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=" ABSTRACT
A study of slowness and a21muth measurements of

‘4\

selsmlc P waJe phases, errors assoc1ated with these

i
-

,measurements, and impllcatlons as to the nature of the.
P wave veloc1ty dlstrlbutlon w1th1n the earth is

presented - f}¢;f:- - ~{.:_ o .
Errors infthe-arrival times of plane waves at

“seismic. arrays result 1n errors 1n slowness and a21muth
"It has been,f;unf that the stablllty of the 1nver51on

process is re ted'to‘the condltlon»number of the matrix

, . o . .-
-lnver51on and that symmetrlc arrays yield . the most stable
r

estlmates of slowness and a21muth 1n the presence of .

travel tlme errors® If travel tlme errors are glveﬂ*ln

]

the root mean . square error sense then the least square

error aner51on results in maX1mym and most 11ke1y error

elllpsés in the slowness—a21Mu ‘error plane for any
AarrayL_ The error analy51s 1s<not'restricted to cases

‘for-which traVelktlme errors are speclfled in the root

. .

mean square error manner., In partlcular if travel tlme

errors.-are bounded then errorsaln the slowness- a21muth

error plane are bounded by multlslded flgures whlch

W

'reflect the - array conflguratlon. Several.array;confl—
guratlons are used to 111ustrate that the ‘most effectlve

procedure for error lmprovement is to add additional

-»

statlons aﬁong the perlphery of an ex1st1ng array 1nstead

'”of 1n the 1ntcr10r.. :

o



/Slowness and azimuth observations of teleseismic

P phases’;eoorded by the’1974‘variable Aperture Seismic
-Afray (VASA) indicate departures of the.P wave velocity
distribution within the earth from a sgherically symme -
trical model for which P, wave travel timeS‘are‘in~< .
accordance ‘with tﬁe JeffLeys—Buiien Seismologioal kables.
If lateraI inhomdgeneities within the crust and upper
maotle under VASA are not severe,‘and prelimihary ifdi-

~ -
~

cations are that this is the case, then the observations
N R4 N . .— / .

.11 hkﬁikvelocity-
LD - :
m; W . i;erlocity

f‘\'o .,’:* -

1nhomogene1t1es near the core'mﬁn éfthndary under some

indioate the existence of anomal

depth” gradlents at a depth of‘

areas of the Pac1f1c Ocean End anomalous condltlons

predomlnated by lateral veloc;ty gradlents between depths .’

of about 1900 and 2600 km under a reglon close to the

. Carlbbean; Also the slowness observatlons .are con31s—

xtent w1th an 'average' spherlcally‘symmetrlcaL 1ower
mantle for which the P wave. veloc1ty is sllghtly greater__
than the. Jeffreys Bulien de51gnatlon.‘ ~ )
'_The Tau method of selsmlc-travel-timeninVersion
islinvestigatea. A method of estlmatlng extremal values
of the funotion T(p) =‘2é2%'- héglltwhere_P'ls the ray
.éafametef,4Tithe tfavel'time, and X tﬁe:é§;6entralrdis~
.tance'is presented. FOf each branch of:the Eraveletime
curve, T observations are fitted to a faﬁily of seCondd

Jorder'polynomials‘in X. The ' families of curves are



>

4
1

then mapped .into the 1(p) .plane. The Tau method is

illustrated by.inverting,T(x) data recorded along the’

'Yukon' lihe.durihg gfoject Early Rise. A comparison
ofit(p) resuits from several other studies in North
America réflectsbdifferences'iﬁ crustal ang upper
mantle structure. Also the resolving power, "as a
functlon of separatlon of observatlon points of the

Tau method is examined by invertlng 7 (p) envelopes

calculated from exact velocity-depth finctions.,

X . ' ovid
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' CHAP_TER 1l
: )

SEI?MIC ARRAY DESIGN AND BACKWARD ERROR* ANALYSIS ,

OF WFVE'SLOWNESS 'AND AZIMUTH

-

Introduction
Array measurements of the slowness and a21muth

of selsmlc body wave phases have been used for the :

purpose of.dellneatlnglearth velocity *structure by many

investigators withinkthe last decade. In this study

-

~investigations of errors assoclated w1th such measure-

:ments and the relatlonshlp between the P wave ve16c1ty
'of the earth and slowness-a21muth observatlons are
;'presented ~In Chapter 1l errors 1n slowness and azlmuth
.’as determlned by two dlmen51onal selsmlc arrays are
-;studred usrng pQwerful results from matrlx iterative
analy51s The 1974 Varlable Aperture Selsmlc Array g
_(VASA) slowness and- azlmuth\observatlons and the impli-
catlons regardlng the nature of the P wave ve1001ty
" dlstrlbutlon w1th1n the earth assoc1ated with them are
s';dlscussed rn Chapter 2. A-study'of the .Tau method of
‘rtraVel tlme 1nver51on; whlch 1s appllcable to spherl—’
cally symmetrlcal ve1001ty functlons, is. glven 1n Chapter>
'3,. ‘A method for the determinablon of errors . in the
functlon T(p) is presented ' The Tau method is: 111us-:/>
trated by anerting travel time data recorded by the’

'Unlver81ty of Alberta on’ Pro:ect Early Rlse. In all

¢
[



chapters the contributions of past inveatigations will
_be cited w1th1n the text. It is felt that for th157
étudy such a procedure is more approprmate than a his—'

‘tor1ca1_rev1ew.
' '

The Importance oftArray Measurements of Slowness and -
A;imuth‘ - . S o -
. v o ) S0 .

The two—dimensional seismic arrayfis,a.major tool’
in " the 1nvest1qatlon of the velochfy and - structure of
the earth's crust and mantle. In most experiments the
elastlc waves are dbserved in the far fleld at places
where the radlus of curwg@ure of the wavefront is very
much greater than the array size and ‘the structural 1nho—
mogeneltles to be studled it is p0351b1e to assume that_
each phase traverSes the array in the form of a plane
wave w1th a glven a21muthal orlentatlon and slowness.
:’If;the array is 51tuated'on a Cartesian coordinate SYSf:

tem,lthen t quation for the argiyal time, t(i)y),'of

a given pha e at location (x,y). is,

t(x.j) 2 2% pgy . R (1.1)

s . e . .
in‘(i.l), the‘k;nematic properties of the plane wave are
rspecrfied bydt;;htEEfarrival time at the originy(x,y) =;
(0}0), andipx ahd py,:the X andby components of “slowness. -

' small seismic arrays'are ueed.to,advantage in

explorationfgeophysics in both the reflecgion.and'



. -refraction method’to determine mean and interval veloci?‘
tles and to dlscrlmlnaze against n01se generated by .

A

.
multlple reflectlons Medlum and large aperture selsmlc\\f

o arrays have found'w1de use in the 1nvest1gat1oa of possi-
1 : . . . )
*ble departures in upper and lower mantle velocities from

Standard mbdeléf\\n large change in veloc1ty gradient
may correspond to a small. change in veloc1ty ;nd have
very 11ttle effect on themobserved travel tlme. Thus a
direct measurement/ofvthe yector ray parameter p, using

e . e

a seismic array may dellneate 1mportant anomalles.

v

Blrtlll and whlteway (1965) have.dlscussed the frequency4b

wavenumber response_characteristics‘of arrays 'in.general.
~“otsuka (1966) gives the-eXpressions for sfbwness'and

s _
§§§V azimuth variance for glven varlanee of travel time error.

The follow1ng analy51s is a thorough treatment of the
errors to be expected in determining the velocrty and
azimuth When'a»plane wave propagates across an,array.of
. s
detectors The analys1s is. necessary in order to deter-
mlne the- array 51ze and shape and the sampllng timel ' \\

requlred for a partlcular signlflcance level. The results

.
»

4 may be used. to’ determlne whlch observatlons of anomalies
in yeloc1ty or a21muth ‘are 51gn1f1cant and may be’ 1nter—

preted as 1nhomogene1t1es within the earth

~

G . .-



Backward Error Analysis: b //

1’ rer
'

‘With data from a seismic’ array, the solution for

the vector ray parameter, p, is given by
p'= N ' S (1.2)
. - ﬂ . . “
where A 'is the 'array' matrix which depends upon the -
coordinates of the -stations comprising-the’array and T

is- the 'observétibn' véctor‘which depends, upon the - .

~observed arrival times and the station coordinates. ‘It

is common practice. to determine the best fitting plane .

wave, in the least squares sense. For N stations situa--

fed at (Xi,Yi), i=1,N énd’reporqing arrival times tiy

i =1, and a best fit plane wave'déscribéd.by equatiqn-

_arrival time is,

1

Taking 9E/9p, = JE/dp, = 3E/3t

(1.1) we have'Egat the ‘root mean square error, ﬁ,bin

E=. li] (ti—tO - P X‘—p'Y_') : ‘(

0 ' we obtain

S |

. 2 e . o p‘
(ZX.) < - IX.ZY. 3
2 i B _ 1 1
P £ e e T |
A =1 S A » L (1.3)
’ R ' : 2 . . " ]
- IX.IY. Ty (ZY.) v )
- < i1 el I
EX Y- —R LY; - —



o Lt Xy Ztityi T .
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‘ e —
The study of the effects of perturbations of the

‘elemehtsvef'the-matrix-A and the yeetor.g_upon the ele-
ments of vector Q‘isNreferfEdito in humericalbmatrix
analy51s as 'backmard-errer anaiysis' (Wilkinson,»lQGSi.
Selsmologlcally thlS type of ana1y51s is extremely

Vlmportant 51nce we would llke to Know flrstly the: 51ze

of the_errors in p and secondly’ how to make errors in p

as small as p0551b1e.> In- Apnendlx 1 some’de initions,

: Moter, 1967). The results will be applled o the pvoblem

of measuring the_veetgr.ray parameter

"ih'eéuatieﬁ (1.2) it is assup A that ‘the elements
‘of the vector T,and possibly_theﬁ- ix A are sc1ent1f1c
;measurements. For 1nver51on the de

vector P. Obv1ously small measurement errors i the

entries of A and g result in errors in the vector p..
e ' | '

If GT and GA represent the errorsiin-z and Afl respec;

“tively, ‘then we actually measure the quantity p + 6p,

p+op = a~lr 4 a7ler + ealr + saTlor . (1.4)

Thus the error in p is given by,

- -

Csp = ater + saTl(r + 1) . - .5y

x

:red quantlty is thev'



~in T and A.. In order to obtaln such a system it is

It 1s desirable to des1gn an array in such a way that the
measured vector p responds in a stable’ manner, dev1at1ng

N

from the true p only sllghtly, upon small perturbatlons,

%

neeessary to con51der upper bounds of the 'size', in -

Athe vector norm sense (see Appendlx l), of Gp. If, as

,1s usually the case 1n selsmology, we suppose that there

are errors ln T (due to errors ln arrlval tlme) but no -

-‘,errors 1n.A, then“for_any vector norm,

Hépll oo dleTld
— = i <xk(A (1.6)
IIpll ‘ IITII -
The 'condltlon number ) K(A), of “a square non- 51ngu1ar.
“matrlx-A is. obtalned from () = ||al] ||Af}||.b . the

1nequa11ty K(A) is calculated u51ng the matrlx norm (see -

prpendlx l),_whlch ls 1nduced by the vector norm used.

"Slmllarly if there are errors 1n both ‘A and T then for

any. ector norm (see Franklln (1968L, page 177)

-

1|sp|| ey (Heall exil

_ L@
lel vn o LI Al Tl
» llAlI _—

" The in'equalities‘ (1.6) and (1.7) show explicitly the
11mportance of the condltlon number K(A) An optimal
'vsystem results for a glven.norm when K(A) is as small as

‘ ;p0551b1e w1th respect to that norm, the ch01ce of a par—

.-tlcular norm depends upon the 1nterpretatlon and



scientific application of the veéctor p.

-

Array Design C o ' o . L

The.resu;ts (1.6) and (1.7) can now be apolied to
" the problem of the determihation of siowness and azimuth‘
of plane waves. In the'slowness—azimutﬁ equation (L. 2),
the elements of the system matrlx, A, depend only upon

the x and y coordlnates\of the statlons. Thus the con-
dition numoer,'K(A), depends purelyluoon the iocations
of‘the stations. 'The‘obvious,implieatioh of this fact

is that we can ensure a eﬁable system, that is minimize
k() , by a corresponding eorrect.ohoiceloj,the geometrical

pattern formed by the stations. We wish to minimize errors

in the slowness, p, and the azimuth, 6. The slowness is

simply the Euclidean vector. norm, -||p||, of p. ‘The slow-

ness error"is:given_bj I|p+-Sp|| - |{lpl]. . Thus the maximum
' . : o= = -/ .

‘absolute value of the slowness error is ||ép||. From

(1'6)-or (1.7) the maximum sloﬁhees errorbis minimized
_when K(A3 calculated u51ng the spectral norm is. as small
'as_90551b1e. Also, the ch01ce of spectral norm is 1ndeed
"wise for the purpose ofjde51gp1ng‘an array whleh minimizes
'errore in.aiimuth' ‘This is true sincebiflépmax is the_
_!max1mum p0551b1e slowness error and. |66| max is the abso-
lute value of the max1mum a21mutha1 error, then



-

|56 = arctan(épmax/p), 81

> s p
max max

= 7, _ dpmax'> p . (1.8)
' W 5

Equatioh (1.8) is importaht‘for two readons. Firétly it

shows that a giveh array is an effective slowness dis-—

I3

criminator if and only if it is an effective azimuth

discriminator. SeCOnaly equation (i.B) permits a cal-
culatioh of maximum errors in azimuth for given max imum
error dp for any seismic array., At this point it 1is
worth ﬁoting that slowneés and aziguth e£}ors,A6p and

§6, cannot achieve their maximum values simultaneously.

Erom figure 1.1 it is not difficult to see thét

gifap .o C(1.9)

2.1
L (w2 . - sp9)?
66 = arctan
From (1.9) we'See that Sevattains its maximum value only
‘when 8§p =0 and thatlép attains its maximum value only

when &6

o. .

" Now tﬁe‘iﬁvefse problem given by (1.2) wiil be
the most stable when Q(A) =.1i'WQ¢re A is given by'(l.3),
By éonstfucking.AAT ahd using the reéultSyOf‘Appehdix i

it is possible to show that k(A) = 1 if and only if the
following cdnditions.are satiéfied; | -

-

2. 2

i

f\% inA :vZYi
Y =0 e
X, =0 o )



Figure 1.1

The relationship between errors in slowness and
‘ ¢
°

!zimuth is shown ‘here: The vector defined by segment
OA is the true slowness vector. * The radius of the
error circle is«dpmax; Th;ee error vectors defined

by segments AD, AC, and XE are shown. Vector AD
produces the maximum a21muthal deviation 646 max and
segment AT results in the maximum slowness deviation
Gpmax The error vector AB contalns both slowness and
azimuth error components; with the 1ength AE = 4p the
relatlonshlp between the errors is glven by equation

(1.9).
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o
The general proof of the above relations is rather

lengthy.
The conditions require that the array be cons-
b
/
tructed in a symmetric manner. It is instructive to

consider the derivation and results when there are N= 3

stations. In this case the matrix A in equation (1.3)

yields,
a c h
anT = 1
o} b
where
_ 2 2 ; 2 2
a = (2X2+ 2X3— 2X2X3) + (2X3Y3— X2Y3)
_ 2 4
- b= (2X3Y3— X2Y3) + 4Y3
_ _ 2¢ .2 2 _
c = (2X3Y3 X2Y3)(2X2+ 2X3+-2Y3 2X2X3) .

The eigenvalhes Ty 2 of AAT are the roots of the charac-
~ N ’

"teristic equation c}et(AAT - %l 21) 0. Thus they satisfy
. . 14

2
19,2 1,2

the eigenvalues Tl:2 must have the same magnitude, and
. 14

8 9 (a+b) + (ab-c?) = 0. For x(A) to be unity,

hence x(A) = 1, if -and only if c2 = -(a—b)2/4 which
implies a=Db and c = 0. From the above expressions the
condition ¢ = 0 requires that X3 = X2/2; This fact com-
=+/3 X5

bined with the condition that a = b yields Y,



Not ice now that the resultant array consists of three
stat ions located at the vertices ot an equilateral
triangle. The array locations :;a(i:;fy‘uquatk.'L()n.*;,(l.l())
and this is the é6nly three station geometry for which
w(A) = 1. |

In general arrays which satisfy (1.10) are
symmctrical'with respect to phe (X,Y) axes. An exampleoe.
of .an array which possesses this high degree of symmetry
is LASA in Montana. Note further that each station of
LASA is composed of several sensors with the 'sub-
arrays' formed by them satisfying (1.10). Thus the
entire array and each sub—ar;ay are capable of reporting
stable large or small aperture arfay estimates respec-
tively of gibwness and azimuth.

It is worth commenting on the effect of array size.
Suppose we -have an array with system matrix Ay which
satisfies (1.10). If we increase the size of this array .
byba magnification factor m>1 to form a neJ array with
system maﬁriquz, then K(Az) = 1. Errors for the second
‘array, A2, however, will be smaller since | |A|| and
[lT|] will be larger. )

For arbitrary N > 3, equations (1.10) do not dictate
a unigue geometrical pattern of'stations; nevertheless from

this discussion it is clear that it is advantageous té select

a geometry which does satisfy the above requirements.

&
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Error Bounds tor ‘I\rbitrnr'x Array cont tgurattons and -

ex

I\rbitrarj_ Specifications of Arrival =Time k1 rogy

[t 18 1mportant to realize that the uppw/ bounds
given by (1.6) and (1.7) 1n qeneral depend upon the
azimuth ot the incoming plane wave for a Jgiven slowness,
Let us assume that there are no errors in the coor-

dinates of the stations and focus our attent 10N upoOn

the upper bound (1.6) 7 Also suppose for simplicity that

we have a 3 station detoerminat ion of [P With the array
coordinates given by (Xi 'Yi ), v - 1,3 (and for conven-
ience X1 Y] 0}, the upper bound (1.6) can be writtonm

as follows;

|Jspl] - *(A)li‘\TH_\
£ xi,yi,wg7

wherao
68 = 8 - 7
o
and
B 2 4,.2, .2 2 1 R
f(Xi,Yi,0)~-{cos OO[§(X2+X3 X2X3) + 5(2X2Y2+¢X3Y3
CXYa-%.¥) 2]+ sinZe (A(x2ev2oy_y ) 2
273 372 "o 9 2 ‘3 2°3
+ }-(ZX Y. +#2X_.Y -X.Y -X.Y )2]
9 2°2 7373 2°3 372

) . 2 2 2 2 2
+ 51n80 coseo[—g—()(zﬂ(3 X2X3+Y2+Y3—Y2Y3)

x (2x2y2+2x3y3—x2y3-xzy3—x3Y2)}} .



The expression (l.ll)“shows expiicitly that the upper.
bound glven by (1.6) depends upon the a21muth ‘ for:- an
;arbltrary array. Nevertheless for approprlate ch01ces

of the dlrectlons of the vectors T and 6T there can be

equallty in (1.6). Thus for arbltrary vectors T and GT‘

P @
there is no sharper bound for the relatlve error .

Ilépll/llglf than that given by (1.6). - It is for this
reason that the criterionrfor array design was based '

" upon (1.6).

In general the error space deflned by vectors 6p
for arbltrary arrays’ and arbltrary spe01f1catlon of
travel=- tlmeverrors Gti is extremely complex. "To see
this.consider a three station array with stations at;“
(Xi,Yi),'i =‘i,2,3( and arrlval,tlme erxrors of sty dtz\
and 6t If we take for 51mp11c1ty Xl % Yl =.0 then ve“

have, from (1. 3) and (1.4),°
//S - % 5 st (8 "St”

P, - : Y3 (8t,- tl)..—‘_Yz( t3-6ty)

A\ , ' 1 R .
‘p.. ~(X2Y3—X3YET;—X'(6t S6E.) + X, (Sto=6E,)

Py X 3195270 T Ay 3-°11

- Thus the error’space is composed of ‘the space spanned
by certain linear combinations of three generaliy

linearly independent unit vectors Vi, i.=12L,2,3., If

’~£jand;i‘denote unit,vectorstalong dpx and épy axes

respectively; then the yi are givqupy, L : ;



i

. » . : 2 C oy 2y 72
vy= ((Yy-vy) i+ (X3=X503)/ ((¥y-¥5) "+ (X3-X5)5")

Y= (Y3l-X33)/03+X3) I ' (1.12)

1<

B . a 2 2.5 /
37 (TYRl+ X0 /X, +X5) T ‘
4 9 .

4

Ih'generalhthen dp is a-possible’error wector if and only

'if it can be written in the form ‘ : ¢

»

0D = vy +oapvy +oogvy R
»whéfe
N o, = ((y )2+-(x —xz))%/(x Y., ~-X,Y.)
1 2 2 737/ /3727377372
a, = 6t (Y +x2 ) /(x2Y3 X3Y,)

]

og t3(Y§%X§)%/(x2Y3-x3Y2) e

. Thus from (l 12)'and (1.13) the error space dp, whlch

'depends upon the statlon locations and the nature of
‘the tlme errors, is glven exp11c1t1y. wslmllar expces-
sions may be derlved for N > 3

‘ Fortunately there is at least one case of travel;

‘tlmeberror spec1flcatlon for whlch the error space of

6p vectors is extremely 51mple even for arbltrary array

conflgurations. If there are N statlons con51der the N

Ay

dimensional Euplldean vector space with the coordinates

of the N axes givehtiniterms.of'the travel—time'errcrs

P
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: ‘ )
’Gti,, i = 1,N. If the arrival-time error vector .§t =

(St l,6t2,...,6tn)T is Sgnfined to the hypersphere of
‘radius /N 5t, where 6t is a ndminal‘error[_then the

error spaée iﬁ the.(dpx,dpy) piane,will be'a.ciosedv
el}ipée.,~Details of this case*are_given.in the next

section.:

i

'Array Error Numbers' and 'Average' Error °

Tﬁe diagonal matrix form under Qrthogqnal equi- ‘

valence (Append;x 2)_leadé to the simplest interpreta—" |
tion abbntwthe natureﬂof ausquare;matrian@aé—Apepre-ﬁﬁg—AVﬁw/%——f
‘sgnting a linear transformation-from one Euclidean n
spéce into another, such space} It also forms the basis
for, the éalculétiqnvof errérs»gg for a;bitrary arraysb
" when ghé,traVéi—time error véctor,dg is. confined to the
hypersphere‘of;radius /ﬁ St. .The_resulting érrof
equatibns are exfrehely'powerful for fhe purposes of
firstly estiﬁatihg efrors‘fof'a given array a;}Kaléo
‘forvcoﬁparing theAéabacities of-diffefent arrays‘té T
. yield étable'éstimafés,of slowness and ézimuth.

_ . The reéults of the precedingvparagrépﬁ and
‘Appendix 2 may. now be applied to the detérm%ﬂééion of
errors'in p'for any arbitrary array éonfigﬁfation'cbm—

posed of any number . of statlons N > 3 for which the

trave}/élme error vector Gt = (8t,,6t 2,..;,6tn)T is



confined tb the hypersphefe\of radius /N 6t where &t
is a nominal efr%r in arrival time. Extremely useful
concepté of 'array'error numbers' and.average errpr
wiil'be introduced. | |

" The applicatioh is-possibie_sinbe we can'wrige
‘the error vector'rgy parameter equation for N > 3 in'

the'following form;

SPaug = B 6L - » ‘(1.»14.)

whe're\@paug is an 'éugmented' (1 x N) error vector ray

parameter with (N-2) zeroes given. by, .

5P, T.

aug f (5px;6py,o,o(...,o)

ahd B is an 'éugmented' afray (N x N) matrix which has
all zero enﬁriés in its,(N—ZS—th bottom most rowé. “The-
non-zero top two réws of Bvdégend only upontthe station
coqrdinatesi_'The matrix B has two and only ﬁwbvnon—
zexo singulérwyélues.pl > hz; henée B.maps hYPerspheres-
in»ég space inég two dimensional éllipsesv%n Ggaug
space. The diagonal-ortﬁbgonél equivalent Qf B, namely .

D say, is of the form D = (Uij’ i;j ?‘1,.;;,N) where

ull:; Upr Hpp = u, and all other “ij‘ﬁAQf The:orthogonal
transformation V (Appendix 2) merely 'rotates' the $t
space leaving any hypersphere of radius /N st dontainiﬁg
‘the same elements as Sefote. Also, it is nét difficult
V_to show'th;t.theiorthogoﬁal matri* u (Appendix. 2)

+
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L]
operates on the.§BaUg space in such a manner that it .
only rotates the'Space in the:(dpx,gpy)-plané_ Thus,,
if We»make an'obserVation_p for which the root mean
Square error in arrival time is 8t then the error
vector dp Wlll be contained w1thin an ellipse in;

(6p Gp ) space which has -semi- major and semi—minor

. axes, §p1 and 6p2 respectively'giyen hy,
Spl = Wy /N &t
69'2 = u2 /N &t .

The quantities épl and.Sp2 may aptly be referred to as
'arraY'error numbers'; They represent maximum possihle'
errors for a given root mean square. error, dt + in |
arrival time Among the vectors St of length YN &t

in. St space there Wlll be one direttion for which st

and -8t map onto the two extremities of the semi—ma]or'

axes of the dp error ellipse, there Wlll be a direction

e 0

orthogonal to this one for which Gt and -6t map onto.
the extremities of the semi—minor axes of the ellipse.'
: The other (N-2) mutually orthogonal directions are
mapped into Gp =0 for any length llétll ‘The quanti-"
ties dpl and sz are useful Since they do give the
maXimum errors, that lS the extremities of the ellipse
For the purpose of comparing errors admitted by twaq |

different arrays(with the” same .number of stations One_

(1.15)

18



could compare the areas; wépl dpz; of'the associated
maximum error ellipses of the two arrays.

A Pbints:on-the maximum error ellipse described_

1550?8 are‘image'ébintg'of vectors SE of 1engthbﬂ§ st
'Lwhiéh 1ieventireiy within éne‘aiStinct hyperplane in the
6§7error épace; ,As_the'ﬁumber of sfatibhs'ihcpease’the
diméns}én of the &t error space increages,and hence the

probability Ehat.dg lies entirely within any one,hyger—i
plane decreases;: Tﬁus the Feffective' errors nof ohlf{n
ldepend upon the maximum erroré.épl andﬁﬁpz'but also
dpon the number of stations. :In order to  study the
effect of the number of stations let the &t error'spaée
be oriehtated_éuch that it is spanned by uhiﬁ‘Vectors

ét., i =1,...,N and

=i

B(/N 6t 6ty) = (8py,0,...,007"

B(/N 6t 6t,) = (0,6p,,0,...,007

Co =20 o -
.’ : . - R ,//
and S o e
] L : . g o . o : N
. B 5t, = 0 for . i'23 . s

<

’Noy‘lét St, an error vector of length /N §t, be repre-

sented by

st = Blét1‘+ 826§2_+ 83633 + ... + Bn§§n

where - o )/2>'

282 = Not? .
i o

19



Forvthis vector 6t, the length of Gp =-BétJ ~depends

upon the component of 6t in the (th,Gt ) plane which

is (B +B )5 . If the quantltles B i= l,...,N_are
equally likely irandom variables subject to the cons- 4
'traint that.zsi =;N6t2; then the- most likely value of
Bi+6§ will-be 2<St2 ~ Also, 51nce the direction of the .
progectlon of St in the (th,ét ) plane is random,'the
effectlve or average error space of vectors §p will be
ldeflned by the image of a c1rcle in the (th,dt ) plane
“of radlus (Bl+82)%«= /2 St under ‘the transformatlon B
:Thls 1mage will 51mply be an elllpse in the (6p ,Gp )
plane w1th seml—ma]or and seml—mlnor axes lengths glven by .
(2/N)!5<Spl and (2/N);56p2 respectlvely. Notlce that thlS‘
'average'_elllpse 1s 51mp1y a reduced verslon of the

_'elllpse descrlblng max1mum errors. A reallstlc quantlty

whlch reflects an: array s capac1ty to dlscrlmlnate agalnst

- random errors is. certalnly the area of the above 'average'

elllpse whlch is (2n6p16p2)/N : lternatlvely one’ could
con51der the radius of the c1rcle whlch has the same

area -as the given elllpse,>namely,
~op ={(25p"ap")/ﬁ‘}% o aae)
- 8pp / 1 6P, - _ . . .
The Value GpA can be referredlto as an 'average-error'
‘since 1t takes 1nto account the number of statlons and
the random nature of the true errors‘and it is an average

over the skewness (elliptical shape)_of the»errorvspace.

-
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The values Gph 6p2, and GpA depend only upon the
station coordlnates The 51ngu1ar values My and u, of
B are the p051t1ve square roots of the two (necessarlly

p051t1ve) non-zero elgenvalues of, the matrix C = BBT.

In general C will be of the form C = {c ij i,j=1,...,N}
where cij = 0’ lfll~z 3 or j 2 3. . The generally non-zero

quuantities Ciye and ¢ depend only upon the

€227 12 - 21
station coordinates. The quantities Uy and u, are given

o

"bY;'
= {(cll+c22+[:(cll+c22) — 4(cyj0,,-C5,)] %) 2} 7
. o R | - (1.17)

0 _ 2 " .
uy = (e 1*922” [(°11+°22) 4("11 22" 12)])/ 2}

Thus'by (1.15) and (1417), the array error numbers 8Py
and 6p2 are given. The average error GpAhis thenAgivenb
'by (1.16). _ ‘; | . |
| It is not dlfflcult to find the 'tilt' of the
'error ellipse in the‘(ép 6p ) plane (Golub and Kahan
‘(196;)). Recalllng the results of Appendlx 2 we have

that (8P, 6Py

-0,,..,0) =AU(6px,‘ Y'O"°"Q) . Now the
columns of the orthogonal matrix ﬁ are simpiy-the ‘eigen-
vectorsrof'the'matrix,c- this fact perﬁits the calcu1a4
tion of U and hence the arigle of rotatlon in the

(Gp Gp ) plane.' Note also that Golub and Kahan (1964)
" héve devised a computat{onal procedure for determlnlng

the singular values of general'matrices; the procedure,

T
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which is extreﬁely complex analytlcally, was lntroduced
since in general the calculation of BBT for arbltrary
matrices B, using floatlng point arithmetié does serious’
violence to the smaller singular values as well as the
correspondlng eigenvectors which appear in the matrices
U and V of Appendix 2. It is‘felt, however, that for
this analysis the treatment of Golub and Kahan (1564)
is not necessary since the matrices involved are ex-
tremely simple (for example, B containSvonly two non—zefo
rows). ’

Now we need to determlne expre551ons for the
augmented array matrix B the quantities 6pl,6p2‘and\
-hence épA. Mapipulqtioh éf equations (1.3) yield B.

If we let B = {b .}, k,2 = 1,...,N, then

(Nzy -(ZY ) )(NX o~ IX )+(zx LY, -NIX, ;Y5 )(NY -1v, )
b =
12 (Nzx - (X, y? )(NZY - (Y ) )-(Nzxiyi-zx.zy.)
o aexdeaxp ?) vy -, {)+ (EX IY ~NEX, Y,) (NX, ~Ex,)
b,, =
2% .
: (Nzx (zx ) )(NZY —(zy ) )*(Nzx.y.-zx.zy.)
1 1 . 1 1 O\/\
b, =0 for k2 3 . (1.18)

k2

In the-above expression§ the summations are taken over

i= l,...,N. A calculation of C Yields,



-2 N S S 2
€y1=N {N Eyi(zyizxi (zxiyi) )+Nry ( ZY (zx )
42X, IY IX Y -2IX2 (¥;) 2)4N(ZX,Y.) 2 (5y.) 2
ikt Sl | iti’ i
4.2 2 2..2 .3 ‘
+(ZY,) zxi+(2xi) (zyi) ZYi—Z(XYi) zxizxizyi}/
o 2 2 2_ 2, _ 2,2
‘{(Nzxi (in).)(NZYi (ZYi) ) (Nzxiyi zxizyi) . )
2,2 ‘ (2 2 02,
Cy,= N.{N zxiyi((zxiyi) —zxiZYiHNxx_iYi(—3zxiyizxizyi
: 2..2 2..2 2.2
+(zyi)_zxi+(zxi) ZYi)+NZXiZYiZXiZYi
‘ 2 2 .. .3 2
+2zxiyi(zxi) (ZY;)"-(zX;) zyizyi
.3 2 02 au (2 2 2,
(ZY3) "EX, XU/ U(NEXT - (EX)) )(yzyi—(zyij )
(%ix Y. - 2}2
TINEXGY IR EY)
and
e =_N2{N22X?(zx?zy?—(zx.Y.) )+Nzx (~ zx (ZY ) .

<3

' The values épl,épz andvdpA are given by.(l.lS), ?1;16)

22 i 1771 i1 ;

o,

+22xizyi£xiy —21v? (zx ) +N(zx Y. ) (£x,)

+(2X,) zy Se(ny, )2 (rx.) 2sx%-2(2x.) 35y, 5X. Y. }/
i i i 12%5Y5

| , .
{(Nzxi(zxi) )(NZY - (zY,) )-(NZX Y -IX,ZY) 2,7 .

and (1.17). It‘is important to realize that  these
quantltles do not depend upon the 1ocatlon in the (X,Y)
plane from<wh1ch the x and‘Yi-are meaeured.

In a pPrevious section it was stressed that the
most'sfable estimates of p result wheh eQuatidns (1.10)

S
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are satisfied. It is not difficult to show that if

(1.10) are satisfied then the §p error space becomes

a circle with Gpl = sz and GpA = (2/N)%691.

"

It has been shown that if travel-time errors
combine to giVe a root mean square error of /N §t

then the resulting maximum errors in p will be such

-that dp has its tip anywhere on the circumference of
an ellipse. centered at the origin in the (6px,6py)
plane. Also there will be.another ellipse, with semi-

major and semi-minor axes lengths dependent upon the ngmber

»

of stations, which defines 'most likely' errors dp.

Examples of the maximum and most likely error ellipses

<@ \ -
for several array configurations will be given in the

next section. It is also interesting to consider
resultant méximum errprs }n(the,(&px,6py) plane when
travel-time erroré are not described in the root mean
squaréuerror.sense but in the"norm—infinityf sense.
I1f we have ah error‘veétor St then the vector_norm.

infinity is defined by ||é6t]|]|_. = max® |6t.|. For an
o , X - ® 1fisy 1 '
N xN matrix A, the matrix norm infinity is defined by
N B
[1a]]_ = max ¥ la, .| where the a. . are the
‘ . 1<isN -j=1 1.3 . S red
entries of the matrix. Thus if ||&t||_ is given one

could determine the quantity l1épl], = max{lépxl,ldpyl}

using | |ép[]_ < LBl _tlst]], and equations (1.18).
< . S . .
Instead of considering this maximum, ||[é§p]||_, it is much

™

more intleresting and instructive to determine the



'boundary' in the (Apx,épy) plane when it is assumed
that -8t < ft, < &t for all 6t, where st -~ 0 is a
nominal travel-time error. Notice that this travel-
time error specification is quite different than the
root mean square error casece., Using equations (1.14)
and (1.18) it‘is possible to determine this boundary.
In general the boundary in the (épx,dpy) plane is a
multisided figure which has a degree of symmetry
dépendent upon the degrece of symmetry of the array.
This maximum 'norm-infinity' boundary will also be

shown in the following examples.

Examples .

Much emphasis has been placed upon.the concepts
of condition number, maximum and most likely error
ellipses, and the average errar dpA. The following
examples illustrate the 'importance of these concepts
and.also show:the‘relationship between spectral or root
mean square errors and norm-infinity errors. In order
to compare the capacities of différent arrays to dis-
criminate against travei—time errors 1t is necessary
to ensure that the sizes, in some sense, of the arra;;'
are comparable. To this end the 'mean' aperture of all
of the following arrays are equal. The horizontal
extent of an array depends upon the azimuth from which

.the‘array is viewed; if ap and a, are the largest and



smallest aperturcs of the array then the geometric mean

v -
aperture, a o, tH Adet fMed to be a ﬂila". Figures

>

m

1.2, 1.3, 1.4 and 1.5 show various array configurations
together with their eetresponding spectral and norm-
infinity error spaces. The distance scale factor AL
and slowness scale factor 6p are such that when AL =
200 km and the nominal travel-time errpr &t = 0.1 sec,
then 8p = 0.1 sec/100 km and all of the arrays have a
mean aperture of 200 km. The errors for any travel-time
error‘and array size éan thus be determined by using the
relation 8§p = St/AL.

Three, five, énd nine station L—sha@ed arrays
are shown in figures 1.2a, 1.2b, and 1l.2c; they will
be refe{réd to as arrays 2a, 2b, and 2c. The feature
that all three of these arrays have in common is that
they are asymmetric; accordingly for all three arrays
the spectral error space is elliptical, not circular,
and «(A) > 1. The tilt of the ellipses (the semi-major
axis is inclined at an angle of 45° countérclockwise
from the pr axis) reflects the asymmetry:of the grrays.
Notice that as we proceed from three to five .to nine

stations the following take place;

(i) the condition numbers increase (from 2.5 to 2.9
to 3.1)
(ii) the spectral error spaces become more elliptical

{error ellipses acquire larger eccentricities).



Figure 1.2 -

Three, five, and nine station L—shapvd‘nrr;\yu are
shown in parts a, b, and c respectively. Immediately
above each élray the maximum spectral error ecllipse
(light bound&ry) and most likely spectral error ellipse
(dark. boundary) are shown. The scale factors shown are
such that when L = 100 km, and &t = 0.2 sec then ép =
4.0.x 10_3 sec/km. In this case the values of 6pA (in
the order a, b, and c) are &p, = 4.6 Xi0_3 sec/km,

4.3 x10"3 sec/km, and 3.6 x 107> sec/km. If L = 100 m
and 8t = 2 ms, then §p = 4.0 ><10_‘2 sec/km and (in the

order a, b, c) 6p, becomes 4,6 x 10”7 sec/km, 4.2 x 10~

2
sec/km, and 3.6 x 1072 sec/km. Immediately above the
spectral error space diagrams the maximum norm-infinity
error boundary is shown for all three arrays. The hash

marks on the slowness axes of all slowness error diagrams

are Sp from the origin.
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Figure‘ 1.3 . - ‘ ,' - . /
Three, five, seven, and nine. station "circular"
-arrays are shbwn in ' parts a, b, ¢, and d respectively.
) . " | . -

The correSpondinélmaximum speqtrélierror circle (light
bdunda#y) and most'lfﬁély spectral error circle .(dark
. boundary) are shown,immediately aboVefeach,array. The

scale factorsléhQWn are such that wheh-L =.100 kﬁ, and
ét.= 0.2 sec, theﬁ Géxﬁ 4.0 x10™% sec/km: In this Eése {‘
the-values1of Gpé (in'the ofder a, b; ¢, and' d) are
"4.6 x10f3 §eé/km, 3f2 >A<10'+3 sec/kﬁ;i3;8 x10—3
and 3.4 x 1073 |

jsec/kh(
sec/km. If L = iOQ'mvand'dt,= 2 ms, then
6p = 4.0 x 10“2 seé/km and’ (in the order _a‘, bb,b c) 8pp is‘
4.6 %1072 sec/km, 4.2 x 1072 sec/km, 3.8 x 1072

sec/km,‘hna'
2 .

"3,4 x10 “° sec/km. - Immediately above the‘spectral'error
diagrams the maximum norm+<infinity errorhspace is shown.

for all four arrays. The hash marks on all slown€ss-

error diag:éms.areaét 8p from the origin.
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.Figuré>1,4
Two nine station aﬁd.a thirteen staﬁioh "double
circle" arrays appear in parts a, b, and C respectively.
Tbeicorrespoﬁping max imum spectrél error'circle'(light
boundary) and most likely spectral error circle (dark
bo;ndary) are shown immediately'abOQé_eaéh array.- The
scale'factors shown ére such that whén L'= 100 km and
3

\ ’ - . . A R
§t = 0.2 se¢, then 8p = 4.0 x10 sec/km. In this case

~the values of dpA'(in the order a, b, and c) are Spy =

3

3.7x 1073 sec/km, 3.7 x10™3 sec/km; and 3.2 x10"3 sec/km.

If L = 100 m and 6t = 2 ms, then 6p = 4.0 x 10”2 sec/km

\

aﬁa‘(in the order a, l;)_,vc).dpA is.3.7 x 10”2 sec/km,»
3.7x 1072 sec/km, and 3.2 x 1072 sec/km. Immedic'_x'tely‘
above thé spectrél err§r diagrams“the maximum norm--
ihfinity'érror space is shown for.egch array.  The hash

marks on. all slowness error diagramsva:e at ép from the

~origin. S
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(c)

(b)
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Figure 1.5
Nine, seventeen, and twenty-five‘Station "box"
arrays appear,in parts a, b, and c :espeqtively. The

COrreSponding maximum spectral errbr»circle (light:

Ay

«bound;;;}ﬁggd most 11kely spectral error c1rcle (dark
boundary) are shown 1mmed1ately above each array. "The

scale factors shown_are such that,when L = 100 km, and

St = 0}2'sé¢, thennép =vA;0 x}0-3 sec/km. In ;his case

the'values of GpA'(ihlthe order a, b, and c) are‘Géx =
-3 3 -3 '

_—
.sec/km, and 2.4 x10 sec/km..
=/ _ "

3.4x10
' -2

sec/km, 2.5 x10°
If L = 100 mand 6t = 2 ms, then &p = 4.0 x10™° sec/km
v andv(in the ordef a, b, c) SpA is 3.4 <102 sec/km,

-2 % sec/km. Immedlately above

.5x%x 10 sec/km, and 2. 4(5}0
the spe::Eél error diagrams the maximum norm—lnflnlty
error Space.ls shown for_eaqh array. The hash marks on

*all slowness errof diagramsvare_at‘ép from thé origin.’

P
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(iidi) the arrays become more and ‘more asymmetric with .

the L-shape being more- well defined.

The above features are related. 1In géeneral larger con—
‘dition numbers_are associated with more asymmetric
arrays and more eccentric error spaces.» One mighti
suspect that the'ratio a /a is equal to the ratio of
—~ the semi-minor to the ‘semi-major. axes of the ellipse.

This is not ' the case - however, for example uSing array-

2a we get a /a = 0.5 and the ratio of the ellipse axes

is approx1mate1y 0 57 ) The reason for this is that the}

analysis not only takes into account the extreme
~apertures of an array but also the spatial distribution

of stations along the directions of - the extreme aper—'

tures Notice also that as the number of stations is

.increased the ‘maximum error ellipse becomes larger.
‘This is a rfsult of the fact’ that the addition of o
hstations is performed in a- manner such that the station‘

spacing is reduced. On the other hand, the most- likelyi
error ellipse diminishes in extent as the number of

stations is 1ncreased Qtarting with array 2a the - N
iimbrovement obtained. by the addition of 2 stations

(array 2b) is such that 6pA decreases by approximateiy‘7%.
'Four_additional‘stations.f2c) improve errors by 16% when

compared to array 2b. Also shown is.the maximum norm-

infinity error space- the boundary is generally multi-

‘sided and its orientation again reflects the asymmetry.

of the array. As the number of statiOns increase the <

-
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boundary acquires more facets approaching the elliptical
shape of the spectral errorcgpaceﬂ The boundary of the
norm-infinity error space falls between the maximuim énd

- most likely spectral error ellipses in all cases. LT

\ Figure'l.3 shows 3, 5, 7 and 9 station circular
\

é;rays and their error spaces. All of these arrays have
Y

2

sfation locations which satisfy equation (l.lO)vand
hence’ k (A) = lvand the spectral error space;]are cir-
cular; The radius of the ﬁaximdm errér'circle increases
as the number - qf stétions increase. The :adiﬁs of the
mogt likely error circle, as expeéﬁed; decreasesgas_the
number:ofvstaﬁions increasém In fact 6pA.decreases'
'almostvi¢nearly as the ﬁumber”of.stations-indreaéej dpA
q&Tinishes by approximately ?t/SAL with the addition Qf.
every two 'stations. The norﬁ—infinity error spaces are
'Wultisidéd figufesbwith a highér degree of éymmetry than
those.forufbe'L—shaped,arréyé..-The‘norm—infiﬁity boundary
'.for the nine station array 3d is the mqét ;circular';
.Again the.norm—infinity er;or'bogndary lies between the
vmaximum énd most likely épectfal error ciréles.“ It,ié.

P
P

interesting to compafg the effectiveness of these ciréular

arrays andxthe previohsly discussed L-shaped arrays.
Comparlng arrays w1th the same number of statlons 1t is’
Seen that the circular arrays ‘are more favourable in all

cases ‘with the 1mprovement ln correspondlng dpA being

the largest for the nine. station arrays. The disparity
R . . £ < .
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in GpA'is not extreme with the ratio of 6pA for array
3d to dp, for array 2c being approximately 0.94. A-

comparison of maximum errors allowed by the two ,array

‘configurations again shows that the circular arrays are

more favourable in all cases and the improvement'is
again most pronounced for the nine station arrays. Tne
disparity in maximum errors is much more pronounced than
the improvement in 6pA, for example the ratio of the
maXimum\error allowed by array 34 to that of array 2c

is approximately 0.67. The superiority of the Circular~

v

arrays is related to.the fact that their corresponding

,ccndition numbers are equal to unity; the L-shaped arrays

have «{(A) > l,

Figure 1.4 shows the’double circular arrays'4a,
4b, and 4c¢. Notice that the spectral error spaces of
the nine station arraysk4a_and 4b are identical. uTnis
irgfationalisymmetry!is.a“feafure commonvto arrays for
Mhich K(A) = 1. Noi}ce houeyer,that the maxiﬁum norm-
infinity errors of 4a and 4b do not COinCide. A com-—
parison of the wvalue Gp for arrays 4a and 4b with tHe

value of épA for the. nine station array 3d shows that

-the single Circle arrangement is preferable, :5pA'is

T2

smaller by about 10 percent The‘thirteen station arraz
4c shown has a configuration which contains many equl—
lateral triangle components which-areuthemselves capable'

4

of smaller aperture estimates'of slowness and'azimuth,



Its maximum norm-infinity boundary is multisided and
closely approximates a circle.

. \__- I . -
The nine, seventeen, and twenty-five station box
, ~——

arrays are shown in,figures l.5a, 1.5b, and 1.5c res-

pectively; all have circular spectral error spaces.
e : ’

The maximum norm-infinity error space becomes more .

. 'circular' and larger as the number of stations is

increased.. A compérison of the effectiveness of these
arrays is very intéregting.« The additionm of 8 extra
statiqns to the f eriphery'»of array 5a résults in array
5b; thé:errorqugiovement is such that 6pA dec:easgs by
about 26 percent. If an additional 8 stations afe added,
this time to the interior of[the_box,‘the result is'érray'
5c. This las£ étep results 'in an improvement.Of only
about 7 perCent. This sitdationvagain shows that an.
arrayvis most effecti;ely upgraded by the addition of
stations if the new stations are placed along the’peri—.
phery of the eyﬁsting array and not'added‘to the interior.
A genergl'féature of spectral'errofs;is tﬁét the
size of specﬁral er:or’spaces is. directly propoftional‘
to the nominal traVel—timé\érror'dt and invefsely pro-
portional to array size. The trével;time error depen-
dénce.is clearly seen and the nature of the array size
dependence canﬁbe explicitly sﬁated as fo%lows; if an

1

array defined by (Xi,Yi)! i = 1,..$,N_has errorsiépl,dpz;

~and 6pA then the array defined by (cxi,ch), i=1,...,N

38
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where c > 0 has errors pl/c, pz/c, ahd pA/c. Now
lét us consider a’él-element L-shaped array for which
each leg of the L is 25 km ;nd accordingly the station
spacing along each leg is 2.5 km. . If 6t = 0.1 sec,

2 sec/km, 6p2 = 1.2 ><10_2 sec/km,

then 6p; = 2.3 x10°
and ép, = 0.5 xlé_zbsec/km. If this array is now
magnified by a factor ¢ = 8 such that the legs of the L
become 200 km and the station spacing élohg each leg is
20 km, then the errors argv(fo: st = b.l sec) Gpl =

2.9x 1072 sec/km, 6p, = 1.4 x107°>

sec/km, and GpA'é
0.6 x 10-3 sec/km, Now an important travel-time error
results from miséorrelation of phases from one record
- to another; in general the_aécufacy of correlation
increases aé station’spacing'becbmes(smaller. “Thus if
phase identifiqat%on is the only source of érror, then
the émaller L-shaped a;fay described. above willibe-aé
effective as the larger array if the sﬁallet station
-spgcing decreases thé'phasé idéntific&tion-error by a-

- factor of 8.

Conclusions
Errors in slowness.and azimuth measurements' from
two dimensional seismic arrhys depend upon array geome-,
- ¢ . .
try, array size, and the nature of travel-time errors.

For travel-time errors defined in the root mean square



err&r sense it has been shown that the maximum errors

in siowness and azimuth are defined by a spectral error
ellipse in thé.slownesé—azimuth error diagram for any
array. Values of expeéted errors are then defined by

a reduced version of the maximum spectral e;rqr ellipse.
In general the stqbility of the inverse problem is
related to the déh&itiqn number associated with an array.
Symmetric arrays have associated condition numbers equal
to unity and circular spectral error‘spaces in the
slowness—azimuth error plane, As array asymmetry becomes
more pronounced, condition humbers increase and spectral
error spaces become more elliptical. Comparisons between
symmetric and asymmetric arrays with the same number of °
.stations and equal mean apértures'reveal that symmefric
afra?s are more favourabhle in terms of stable measure-
ments of slowness and azimuth. The equations developed
_show that slowness,andﬁazimuth error analysis néed not
-be restricted to thé case of spectral errors. In'par-

~ ticular if it assumed that travel-time errors at each
station are bounded, then it is possible to construct.
the 'norm-infinitY'.error boundary in the slowness-
azimuth error plane. The norm—infinity error space
boundaries are générally multisided figures with a degree
of symmetry depepdent upon éhe degree of syﬁmetryvof the

array and the travel-time error bounds.

40



The analysis shows that the most effective proce-
dure for error improvement is to add additional stations
along the perigherz\of an existing array and to make the
array as symmetric as possible. The size and station
spacing of the array should, of course, be as large as
possible but must be limited by the spectral character
of the noise, the degrec of correlation between signals
a£ widely spaced stations, and the validity of the plane
wave épproximation. A large number of stations may be
necesséry for enhanceﬁent of weak signals in the presence
of strong random noise but if the signal to noise ratio
is adequate and the errors are due to terrestrial inho-
mogeneities it is p:obably better to use several adjacent
arrays with & modest number of detectors (5 to~9) instead

of a single array with many detectors.

1o,

4
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CHAPTER 2

TELESEISMIC SLOWNESS AND AZIMUTH MEASUREMENTS:

THE 1974 VARIABLE APERTURE SEISMIC ARRAY

v

Introduction ‘ ' h ¢

Médium and large apertufe seismic arrays have been
widely used in past for thefdetermination of the,appareht
Sléwness and azimuth of\yArious’Feleseismic'phases. In
this chapter a study of the slowness and azimuth of P
phases, for which the rays bdttbm in'theclower haﬁtle,
as recorded by the 1974 Varigblé'Aperture Séismic Ar:ay}
EVASA), will 'be préSented. Usually results are,éomparéd
to Qalues predicted by some standard earth model such‘as
that given by Jeffréys énd Bullen.‘ ThevJeffre&s—Buiféh
veiogity depfh profile is épheriqally symmetricbanins
consistent with an earth that is Chemically hoﬁogeneous
within the.lower mantle. A departure of the velociﬁy
gradient at a given‘depth from tha; given by'the ‘
Jeffreys4Bullen hqdel-poihts to an 'inhomogenéity' in
the lqwer_mantle} 'Changes in the fay parameter,-py'as
a functipn of distance are extremély éenéit;ve to
anomalou; velocity gradients. On thé otherfhand, a
'1afge change in veiocit? gradieht'whicﬁhcorresponds’to
é éﬁe@l change in‘veloéity has ver%E;ittle'effect on

" the ébsefved travel»time,betweenwabout 30 and 100 degrees

gyepicentral distance. Thus array measurements of p=dT/dA

~

- 42
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for the P phase anaextremely important In early studles
[}

it was assumed that departures of the veloc1t1es w1th1n

)

the 1lower mantle from the Jeffreys Bullen model were'r

e’
radial in nature. Thus, initially it .was assumed that

_the azimuth of the incoming plane wave was the great

" A ' : 5 . .
circle azimuth between the array and the location of the
seismic event as given by\the world—wide seismic network

determination; calculatlons of o) were made w1th thlS

'azimuthal'constralnt. In later studies Gopalakrlshnan

. - \
(1969) forﬁexample, calculatlons of'both slowness and

azimuth were made but only ‘information about the ray
parameter p was retained;,any event for which the cal=
eulated'azimuth deviated from the. expected grea;/Circle

azimuth by more;than_about 4 degrees was discarded on

the basis that the'measurement was grossly in:error.

Stlll later 1t was thought that the lower mantle could
possibly be laterally as well as radlally homogeneous. ¢
Thus both slowness and a21muth 1n£ormatlon were*retalned.
Dav1es and Shepgprd (1972), for example, plotted slowness '
and a21muthal dev1atlons on the 'array dlagram' Thusk N

- <

both slowness and azimuth measurements‘are important.

vIn accordance with thls, results from VASA 1974 will

be’ presented in the standard A(p) plane and in the slow—

,ness—821muth 'array dlagram'. Also in view of the

importance, of the fuﬁction t({p) (Bessonova et al (1974)

and%@essonova et al (19%76)). in crustal, upper mantle, and




o

lower mantle studies, results will also be presehted in
the 7(p) plane. Before these results- are presented,

details of the 1974 variable aperture éeismic'array, the
, : L ‘ R
method of data acquisition and reduction; and the

© -

'COVESPA' process (used to.détermine'slowness and azimuth)

willbbe given.

The 1974 Variable Aperture Seismic Array
The portable i974 VASA consists.oflfhe six most .
southerlyiétationé shéwn in figure 2.1. Notice‘that this
arrangement Of.stétioﬁé is highly symmetfical, an ‘impor-
tant feature in view of the resuits'ofv¢hapte: 1. 1In
‘order to increase its cépacity; the étr#y‘was extended
rtocincluAe'thé pérmanent station‘EDM; Forrthe purpose
of calculating dT/dA and azimuth dfvtéleséismic PDWaves,
this extended artéy was divided into two sub-arrays,
 VASAl and VASA2. The sub-array, VASAl,/cohsisté of the
stati‘ons EAT, FCR, HAN,‘ MAP, SES, aﬁd VUL, and. >VA.SA2
consists of the stations EAT, HAN, SES, vuﬁ, and EDM.
Thus,ﬁhe arrafs’VASAl and VASAZ2Z -are large aperture type
seigmic érrayé and are therefore capable of yielding
gstable estimates of dT/dAdand az}muth.. For_reférenée,
 the iocations.and elevét;ons of the stations are ggven

~in Table 2.1.



Figuré 2.1

Array iocatiohvmap. The 1974 Variable Aperture
Seismic Array, VASA, consists of>£he'six most southerly
stétioQS Eatonia (EAT), Foremqs£ (FOR), Hanna (HAN),
Mape Creek (MAP), Suffield (SES), and Vulcan (VUL).
The permanent stétion Edmonton>(EDM) augments_fhe 1974

VASA.
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Table 2.1

1974 VASA Station Loc&tions

Code e ' ¢ _Elevation

~ Station " Name Latitude Longtitude = (km)
- Eatonia, "~ EAT s1e 11.110 109° 18.93'  0.70
“Saskatchewan S ‘ : :
Foremost, Alberta FOR 49° 15.34" i11° 30.33'  0.97
Hanna, Alberta HAN ~ 51° 27.05' 112° 3.73'  0.93
'Maple Creek, MAP  49°47.73' 109° 20.52'  0.95
Saskatchewan L _ . - '
suffielg, Alberta SES  50° 23.75' 111° 2.50' 0.77
~ Vulcan, Alberta VUL  50° 22.03' 113° 21.82' 1.07
Edmonton, Alberta EDM  53° 13.37' 113° 20.90'  0.73

ﬁ;ch:sﬁation'consists‘of”thrée Willmore-Mark II
seismonéters ?one Qesﬁ};g&\and two horlzontal measurlng
”Vnorth—south and east-west motlon), a WWVB receiver,
amplifiers, a. multlplexer, and an analog to dlgltal
Aconverter. Kanasew1ch et al (1974) discuss the essen-
‘tial features of the trlpartlte digital recordlng galn
ranging system. "The response of the amplifier and a
Willmore Mark II seismometer is shown in figure 2.2.
The desirable feature Bf‘the-reéponée_is thafhit is
flat'overvthé frequencyirahge of teleéeiSmié P waves
‘.(about 0.7 to 1.8 Hz). ' > | |
Thé_procedure‘for editing raw seismic data recorded.

by the portable field system has become routine at the



Figure 2.2
- ® Amplifier gain of the;tripartitevsystem and
bthé combined'response of the amplifier and a Wilmore -

- Mark II seismometer.
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University of Alberta. Data selected from the 7-track
magnetic field tap s are transferred to 9-track tape

by means of‘a PDP. 1 computer. In general the’sampling
rate is,.variable~ ut data used in this experiment Qere_
sampled at 12, 5 samples/sec per channel (except for'a
few at SES which Lere sampled at GT samples/sec per
channel). Information’ from each seismic event, for each
statiod; is.contadned in two files on final master tapes.
The first file contains the statistics of the event;

that is the'location of the epicenter, the magnitude;
'the focai depth, the origin time, the distance and

' azimuth from the statioh,pthe.Jeffreys-Bullen arri;al
time of the P phase at the_statioﬁ;,and the;ellipticity
andielevation corrections. The second file'oontaias the
seismic data - the Jertical radial 'and.tramZverse
7traces and the WWVB 51gna1 (radlal and transverse traces
- are obtalned assumxng a great 01rcle path from the epi-
center»to the statlon). ~All four channels are stored in {~'

\__.

(four b te) 1nteger format w1th the data flle composed

of 1ocks of 8192 bytes. With a sampllng rate of 12.5:
samples/sec per channel thls means that there ‘are .
':approxlmately 163 84 sec%pds of seismic, informatlon

per block. The data on the final master tapes is
dwritten 1n cycllcal fashion w1th respect to the channels-

'thus the f;rstlfour.words_are the first entries pf the

vertical,-radial and transverse traces and the WWVB
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signal respectively, with the fifth word being the
second entry of the wvertical chaﬁnel. For a sampling
rate of012.5 samples/sec pér'chanpel, there ié‘a time
shift between éuccessive chanhels of»20‘miliiséconds‘
on the originél fieldvtapes. 65 the final mastef tapes
the first three cﬁannéls*are time shifted, by meané of.
a‘simﬁle linear interpolation‘scheﬁe, so that all three .
are qynchronoué*with the WWQB,channel. Accuréte time
resolﬁtion_is aécomplishéd by crsss'correlating tﬂe
actual WWVB sign§1 ;ith a synthetic WWVB time signal in
binary pulse code‘fb;mat’96»sec long. A visual deter-
mination of the actual WWVB signal ensurés that both
signals contain the same mipute m;rk, Thebmaximum

q- .

éross—correlation thén7corresponds té the cbincidence
of.the two minute mﬁrks~and the fraction of the sémpling,
inferﬁal (80 ms) for‘Whicﬁ the ﬁagihum occurs is deter-
mined by a three point fif,to the correlation values;
It has beén_pointed:odt by Gutowski (1974) that for good
signai:tb noise characteristics the preéision of such a
'time determin&tion is to within'l/4 of 2 sampling‘ihter—
val which is 20.ms for a sampling rate of 12.5'§amples/sec
per Ehannel. Verificatioh’of this‘result has been per-‘
fofmed by’decoding sépar;ted portiéns of tpe acﬁuél_WWVB
-_sign&l.d Wi£h aceurate timing aveilable the master tapes
Zjaime eorrespondihg to

have beén‘arranged such that th

the beginnifig of thé first block is two minutes before
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the JB arriVal time of the P phase. Data on the nmaster
tapes are written with‘all stations recording an event
following one another. Evehts are arranged chronoloe
gically according to their time of occurrence. . For
this‘experiment the data from the station’ EDM required

special handling. The EDM data is transmitted via a

y-data link to the seismic laboratory at the University

!
of Alberta with a sampling rate of 18 samples/sec per

v'channel. The EDM data . has been modlfled so that it is

present on the master tapes in the standard form As

-in past (Gutowskl (1974)) the organizational scheme

described above has proved to be convenient for the study
of teleseismic P‘phases. Also, it is exsected that such
an arrangemeht'will'prove useful for future}seismic
studies.

1

Velocity Spectral Analysis -and the Covespa Process

Velocity filtering techniques have been widely
used for,the,determinatien of the apparent velocities
of wavefronts which traverse selsmlc -arrays. The deSLgn

of many veloc1ty filters is based upon the assumptlons

‘that the frequency spectra of . 51gna1 and noise are dis-

joint or that the noise, unlike. the 51gnal is incoherent
across the array. An exhaustive treatment of the time
delay - summation process_(Stacki g) and cross correla-

tion techniques, in conjhnetion' ith pbne and two
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p—

dimensional-érrayé, is giyeﬁ by Birtill and Whiteway
(15%5). In the o0il industry, the examination of contour
plots of cross correlation values or ,'coherency' in the
app&fent velocity-time plane has long Been standa;d
practise for the purposes of thevidentification of
primary and multiple reflections and the determination

of interval velocities (Schneider and Backus (1968) and
"-‘?

.Taner and Koehler (1969), for example). Davies et al

(1971) used the summation process to determine the
velocity spectra, 'Vespa', of.teleseismic wayefronts
traveréing LASA; the azimuth of the\wavéfronts.was
assumed to be that given by the great circle path between

the event and the array and results were_illustrated by

the-'Vespagram'. Later, Doornbos and Husebye (1972) used

the method of Davies et al (1971) and crossﬂcorrelation

tethniques in order to study the apparent velocity of

- core phases. Wiechert et al (1967) determined the velo-

city and azimuth of teleseismic waves arriving ‘at the

. Yellowknifé seismic arréy by examining the‘squaz = umma -

tibn of traces.‘ A comple;e treatment of VelociLJ trlter—
ing in generai‘is giQen by Kanasewich (1975). |

The 'Covespa' technique (éutowski (1974)) is an
extreme1y~powerful.spectral‘ﬁethpd,for determining slow-
ness ané-azimuth and has been employed in thig stﬁdy.

For a giveh azimuth, 6, slowness, p; and time, t, the
Ve , , \

'coherency? éc, is giVen by,



N

f. (6,p) - (6,p)
i, t i+k,t .
CC(e,P,t)- —T—l—)"j‘f 2 2 2 L > ’". % T (2.1)
i {{ £i,t g ik, t

L

where M is the number of sensors, k is an incremental
integer on channel i (i # k), T is the length‘of the
time.window’(l second for this study), and fi,t is the
émplitude of the‘ith channel at time t. The traces from
the M sensors are shifted in time by the amounts deter-
mined by. the barticular choices of p aﬁh 8. For each
time along the records thé zero lag cros's correlations
of all combinations of two stations are~compﬁted, nor-
malized to unity and summed. Thus CC = 1 é}.é'given
time, slowness, and azimuth if the phasesrand waveforms
of the~signal within the windoQ are the same at ali'
sensors. For this study the Covespa technique has been
applled to the vert1ca1 traces w1th a time window. of 1
second. I | =<

A contour plot of éoherencyfin the slowness-time

plane jis known as a 'Covespagram'. The,range”of'accep—

2 .
"

tab}g coherencies is-.set at 0.5 £ CC . 1.0 to ensure
meaningful interpretation of Covespagrams. Gutowski
'(1974) has shown that the.Covespagram pattern- remains

stable upon varlatlon of relative amplltudes of wave—

forms across an array and that an increase in wave. tra;n

,»

duration merely-results in an extended Covespa_pattern.

wo.



An example of the r\esolvinq capacity ot the Covespa
process when appli(t_é ﬁo coherent signals embedded in
'random' noise is here shown in fiqures 2.3 and 2.4
for signal to'noise amplitude ratios of 4:1 and 1:1
respectively. The signals are six synthetic two cycle
duration sinusoidal phases of frequency 0.75% Hz
traversing the VASAl array with slowness of 5.0, 4.8,
4.6, 4.4, 4.2, and 4.0 sec/deg at an azimuth of 140
degrees. In order of decreasing slowness the phases
arrive at Eatonia at 5, 15, 25, 35, 45, and 55 seconds.
Each of figures 2.3 and 2.4 shows the input signal at
'Eatonia and thé si;ple stack or 'beam' for a sldcness
of 4.6 sec/deg beneath the Covespagram. The random noise
was Synthesized by generating a ‘'random’ pulse of the

form Ae %t

cos wt where A and w‘are random Gaussian
variables .and*a> 0 is a fixed decay‘ggnstant, at each
digital point. The resultant noise was taken to be the
sum of such random pulses. The Covespa patterns in
figures 2.3 and 2.4 consist of contours of isolated
'hil}s'; the contour value at the base of each hill

is 0:5 and the contour interval is 0.1. From figures
2.3 and 2.4, we see that the Covespa process has
sﬁccessfully extracted the sigﬁals}gt the requiréd
slownesses and times; the 'brightnéss' of the phases

in the Covespagr&ms diminishes as the signal to noise

ratio decreases. The superiority of Covespa as a



" ‘ : : ‘ .
o

%

Figure 2.3

Covespagram for six Synthetic éQents traversing
the 1974 VASA.  Signal-to noise amplitude ratio is
4:1. The verti .l trace immediately below the Coves-
paéram is the syntﬁetic‘seismogram at‘Eatonia; The
. coherent pulées at 5.0, 15.0, 25.0,.35.0, 45.0,_;nd
’55.0 sec crossvthe'ar?;yuat'slowness values of 5.0,
4.8, 4.6, 4.4, 4;5,.and 4.0 sec/deg réspe¢tive1y as
can be seen from the Covespagram. . Below the Eatonia
seismogram'the Fbegm' of resultant, trace from all six

-

stationé stacked at p = 4.6 sec/deg 1s shown.



8.2

D (SEC/DEG)

6.2

4.2

| 7|

B 2
Ty

57



v Covespaétam for six syntﬁetic eVents traversing
the 1974>VASA Signal to noise'ampiitude ratio i 1:1.
The vertical trace below the CovespagraM“is the,.
'synthetlc selsmogram at Eatonla.‘ The cohegent pulses
at 5 o, 15 0 25.0, 35.0; 45.0, and 55;0 gééonde.cross
the: array at slewness values of S.O 4.é,'4 6, '4 4, 4.2,
and 4.0 sec/deg respectlvely.» Below the Eatonla seismo-
-gram the 'beam or resultant trace frbmiall 51x statlons

stacked at p = 4.6 sec/deg is shownu
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’resolving_tbbl over simple stacking is clearly illustrateé‘
in-ﬁheée“two diagrams; sole examinatidn‘of ﬁhe 'beam' in
these figures would lead one to the incorreét conclusion
that,phere is consideragie energy an;iving at a slaness
ofwé;s éec/dég at fimes other than the‘trué timevqf>25
seconds. The Covespagrams in figures_2.3 and 2.4 ﬁévév )
been calculated sassuming the true azimuth df the'inéominé
.Synthetic Qaves. Calculations assumiﬁgjéther azimuths
‘;eveal that coherency valﬁes, for a signal to noise ratio
of 4:1 for exémple, arop from above 0.9 to below o.é‘
for'the‘coherent sighals when the azimuth deviates from
vthevtrue ézimuth by 2 degrees. |

Figures 2.5; 2.% and 2.7 show the dbveébagréms
for three évents recorded by the 1974 VASA; the'vertical
gtracésAof various stations'have.been.uéed as input to
the'goyespa,pgoqess. The Covespagfam for a,Salta'Province,
‘Argentina eveﬁérifigure 2.5) expoSeé a P wave cod; of -
over 60 éecoﬁds duration;‘simiian P Wavé coda Covespa
patterﬁs,hdve_been‘observed by Gutqwski (1974};. The;
- extended péttefn can\Be interpreted as being tﬁe result
of a:finite time leﬁgth sourcé pﬁlse convolved wifh
source éh& receiver sﬁ;ucture. Figure 2.6 shows the-
Covegpagraﬁ from a Mongolian event as récofded at
‘Eatonia,‘Maple Créek;,and Suffield.- Notiée;thét‘the:
-bufst'at ébQuEFQ'éeconds on fhe verﬁicél‘ traée% is
prominent on all stations. 'The onsét4of'the7évent

however is only clear on the Suffield record at about



Figure_Z.S

'_CoveSpJgram for"SQIté Provihce, Afgentiﬁa eveﬁt
(A =l83?,‘foca1 d§pth = 13 km, and“magnitﬁde = 5.5)
és fecorded at stations:EAT, HAN, énd SES.  The vertiqal
motibn}seismogfams afe‘shown‘belowlthe-Govespagram.

&
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- Figure 2.6

Covespagram of event from Mbngolia (A = 83°, .
focal depth = 33 km, and mag":ude = 6.1) as recorded
at EAT, MAP, and SES. The vérﬁiéal‘mbtioh'séismograms'

are shown below the Covespagram.
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Figure 2.7

Covespagram of event from the‘Panama—Columbia
border (A = 51°, focal depth = 5 km, and magnitude =
5.4) as recorded at HAN, SES, and VUL. The vertical

e
motion seismograms are shown below the Covespagram.

Sae
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3 seconds. Nevertheless the Covespa technique does
'extraet the'oﬁset,as een be seen on the Covespagram.
Again the P ¢¢da Covespa pattern is extended. The
effect of a greatet period.pulse upon the Covespagram
can be seen in figure 2,7.for an event fromﬁthe Pangma-
Columhia border. The resulting Covespagram pattern
becomes more buibeus as'compared tgrtﬁebpatterns of
the previous examples. It is heped that these Covespa
examples thether with those of Gutowski (1974)'prove
useful to future 1nvest1gators employing the Covespa
technlque.'

g 3

The A(p),“Siowness—Az%muth4andix(p) Planes; Rezults from
1974 VAsa S

The 1974 vetsionﬂof VASANrecotded teleseismic
‘events (ep}centraiqéistence range of 30°< A < 100°)
duriug June, July, and August 1974 -The individual
statlons were operatlve durlng various overlapplng periods /ilm
w1th1n these three months. Fo:ty—seven measurements of
~dT/dA and a21muth for the P'éhase were made using various
elements of the VASAi suba:ray. The various stetions of
'the VASA?2 subertay yielded‘sixty—eight measurements of
dT/dA and ééimuth fé? the P phase. Earth ellipticity
- and s-atlon elevatlon effects have been removed Figute
2.8 shows the eplcenters Sf events for whlch VASA.

"observatlons_of dT/dA,and a21muth were made; almost all
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Figure 2.8

' The earthquakes for which VASA2 observatiohs
of dT/dA and azimuth were made. The equidistant-
azimuthal projection is centered at Hanna. The dashed

circles are separated by 30° epicentral distance.
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of the epicenters for VASAl observations are included

on this‘figﬁre.' The  results will be displa?ed here in

the A(p), slowness-azimuth and'v(p) planes. In all

A_céses the observatiqns will be compared to predictions
based ﬁpon the assumption that the earth's lower mantlg

is spherically symmetrical with a velocity depth profile.

given by the Jeffreys-Bullen standard model.

g The A(p) plane

.The A (p) plahe is of'utmdst importance in inves-

tigations of the earth's lower mantle velocity structure.

1

Depth, ranges in theflower mantle for which velocity
increases moderately and- smoothly with depth' are asso-

ciated with corresponding p ranges for which A increases

smodthlyuyith decrease 'in p. Rapid increases in velocity

result in’triplicationsjin the A(p) plane and low velocity

‘zones with' suffic¢ient magnitude are reflected by excur-

sions of the A(p) curve for which A+ « if the velocity

reversal is smooth and for which A _exhibits a finite

jump_increase'if the velocity reversal is sharp. Now

the Jeffreys-Bullen vélgcity model is such that velocity

- increases moderately and smoothiy throughout the 'entire

lower mantle; it is consistent with a chemically homo-
geneouéAlower mantle. Departures in the lower mantle

velocity profile from that éiyen by Jeffreys and Bullen

will have'assogiatédvA(p) départures: the relationship

“

.
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bethen k(p) ana V(z) kGerver and Markushevitch (1967))
will then permit a refinement of the velocity-depth
profile., This refinement in turn results in increased
resolntion ef the lower mantle density, pressure, and
é;temperature profiles via equationS‘of state such as(the
Adams-Williamson relation. These considerations have
been of prlme*importance ln many studies. 'Tne following
studies_haye revealed anomalous conditions in the lower
mantle; in all cases the 'anomalies' are manifested by
the presence of large velocity‘gradients or aiscontinui—
ties at wvarious depths within the lower mantle. Tnev .
large gradients are associated’with ‘offsets’ of tﬁe-'
.A(p) curve }rapidpdecreases in p over small iy rangei}’ vgﬂ. LY
at various epicentral distances. | | ‘
, . Gutenberg (l958) suggested‘regiOns of depth
900-1000 km and 1400-1500'km as being anomaleus from
amplrtude studies. On measurlng P and SH amplltude
'ratios, Vvedenskaya and Balakina: (1959) concluded that

there were anomalies at A = '38-42°, 51=53°, and 70°.

Bugayevskii (1964) pointed to discontinuities in the ,

travel tlme dlsg?nnevcurve af”% 36°—37°, 51°—53° and 3

- ,\N‘

70°-73°, Carder (1964) repbrted that the travel ~time

distance curve could be represented as eight’ near

stralght line segments for the'dlstance range 3°< A<102°,

He states that the resultant lower mantle step model,

[

w1th some modlflcatlon and smoothlng,_would represent

¢ B
N7

v
w
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.

lconditions in theAlower mantle mdrehg}bselyrthan’the_
smooth Bullen model; ‘Similarly Kanamori (1967) fitted.
the travel-time distance with three straight lineés

for the digtahce range.59<'A < 55°, _His.veloéity mode 1
hashrapid velocity inereasesvatzdepths»Of about 150 Km
and ',37-5 km. 'Chihrlxery and ‘_'I‘elbcvso.z_ (1967) studied the
A(p}‘curve infthe distance rahge 27° <« A‘< 90°>using‘
data from Lasa and notlced offsets. in the A (p) curve .
at&A = 35°, 53° - and 70°>wh1ch could be correlated with
veioeitY‘discontinuities at‘depths ef about 800, 1300,
and 2000 kﬁ. Lasa'reeerdings'of A(p) revealed anoma-
Lously high/velocityvgradients at depths.of about‘700,
120Q,'and 1900 km (A = 35°, 52°, and_70°i'in the‘study N
of Toksbz et al (1967);'Rayleigh and Love QaVé disper—ﬁ.
sion curves ylelded shear wave veloc1ty proflles with
dlscontlnultles at 350 and 700 km.h Hales et al (1968),_
on the other. hand, upoh‘ana1y21ng traVei t&mes to’ North'
American stations for 20° < A <96° conciudeithat there
is a dlscontlnulty in the travel tlme curve at o 245
and that there are no other major dlscontanLtles up tou
A = 96°, Gopalakrlshan (1969) used A(p) data for"f
25% ‘A < 959 froh the Caurlbldancer (Unlted Klngdom
type)‘Seismic Array‘and'eomparedfhls results wlth the’:
'Jeffreysésulleh_model; he found that hls.vgleclty.medel‘
variedemore‘sieuly around ZE=~75Q,km (AV#VBO?}vand more»

tabidlyvarouhd Z'=_1200'km (6 =49°).. Using measured p.-

~



A -(1972),

o

values from 400 -events recorded at Lasa, Chinnery (1969)

.found,regions‘of anomalous,velooityxohange near 700,

" 1150, and 2000 - km deoth assoolated-uith‘anomalous[por—

tions~inlthe A(p)vﬁor‘A:=:32p—37°, A = 46§;48°’vand
=7659—75°.. Onithe‘basis’offspectral"amplitudes_andf

wtrayel times Archambeau et al. (1969) found ‘that p phases

' ar 1v1ng at Western contlnental U,S. stati0n5~were‘.:f

'affected by high veloc1ty gradlents at depths of 150,

'400; 650 ‘and posgibly 1000 ‘km. ‘The analy51s of Johnson

(1969), Qho used the TontoKForest array, revealed.
anomalous A(p) at 34 59" 40 52, 49.5°, S9'5°'d7d;5°,'and
;81 5°tcorrespond1ng to 1ncreased veloc1ty gradlents near
';depths of 830 1000 1230, 1540 1910, and 2370 km.‘“
.erght (1970) us;ng the Warramunga array found reglons~'
"of ahomalously hlgh gradlents and also anomalously low
”gradlentvreglons,"Data §rom the four Unlted Klngdom :

L)

. type arraySQwere comb1n~

peraty

'5to anomalous dT/dA featu:/; ‘at 35 36° 48—49° '605;:
68—70°,'and 84= 85°.cor/e/ ndlng to possrble varlatlons

;ln P- waue veloiity gradlent near depths of 850 900 1200

51ng statlons of Wesson Observatory, notlced

'

'1550 iv 1900 and 2500 ki respectlvely., Wu and: Allen
/ ,

dlscontlnultles 1n the A(p) curve at 52° 62° 'and~78°
‘but they stated that 1t would be dlfflcult to conclude
‘:that these features were. related to anomalous veloc1ty
“.gradlents at’ the deepest portlons of the ray paths.

/

.

; Corblshley (1970) who p01nted ..

2

/3



Measurements of dT/dA.from the Warramunga array = -
(Wright and Cleary (1972)) revealed fairly low

gradients at depths of 800 to 850 km, 1070 to 1110 km,

. 1250 to 1330 km, 1750 to 1850 km, and 2460 to 2600 km;

high.velocityrgradients were found at‘depths of 1160

to 1220 km, 2180 to 2370 km, and possibly 2700-2750 km.

: Vinnik et al (1972) studled daT/da measurements at;

la‘

' several arrays in the U.S.S.R. and found layers of high

».anomalous varlatlons at depths of 75% LSOO, 1800» 2300

reveals no flne structure in: the mantle below about

:perturbatlons of the A(p) éurve. Also these perturba—f

'.P.wave,Velocity gradient.near depths'of 900, 1300, 1700,

*-‘2000 and 2500 km. Hales and Herrin (1972) summarizedh
v”the results of Chlnnery (1959),_Kanamor1 (1967), Johnson'
K1969), and Corblshley (1970) and empha51zed the features

"whlch these studles have ln common.‘ wlgglns et al (1973)

used the A {(p) data of Johnson (1967 13@3) and. WOlfe

(196&) in conjunctlon w1th an. extremal type Herglotz—

o # '
wie”ft 1nver51on, thelr resultlng veloc:Lty envelope :

a

600. km depth . Kulhének an& Brown (l974) 1nferred from ‘hv . s

/-
'.UPSAS array data that the ve1001ty dlstributlon shows

and 2500 KMo e I

Thus there 1s much ev1dence that the P wave

f-ve1001ty proflle of the lower Mantle does dev1ate;"

_sllghtly from,the Smooth Jeffreys—Bullen model Assoi‘

c1ated w1th these small veloc1by excursxons are anomalous

"tlons are of a. global nature 51nce they have been reported )



by various authors'usingxdlfferent'arrays on the surface
~of the’'earth. Figure 2. 9'shows the A(p) results from -
zthe,1974 VASAFF With event 1ocatlons ‘given by the PDE
llistings of the USGGS, all-observatlonS'have been -
adjustedvto a surface focus u51ng the P wave veloclty

model of Haddon and Bullen (1969), 1t is felt that thelr

model is 1deal for the" purpose of focal depth correctlons‘

-since it is based upon free osc111at10n data and as such
‘represents a global average The dlstance coordlnate of
each p01nt has been taken to be the dlstance from the

equlvalent surface focus ‘to hhe center - of the comb1na~

tlon of statlons used for the calculatlon.t The emplrlcal;

3

V’,.

solld curve is. based upon numerlcal dlfferentla ipn_%ﬁib
) ‘ ; ’

- -

' focus, a cublc spllne flt was made to a flve

L4

[average smootﬂka verslon of

subroutlne 'ICSICE' whlch 15“*? b 1e 1n-the Interna-
4L;brar1es . In

e . 2;9 the small and " 1arg% s‘mbols correspond to

h}fi:
| fand VASAl subarray observatlons respectively and
'lthe varlous symbols denote event a21muthal groups asv
'Flndlcated by the le‘end._ Note that SLmQCﬁineous calgu—
h,latlons of slowness and a21muth were mads and that the,p
nobserved slowness 1s plotted 1n fkgure 2 9 even 1f the-
measured a21muth may'dlffer from the expected valuefl

“fnevertheless“such a A(p) plot should reveal v adlal"

/

.;m



Figure 2.9 : <
» R
The 1974 VASA A(p) observations. The different

symbdls define 4 azimuthal groups; larger and smaller'

symbols refer to VASAl and VASAZ observatlons respec—

'”tlvely. All results have been reduced to surface'

dfocus~ the solid curve 1s emplrlcal and based upon

' numerlcal dlfferentlatlon of the Jeffreys -Bullen travel—

time : tables. § BT
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velocity anomalies if they exist, Notice that ﬂhere is
no particular A(p) signature characteristic of events
from any azimuthal group or of determinations from
either.subarray. |

Now it is interesting to compare the 1974 VASA
observations with the J-B curve and also with results
reported by the various guthors mentioned above.. In

particular let us focus our attention upon the major

'A(p) studies (those for thCh there were many observa-

tions over the entire’teleseismic range of 30°< A < 100°) .

These are the studies of Johnson (1969), Chinnery (1970),
Wright (1970), and Corbishley (1970), which collectively
cover a global dlatrlbutlon of observations in view of

the various a;;gstused. These studles have exposed

N HE T ‘,j«;}'.

.angmalously high Velcc;;y,gradlents at various depths

" and associated gffsets in the A(p) at various epicentral
. % "(‘ ) N ]

distances; the(;eeults are summarized in Table 2.2. The

most prominent affsets (those reported by ghe most

authors) occuf at distances of about A =49°, A‘: 60°
_and A = 70° and corre§pond to high ve1001ty gradients
'near depths of about, 200 km, - 1550 km, .and 1900 km.

Now the 1mportant g Estlon is - do the 1974 VASA A (p)
observatlons exhibit offsets at the-distances agreed
upon by most of the authors Clted in }able 2.2. (namely
at 4 = 49°, 60°, and 70°) and if not,jﬁhy° Firstl;,
flgure 2 9 reveals anOmalously low p values (as compared

-' S
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to the J-B curve) between about 46° and 55° and a sharp
decrea;e,in p values near about 50°. These features
are similar to those associated with the 49° offset
described by Johnsén (1969), Chinnery (1970), Wright
(1976), and Corbishley (1970).. Hence, anomalously high
velocity gradients near about 1200 km depth‘have possibly
been detected by the 1974 VASA. Secondly, no statemengt
can be made regarding possible anomalous conditions near
1550 km depth in v%ew of the absence of data points
bbetween 60° and 68°. Thirdly,, it is inviting to associate
the low p values in the disﬁance range of about 72°< A < 76°
with a p offset near 7b° caused by anomaiously high
'Velocity gradientsjnear 1960 km depth but the low density 2

. ‘
'of observations in this distance range renders conclusions

based,upon tﬁe correlatién rather weak.
\WThe 1974 VASA A?;)Bpginté describe a region of
anoméloﬁslyilow p values in the distance range. of about
85% < A < 99° where'ﬁbserved slownes: 3 are as low as
4.1 seg/d‘ég. The J“iB curve tapers off to a'f ’
about 4.4 sec/deé beyond 90° and 9§servations of the
four au£hors mentioned ébove7are in‘accordance with the
J-B model. Thus if the anor.r;alously low pb-‘va_luesbobserved o l
hefe in fact refiect anomélods velocity changes ﬁear»the
maximum depth of penetfaﬁf n.éf the assoéiated rays

(from a depth of about'26 0 km to the core-mantle

e



boundary) then the anomalous velocities are certainly
not a global.phenomehon. Slowness.values below 4.4
sec/deg have also been ob:srved by Kanasewich et al
(1973) for rays which have their turning points in the
vicinity of the core under Hawaii,by Hales et al (1968),
and also by Davies and Sheppard (1972). The low p
" values observed here are associéted wi£ﬁ rays that
bottom neér the core under Hawail and.also near the
core under other locétions in the Pacific Ocean (these
iocatiéns wili be shown in!the next section). The iow
p values for A > 85° could be produced by anomalously
high velocities near the;core‘mantle boundary; the
.incréase in velocity needed to accéunt for the A(p)
observations,depends upon‘the)iateral extent of the
anomaly (Green (1975)). I£ shquld be pointed out how-
ever that both Kanasewich and Gutowski (1975) and Green
(19755 report that low p values for 4 > 85° asséciated
with near core rd&s arriving at suéh arrays as VASA and
LASA from ﬁhe west could be producéd by anomalous Rocky
Mountain upper mantlé velbcity distributions. Note
also that Johnson (1969) has pointed out that the
efféct of ﬁhe cofe shéuid be considered when measure—‘
ments of dT/d4 are made for the P phase foé A >90°.
This core effect only becomes significant wher® the
difference between arrival éimes of the P and‘PcP phases

-is small compared.to‘the period of%;he P phaséfenexgyh
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The obscerved period of the i‘)'14 VASA events for the
distance: ’ranqe in question is about 1 sec¢ and the .I—e}&
travel-time tables predict P—PCP travel-time differences
greater than 0.8 sec for distances as great ag 94°;
hence few points will be effected by the core. Also
since the core correction when applied to the data of
Johnson (1969) never exceedgd about 0.08 sec/deg, it is

felt that such a core correction would not significantly

alter the 1974 VASA A(p) observations.

A final guestion regarding the‘fou; major A(p)
studies cited and the A(p) observations.presented here
remains. Although there is some agreement as to the i
location and nature of anomalies in the A(p) plane, why
is there not total agreement? The answer to this ques-—
tion isbmﬁltifold. Thé‘entire teleséismic‘distance range
is not well sampledb— the dénsity'of observations as a
fuﬁction of vpicent;al distance variés from study. to study.
The degree of scatter of A(p) points about some average
line is no£ the same for all studies and it ig expected
that purely radial velocity énémalies woﬁld be defined better
by a{p) data sets with small scatter. Tﬁe final and
most important reason for the.digparity is that a
spheriéaily symﬁetric velocity distributidn is‘not'an
adequate deseriétion of gctqal‘conditions_within the
_earth's mantie.. Thus the results from eéch stud?‘are‘

applicable to distinct regions within the earth defined



by the paths of rays bt ween ovent cepicenters and the
array uscd and are not nedessar i ly indicative of global
conditions. I"urthnrm()r.u ray; may suffer lateral dis-
placements due to anomalous lateral v<\l<>("ity gradients
in th;z course of their journey from source to receiver.
In accordance later array st;udi'Q:‘r; é)F the 1970's
B ) )
included measurements of azimuth as well as slowness.
The following section high{ighﬁSvthC major results of
these studies and includes a presentation and interpre-
tation of the 1974’VASA observations in the slowness-—
azimut%-p}pne. Still it is hoped that the radial velocity
anomalies revealed by the A(p) analyses mentioned arce not
C .
viewed with extreme pessimism since they have been reported
by many’autﬁdrs who collectively havg studied a large

portion of the earth. -

The Slowness-Azimuth Plane

Figures 2.10 and 2.11 show the slowness-azimuth
results for the 1974 VASAl and VASAZ2 subarrays respec-
tively. 1In these figures there is‘one arrow for each
seismic event with the tail of each arrow repreéenting
. the slowness and azimuth predicted by the J-B tables
for a ray origigating at the‘USCGs location and arriv-
ing at Suffield (for the VASPL observations) and Hanna
(for;the VASA2'observa£ions). The head of .each arrow

represents the observed slowness and azimuth. The

i



Figd%e-z.lo.

Slowness a21muth array dlagram' for the 1974

AHVASAl observatlons. The S&lld c1rcles represent A
. A ‘
o constant slowness values as 1nd1cated The 1nner
S ©/ \

dashed c1rq1é fepresents the\lowest p0551b1e J B

] ”slowness for the P phase (4 M sec/deg) Each arrow

' represents one selsmlc event w1th the tall and head

Abelng at the expected and observed locatlons respec—

vflytlvelyv The pro;ect;on is centered at_the,Suffleld.

: e -3
vstatlon. ‘ . . :

~
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Rigure 2.11

;~Sioﬁhe55ea21ﬁuth:‘array diagram}'fdrzﬁhé 19i4 VASAZ2
,obaervatiogs; lThé¥SOiid’éiéclés_repreéent‘cthtapt s low~
ness Valués‘as indicéted. _Thé'iﬁhef dashed cifcié
'reéfesents khezioweé£ possible J-B slownéss fér the P

" phase (4.4 sec/deg). 'Each'a:wa repreéents ohe~seishi¢'
Lévéﬁt-w;ph the tail and head being at the ekpected and
~observed locations respectivély. 'The p}ojéctibn is
:.éehte:ed at the ﬁan;é gtation.; - ‘

-
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: v A .
Jength of the arrows are quite suostantial (the average

A_length‘for the~VASAl subarray is‘about’0;3l seo/deg;
and hence .the immediate problem which arises is the'
identifiCation ofpsouroes of the mislocatéons. The ‘
path 'of a P ray may be pertarbed,by adnomalous velocity
eonditions near the source, the aeepest portions of‘the
ray patp;-and'near thefcrustal and upper mantle region
beneath,the array. Generally it is accepted tnat the
_so rie region nstthe-least likely cause of ‘slowness and
azimnthAperturbations-sinee-thevcone‘of rays which crosses
_an array, when ﬂraced back‘to a teleseismic source, is
very. narrow.,/Note however that sou;jf\effects ‘cannot be
entlrely ruled out  (Davies .and Sheppard (1972), for

egample). Past-lnvestlgatlons oﬁ similar data "have led .

to divided opinions as‘to the location of'Velocity anoma=

S

‘lies whlch cause unexpected observed values of the vector
ray parameter p (recall from Chapter 1- that a slowness
1and azxmuth calculatlon is equlvalent to a measurementA
.of a 2 element vector ray parameter) ~ Authors who have .

' assoc1ated deep ahomaly sources’ with teleSeLsmic~p
deviations -recorded at parious,arrayslinclnde'Manohee
and Weiohert (1968) - Yellowknife array~(§KA),‘Davies
andlSheppard (l972) - LASA,‘weichert.(1972)'—.Y§A,
Kanasewich et al (1973)’; VASA, Powell (1975) —vHanfordk>
array,'and erght and Lyons (1975) - YKA On the-other

-hand, wvector ray parameter mlslocatlons have been . d

88



attributed mostly,to.lateral inhomogeneities in the crust

~

and upper mantle beneath arfays by Otsuka (1966a) - -

California array, Iyer (1971) - LASA, Naponen- (1974) -

Norsar, Hagfors, and He151nk1 arrays, Wright et al (1974)—

Warramunga array (WRA), Capon (1974) - LASA, Okal and .
Kuste:'(1975) ~-. Tahiti and Rangiroa arrays, and Berteussen
(1976) - NORSAR. Brown (1973) attributed p dislocations
shown by the Uppsala array to both recelver'and deeo
mantle effects. Also Engdahl and Feln§ (1971) and Aki

et al (1976) have ﬁttrlbuted anomalles in absolute travel
tlme of various bodv wave phases arr1v1ng at LASA fzsm
,teleselsmlc events’to lateral 1nhomogene1t1es ln.the
~crust and upper mantle under Montana. - Julian and Sengupta
(1973) and Sengupta and Toksoz (1976) studled body wave -
phase ‘times on a world-w1de basxs -and concluded that un-
expected results could be attrlbuted to 1ateral 1nhomo—‘
fgene1t1es w1thin the top SOQ km and also w1th1n a reglon
fextendlng from a depth of qbout 2600 km to the. core—
mantle ‘boundary. o ‘ - | Y

Thus from the above reSults it cah be seen that

cautlon should be exerc1sed in the 1nterprétat10n of
‘array' dlagrans such as those shown in flgures 2.10 and‘
,2311; There are featdres~other than the effects of

‘ velocxty structure whlch glve rlse to . unexpected values

v

of p._ Otsuka (1966) shows that the assumptlon of a

1

plane wavefront w1th constant veloc1ty introduces max1mum
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U
‘‘errors' in time of about 0.2 sec for the case of actual

teleseismic P phases‘impinéent upon a f; aperture array.
Similarly 1t can be shown that the above assumptlons
introduce an error §p such that I|6p|| 2 0.1 secpdeg
for this experiment. - Next it can be aasumed.tndﬁvthe
errors in ebicentral location given by the USCGS can,
be.ignored (eee Otsuka (1966) and Davie$ and Sheppafd
(1912) for example) Slmllarly tbq“‘!;gmptlon that the

Suffleld and Hanna 51tes ide g Ghe’”ﬁ)nter' of the.

-\~

® .
array for VASAl and VASA2 GDDQ! (ﬁ@m respectlvely 1ntro—

dUCes a negllglble»error. Also, as has been mentloned
earth elllpt1c1ty and elevatlon correctlons have been‘
applled. The Sampllng 1nterval of the vert1ca1 motion

is 80 ms and'it~ha§ been pointed.oththat a cross |
.cer:elation techniéne'provides time‘fesolu;ion~ofvabqut
20 ns. A generous estimate of the combined effects of
the finite sampling rate and tne Covespa process is about
0.03 sec/deg fo; the combinations of statiens used in
this study. The value 0.1 sec/deg»representé—a-makimuﬁ
“constant'velocity-plane»waye e:r@r‘and generally the o
erron"is-substantially less than'tﬁis; thQs C9nsidering
" the intrinsic ;iﬁe resolution and calculation factons,

it can be conelnded that a realistie estimate of errors ¢

due to'nen—structuralesources is ]|6p|l = 0.1 sec.

Now let Bp be the expected vector ray parameter,

-

obs

'gobs.thg obse:ved value, ana define GgobA by Gp

90
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Pe ~ Pobs* As can be seen from figures 2.10 and 2.11 =

the value ||6p | |- isvery often substantially greater

—obs

-

than 0.1 sec/deq; thus anomalous velocity structures

have affected the 1974 VASA observations)‘_in an-attempt
to.delineate the velocity deviations reSponsible for

the large values of Ildpobstl it is necessary to eonsi—
der the 90551b111ty of a 'determlnlstlc near receiver
effect. The effect .of dlpplng 1nterfacea under an array .
upon leWness and &zimuth calculations has been discussed

.

by Niazi (1966), Manchee and Weichert (1968), and Zengen1

i

(1970) . Ba51cally a displacement, which is

6Eqrust
approximately COnétant,~is introduced; thus all observa-

" tions of p would contain a common eomponent Gp ) ;;@a

"
serles of dlpplng 1nterfaces defined the crustal st

&

‘ture under_anvarray. In partlcular 1f there is only one

-

dipping interface, such as the Moho say, the vector

chrust is 31mply related to the strike and dlp of the

marker (Manchee and Welcnert (1968)). Accordingly Capon
(1974i has aVeraéed the individual orthogonal components
(North-South and East—west).of P observations recorded

at LASA to determine the gquantity Gpcruat; he then attri-
butes thls constant component to near receiver determlnls-
t1c structure and bases further 1nterpretat10ns of
veloc1ty anomalies .upon a new p-data set from which the

bias has been removed. Such a-cafculation shows that

”

chrust has magnitudes of 0.08'sec/deg'and 0.15 sec/deg

G
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for thé VASAl and VASAé observations respectively. If

a dipping Moho umMer VASA is responsible, then if the
avéraée.crust&l velocity is taken to be 6.5.km/sec and
the Mohd,velocity is;B km/sec the discontinuity has;aboht
1° and 2° of dip under-the VASAl and VASA2 gubarrays‘ '
resgpectively. ' In both cases the direction of dip is to
the north—east; It is felt however that ﬁhe 1974 VASA'E

1 ‘

data set does not constitute a sufficient azimuthal

‘sampling for such an analysis to be reliable and thus

the observed ‘'bias’ haS“ngs\been removed. Results are
given above to facilitate é3mp§rison with future studies.

It is reasonable to describe the lengths and direc-

tions of the arrows in figures 2.10 and 2.11 as being

random in nature (casual inspection will verify this).

For'each.event'deviations of the tgavel time, 6t,  at each

station from the expected value give rise to the finite ,

-length arrows. The departures in travel time are in turn

due to deviations,of the velocity distribution from the

_séahdérd spherjcally symmetrical J-B model. Now the

siowness and azimuth of each event were determined using

a particular combination of stations.  Tﬁus,-in'accdrdénce

with the results of Ghapter 1, for each p calculation
. - :'\; e

there.will be associated expected deviations prﬁﬁicﬁ

depend upon the si®e of the trével-time perturbations, ét,

and the combination of stations used. . Figure 2,12 illus-~

trates this relationship; the abscissavis.scaled such that. \
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_Figdre 2.12

Diagram showing’the '‘'size' of the departures'of-
1974 VASA slowness—azimuth'measurements from quantities
which.would be predicted from the listed location and

a J-B earth model/ uEach sygbol represents one seisnic
event withfthe v;rious symbolé‘defining Azimuthal grofps
and large and small symbols refefring.to VASAl and

VASA2 observations respectively (see figure 2.9). The

" observed deviation is given by the arrow lengths in

figures 2.10 and 2.11. The expected deviation is the

average 'error' GpA (see.Chapter 1) for random travel- .
. . t

time errors of 0.5 sec. Dislocations attributable to

only non-structural sources have associated points which

fall below line AB. Lines AC and AD define expected

deviations associated with random tfavel‘time'deviations

~due tO\strdctural effects of 0.2 and 0.5 sec respectively

with allowance for non-structural effects{

R

b}
g
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it refers to the 'averaqe‘ or expected error Apn {sce
Chapter”l) for random dnviationsbin travel timeof 0.5

) ‘
sec, the ordinate gives the lengths of the arrows in
figures 2.10 and 2.11 ('that‘w'-s the value lMEobsH)' and
the points are plotted with the same convention as that
for figure 2.9 (the various symbols refer to different
azimuths of ray approach and large and small symbols
refer to VASAl and VASA2 observations réspectively).
The line AB is drawn (parallel to %he expected deviation

axis and intersecting the observed deviation axis at

0.1 sec/deqg) to represent the upper limit of contribu-

. tions due to non-structural sources. Thus, the deviation

depicted by any point in figure 2.12 which falls below
the line AB cannot be attributed to anomalous velocity
conditions. The line AC is drawn such that>departures
depicted b; points which fall within the region between
lines AB and AC can be attributed to random travel-time
deviations of about 0.2 sec arisiﬁg from anomalous velo-
city structure. Similarl?vthe line AD is an upper,
bound for deviations due’ to structurally related traéel—
time departures of about 0.5 sec. The bounds given)by
lines AC and AD and the values of 0.2 sec and 0.5 sec
associated witﬁ them are not intended to be 'sharp’';

if an observation involving N stations has associated

unexpected travel-time departures due to velocity struc-

ture at the stations givVen by 6t;, i = 1,...,N, then if



BIN

(}.'At;f/N)\"' « 0.2 saec the ordinate of the line AC dapioty
the expected departure ApA (see Chapter 1), which then
depends upon the confiquration of stations used,plus the
constant maximum non-structural factor of 0.1 sécXdeq,
Similarly if (thf/N)H = 0.5 sec then the ordinate of the
line AD depicts 6pA plus the constant factor 0.1 sec/dec.
Recall from Chaﬁter 1 that observational deviations given
by the form (Edti/N )H generally reéult in departures 4&p
/ which describe ellipses. The average quantity ApA 18
consideted here since the combinations of stations used
were 'nearly' symmetrical and there was no one combina-
tion employed a sufficient number of times such that an
'elliptical' analysis would be much more appropriate.
Notice also that figure 2.12 is based upén a least-squares
type computation.of slowness and azimuth whereas the
1974 VASA observations ¥esu1t from Covespa compﬁfations. -
This computational disparity is not serious since a
'‘Covespa plane wave' will closely approximateqh be;t fit
least squares plane wave. It is felt that the presenta-
tion of figure 2.12 is a reliable and useful interpreta-
tional aid. ]
Now let us consider the effect that near receiver
structure can have upon the results shown in figures
2.10, 2.11, and 2.12. If we take some typical P wave

crustal and upper mantle model, that of Massé (1973) say,

then it is possible to determine the perturbation of



near vertical P wave travel times resulting from_lateral»*

‘changes in veloc1ty beneath an array (the signfficance of . -

the Massé& (1972) model here is no more than thatbat 1s
‘?

typlcal of mod@ls assocxated w1th stable cont1nenta1 Tl

.

reglons and 1% any other model were chosen then’ Very‘
similar reshIts wOuld be%obtalnedf. Ten km undilations.
of the Conrad, Moho, -top and bottom of the asthenopherlc‘>
low velocxty zone, and the 430 km dlscontlnultxes pro—
duce tr;vel time dev1at10ns of about 0. 20, ’0;17 0. 02
0'0? and 0.10 sec respectlvely.“ Alternatlvely pne could
express lateral structural changes. in terms of percent
dev1atlons. Thus, agaln u51ng the Massé (1973) model ‘
as a basis, a- 3% change in P ‘wave veloc1ty from the
surface to a depth of - 150 km- produces traVel tlme changes
of.about 0.55 sec. If the magnltude of lateral ve1001ty
changes under VASAtds‘ as de5cr1bed above then from .-
.flgure 2. 12 it can be seen-that the’1974 VASA p obser—
~vatlons would be a poor :indication of p0551b1e deep
"anomalles;‘ It 1s unllkely however'that»near rece1verh~

- structure is completely reSpon51ble for all of the
observed“anomalles., Flrstly from flgure52 lO and 2.11"

it can be seen that the pattern of anomalles glven by

© the. distrihution of arrows~forfthevVASA1 .and VASA2 sub-
rrays are strlklngly 51m11ar -41f near recelver structure

E was respon51ble for thlS pattern then the 1nhomogene1t1es

underlylng VASAl and VASA2 would have to be nearly

T
o
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"distance of about 50°.‘ Here Gpob"ls largely radial in

s

identlcal and this is highly unlikely. 'SeEondly there

zare reglons lﬁPthe slownes"-a21muth dlagrams where the

'arrow dlrectlons and magnltudes change rapidly for small

LI

ITChanges 1n eplcentral 1ocat10n - thlS phenomenon is ' .
Qassoc1ated w1th ve1001ty anomalles at deep portions of

.ray paths (Davies and Sheppard (1972)).“ Thirdly the

. ® . .
extended, Covespagram patterns shown in the previous

R

-section are typical of the 1974 VASA data and indicate

that the ve1001ty structure beneath 1nd1v1dual statlons

is relatlehlz\:nlform. o o -h
A gener us a551gnment of travelrtime deviatiOns‘

due to ‘near recelver structure would be about 0.2 sec.

In thlS case the p01nts in flgure 2. 12 whlch lie, above

llne AC are’ .caused by. deep anomalous condltlons._

Generally the slowness and azimuth of a given .ray are

;most sen51t1ve to. anomalous veloc1ty gradlents, both

lateral and vertlcal, near the deepest polnt of pene-

tration. C1f webaSSume that observations_for»&hich,values
F ’ , 3 . : C 5
of. !Idpob || fall above line AC reflect conditiOns near

the:aSSociated ray . bottomlng p01nts then several 1nterest—

v

"ing statements can be made. The*'deep anomalles' then

'y

- are assoexated with four major categorles of 6Eobs . P

°

A1)y Low slowness observatlons near an’ ep1centra1

»'nature and p01nts 'inward'.on the array dlagrams- ‘the

“varrows assoc1ated w1th these anomalles shown 1n flgures'

%



.7;8 sec/deg.u‘This category has. been discussed in the

L N

2.10 and 2.11 Kave their tails between about 7.5 and

previous section where it was statedlthat the low

slowness values could be associated with rapid increases

in velocity gradient near about 1200 km depth.

(ii) Low slowness values for'sone ba;tlcularcrays whlch

bottom near the core-mantle boundary._ In figure 2 10

(VASAl) the arrows assoc1ated with these rays have thelr

>

talls at slowness values less th%n 4 8 sec/deg at

azimuths of about-l77° and -310°. In figure ,2.11

o

(VASA2) the arrows have their tails at slowness values

. less than 4.8 sec/deg at azimuths of about 177°, 310°, -~ ,

and-l40°.' Agaln the anomalous arrows are mostly radlal
in nature and‘pOLnt_lnward. Notice that the group of
VASAZ;arrows;at an'azimuth'of»about 240° and between

slownesses,of about 4.4vto 5.0 sec/deg do not all

conform; that is, some point radially inward while others

,deplct near normal condltlons.’ The bottomlng p01nts for

the assoc1ated rays have surface prOJectlons near Hawall

-and Kanasewlch and Gutowsk1 (1974) have notlced a 81m11ar

.complex anomalous pattern assoc1ated with this reglon.

L -

It has been polnted out . that one cannot conclude that

these types of égobs observatlons prove the ex1stence'

. of lateral 1nhomogene1t1es near the core—mantle boundary

espec1ally when they are . based upon rays arr1v;ng at

VASA from-the west. Notlce,’however, that this phenomenon

¢ m—
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a

1s also observed for rays approaching VASA at an azimuth .
- of about 177°. o I '
Aﬂ(iiif A complex pattern of rapidly changing vectors E : \f

'6pobs with a domlnance of Gp vectors showingalarge

obs
a21muthal anomalies lS the state which describes a

£

‘series.of observations centered at an azimuth oﬁ about
l38° and between slowness values" of about 4.9 to 6. 2
sec/deg. This pattern which is similar for VASAl and
'VASAZ can be seen in- figures 2.10 and 2.11. .The rays
assoc1ated with. thlS group bottom in a region between.
depths of about 1900 to 2600 km which has a surface
‘prOJection near the Caribbean. It lS 1nteresting that'. i
in a study of seismic body wave phases recorded by the
,Yellowknife array, Wright~and Lyons (1975) noticed

, rapidly changing azimuthal anohalies»(from ~4.3° to

+1. 4°) assoc1ated with rays’ bottoming below a depth

of 2600 km under the Caribbean - they postulated the
vexistence of strong lateral velocity gradients in the
deep mantle under the Caribbean.ﬁ Also, on the basis of
travel—time residuals, Jordan and Lynn (1974) showed
that anomalously high veloc1ties exist ‘in at least part
- of the depth range between 600 and 1400 km (and p6551b1y
‘fdeeper) under the Caribbean. The regions in question '
sampled by Wright and. Lyons (1975), Jordan and Lynn
(1974), and this study are all mutually disjoint but

the results do suggest that the entire lower mantle below -
- § N '
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‘the Caribbean and-adjacent areas is in an anomalous . °

-

state. .
(iv) Other spurious Gpobs observationst This category
includes the observations‘for which IIGpob I falls

above llne AC in flgure 2.12 othér than those whlch
'fall in the above categorles (1), (11), and (111). In
general these observatlons constltute a low densxty

sampllng for any one reglon and they are scattered in

the array diagrams. . It is dlfflcult to_make comparlsons'

-.of ‘these 'anomalies' with those revealed byfother‘

‘studies because of their spurious nature.

Figure 2.13 is an azimuthaligreat circle prbjeCtion-cen—

utered at the Hanﬂg?statlon, the symbols in this frgure
- deplct the surface pro;ectlon of the p01nts of deepest
penetratlon of rays for whlch,VASAZ‘determlnat;ons of P
were made. .The_general descrlptions of,agdbs-refer.to
'rays asSociated“Qith bottoming points enclosed hy'the
nearby boundarles and are basea upon the observatlons
- of categorles (1), (ii) and (111) above. VASAZ.mld—‘
pomnts are shown but the comments apply to the total
array. Note that it is not necessarlly 1ntended thatv
the anomalous observatlons are due to velocity. structure
knear these p01nts since, as has been-mentxoned,~1f near
. recelver lateral 1nhomogene1t1es are severe ,then no

‘such clalm»can be made. Nevertheless, in v1ew of the

S
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Figure 2.13

'Equidistant—azimuthal projection centered'at’

Hanna showlng the - surface projectlons of the bottom—

1ng points of rays for whlch VASA2 slowness and

azlmuth measurements were made. The comments descrlbe

the nature of slowness-azlmuth deVLatlons associated

.w1th these rays and are based upon the VASAl and VASAZ
I}

observatlons taken collectlvely.

=
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fact 4hat the interpretation of slowneSs'aﬁd azimuth
anomalies in terms of deep.velociﬁy structure is in
accordance with.results'from many other studies ig_is
felt that it should be considered as a serious possi-
‘~bilityl' The VASA array is still in the infant stages.
compared to. other arrays (LASA for example) and it is
hoped that possible future VASA studies w1ll provide -
detalled 1nformatlon regardlng the near receiver struc-
ture thereby rendering the resqlts presented here more
meaningful.‘ Techniques deScribed by Aki et alA(l976)
-and Capon (1974) aod'theviﬁherent'mobility Of VASA are

encouraging indications that ‘this goal caﬂ be attained. .

~ © The t(p) Plane N ' o ~

It has been stated that an exact 1nterpretat1on of»

the p observations shown in figures 2.10 and';.ll_isb

not possible at this séage. ‘StiiI io is worthwhile to
.con51der the 1974 VASA observatlons in yet another plane—
the r(p) vs. ' p plane. Recently the 1mportance of the
functlon ©(p) = EéEL -p Alp) , where Tiieftravel time,
>and its relahiooship to.sphe:ically symmetrioalbvelocity
‘depth p;ofiles have been demonstraﬁed by Bessonova et al 
(1974), Kenset (197l6),.'and_Eessono\/a et al (1976). 'By_'
iﬁﬁroducing‘theoparameter'of absolute-time, T(p), into

the'previously discussed 1974 VAsa p?obeervations a new



s -

_set of data Tobs(pobs) may be acquired where p

is
obs 1

the observed slowness and Tobs(pobs) is the observed
value of 1. This data set is representative of the

earth's 'average' spherically symmetric properties and

as was  the case for the discussion of A(p), azimuthal

information has been discarded Figures 2, 14 a and b

show the T (p) observatxons for the 1974 VASA- the p

axis has been normalized such that a value p = 1
corresponds“to a 'horizontal' ray‘and an earth surface

velocity of 6 km/Sec. The actual slowness in sec/deg

may be recovered by the relation.pactua

(360x6) . As in past diagrams large and small - symbols
refer,to VASAl and VASAZ calculations-respectively and
the various symbols 1dent1fy event a21muth (see figure
‘2.9) T(p) has been taken to be the average of the
‘observed travel times for-the comblnatiOn of stations
-used corrected to surface focus and A(p) has been taken

to be the dlstancé between the event eplcenter and the

center of the comblnatlon of statlons used again

‘corrected to surface focus. Asvwas.the case for the
-A(p)istudy the_ﬁaddon;Bullen (1969f P wave velocity modei
wasﬁused for surface focus corrections The ehpirical
11ne in figure 2. 14 is- based upon numer1ca1 dlfferentla—
‘tfqﬁsof the’ J-B P wave tables for a surface focus. 'Thé

technlque of differentlatlon has been described in the

section concerriing the A(p) plane. Noticé that the

1= (Px6371x21) /

105



Figure 2.14 a and b @

The 1974 VASA 1(p) observations. The various
symbols refer to azimuthal groups'with larger and
smaller symbols associated with VASAl and VASA2 obser-
vations respectively (sge éigure.2.9). The empiricat -
ﬁolid cﬁrve is based upoﬁ numerical diffefénﬁiation.of
the Jeffreys - Bullen travel-time tablesyéﬁ P waves for
surface fécus. The sldwhess'axis; p,*has been nor-

" malized aésuming & surfacé §ei§city;of 6‘km/sec.‘ Aétual
slowness values in sec/deg may be recovered using the
relation p,.c .y = (P * 6371x 21) /(360 x 6). |

The set ofﬂaxes abplicable“to the data shown are

in accordance wiéh the inequality dt/dp < O.
~> . G .
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calculated T (p) values are decidedly lower than would
be predicted by the J-B tables espccially in the p
region of 0.30 to 0.48 (5.50 to 8.9 sec/deqg). Also the
J-B curve proceeds to no lower p values than about

0.24 (or 4.4 sec/deqg) whereas the observed values extend
to p values less than this. This anomalous feature has
been discussed in the previous sections. Now HAles et
Al (1968) have provided an expression between T and A
based on teleseismic ébservations. The relation which
assumes a sourcé upper mantle velocity structure asso-
ciated with tectonically active -regions and a receiver
upper ﬁantle structure associated with stable continen-

tal regions 1is,

- 2 3

T(A) = 72.77+ 10.9210A - 3.2087 x 10"24%~ 2.003x 107247

(2.2)

" where A>30° and T is giVenlin seconds. In view of ‘the
loéation of events (figure 2.8) and thefgrray'uséd iﬁ
this study it is felt that‘the-above>e§§;ession should
be comparable éo‘the51974 VASA observations. Using the ’
fact that Q%éﬂl = ;A(p)‘and hence that T(p) is a mono-
tonically decreasing functio; {see Chapter 3) one can
construct an empirical-f(p) curve based upon the T(A)
relation above given by Hales et al (1968). Figures

2.15 a and b show the same Tt (p) observatioﬁs as those

in figures 2.14 a and b but the empirical curve is now

&



v Moy’

Figure 2.15 a and Q

The 1974 VASA t((p) observations. All descriptions
are the same as those for fiqures 2.14 a and b except
that the solid empirical curve here is based upon the

T(A) relation (equation 2.2)) of Hales et al (1968).
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based onn5£hé aboVe T(A).relation- there 13 a strlklng
51m11ar1ty between the’observations and thls emplrlcal
curve.- Unllke the case fo:the J-B comparison, pdints~
no longer fall dec1dedly away’ from the SOlld llne ‘and
the Hales,et al. (1968) T(p) curve extends to a p value
as’ low as about 0 227 (4 20 sec/deg) approachlng the low

values of the observatlons.' The Hales et al (1968)

l

_veloc1ty depth proflle is con31stent with - thelr T(A)

relation to .within 0.01 sec. The velocities are always
greater than the J-B model with a maximum deviation of

about 0.1 km/secvooéurring at-a depth of about 1200 km

and Substantiaily smaller dev1at10ns throughout the

-7

‘rest of the lower mantle. Thus the, 1974 VASA t(p) ob-

servations are in accordance with an 'overall' spheri-

cally symmetric P wave velocity profile which is slightly

greater than the model of Jeffreys and Bullen. The

. : 3 . 4 . o
empirical T(A) relation of Hales et al (1968) should

be considered a serious candidate for a basi5\£f com-

parison for future“array P wave studies.

Conclusions.

. The CoVespa technique-proved,to be useful for the

slowness and azimuth calculations of teleséismic P waves

'cr0351ng the»1974 Varlable Aperture Seismic. Array.

Dev1at10ns of the slowness and azxmuth observatlons from

quantltles wh;ch_are 1nraocordapce_w1th a spherlcally
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3

symmetrical earth for which the kinematic properties of
teleselsmlc P waves are defined by the Jeffreys—Bullen
Selsmologlcal Tables are/\;-abcordance with the ex1stence'
of lateral P ‘wave veloc1ty 1nhomogene1t1es along the - \
paths of rays between event locatlons and VASA. 1If

Y 8

. lateral ve1001ty changes in the crust and upper mantle

under VASA are severe then the slowness and a21muth

’-observatlons would be a poor 1nd1cat10n of p0551ble deep

mantle anomalles.- However prellmlnary 1nd1Cat10ns are,

’that this is not the case.,rIf vector ray parameter

.deviations are assocxated w1th anomalous veloc1ty con-.
ditions at the ray bottomlng polnts (the reglon to whlch
vector ray parameters are most sen51t1ve) then low slow-
' ness values near A3 50°,are 1n accordance w1th anoma-'
lously hlgh veloc1ty—depth gradlents at a depth of about_
1200 km, low slowness values for A > 85° are con51stent :

‘with veloclty 1nhomogene1t1es near the core—mantle
boundary under some areas of the Pac1f1c Ocean,“and
azmmuthal dev1a§10ns assoc1ated w1th rays pa551ng under
a reglon near the Carlbbean p01nt to anomalous veloc1ty
conditions predomlnated by lateral veloc1ty gradlents at
depths between 1900 and 2600 km under that reglon._ Also
the &974 VASA slowness observations can be expected for

rays emerglng from tectonlcally actlve reglons, pa551ng

through an‘ average' spherlcally symmetrlc lower mantle

. for whlch the P wave veloczty is sllghtly greater than L
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the Jeffréys—Bullen‘designatidn; and impinging upon a

geismic array in a stable continental region.



CHAPTER 3

o

INVERSION OF TRAVEL-TIME DATA USING THE' TAU METHOD

Introduction'

In past linear selsmlc arrays have been psed wldely

5

for the 1nvestlgatlon of crustal and upper mantle'struc—
A ture. Travel t1me dlstance curves have been lnverted to
obtaln spherlcally symmetrlcal ve1001ty depth functlons
u51ng varlous 1nversxon technlques p InVersion techniques
may be d1v1ded into. two"major categorles, 1nd1rect methods
(for example, Backus and Gllbert (1970)) and alrect methods
‘such as‘the Herglotz—wlechert technidues. Attentionfhere‘
wrll be focused upon powerful technlque of seismic travel-
. time: 1nver51on, the Tau method ‘which was developed by
'Bessonova et.al (1974) . tThe method’ makés use of the
funct%oﬁl;. R | e 'j : : P

-

Tp) = TP - pxX . e T3y
A S A o | r o
wwhere'p?=‘dT/dX is the ray parameter, X is half.the epi; e

central’distance,iahd T is half the travel time from source
;to receiver; ‘it was shown that 1t is posslble to map
1_Ilm1ts of the functlon T(p) into llmlts for the veloc1ty
’depth functlon V(y). Thus' with I(p)'estlmated_from T (X) ig'
;observat;ons an envelope'may"e'obtained’in‘theVV(y) piahe

swhich ‘contains all poséiblervelocity‘depth profiles that'

116
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arelconsistent with the data Prlor to thejdevelopment
of tho Tau method the Heréﬁotz—WLQchert mcthod of inver-
SLOn, whlch‘maps the function X(p) into V(y), was widely
.used for difect»inversion. In-itsfclassical form the
.1Herglotz-W1echert method  was restricted'to velocity—
depth profiles for whlch there are no velocity reversals
(Herglotz-(19d7$«andfwiechert (1910)). Gerver and- |
Markushevich“ (i966) overcame‘this,serious testriétion
by developlng a 'Herglotz—wiechert‘type' expression which

-accounted for the presence of low veloc1ty zones. ° But

u

thlS 1nven\1on scheme Stlll from a_serlous,set—,

back sincedit.implicitlytassumed that}the function X(p)
" was known ~exactly. AcCordingly McMechan and wdggins

(1972) extended the Gerver Markushev1ch ‘formiula to an

"extremal inversion scheme whlch mapped limits in the X(p)

o,

'plane 1nto limits 1n the V(y) plane. The dlsadvantage of
thls method is that it 1s dlfflcult to put bounds on the'
functlon X (p) since X(p)+ « when a smooth veloc1ty rever—

sal is encountered. The functlon 1(p), on the other hand,

-

'isvweli.behaved sinceéitjdecreasessmonotonicallynand
‘responds_toia low velocity‘zone hyzexhihiting a'finiteh

ffdlscontlnulty. It is expected that the Tau method of x}'
:selsmlc 1nver51on/w111 become a standard tool 1n the in-
terpretatlon,of\crustal, upper mantle,.and teleseismic
data; | - ) |
o In.thisvchapterva newnmethodber obtaining bounds

A
\
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~for the function t(p), using data from linear arrays, is

présented. For each branch of the travel-time curve, T

observations are fitted to a family of second sorder

B

polynomials in X. The families of'cufves are then mapped
into the 1(p) plane. The Tau method will be illustrated
by inverting T(X) data recorded by the University of

Alberta on Project Farly Rise. A comparison of the results

. of this study withsphosc'of_numerous other authors will

be given. Also, it is strcsscd that uncertainty in velo- .

¥

city depth profiles is due partly to errors in the quanti-

ties.T, X, and p_and it is also affected by the fact that

Observations of‘T, X, and p are incomplete; thus the

resolving power, as a function of separation of observa-
‘ : . 2

tion points, of the Tau method'is,examined'by inverting

(T(P) envelopes.caléulated\from exact veiocity—depth .

"functions.

Mapping T(p)aLimits into_Velocity4Depth Limits

ihe folloQinq analysis»hithights the essent;ai
feafufés\of the Tau meﬁﬁpd déécribed,by Bessonova ét.al
(1974)‘and aisé:includcs,Somc interesfing_boints whiéh'
became apparent during various calculétions.

‘It is’conveﬁient to aiééuss the invefsién-problém
in4te£ms of a flaﬁ—earth/model; the flat earth tfansfo;-
mation makes tﬁis.pbééible;4 Suppose wévhéve_a’spherical

velocity function wv(r), whercifr' is the radiallcQordinate
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from the center of the earth, and associated body wave
observations T(p), A(p) and p = dT/dA where T(p) is
‘the half travel time and A(p) is the half cpicentral

distance. The normalized earth flattening transformation

is,
A ) e )
X = w2
- 4ar
. p - dX
R = R
Y = 7 R) 1n F
foi)
BRTLIRN
R ' v
ay) = viRe o) (.29
- Yy .
"v(R)e ?, » R ' .

.The,hormalized'flatfearth model defined by (3.2) is
‘eﬁaracterized'by horizontal distance coordinate X (p),
gdeneral depth coordinate,.fy', and slowness éepth profile
‘h(yi yhere u(0) = 1. Raysiin this'flat earth satisfy
Sneli‘s 1ay,'ein a(y) = puly) where a is the angle between
tﬁe y.aXie and.the direction of the ray. The p(\Plem now
reduces»to mapping liﬁits of the function T(p)= T(p)— px(p)~
'into upper and iower bounds for -the depth, Y(p),. at whlch 7 '<;\fA'
the ray with parameter 'P bottoms. . It is extremely 1mpor—
“tant to reallzeﬂthat ‘the mathematlcal expr9351ons requ1red
for 1nver51on, and 1ndeed the propertles of T(p), X(p),
T(p) and other functlons related to selsmlc ray propaga-

‘tlon, are based upon the follow1ng assumptions regardlng

the,slownessedepth proflle u(y),givsn by Gerver and
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Markushevich (1972) ;
(a) The function u(y) is positive and scaled so that
u(0) =1. - (Note that this is ensured by the transforma-
tion (3.2)). '
(b) R The function u(y) is everywhere twice continuously
differentiable, with the exception of a finite number of
points at whlch it or its derlvatlves elther do not ex1st
or are discontinuous. : -
(c) - In every finite segment, u(y) is bonnded, but on
the entire semiaxis y 2 0 it is not neoessarily bounded.
(a) Theére exists a finite number of naveguides (low
velocityizones). If we defige the'function»s(y) by
s(y) = sup{u(y®), y©° € [0,y]} then the waveguides are
1ntervals of the Yy ax1s that have the following proper-
ties; o ' (" : . "fe

(1) 1S(y).is'con5tant.in eaoh of,them.

(ii) Each of them contains poinrsbwhere

uly) < s(y).

(iii)‘Outside theee intervais; n(y)= s(y).
Hfhe essumptions (a), (b), (c’; and‘(d) above clearly‘do
not impose any serious limitaéions when one is dealing
wlth practical spherlcally symmetrlc earth models but as -
has been mentloned they are needed for the mathematlcal
development of the 1nver51on problem. Now the low velocity'

v

zones are,ordered.by the index "i" and are desoribed by,
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Y; = depth to the top of the ithllow velocity zone.
§i = depth to the bottom of the ith low velocity zone.
q; = slowness at the top of the ith low velocity‘zone.

ﬁotice that the’fuhctionva(p) and u(y) are mutual
inversgé»9utaide the low velocity zones; thus flat earth
bounds foth(pf may be transfofmed into bounds for the
'spherical earth velocity:function v(r) outside the wave-
guides using (3.2). 1t is 1mportant to realize that 1t‘
is lmp11c1tly assumed that the travel-time curve is
compoaed of unconverted bedy wave phases and that if

‘a ray is reflected then it is totaily'reflectéd.' A

pPrecise ‘mathematical statement of this assumption is,
Y(p) = inf{y,pu(y) 2 1} , for pe (0,1) .

Now the solution of the inverse problem is (Gerver ’

‘and Magkushev1ch (1966)),C1,'

1 . : 1.
Y(p)=?2n-l f X(q)[qu-pzl dg |
' P
* -lf 1f[u (Y>—q]/[q-p]}dy.__(3.3j

The summatlon is taken over all low veloc1ty zones for

which p <qy
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Let us consider the average depth of bot toming

?(ml,mz) for a package of rays my, S psm,,

m

- -1 2 _

Y(ml,m2)= (m2-ml) J Y(p)dp . (3.4)
m

1

From (3.3) and (3.4), ?(ml,mz) can be written as

The function ¢(ml,m2) is related to the Herglotz—wiéchert
portion (first term) of the right hand side of (3.3) and
it is given by

m

_ . | 2 _ =%
¢(m1,m2)§ 27 llmz— ml),. {f- (q)mlq l(q2~-mi)F dq
. m .

1
- - . =%
+,j T(Q)(mlq l(q2--mi - m,q l(q2--m§) ]dq} (3.6)
A .
2 .

CIf no'low velocity zones are present or if for every low

velocity zone 4; <m;, then ?(ml,m2)==¢(ml,m2), The term

. w(ml,mz) is related to the low velocity zones and is given’

by
p(my,m,) = 241 ) B; (m;,m,) 3 (3.7)

where
Bj tmy,my) = (m, - my) "t [o'ia(q’i‘;x‘nl.mz)
- [Tean i 1u? (v1-a21/1a2-p2) 1 iay ap] 3.8
. |

By

S X

122
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and

» ’ .
. e

-

arcos(ml/qi) , if myoLodg m,

Ve

G(qi;ml,m2)=

3
[N
—

arcnﬁ(mlfqi)— drcos(mz/qi) if 5 &

(3.9)
The summation in (3.7) is taken over all low velocity

It is possible to show that

zones for which q;> my-
Bi(ml,m2)> 0. Also, when my < g then there exists a
value v, m, < vy < m,, such that
Y _
I _ -1 0)
Bi(ml,mz)— f [Qi tan Qi] dy . (3.1
Y ‘
where
2 2 2 2.7
0,= {lu (y)— qjl/laj-~y"1}1 .
The expression (3.10) for Bi(ml,mz)_ls particularly : //////

useful for two reasons. In practise we do not know q;
‘and o; exactly. From the T(X) data however we can find

limits for qi and oy (Bessonova et al (1974)) such that

d; =93 29

and’ ' “ : 1

g. : o, .
=i = "i i

A
o}
1A

th

Next we assume that the slowness in the i low velocity

zone is less than some given value ﬁi:

uly) s §;  for Y; £¥ 2y -



Using (3.10), the upper bound, ﬁi (ml ,my ), such that

Bi(ml,mz) . ﬁi(ml,mz) is given by:
-,
B, (myumy) =0 (g -7 -0 a0 0D
where
O ) .
0; = {[Gi"ﬂf]/lﬁf"yzl}" ’
Thus Bi(r;\l,mz) is maximal when the low V(*I_A()cily zone iy

rectangular and takes on the maximum possible velocity.

ith low

Furthermore, the maximum thickness, ﬁi' for the
velocity zone can be found using the indu¢tion method
“ described by Bessonova ct al (1974). The lower bound,

gile'm2)' such that Bi(ml,mz) > gi(ml,mz) is then given

'/"/}/)7/:
/ y
' -1
-2 2,7 ¢ ! - ;
B, (m ,m,) = o 13-yl (1-Q; tan g, (3.12)
_ 2 _ =2, ,=2 __2.,,"
; Q, = {[ui qjl/laj -y 1}
and
_2,z2 =2
u; = {oj/h] + qi!

Thus, Bi(ml}mz) is minimal when the low velocity zone is
rectangular and as thick as possible. The form (3.10)
for Bi(ml,mé) is instrumental in the analytical deter-
mination of the upper and lower bounds, (3.11) and (3.12)
respectively, for Bi(ml'mZ)"vIt is gléo usefulnfor com-

putational purposes. This can be seen by examining the

24
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expression for B.(mlfmz) givenxbyté3.8);'the'second term -

on the rlqht hand: side the ‘ex@gression ihvoives»an

lptegratlon,vw1th respect't' he variable 'p', which

cgg;es be performed exp11c1tly. The expression (3.10)
.-for B m is exact for some ﬁnknown value of v such

that ml < Y < m, .

However, even‘though we do not know Yy
.exactly-, approximations for the rlght hand sides of (3.10),

(3.11), and. (3 12) may be made by taklng Y-—(m +m Y/2. 3 ¢

1

"Of course,‘we expect the approx1matlon to be good .if the
lnterval (ml,m ) is small ‘ I have performed several A
calculatlogs compafﬂng the 'exact' value (3 8) w1th the

[N

approx1mate value (3 lO) where Y ; (m +m ) /2, for ‘rec—-
tang&iar low veloclty ‘zopes.’ The lntegratlon with respect
'to 'p', in (3}8),Hwas done numerlcally. ‘In all cases 1t 4
was found thathresuLte-from 13u8)vandA(3.10) compare -
“favourably. - “
'We haQe-upper ahd lowerélimite, E.(ml,m2) and

'(ml,mz) respectlvely, for the functions. B (m l,'m2). Now

suppose that we have upper : and lower bounds for the func;.

LY

tion T(p)vin the interval (d,1) such-that
t(p) Z T(p) < T(p) ~for O0'<adxpsl.

Then3for-ml> a there exist two functions, f(ml,mz) and

”g(ml,mz), which bound ¢lgmi,m2):

£(my,my) < ¢y (my,my) < g (my ,my) | S (3:13)



ey

. ) N
whe:g; : .
L 1, -1 2 ) 1, 2 2. 7%
£(my,m,) =27 (m29mlj_ ' J";(q)mlq .(g —ml). dg
| 1 " G R
' ’ -k, 2- 2.7% 1; 2 2. 7% - .
Ve il + f r(q)(mlq (q'—ml) -myq T (q 4q2) }dq (3.14)
- m, | ‘J!. . v 3
and - . : R
. 4 '// m2 .
, e =1, e =a) e  o 12 2 .
gmy,my) =27 T (my<my ) -/4.T(q)m1q (q”-my) -
1 . ‘ 1 . '7 . . ‘71’ o \
: ' 21,2 2,77 -1, 2 2, = P
+ J ;}q)(mlq\ (g"-my) ~mad (@“-m3) )dq -_(3-l5)
m2 B i G , : , . » -
._Now‘since Y(p) is a'mbﬁbtcnic non~decreasing func-
. tion we ha&e,L“l‘ - o
Y (m) < Y(ml,mz) for m > m, ! ) ,
| B o : (3.16)
B Y(m) > Y(ml,m23> fpr m.<omy

Using (3.5), (3.11), {3.12), (3.13), (3.14), (3.15), and
‘(3116).then: it is.poésible tq_find upber"and'loWer¢bounds"
fér'the function:&xpz in the intér&ai Ad<p <l. vWévassumé'

v {p) < t(p) £ T(P) fér d < p <"1l and thatAthgre éfe 'NL"*

non 6verlapping low vel¢city zones defined By,

(d;,oi,gi,gi,gi;ui)} =‘1,NLA
/

Ai+1 < 94 h

For simplicity'we’assume that the first low velocity zone
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P .
does not commence at. the surface and also that the last

&

tlow ve1001ty zone does not commence at the diipest
p01nt af the observatlons. Thus q1 < 1 and th > d.
In the absence of low veloc1ty zones, the upper -and

lower estlmates of Y(p), namely Y(p) and Y(p), are glven

o ¥ =vinfgmy,p):d S myp<p) T . - (3.17)
Y(p) *sﬁup(f(é;mzi='pi<mé;5f1) P 'T-(3J¥8im

‘Now, let r(p) and s(p) be defined by: .

;prwfxp)):éSﬁé(f<pfm§%=.P“‘/mf-fii)”“ L (3.019)
g (s (p)-p) _;.fi,;f}(g_(ml»,@ tdsmg <p). o (3.20

In general we calculate ipper and lower bounds for Y(p)

for p values ‘ij j— 1, N) where pJ j+1' When low.

-veloc1ty Zones are present the upper and lower estlmates

_are glven by:

¥ ()= g(s(p. Y - B, ). pa. (3.21
Y (py) g(S(pj)‘pj) q.gp.v_l(s(pj) p5) (3.21) i
. - » _l.J ) ‘ 4 )
Y(p.)=£(p,r(p.)) - T B, (pa,r(ps)). .(3.22)

o '(pj ®3 ) gigr(gj)' l( J ) ) o

'In using ‘(3.21) and (3.22), it is important to be aware
of the»fOllowing guidelines. . Flrst of all, calculatlons

using (3. 21) and ?3 '22) are done in order of decrea81ng P

values, that is 1n order of 1ncreasrng Fjﬁ values. In.
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- (3. 21) the summatlon is taken over all low velocity zones
for whlch ql> p . Also, if- the 1nterva1 (p ,r(p )] con{

talns a low velOC1ty zone, [that is, if there exists a

,qk such that qk < ¢ '< qk and Py k qk <_r(pj)],'then
(3;22)Zi':. el by Y(p y Y(p )* Furthermore,
notic : J ,ues-gi(s(pj),p ) are a prlorl unknown

for non*zeroréibslnce_they réQUlre, from.(3 12), knowledge

iqf. . eterminéd“Valuesihi - Thus, the follow1ng 1nductlon

'process is performed.i/ln-general, h- ‘is the\supremum of
the dlfference Y(p )— Y(p ) calculated for pj in the
'reg;on gn rpj s q >where Y(p ) and Y(p )Hare glven by
(3.21) and (3. 22) w1th allowance for the first (n -1) low
'veloc1ty zones.v Thus;_hl'ls determlned from (3 21) and
(3.22) assumlng no . low ve1001ty zones. Then, in turn,
h h3,...,hNL are determlned._ Once all of the max1mum_
thicknesses for the low velocity zones are glven, Y(p )

- and . Y(p ) are glven unamblguously by (3 21) “and (3 22)

—

Notlce that the functions f(ml,mz) and g(ml,m ),

o

given by (3 14) and (3 15) respectlvely, play an 1mportantv.

‘

role in the 1nver51on process whether low veloc1ty zones
are present or not. In general, when r(p) and T ‘(are
glven as. . pleceW1se polynomlals, of up'to second degree in
p, then (3 14) and (3 15) may be. 1ntegrated expllc1tly to -
gi&e f(ml,m ) as-a p1ecew1se smooth functlon of m, . for
f_i_xed"ml and g(ml,m ) as a plecew1se smooth functlon -of
ml for fixed m,.. The problem then is to determlne

e



sup(f(ml,mz): my < my < 1) for fixed m;, and inf (g(my,m,) :
d < ml<.mé)
sampllng f(ml,mz) for various m, and g(nl,mz)vfor>variousA

for fixed_mz; In general, this is.ddne by’
ST _ . :

ml.j There is at least one 51tuat10n, ‘however, in.ﬁhich
'ﬁsampllng need only be done at preferrEd' points;‘ Forl
-“example, suppose that T(p) = TU (aaconstanti~and 1(p) = fn

(a'constant,- Ty

for flxed m1<<ql, the max1mum value of f(ml,m ), for m,

’[restrlcted to qhe 1nterval ql s’mz'g q,, will occur at

elther m2 q1 or m2 q2.‘ ThlS follows from the’ fact that,_

inn thls case for a4 < mz'g q2, f(ml,m ) is doubly smooth

' 32f (m (M) o
~ and" —e——s;i——— >'0. Slmllarly, for flxéd m, > qz,‘the

d‘minimum value of g(mifm-)}tfor ml restrlcted to the 1nter—

7val ql my, < qz,.w1ll occur’ at elther my = q1 or my =(,.

Accordlngly, for q, £m q . g(m ,m ) is doubly smooth
1 1 2 1

2
R 3°g (my ,m,) P
Cana 2 2TLR2T oo

aml

Resolv1ngﬁPower as a Functlon of Statlon Spa01ng

» It has been shOWn, (Herglotz, 1907) and (wlechert,
vl910) that ln the absence of low veloc1ty zones 1f X(p) is
known exactly then V(y) is unlque and can be calculated
The presence of a low veloc1ty zone 1ntroduces uncer—t
talnty in- the ve1001ty—depth functlon below the low velo-

01ty zone. Gerver and Markushev1ch (1966) have obtalned

a theoretlcal expreSSLOn which permlts one to compute the

> T ) for the interval ql <P S’qz.: Then,

129
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uncertaintyvin the velocity—depthifunction when any
numnbe r 0f710w“velocity zones-are'bresent assuming that -
the functlons X(p) and T(p) are completely determlned
In-practlse, howeyer, selsmlc observations are taken at
_diScrete‘points, X{o along the surface of the earth.

- Thus, _ in the absence of 1ow velocity zones, there

o

' 'w111 be uncertalntyAln the veloc1ty depth proflle due to

the_dlscretevnature of the observatrons,,.Dayles ‘and "
AChapman'(i§75) havexdiscusseduthe>discrete'inversion-
'problem, reStricted.to a travel-time'branch withinfﬁhich-
'nelther trlpllcatlons due to rapld lncreases in veloc1ty

1es due€ to low veloc1ty zones take place,

'nor dlscontl
3infterms 151ca1 Herglotz—W1echert method
It} is possible to study the effect that dlscrete

. T(X) ﬁata has upon the resoiutlon of the veloc1ty depth
proflle us ng‘fﬁe Tau method It 1s assumed~that exact
observatlons of T, X and p are obtalned from N small
‘llnear arrays of seismometers w1th,array spac1ng belng

AX and the array lengths <<AX. In general, a:g;venvarrayf
_may not prov1de a set of observations (T;‘x.,p: Ii=’i N)*
since X may be: 1ocated within a shadow zone and also -aes
glven :array may prov1de more than one set T ~i’pi srnce -,
x.-may be-located thhln a region of trlpllcation. for-A.
VthlS example the - functlon T(p) w111 be due to the dlsL

crete nature of the T (p ) observatlons.. Slnce a—-—x(p),~

and hence T(p) is monoton1C'decreaslng, lt‘ls possible - to

§
P
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'f1nd functlons Ty (p) and T'(p) from the‘observations'

Ty (p ) such that t(p) must satlsfy, L, (p) < T(p)< Ty (p)

’For eacn interval (p +1°Pi ) where p > pl+l the upper and

lower Tau bounds are given by,-"
TRy = T i)
tL(p),z.T'(pi) -

. Clearly a smaller station spac1ﬁg AX will result in a.

bjsmall T envelope deflned by T (p) and 1, (p)‘ 1nce-there

will‘be:more'observatlons ri(pi).' A nagpfower . T(p) envelope

will in turn result in a narrower v oc1ty envelope.‘ An

example of this is sthnlin figyres 3. l a and b. ‘Flgure(

’,3 l shows a hypothet1ca1 P w e velocity depth functioh.
A:051ng a drrect ray progra it is pOssible to'calculate

nd hence Ty (p ) generated by such

'7values T. (p ), X (p )
.“a structure using A£he Bullen (f§%3) ray 1ntegrals.'
Flgures 3 l1(a) apd 3. l(b) show upper and lower VelOClty
,.bounds calcula =d from theoret1ca1 observatlons based on
';dthe ve%ocff§ model in flgure 3 1 for statlon spac1ngs of
100 km, and 25 km respectlvely. The inversion. rout1ne~
used for mapplng T(p) limits "into veloc1ty depth limits
is after Bessonoya (1974) and has been descrlbed in the
'.preceding section.. A similar analysls may'be performed
for any hypothetlcal vel001ty depth structure and thus

‘{a;d 1n ‘the determlnatlon of statlon spacing required for

any,glven,de51red ‘resolution.



Figure 3.1
. Y
Upper .and lower velocity-depth bounds resulting
from Tau ihversiénf. In parts (a) and (®) the symbols
‘represent the upper and lower bounds assuming'exéct
knowledge of T(p) at interals of 100 and 25 km

>respective1y based upon‘the solid veloéity—depth curve.
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Estimation of the Function t1(p) from Real Data

kl

Before inverting travel-time data using the Tau.

- method it is necessary to find estimates for the fynction
1(p) from T(X) observations. Bessonova et al (1974) ‘
formulate the problem of T(p)vcalculation usinggthe

Clairaut equation
at (. ar] ‘
T(p) = p LI T[— —l] . : _ S (3.23).

The set of particular‘solutions of (3.23) is given by

4~y 1]

daTr : X
ax: ,Bessonova et al (1974)

show ‘that T(p) is the singular solution of (3.23); that

(3.1). From'the fact that p =

is T(p) is egual to the value T(er) for which —115—2—
'Thus for a generally forward branch w1thin which the slope
’ p= gz is present T(p) Wlll be equal to the maximum value

of T(Xi;p) calculated for'all X, - For'a generallyea

receding branch r(pl Will be the minimum value of T(Xu,p).

An example of this is shown in. figure 3,2 for the forward
. branch consisting of rd.s which bottom w1thin the first

layer of the hypothetical velocity structure shown in.i

figure 3.1. The peaks are’very'clear; in addition, as

expected for a forward branch, 'the~xjcoordinates of the «~-

-~

N

- peaks decrease w1th 1ncreas;ng p values. Bessonova et al-
(1974) use thlS regular behavxour of the peaks as an s
interpretational aid. -

TN

The method of T(p) calculation described above is ™

excellent when errors in T«(X) data,are very small - On the n*\

T —



Figure 3;2 .
. ) oy
The function t1(X,p) for the first forward travel-

time branch grising from the hybothetical velocity curve
. ros Lo - '
. Vs

of figure 3.1l. The p values are such that Piy1 > Py -
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other hdand, when even modest errors are present or whén
the elastic waves traverse layers with moderate hetero-
g;neities it becomes increasingly difficult to extract
T(p) information using “Clairéut;s relation". FigureA3:3
shows the“travel times and distances of the firﬁt branch
from a seismic line recorded during Project Early Rise by'
the University of Alberta.

The graph of T(Xi,p) for' p values p;~> p2> Py > Py > Pg
arising from this generally forward branch is shown in
figure 3.4. Because of inhomogeneities in the layerea
media and poséible errors in time, the regular behaviour
which is exhibited by hypophetical example is not seen.

Ih-particular, for any fixéd p value, there are several
o 3T[Xj_lp].

% is_ zero. The scatter in the

X positions at which

travel-time points .of figure 3.3  is typical of long range

[ :
refraction surveys, and is in part due to local variations

in cruétal\structure. Thus-it 1is neéesséry to smooth T(X)
in some manner in order to derive sphérically symmetrical\
velocity depth functions. Kennett (1976) suggests that
this_may be done either by fitting a lightly smoothed
'spane go the function f(Xi,p) fo£ fixea values of p or
by-interpo;ating each branch of ﬁhe travel-time curve with
a smpéthéd spline which is not required to pass precisely
through the data values. Fof the former process errors
in‘T(p).are of the same order as the errors in the T(X)

e, el

. values.. Kennett (1976) found that values of t(p) obtained



Figure 3.3

Travel-time curve of first branch from the

Yukon line of Project Farly Rise.

\
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Figure 3.4
. - o
‘The function t(X,p) for the first travel-time -
branch fromiihe Yukon line of»Pfojéct-ﬁarly,Rise; The

p values are such that'pi+1 > P
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A R

from the latter process were much more widely scattered

than estimates using the-gfabhicgl'construction, Spiine
. A \ .

smoothing tends to overfit the data to a degree which is
dependent upon the. nature of the spline rogtine-and I
recommehd an alternate procedure in which error estimates

result direetly from the process.
For real seismic data, travel-time branches are

suitably approximated by a gdlynomial'of the form:’

T=a+bX+cx?. A (3.24)

£ s . - <o RN
For a branch consisting of N points (Ti,Xi, i=1,N) the

quality of the parameterizatiggp(3ﬂ24) is ‘given by the

. N . . g el \
root méan square error, - WA
SR TR T g ’ &
. N o 2 N s '
E(a,b,c) = {( ] (a+ bX;+ cXj-Ty) J/N (3.25)

R : I _ : ' : _
From (3.1),. (3.24) :and the condition, that %% = 0 the

R

‘expression for the branch in the t(p) plane is ,

R . LA . 2.'7 2 :
S N - _b” . bp _P .
- {(p} = a ic * 3a Ic _

o2
+ .
N,
»
@]
v
o)

o > b+2eXy , . c <0 b (3.26)

b + 2CXN >>p 2 b+{2¢X1 ’ g > 0

where Xl and XN are the smallest and largest X ébordinates
of the branch respectively. The best fit‘solution for .
, _ v = v , . v .

 T(X), (3%24) and t(p), (3.25) Eorrespondghto bealués
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a=a, b=Db, c¢c= Cyr for which E(a,b,c) is a minimum.

O (o] :
using 9= = 2E = % = 0 and (3.26) the best solution is
defined by

( , R
ag Al A2 A3 Bl -
byl = [P2 . A3 " Bg). B
%o Ay Pg 0 BAg) |Bj .
2 |
N X, . 1x2%). (=T
i i b _
= |zx. £x? sx3|  rx.T. (3.27)
i “i i T | _ o :
Ty £x% L rx3 rxd £x2T .
¢ .1 1 . 21

with solutions taken over the points i = 1,N on the branch.

‘Noy, lett;ng:Eo;= E‘ao’bO’?o) and‘Egif\EEo,'consx—

der'the'éét:of real vélues'(éybyc) such that E(a,b,c) < Egéf

Clearly when €‘f1,Tthe set is émpty, “and When 55=f1,'the”“:
set conSists-Qf one poinE inl(a,b;c)“spaceﬁjnamely“a‘= a6;3; ?

b = bo' c ?>¢o- For the case of £ > l.:the‘seﬁaéonsisté

6f'moré‘than.one;valpe1}a,b,c5 and it.is posSible'to show |,

‘that the set'is of fu}1 méésuﬁg;. This multiféqlutiQQ' .
_natﬁre of“ghéiparameteriZAtibg:of T(X) qata‘has in“p;:t§§§§é§s',,
.causéd>a%biguityvin the interﬁretation of seismic 6bsér—  .
A’yations. -Resqlts‘from‘maﬁyvlong‘r%pée'réfractﬁgn gxperi—
‘ments have ﬁéen interpreted>in ferms valéyeré,of_cdnstaht
velqcity{ tt;vei;pimq‘braﬁéhés ére parameterized By the
‘siﬁplerhfdrmﬂT ;.a“f‘bX,;and,the fhyered'model'is iﬁférred
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ffom the véiﬁes of "a" and "b" from the various branchés;
'éleafly, small errors in the values of "a" and "b" |
bchange the derived layered podel making‘coméariéon of .
velocity models from différeﬁt Studieg difficult.

| Ther¢1is no‘neea for_confusion howeVér, gince it
is possible to find ali‘§élues fa,b,c) which fit»the T (X)
data withinAany rootbmean square error Eg > EO. The

.sQ;ution space corresponding to E, > Eo is composed of

£
all points within the ellipsoid defined by,

o

2, 2 - o
Ala .+ A3bb + 2A2ab + 2a(cA3— Bl) + Zb(cA4— 82)

o 2 . R S 2 T B ) . . . : )
*e'Ag - 20By+ Ag - (EE)S A =0 (3.28y
where Ag ='2Til The ellipsoid is bounded by‘the.planes
¢ = Cm%n and c-= max’
_5 : , . %v ?
o ' : - (3.29)
- —(0 o2 - 40 Q');‘é)/(zl ) |
“max. = 2 ~ 9 193 Q
where o ’ A _
Q'—A(AA'—AZ')JEA-(ZAA—AA)-'—A3
Bath PR N 4 : 27374 2757 3

 2(B. (A% - Aon) v A - AAL) + B (A2 = a.2L)).
Q2 = 2(By (A3~ AyR) + By (AjA = Ayhs) + By (A5 - AjA,) )

.

_ ;“’ 2. ‘ P e , ; 2 .
Q3 = (Bg = (EE) "2 ) (A)A3 - 2)) + By (2A,B, - AjA)) - BYA, h

Thus_prov1ded'cmin‘5 c < cmax,’the.solutlon space 1in the

(a,b) plane are points‘coﬁtéined within the ellipse given
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" by (3.28).

Thﬁgeheral for a'frxed valuc of e;Athe ellipse’ip
the (a b) pianeiis of-the form shown: in figure 3. 5 For
'typlcal experlmental data the major axis is tllted clock-
 wise from the fa“ axis by a. few degrees and the major
axis‘i;*much greater than the minor axis (the ratio of
the major to the minor axis 1s much greater than that
shown by figure 3. 5) The.reason for this 'tilt' can
" be understood by con51derihgrthe fact that experiﬁental‘
e T (X) values for a_given»branch‘fall aimdst on a straight
liae with interceét ao apd\slope bd, “Ifgah attempt is
- made to fit the data to'anether straightlline'for which
"tteﬂtime intercept a >aogis\fixed,:the resqltihg value
" of the -slepe, b, will be suqh t"hat.b < 'bo., Similarly if = p
'a < aj then b > b_.~ Also,}t;‘\\e ellipsoid defined by (3.28)

is such. that when c 1ncreases the a}lowabre values of b

" decrease. These propertles of the solutlon space are. not
accidehtal- they ;re related to the stablllty of the
functien T(p). . For example, consader flgure 3.5_and
assume; fergsimplicity, tﬁat c ; 0. xFer ary (a,b) within
thefe;lipse.we-have'frOm the mean square errdr in (3,25)
“that 1 (p) = a where p = b. Because of the tilt of the
‘majdr axis of the ellipse, boints,w;th higher b values.
have lower a values; this situation is in accordance Qith
the monotonic decreasing behaviour of t(p). Also, since

;the ellipsoid encompasses smaller b values for larger c

2



Eigure 3.5

Typical error ellipse in the (a,b) plane for

T = a+ bX+ ch type parameterization of travel-time

branches.
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values, the tendency is toward preservation of the range
of p‘défined"by (3.25) when c changes.
| In o;def t9 find all possible:e#pressions of the
T (X) br;nch‘inithé 1(p) plane for a given error EE , we
need~only’calcubatg‘1(p) from (3.25) for points (a,b,c)
on the surface of éhe ellipsoid-défined by (3.28). The
image‘curve T(p) of any interior point (a,b,c) will be_.
'contained'.by the.image curves of the-éurface points.
This fécﬁ‘canlbe'seen by considering the-dashed_line in
figure 3.5; fromv(3.55) the images T(pf of points on the
“dashed iine have the_SFméep range and if Tl(p) and fz(p)
résultwfrom fhe two endpoints then Ti(p) <Tint(p)<T2(p)
where Tint(p) is the imége¢of any point between the end;
. points. . The pfédedufe then is to calculate T(p)‘from

(3.24) for discrete points on the boundary df.each

éllipse corresponding to discrete values of c between ..

c_. n R .
~min and “max

we can calculate atrt-passible T(p) expressions of e

¥. An envelope

. ‘With the solution spacebdefinegwby”

T(X) branCh‘for qny roogﬁmean_squé:e

into an envelope in the V(2) plane by using‘the‘techniqqe

described by Bessonova'et al (1974).
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Results from Project Farly Rise o \

The travel-time branches recorded 'in Western
Canada from shots in Lake Superior along the 'Yukon'
line during Project Early Rise together with the result—

ing 1 (p) envelope are shown in figure 3.6. The p axis

_of the 1 (p) plane has boen normallzed to a surface velocity

Qf 4 km/sec. The letters indicate the locatlcnfcf branches

in the T(p) plane. Each travel-time branch was fitted to

a best f1t curve of the form glven by (3. 24) the uncer-

talnty elllp501d (equatlon 3.28) in (a,b,c) space for

each branch was then determined for a value of £ = V2.

. The upper and'lower T(p) bounds for each ‘branch were

determlned by sampllng the surface of the error. elllp501d

the P range was restrlcted to the reglon deflnéd by the
best flt curveu(3 24) W1th the T(p) bounds determlned
for each branch in thlS manner 1t was found that the T(p)

regions for~varlous pairs of travel-time- branches blend

into one andther: thus the 1(p) images of branches C and.
:3=D-have a small COmmon reqion along_thevp axis, as do the

Hlmages from the palr E, F ‘and the pair. G,H. The pioces_

of T({p) envelope with common qulonS antLODQd blend into

'one another qu1te smoothly and thercfore it was not

jdlfflcult to form the 'comp051te' {(p) upper and lower

bounds in the - 1ntersect1ng p reglons ThlS phenomenon

of blendlng in the T{p) plane is not surpr1s1ng in. v1ew

¢

of the fact that the travel tlme branch galrs 1nvolved

149



Figure 3.6

The insert on the uppef'right—hand corner shows
the traQel—time branches for the Yukon line recorded
during Project Early Rise. The ma;n.diag;am'shows the
Tau envelope for this data. The letters indicate loca-

tion of branches in the T{(p) plane. '
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do in fact converqge in t\l"w"l‘—x planc. Now there 15 also
a region in the (p) planc tor which the p reqgions ot

two branches overlap but for which the values ol 1 tor
the overlapping p interval are oftset; this jump in 1 (p)
is indicative of a low velocity zone. The (p) envelopes
resulting from branches D oand PP have a common p regilon
defined by 0.465% - p - 0,478, 'l‘hgmdximum jump in o1 (p)
within this interval is defined by the maximum ot the
difference between the upper 1 (p) bound for branch b and
the lower  (p) bound for branch D; the value 15 appro-
ximately 1.9 scconds. °Gimilarly t he mlnllmum jump in ()
in this p interval (the minimum of the differonce between
the lower 7 (p) bound for branch F and the upper 1 (1) bound
for branch D) is approximately 1.1 seconds. Thus the
‘parameters which dqefine the low Yelécity&ione kinemati-
cally are q; = 0.465, 51 = 0.478, o = 1.1 gec, and

Gl = 1.9 scc. Now the 1(p) onvelope for p regions
between the imaggs of the individua14branches has been
constructed using the fact that 1(p) 1s a monotonic
decreasf;g function. Notice that the 71 (p) envelope in
these gap rcq{ons is responsible for the major uncortainty‘
:(that is the 1 (p) envelope 1s widestofor p intervals ’
between branches A and B, B and C, ;ﬁd F and G). Note
valso that, of the rays observed, those having the least

 depth of penetration constitute branch A. Thus T (p)

data 'commences' at a p value of about 0.61 and there
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are no observations for the range 0.61 <« p. < '1.0. The.

»./’

exten& of this interval may seem overwhelming but it‘

is rather artificial in view of the assignment‘of the
generous value (4.0 km/sec) fof the surface velecity.' Jyf”
The 1 (p) envelone in thls reglon has ‘been constructed
hy_linéar ;nter;>latlon between the ex15tinq point

TU(0.61) and ttl.O) =0 for»the-upper bound and linear -
extrapolation‘between the existing point 1, (0.61) and

the point 1(0.66) = Ow%note“that the‘value of p = Ot66
eorresponds to a surface velocity of 6 km/setc) for the

.lower bound. It has been mentioned that the p range of

each branch in the T(p) plane has been dictated by the
values of b :‘bo and c = Co (that is the coeff}c1ents
descrlblng the best’ flt curve of the form (3 4)); It
is worth notlng that if any ‘other values .of 'b' and:'c
within the error elllp501ds are taken then the resultlng

image r(p) curves essentlally_fall w1th1n_the T(p)

‘

envelope shown in figure 3.6; any points which fall

outside the 1(p) bounds shown are so close to the boundary
that! they arc insignificant..
The 1 (j2)  enveldpe in tiguré 3.6 has been inverted

using the Bessonova et al (1974) method described in the

“

v

preceding: section. A low velocvity zone with parameters

- - . . 2
Gy> Gy U and oy specificed above has been assumed. ‘The

resultlng veloc1ty depth onvolope i1s shown in flgures

3.7(al- and 3’7(b) " The. darkened reglon in figure 3.7 (a)

> \.

- ~ <



Figure 3.7
‘ Velocity bounds for the Yukon line 7t (p) bounds.
In part (a) the darkened region is ‘a barrier such that
no velocity-depth curve may pass entirely through it
without first eXhibiting a low velocity zone. The

dashed lines in part (b) outline possible low##@vcity

“zane configurations when theﬁiop‘of the lowg

. zone is assumed to be af-a depth of 60 km.
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is é 'bafrier' associated with the low velocity zone:
The darkcened regién has the following properties:

(1) No Qelocity-depthvcurve'may éass entirelx through
it without first descfibinq.a’iowAvelocity zone.

(ii) The'loﬁnveloéity ioné must commence at some
'Qalid' point which is contained within thé darkened

region.b,The low'velociﬁy zone has a magnitude defined

by o¢; where 9, L 0 Z 51. Now in the inversion it was

implicitly assumed that.%he maximum (flat éarth) élbwnessi

attained in the low velocity zone was p = 1.0. 1This'

slowness corresponds to_a”spherical earth velocity of

'épproximaﬁely 4.0 km/sec for ‘the depth shown. In view

of this minimum bound (4.0 km/sec) for the'velodity
wiﬁhin the'wavegﬁidevit is clear.ﬁhat for any allowableﬂ
value of o there will be pointsvwithin the darkened
;egion which are so deep that it is iméossib1e to cons-
truct the édrresponding WaVeguide commenéing at these-
points. Aﬁy‘éoint‘within the darkéﬁed régidn from‘wﬁiéh
5t is possible to construct the 10Q‘vélocity;zoﬁe»for

g > 0

295 is a 'validf point.

-Figure'3§J(é) shows that the top of the low velocity zone .

may be as éﬁallow‘as 60:km; apd also.that the waveguide
may be as tﬁick as abouf_iSO km (in thié caéebthe
differenée between the velocity within thé'waveguide

and the velocity at the top of the Qaveguide‘is infinite-

. R « o : . .
simal). Figure 3.7(b) illustrates the low velocity zone
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cbnfiguration:for‘o = 51 when the top of the'Waueguide
is at‘a depth.of 60 km and the velocity at the‘top.of
the Waveguide is about Q”B km/sec. The differénces in
depthmbetween the upper and lower dashed lines is apprwh
x1mate1y the thlckness of the low "velocity zone a; a :
function of the velocity within the Zone. ,This rela-
tionship is true if it.is assumed'that the 'flat earth'.

wavegu1de is rectangular in which case the correspondlng

" §pherlca1‘earth'waveguide (equation 3.2) is,approximately

>‘rectangu1ar.: Thg low uelocity zone’configuration'for

o = 91 is very.close to that'for o = _l and thus dashed
curves similar  to those in flgure 3 7 (b) for the case

o = g, are not shown. »If we con51der a veloc1ty/model
whlch lles mldway betueen the upper and lower boundsv
shown in flgure 3.7 then ‘the 'form of the bounds suggests
a crustal thlckness of about 30 km, ‘a rapid increase in
,ve10c1ty near . about 170 km depth (as the veloc1ty curve
exits the low velocity zone), ‘and another rapid lncrease
in velocity near about 420 km. ’fhe presence of thc upper -
mantle sﬁructures is not.a neW'phenomena -Indeed'continen—
~tal P wavekstudles which reveal the asthenospherlc low
ve1001tv layer, a hlgh veloc1ty gradient 1mmcd1ate1y
beneath the low veloc1ty zone and a hlgh veloc1ty gradient
near about 420 - km depth include those of Lukk and Nersesov::
(1965), N1a21 and Anderson (1965), Johnson (1967)(5Ju11an_

and Anderson (1968), Green and Hales (1968) , Archambeau
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et ai (lSGé);,Helmherger and Wiggins (1971), Hales (1972),
McMechan_and’wiggins‘(l972),vWiggins and Helmberger
(1973), Massé -(1973), and”Massé and’ Alexander (1974)

In addltlon the P wave travel time data of Dowling and
’Nuttll (1964) and Hlll (1972) 1nd1cated an asthenospherlc
low veloclty zone; high velocity gradients near 420 km
.were'reported by Golenetski and Medvedeva (1965); Barr
(1967), Lewis and Meyer (1968) and Mereu et al (1974) on
the ba31s of contlnental ‘P wave travel tlmes "If is of
partlcular 1mportance that this study has revealed a well
developed low veloc1ty zone assoc1ated w1th a stable
platform reglon. The low veloc1ty Zonés detected in the:
‘majorlty of the studles c1ted above are assoc1ated W1th
tectonlcallyfactive regions. Some studies, however, e
suggest that associated with the asthenosphere' underlying
“the stable central and eastern Unlted States there 1s a P
wave 1ow veloc1ty zone whlch 1s albelt not as pronounced
as. the one underlylng the tectonlcally active western
dUnlted States Thus Hales (1972) c1tes the presence of

a low veloc1ty zone of large magnltude in the western :
Unlted States and one of lesser magnltude in the central
and eastern Unlted States Also Dowllng and Nuttli - (l964l’
-flnd dlfferences between the low veloc1ty ‘zone structures |
in the western and eastern Unlted States~ they state that
'the top of'the low ve1001ty zone is at a depth of ~about

{ PU

70 km 1n the west and about 125 km in the east Massé
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(1973).studied travel time data;from various lines of
Project Earl; Rise'and found a'low‘velocity zone in the
udepth range 94 to 107 km w1th an average"veloc1ty of
8 km/sec (whlch is- about 0.4 km/sec smaller than the
iveloc1ty”at;the top of the low,ve1001ti;channel) in the.
'central and eastern'United States. ' The parameters (depth
and magnltude) of the 1ow velocity zone descrlbed by
Masse (1973) aqtﬁé very favourably with results from
this study (flgure 3. 7) Furthermore Masse and Alexanderu y
-(1974? concluded that the upper mantle P veloc1ty beneath I
Scandinavia and Western Russia closely resembles the model.
derived by Massé (1973) for the central and eastern United
States. Thus-this study and other studles haye_revealed
the presence of substantial low velocity zones associated
with the asthenosphere underlylng stable platform type
reglons, - This fact lends credence to the predlctlon and
tenets of Hales (1972) who states” "... I hazard the guess
that further study will show that ‘the low-veloc1ty zone
is a general‘and requlred feature of the upper mantle. ..
it is qulte clear that the relative motlons of the outer
part of the earth whlch may now be regarded as establlshed
beyond.reasonable doubt, do not take place‘only 1nAtec—
“tonlcally active areas." o 3 |

Now it is very interesting to c0mpare’the results
of this experiment with the results of varlous other re-

fraction surveys conducted in North America. ’Aucomparlson

a
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of results in’ the veloc1ty depth plane oould be mislead-

1ng s1nce An past various ‘authors have us ed a variety of
1hver51on technlques. It is felt that the T(p) plane. |
offers thc‘most unbiased basis fof,comparison of the
kinematic properties of cruetal,and upper mantle P waves
which travefse various regiaons the North American
continent. {yer et al (1969) list the travel times andv
distances for‘trayel—time branches from_P;oject Early Rise
refraction lines. For the purpose of.comparieon with this
experiment, these travel-time‘branches‘wcfe fittedvto best
fit curves of the form (3. 24); the correspondlng best flt
T(p) curves were then determlned using equatlon (3T26).

\

-The 1lines used'and the apper{makﬁ distance ranges of the -

. S -

travel-time branches considered aﬂe ae follows: Chapleau,
//gxtarlo’f/ Chlbougamau Quebec (510 to 10801km),
Chibougamau, Quebec to GlaCe‘Bay, Nova Scotia:(llOO:to
2040 km), Saint Cloud, Minnesote to Holyoke, Coygrado
(440 to 1330 km), Bemidji, Minneeota to Miles bity, MOntané
(370 to 1286 km)Z-Dyment; Ontario to Sheho, SaskatcheQen
(620 to .llﬁlO"km') , Leduc, Alberta to Post: 140, >I>3'r'iti‘sh
Columbia (2150 to 2‘4»910_ km), Fort Nelson to Post 750,
British Columbia "(2540 to 2680 km), Flin Flon, Manitoba
to fellowknife( Northweet 'Territbries (1380 to 2310 km),
Bear Lake, Michigan to Potters Hill, North Carolina (40 to
1680 km) , Lake»Supefior; Michigan to éldeyado, Arkansas

.(440_to 1430 km), Lake Sﬁperior, Michigan to Cornstock,

%
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Texas (170 to 2250 km), Colorado Springs, Colorado to
Charlston,‘West Virginia (1110 to 1620 km)! Chapleau,
OnQQrio to Chibougamau,. Qucbec to Schefferville, Quebec
(460 to 1700 kim), South Eastern Ontario (300 to 700 km) ,
Lake Nipigon to Smooth Rock Falls, Ontario (240 to 610 km),
Port Arthur, Ontarié to Baralzon Lake, Manitoba (300 to
490 km), Bemidji, Minnesota to Vancou;er, British
Columbia (470 to 2600 km),-and from Laké Sﬁperior to the
L,RSM stations (500‘to 3480 km). Thus the data sct sam-’/
'ples central and eastern North American regiohs and the |
distance ranges,incikde those of this experiment. PQints
on the best fit T(p)'curvés for the travel-time data
mcntioned above are éhown in figure 3.8 togcthor with the
1(p) envelope'derived from the,'Yukbn' iine of this exy£¥i—
ment. The agreement‘betwéen‘the f(p) points frdm t he
various lines"and;thc 1(p) envelope Shdwn‘is quite remarh-
ablc}»with the slowness scale of fiqﬂr; 3.8‘ddeSth wlth

| llcorrospondinﬁ to an apparent vnlo?ify o% 4.0 kKm/sc0
1’ can beo s"r:en‘that th(::‘m:i:f.inlxun". departures in apparent
V?Iockty-uf points:f;pm the envelope boundaries are about
O.d’kﬁ/scc near 8 km/scc, 012‘km/§e€ ncar 8.4 km ‘sec and
about 0.2 km/scc near 9.6 km/sec.

Now let us~consider North‘Ameriqan,seismic refrac- .

tion data which have bcen interpreted by various authors;
in particuiar we shall agqin examine results ‘in the 1 (p)

plane. Not all published reports list data from which

~

o

16l

&



Figure 3.8 »
The Yukon line 71 (p) envelope with T(p) points

based upon tﬁe Project Early Rise trayel times listed

by Iyer et al (1969).
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T(p) information can be conveniently extracted but it ié"
felt that the foiiowing studies taken,collégtively‘pro,
vide a reliable overview of interpreted North American
seismic refraction surveys;'thé authors ané the.geo-
graphical areas studied arec Dowling and Nuttli (i964)- !
eastern and western United States, Roller and Jackson
(1966) - central United States, Hobson etPal (1967) -
Hudson Bay, Barr (1967) - Canadian Shield, Ruffman and
“Keen (1967)<— Hudson Bay, Gréen and Hales (1968) - central
United States, Lewis and Meyer (1968) - central United
States, Gurbuz (1970) - central Canada, Mereu and Jobidoh~
easterﬁvCanada? Hill (1972) ; western, United Sta£es;
McMechan.and'wiggins (1972) - western United States,

Berry and Fuchs (1973) - north eastern canadian Shield,

L4

Massé (1973) ~ central and eastern'North America; Wiggins
and Helmberger (1973) —.Qesterﬁ United States, and Massé
(1974) - central and eésterh Nortﬁ Ameriéa. ~Points in the
T(p) blane from these stﬁdiés are shown collectively in
'fiqurb 3.9 together with the T(p) envelope from this
experimént. Uglike-thé T(p) points due to the travel-
’tiﬁe listings of Iyer et al (1969) (figure 3.8), therc
afe several points which diverge considerably frOm the
T(pfygnvélope in figure 3.9. There are two major reasons
for this disparity. Firstiy the physically 'impossible'
negative values of 1(p) in the p ranée'of about 0. to

0.67 (apparent velocities from about 6.0 to 6.5 km/sec)

164



Figure 3.9

based upon the results of many seismic surveys

conducted in North America reported by various authors.
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\
gre a result of the Hudson Bay observations of Hobsoh
et al (1967) and Rhffman*andlkeen (%967). The combined
effects of a lateral inhomogeneous Hudson Bay crugtal
étrﬁcture and incons;stent navigationkcan cause thi; dis-
crepancy (iﬁdeed Ruffman and Keen (1967f examined the -
;onsistéhcy 6f three poésiﬁle névigation éefies); The
second- and more interestiﬁq reason for the disparity is
that thf.daﬁa set. shown in figure 3.9 iS composite, beiné
due ngt'only'tovsurQeys conductéd in cenﬁfal and eastern

'North.America but»glso.ﬁo sﬁudiés applicable to the
tectéﬁicallyAactive western Uﬁited States regions.
Anomalously large }(p) ;alueg’(‘anomalous‘ if compared
_ﬁo thé T{p) eﬁvelope) neaf p = 0,61 (appagent'velocity ;

‘ 6.6 km/sec) and in the' p range of about 0.46 to 0.51
(abparent 3elocities,of abédt 7.8 to 8.7 km/sec) are due -
4+o the Qésge;n United States investigationsiof MCMechan‘
and Wiggins (1972), Wiggins and Helmberger (1973), Hill

(1972), and data from the westefn United Stétes line °
studied by‘Dogling and Nu€t1i~(l9645*YDowling and Nuttli

© (1964) also discussed results from the central,’eqstérn, ‘
and southerr United States and the f(p) data from thecse )
-aréaé faii'within the T1(p) envelope or close to .the
bounéary).f‘The differénce in kinemafid prépéftieé between
rays which_tfaQefSe the'tectonigally&active western United .
States énd those which traversektﬁe,ﬁ ft stable regidns

“of central and eaStern North American rgéféns is not -

’
«
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surprlslng Although a determlnatlon of an exact veloc1ty—
. depth functlon requires complete spec1f1cat10n of 1 (p)

can be stated that the high 1(p) values for the

stern United States in.the P range of about 0.46 to.
Oggl (figure 3.9) are consistent with 'overall' lower
veloc1t1es in that tectonlcally active region as com-
pared with the upper mantle veloc1ty of the central and
ea;tern port;ons of North_America; thus rays which pro—>
pagate through a higher magnitude low velocity zone and
bottom just below it will suffer larger delay times and
thus larger T(p) w1ll result., Other;p01nts which lie
far from the 1 (p) envelope in figure 3. 9 are located near @#
p = 0 47 and 1 = 4 sec; here the low p values as com=s " - %57 g

. . & <,_,‘ X )
pared'with,the T(p) envelope are due: to the study of _ .

r

Berry and Fucns (1973) (some of thelr polnts also fall
w1th1n ,the. T(p) bounds). The spread in P values of the
1 (p) due to Berry and Fuchs (1973) 1s not surprlslng
since th( survey area 1ncluded various llnes crossing a
large graVJty anomaly assoc1ated with the Superlor—
Churchill prov1nce boundary in the northeastern Canadian
Shlgld.’ blnplly l%}%q empn%sggegéghat the T(p} p01nts
/lln figdres 3.8 and 3 9 which are appllcablc to central
~and eastern North America fall w1th1n the T(p) envelope
or - very close to the‘boundarles. Also deviations ofvthc
: i 4 -

T(pl points from the envelope and the spread in p values .:

. 2
R ‘

of thefi(p) points in figures *3.8 and %g&’Become less

N
(-



:pronounced as p decfeases indicatingbthat,the upper
ﬁmantlebstroctures of the various regzg%s sampled tenc
to coalesce’ v}"ith d_ept.h.‘ Eig{;res 3.8 'and 3.9 also show -
T(p) pointsbfor rays which have bottomed ac greater
depths than thosé Ofvthis sﬁud&. It is not incended
that‘the,comparisbns discussed here constitute an
e#haustive aﬁalysis of all reffaceion surveys eyer
conducted io North America buf rathef it is hoped thét
.th%&discussion‘illustrates the-importancevof the f(p)
plane.

A flnal 901nt regardlng the w1dth of the vcloc1ty—
depth envelope in figure 3 7 1is worth mentlonlng. It’
can be seen f?om_figure 3.6 that the»slowness.extent of
the T(p) envelope for r(p).values from abouﬁ_lz to 19
seconds is aboot Ap = 0.13 which”corfesponds to eo.uncer_
talnty 15 apparent - velocxty of about 0.4 km/sec.— On
'the other hand the veloc1ty envelope in flgure 3.7
defines a veloc1ty uncertalnty of about o. 6/km/sec in
the correspOnding depth range of about 200 to 36Q'km.
-The‘velocityfdepch boundaries:Shown ih4figure*3.7 dcf;hc
a rather, lerge'Qelocity.uhcerteintv partly because the’
cor?@%pondlng T(p) envelope ‘bounds a flnlte area (we do
not know .1 (p) exactly) and partly because the 1nver51on

scheme descfibed in precedlng sectlons does Mot yleld

greatest upper and least lower velocity depth bounds

corresponding to given t1(p) bounds. In view of the nature

2
S
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of travel-time observations (observations are incomplete

and in particular it is-difficult to extract seismic
signals which correqupd to rays bottoming in‘regions

.of low,Velociﬁy gradient-from_ﬁhe'seismograﬁ) the inver-
.sion technique describedzcannot yield detailed 'velocity
éepth'infofmationf It is‘hopéd that in futufelthe.eXtené
%ion of‘the Tau method td a Tau inversioh methéd which
incorporates partially'reflec£ed and converted phase will
ténd to alleviate this problem. The.considgfation of .
amplitude Characteriétics shouldvalso result in néfrower
veLOCity depth bbunds;‘for eXample,McMechan;énd WigginS'
(1973) used the Céghiafd;de Hoop technigue in conjunction
with dxHerglotzéwiechert fype extremal_invérsion scheme
to cohstfuct modeié of the P wave structurg'for the' |

upper: mantle.’ Also'BésSonova et al (1976) have described

depth bounds than the ohe_f
(1974). There is a further '

. . »/ y .. . )
that is the effest of lateral inhomogeneities on travel

/

timeé, amplitudes, ai Vﬁhe vector ray @arameter in, studies

of the uppcﬁfﬁﬁazi;wer.mahtle and thc:Cofe of the earth. &
" Possibly fluture twovdiﬁension arréy studies, in conjunc-

tion with the above mentioned technifgues ‘will increase

our knowledge oflthé detailed'stfuépufe of the earth.

/
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Conclusions

. Not only is the Tau method an objective approach
to the problem of inversien of real seismic T(X) data
but.a1587i£ may‘beiused tp examine thé variation of .
uncertainty ofvthe velocity’depth functioh due to changes
in seismic array'geOmetries “In the case of real selsmlc
data)'estlmatlon of the functlon w(p) from T(X) can be
performed satlsfactorily using the 'Clairaut' approach
as long asxerrors in T(X) are inconsequential. With
realiSt?C_scatter, due_tp‘inﬁomegeneities Oor errors in
.measure;ent as is the ease for aong.range refraetien work,
it becomes necesSary to smootﬁ theJT(X) data in order tQ 
>deriVe a meaningful veleciti'Strue%ure. An unbiased

method of smoothing involvesva_determinari ’of'all

:possibleLCurves, T= a + bX + cX2 ethat fit each T(X)

\ R # '
branch. hln any prescrlbed root mean square error. The
solutions (a b, c) are fouﬁd .to be.contained within an Y s

: *
ellipsoid in. (a,b,c) space. rTh%‘propertles_ofythe ellip—
» . o P IR i

.soid, for real data;'reflegt the'inherent s®ability of

©o2
v

the functlon T(p) E ‘_ T T

!;
Appllcatlon of the - Tau method of 1nver51on to

travel -time data appllcable to western. Canada 1nd1cates .
ka crustal and upper mantle P wave veloc1ty structure

) ‘Wthh con51sts of a crust approx1mately 30 km thlck,vk
‘low veloc1ty zone between depths dgNabout 60 and 210 km,}

’v:and_rapldvlqcreases in velocrty near.170 and 420 km.
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A comparlson of the T(p) bounds derlved for: western Canada
with T(p) poxnts assoc1ated w1th other reglons of North

Amerlca reflect crustal and upper mantle 1atera1 inhomo-

geneltles.
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'Any vector norm has .the following properties;

(111)1/||x+z|| |]xl|4—]|y|| for all vectors

A, 1s§quen by"- : S

ﬂAppenaix 1

A vecbpr'norm is a measure'of EheAsize, in some

sense, of a. vector. If x is a vector then-the most common

/" - ‘

vector norm 1s the Euclldean norm, glVlng the 1ength of ‘ ,@

“the vector, o SR ’ : .

lelh = AT

“w

o
o

(1) "El|ex|| = |e|-]lx|| for all real e. A At

RNCEI l'|x|| >0 if x is not a null {zecto'r.-.

o

1%

and X /jf\u;

» , : e | )
Ceds The induced matrikﬂnorm, IIAII of an n x n matr;x,

“i"‘ \1

.

1ALl = maxIIAxII ~where lxll= 1,

In this equation x hES‘been-normaliZed and for" the‘
Euclidean vectof”norm, |la]l is called the 'spectraIV
matrix norm and iS'equay’to the length of ‘the longest B

‘

vectoxr in the image Set {ax} undet tﬁe transformatlon

| x+y*= Ax. Matrix'normS‘satisfy tﬁe propertles (i) to

¥

(iii) adee; It is p0551b1e to- show that the sPectral

norm IIAII is equal to ‘the maximum- 31ngular value of A

‘5(equ;valent1y LJAII is equal to the. spectral radius, o PR

p(A?A)y!dethe matrix_ATA whlch is the non—negatlve

. LA . . . . . e
square root of the necessarily. non~negative largest
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e

‘norm,

'

eigenvalue of the matrix ATA). Another useful vector

norm is the 'norm-infinity' vector norm defined by

P d .
: x|, =max  |xy|
1<ixN
where *
_'}‘_(.= (xl'leo--'xN)T -
. \ .
The 1nduced norm-lnflnlty matrlx norm “is
1Al = Y el
A ~= ‘max roelass |
1N =10 Y
‘where ' | ) ,
A= {aij}-}'f i,j.=.llr.f,N:, .

<

. The "condition number'; k(A), of sqparednon~singn1ar

matrix A is defined by k€A) = ||A|| IlApl[l. ‘ClearIy‘the

condltlon number depends upon the ‘matrix norm whlch is ‘

+

chosen., Regardless of the matrlx norm, hoWever, it can

"be shdwn that ||I|i < K(A) ‘<.w. For the spectral norm K (A)

‘

uL/uS where M, and us are respectlvely the 1argest and

smallest, necessarlly p081t1ve, elgenvalues of the matrlx
T

"AAT. In general x(a) 1s a measure of the Stablllty of the

~.1nverse problem glven by equatlon (1 2). Unstable systems

"are aSSOC1ated w1th .large condltlon numbers . and are termed

"111 conditioned'. = . - s

PAPIN
SR
&, T

A- flnal polnt worth mentlonlng is that if y = Ax

then for any vector norm and assoc1ated induced matrlx
»

PO . Y

,IIa_rII ||A|| x| .

-
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vy . Appendix 2 - , \

PN

The anale1s of dlagonal matrlx form under ortho-
gonal equiValence is based upon the followlng theorem and
dlscusslon. If A is a real nxn matrlx then there EXlSt
two real n><n orthogonal matrices U,V so that U Av is a
diagonal matrlx D; furthermore we may choose U and V so

that the dlagonal elements of D are

where r is the rank |
o, -
consider A as representlng a

N
llnear transformatlon of one n-dlmen51onal space G into’

B ! %ﬁ{gsr‘sul,. ve U, are the
AR .

51ngu1ar values of A.

a second such space H. Thus h = Ag is in H for any.g i

G. Now effect an orthogonal change of coordlnates in

space G and- dlfferent orthogonal change 1n space H such '
a’

that we have the new representatlons g = Vg and h = Uh'

T

formatlon A obtalns the 51mp1e representatloayof the

matrlx D Thus we have h' = Dg'. The transformation

now 51mp1y maps the flrst coordlnate axis of G onto the

) flrst coordlnate axis of H w1th a magnlflcatlon factor- -

nd rd th

VO. It does” the same for the 2F 3 «.. Ir  coor-

By 7
dlnate ‘axes w1th magnlflcatlon factors uz,...,u The

(r+1) thq...,n—th coordinate axes of G are mapped onto

2

the zero_vector of H. ‘The most 1mportant result for the

© purpose of'appliCations to seismic arrays is that D %aps

e

- L . T

- ASs a result of the. changes of bases in. G and H the trans-

-



the unit“hypergphpre S = {g':llg‘l[- 1} .into an r-

dimgnsionql hyperellipsoid E = DS of vectors h'iéuch

that K ; : N
mp? (1?2
'—'—2—‘—’ + eeo + —‘—z_ S 1 .
uy ueoo

.
L 4 .
- ® ’
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Apgéndix 3

" Tau Inversion Program

.
\ The ' follbwing computer program calculates velocity-
-depth limits for givgnhT(pi limits using the algorithm
giQen by Bessonova et al (1974). It‘is‘assﬁﬁédsthat

the t(p) limits are calculated from the normaligéé travel

-

time, T', and distance observations, X', that is

+

T = T2 ¥

v .

© X! ﬁx-/z VSUR \

where T (sec) and X(km) are the actual travel times and
- distances and VSUR (km/sec) is the velocity at the surface

of the eaﬂih. Thus

T(p) i T' _‘pxl .
and

p = dT'/adx' .

The upper and léwer bounds'TU(p) and rt(p) for the funq—
-tion»mip)'are given ihdtefms of pieééwise second order
polynémials in p and

MU = number of'pblyhomials defining TU(p)

$oe s

ML number of polynomials defining TL(p) .

LY N

For the function TU(p), the p axis is éegmented by the

values

—

o -
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pPU(r), I = 1, NU

where ’
: NU = MU + 1, pu{l) = 1.0 ,

and
- PU(I+1) < PU(I) for all I.

The function Ty,(p) 1s then defined by, )

i e

4 (P) Z AU(I) + BU(I)p + CU(D)p? for PU(I+1) < N pU(I) .-
Ssimilarly for the function!rL(p)_the p axis is segmented

by the values, .

PL(I), I =1, NL

\-Whe re ' - /

NL = ML + 1, PL(1) = 1.0

and T

pL(I+i)-< PL(I) for all I.

The’function"rn(p) is en defined-by

—

T (p) = AL(I)+—BLgx)p-+CL(1)p2 for PIAI+41L) s p < PL(I).

It is assumed that PU(NU) = PL(NL). Now NLVZS is equal
’to.the number of lowﬁvelopitj zones Under'conéideration.
The gquantities QU (J) and QL(j), J = l,...,‘LVZSldefipe
the region of uncertainﬁy along ;help aiis for which t(p) . N
(\hay eghibit a 'jump’ COrresponding to tp§~J:£ iéug -

veldcity zone. "Thus for the Jth low Veibcity 20ne\Ehg

jump may take place at a slowness vaﬁue q for which

¢
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QL(J) < g £ QU{J)

.It is assumed that

QU (J+1) < QL (J)
and .

L
- QU(l) < 1.0 .

The quantities SIGU(J) and SIGL(J) define the uncertainty
of the jump in 1(p) associated with the Jth low velocity

zone. Thus if At is the jump in Tt(p) associated ‘with

the Jth low velocity zone then, A;_—____,_,_—””4////////

e

—Used to determine a rough estimate of th

SIClbF =T % S1GU (J)

e

.The quantity UMAX(J) is the maximum slowness which can

v "
be attained within the Jth low velocity zone. °
)

The values SAM and NDIV define coarse and fine sampling

a

. S

parameters respectively used in the search for upper

and'lowegfzg;ggityﬂbouﬁa§fﬂn§3M is a slowness sampling
T : T . ”
location along

the p axis for which upper and lower boukds are attained;
.a more precise estimate is then attained/with a search
condu!&ed in the region of the rough egtimate with a

slownéss sampling interval of SAM/NDI

Input . F
The input must be in the following order and

format.
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9.

0.

11.

12.
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NU, NL FORMAT (21I5)
PU(I), I = 1, NU FORMAT (2F15.3)
PL(I), I =1, NL FORMAT (2F15.3) —

n

(AU(I),BU(I),CU(1)), I 1, MU "FORMAT (3F20.0)

(AL(I),BL(I),CL(I)), I 1, ML FORMAT (3F20,0)

0

ILU(I), I = 1, MU’ FORMAT (10I5)
If CU(I) = 0 then ILU(I)‘= 1, and otherwise

ILU(I) = 0.

ILL(I), I = 1, ML ° FORMAT (10I5)
If CL(I) = 0 then ILL(I) = 1, otherwise
ILL(I) =.0.
SAM | - FORMAT . (F15.3)
"NDIV FORMAT (I5)
,»—"’ff/“. o .
VSUR FORMAT (F15.3)

VSUR is the actual velocity at the surface of

the earth in km/sec,.

4

NREGS  FORMAT_ (I5)

: T
NREGS is related to the number of low velocity:
zones; NLVZS . If QL(NLVZS) > PU(NU) then NREGS =

2 NLV2ZS + 1. . If QL(NLVZS) = PU.{NU) then NREGS =

2 NLVZS. “"*‘*‘“““"“*——-—-—-—*~_§**h~m___;_\_“*§$}ﬁh |

NVELS(K), K = 1, NREGS FORMAT (10I5)

rd
4
~
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This quantity gives the number of alownoss vallies
for_wﬁicﬁ upper and lchr depth bounds are acquired
#  within certai; regions of the slo;ness axis. For
this purpdse the 1st region of the slowness nxis'rﬁ
given by QU(l) <.p 2 1. The Kth region for k + 1 and
K even is éivén by QL(K/2) < p :’QU(KVZ)./ The Kth '

regipn for K > 1 aqd K odd is given by
QU(K+1)/2) < p < QL((K+1)/2 - 1) .
7

If there are no low velocity zones then there is only
. .

one reqgion, namely PU(NU) < p < 1. Upper and lower
depth bounds are calculated for equi-spaced slowness

values within the regions.

13. NLVZS FORMAT (I5)
: *

14. (SIGU(J),SIGL(J),QU(J),bL(J),UMAX(J),MUST(J)),J=1,NLVZS.

FORMAT (S5FI15.5,15)

The‘previously undefined quantity MUST(J) refers to

the Jth,léw velocity zone,. If MUST(J) = 1 then a low
velocity zone must occur and if MUST(J) = 0 then a
low velocity zone may occur. Notice that MUST(J) = 0
if and only if SIGL(J) = 0.0. ®

Output

For each low velocity zone the following quanti-

ties are given,

—~

S '



R

©(ii) the maximum thicdkness of the zone assuming the

- )

s T,

(i) the maximum slowness. of the zone assuming the

maximum thickness and 7t (p) jumps of SIGL(J) and SIGU(J).

s

~ . & ‘
maximum possible slowness and T (p) jumps of SIGL(J)

P

-

W - . e

and SIGU(J). R ,\

i

“The above”results are given in terms of 'the 'flat earth'

veloc1ty depth’bounds assoc1ated with the normalized
T(p) envelope. : i L '

‘ Upper and lower depth bounds foreveiooity‘are
given.invterms.of an @&tual spherical earth; depths arew

given in km and velocities in km/sec.

OperationalAProoeaure . - .

The calculatlon of the upper depth 1limit lS done

'1n SUBROUTINE UPPLIM . wthh in turn calls SUBROUTINE ULIM.

«
Similarly JOWergllmlt oalculatlons are~performe9 by

SUBROUTINE‘LOWLIM which calls SUBROUTINE LLIM. ‘Low .
veloc1ty zone calculatlons are done Wlthln the main

program. At pz\_ﬁnt the program is set up such that 1t:

‘can handfe up 5 low velocity zones, 209 piecewise poly-—

- noniai descriptions of the upperdandtlower T(p) bounds, -

and give 500 estimates of upper and.lower depth bounds.

If more of the- above parameters aﬁe requlred then a

751mp1e change of the dlmen51on statements would be

*

‘:j_‘

 nécessary.

194
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DOUBLE pazcxszon SIGU(S).SIGL(S).00(5).QL(5)
DOUBLE PRECISION HMAX(S) ,HNYX (S) ,UBAX(S) ,UMIN(5) -

DOUBLE -PRECISION A+{500),B(500) . ABEST(SOO),BBEST(SOO)
DOUBLE PRECISION VA(SOO) va(500) SAVE(5,50) _ -
DINENSION MUST (5), NVELS(11) . @ - ’
DOUBLE PRECISION SKE,TH,THN, SLOW, PD,ARG1,ARG2

- DOUBLE PRECISION PU(210),PL (210)

DOUBLE PRECISION AU (210),BU(210),CU0 (210)

DOUBLE PRECISION AL (210), BL(210),CL(210)

DINENSION 'ILU (210),ILL (210)

‘DOUBLE PRECISION. ;' . DIV,SAM,VEL, DEP R, VSUR, pacr
COMNON PL,PU . . - %

COMMOYN "AU,BU, CU,AL BL CL

COMNMON SAM, .

-connou=nn1v NL,NU : , S
COMMON ILL,ILU ‘ ! : : — .

. 37 FORNAT{1H ,'THE !INIHUH POSSIBLE SLOWNESS ISs*'
“ . 1,F15.10) , ' .
38 PORHAT(1B 'L ) -
T*MAX. SLOWNESS POR Héf/THICKNESS AND HIN SIGL"

. 1,P15010)
39  PORMAT(1H , : S
. T1*NAX THICKNBSS PdR ﬂlx SLOWNBSS lND MIN SIGL=" ' R
§1 F15.5) : :
41 FORHKT(1H .'Hlx THICKNESS OF LVL',IS. ,P15 5) :
42 FOR!AT(1H ,'HAXIHUH THICKNESS POR ‘MAX SLOW“ESS ISs'.
1, P15. 5)
43 Q PORH‘T(IH],'H!J SLOWHESS FOR Hlx THICKNESS",F15 10)

100 PORNAT (101I5)

101" FPOBMAT (2F15.3)
102 - FORNAT (3F20.0)
2222 PORMAT(1H ,2F10.3, /)
2223 FORMAT (2P10.3) -
4343 FORBAT(1H , *NU,NL,PU, PL;, AT, BU,CU,AL BL,CL,SAN,NDIV
1, VSUR, ILUO ILL‘NREGS NVELS,NLVZS, SIGU,SIGL,QU,QL i
1, unnx.nusr-)
4345 roau;m(1a +3D20.10) : R
4346 FORNAT (1H ,5D20.10, 15) . .
7000 FORMAT (SF15. 5,15) . - - . '
. R=6371.0D0 - ': _ S .
READ(5,100) NOU,NL - . .- - . e
.REBAD (5,101) (PU(I) 1= 1,30) -
READ(5,101) (PL(I).I 1,NL)
MO=NU-1. . - . R
ML=NL-1 e : P _
READ (5,102) ( (AU (I) ,BU(I),CU(I)),I=1,HN0U) : v
READ (5,102) - ((AL(I),BL(I) CL(I)),I 1, 8L) 8 :
READ(5,100) - (ILO(I), 1=1.uuy - ;
READ (5,100) (ILL{I),I=1,NL)"
DO 2228 JV=1,NU . . ’ S .
PU (JV) =PL (JV) - S S ‘ b '
- ‘AT (JV) =AL (JV+1) LA ' R :
2228 CONTINUE ’
~ DO 2229 JV=1,M]
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ILU(IV) =1 R
ILL(JV)=1 -
" BU(JV)=0,0 ' o L .
BL (JV)=0.0 , o ' 1
co(Jv)=0.0 . S
CL{JV)=0.0 - - .
2229 CONTINUE -
READ(5,101) SAN
READ (5,100) KDIV
READ(5,101) VSOR
READ (5,100) NREGS
READ (5,100) (NVELS (I),I=1,NREGS)
READ (5,100) NLVZS
IF(NLV2S.EQ.0) GO TO 448

- READ (5,7000) ((SIGU(I),SIGL(I), QU(I).QL(I) uunx(x)
1,M0ST(I)) ,I=1 NLVZS) R
8 CONTINUE :
PD=PL (NL) 4
WRITE(6,4343) - A

WRITE (6,100) NU,NL
WRITE (6,8344) (PU(I),I=1,NU) N
» WRITE (6,4384) (PL(I),I=1, L) N\ .
4344 FORNAT (1H ,5D20.9)
WRITE (6,4345) (AU (I),BU(I),CU(I),I=1,NU).
WRITE (6,4345) (AL (I),BL(I), CL(I),I 1,80)
WRITE (6,4345) SAM
WRITE (6,100) NDIV
WRITE (6,4345) VSUR D
WRITE (6,100) (ILU(I),I=1 ,50) SR
- WRITE (64 100) ‘(ILL(I),I=1,HL) - o -
WRITE (6, 100) NREGS,NVELS,NLVZS ;
WRITE (6,4386) (SIGU (). sIGL(I).QU(I).QL(I) UHAX(I)
1,M0ST (1)) ,I=1,NLVZS)
IF(NLVZS.EQ.0) QU (1) =PL (KL)
DIV={1.0D0-QU (1)) / (NVELS (1) +1)
NRA=NVELS (1)

- DO 10 J=1, KN ' o U
. A{J)=1,0D0-DIV%J " o . T
BEay=a(3) =

10 CONTINOE
" NV=NVELS (1) N
IF (FLVZS.EQ. 0) Go.To 40
II=0 - S o , '
IF (NREGS.EQ.2) . Go TO 30 7 S . ' ‘.
. IJK=NREGS -1 ' o ‘ |
DO 20 I=2,IJK
.  IP(II.2Q.1) GO TO 60
- DIV-(QU(I/2—QL(I/2))/(NV&LS(I—1)
-MME=NVELS (I)
no 70 J=1,M8N
(J+NV)’QU(I/2-(J—1)tDIV
70 . B(J+NV)=A(J¢RV) h
' A(1¢RV)=QU(I/2) I |
B(1#8NV)=QU({X/2) = .- . E - I e
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”A(NVELS(I)VNV)~QL(I/2)

B (NVELS (I) +NV) QL(I/Z)
GO TO 19
DIV= (QL((1-1)/2-QU(((1—1)/2)+1))/(NVELS(I)+1)

" MNN=NVELS (I) .

DO 80 J=1,MNN e C . _ .
A (J+NV) QL((I—1)/2 J*DIV , : ' -
B (J+NV)-A(J+NV) . . Lo ' e
NV= NV&NVELS(I) ST ' ' ’ ‘
II=II-1 : '

IF(IX.EQ.~1) II=1

CONTINUE :

CONTINUE

IF(II.EQ.0) GO TO 90

DIV=(QL( (NREGS~- 1)/2-PD)/(NVELS(NREGS)+1)- : ..
IXXX=NVELS (NREGS) i T ’
DO 92 J=1,YXXX

L,;A(J+NV)—QL((NREGS-1)/2 —~J*DIV

B (J+NV)=A (J¢NV) ,
Nv= =NV+NVELS (FREGS) * L
GO TO 40 - ‘ ~
CORTINUE

: nIV-«qu(uREGS/z—pD)/(nszs(NREGS))

© 93
. 80

2000

79

78"
77

IXX=NVELS (NREGS)
DO 93 J=1,IXX ‘ . B T :
A(J+NV)=QU(NBEGS/2~(J 1)*D1v , i oy

"B (J+NV) =1 (J+NV)

uv-nv+nv3L5(nRBGS) S ‘
CONTINUE : R S *
CALL LOWLIN (A (J),VA(J),BBEST (J)) o

CALL uppn:u(a(a) VB(J) ABEST(J))
CONTINUE

IF (NREGS.EQ.1). GO 0 8000
MVI=NVBLS (1) +1

nv2= usz5(1)+nsz5(2)

NV1=2 - _/- - :
NV2= =NVELS (1) #NVELS(2) . ~ = = =~ _ o\
DO 800 K=1,NLVZS ST - o

DO 79 . a=uv1 NV2

_IP(VA(J) LT. VL(J—1)) “l(J) VA(J°1)

JJ=0
DO 78 J-HV1.BVZ
JI=JI+1 .

'SAVE(K,JJ)= VA(J)

DO 77 J=HV1,mV2 s

VA(J)=VA (HNVT)

IP(II.BQ.O.AHD.K EQ. NLVZS) GO TO 800
IP(II.BQ.1 AND.K.EQ. NLVZS) GO>T0 3000
LYI=NV2+ 1 '

fLVZ—NV2*RVELS(2*K+1)+NVELS(2*K+2)

PO 76 J=LV1,LV2

‘IY(BBEST(J).GT.QL(K)) GO TO 75 : | -

SKE= (A(J)GBBBST(J))/Z ODO
DO 55 K¥=1,K "



o

- *
ARG 1= DSQRT(UHAI(KV)tUHAX(KV-QL(KV)tQL(KV))
ARG2=DSQRT (QL (KV) #QL (KV-SKE&SKE)
VA (J) =VA (J- (SIGU (KV) = (1. 0D0—(ARG2/ARG1)*DATANZ(ARG1
" 1,ARG2))) =2. 0D0/(3.lu159265358979D0¢ARG2)

55 CONTINUB

- GO TO 76 ‘ -

75 VA(I) VA(J-1)

76  CONTINUE-
GO TO 799 . . :
3000 CONTINUE " o
LV1=NV2+t = '

198

va—uv2+nsz5(2*x#1) o : o 1 a

DO 74 J=LV1,LV2
"IF(BBEST(J) .GT.QL(K)) GO TO 73
SKE=(A(J) +BBEST (J)) /2. ono
DO 99_K¥V=1,K
ARG1= DSQRT(UHAI(KV)*UHAX(K'-QL(KV)tQL(KVL)
ARG2=DSQRT (QL (KV) #QL (KV-SKE&SKE) = .
VA(J) =VA{J- {SIGU (KV) = (1. ono-(Ancz/aas1)*nnran2(anc1
1RG2))) »2.0D0/ (3. 1u159265358979no*aacz)»,
99 COKNTINUE ; o .
GO TO 74

-73 - VA(J)=VA(J=1)

74 CONTINUE

| 0 3% J=LV1,LV2
{////gr(vA(a) LT.¥A @-1)) VL(J)-VA(J-1)

Go To 800 . . .
799 . CONTINUE: : U
" IP(K.EQ.NLVZS) GO TO 800 - o
 MV1=MV2+¢NVELS (2&K+1) + 1 - Q&
) uv2—5v2+nv3L5(2¢x+1)+uv3LS(2¢x+2)
{ NVI=NV2+¢1
NV2= NV2+NVELS(2*K+1)+NV3LS(2#K+2)

800 .CONTINUE-

MV1=NVELS (1) +1
HV2=NVELS (1) +NVELS(2)

RVI=NV2+1

DO 900 K=1,NLVZS , _ , :

'HEAX (K) =0. ono A . N
JJ=0 _ i , . .
DO 5005 J-uv1,uv2

JI=JJ+1

TB—VB(J—SAVE(K JJ)
" IP(TH.GT. aunx(x)) auax(x)—rn
5005 CONTINUE ., - . .

* WRITE(6,41) x.au;x(x)
THB*SIGU(K)/DSQRT(U!AI(K)#UBLX(K—QU(K)*QU(K))
' SLOW= nsoar((szsn(x)*sxcu(x))/(nan(x)*aunx(x))
~1+QU (K) QU (K) )
WRITE(6,42) THE
WRITE(G “3) SLOowW. . . :
IP(HUST(K) EQ.0) GO TO sn e
THM= SIGL(K)/DSQRT(UHAI(K)tUﬂAI(K-QU(K)*QU(K))
SLow DSQRT((SIGL(K)*SIGL(K))/(ﬂﬂh!(K)tBﬂAI(K))

3 %
¢

'A

o ’ ) . \\“»,
. ///.
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A

1+QU (K} «QU (K))

19 (K

WRITE (6,39) THA

WRITE(6,38) SLOW
UBIH(K)=D$QRT((SIGL(K):SIGL(K))/(HHAX(K)*HHAX(K))

1+QU (K) #QU (K))

WRITE (6, 37) UMIN (K)

. IF(II.EQ.O.AND.K. EQxNLVZS) GO TO 900

‘88

54

‘900

© 4000

r

3333

-3338

1G2))) »2.0D0/(3- 1“159265358979#&RGZ)

DO 88 J=NV1,NV
SKE-(ABBST(J)#B(J))/2 ODO

, ARG1=DSQRT(UHIN(K)tUHIN(K-QU(K)*QU(K))
ARG2=DSQRT (QU (K) *QU (K-SKExSKE)

VB (J) =VB (J- (SIGL (K) (1. ODO—(hRGZ/ARG1)tDATAN?(ARG1,AR

CONTINUE e B o
IF (11 BQ-l/iiD.K EQ. nnvz5) GO TO 900 o s
CONTIND . .

HV1=!V20HVBLS(2¢K*1)*1

| uvz—uvz’uszS(z“x+1)¢uv3LS(2¢x+2)' Y

AV1=NV2+¢1 — o

CONTINUE e T : -
CONTINUE - - ~ ,‘_ , S
DO. 3333 J=2, WV : . .
" IF(VA(J) . LT.VA(J—1)) VA(J)=VA(J—1) ‘ :
CONTINUE

K=NV ‘ . -

T J2=NV-1

DO 3338 J=1,32

K=K-1 . ‘
IF(VB(K) cr.va(x+1)) vs(x) VB(K+1) -
‘DO 3335 J=1,8V , o

" FACT=DRIP (-VSUReVA(J)/R) . - - o

VEL=VSUR«FACT/A (J) -~

"DEP=Rx% (1. 0D0O-FACT)

WRITE (6,2222) VEL,DEP

. WRITE(7.2223) VEL,DEP-

PlCT‘DBIP(-'SUR*'B(J)/R)

. ‘VEL=VSUR%PFACT/B (J)

3335

-DEP=Rx {1.0D0-FACT) o
 WRITE (6,2222) VEL,DEP . =~ ©

WRITE(7.2223) VEL,DEP :

CONTINUE = - o
CALL EXIT - s ' -
END = . S



© 200

»~

'SUBROUTINE LOWLIH(A VBEST BBEST)

DOUBLE PRECISION A, VBEST, BBEST,SAHP SAM,B1,B2
DOUBLE PRECISION VAL1, VAL2, BOLD OLD,SDIV,B VAL
DOUBLE PRECISION PU(ZIO),PL(210)

DOUBLE PRECISION . AU (210), BU(210),C0(210)
DOUBLE PRECISION AL (210),BL (210) , CL(210)

DIMERSION ILL(210) ILU(210)
COMMON PL,PU

'counon.ab BU, CU,AL BL, eL

COHHON'SA!

- CONNON. NDIV, RL,NU_ Y

1000.

10 °
11

COMNON ILL,ILU.

FORMAT (1H ,3F15.5)

DO 10 II= 2, NL

II7=11

IF(A.GE. PL(II)) GO TO 11

CONRTINUE

NRLA=II7-1

'~ SANP=SAN

B1=A+SANP
B2=A+2, ODOtSAHP

' IF(B2.LE.1.0D0) GO TO 2

SANP=SANP/2,0D0

GO TO.1

CALL LLIN(A, RRL!,B1 VALY1)
CALL LLIB(A,NRLI,BZ VAL2)
IF (VAL2.GT. E£L1) GO TO K
GO TO 3 ~ ‘ ‘
BOLD=B1

OLD=VAL1

VAL1=VAL2 . -~

- B1=B2 .

B2=B2+SANP

IF(B2.LT.1.0D0) GO_ TO 5 e
'B2=1.0D0 - -

. CALL LLIH(!,RRL!,BZ,VALZ)

"IF(VAL2. LE.VAL1) GO - -TO 6
. BBEST=B2 :

VBEST=VAL2

"GO TO 7

CALL LLIB(A RRLA,Bz,VlLZ)
IP(VAL2.GT.VAL1) GO TO 4
VBEST=VAL1 -

BBEST=B1
SDIV=(B2—BOLD)/(NDIV+1)
DO 90 K=1,NDIV

"B=BOLD+KtSDIV

CALL LLIH(! NRLA, B, VAL)

IF(VAL.G6T.VBEST) BBEST=B"

CONTINUE )
CONTINUE.
WRITE (6, 1000) A.VBBST,BBBST

IF(VAL.GT. vansr) vnnsr=vnn7'

' RETURN
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20
21

110:

SUBROUTINE LLIH(A,HRL!,B,V)

DOUBLE PRECISION A,B,V,P1,P2,P3,P4,R1, R2 R3,RG
DOUBLE PRECISION Q1,Q2,Q03,Q04,T3,T4,23,24,V1, V2
DOUBLE PRECISION SAHN

DOUBLE PRECISION PU (210) ,PL(210)

DOUBLE PRECISION AU(210),BU0(210),CU(210)
DOUBLE PRECISION AL (210),BL (210),CL(210)

- DINENSION ILL(210),ILU(210)

'COMMON PL,PU , )
COMNON AU,BU,CU,AL,BL,CL _ ' )
'COMMON SAN B :
COMMON WDIV,NL,NU

COMNON ILL,ILU

DO 10 I=2,NL

I7=I :

IP(B.GT.PL(I)) GO TO 11

CONTINUB o '

. NRBP=I7-1. . - B .
DO 20 I=2,NU

I7=Y .
IP(B.GE.PU(I)) GO TO 21
CONTINUE

" NRBS=I7-1

IR=NRLA-MRBPF -

P2=B

IP(IR.GT. orxpzapn(uanay
R2=A/P2

Q2=P2#P2-Ash .

V1=AL(IRL1)tDlRCOS(RZ)#ltBL(!RLl)t(DLOG(P2+DSQRT(02))

1-DLOG (A)) *

IP (ILL (NRLA) .EQ.1) GO TO 110
v1=v1+n¢cn(uaL1)¢nsonr(oz)
CONTINUE - '
IF (IR.2Q.0) GO TO 40

- P1=PL (NRBFP+1)

P2=B
R2=1/P2
Q2=P2#P2~-AxA
Q1=P1aP1-AxA"

R1=A/P1

'v1=v1+LL(:RBP)t(DARCOS(nz-Danc05(31))+1¢BL(uanr)*nLos'

© 1((P2+DSQRT (Q2) )/ (P1+DSQRT (Q1)))

IF (ILL (NRBF) .EQ. 1) GO TO 111

’Av1=v1+A:CL(unBr).(nsoar(qz -DSQRT(Q1)) "
REEE I - .

CONTINUE -
IF (IR.EQ.1) GO TO 40
- NT=IR-1
DO 50 J=1,NT- ~y

.P1=PL (NRLA=-J+1) .

P2=PL (RRLA-J)

R1=A/P1 L - -
'R2=a/P2 T . e
Q1=P1%P1-A«d A L

o Q2=P2#P2-AxA

202



112
40

113

. Z4=P4«P4-~BxB

114
70
.60,

Vl*Vl#AL(NRLA—J)t(DlRCOS(RZ-DlRCOS(RI))+AtBL(NRLl—J)¢ v
1DLOG((PZ#DSQRT(QZ))/(Pl*DSQRT(Q1)))

IP(ILL (NRLA-J).EQ.1) GO TO 112.
V1=V1¢A*CLIIRLA-J)t(DSQRT(QZ-DSQRT(Q1))

CONTINUE

CONTINUB

CONTINUE

v2=0.0D0

IF(B.EQ.1.0D0) GO TO 60

P3=B

P4=PU (NRBS)

RU4=A/PY

R3=A/P3

Q3=P3xP3-Ax%A ‘ N »

QU=PU«PU-AxA , . |
T4=B/PlY ) .
Z4=P4sP4-BxB

V2=AU (NRBS) = (DARCOS (R4~ DARCOS(R3 DARCOS (T8) ) +BU (NRBS
1)*(l*(DLOG(PQ#DSQRT(QQ)—DLOG(P3ODSQRT(QB)))OBt(DLOG(P
13-DLOG (PU+DSQRT (28) ) ))
IP(ILU(NRBS).EQ.1) GO TO 113
V2—V2+CU(IRBS)*(A*(DSQRT(QR—DSQRT(Q3)—B*DSQRT(ZQ))
CONTINUE
IEJHRBS EQ. 1) GO TO 60

MT=NRBS-1 X
DO 70 J=1,HT
p3=90(3335*1-a)
P4=Py (NRBS-J) ° -
RG4=A/PY .
R3=A/P3 : " ‘ =
T3=B/P3
T4=B/P4
04=PQ¢P“~Atl
Q3-P3:P3-l*l
Z3=P3xP3-BaB

V2=V24AU (NRBS-J) & (DARCOS (R&4~- DARCOS(RB DARCOS(TR AR
1C05(T3))+BU(NRBS~J)*(l*(DLOG(P4+DSQRT(QQ) ~DLOG (P3+DSQ
1RT (Q3) ) ) +Bx (DLOG (P3+DSQRT (23)- -DLOG (P4+DSQRT (24) ))) -

IF (ILU (FRBS-J) iEQ.1) GO TO 114- -
72—72+CU(NRBS—J)t(l*(DSQRT(QQ~DSQRT(Q3)—B*(DSQRT(ZQ)
1-DSQRT (23))) <
CONTINUE - -

CONTINUE
CONTINDE

V= (V14V2) x2.0D0/ (B-A)

V=V/3.14159265358979D0

RETURN A '

END
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SUBROUTINE UPPLIN(B,VBEST,ABEST)

DOUBLE PRECISION B, VBEST,ABEST,SAMP,SAM,A1,A2,PD
DOUBLE PRECISION VAL1,VAL2,AOLD,OLD,SDIV,A,VAL
DOUBLE PRECISION PU (210) ,PL (210)

DOUBLE PRECISION AU (210),BU(210),CU (210)
DOUBLB. PRECISION AL (210),BL(210),CL (210)
DIMENSION ILL (210),ILU(210)

COMMOX /PL, PU

comnoy AU,BU,CU,AL, BL,CL

COMMON SANM

COMMON NDIV,NL,NU

COMMON ILL,ILU

FORMAT (1H ,3P15.5)

PD=PU\NU)

DO 10 II=2,NU

II7=IY ’ ,
IF(B.GT.PU{IX)) GO TO 11

CONTINUER

NRUBF=IX7-1

poO 20 JJ=2,NL

JJI71=3J

IFP(B.GE.PL(JJ)) GO TO 21

CONTINUE

NRUBS=JJ7-1

SANP=SAN

A1=B~-SANP .
A2=B—2.0DO0xSAMP

" IF(A2.GE.PD) GO TO 2

SANP=SANP/2.0DO

GO TO 1

CALL ULIM(B,NRUBF,NRUBS,A1,VAL1)
CALL ULIN(B,NBUBF,NRUBS,A2,VAL2)
IP(VAL1.GT.VAL2) GO TO &

GO TO 3

JAOQLD=AT .

OLD=VAL1

VAL1=VAL2

A1=A2

A2=A2-SAMP

IF(A2.GT.PD) GO TO 5.

A2=PD

CALL ULIN(B,NRUBF,NRUBS,A2,VAL2)
IF(VAL2.GE.VAL1) GO TO 6

_ ABEST=PD
. VBEST=VAL2

GO TO 7

CALL ULIM(B,NRUBF, HRUBS,AZy}lLZ)
IP(VLLZ LT.VAL1) GO TO & .
VBEST=VAL1 o
ABEST=A1

SDIV= (lOLD—AZ)/(NDIV*1)

"DO 90 K=1,NDIV . . , .

A=XOLD-K#SDIV - _
CALL ULIN(B,NRUBF, NRUBS, A, VAL)
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IFP(VAL.LT.VBEST) ABEST=A

IF(VAL.LT.VBEST) VBEST=VAL

CONTINUE

CONTINUE . .
WRITE(6,1000) B,VBEST,ABEST ‘
RETURN

END
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SUBROUTINE ULIM(B,NRUBF,NRUBS,A, V)

DOUBLE PRECISION B,A,V,P1,P2,P3,P4,R1,R2,R3,R4
DOUBLE PRECISION Q1,02,Q03,Q4,T3,T4,23,24
DOUBLE PRECISION V1,V2

DOUBLE PRECISION SAN

DOUBLE PRRECISION PU (210) ,PL (210)

DOUBLE PRECISION AU (210) ,BU0(210) ,CU(210)
POUBLE PRECISION AL (210) ,BL(210) ,CL(210)
DINENSION ILL(210),ILU(210)

* COMMON PL,PU

'COMNON AU,BU,CU,AL, BL,CL
COMMON SAM

COMMON KDIV,NL,NU

COMMON ILL,ILO

DO 10 I=2,NO

I7=1

IP(A.GE.PU(I)) GO TO 11

CONTINOUE,

NRA=I7-1

IR=NRA-NRUBP

P2=B

IP( T.0) P2=PU(NRA)

R2=A/P2

Q2=P2&P2-AsA

Vi= =AU (NRA) «DABCOS (R2) ¢ A« BU (NRA) * (DLOG (P24DSQRT (Q2) -
10G (A))

IP (ILO (NRA).EQ.1) GO TO 110
V1=V14AxCU (NRA) «DSQRT (Q2)
CONTINUE

IP(IR.EQ.0) GO TO 10
P1=PU (NRUBF+ 1) :
P2=B

R1=A/PT

R2=A/P2 :
Q2=P2#P2-AxA
Q1=P1xP1-AzA"
V1=V1+¢AU(NRUBPF) »« (DARCOS (R2~- DlRCOS(R1))+A*BU(NRUBF)*DL
10G (((P2+DSQRT (Q2)) / (P1+DSQRT (Q1)))
IF(ILU(NRUBFP).EQ.1) GO TO 111
V1=V10l¢CU(NBUB!)t(DSQBT(QZ DSQRT(Q1))

 CONTINUE

IF (IR.EQ. 1) GO T0 30

NT=IR-1 .

DO 50 J=1,NT

P1=PU (NRA-J+1)

P2=PU (NRA-J)

R1=A/P1

R2=A/P2

Q1=P12P1-AxA

Q2=P2aP2-AxA
V1=71+AU(IRA-J)t(DARCOS(R2—DARCOS(R1))+A*BU(NRL-J)¢DL
10G ( (P2+DSQRT (Q2) )/ (P1+DSQRT (Q1))) :
IP(ILU(NRA-J).EQ.1) GO TO 112
v1=v1¢n*c0(unn—a)*(Dsbar(gg-nsqar(o1))



SO/

112 CONTINUE
50 CONPLNUE
) CONTLNOE )
V2=0.0D0 .. //
IF(B. zd”1 0D0) GO TO 60
BP3=p
Pu=PL (NRUBS)
R3=A/P3
Ru=Ar/P4
T4=B/P4
Q3=P3sP3-AsA
QU=PUePY-AnA
Z4u=p4aPU-BsB
V2=AL (NRUBS) » (DARCOS (R4=DARCOS (R3-DARCOS (TU)) ¢+ BL (NRU
1B5) + (A# (DLOG (P4+DSQRT (Q4) ~DLOG (P3+DSQRT (Q3) ) ) +Be (DLOG
1 (P3-DLOG (P4 +DSQRT (28))))
IP(ILL (NRUBS).EQ.1) GO TO 113
V2=Y2+CL (NROBS) & (A+ (DSQRT (Q8~DSQRT (Q3) -BeDSQRT (28))
113 CONTINUE
IP (NRUBS.EQ.1) GO TO 60
MT=NRUBS-1
Do 70 J=1,AT
P3=PL (NRUBS+ 1-J)
P4=PL (NRUBS-J)
R4=A/Pl
R3=A/P3
T3=B/P3 §
T4=B/P4
Q3=P3#P3-AsA
QU=PUxPG~-AxA
23=P3sP3-BaB
24=POxP4~-BxB
V2=V2+AL (NRUBS-J) » (DARCOS (R&-DARCOS (R3-DARCOS (T4) +DA
1RCOS (T3) ) +BL (NRUBS-J) * (A« (DLOG (P4+DSQRT (QU4) -DLOG (P3+
*1DSQRT (Q3) ) ) ¢ B& (DLOG (P3+DSQRBT (23) -DLOG (P8¢DSQRT (24))))
IF (ILL (NRUBS-J) .EQ.1) GO TO 114
V2=V24CL (NRUBS-J)  (A» (DSQRT (Q4- DSQRT(Q3)—B:(DSQRT(ZQ
1-DSQRT (23)))
114 CONTINOE . N
70 - CONTINUE .
60 CONTINUE
V=(V1¢V2)+2.0D0/ (B-1)
- ¥=¥/3.14159265358979D0
RETURN
END



