the dimensionless temperature, dimensionless coordinates

x∗, y∗ and z∗:

T ∗ =
4πkα (Tc − T0)

qU
(4.8)

x∗ =
Ux

2α
(4.9)

y∗ =
Uy

2α
(4.10)

z∗ =
Uz

2α
(4.11)

where Tc is the temperature of interest, such as melting temperature or austenization

temperature in the heat affected zone of ferritic steels.

In Equation 4.6-Equation 4.11, the ∗ superscript indicates a dimensionless quan-

tity. Equation 4.5 involves five dimensionless groups: three independent variables

x∗, y∗, and z∗, dimensionless distribution parameter σ∗ and the dependent variable

99



T ∗(x∗, y∗, z∗, σ∗). The dimensionless time t∗ is a variable of integration and the steady

state temperature field has no time dependence.

Using variable substitution method θ = arctan(
√
t∗/σ), Equation 4.5 can be rewrit-

ten as Equation 4.12 such that the improper integral is converted to a proper one,

saving much effort in computation.

T ∗ = 2√
2πσ∗

∫ π
2

0

exp

{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+

cos2 θ(x∗2+y∗2)
σ∗2 + 2x∗ (1− cos2 θ

)
+ z∗2 cos2 θ

σ∗2(1−cos2 θ)

]}
dθ

(4.12)

The number of dimensionless groups is consistent with the number expected from

applying dimensional analysis theory [19]. Equation 4.4 involves ten magnitudes with

units: three independent variables x, y, and z, the dependent variable T (x, y, z, σ),

heat source distribution parameter σ, and five problem parameters T0, q, k, U , and

α. There are four independent units for the magnitude with dimension (m, kg, s,

◦C). Because there is no temperature that must be measured in absolute values, the

number of dimensionless groups should minus one [152], obtaining 10− 4− 1 = 5.

The dimensionless form of peak temperature and its location depend only on one

dimensionless group. Considering the dimensionless peak temperature (T ∗
max), Equa-

tion 4.5 involves five independent dimensionless groups (x∗, y∗, z∗, σ∗, T ∗). One con-

straint is Equation 4.5, leaving only four dimensionless degrees of freedom. The defi-

nition of T ∗
max involves three more constraints: y∗ = 0, z∗ = 0, and T ∗

max = max(T ∗),

leaving only one free dimensionless group. For practical reasons, the remaining degree

of freedom is assigned to the dimensionless distribution parameter σ∗.

4.5 Asymptotic Analysis, Blending and Correction

Factors

The value of σ∗ varies from zero to infinity, defining two asymptotic regimes for the

dimensionless variables, which will be named following the conventions determined

in[84, 96]: Regime V, corresponding to large values of σ∗ (broad heat source), and
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Regime VI, corresponding to small values of σ∗ (concentrated heat source). Asymp-

totic analysis of Regime V and Regime VI yields explicit power-law expressions for

peak temperature and its location.

For the dimensionless peak temperature T ∗
max(σ

∗), the associated asymptotic ex-

pression for Regime V is T̂ ∗
maxV(σ

∗), and for Regime VI is T̂ ∗
maxVI

(σ∗). In this

notation, the symbol ̂ indicates that the magnitude is an asymptotic approximation.

The power-law asymptotic expressions obtained for each asymptotic regime are

less accurate in the intermediate regime, when σ∗=O(1). For intermediate values of

σ∗, general and accurate expressions can be obtained using the traditional blending

technique [23]. For the case of peak temperature:

T ∗
max(σ

∗) ≈ T̂ ∗+
max =

[
T̂ ∗n

maxV
+ T̂ ∗n

maxVI

]1/n
(4.13)

where n is the blending parameter and the + superscript indicates that the expression

is the result of blending. The error of approximation is not zero for intermediate values

of σ∗, and it has the same definition as [96]:

error = ln
T̂ ∗+

max

T ∗
max

(4.14)

The blending parameter n is determined with a numerical optimization procedure

described in [96]. It needs to be determined only once for each blending function. For

many practical cases, the absolute value of n is typically of the order of 1.

The blending results can be used to generate explicit correction factors to extend

the validity of asymptotic expressions. For the peak temperature, Equation 4.13 can

be rearranged to yield

Tmax ≈ T̂+
max = T̂maxV

{
1 +

[
T̂ ∗

maxVI
(σ∗)

T̂ ∗
maxV(σ

∗)

]n}1/n

= T̂maxVfTmaxV
(σ∗) For Regime V (large Ry, wide source) (4.15)

Tmax ≈ T̂+
max = T̂maxVI

{
1 +

[
T̂ ∗

maxVI
(σ∗)

T̂ ∗
maxV(σ

∗)

]−n}1/n

= T̂maxVI
fTmaxVI

(σ∗) For Regime VI (small Ry, wide source) (4.16)
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where fTmaxV
(σ∗) corresponds to Regime V and fTmaxVI

(σ∗) to Regime VI. As σ∗

approaches infinity, Regime V, fTmaxV
(σ∗) tends to 1 and when σ∗ approaches 0 in

Regime VI, fTmaxVI
(σ∗) tends to 1. The value of n for Equations 4.15 and 4.16 are

the same as for Equation 4.13.

4.6 Scaling Analysis of Peak Temperature Tmax

The magnitude Tmax is the maximum temperature that the base material reaches un-

der a Gaussian distributed surface heat source, and T ∗
max is its dimensionless counter-

part. The determination of Tmax requires a numerical calculation to find the maximum

for each point in the centerline, and its dependence on σ∗ is illustrated in Figure 4.1.

The asymptotic behaviors at large and small σ∗ are straight lines in log-log scale,

resulting from their power-law behavior.

Asymptotic analysis of Equation 4.5, detailed in the Appendix, yields the following

power laws:

T̂ ∗
maxV(σ

∗) =

√
2

π
Im σ∗−1.5 For Regime V (large Ry, wide source) (4.17)

T̂ ∗
maxVI

(σ∗) =

√
π

2
σ∗−1 For Regime VI (small Ry, wide source) (4.18)

where Im = 1.280. The blending expression for T̂+
max(σ

∗) is given by Equation 4.13.

Replacing the expressions for T̂ ∗
maxV(σ

∗) and T̂ ∗
maxVI

(σ∗) into Equations 4.15 and 4.16,

the following expressions for the correction factors are obtained:

fTmaxV-VI
(σ∗) =

[
1 +

(
π
√
σ∗

2Im

)±n
]1/n

(4.19)

where the exponent +n corresponds to Regime V, and −n corresponds to Regime VI.

The error of Equation 4.19 as a function of σ∗ was calculated using Equation 4.14 for

three values of n as illustrated in Figure 4.2. The error of approximation approches

zero in both ends because asymptotic behavior in extreme cases are exactly captured
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Figure 4.1: Dimensionless peak temperature T ∗
max as a function of dimensionless heat

source distribution parameter σ∗.

103



by the blending function.
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n = −1.936

n = −1.956

Figure 4.2: Relative error of blending for dimensionless peak temperature as a func-
tion of dimensionless heat source distribution parameter σ∗ for the optimal value
n = −1.946. The error tends to zero for both high and low σ∗.

Figure 4.3 illustrates the variation in maximum absolute value of error as a function

of n over all σ∗. The sharp minimum indicated by the dash line is because the

maximum error can be positive (for n smaller than the optimum), or negative (for

n lager than the optimum). For the optimal value n = -1.946, the minimax error is

0.19%.

Correction factors for both regimes (Equation 4.19) are illustrated in Figure 4.4.

These correction factors based on blending have an error smaller than 0.19 % com-
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Figure 4.3: Maximum error for dimensionless peak temperature as a function of
blending parameter n. Minimized maximum error is 0.19% at the optimal value
n = −1.946.
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pared with the exact solution for any value of σ∗. The correction factors tend to a

constant of 1 (no correction needed) in their corresponding asymptotic regimes, and

they cross over at σ∗
c = 0.6638. The magnitude σ∗

c can be considered as a divider

between Regime V and Regime VI, with the understanding that in the vicinity of σ∗
c

the situation is actually intermediate between both regimes.
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fTmaxVI
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σ∗
Vσ∗
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c

Figure 4.4: Correction factors to estimate peak temperature. For σ∗ < σ∗
VI = 0.1480

or σ∗ > σ∗
V = 3.098, the maximum error of directly using asymptotic is less than 10%.

The correction factors cross over at σ∗
c = 0.6638.

Choosing the right asymptotic expression, but neglecting the correction factors

results in an error smaller than 10 % for σ∗ > σ∗
V = 3.098 or σ∗ < σ∗

VI = 0.1480

in their corresponding regimes. The heuristic proposed before [96, 149] is also valid

for this case: that when the blending variable (in this case σ∗) is outside the range
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defined by 20±1, the error in neglecting the correction factors is below 10%.

Engineering expressions (with units) for the peak temperature under a Gaussian

distributed heat source on a semi-infinite solid can be obtained by replacing Equa-

tion 4.7 into Equations 4.17 and 4.18, and combining with Equation 4.8, obtaining

T̂+
max = T0 +

(
T̂maxV − T0

)
fTmaxV

(σ∗) =

T0 +
qIm
πkσ

√
α

πσU
fTmaxV

(σ∗) For Regime V (large Ry, wide source) (4.20)

T̂+
max = T0 +

(
T̂maxVI

− T0

)
fTmaxVI

(σ∗) =

T0 +
q

2πkσ
√
2π

fTmaxVI
(σ∗) For Regime VI (small Ry, wide source) (4.21)

4.7 Scaling Analysis of Maximum Distribution Pa-

rameter σmax

In some practical cases, a peak temperature of the substrate is the target, and what

needs to be calculated is the maximum size of the heat sorce that can reach this tem-

perature; for example, when substrate melting must be assured to avoid debonding in

laser cladding and powder-deposition additive manufacturing processes, or to achieve

austenization in laser hat treating [76]. For any given temperature T ∗, there is a

maximum distribution parameter σ∗
max, above which the target temperature cannot

be reached.

To abtain a blended expression of σ∗
max, equations 4.17 and 4.18 can be rewritten

as:

σ̂∗
maxV (T ∗) =

(√
2

π

Im
T ∗

)2/3

For Regime V (large Ry, wide source) (4.22)

σ̂∗
maxVI

(T ∗) =

√
π

2

1

T ∗ For Regime VI (small Ry, wide source) (4.23)

where Im = 1.280, which is the same asymptotic constant in Equation 4.17.

The blending equation for σ̂∗+
max has the following expression:

σ̂∗+
max =

{[(√
2
π

Im
T ∗

)2/3
]n

+

(√
π
2

1

T ∗

)n
}1/n

(4.24)
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with an optimal blending parameter n = −2.397 and maximum error of 1.4%. Asymp-

totics of the dimensionless maximum heat distribution parameter in both regimes

(Equation 4.22 and Equation 4.23) and the blending equation (Equation 4.24) are

represented in Figure 4.5.
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Figure 4.5: Dimensionless maximum distribution parameter of the heat source as a
function of T ∗.

Simple formulas and correction factors for the maximum heat source distribu-

tion parameter are obtained by bringing normalization expressions, Equation 4.7 and
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Equation 4.8 into Equation 4.22 and Equation 4.23:

σ̂+
max = σ̂maxVfσmaxV

(T ∗)

= α
πU

[
qUIm

kα(T−T0)

]2/3

fσmaxV
(T ∗) For Regime V (large Ry, wide source) (4.25)

σ̂+
max = σ̂maxVI

fσmaxVI
(T ∗)

=
√

1
8π

q
k(T−T0)

fσmaxVI
(T ∗) For Regime VI (small Ry, wide source) (4.26)

with correction factors in both regimes listed as the following:

fσmaxV-VI
(T ∗) =

{
1 +

[(π
2

) 5
6 (
Im

2T ∗)− 1
3

]±n
}1/n

(4.27)

where the exponent +n corresponds to Regime V, and −n corresponds to Regime VI.

The correction factors for maximum heat source distribution parameter of both

asymptotic expressions are illustrated in Figure 4.6. The crossover point for the

correction factors is T ∗
c = 1.888 at fσ∗

maxV
= fσ∗

maxVI
= 0.7493, which means the

error using two asymptotic expressions only without correction factors equals to 25%

if used in their appropriate range. If a 10% relative error is considered (correction

factor = 0.9), the critical value for Equation 4.22 and Equation 4.23 is T ∗
VI = 8.994 and

T ∗
V = 0.3960, respectively. In Regime V, meaning T ∗ < T ∗

V = 0.3960, the maximum

error of using Equation 4.22 without its correction factor is smaller than 10%. In

Regime VI (when T ∗ > T ∗
VI = 8.994) the maximum error of using Equation 4.23 only

is smaller than 10%.

4.8 Scaling Analysis of the Location of Peak Tem-

perature xmax

The magnitude xmax is the location of peak temperature at the plane z = 0. The

dependence of x∗
max on σ∗ is illustrated in Figure 4.7. When σ∗ = 0, the peak

temperature occurs at the location of the point heat source, and thus, the location of
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maximum temperature x∗
max = 0. With increasing σ∗, x∗

max moves from the center to

the edge of the heat source.
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Figure 4.7: Dimensionless location of peak temperature x∗
max as a function of dimen-

sionless heat source distribution parameter σ∗.

Asymptotic analysis of Equation 4.5, detailed in the Appendix, yields the following

power laws:

x̂∗
maxV(σ

∗) = −0.7650σ∗ For Regime V (large Ry, wide source) (4.28)

x̂∗
maxVI

(σ∗) = −σ∗2 For Regime VI (small Ry, wide source) (4.29)

The blending expression for x̂+
max(σ

∗) is obtained with the same process used to

obtain T̂+
max(σ

∗), yielding the following correction factors:

fxmaxV-VI
(σ∗) =

[
1 + (1.307σ∗)±n]1/n (4.30)
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where the exponent +n corresponds to Regime V, and −n corresponds to Regime VI.

The value of n for Equation 4.30 was determined using the same optimization as for

Tmax. Figure 4.8 illustrates the error of approximation as a function of σ∗ for three

values of n around the optimal, and Figure 4.9 illustrates the variation of maximum

error with blending parameter n. The minimax error is 0.47 %, corresponding to n

= -0.9347.
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Figure 4.8: Relative error of blending for the location of peak temperature as a
function of dimensionless heat source distribution parameter σ∗ near the optimal
value n = −0.9347.

Simple formulas and correction factors for the location of peak temperature are

given by bringing normalization expressions, Equation 4.28 and Equation 4.29 into
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Equation 4.15 and Equation 4.16:

x̂+
max = x̂maxVfxmaxV

(σ∗)

= −0.7650σ fxmaxV
For Regime V (large Ry, wide source) (4.31)

x̂+
max = x̂maxVI

fxmaxVI
(σ∗)

= −Uσ2

2α
fxmaxVI

For Regime VI (small Ry, wide source) (4.32)

with correction factors expressed in Equation 4.30.

The correction factors for the location of peak temperature of both asymptotic

expressions are illustrated in Figure 4.10. The crossover point for the correction

factors is σ∗
c = 0.7650 with correction factor of fx∗

maxV
= fx∗

maxVI
= 0.4743, which

means the maximum error using two asymptotic expressions without blending equals

to 52.57%. At both ends, the asymptotics can be applied directly. If 10% relative error

is considered, i.e. correction factor equals 0.9, the critical value for Equation 4.28 and

Equation 4.29 is σ∗
V = 8.532 and σ∗

VI = 0.07089, respectively. In Regime V, meaning

σ∗ > σ∗
V = 8.532, the maximum error of using Equation 4.28 is less than 10%. In

Regime VI, meaning σ∗ < σ∗
VI = 0.07089, the maximum error of using Equation 4.29

is less than 10%.

4.9 Experimental Validation

The focus of this paper is on the peak temperature of the substrate in general, not

restricted to any specific process. High-quality data available in the literature is in

its vast majority for laser processing of materials, and it is the data that will be used

for validation.

The validation of the proposed predictive expressions was made by comparison

against published data and shown in Figure 4.11, spanning a range of σ∗ of four

orders of magnitude from 0.01 to 100. Measurements were collected for laser heat
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treatment for a wide range of materials, including silicon, ZrO2 ceramic, GaAs, Mn-Zn

ferrite and low carbon steel.

The published values of peak temperature and measured heat distribution parame-

ter were normalized using Equation 4.8 and Equation 4.7, respectively, and compared

against the blended expression in Equation 4.21. The characteristic temperature used

in these calculations (Tc) corresponds to the peak temperature on the surface (Tmax)

in all cases. The initial temperature T0 was always assumed or given as 20◦C except

for [103], which was measured as 350◦C.

When not listed in the original papers, the thermophysical properties were ob-

tained from software JMatPro v11. When temperature-dependent properties were

available [85, 103], effective values were calculated using the methodology of inte-

gral average introduced in [84]. Laser absorptivity was assessed from the original

papers [21, 85, 103] or estimated as a constant of 0.67 based on the literature [116,

135] and the authors’ experiences. The raw data from literature and all values used

to calculate the points are listed in Table 4.2.

Figure 4.11 compares Equation 4.21 with published data for peak temperature in

laser heat treatment. The results show a relatively narrow scatter and no obvious bias.

The excellent agreement also supports the applicability of Eagar and Tsai’s solution

to moving Gaussian heat source and the small error caused by its simplifications.

The neglected secondary phenomena such as surface heat loss are a source of scatter

in the comparisons. Other sources of scatter are uncertainties in the thermophysical

properties used, uncertainties in the laser absorptivity, which varies in a very broad

range for laser processes (0.3 to 0.75 depending on surface conditions and processing

parameters [116]), and error in the measurements.

4.10 Example of Application

Consider the laser heat treatment of AISI1020 steel of 6.35 mm thickness performed

by Farshidianfar [39]. The heat source was 225 W fiber laser, with a travel speed
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of 8.33 mm/s, a laser absorptivity of 0.67 estimated based on analysis of [116]. The

laser beam radius measured at 1/e of the peak power intensity was 1 mm, and the

corresponding standard deviation σ is 0.71 mm. Effective thermal conductivity and

diffusivity of the substrate is 46.85 W/m ·K and 8.83× 10−6m2/s, respectively. The

measured peak temperature by the thermal infrared camera was 766◦C.

For the case considered, the dimensionless standard deviation is σ∗ = 0.33 (Equa-

tion 4.7), corresponding to the intermediate regime. The prediction of peak temper-

ature is made using the appropriate equation for Regime VI (Equation 4.21), which

yields T̂ ∗
maxVI

= 3.76, and fTmaxVI
(σ∗) = 0.81 (Equation 4.19). The correction ap-

plied in this case is larger than 10%, consistently with the intermediate value of σ∗.

Turning the dimensionless temperature into its dimensional counterpart with units

(Equation 4.8), the predicted peak temperature is T̂+
max = 754◦C, which is an under-

prediction with an error of -12◦C compared to the measured value of 766◦C.

4.11 Discussion

This paper presents closed-form expressions for maximum temperature, Tmax, loca-

tion of peak temperature xmax, and maximum distribution parameter of a Gaussian

distributed heat source to reach a specific temperature, σmax. All predictions were

obtained by a systematic methodology of asymptotic analysis and blending. Simple

solutions were obtained by asymptotic analysis for extreme cases when the indepen-

dent variable is asymptotically large or small. Blending functions were employed to

construct a closed-form solution applicable to the domain by combining asymptotic

solutions of broad and concentrated heat sources. Correction factors have been de-

veloped to extend the usefulness of asymptotes and determine intermediate regimes

where the independent variable is either asymptotically large or small.

According to Equations 4.20 and 4.31, xmax tends to zero, and Tmax tends to infinity,

as σ tends to zero, which is consistent with the point heat source solution; while as σ

tends to infinity, the heat source intensity is too small to heat the base metal, and peak
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temperature tends to the initial temperature of the substrate T0 as expected. The

introduction of the Gaussian model avoids the singularity in Rosenthal’s solution, and

accuracy in the high-temperature region near the heat source is improved significantly

without much complexity.

For moving heat source problems, the magnitude of temperature rise depends on

several factors, including heat source intensity and its distribution parameter, veloc-

ity of the heat source, preheat and thermal properties of the substrate. For a given

material, the interplay of heat source power q, moving speed U , and distribution

parameter σ on the maximum surface temperature is explicitly reflected in Equa-

tions 4.20 and 4.21. The obtained equations can provide a quick estimation of the

maximum temperature using parameters known before experiments by a calculator

or spreadsheet, and can be embedded easily in higher order metamodels spanning

multiple scales of detail. They are also helpful in the design of appropriate operating

parameters to reach desired surface temperature.

A wide range of moving heat source configurations was studied in [107], although

Gaussian heat sources were not included. If a similar calculation of dimensionless

thermal resistance is performed based on the results presented here, the same depen-

dence on
√
σ∗ is observed for wide sources, and a constant resistance is also observed

for concentrated or stationary sources. Based on [107], it is to be expected these

dimensionless resistances to be roughly applicable for broad gaussian heat sources

of hyperelliptical shapes, using the geometric average of their distributions as the

characteristic dimension.

Although the prediction of peak temperature has an excellent agreement with pub-

lished measurements, they are valid within the range of validity of their hypotheses,

such as large thickness of the substrate. Other simplifications that need further re-

search are the effect of temperature-dependent materials properties, surface loss by

convection and radiation, and latent heat of phase transformation. These factors are

typically secondary and were reviewed in [84]. Also, heat intensity in practical cases
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is seldom a perfect Gaussian distribution as assumed in the model. Efficiency of the

heat source, such as laser absorptivity, is difficult to estimate because it depends on

the surface preparation and temperature, and laser wavelength. Although all these

factors influence the accuracy of prediction, the proposed expression still provides a

functional relationship in closed form between the peak temperature, process and ma-

terials parameters. It can be applied to assess how changes in the process parameters

or materials will affect the peak temperature of the workpiece.

Better accuracy of predictions can be achieved with additional correction factors.

Intermediate plate thickness can be accounted for by introducing another correction

factor pertinent to the plate thickness. Surface heat loss can be accounted for by a

correction factor dependent on the heat transfer coefficient of the plate surface [83].

Conventional blending skills need to be extended into multiple parameters to apply

to functions with more than one dimensionless degree of freedom, which is the focus

of current research.

4.12 Conclusions

The use of asymptotic and blending is applied for the first time to predict with

high accuracy the peak temperature rise Tmax and its location xmax, as well as the

maximum distribution parameter σmax to reach a certain peak temperature under a

moving Gaussian heat source.

The dimensionless peak temperature and its location depend only on one dimen-

sionless group, σ∗, which determines how broad or concentrated a heat source is.

The parameter σ∗ divides all possible solutions into two regimes: Regime V corre-

sponding to large σ∗ (“wide” heat sources) and Regime VI corresponding to small σ∗

(“concentrated” heat sources).

The expressions proposed are written as simple formulas (asymptotes in extreme

cases) multiplied by a correction factor (Equation 4.19 for Tmax, Equation 4.27 for

σmax, and Equation 4.30 for xmax). These expressions asymptotically approach the
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exact solution for small and large independent variables, and the maximum error in

the domain is 0.19 % for Tmax, 1.4 % for σmax and 0.47 % for xmax, respectively. For

σ∗ > 20 or σ∗ < 0.05, the asymptotic expression alone, without correction, has an

error below 10 %.

The proposed expressions do not present convergence issues and can be calculated

using a calculator or a basic spreadsheet and can be readily embedded into multi-

scale metamodels. The expressions presented here can be applied to design operating

parameters (e.g. determine the onset of surface melting) in many processes or to verify

numerical models. The results obtained support the applicability of asymptotics and

blending to solve general moving heat source problems.
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Appendix 4.A Derivation of Asymptotic Behaviors

Peak temperature locates at the surface of the base plate, defined by the equation

T ∗
max = max[T (x∗, y∗, 0)]. Due to the symmetry of temperature field in y, at the

location of peak temperature, y∗ = 0. Equation 4.12 turns into Equation 4.33, and

the integrand has one peak at θmax = arccos[σ∗(σ∗2 − x∗)−1/2]:

T ∗ =
2√
2πσ∗

·
∫ π

2

0

exp

{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+

cos2 θx∗2

σ∗2 + 2x∗ sin2 θ
]}

dθ

(4.33)

Regime VI: σ∗ → 0

In Regime VI, where σ∗ → 0, |x∗
maxV

| << σ∗ << 1, by rearranging Equation 4.33,

peak temperature in Regime VI equals:

T̂ ∗
maxVI

=
2√
2πσ∗

∫ π
2

0

exp

(
−1

2

σ∗2

cos2 θ

)
·

exp

{
−1

2

[
σ∗2 (cos2 θ − 2

)
+

cos2 θx∗2

σ∗2 +

2x∗ sin2 θ
]}

dθ

≈ 2√
2πσ∗

∫ π
2

0

exp

(
−1

2

σ∗2

cos2 θ

)
· 1dθ

≈ 2√
2πσ∗

π

2
=

√
π

2
σ∗−1

Location of the peak temperature in Regime VI is obtained by solving the partial

derivative of ∂T̂ ∗
maxVI

/∂x∗ = 0:

∂T̂ ∗
maxVI

∂x∗ = 2√
2πσ∗

∫ π
2

0

−1
2

(
2x∗

maxVI
cos2 θ

σ∗2 + 2 sin2 θ
)
·

exp

{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+

cos2 tx∗

maxVI

2

σ∗2 + 2x∗
maxVI

sin2 θ
]}

dθ = 0

We obtain

π

2
+

(∗
maxVI

σ∗2 − 1

)
π

4
= 0
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and thus x∗
maxVI

= −σ∗2.

Regime V: σ∗ → ∞

In Regime V, when σ∗ → ∞, x∗
maxV

∼ σ∗ ≫ 1. As mentioned before, the integrand

exp [f(θ)] = exp
{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+ cos2 θ x∗2

σ∗2 + 2x∗ sin2 θ
]}

has a single

maxima at θmax over the interval of [0, π
2
). As σ∗ → ∞, the integrand increases from

0 to θmax and then decreases exponentially with increasing θ. Also, as x∗
maxV

∼ σ∗ ≫ 1

, θmax = arccos[σ∗(σ∗2 − x∗)−1/2] ≈ arccos[σ∗(σ∗2)−1/2] = 0, which means the vicinity

near θmax (near 0) contributes the most part of the integral, as shown in Figure 4.12:
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Figure 4.12: Plot of the integrand exp[f(θ)] at σ∗ = 1000, x∗ = −1000, y∗ = 0 over
[0, π

2
). exp[f(θ)] increases with increasing θ until θmax and then decreases exponen-

tially. Interval over [0, δ) where θmax ≪ δ ≪ 1, contributes the most part of the
integral.
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Therefore, the integral over the vicinity of the maxima δ, where θmax ≪ δ ≪ 1 can

be estimated as the integral over the whole interval of [0, π
2
):

T̂ ∗
maxV = 2√

2πσ∗

∫ π
2

0

exp

{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+

cos2 θ x∗2

σ∗2 + 2x∗ sin2 θ
]}

dθ

≈ 2√
2πσ∗

∫ δ

0

exp

{
−1

2

[
σ∗2 (cos2 θ + 1

cos2 θ
− 2

)
+

cos2 θ x∗2

σ∗2 + 2x∗ sin2 θ
]}

dθ

Performing a second-order Taylor expansion at θ = 0, the integrand can be further

simplified as:

T̂ ∗
maxV ≈ 2√

2πσ∗

∫ δ

0

exp

{
−1

2

[
σ∗2 θ4 +

(1− θ2)x∗2

σ∗2 + 2x∗θ2
]}

dθ

≈ 2√
2πσ∗

∫ π
2

0

exp

{
−1

2

[
σ∗2 θ4 +

(1− θ2)x∗2

σ∗2 + 2x∗θ2
]}

dθ

=
2√
2πσ∗

∫ π
2

0

exp

{
−1

2

[
σ∗2 θ4 + (2x∗ − x∗2

σ∗2 )θ
2 +

x∗2

σ∗2

]}
dθ

As x∗
maxV

∼ σ∗ ≫ 1, T̂ ∗
maxV can be rewritten as:

T̂ ∗
maxV ≈ 2√

2πσ∗

∫ π
2

0

exp

{
−1

2

[
σ∗2 θ4 + 2x∗θ2 +

x∗2

σ∗2

]}
dθ

=
2√
2πσ∗

∫ π
2

0

exp

[
−1

2

(
σ∗θ2 +

x∗

σ∗

)2
]
dθ

= 2√
2πσ∗1.5

∫ π
2

√
σ∗

0

exp

{
−1

2

[(√
σ∗θ

)2

+ x∗

σ∗

]2}
d
(√

σ∗θ
)

≈ 2√
2πσ∗1.5

∫ ∞

0

exp

{
−1

2

[(√
σ∗θ

)2

+ x∗

σ∗

]2}
d
(√

σ∗θ
)

(4.34)

The integral part in Equation 4.34 (
∫∞
0

exp

{
−1

2

[(√
σ∗θ

)2
+ x∗

σ∗

]2}
d
(√

σ∗θ
)
) de-

pends only on the ratio of x∗/σ∗, and it increases with increasing x∗/σ∗ to its maxi-

mum and then decreases until x∗ = 0, as illustrated in Figure 4.13.

Traversing all values of x∗/σ∗ from−∞ to 0 with a Matlab script, when x∗
maxV

/σ∗ =

−0.7650, the integral reaches its maximum of a constant Im = 1.280. Therefore,

127



-10 -8 -6 -4 -2 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x∗/σ∗

∫ ∞ 0
ex
p

{ −
1 2

[ (
√
σ
∗ θ
) 2

+
x
∗

σ
∗

] 2
}
d
(√

σ
∗ θ
)

x∗/σ∗ = −0.7650

Figure 4.13: Plot of the integral in Equation 4.34

(
∫∞
0

exp

{
−1

2

[(√
σ∗θ

)2
+ x∗

σ∗

]2}
d
(√

σ∗θ
)
) as a function of x∗/σ∗. When x∗/σ∗ =

-0.7650, the integral reaches its maximum of Im = 1.280.
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dimensionless peak temperature in Regime V can be obtained:

T̂ ∗
maxV =

√
2

π
Im σ∗−1.5
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Appendix 4.B Data Collected from the Literature

Survey

Table 4.2: The laser absorptivity, heat distribution parameter, thermal properties,
processing parameters and reported peak temperature used in the validation.

Process Material PowerAbsoprtivityVelocityConductivity Diffusivity T0 SigmaTmaxSource

W 1 mm/s W/mK m2/s ◦C mm ◦C

LS silicon 4 0.57 [103] 100 33.03* 1.5× 10−5* 350 [103] 0.01 1264 [103]

LS silicon 4 0.57 [103] 500 35.69* 1.7× 10−5* 350 [103] 0.01 1083 [103]

LS silicon 4 0.59 [103] 2000 40.17* 1.9× 10−5* 350 [103] 0.01 845 [103]

LS silicon 4.1 0.56 [85] 100 46.34* 2.2× 10−5* 20 [85] 0.01 1350 [85]

LS silicon 4.9 0.56 [85] 1000 46.34* 2.2× 10−5* 20 [85] 0.01 1350 [85]

LS GaAs 1.28 0.61 [85] 100 14.93* 9.1× 10−6* 20 [85] 0.01 1350 [85]

LS GaAs 1.81 0.61 [85] 1000 14.93* 9.1× 10−6* 20 [85] 0.01 1350 [85]

LS Mn-Zn Fe 0.27 0.79 [85] 100 2.70* 5.8× 10−7* 20 [85] 0.01 1350 [85]

LS Mn-Zn Fe 0.63 0.79 [85] 1000 2.70* 5.8× 10−7* 20 [85] 0.01 1350 [85]

LD ZrO2 1000 0.6 [21] 0.1 2.7 [21] 4.6× 10−7 [21] 20+ 1.50 26300 [21]

LD ZrO2 1000 0.6 [21] 1.0 2.7 [21] 4.6× 10−7 [21] 20+ 1.50 15836 [21]

LD ZrO2 1000 0.6 [21] 53.0 2.7 [21] 4.6× 10−7 [21] 20+ 1.50 2574 [21]

LD ZrO2 1000 0.6 [21] 53.0 2.7 [21] 4.6× 10−7 [21] 20+ 1.00 4695 [21]

LD ZrO2 1000 0.6 [21] 53.0 2.7 [21] 4.6× 10−7 [21] 20+ 1.25 3380 [21]

LHT AISI1020 250 0.67+ [116] 1.67 38.90* 6.8× 10−6* 20+ 0.71 1494 [39]

LHT AISI1020 250 0.67+ [116] 5.00 40.42* 7.7× 10−6* 20+ 0.71 1186 [39]

LHT AISI1020 250 0.67+ [116] 6.67 41.22* 7.8× 10−6* 20+ 0.71 1097 [39]

LHT AISI1020 250 0.67+ [116] 8.33 41.82* 7.9× 10−6* 20+ 0.71 1044 [39]

LHT AISI1020 250 0.67+ [116] 10.0 44.11* 8.1× 10−6* 20+ 0.71 892 [39]

LHT AISI1020 250 0.67+ [116] 11.7 43.76* 8.1× 10−6* 20+ 0.71 911 [39]

LHT AISI1020 250 0.67+ [116] 13.3 45.70* 8.4× 10−6* 20+ 0.71 817 [39]

LHT AISI1020 175 0.67+ [116] 8.33 55.10* 1.3× 10−5* 20+ 0.71 426 [39]

LHT AISI1020 200 0.67+ [116] 8.33 51.48* 1.2× 10−5* 20+ 0.71 562 [39]

LHT AISI1020 225 0.67+ [116] 8.33 46.85* 8.8× 10−6* 20+ 0.71 766 [39]

LHT AISI1020 250 0.67+ [116] 8.33 42.85* 8.0× 10−6* 20+ 0.71 967 [39]

LHT AISI1020 275 0.67+ [116] 8.33 40.95* 7.8× 10−6* 20+ 0.71 1125 [39]

LHT AISI1020 300 0.67+ [116] 8.33 40.01* 7.6× 10−6* 20+ 0.71 1243 [39]

LHT AISI1020 400 0.67+ [116] 8.33 39.58* 7.6× 10−6* 20+ 0.71 1316 [39]

* Properties calculated by JMatPro v11
+ Estimated
LS: Laser Scanning
LHT: Laser Heat Treatment
LD: Laser Densification
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Chapter 5

Penetration Depth under a Moving
Gaussian Surface Heat Source on a
Thick Substrate

5.1 Abstract

This paper presents a systematic scaling analysis of a Gaussian distributed surface

heat source moving on a semi-infinite solid. The dimensionless maximum isotherm

depth depends on two dimensionless groups: the heat source distribution parameter

and the Rykalin number associated with the velocity of the heat source. Maximum

isotherm depth is determined for the first time with explicit closed-form expressions

over a wide range of heat distributions and Rykalin numbers with an error below

9.7% against the exact solution. The methodology employed involves normalization,

dimensional analysis, asymptotic analysis, and blending techniques. The proposed

equations are validated against experiments reported in the literature. The expres-

sions developed can be calculated using a handheld calculator or a basic spreadsheet

and are also useful to optimize process parameters and verify numerical models.
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Table 5.1: Notation

Variables Unit Description

f 1 Correction factor for a point source

g 1 Correction factor for a Gaussian source

Im 1 Asymptotic constant Im = 1.280

k Wm−1 K−1 Thermal conductivity of the substrate

q W Power absorbed by substrate

Ry 1 Rykalin number

t s Time

T K Temperature

T0 K Initial temperature or preheat

Tc K Temperature of interest

Tmax K Maximum temperature of the substrate

U m s−1 Travel speed of the moving heat source

x, y, z m Cartesian coordinates

zmax m Maximum isotherm depth

Greek symbols

α m2 s−1 Thermal diffusivity of the substrate

ρ kg m−3 Density of the substrate

σ m Standard deviation of a Gaussian func-
tion

σmax m Maximum distribution parameter to
achieve a certain temperature

Superscripts

∗ Dimensionless value

̂ Asymptotic behaviour

+ Improvement over asymptotic approxi-
mation

Continued on next page
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Table 5.1 – continued from previous page

Variables Unit Description

Subscripts

I Regime I of concentrated heat sources
and large Ry

II Regime II of concentrated heat sources
and small Ry

V Regime V of wide heat sources and
large Ry

VI Regime VI of wide heat sources and
small Ry

Acronyms

GTAW Gas Tungsten Arc Welding

5.2 Introduction

Moving heat source problems are central to a wide range of industrial applications

such as cutting [142], welding [36, 145], heat treatment [27, 74, 137], additive manu-

facturing [71, 155] and many more. For example, for the case of surface hardening,

operating parameters have to be carefully selected to obtain the depth of hardening

(the maximum depth where structural transformation occurs) in the selective area

without affecting the desirable mechanical properties of the substrate. Cost and ef-

fort in trial-and-error tests to optimize process parameters would be much saved if

isotherm characteristics of interest such as isotherm width, depth, thermal history

can be predicted in advance. There is substantial amount of published solutions to

moving heat sources: empirical models [3, 137, 153], numerical simulations [48, 58,

76, 89] and analytical solutions [27, 36, 87, 96, 126]; however, current knowledge is

often difficult to apply in procedure developments.

Empirical modelling is a convenient and reliable way of procedure development as
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it is capable of generating simple expressions by statistical fitting of experimental

results. However, empirical relationships seldom have a physical or analytical basis.

Because their validity range is not clearly identified, empirical relationships can hardly

be generalized to other processes or material systems that are substantially different

from conditions where they were developed.

Numerical simulations are suitable to deal with the complexity of geometries and

non-linearities. The accuracy of numerical predictions has been much improved with

the rapid development of computer techniques. Due to the requirement of specialized

software and computational skills, applications of numerical models are limited in

industrial practice. Also, published solutions are valid for the particular parameters

considered in each model and can hardly be summarized as general rules for different

materials and processes.

Analytical solutions are inexpensive and useful at the early stage of the design. De-

rived from the heat conduction equation, analytical solutions have a solid theoretical

backing; however, they are rather complicated involving series summations [20, 87] or

improper integrals [36, 111], making it difficult to use and even more challenging to

understand the relationship between process parameters and resulting isotherm char-

acteristics. Therefore, it is essential to convert the analytical solution into a more

straightforward explicit expression that is sufficiently close to the original solution.

Based on previous work of the point heat source model [82–84, 96, 148, 149], this

paper presents an analytical solution to predict the maximum isotherm depth under a

moving disk Gaussian distributed heat source on a semi-infinite plate. The introduc-

tion of a heat distribution parameter in the Gaussian model avoids the singularity in

the point source solution and significantly improves the accuracy of prediction in the

vicinity of the heat source [36, 146]. The proposed equation is written as an explicit

function of operation parameters, e.g. heat source power, moving velocity, and ther-

mal properties of the substrate. It can easily be applied to calculate the maximum

isotherm depth of any given temperature or the critical moving velocity to achieve a
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certain isotherm depth.

The conventional 1D blending technique, first proposed by Churchill and Usagi [23]

has been applied and extended to a multidimensional domain in this paper to arrive

at a general solution to the domain by combining asymptotes in the asymptotic

extremes with constant blending parameters. In this way, asymptotic behaviour in

each asymptotic extreme can be assured, and there is no convergence issue. The

methodology of asymptotes and correction factors is often used in all engineering

disciplines, and formal implementations are reported in [84, 96, 149] for the case of a

moving point heat source.

The following sections introduce a mathematical formulation of a moving Gaussian

heat source and a systematic methodology of asymptotes and blending. An explicit

asymptotic in each regime is presented, and the blending technique is used to predict

the maximum isotherm depth at the intermediate regime with high accuracy. The

obtained expression was compared with results of a set of experiments [8, 79, 157,

158] and was found to be in excellent agreement. It can bring a deep understanding

of moving heat source phenomena across different alloys and processes.

5.3 Mathematical Formulation

The model consists of a Gaussian distributed heat source moving along a straight line

with constant velocity U on a semi-infinite solid. The thermal profile is considered

steady relative to the position of the heat source. The material is isotropic and ho-

mogeneous, and thermophysical properties such as thermal conductivity are assumed

constant. The governing equation is:

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
+

U

α

∂T

∂x
= 0 (5.1)

where x, y and z are the independent spatial variables. This mathematical formu-

lation involves an Eulerian coordinate frame, where the heat source is stationary,

and the substrate moves in the −x direction. The temperature, T , is the dependent
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variable and also depends on problem parameters. α is the thermal diffusivity of the

substrate.

Heat flux distribution is assumed as Gaussian distributed, and σ is the standard

deviation of the Gaussian function [36]. σ varies in different processes. It can be as

small as 0.1 mm for an electron beam [41] or as broad as 6 mm in laser beam additive

manufacturing [155].

The boundary conditions for Equation 5.1 are:

∂T

∂z
=

q

2πkσ2
exp

(
−x2 + y2

2σ2

)
for z = 0 (5.2)

T → T0 for x2 + y2 + z2 → ∞ (5.3)

where q is the heat absorbed by the substrate, k is the thermal conductivity of the

substrate, and T0 is the preheat temperature. The temperature field to Equation 5.1

with boundary conditions from Equation 5.2 to 5.3 is:

T = T0 +
qα

1
2

2kπ
3
2

∫ ∞

0

dt
t−

1
2

2αt+ σ2
exp

(
−x2 + 2xtU + U2t2 + y2

4αt+ 2σ2
− z2

4αt

)
(5.4)

Equation 5.4 was first proposed by Anthony and Cline in 1977 [27] and was then

applied to the field of welding by Tsai and Eagar in 1983 [36]. In the limit when

σ → 0, Equation 5.4 converges to the analytical solution of a moving point heat

source [126, 128]. The improper integral in Equation 5.4 requires substantial numer-

ical calculations, making it difficult to apply to engineering practice.

5.4 Methodology of Asymptotic Analysis and Blend-

ing

The methodology was first described in [156] and has been successfully implemented

for point heat source problems in [84, 96, 149]. It consists of finding an asymptotic

solution to each regime where the independent variable is asymptotically large or

small and then developing a correction factor that relates the asymptotic solution to

the domain. The use of correction factors is common in engineering and allows for
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the simultaneous benefits of practical expressions and accurate predictions within the

validity of the correction factors.

5.4.1 Normalization

The original solution of temperature field is reduced to its dimensionless counterpart

by normalization:

T ∗ =
1√
2π

∫ ∞

0

dt∗
t∗−

1
2

t∗ + σ∗2 exp

(
−x∗2 + 2t∗x∗ + t∗2 + y∗2

2t∗ + 2σ∗2 − z∗2

2t∗

)
(5.5)

Equation 5.6 and Equation 5.7 describe the dimensionless time and distribution

parameter in terms of dimensional parameters:

t∗ =
U2t

2α
(5.6)

σ∗ =
Uσ

2α
(5.7)

where t is the process time. Equation 5.8 to Equation 5.11 is the dimensionless

temperature, and coordinates x∗, y∗ and z∗, respectively.

T ∗ =
4πkα (Tc − T0)

qU
(5.8)

x∗ =
Ux

2α
(5.9)

y∗ =
Uy

2α
(5.10)

z∗ =
Uz

2α
(5.11)

where Tc is the temperature of interest. The ∗ superscript in Equation 5.6 to Equa-

tion 5.11 represents a dimensionless quantity and it is consistent with [31, 84, 93, 96,

149].

Equation 5.5 has five dimensionless groups: three independent variables x∗, y∗, and

z∗, distribution parameter σ∗ and the dependent variable T ∗(x∗, y∗, z∗, σ∗). Dimen-

sionless time t∗ is integrated and also, in quasi-steady state, temperature field has no

time dependence.
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Using variable substitution method θ = arctan
√
t∗

σ
, Equation 5.5 can be written

as Equation 5.12 such that the zero-to-infinity intergration in Equation 5.5 can be

converted to a proper one, saving much effort in computation:

T ∗ =
2√
2πσ∗

∫ π
2

0

exp

{
−1

2

[
2x∗ sin2 θ+

σ∗2 (tan2 θ − sin2 θ
)
+ cos2 θ

σ∗2

(
x∗2 + y∗2 + z∗2

sin2 θ

)]}
dθ (5.12)

The number of dimensionless groups is consistent with the number expected from

applying dimensional analysis theory [19]. Dimensional analysis theory states that

the number of dimensionless groups in a problem is given by the number of magni-

tudes with dimension minus the number of independent units involved and minus one

when the temperature is not measured in absolute terms [152]. Equation 5.4 involves

ten magnitudes with units: three independent variables x, y, and z, the dependent

variable T (x, y, z, σ), heat source distribution parameter σ, and five problem param-

eters T0, q, k, U , and thermal diffusivity α. There are four independent units for the

magnitude with dimension: (m, kg, s, ◦C). The number of dimensionless groups is

given by 10− 4− 1 = 5.

The dimensionless maximum isotherm depth depends only on two dimensionless

groups. Equation 5.5 involves five degree of freedom (DOFs), related to the five

independent dimensionless groups (x∗, y∗, z∗, σ∗, T ∗). One constraint is Equation 5.5,

leaving only four DOFs between dimensionless groups. The definition of z∗max involves

two more constraints: y∗ = 0, and z∗max = max(z∗), leaving two DOFs. A particular

temperature of interest T ∗ = T ∗
c defines the Rykalin number (Ry) as:

Ry =
1

T ∗
c

=
qU

4πkα (Tc − T0)
(5.13)

Ry varies from zero to infinity, and it relates the effect of advection caused by the

motion of the heat source relative to the conduction in the substrate. The dimension-

less heat distribution parameter σ∗ varies from zero to its maximum feasible value,

σ∗
max, above which the heat applied can not heat the substrate to the temperature
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of interest, and the resultant maximum isotherm depth at Tc is zero. A closed-form

expression to calculate σ∗
max was reported in [150], which is a function dependent only

on Ry. Replacing σ∗ with σ∗/σ∗
max, the dependence on the heat distribution parame-

ter of the solution domain of non-zero isotherm depth is transformed to a finite range

from zero to one. Ry and σ∗/σ∗
max will be used to capture the remaining two DOFs,

and four asymptotic regimes are identified as represented in Figure 5.3:

• Regime I (Ry → ∞, σ∗/σ∗
max → 0), corresponding to fast heat sources with a

concentrated heat distribution

• Regime II (Ry → 0, σ∗/σ∗
max → 0), corresponding to slow heat sources with a

concentrated heat distribution

• Regime V (Ry → ∞, σ∗/σ∗
max → 1), corresponding to fast heat sources with a

wide heat distribution

• Regime VI (Ry → 0, σ∗/σ∗
max → 1), corresponding to slow heat sources with a

wide heat distribution

Names for asymptotic regimes are consistent with [150]. These four asymptotic

regimes yield simple asymptotes for the maximum isotherm depth, usually in the

form of power laws.

5.4.2 Blending of Asymptotic Solutions

Blending technique was first proposed by Churchill and Usagi [23], and it is a rigorous

approach to obtain approximate but accurate expressions in closed-form when the

exact solution is implicit or when asymptotic behaviour in extreme cases is known

from experiments or simulations. Correction factors can be developed as explicit

functions of the independent variables to extend the range of validity of an asymptote,

and often, they extend the validity of an asymptote into its opposite asymptotic

regime [96].
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For 1D blending, i.e., the independent variable depends only on one dimensionless

variable, and the methodology is well understood [2, 23]. 1D blending has been

applied successfully to develop explicit expressions for a moving point heat source on

a thick substrate [96, 148–150] and a thin substrate [82, 84].

This paper faces an important challenge, in which the dimensionless exact solution

(Equation 5.5) depends on two, not one parameter (2D blending): Ry and σ∗. The

increase in complexity is enormous, comparable to the increase in complexity from

single variable calculus to multivariate calculus. This paper attempts to construct a

general solution applicable to a 2D domain by compositing Churchill’s blending tech-

nique with two correction factors (instead of one) to extend the validity of asymptotes

in extreme limits to other regimes.

For the case of dimensionless maximum isotherm depth z∗max(Ry, σ
∗/σ∗

max), it has

four asymptotic expressions and they are indicated with a ̂ symbol. The associ-

ated asymptotic expression for Regime I to Regime VI is ẑ∗maxI, ẑ
∗
maxII, ẑ

∗
maxV , and

ẑ∗maxVI
, respectively. Asymptotes and correction factors for the maximum isotherm

depth in Regime I and II were obtained in [96] and they are functions depend only on

Ry. Using ẑ∗maxII, the asymptote in Regime II as an example, the blending function

proposed for the maximum isotherm depth under a Gaussian source has the following

expression:

z∗max(Ry, σ
∗/σ∗

max) ≈ ẑ∗
+

max(Ry, σ
∗/σ∗

max)

= ẑ∗max,point · g(Ry, σ∗/σ∗
max)

≈ ẑ∗maxII(Ry) · f(Ry) · g(Ry, σ∗/σ∗
max) (5.14)

where ẑ∗max,point is the blended solution based on a point heat source model. The

+ superscript indicates an improvement over the asymptotic approximations. f is

the correction factor to extend the asymptote of a point heat source solution to

its opposite regime. Function g is the correction factor for the heat distribution

parameter, and it extends the validity of a point heat source solution to address
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Gaussian distributed heat source issues.

Written in the form of asymptotic in an extreme case and correction factors, Equa-

tion 5.14 remains the exact asymptotic behaviour in all regimes. Compared to the

exact analytical solution (z∗max calculated by Equation 5.4), the error of approximation

is defined as:

error = ln
ẑ∗

+

max

z∗max
(5.15)

The definition of error offers the advantage of yielding comparable magnitudes for

large errors in excess or defect and convenient for power-law expressions. For small

errors, Equation 5.15 is equivalent to the standard definition of relative error.

5.5 Asymptotic Analysis and Blending of Maxi-

mum Isotherm Depth

5.5.1 Asymptotic Analysis of Maximum Isotherm Depth

The maximum isotherm depth z∗max requires a numerical optimization of Equation 5.4

to find the maximum for each point in the space domain considered. In the limit case

where σ∗/σ∗
max = 0, Equation 5.4 is consistent with that of a point source solution.

Asymptotes of the maximum isotherm depth in Regime I and Regime II, which equals

the isotherm width due to the symmetry of the point-source temperature field in y-z

plane, have already been obtained in [96, 149] as power laws depend only on Ry:

ẑ∗maxI(Ry) =

√
2

e
Ry For Regime I (large Ry, narrow source) (5.16)

ẑ∗maxII(Ry) = Ry For Regime II (small Ry, narrow source) (5.17)

Asymptotic analysis of Equation 5.5, detailed in the Appendix, yields the following

asymptotes in Regime V (large Ry under a wide heat source) and Regime VI (small
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Ry under a wide heat source):

ẑ∗maxV(Ry, σ
∗/σ∗

max) = 2.014Ry
1
3 ln

(
σ∗
max

σ∗

)
For Regime V (large Ry, wide source)

(5.18)

ẑ∗maxVI
(Ry, σ∗/σ∗

max) =
π

2
Ry ln

(
σ∗
max

σ∗

)
For Regime VI (small Ry, wide source)

(5.19)

5.5.2 1D blending in Contiguous Regimes

The asymptotes, Equations 5.16 to 5.19 are accurate in the corresponding asymptotic

regime but less accurate at the intermediate regimes. 1D blending can be applied to

obtain an accurate prediction at the intermediate regime by blending asymptotes of

adjacent asymptotic regimes with an optimized blending constant.

In side Regime I-II, where σ∗/σ∗
max → 0 (concentrated heat sources), the dimension-

less maximum isotherm depth depends only on Ry. A closed form equation applicable

to both regimes is obtained by 1D blending of Equation 5.16 and Equation 5.17 [96,

149]:

z∗maxI-II
≈ ẑ∗

+

maxI-II
= ẑ∗maxIIfzmaxI-II

(Ry)

= Ry

[
1 +

(√
2

eRy

)n]1/n
(5.20)

The optimal value of the blending constant is determined by the same procedure

of minimizing the approximation error (Equation 5.15) as detailed in [96, 149]. At

the optimal value of n = −1.731, the maximum error of approximation compared to

the analytical solution is 0.7% [96, 149].

In side Regime II-VI, where Ry → 0, under a slow heat source, the behaviour of

z∗max depends only on σ∗/σ∗
max. 1D blending of the dimensionless maximum isotherm

depth is obtained:

z∗maxII-VI
≈ ẑ∗

+

maxII-VI
= ẑ∗maxIIfzmaxII-VI

(Ry, σ∗/σ∗
max)

= Ry

{
1 +

[
π

2
ln

(
σ∗
max

σ∗

)]n}1/n

(5.21)
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where the optimal blending constant n = −1.656, and the maximum error reaches

5.8%.

Dependence of dimensionless isotherm depth z∗max on σ∗/σ∗
max in side Regime II-VI

is illustrated in Figure 5.1. The dashed line and dotted line plots the dependence

of asymptote in Regime II and Regime VI on σ∗/σ∗
max, respectively. When σ∗ = 0,

z∗max converges to the solution of a point heat source model. When σ∗/σ∗
max = 1, the

maximum isotherm depth at the temperature of interest equals 0.

10
-2

10
-1

10
0

0

0.5

1

1.5

2

σ∗/σ∗
max

z∗ m
a
x
/R

y

z∗max/Ry for small Ry

Regime II

Regime VI

Equation 5.21

Figure 5.1: Dependence of dimensionless isotherm depth z∗max on σ∗/σ∗
max in Regime

II and VI. For a given Ry, z∗max decreases with increasing σ∗/σ∗
max. When σ∗ = 0,

z∗max converges to the solution of a point heat source. The asymptote in Regime II
and Regime VI shown by the dashed line and dotted line are derived from asymptotic
analysis of Equation 5.12.

In side Regime V-VI, where σ∗/σ∗
max → 1 (wide heat sources), the behaviour of
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z∗max varies only with Ry. The 1D blending of z∗max in Regime V-VI is obtained:

z∗maxV-VI
≈ ẑ∗

+

maxV-VI
= ẑ∗maxVfzmaxV

(Ry, σ∗/σ∗
max)

= 2.014Ry
1
3 ln

(
σ∗
max

σ∗

)[
1 +

(
0.7799Ry

2
3

)n]1/n
(5.22)

where the optimal blending constant n = −1.113, and the maximum error is 2.6%.

Figure 5.2 plots the dependence of z∗max on Ry in side Regime V-VI where the heat

distribution parameter tends to its maximum feasible size of σ∗
max. z

∗
max increases with

increasing Ry. The dotted line represents how the asymptote in Regime V varies with

Ry, and the dashed line plots the dependence of the asymptote in Regime VI on Ry.

Due to the small approximation error, the blended equation (Equation 5.22) coincides

with z∗max calculated from the analytical temperature field as shown in Figure 5.2.
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Figure 5.2: Dependence of dimensionless isotherm depth z∗max on Ry in Regime V
and VI. The asymptotes in Regime V and Regime VI are derived from asymptotic
analysis of Equation 5.12. The exact solution and its blended counterpart are undis-
tinguishable in this graph.

5.5.3 Blended Equation Applicable to all Regimes

Asymptotes in four asymptotic regimes and 1D blending in side Regimes I-II, II-IV

and V-VI are proposed from Equation 5.16 to Equation 5.22. However, asymptotes in

side Regime I-V where Ry → ∞ have different dependence on Ry and σ∗/σ∗
max, and

thus 1D blending is not applicable. Because typical Ry numbers in processes such

as laser processing and welding ranges from 0.1 to 100, Ry = 1000 is chosen as the

upper limit of the domain. A closed-form equation to predict the maximum isotherm

depth can be obtained by compositing 1D blending in three side regimes with two
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correction factors:

z∗max(Ry, σ
∗/σ∗

max) ≈ ẑ∗
+

max(Ry, σ
∗/σ∗

max) = ẑ∗max,point · g(Ry, σ∗/σ∗
max)

≈ ẑ∗maxII(Ry) · fzmaxI-II
(Ry) · g(Ry, σ∗/σ∗

max)

= Ry

[
1 +

(√
2

eRy

)n1]1/n1

· g(Ry, σ∗/σ∗
max) (5.23)

where the correction factor for the size of heat source g(Ry, σ∗/σ∗
max) can be rewritten

as:

gI-II(Ry, σ
∗/σ∗

max) = 1 for σ∗/σ∗
max → 0 (5.24)

gV-VI(Ry, σ
∗/σ∗

max) = fσmax
for σ∗/σ∗

max → 1 (5.25)

Blending equation for g(Ry, σ∗) applicable for all regimes is then obtained:

g(Ry, σ∗/σ∗
max) :=

z∗max

ẑ∗max,point

= (1 + fσmax

n2)1/n2 (5.26)

where fσmax
is the correction factor for the heat source size when σ∗/σ∗

max → 1.

Substituting the obtained asymptotes in four regimes into Equation 5.25, fσmax
has

the following asymptotes:

fσmax
= 2.348Ry−

1
6 ln

(
σ∗
max

σ∗

)
for Ry → ∞ (5.27)

fσmax
=

π

2
ln

(
σ∗
max

σ∗

)
for Ry → 0 (5.28)

As fσmax
has the same dependence on ln (σ∗

max/σ
∗) for all Ry, 1D blending function

can be applied to obtain:

fσmax
=

π

2
ln

(
σ∗
max

σ∗

)[
1 +

(
1.495Ry−

1
6

)n3
]1/n3

(5.29)

Dimensionless expression to predict the maximum isotherm depth under a Gaussian

distributed heat source on a semi-infinite solid valid for Ry ≤ 1000 can be obtained
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by replacing Equation 5.26 and Equation 5.29 into Equation 5.23, obtaining:

z∗max(Ry, σ
∗/σ∗

max) ≈ ẑ∗
+

max(Ry, σ
∗/σ∗

max) = ẑ∗max,point · g(Ry, σ∗/σ∗
max)

≈ ẑ∗maxII(Ry) · fzmaxI-II
(Ry) · g(Ry, σ∗/σ∗

max)

= Ry

[
1 +

(√
2

eRy

)n1]1/n1

·
{
1 +

{
π
2
ln
(

σ∗

max

σ∗

)[
1 +

(
1.495Ry−

1
6

)n3
]1/n3

}n2
}1/n2

(5.30)

where σ∗
max can be estimated by the blended equation proposed in [150] as a function

dependent only on Ry:

σ∗
max ≈ σ̂∗+

max =

[(
1.014Ry2/3

)n4

+

(√
π

2
Ry

)n4]1/n4

(5.31)

In side regime V-VI where σ∗/σ∗
max → 1 and the resulting isotherm depth tends to

zero, a small error in σ̂∗+
max would result in a large approximation error in the logarithm

term of ln(σ∗
max/σ

∗) in Equation 5.30. Therefore, optimal blending constants (n1, n2,

n3 and n4) would be determined for σ∗/σ∗
max ≤ 0.9. Figure 5.3 illustrates the error of

Equation 5.30 calculated by Equation 5.15 as a function of σ∗/σ∗
max (from 0 to 0.9)

and Ry ≤ 1000. The transition between regimes is gradual. Different criteria can

be used to divide regimes. A useful criterion to bound the regimes is to determine

the boundary at which asymptotes of contiguous regimes have the same prediction,

as shown by solid lines in Figure 5.3. Within area bounded by dashed lines, using

asymptotes only yields an error smaller than 10% compared to the exact analytical

solution.
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When n1 = −1.465, n2 = −1.960, n3 = −3.223, n4 = −2.459, the maximum error
is below 9.7% compared to the exact analytical solution. Within area bounded by
dash lines, using asymptotes only yields an error smaller than 10% compared to the
analytical solution.

An explicit equation with units for the maximum isotherm depth under a moving

Gaussian surface source can be obtained by substituting Equation 5.11 and Equa-

tion 5.13 into Equation 5.30:

zmax ≈ ẑ+max = ẑmax,point · g(Ry, σ∗/σ∗
max)

=
q

2πk (Tc − T0)

[
1 +

(√
2

eRy

)n1]1/n1

·
{
1 +

{
π
2
ln
(

σ∗

max

σ∗

)[
1 +

(
1.495Ry−

1
6

)n3
]1/n3

}n2
}1/n2

(5.32)

when n1 = −1.465, n2 = −1.960, n3 = −3.223, n4 = −2.459, the maximum error of

Equation 5.30 is below 9.7% for σ∗/σ∗
max ≤ 0.9 and Ry ≤ 1000.
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Equations 5.30 and 5.32 are novel. It is the first time to propose an explicit and

accurate equation for the maximum isotherm depth applicable to a wide range of pro-

cesses and materials. Determination of associated blending parameters needs be done

just once. Written as simple formula and correction factors in explicit form, Equa-

tions 5.30 and 5.32 can reduce the design cycle by saving much time in computation

and trial-and-error tests. It can be easily calculated by a handheld calculator or an

Excel sheet in seconds compared to hours or days. Comparison of Equations 5.30

and 5.32 against experimental measurements in the literature will be discussed in the

following section.

5.6 Experimental Validation

The focus of this paper is on the maximum depth of isotherms in general. The valida-

tion of the proposed predictive expression was made by comparison against published

data as shown in Fig 5.5, spanning a range of z∗max from 0.67 to 10. Measurements

were collected for Gas Tungsten Arc Welding (GTAW), laser cladding and laser sur-

face heat treating for various materials, including carbon steel, stainless steel, and

alumina-based refractory.

The published values were normalized using Equation 5.7, Equation 5.11 and Equa-

tion 5.13, and compared against the prediction calculated by Equations 5.30 and 5.32.

The characteristic temperature (Tc) used in these calculations corresponds to the melt-

ing temperature of the substrate in all cases except for [157] where Tc is used as the

reported HAZ temperature. The preheat temperature T0 was given by the original

source [157] or otherwise assumed as 20◦C.

Thermophysical properties were listed in the original sources for [8, 79, 157], and

an effective thermal conductivity and diffusivity calculated based on temperature-

dependent data from software JMatPro v11 were used for [158]. Thermal efficiency

was assessed from original sources for [8, 157, 158], and an estimation of 0.7 was used

for [79] as the absorptivity of CO2 laser radiation on the surface of Al2O3 ceramics
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according to [78]. Values of the heat distribution parameter (σ) were provided in [8,

157, 158]. For [79], σ was estimated as one fourth of the measured laser diameter.

Thermal properties, heat source efficiencies, and processing parameters used in the

literature survey are listed in Table 5.2.

Measured isotherm depth is compared with the point-source prediction (Equa-

tion 5.30 the without correction factor g) in Figure 5.4 and Gaussian-source prediction

(Equation 5.30) in Figure 5.5. It can be seen that prediction by the Gaussian surface

model has a better agreement with the measurements, and there is no obvious bias

in Figure 5.5. The correction factor for heat intensity distribution can significantly

improve the overprediction by the point-source solution. Despite the assumptions

in the moving Gaussian surface heat source model, Equation 5.30 can still provide

an accurate prediction for the maximum isotherm depth for various processes and

materials.

The neglected secondary phenomena such as outward thermocapillary flows are a

source of scatter in the comparisons. Other scatter sources are uncertainties in the

thermophysical properties used, uncertainties in thermal efficiency, which is especially

broad for laser processes, and of course, uncertainties in the measurements of heat

distribution parameter and isotherm depth.
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5.7 Example of Application

Consider the laser cladding process of 4145 MOD carbon steel performed byWood [157].

The laser power was 3990 W, with a beam diameter of 1.62 mm, a travel speed

of 31.81 mm/s, a thermal efficiency of 0.3 as reported in the literature for CO2

laser cladding [132]. Effective thermophysical properties are provided in [157]: k =

32.52W/mK and α = 5.73× 10−6m2/s. The measured melt depth was 0.85 mm.

For the bead considered, Ry = 23.5 (Equation 5.13), dimensionless distribution

parameter is σ∗ = 4.5 (Equation 5.7), the maximum feasible heat source size is

σ∗
max = 8.2 (Equation 5.31), resulting in a ratio of σ∗/σ∗

max = 0.55. With Ry = 23.5,

and σ∗/σ∗
max = 0.55, the calculated example corresponds to Regime I, close to the
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boundary between Regime I and Regime V.

The prediction of dimensionless melt depth is made using Equation 5.30, which

yields f(Ry) = 0.1722, and g(Ry, σ∗/σ∗
max) = 0.5713 (Equation 5.26). The predicted

melt depth is ẑ+max = 0.83 mm, which is an underprediction with an error of 1.9%

compared to the measured value of 0.85 mm. Neglecting the correction factor g,

calculated melt depth by point source solution is overpredicted as ẑ+max = 1.46 mm,

and the error compared to the measurement is 71%.

5.8 Discussion

Consistently with the foundations established in [96], the analysis presented here dis-

pels old misconceptions and brings new insights. Similarly, the proper dimensional

analysis of Equation 5.4 yields four regimes of the solution domain based on two

dimensionless groups: Ry, associated with the temperature of interest, and the di-

mensionless heat distribution parameter, σ∗, an indicator that determines whether

the heat source is concentrated or wide. The two dimensionless groups are defined

using operating parameters and material properties, which are readily known before

experiments.

The extended blending function proposed in this paper overcomes the limitations

of the Churchill-Usagi blending technique and can be applied to problems other than

moving heat sources. The correction factor f(Ry) extends the usefulness of the

asymptotic in Regime II to the side Regime I-II (point heat source domain) where

σ∗/σ∗
max → 0. The correction factor for the heat intensity distribution, g(Ry, σ∗/σ∗

max)

extends the applicability of a point heat source prediction to a moving Gaussian sur-

face source with any finite heat distribution parameter. When σ∗ → 0, the obtained

prediction coincides with that of a point heat source. Although the introduction of

two correction factors would involve optimizing four blending constants, they need to

be determined only once. The obtained predictive equation in explicit form can be

calculated in seconds.

153



The conventional 1D blending does not apply to the side Regime I-V where Ry →

∞ because the dimensionless isotherm depth does not converge to dependence on one

dimensionless group, and there is no explicit asymptotic that can be derived from

the analytical solution. Ry ≤ 1000 is thus chosen as the upper limit, which covers

most typical Ry values in laser processing or welding. The error in the blending used

here is always below 9.7%, for σ∗/σ∗
max ≤ 0.9 and Ry ≤ 1000. For a special case with

Ry > 1000, only blending constants need to be redetermined without changing the

format of Equations 5.30 and 5.32. To the best of the author’s knowledge, there is no

empirical solution or numerical simulation (without ad-hoc calibrations) in welding

or surface hardening that can predict the maximum isotherm depth with similar

applicability and accuracy.

Comparisons of the expressions proposed against experimental measurements show

relatively low scatter and systematic error comparable with the experimental error

in a broad range of processes and materials. It is difficult to tell at this stage how

much of the discrepancy is due to the assumptions in the Gaussian model, how much

is due to uncertainties in the measurements, and how much is due to error in the

constants used for material properties [90]. Although the errors observed suggest

room for improvement, the correction factor for the heat distribution parameter shows

a significant improvement on the point-heat source prediction.

5.9 Conclusions

This work presents new practical and rigorous expressions for the maximum isotherm

depth zmax under a moving Gaussian surface heat source (Equations 5.30 and 5.32).

The dimensionless form of the isotherm depth depends on two dimensionless groups:

Ry, and σ∗/σ∗
max. These two dimensionless quantities divide all possible solutions

in four regimes: Regime I corresponding to high Ry (“fast” heat sources) and small

σ∗/σ∗
max (“concentrated” heat sources), Regime II corresponding to low Ry (“slow”

heat sources) and small σ∗/σ∗
max, Regime V corresponding to high Ry and large
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σ∗/σ∗
max (“wide” heat sources), Regime VI corresponding to low Ry and large σ∗/σ∗

max.

The expression proposed has the form of an asymptotic expression multiplied by

two correction factors: a correction factor f(Ry), which extends the usefulness of the

asymptotic based on a point heat source solution to all values of Ry and correction

factor g(Ry, σ∗/σ∗
max), which accounts for the effect of the heat intensity distribution.

The proposed expression coincides with the exact solution in the asymptotic extremes,

and the maximum error over the range of σ∗/σ∗
max ≤ 0.9 and Ry ≤ 1000 is smaller

than 9.7%.

The predictive equation proposed can be calculated using a handheld calculator or

a basic spreadsheet, requiring less computational time than simulations and without

presenting convergence problems. It can also be used to design operating parameters

in many processes or to verify numerical models. The results obtained support the

applicability of asymptotics and blending techniques to tackle general moving heat

source problems.
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Appendix: Derivation of Asymptotic behaviours

Appendix 5.A Location of z∗max in Regime V and

VI

The maximum temperature at centerline and its location are notated in dimension-

less form as T ∗
max,c and x∗

max,c. At the location of the maximum isotherm depth

(x∗
max,z, y

∗ = 0, zmax), by definition, partial derivative of z to x equals zero:

∂z∗

∂x∗

∣∣∣∣
x∗

max,z,zmax

=
∂T ∗/∂x∗

∂T ∗/∂z∗

∣∣∣∣
x∗

max,z,zmax

= 0

obtaining ∂T ∗/∂x∗|x∗

max,z,zmax
= 0.

When σ∗/σ∗
max tends to 1, the maximum isotherm depth tends to zero. Assuming

x∗
max,z = x∗

max,c + δx and zmax = δz (both δx and δz are small value) such that ∂T ∗

∂x∗
at

the location of the maximum isotherm depth can be expanded as follows:

∂T ∗

∂x∗

∣∣∣∣
x∗

max,z,zmax

≈
[
∂T ∗

∂x∗ +
∂

∂x∗

(
∂T ∗

∂x∗

)
δx+

∂

∂z∗

(
∂T ∗

∂x∗

)
δz

]∣∣∣∣
x∗

max,c,z
∗=0

= 0 (5.33)

where by definition, ∂T ∗

∂x∗
at the location of peak temperature equals 0:

∂T ∗

∂x∗

∣∣∣∣
x∗

max,c,z
∗=0

= 0 (5.34)

Also, at z∗ = 0, partial derivative calculation of Equation 5.12 yields:

∂

∂z∗

(
∂T ∗

∂x∗

)
=

√
2

π

z∗

σ∗5 ·
∫ π

2

0

cos2 θ cot2 θ (σ∗2 tan2 θ + x∗)

exp
[
(σ∗2 sin θ tan θ+x cos θ)2+z∗2 cot2 θ

2σ∗2

]dθ = 0 (5.35)

Substituting Equation 5.34 and Equation 5.35 into Equation 5.33 to obtain δx ≈ 0

and x∗
max,z = x∗

max,c, which means the location of peak temperature and the maximum

isotherm depth are identical in Regime V and Regime VI when σ∗/σ∗
max tends to 1.

159



Asmptotics of the peak temperature and its location were derived in [150] and have

the following power laws:

T̂ ∗
maxV(σ

∗) =

√
2

π
Im σ∗−1.5 For Regime V (large Ry, wide source) (5.36)

T̂ ∗
maxVI

(σ∗) =

√
π

2
σ∗−1 For Regime VI (small Ry, wide source) (5.37)

where the asymptotic constant Im = 1.280. For the location of the peak temperature:

x̂∗
maxV(σ

∗) = −0.7650σ∗ For Regime V (large Ry, wide source) (5.38)

x̂∗
maxVI

(σ∗) = −σ∗2 For Regime VI (small Ry, wide source) (5.39)

5.A.1 Regime VI Ry → 0, σ∗/σ∗
max

→ 1

In Regime VI, as Ry → 0, σ∗
max → 0, σ∗ → 0, substituting the location of the

maximum isotherm depth (Equation 5.39) into Equation 5.12:

T ∗ =

√
2

π

1

σ∗

∫ π
2

0

exp

[
−σ∗4(sin θ tan θ−cos θ)2+ẑ∗

2

maxVI
cot2 θ

2σ∗2

]
dθ

≈
√

2

π

1

σ∗

∫ π
2

0

exp

[
− ẑ∗

2

maxVI
cot2 θ

2σ∗2

]
dθ

=

√
π

2

1

σ∗ exp

(
ẑ∗

2

maxVI

2σ∗2

)
Erfc

(
ẑ∗maxVI√

2σ∗

)

=

√
π

2

1

σ∗ − ẑ∗maxVI

σ∗2 +O (z∗)2

≈ T̂ ∗
maxVI

− ẑ∗maxVI

σ∗2 (5.40)

Therefore, the maximum isotherm depth can be rewritten as:

ẑ∗maxVI
= σ∗2

(
T̂ ∗

maxVI
− T ∗

)
(5.41)

substituting Equation 5.37 into substituting Equation 5.41 to obtain:

ẑ∗maxVI
= σ∗2

(√
π

2

1

σ∗ −
√

π

2

1

σ∗
max

)

=

√
π

2
σ∗
maxVI

(
σ∗

σ∗
max

)[
1−

(
σ∗

σ∗
max

)]

=
π

2
Ry

[
1−

(
σ∗

σ∗
max

)]
≈ π

2
Ry ln

(
σ∗
max

σ∗

)
as σ∗

σ∗

max
→ 1
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5.A.2 Regime V Ry → ∞, σ∗/σ∗
max

→ 1

As Ry → ∞, σ∗
max → ∞, x∗

max,c = x∗
max,z = −0.7650σ∗. The integrand in Equa-

tion 5.12 is large for θ in the vicinity of θ = 0 and decreases significantly until zero

with increasing θ, as discussed in [150]. Taylor expansion of the integrand around

z∗ = 0 yields the following:

− 1

2σ∗2

[(
σ∗2 sin θ tan θ + x∗

max,c cos θ
)2

+ z∗2 cot2 θ
]

= − z∗2

2σ∗2θ2
+

2z∗2−3x∗2
max,c

6σ∗2 + θ2
(

x∗2
max,c

2σ∗2 − z∗2

30σ∗2 − x∗
max,c

)

+

(
−σ∗2

2
+

x∗
max,c

3
−

x∗2
max,c

6σ∗2 − z∗2

189σ∗2

)
θ4 +O

(
θ6
)

≈ − z∗2

2σ∗2θ2
+

2z∗2 − 3x∗2
max,c

6σ∗2 −
(

z∗2

30σ∗2 + x∗
max,c

)
θ2

−
(
σ∗2

2
+

z∗2

189σ∗2

)
θ4

≈ − z∗2

2σ∗2θ2
− (xmax,c + σ∗2θ2)2

2σ∗2 (5.42)

Substituting Equation 5.42 and x∗
max,c = x∗

max,z = −0.7650σ∗ into Equation 5.12 to

obtain:

T ∗ =

√
2

π

1

σ∗

∫ π
2

0

exp

[
− ẑ∗

2

maxV

2σ∗2θ2
− (σ∗2θ2−0.7650σ∗)

2

2σ∗2

]
dθ

=

√
2

π
σ∗− 3

2

∫ π
2

√
σ∗

0

exp

[
− ẑ∗

2

maxV

2σ∗θ2
− (θ2−0.7650)

2

2

]
dθ

=

√
2

π
σ∗− 3

2

∫ ∞

0

exp

[
− ẑ∗

2

maxV

2σ∗θ2
− (θ2−0.7650)

2

2

]
dθ

= T̂ ∗
maxV ·

{
1

1.280

∫ ∞

0

exp

[
− ẑ∗

2

maxV

2σ∗θ2
− (θ2−0.7650)

2

2

]
dθ

}

= T̂ ∗
maxV · f

(
ẑ∗

2

maxV

2σ∗

)

Therefore, ẑ∗maxV can be rewritten as a function of σ∗, dimensionless temperature T ∗,

and the peak temperature in Regime V, T̂ ∗
maxV :

ẑ∗maxV =

√√√√2σ∗ · f−1

(
T ∗

T̂ ∗
maxV

)
(5.43)

161



where f−1 is inverse function of f and the independent variable T ∗/T̂ ∗
maxV varies

from 0 to ∞. Numeric value of f−1 is plotted in Figure5.A.2:

10
-2

10
-1

10
0

10
-4

10
-2

10
0

10
2

1− x2/3

f
−
1
(x
)

Exact solution

Equation 5.44

When σ∗/σ∗
max → 1, T ∗/T ∗

max,c → 1, the inverse function can be approximated by

the following polynominal with high accuracy:

f−1(x) = 2(1− x2/3)2 (5.44)
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Substituting Equation 5.44 and Equation 5.36 to Equation 5.43 yields:

ẑ∗maxV = 2
√
σ∗

[
1−

(
T ∗

T ∗
max,c

) 2
3

]

= 2

(
σ∗

σ∗
max

) 1
2 √

σ∗
max

(
1− σ∗

σ∗
max

)

≈ 2

(
2I√
2π

) 1
3

Ry
1
3

(
1− σ∗

σ∗
max

)

≈ 2.014Ry1/3
(
1− σ∗

σ∗
max

)

≈ 2.014Ry1/3 ln

(
σ∗
max

σ∗

)
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Appendix 5.B Data Collected from the Literature

Table 5.2: The heat source efficiency, heat distribution parameter, thermal properties,
processing parameters and the maximum isotherm depth reported in the validation.

Process Material Power Efficiency Velocity Conductivity Diffusivity Tc T0 σ zmax Source

W 1 mm/s W/mK m2/s ◦C ◦C mm mm

LC 4145MOD 4980 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 257 [157] 1.62 [157] 1.08 [157]

LC 4145MOD 3090 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 257 [157] 1.62 [157] 0.72 [157]

LC 4145MOD 3990 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 261 [157] 1.62 [157] 1 [157]

LC 4145MOD 3990 0.3 [157] 19.09 32.52 [157] 5.7× 10−6 [157] 955 [157] 258 [157] 1.62 [157] 1.14 [157]

LC 4145MOD 3990 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 268 [157] 1.62 [157] 1.16 [157]

LC 4145MOD 3990 0.3 [157] 31.81 32.52 [157] 5.7× 10−6 [157] 955 [157] 264 [157] 1.62 [157] 0.85 [157]

LC 4145MOD 4540 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 263 [157] 1.62 [157] 1.03 [157]

LC 4145MOD 3530 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 264 [157] 1.62 [157] 0.9 [157]

LC 4145MOD 3980 0.3 [157] 12.73 32.52 [157] 5.7× 10−6 [157] 955 [157] 263 [157] 1.62 [157] 1.39 [157]

LC 4145MOD 3980 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 264 [157] 1.62 [157] 0.95 [157]

LC 4145MOD 3980 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 264 [157] 1.62 [157] 1.09 [157]

LC 4145MOD 3980 0.3 [157] 38.18 32.52 [157] 5.7× 10−6 [157] 955 [157] 267 [157] 1.62 [157] 0.71 [157]

LC 4145MOD 3980 0.3 [157] 25.45 32.52 [157] 5.7× 10−6 [157] 955 [157] 263 [157] 1.62 [157] 0.88 [157]

LC 316L stainless 100 0.4 [158] 400 22.95* 5.4× 10−6 [158] 1410* 20+ 0.013 [158] 0.0595 [158]

LC 316L stainless 250 0.4 [158] 1500 22.95* 5.4× 10−6 [158] 1410* 20+ 0.013 [158] 0.0528 [158]

LC 316L stainless 250 0.4 [158] 1800 22.95* 5.4× 10−6 [158] 1410* 20+ 0.013 [158] 0.0480 [158]

LC 316L stainless 400 0.4 [158] 1800 22.95* 5.4× 10−6 [158] 1410* 20+ 0.013 [158] 0.0600 [158]

GTAW 304 stainless 1265 0.62 [8] 1.6 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 3.6 [8]

GTAW 304 stainless 1265 0.65 [8] 2.5 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 2.2 [8]

GTAW 304 stainless 1890 0.61 [8] 1.6 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 4.6 [8]

GTAW 304 stainless 1890 0.64 [8] 2.5 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 4.1 [8]

GTAW 304 stainless 2760 0.62 [8] 1.6 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 4.8 [8]

GTAW 304 stainless 2760 0.65 [8] 2.5 17.64 [8] 4.1× 10−6 [8] 1424 [8] 20+ 0.89 [8] 4.4 [8]

LHT ABR 500 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 1.68 [79]

LHT ABR 600 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 2.05 [79]

LHT ABR 700 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 2.22 [79]

LHT ABR 800 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 2.83 [79]

LHT ABR 900 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 2.97 [79]

LHT ABR 1000 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 3.40 [79]

LHT ABR 1000 0.7 [78] 3 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 1.63 [79]

LHT ABR 1000 0.7 [78] 5 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 0.99 [79]

LHT ABR 1000 0.7 [78] 7 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 0.86 [79]

LHT ABR 1000 0.7 [78] 9 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 0.56 [79]

LHT ABR 600 0.7 [78] 7 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2 [79] 0.60 [79]

LHT ABR 700 0.7 [78] 5 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 2.5 [79] 0.79 [79]

LHT ABR 800 0.7 [78] 3 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 1.5 [79] 1.81 [79]

LHT ABR 900 0.7 [78] 1 3.25 [79] 8.5× 10−7 [79] 2100 [79] 20+ 3.0 [79] 2.82 [79]

* Properties calculated by JMatPro v11
+ Estimated
LC: Laser Cladding
LHT: Laser Heat Treatment
ABR: Alumina-based Refractory
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This research focuses on developing a set of design rules in the form of simple formula

and its correction factors to understand the relationship between general welding con-

ditions and thermal characteristics of heat flow in welds. A few of these design rules

exist in welding, and current ones are typically material-specific or process-specific

with a limited range of applicability. A systematic methodology of asymptotic analy-

sis and blending has been employed to construct closed-form solutions by combining

asymptotes in asymptotic regimes and blending constants determined with a system-

atic optimization procedure. The obtained design rules approach the exact analytical

solutions in asymptotic regimes and provide accurate estimation in the intermediate

regimes.

As listed in Table 6.1, design rules based on the moving point heat source model

are developed for 13 thermal characteristics: maximum bead width and its loca-

tion, leading and trailing lengths of the isotherm, centreline heating and cooling rate,

maximum temperature and its gradient, aspect ratio of isotherms, melting efficiency,

cooling time t8/5, solidification time, thickness of the heat affected zone, and modifica-

tion coefficient for joint preparation geometry. In dimensionless form, the design rules

developed depend on a single dimensionless parameter, the Rykalin number (Ry), and

are accurate to within 7% of the exact analytical solutions. As a rule of thumb, for
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Ry < 1/20 or Ry > 20, asymptotic solutions alone yield an error below 10% for all

listed characteristics. The design rules obtained can provide welding operators and

engineers with the knowledge and understanding necessary to produce high-quality,

sound, and economic welded joints.

To avoid the singularity caused by the point heat source assumption, a moving

Gaussian distributed heat source model is employed as the theoretical basis to improve

the accuracy of prediction for the peak temperature around the heat source. The

methodology of asymptotic and 1D blending is applied to predict with high accuracy

the peak temperature and its location and the maximum feasible heat distribution

parameter to reach a certain peak temperature. The dimensionless peak temperature

and its location depend only the dimensionless heat distribution parameter (σ∗). For a

given Ry, σ∗ ranges from zero to the dimensionless maximum feasible heat distribution

parameter σ∗
max, above which the heat intensity is too small to heat the substrate to

the desired temperature (T ∗
c = 1/Ry). The ratio of σ∗/σ∗

max transforms the solution

domain to a finite range from zero (corresponding to “concentrated” heat sources) to

one (corresponding to “wide” heat sources). The maximum error of approximation

is 0.19 % for the dimensionless peak temperature, 1.4 % for the maximum feasible

heat distribution parameter and 0.47 % for the location of the peak temperature,

respectively. For σ∗ > 20 or σ∗ < 0.05, the asymptotics alone, without correction,

has an error below 10 % compared to the exact solutions. The design rules presented

can be applied to optimize operating parameters (e.g. determine the onset of surface

melting) in many processes and materials. The excellent agreement of the obtained

design rules with experimental measurements and simulation data collected from the

literature supports the applicability of the methodology of asymptotics and blending

to solve general moving heat source problems.

In the feasible region defined by Ry and σ∗/σ∗
max, a novel, practical and rigorous

expression for the maximum isotherm depth zmax is obtained by asymptotic analy-

sis and blending of the analytical temperature field under a moving Gaussian sur-
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face heat source. These two dimensionless quantities divide the solution domain

into four regimes: Regime I corresponding to high Ry (“fast” heat sources) and

small σ∗/σ∗
max (“concentrated” heat sources), Regime II corresponding to low Ry

(“slow” heat sources) and small σ∗/σ∗
max, Regime V corresponding to high Ry and

large σ∗/σ∗
max (“wide” heat sources), Regime VI corresponding to low Ry and large

σ∗/σ∗
max. The convectional 1D blending technique is extended to two dimension-

less groups. Dimensionless isotherm depth is written as an asymptote multiplied

by two correction factors: correction factor f(Ry), which extends the usefulness of

the asymptotic derived from a point heat source solution to all values of Ry, and

correction factor g(Ry, σ∗/σ∗
max), which accounts for the effect of the heat intensity

distribution. The maximum error over the range of σ∗/σ∗
max ≤ 0.9 and Ry ≤ 1000

is smaller than 9.7% compared to the exact analytical solution. The obtained design

rules for the penetration depth has an excellent agreement with experimental mea-

surements and simulation data collected from the literature. All design rules derived

from the moving Gaussian surface heat source model are summarized in Table 6.2.

The methodology of asymptotic analysis and blending and the design rules obtained

can be applied to other phenomena besides welding, such as surface heat treatment

and additive manufacturing. The proposed design rules do not present convergence

issues and can be calculated using a calculator or a basic spreadsheet. All obtained

design rules are written in a closed form, and they can be readily embedded into multi-

scale metamodels. Systematic errors in the modelling captured by the secondary

terms can be calibrated by comparisons with experimental measurements or numerical

simulation results.
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Table 6.1: Summary of thermal characteristics and correction factors derived from a
moving point heat source model.

Variable Regime Asymptotic Correction factor n Error[%]

ymax

I

√
2

πe

αq

kU (Tc − T0)

[
1 +

(√
eRy

2

)n] 1
n

-1.73 0.7

II
1

2π

q

k (Tc − T0)

[
1 +

(√
eRy

2

)−n] 1
n

xmax

I − q

2πek (Tc − T0)
[1 + (eRy)n]

1
n

-1.00 1.9

II −2U

α

[
q

4πk (Tc − T0)

]2 [
1 + (eRy)−n] 1

n

xb I and II − q

2πk (Tc − T0)

Ṫb I and II −2πkU
(
T[c]− T0

)2

q

xf I and II
α

U
W0

[
qU

2πkα (Tc − T0)

]

Ṫf I and II
U2 (Tc − T0)

α

[
1

W0 (2Ry)
+ 1

]

Tmax

I T0 +
2αq

eπkUyc2

[
1 +

(
eUyc
4α

)n] 1
n

-1.25 3.9

II T0 +
q

2πkyc

[
1 +

(
eUyc
4α

)−n
] 1

n

dTmax/dy
I −

√
2eπkU

qα
(Tm − T0)

3
2

[
1 +

(√
1

2eRy

)n] 1
n

3.08 6.1

II −2πk

q
(Tm − T0)

2

[
1 +

(√
1

2eRy

)−n
] 1

n

AR

I

√
eqU

32πkα (T − T0)

[
1 +

(√
8

eRy

)n] 1
n

1.90 2.0

II 1

[
1 +

(√
8

eRy

)−n
] 1

n

ηm
I

1

e

[
1 +

(
eRy

2

)n] 1
n

-0.87 1.4

II
qU

8πkα (Tm − T0)

[
1 +

(
eRy

2

)−n
] 1

n

t8/5 N/A
q

2πkU

(
1

T500 − T0
− 1

T800 − T0

)

t8/5
N/A

q (T800 − T500)

2πkU(Ti − T0)
2

Ti − T0 =
√
(T800 − T0)(T500 − T0) *

tsl N/A
qisl

2πkcpU(Tm − T0)
2

∆yHAZ

I

√
2αq

πekU

[
fymaxI

(RyTHAZ
)

√
THAZ − T0

−
fymaxI

(RyTm
)

√
Tm − T0

] [
1 +

(√
eRy

2

)n] 1
n

-1.73 0.7

II
q

2πk

[
fymaxII

(RyTHAZ
)

THAZ − T0
−

fymaxII
(RyTm

)

Tm − T0

] [
1 +

(√
eRy

2

)−n] 1
n

∆yHAZ

I ∆yHAZ ≈
√

qα

2eπkU

Tm − THAZ

(Ti − T0)
3
2

[
1 +

(√
1

2eRy

)n] 1
n

3.08 6.1

Ti − T0 =

[√
(THAZ − T0)(Tm − T0)

√
THAZ − T0 +

√
Tm − T0

2

]2/3
*

II ∆yHAZ ≈
q (Tm − THAZ)

2πk(Ti − T0)
2

[
1 +

(√
1

2eRy

)−n
] 1

n

3.08 6.1

Ti − T0 =
√
(THAZ − T0)(Tm − T0) *

* using these intermediate temperatures the calculation using the derivative is exactly the same as that using differences

168



Table 6.2: Summary of thermal characteristics and correction factors derived from a
moving Gaussian surface source model.

Variable Regime Asymptotic Correction factor n Error[%]

Tmax − T0

V

√
1

8π

ImqU

πkα

(
Uσ

2α

)−1.5
[
1 +

(
π

Tm

√
Uσ

8α

)n] 1
n

-1.95 1.9

VI
1

8π

q

kσ

[
1 +

(
π

Tm

√
Uσ

8α

)−n] 1
n

xmax

V −0.7650σ

[
1 +

(
1.307Uσ

2α

)n] 1
n

-0.935 0.47

VI −Uσ2

2α

[
1 +

(
1.307Uσ

2α

)−n
] 1

n

σmax

V
α

πU

[
qUIm

kα (T − T0)

]2/3 {
1 +

[(π
2

) 5
6 (
Im

2T ∗)− 1
3

]n}1/n

-2.40 1.40

VI

√
1

8π

q

k (T − T0)

{
1 +

[(π
2

) 5
6(
Im

2T ∗)− 1
3

]−n
}1/n

zmax II
q

2πk (Tc − T0)
f(Ry) · g(Ry, σ∗)

n1 = −1.47

n2 = −1.96

n3 = −3.22

∗∗

9.7

∗ ∗ ∗f

[
1 +

(√
2

eRy

)n1]1/n1

g

{
1 +

{
π
2
ln
(

σ∗

max

σ∗

)[
1 +

(
1.495Ry−

1
6

)n3
]1/n3

}n2
}1/n2

* Asymptotic constant Im = 1.280.

** n for σmax is adjusted to -2.46.

*** Valid for σ∗/σ∗
max ≤ 0.9 and Ry ≤ 1000.

6.2 Future Work

The following analysis can continue this research to develop correction factors for

other potential secondary phenomena:

• The consideration of an intermediate plate thickness can be addressed by blend-

ing Rosenthal’s thick plate solution with the 2D solution of a moving point heat

source (often called as Rosenthal’s thin plate solution). 2D blending technique

is required to blend functions dependent on two or more dimensionless groups.

• Address the role of phase transformations in the temperature field and quantify
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its effect on isotherm characteristics with an additional correction factor.

• Apply the methodology of asymptotic analysis and blending to distributed heat

sources other than Gaussian surface source. For example, a uniform distributed

rectangle source is a more realistic representation of a top-hat (or flat top) beam

profile in the laser scanning or drilling process.
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Appendix A: MATLAB Codes

A.1 Calculating the peak temperature induced by

a moving Gaussian surface source

clear;clc;close all

%% pick 100 points between 0.01 to 100 in log scale

linearly

sigma = logspace (-2,2,100) ;

%% calculate peak temperature and its location for each

value in sigma

close all

tic

sigma = logspace ( -10 ,10 ,1000);

[Tmax ,xmax] = arrayfun (@(x) fun_TmaxSigma(x),sigma);

toc

figure

loglog(sigma ,Tmax);

figure

loglog(sigma ,xmax);

format long

%% Tmax

Tmax1 = 2*1.280./ sqrt (2*pi)*sigma .^( -1.5) ;

Tmax2 =sqrt(pi/2)*sigma .^(-1);

[N_Tmax ,ME_Tmax ]= blending (sigma ,Tmax ,Tmax1 ,Tmax2 ,-2)

%% sigmam

sigmam1 = (sqrt (2*pi)/(2*1.280) *Tmax).^( -2/3) ;

sigmam2 =sqrt(pi/2)*Tmax .^(-1);

[N_sigma ,ME_sigma ]= blending (Tmax ,sigma ,sigmam1 ,sigmam2

,-2)

%% xmax

xmax1 = 0.7650* sigma;

xmax2 = sigma .^(2);
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[N_xmax ,ME_xmax ]= blending (sigma ,-xmax ,xmax1 ,xmax2 ,-1)

%%

function [TmaxCenter ,xmaxCenter ] = fun_TmaxSigma(sigma)

% Tstar is the dimensionless Gaussian temp field

% Tstar=@(x,o) 1/sqrt (2*pi)*quadgk(@(t) t.^(-1/2) ./(t+o

.^2) .*exp(-0.5*(x.^2+t.^2+2.*t.*x)./(t+o.^2)),0,inf,’

RelTol ’,1e-300,’ AbsTol ’,1e-300);

%

% % xm1 and xm2 are the two asymps (negative value). Seed

is a defined interval vector where true xmax locates

% xm1=-0.7650*sigma; xm2=-sigma.^2;

% seed =[1.1* min(xm1,xm2) ,0.2*max(xm1,xm2)];

%

% % seed (1) is the first item in vector seed and seed (2)

is the second item in seed.

% [xmax ,Tmax]=fminbnd (@(x) -Tstar(x,sigma),seed (1),seed (2)

,optimset (’TolFun ’,1e-200,’TolX ’,1e-200,’ MaxFunEvals

’,100000,’MaxIter ’,5000));

% Tmax=-Tmax;

T = @(x,z,sigma) sqrt (2/pi)./ sigma.*( ...

integral (@(theta) exp(-((z.^2.* cot(theta).^2+ cos

(theta).^2.*(x+sigma .^2.* tan(theta).^2) .^2)

./(2.* sigma .^2))),0, fun_theta0 (x,z,sigma),’

AbsTol ’,1e-300, ’RelTol ’,1e-50) + ...

integral (@(theta) exp(-((z.^2.* cot(theta).^2+ cos

(theta).^2.*(x+sigma .^2.* tan(theta).^2) .^2)

./(2.* sigma .^2))),fun_theta0 (x,z,sigma),pi/2,

’AbsTol ’,1e-300, ’RelTol ’,1e-50));

mdTdx =@(x,z,sigma) integral (@(theta) (1+( -1+x./ sigma

.^2) .*cos(theta).^2) .*exp(-((z.^2.* cot(theta).^2+(x.*

cos(theta)+sigma .^2.* sin(theta) .*tan(theta)).^2) ./(2.*

sigma .^2))) ,0, fun_theta0 (x,z,sigma),’AbsTol ’,1e-30,’

RelTol ’,1e-20) + ...

integral (@(theta) (1+( -1+x./sigma .^2) .*cos(theta

).^2) .*exp(-((z.^2.* cot(theta).^2+(x.*cos(

theta)+sigma .^2.* sin(theta) .*tan(theta)).^2)

./(2.* sigma .^2))),fun_theta0 (x,z,sigma),pi/2,

’AbsTol ’,1e-30,’RelTol ’,1e-20);

xmaxCenterSeed=[5* max ( -0.7650* sigma ,-sigma .^2) ,0.2* max

( -0.7650* sigma ,-sigma .^2) ];

xmaxCenter = fzero(@(x) (mdTdx(x,0, sigma)) ,[xmaxCenterSeed

(1),xmaxCenterSeed(2)],optimset (’MaxFunEvals ’,1e10 ,’

MaxIter ’,1e10 ,’TolX ’,1e-30,’TolFun ’,1e-10));
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TmaxCenter = T(xmaxCenter ,0, sigma);

end

%% Function to define blending with indep varible x,depend

variable y,asymp y1,asymp y2,initial guess seed and

output optimal blending parameter N and the mimimum max

absolute error ME

function [optimalN ,optimalME ]= blending (x,y,y1 ,y2 ,seed)

fun_y = @(n) (y1.^n+y2.^n).^(1./n);

fun_error = @(n) log(y./ fun_y(n));

fun_me = @(n) max(abs(fun_error (n)));

[optimalN ,optimalME ]= fminsearch (@(n) fun_me(n),seed);

%% plot indep variable x, depend variable y and two asymps

y1 and y2

figure

loglog(x,fun_y(optimalN ),’-k’,’linewidth ’,2); hold on

loglog(x,y1 ,’-k’,’linewidth ’ ,1); hold on

loglog(x,y2 ,’-k’,’linewidth ’ ,1); hold on

xlabel(’x’)

ylabel(’y’)

axis ([1e-10,1 e10 ,-inf ,inf])

DefaultGca

%% plot error with optimal blending parameter n against

indep variable x in log

figure

semilogx (x ,100* fun_error (optimalN ),’-k’,’linewidth ’ ,2);

hold on

semilogx (x ,100* fun_error (0.995* optimalN ),’--k’,’linewidth ’

,1); hold on

semilogx (x ,100* fun_error (1.005* optimalN ),’-.k’,’linewidth ’

,1); hold on

legend(num2str(optimalN ),num2str (0.995* optimalN ),num2str

(1.005* optimalN ))

xlabel(’x’)

ylabel(’e’)

axis ([1e-2,1e2 ,-inf ,inf])

DefaultGca

%% plot correction factors based on asymp y1 and y2

figure

semilogx (x,fun_y(optimalN )./y1 ,’-k’,’linewidth ’,2); hold

on

semilogx (x,fun_y(optimalN )./y2 ,’-k’,’linewidth ’,2); hold
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on

semilogx (x,x./x*0.9, ’--k’,’linewidth ’,1);

xlabel(’x’)

ylabel(’cf’)

axis ([1e-2,1e2 ,-inf ,inf])

DefaultGca

%% pick 25 n linearly from 0.7* optimal n to 1.3* optimal n

and plot minimum max absolute error against each n in

the list

figure

n_list = linspace (0.8* optimalN ,1.2* optimalN ,51);

me_list =100* arrayfun (@(x) fun_me(x),n_list);

plot(n_list ,me_list ,’-k’,’linewidth ’ ,2); hold on

plot ([optimalN ,optimalN ],[0,1],’--k’,’linewidth ’ ,1);

xlabel(’x’)

ylabel(’me’)

DefaultGca

end

function theta0 = fun_theta0 (x,z,sigma)

% theta0 is the location of maximum exp

% solve -1+ct.^4 .*(1-x./sigma.^2) .^2+ct.^4

% .*(z./sigma.^2) .^2/(1- ct.^2) .^2 == 0 where t= cos(theta

);

% [ct0]=arrayfun (@(x,z,sigma) fminsearchbnd(@(ct) abs(-1+

ct.^4 .*(1-x./sigma.^2) .^2+ ct.^4 .*(z./sigma.^2) .^2/(1-

ct.^2) .^2) ,0.5,0,1, optimset (’MaxFunEvals ’,1e50 ,’MaxIter

’,1e50 ,’TolX ’,1e-300,’TolFun ’,1e-300)),x,z,sigma);

[ct0]= arrayfun (@(x,z,sigma) fminbnd(@(ct) abs(-1+ct.^4

.*(1-x./ sigma .^2) .^2+ ct.^4 .*(z./ sigma .^2) .^2/(1 - ct .^2)

.^2) ,0,1, optimset (’TolX ’,1e -300)),x,z,sigma);

% [t0,fval0]=fzero(@(t) -1+ct.^4 .*(1-x./sigma.^2)

.;^2+ct.^4 .*(z./sigma.^2) .^2/(1- ct.^2) .^2,0.5) ;

theta0 = acos(ct0);

end

A.2 Calculating the maximum isotherm depth un-

der a moving Gaussian surface source

clear;clc;close all

warning off

%% Initialization

s1 = 250; s2 = 500; filename =’GaussianZmaxCorse’;
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mul = [logspace (-3,-0.1,s1/2),logspace (-0.09,0, s1 /2+1)]; %

mul $sigma / sigma_max$

mul = mul(1:s1);

Ry = logspace (-3,3, s2);

%% Functions

% Theta0 is the location of maximum exp , solve $$ -1+ct.^4

.*(1-x./sigma .^2) .^2+ ct.^4.*(z./sigma.^2) .^2/(1- ct.^2)

.^2 == 0 $$ where $$ t= cos(theta)$$;

% [t0,fval0]=fzero(@(t) -1+ct.^4 .*(1-x./sigma.^2) .;^2+ct

.^4 .*(z./sigma.^2) .^2/(1- ct.^2) .^2,0.5) ;

fun_theta0 = @(x,z,sigma) acos(fminbnd (@(ct) abs(-1+ct

.^4 .*(1-x./ sigma .^2) .^2+ ct.^4 .*(z./ sigma .^2) .^2/(1 - ct

.^2) .^2) ,0,1, optimset (’MaxFunEvals ’,1e50 ,’MaxIter ’,1e50

,’TolX ’,1e-50,’TolFun ’,1e-30)));

% Temerpature field as function of x,z,sigma

fun_T = @(x,z,sigma) sqrt (2/pi)./ sigma.*( integral (@(theta)

exp(-((z.^2.* cot(theta).^2+ cos(theta).^2.*(x+sigma

.^2.* tan(theta).^2) .^2) ./(2.* sigma .^2))) ,0,pi/2,’

Waypoints ’,fun_theta0 (x,z,sigma),’AbsTol ’,1e-10,’RelTol

’,1e-10));

% Negative value to dTdx

% NdTdx = - dTdx * sigma*sqrt(pi/2). It is just for

simiplicity .

fun_NdTdx =@(x,z,sigma) integral (@(theta) (1+( -1+x./

sigma .^2) .*cos(theta).^2) .*exp(-((z.^2.* cot(theta).^2+(

x.* cos(theta)+sigma .^2.* sin(theta) .*tan(theta)).^2)

./(2.* sigma .^2))) ,0,pi/2,’Waypoints ’,fun_theta0 (x,z,

sigma),’AbsTol ’,1e-10,’RelTol ’,1e-10);

%% Variables

MaxSigma = arrayfun (@(Ry) fun_sigma_max(Ry ,fun_T ,fun_NdTdx

),Ry);

[~,MRy] = meshgrid (mul ,Ry) ;

Msigma = bsxfun(@times ,mul ,MaxSigma ’) ;

Vsigma = reshape (Msigma ,s1*s2 ,1); VRy = reshape (MRy ,s1

*s2 ,1);

[Vxmax ,Vzmax ,Vxb ,VxmaxCenter ,VTmaxCenter ,VToldTdx ,VTolT] =

deal(nan*VRy);

parfor i =1:s1*s2

disp(num2str(i))

[Vxmax(i),Vzmax(i),Vxb(i),VxmaxCenter (i),VTmaxCenter (i

),VToldTdx (i),VTolT(i)] = fun_zmax (VRy(i),Vsigma(i)

);

end

Mxmax = reshape ( Vxmax ,s2 ,s1);
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Mzmax = reshape ( Vzmax ,s2 ,s1);

Mxb = reshape ( Vxb ,s2 ,s1);

MxmaxCenter = reshape ( VxmaxCenter ,s2 ,s1);

MTmaxCenter = reshape ( VTmaxCenter ,s2 ,s1);

MToldTdx = reshape( VToldTdx ,s2 ,s1);

MTolT = reshape ( VTolT ,s2 ,s1);

%% Plot zmax

surf(mul ,Ry ,Mzmax)

set(gca ,’xscale ’,’log’,’yscale ’,’log’,’zscale ’,’log’)

%% Save Data

save(filename );

%% Maximum depth

function [xmax ,zmax ,xb ,xmaxCenter ,TmaxCenter ,ToldTdx ,TolT]

= fun_zmax (Ry ,sigma)

try

% Theta0 is the location of maximum exp , solve $$ -1+

ct.^4 .*(1-x./sigma.^2) .^2+ ct.^4.*(z./sigma.^2)

.^2/(1- ct.^2) .^2 == 0 $$ where $$ t= cos(theta)$$;

fun_theta0 = @(x,z,sigma) acos(fminbnd (@(ct) abs(-1+

ct.^4 .*(1-x./ sigma .^2) .^2+ ct.^4 .*(z./ sigma .^2)

.^2/(1 - ct.^2) .^2) ,0,1, optimset (’MaxFunEvals ’,1e50 ,’

MaxIter ’,1e50 ,’TolX ’,1e-50,’TolFun ’,1e-30)));

% Temerpature field as function of x,z,sigma

fun_T = @(x,z,sigma) sqrt (2/pi)./ sigma .*( integral (@(

theta) exp(-((z.^2.* cot(theta).^2+ cos(theta).^2.*(x

+sigma .^2.* tan(theta).^2) .^2) ./(2.* sigma .^2))),0,pi

/2,’Waypoints ’,fun_theta0 (x,z,sigma),’AbsTol ’,1e

-10,’RelTol ’,1e-10));

% Negative value to dTdx , NdTdx = - dTdx * sigma*sqrt

(pi/2). It is just for simiplicity .

fun_NdTdx =@(x,z,sigma) integral (@(theta) (1+( -1+x./

sigma .^2) .*cos(theta).^2) .*exp(-((z.^2.* cot(theta)

.^2+(x.*cos(theta)+sigma .^2.* sin(theta) .*tan(theta

)).^2) ./(2.* sigma .^2))),0,pi/2,’Waypoints ’,

fun_theta0 (x,z,sigma),’AbsTol ’,1e-10,’RelTol ’,1e

-10);

% Point heat source

% FunZmaxPoint = @(Ry) (Ry.^( -1.7312) + (sqrt (2*Ry./

exp(1))).^( -1.7312) ).^( -1/1.7312) ;

% FunXmaxPoint= @(Ry) - ((Ry./exp(1)).^( -0.9990) + (Ry

.^2) .^( -0.9990) ).^( -1/0.9990) ;

% FunXbPoint = @(Ry) -Ry;

% SigmaMax =((2*1.2798/sqrt (2*pi)*Ry).^( -2.3975*2/3) +(
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sqrt(pi/2)*Ry).^( -2.3975)).^( -1/2.3975) ;

zmaxPoint = (Ry .^( -1.7312) + (sqrt (2*Ry./exp(1)))

.^( -1.7312) ).^( -1/1.7312) ;

% Maximum temerpature at centerline

xmaxCenterSeed =[5* max ( -0.7650* sigma ,-sigma .^2) ,0.2* max

( -0.7650* sigma ,-sigma .^2) ];

xmaxCenter = fzero(@(x) (fun_NdTdx (x,0, sigma)) ,[

xmaxCenterSeed(1),xmaxCenterSeed(2)],optimset (’

MaxFunEvals ’,1e10 ,’MaxIter ’,1e10 ,’TolX ’,1e-30,’

TolFun ’,1e -10));

TmaxCenter = fun_T(xmaxCenter ,0, sigma);

if 1/Ry > TmaxCenter

disp ([’Temperature is too high for Ry = ’,num2str (

Ry),’, sigma=’,num2str (sigma)])

end

% Find upper and lower bounds of xmax for zmax

xmax_ub = 0.999* xmaxCenter ;

[xb ,~] = fzero(@(x) (fun_T(x,0, sigma) .*Ry - 1), [- 2*

Ry+2* xmax_ub ,xmax_ub ],optimset (’MaxFunEvals ’,1e10 ,

’MaxIter ’,1e10 ,’TolX ’,1e -10));

xmax_lb = 0.99*xb + 0.01 * xmaxCenter ;

% Find xmax and zmax

Fun_z_x_iso = @(x) fzero(@(z) fun_T (x ,z,sigma ).*Ry

- 1,[0,1.1* zmaxPoint ],optimset (’MaxFunEvals ’,1e10 ,

’MaxIter ’,1e10 ,’TolX ’,1e -10));

xmax = fzero(@(x) fun_NdTdx (x,Fun_z_x_iso (x),sigma) ,[

xmax_lb ,xmax_ub ]);

zmax = Fun_z_x_iso (xmax);

% Error of T and dTdx

ToldTdx = fun_NdTdx (xmax ,abs(zmax),sigma);

TolT = fun_T(xmax ,zmax ,sigma).*Ry - 1 ;

catch

xmax=nan;

zmax=nan;

xb=nan;

xmaxCenter =nan;

TmaxCenter =nan;

ToldTdx =nan;

TolT=nan;

disp ([’Fail for Ry = ’,num2str (Ry),’, sigma = ’,

num2str (sigma)])

end

end
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%% Maximum sigma

function [sigmaMax ] = fun_sigma_max(Ry ,fun_T ,fun_NdTdx )

SeedSigmaMax =((2*1.2798/ sqrt (2*pi)*Ry).^( -2.3975*2/3) +(

sqrt(pi/2)*Ry).^( -2.3975)).^( -1/2.3975);

xmaxCenter =@(sigma) fzero(@(x) (fun_NdTdx (x,0,sigma)) ,[5*

max ( -0.7650* sigma ,-sigma .^2) ,0.2* max ( -0.7650* sigma ,-

sigma .^2)],optimset (’MaxFunEvals ’,1e10 ,’MaxIter ’,1e10 ,’

TolX ’,1e-30,’TolFun ’,1e-10));

TmaxCenter =@(sigma) fun_T(xmaxCenter (sigma) ,0,sigma);

sigmaMax = fzero(@(sigma) TmaxCenter (sigma)*Ry - 1 ,[0.9*

SeedSigmaMax ,1.1* SeedSigmaMax ]) ;

end

clear;clc;close all

ph = pwd;

cd ./ Coarse

load(’GaussianZmaxCoarse.mat’)

cd(ph);

FunZmax = @(Ry ,mul) @(p) (Ry.^(p(1)) + (sqrt (2*Ry./exp

(1))).^(p(1)) ).^(1/p(1)).* ...

(1+( pi /2.*(1+(1.495*Ry .^( -1/6) ).^p(3)).^(1./p(3)).*

log (1./ mul)).^(p(2))).^(1./p(2));

[Mmul ,MRy] = meshgrid (mul ,Ry) ;

FunSigmaMax =@(Ry) ((2*1.2798/ sqrt (2*pi)*Ry)

.^( -2.3975*2/3) +(sqrt(pi /2)*Ry).^( -2.3975))

.^( -1/2.3975) ;

MsigmaMaxCal = FunSigmaMax (MRy);

MulCal = Msigma ./ MsigmaMaxCal ;

MulCal(Mmul >0.9) =nan;

FunZmaxP = FunZmax(MRy ,MulCal);

FunE =@(p) log(FunZmaxP (p)./ Mzmax);

FunME =@(p) max(max(abs(FunE(p))));

[pval ,fval] = fminsearch (@(p) FunME(p) ,[-1.7,-1.6,-20])

surf(mul ,Ry ,FunE(pval))

set(gca ,’yscale ’,’log’)

xlabel(’sigma/sigmam ’)

axis ([0,0.9,1e-3,1e3])

ylabel(’Ry’)

shading interp
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Appendix B: Supporting figures for
blending results in Chapter 3

B.1 Asymptotes, error map and correction factors

for the maximum temperature at y∗c

10
-4

10
-2

10
0

10
2

10
4

10
-5

10
0

Figure B.1: Dimensionless maximum temperature as a function of y∗c
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Figure B.2: Blending error for the maximum temperature as a function of y∗c for
exponents n at or near the optimal value
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Figure B.3: Maximum blending error for the maximum temperature as a function of
blending parameter n
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Figure B.4: Correction factors for the maximum temperature
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B.2 Asymptotes, error map and correction factors

for the gradient of maximum temperature
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Figure B.5: Dimensionless gradient of maximum temperature as a function of Ry
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Figure B.6: Blending error for the gradient of maximum temperature as a function
of Ry for exponents n at or near the optimal value
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Figure B.7: Maximum blending error for the gradient of maximum temperature as a
function of blending parameter n
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Figure B.8: Correction factors for the gradient of maximum temperature
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B.3 Asymptotes, error map and correction factors

for aspect ratio of isotherms
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Figure B.9: Aspect ratio of isotherms as a function of Ry
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Figure B.10: Blending error for aspect ratio of isotherms as a function of Ry for
exponents n at or near the optimal value
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Figure B.11: Maximum blending error for aspect ratio of isotherms as a function of
blending parameter n
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Figure B.12: Correction factors for aspect ratio of isotherms
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B.4 Asymptotes, error map and correction factors

for melting efficiency
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Figure B.13: Melting efficiency as a function of Ry
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Figure B.14: Blending error for melting efficiency as a function of Ry for exponents
n at or near the optimal value
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Figure B.15: Maximum blending error for melting efficiency as a function of blending
parameter n
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Figure B.16: Correction factors for melting efficiency
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