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ABSTRACT

We construct optimal designs for the extrapolation of regression responses. These
designs are robust against small departures from both the assumed linear regression
model and the assumption of homoscedasicity in the errors. We derive the robust
extrapolation designs for different kinds of model-violation classes.

First, we assume the model departure is bounded in £,-norm. With the assump-
tion of homoscedasicity in the errors, we obtain the minimax extrapolation designs,
the bounded variance designs and the bounded bias designs for multiple linear regres-
sion without interaction terms in Chapter 2. When the errors are heteroscedastic,
we construct the minimax extrapolation designs for ordinary Least Squares estima-
tion and the minimax extrapolation designs and weights for weighted Least Squares
estimation for multiple linear regression with no interactions in Chapter 3. We also
exhibit optimal unbiased extrapolation designs and weights for general regression
models. All the designs in these two chapters are approximate, i.e. absolutely contin-
uous because the contaminant class is so full. By assuming polynomial fitted model
and design interval as [—1, 1], we find that the limiting density of optimal unbiased
extrapolation design has the support points of classical D-optimal design as its modes
when the extrapolation region is sufficiently “large”. Methods for implementing the
designs are discussed.

Second, with a rather thin model-violation class and the assumption of homosceda-



sicity in the errors, we seek robust optimal designs for extrapolation of polynomial
regression response. For straightline and quadratic fitted models, we observe that ro-
bust extrapolation designs turn out to be the minimum veriance extrapolation designs
and coincide with the D;-optimal designs when the extrapolation region is sufficiently
“large”. For cubic or higher degree fitted models, the designs can be constructed nu-
merically.

Finally, we discuss the possible applications of our designs to the low-dose extrap-

olation problems using a real data set in the literature.
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Chapter One

Introduction

In this dissertation we study the construction of optimal designs for the extrap-
olation of regression responses when bias is present and the errors are possibly het-
eroscedastic. The work consists of three papers which have been prepared for publica-
tion. Each chapter, from Chapter 2 to Chapter 4, is an independent paper. Chapter
5 contains applications and conclusions. This chapter presents a literature review of
(robust) optimal (extrapolation) designs and the motivation for the dissertation.

Section 1 gives the setup of the classical linear regression model and the model
assumptions. The classical design problems are introduced. In Subsection 1.1, we
present the commonly used criteria of optimality. The classical optimal designs cor-
responding to different kinds of criteria are given in Example 1 and Example 2. In
Subsection 1.2, we discuss the necessity of considering extrapolation in some practical
situations. Some optimal designs for extrapolation in the literature follow. Section
2 explains what the robust designs provide protection against and why we need to
construct these designs. Different kinds of model-violation classes are introduced.
This section is also divided into two subsections - reviews and examples of the robust
optimal designs and robust extrapolation designs. The robust optimal designs for

extrapolation studied in this dissertation are summarized in Section 3.



1 Classical design problems

In real life, we encounter many relations among variables. For example, how the
son’s height depends on his parents’ average height; how the strength of steel relates
to the amounts of some elements and how chemical components (carbon, manganese,
copper, nickel, chromiun and molybdenum) affect the physical properties of rebar,

etc. Suppose a linear relationship
ElY|x] = z"(x)0

exists between a response variable Y and an experimental vector x € R, where
z(x) € RP*! is a vector of regressors and 8 € RP*! is a vector of unknown parameters.
In order to estimate @ and explain certain aspect of this relationship, measurements
on Y are to be made for each of n points {x;, X2, .., X, }, which need not be distinct.
Because of the experimental errors, the observations (x;, y1), (X2, ¥2); ---; (X, Yn) follow

a statistical linear model
Yi =ZT(X1:)9+E,:, 1= 1,2,...,”, (1)

where the ¢; are uncontrollable random errors. Two classical assumptions made to

model (1) are
Al. The regression response E[Y |x] = z7(x)8 is exactly correct.

A2. The errors €; are uncorrelated and have variance 2.

2



Define X = (z(x;),2(x2), .., 2(x.))T and y = (y1,¥2,.--¥n)T. Under assumptions Al

and A2, the Least Squares (LS) estimate 8.5, given by
8.s = (XTX)"'XTy,

is the best linear unbiased estimate of @ in that among all linear unbiased estimates,
the covariance matrix of @ g is smallest in the sense of Loewner ordering of symmetric
matrices. Furthermore, we can remove the restriction on linearity if the random errors
are assumed to be normally distributed. This implies that 8.s is efficient. But, as

we know, 9[,5 has covariance matrix
COV(8.s) = a2(XTX)!,

which only depends on X, the so-called “model matrix”. Hence, the problem of exper-
imental design is to choose the appropriate X in order that COV (8.s) be as small as
possible. We will outline different criteria for optimally choosing X in the following

subsection.

1.1 Optimal designs and examples

Suppose we plan to perform an experiment whose outcome can be described by (1).
Let S C R? be the design space, from which the observation sites {x;,xXa, ..., X,} are

to be chosen. Let £ be a design measure, that is, the empirical distribution function



of {x;};:
€)= 6.,
with 6, representing the pointmass 1 at x, for any x € S. Our aim is to find an optimal
design, where the criteria of optimality will be given in the next part of this subsection.
In practice, £ must be a discrete probability measure, with £(x;), ¢ = 1,2, ..., n, being
an integral multiple of n=!. A design with this integral property is called an exact
design. But the exact design problem is very difficult and mathematically intractable.
A common way to handle this difficulty is to extend the class of designs, allowing £
to be any probability distribution on S. Define = to be the set of all probability
distributions on S. We seek an optimal design € € = and hope that an exact
design which approximates £* will be close to optimal. This is the viewpoint of the
approrimate design theory, which will be adopted throughout this dissertation.
Now, for any £ € =, define a matrix

Be = [ z(x)2” (x)d¢,
then B € NND(p+1), the set of all nonnegative definite (p+1) x(p+1) matrices, and is
called the information matrix of £&. Since B¢ = 1 X7 X, we have COV (8s) = gnngl.
The optimal designs are determined by minimizing appropriate scalar functions of the
covariance matrix, that is, the scalar functions of B;!, which are called optimality
criteria or loss functions. Denote by ¥ the loss function. The most popular design

criteria used in the literature are:



a). D-optimality: ¥(B;') = det(B;'), the determinant criterion.

b). A-optimality: ¥(B;') = tiytrace(B¢'), the average-variance criterion.

c). E-optimality: \II(BEI) = /\,,m(BE‘l), the maximum-eigenvalue criterion.
Given d(x,&) = zT(x)Bglz(x), x € S, we have two other criteria:

d). G-optimality: ¥(B;') = mazxesd(x,£), the global criterion.

e). Q-optimalty (or I-optimality): ¥(B;') = [5d(x,£)dx, the average-variance of

the estimate of the response surface criterion.

An elegant result of Kiefer and Wolfowitz (1960) shows the equivalence of D-
optimality and G-optimality. Followings are some examples of optimal designs in the
literature. For details, we refer to Fedorov (1972), Studden (1977) and Pukelsheim
(1993).

Example 1. With ¢ =1, S = [-1,1] and z(z) = (1,z,...,z7)T~ the p'*-degree
polynomial regression model, the D-optimal design assigns equal weight (1/(p + 1))

to the (p + 1) designs points {z;}’_, which are the roots of the equation

(1~ 2) - Py2) =0,

with P,(z) being the p**-degree Legendre polynomial. For example, these points are

< =+1.40.447 > when p = 3 and < %1, +0.655,0 > when p = 4. The A-optimal



designs and the E-optimal designs also have (p + 1) support points. The analytic
construction of these two kinds of designs are possible only in the simplest cases. But
it is possible to give a numerical construction by using iterative procedures. Here, we
just present some special cases. When p = 3, £ 4(£1) = 0.151, £ ,(+0.464) = 0.349 and
Ep(£1) =0.127, £(£0.5) = 0.373. When p = 4, £ 4(£1) = 0.105, £ ,(£0.667) = 0.25,
£.4(0) = 0.29 and £(£1) = 0.093, £5(£0.707) = 0.248, £(0) = 0.318. The @-optimal
design points counsist of the two end-points of design interval and (p— 1) interior points
which are the roots of the (p — 1)**-degree polynomial Qp-1, where Qq, Q1, Q2, ... are
the polynomials orthogonal with respect to the measure (1 — z2)dz. After the design
points {z;}!_, are calculated, the masses are given by

§ (.’L‘-)= (fsl,-z(:z:)dz)lm
o S o(Us B (x)dz)'/?’

i= 07 1’ ""p’

where [;(z) = Hj;éi(iz’i_—:% is the Lagrange interpolation polynomial.

Example 2. Let S = [0,1]?, and z(x) = (z,,Zs,...,z,)T —the multiple linear
model without interaction over the unit square. For simplicity, we only give the
optimal designs for p = 2 (For arbitrary p, we refer to Chapter 14 of Pukelsheim
(1993)). The D-optimal design and A-optimal design have the same sets of design
support points {(1,1)7, (1,0)7, (0,1)T}. But the masses are different: £,((1,1)7) =
Ep((1,0)T) = £p((0,1)7) = 3; €al(1,1)T) = 1 — 34z, £4((1,0)7) = £,4((0.1)7) =
5775 The E-optimal design is supported by two points { (1,0)7), (0, 1)7}, with equal

mass on each point.



1.2 Optimal extrapolation designs and examples

There are situations where the response may be observed at points in a set S (the
design space), with S being different from the set T on which the fitted values are
of interest. For example, when estimating the potential carcinogenic risks because
of exposure to environmental chemicals, Crump (1979) pointed out that direct es-
timation of the risk at very low levels of exposure would be difficult or impossible.
This requires the extrapolation of estimates obtained from the data observed from
relatively high levels of exposure. In connection with this extrapolation, the design
problem is referred to as the extrapolation design problem.

Under the regression setup (1) and assumptions Al, A2, the Least Squares predic-
tor of E[Y|x], denoted by Y (x), is the minimum variance unbiased linear estimator

for any x € T, with variance
A 2
Var(Y (x)) = o227 (x)(XTX) 1z(x) = %d(x, £).

Hence, if LS prediction is adopted, the extrapolation design problem is to choose £

minimizing some scalar function of d(x, §), for example, minimizing mazxer(d(x,£))

or [rd(x,&)dx. These are still called the G-optimality or Q-optimality problems.
With S =[~1,1], T =1, ¢t or T = {t}, t > 1, and z(z) = (1, z, 22, ...,z”)7, Hoel

and Levine (1964) show that the G-optimal extrapolation design is supported by the



Chebyshev oscillation points
T; = —cos(%), i=0,1,...,p, (2)

with masses £;(z;) x [;(t), the Lagrange interpolation polynomial. Kiefer and Wol-
fowitz (1965) extend the results to cover nonpolynomial regression problems, where
the regressors zp(x), 21(x), - - - , 2p(x) consist of a Chebyshev system. Spruill (1990)
considers the @Q-optimal extrapolation design and concludes by numerical compari-
son that the design whose support is the Chebyshev oscillation points (2) and whose

masses €y (z;) are proportional to (fr {2(z)dz)!/? is very nearly optimal.

2 Robust design problems

The experimenter builds regression models using his knowledge of the experimental
phenomena. The classical design and extrapolation design discussed above are ob-
tained by minimizing the variances of related estimates under the assumption that the
model is capable of providing a perfect representation for the relationship between the
regression response and experimental levels. However, the Least Squares estimator is
biased when the model is only approximately correct. Thus, three questions arise: a).
Are the classical designs and extrapolation designs still optimal when bias is present
in the model? b). Are the model departures so significant that we can assume a new
model before constructing the optimal designs and extrapolation designs? c). Can
the classical designs provide any opportunity to check the model adequacy?

8



G. N. P. Box and N. Draper might be the pioneers who considered these problems.
In their paper of 1959, they make clear the dangers of using the classical designs when
the model is not exactly correct. By fitting a straightline linear regression model when
the true response is quadratic, they conclude that “The optimal design in typical sit-
uations in which both variance and bias occur is very near the same as would be
obtained if variance were ignored completely and the experiment designed so as to
minimize the bias alone.” (pp. 622, Box and Draper (1959)). In the straightline
regression situation, Huber (1981) points out that “deviations from linearity that are
too small to be detected are already large enough to tip the balance away from the
‘optimal’ designs, which assume exact linearity and put observations on the extreme
points of the observable range, toward the ‘naive’ ones which distribute the observa-
tions more or less evenly over the entire design space.” Meanwhile, Lawless (1984)
reaches the conclusion that “...in extrapolation problems a slight degree of model in-
adequacy quickly wipes out advantages that minimum variance designs possess when
the model is exactly correct.”

In the p**-degree polynomial model, we find that the classical designs and extrap-
olation designs take observations on (p + 1) sites. This make it impossible to check
the model adequacy by testing the hypothesis Hy : the model is p**-degree polynomial
vs H; : the model is pt*-degree polynomial (p; > p), because taking observations in

only (p + 1) sites makes the coefficients of the (p + 1), ..., (p;)*"-degree terms not



estimable.

These three questions make it necessary to construct optimal designs and extrapo-
lation designs, while allowing small departures from model assumptions A1) and A2).
These are called robust (extrapolation) designs in the literature. Generally speaking,
robust (extrapolation) designs are those which are not sensitive to small departures
from model assumptions.

From the practical point of view, any model built to relate a response variable
y and explanatory variables x can only be assumed to be approximately true. This
approximation causes the violation of Al). Besides, although the random errors are
still uncorrelated, their variances might not be homogeneous and might depend on the
observation sites. This violates A2). In the literature, series of papers obtained the
optimal (extrapolation) designs which are robust against various violations of model
assumptions. We will give a review of these designs in the next two subsections and

then outline the designs obtained in this dissertation.

2.1 Robust optimal designs

In an experiment whose outcome can only be presented approximately by a linear
regression model (1), the above discussion makes it necessary to introduce a bias

term to the model when constructing the optimal designs. Hence, the true model can

10



be phrased as follows,
v =2 (x)0+ f(x:) +e,  i=1,2,...,m, (3)

where the random errors ¢; are uncorrelated and have homogeneous variances, and
f is unknown and represents the model contamination. Usually, f belongs to a pre-
defined class F. The Least Squares estimator 8 is no longer unbiased and has bias

vector and covariance matrix
~ - ol
E[O] -0 = Bglbfys, COV[B] = -;L—Bi—l’

where bys = £ ¥ 2(x;) f(x:) = [s2(x) f(x)d§. Hence, the mean squared error matrix
of 8 is given by
MSE(f.€) = E|[(6-6)(-6)7]
A -1 T p-1
= ;BE -+ BE bf,Sbj'SBg .
Therefore, when constructing the optimal designs under model (3), it is natural to
define the loss functions by replacing the argument B! (or covariance matrix of ) of

the loss functions given in Section 1.2 by MSE(f,£), obtaining ¥(MSE(f,£)). Then

a robust optimal design is obtained by minimizing
maz ;e U(MSE(f,£)). (4)

With different choices of ¥ given in Section 1.2, these designs are called robust D-,
A-, E-, G-, and Q-optimal design. The maximum is taken here because the model

11



contamination function f is unspecified and we want to safeguard against the worst
situation. After the milestone paper of Box and Draper (1959), many authors have
worked on design construction for the model (3). These robust optimal designs differ
in the choice of the class F, the design space S, the regressors z(x) and the loss
functions V.
Huber (1975, 1981) and Wiens (1990, 1991, 1992, 1993, 1994, 1998) consider the
class
Fi={f: [Feodc<nt, [ a(x)500dx =0}, %)
where 7 is assumed “small”. The first condition in (5) is required in order that the
contamination function f be “small”, so the linear part of (3) is still the dominant
term and the errors due to bias do not swamp those due to variance. The second
condition is to guarantee that the true @ is uniquely defined and is made without loss
of generality. To see this, suppose a linear function z7(x)8, of the regressors is the

best approximation of an experimental outcome, E[Y|x], in the sense that

80 = argmine { /s (E[Y|x] - zT(x)B)zdx} .

Define

f(x) = B[Y|x] — 27 (x)80,
then we have the model (3) and f(x) satisfies

[z f(x)dx = o,

12



under the regularity condition that f¢z(x)zT(x)dx is positive definite. This is the
second condition in (5).

It is realized, and proved as Lemma 1 of Wiens (1992), that maz e, U(MSE(f,£))
will be infinite if £ is a discrete probability measure. Thus, designs robust against (5)
must have a density.

By using the loss function of @Q-optimality, Huber (1975) obtains robust optimal

designs when z(z) = (1,z)T, S = [~0.5, 0.5]. The robust design £j; has density
my(z) = (az® + b)*,

where a, b depend on the parameter v := ¢2/(nn%). This parameter v can be inter-
preted as representing the relative importance of variance versus bias, in the mind of
the experimenter. As v — 0 bias completely dominates the problem, and &, tends
to the uniform continuous design &, which has density my(z) =1on S. As v — o
the bias term disappears from the model (3), so it becomes a ‘pure variance’ problem,
and &, tends to the classical optimal design which takes half of the observations on
each of the extreme points of S. See Figure 1 for some examples of my(z).

Wiens (1990) considers the same problem for multiple linear regression, with
z(x) = (1,zy,...,zp)T and S a sphere of unit volume. When the design space is a
p-dimensional cube, he gives robust @-optimal designs for the special case of k = 2, a
bivariate model, with z(x) = (1, z1, z2, z1z2)T. Furthermore, Wiens (1992) constructs
the robust D-, A-, E-, G-, and Q-optimal designs for multiple linear regression. These

13



Figure 1: Huber’s robust design density m(z). (a) Small v : v = 1 (solid line) and

v = 0.1 (dotted line); (b) Large v : v = 10 (solid line) and v = 100 (dotted line).
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robust optimal designs are all absolutely continuous and their density functions de-

pend on x through [|x|| := \/zf + - - -+ z2, which gives a way to implement these
designs by first drawing n values of |[x|| from the density of U := ||x||, and then
choosing x; from the uniform distribution on ||x|| = u;, for each i. See Wiens (1992)
for details. Wiens (1993) derives robust designs which maximize the minimum cov-
erage probability of confidence ellipsoids. Robust designs for M-estimators are given
in Wiens (1994).

Different from the class (5), another typical class of model-violation, defined as

Fp= { i | Fx) < é(x), ¥xeS, /S 2(x) f(x)dx = o} , (6)

with various assumptions being made about ¢, is used in Marcus and Sacks (1976),
Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li and Notz (1982), Li (1984) and
Liu and Wiens (1997).

With the multiple linear regression setup,

y=00+zp:xj9,-+f(x)+s, (7)

j=1
Li and Notz (1982) assume ¢(x) = c, a positive constant, for any x €ESCRP. They
seek robust optimal designs by minimizing the maximum value of the weighted mean

squared error:

p -
mazser, E[D_ 7i(0; — 0;)7,

=0
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where the 7; are known constants. The robust optimal designs have support points
on the boundary of S when 9j is the Least Squares estimate. If S is a p-dimensional
cube, then the robust optimal design puts equal mass on each of the 2P corners of S.

If S is the (p — 1)-dimensional simplex,

P
S = {x= (z1; .0 zp) T - Z$j= 1, z; >0 for allj},
j=1

and if §g = 79 =0, 71 = - - - = 7, = 1, the optimal design assigns equal mass on each
of the p extreme points of S.

Pesotchinsky (1982) considers the same model as (7) and requires ¢(x) = cp(x),
with ¢ > 0 and ¢(x) being a convex function of ||x||2. The author restricts attention
to the robust D-optimality, E-optimality and A-optimality criteria. Denote by = the
class of all designs over S and by Z(m) the class of all symmetric designs £ with fixed
Ee(z?) = m, i = 1,...,p. Let mg =argminmso{(m='0?/nc?)P(c*/nc® + ©*(\/mp))}.

For D-optimality, Pesotchinsky shows that

a). Any symmetric design £ € Z(m) supported only by the points of the sphere

S szm of radius ,/pm is robust D-optimal in =(m).

b). If S is compact and symmetric (namely, invariant under permutations and
changes of signs of the coordinates) and ds = mazes|[x|| = R < /pmg, or
if mg = oo, then there is at least one symmetric robust D-optimal design in
=(R?/p) which is robust D-optimal over S in the class =. Conversely, if S is

16



symmetric compact, then the robust D-optimal designs over S are symmetric.

Unlike in the case of D-optimality, Pesotchinschy does not establish the overall
optimality of symmetric designs for the robust A-optimality and F-optimality criteria.
However, he proves that the robust A- and E-optimal symmetric designs are unique
and with some common conditions, the robust A- and E-optimal designs in = over S

are symmetric ones. The results can be outlined as

a). In a class of all symmetric designs, the robust A-optimal (E-optimal) design is
a uniform continuous measure on a sphere of radius ,/71p (\/Uoop), With v; and

Vo defined on pp. 521, Pesotchinsky (1982).

b). Let S contain the sphere of radius \/m;p (or \/mop). Then, if m; < ap
(or me < p.), the robust A-optimal (or E-optimal) design in = over S is
a symmetric one (uniform on the sphere of radius ,/m;p (or ,/Mwp)), where

My, Mo, fio, are defined on p. 521 and a, on pp. 514, Pesotchinsky (1982).

Liu and Wiens (1997) study the approximate polynomial regression model

-1
y=pz:0ja:j + 2P f(z) + ¢, (8)

=0
where z € § = [-1, 1] and f € F», with ¢ being a continuous, even function on S.
In this paper, the robust D-optimal designs are given for arbitrary given functions ¢
when p = 2 (straightline regression is fitted) and p = 3 (quadratic regression is fitted)
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and ¢(z) = constant when p > 4. These designs are similar to the classical D-optimal
designs in that they have p support points.

The two classes F; and F, describe the possible violations of model assumption
Al. The class F, will be used Chapters 2 and 3 while F, is adopted in Chapter 4 of
this dissertation. One violation of model assumption A2 is that the random errors are
possibly heteroscedastic although they are still uncorrelated. Wiens (1998) constructs
the robust @-optimal designs in the presence of both heteroscedasticity and F;. He

considers the following problems

P1) For ordinary Least Squares, seek a minimax design which minimizes the max-
imum, over both model-violations, value of the integrated mean squared error

(IMSE) of the fitted values.

P2) For weighted Least Squares, determine both weights and a design to minimize

the maximum IMSE.

P3) Choose weights and design points to minimize the maximum IMSE, subject to

a side condition of unbiasedness.

He finds the solutions to P1) and P2) for multiple linear regression with no interaction
and a spherical design space. The solution to P3) is given with no restrictions on the
regressors and design space. For polynomial regression, the modes of the robust
optimal design are exactly the support points of the classical D-optimal design. In
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this sense, the robust optimal design is a smoothed version of this classical design.

We will extend these results to the extrapolation design problem in Chapter 3.

2.2 Robust optimal extrapolation designs

Draper and Herzberg (1973) might have been the first to use the “variance plus
bias” methods of Box and Draper (1959) to make design recommendations for robust
extrapolation problems. They fit a first-order regression model and choose the design
to guard against the possibility of bias from the second-order terms, when S is a
g-dimensional ball and T is the line segment from a point ¢ to the closest point of S.
The designs are limited to a certain subclass of designs, of which the support points
include the intersection point of S and T and the g-simplex points. The robust optimal
extrapolation design is given by minimizing the integrated mean squared error of the
Least Squares estimator over T. Huber (1975) deals with the extrapolation problem
on § = [0, oo], T = {t} with t < 0, and assumes an approximately polynomial model

(3), with f in a class (for a constant > 0),
F3 = {f : fis (p+ 1) times differentiable and | f(p+1)(:c) <7, zelt, oo]}

By using the MSE of a linear estimate of the response surface as loss function, he
concludes that the robust optimal extrapolation design sits on (p + 1) points: 0 =
zy < --- < Zpy1, which after the addition of another point z,,, constitute the set of
Chebychev points of order (p+1) in [0, z,42]. Huang and Studden (1988) point out an
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error in Huber’s proof and give an example, but prove that Huber’s conclusion is true
if the designs considered are limited to exactly (p + 1)-point designs. Furthermore,
they give the formula to calculate the value of z,.2 and extend the results to the case
S =[~1,1]. With S =[a, b] and T = {c}, ¢ > b, Spruill (1984) has found the robust
optimal extrapolation design for the same model as Huber (1975), with F being a

Sobolev space, that is,
Fu= {f : f®)(z) is absolutely continuous and /c(f(”“)(:z:))?d:z: < 7-2} )

The designs depend on the choice of value (n72)~!. He gives a formula for finding the
robust optimal locations when p = 1 (approximately straightline regression) and nu-
merical results when p > 2, but no general formula. Also, Huang (1990) considers the
partially linear regression model when the departure satisfies a Lipschitz condition.
Dette and Wong (1996) construct robust extrapolation designs when there is uncer-
tainty in the degree of polynomial model, and they propose a new class of optimality

criteria rather than using the minimax procedure.

3 Summary of results in this dissertation

Chapter 2 consists of a paper entitled “Robust Optimal Designs for Extrapolation
Outside a Hypersphere When Bias is Present.” When the model is approximately
linear and the contamination term is bounded in £; norm (see (3) and (5)), we
construct three kinds of robust optimal extrapolation designs for the general multiple
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regression model without interaction terms: 1) The minimax extrapolation design
which minimizes the maximum of the Integrated Mean Squared Prediction Error
(IMSPE) of the fitted values over the extrapolation space, with the maximum being
evaluated over the departure from the model; 2) The bounded variance design which
minimizes the maximum of the Integrated Squared Prediction Bias (ISPB) subject
to bounding the Integrated Squared Prediction Variance (IPV); 3) The bounded bias
design which minimizes IPV subject to bounding the maximum of ISPB.

In Chapter 3, entitled “Robust Extrapolation Designs and Weights for Biased
Regression Models With Heteroscedastic Errors,” we consider the construction of de-
signs for extrapolation, allowing both for possible heteroscedasticity in the errors and
for imprecision in the specification of the response function, with the contamination
term satisfying the same conditions as in Chapter 2. Three problems are tackled in
this paper: 1) For ordinary Least Squares estimation, determine a design to minimize
the maximum value of IMSPE, with the maximum being evaluated over both types
of departure; 2) For weighted Least Squares estimation, determine both weights and
a design to minimize the maximum IMSPE. 3) Choose weights and design points
to minimize the maximum JMSPE, subject to a side condition of unbiasedness. So-
lutions to 1) and 2) are given for multiple linear regression with no interactions, a
spherical design space and an annular extrapolation space. For 3) the solution is given

in complete generality; as an example we consider polynomial regression. We remark
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that the optimal designs for moderately large symmetric and one-sided extrapolation
regions are, for practical purposes, identical, but when the extrapolation regions are
small, the optimal designs for one-sided extrapolation place appreciably more mass
on the side of design region closer to the extrapolation region.

The designs given in Chapters 2 and 3 are absolutely continuous measures because
the model-violation class used is so full. These designs have to be approximated before
implementation. We discuss possible approximations in each paper. Other ways to
implement these designs will be the subject of further research.

By considering a rather thin model-violation class, we construct robust optimal
designs for extrapolation in the polynomial regression setup (8) in Chapter 4, entitled
“Robust Extrapolation Designs for Biased Polynomial Models.” The robust extrapo-
lation designs are identical to the minimum variance extrapolation designs for linear
and quadratic fitted models. For cubic or higher degree fitted models, the designs
vary with the choice of ¢(z) and the value of 6%/n. These designs are discrete and
implementable, but have shortcomings: they afford no opportunity to assess the fit
of the model and have infinite maximum risk in (5).

The author recommends the designs given in the Chapters 2 and 3. Our attitude
is similar to that of Wiens (1992), who states that “an approximation to a design
which is robust against more realistic alternatives is preferable to an exact solution

in a neighbourhood which is unrealistically sparse.”
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Chapter Two

Robust Optimal Designs for Extrapolation Outside a
Hypersphere When Bias is Present!

Abstract

For regression problems where the response may be observed at points in a set
S which is different from the set T on which the fitted values are of interest, we
consider designs for an approximately linear model E(Y |x) = z7(x)0 + f(x), x € S,
where f(x) is a non-linear disturbance restricted only by its £ norm. Specifically,
we exhibit solutions to the following problems: P1) Determine a design to minimize
the maximum of the Integrated Mean Squared Prediction Error (IMSPE) of the
fitted values over T, with the maximum being evaluated over the departures from
the model. P2) After splitting the IJMSPE into two parts: Integrated Prediction
Variance (/PV') and Integrated Squared Prediction Bias (ISPB), we seek the design
which minimizes the maximum ISPB subject to bounding IPV. P3) We choose a
design which minimizes IPV subject to bounding the maximum ISPB. We find that
the forms of the optimal designs are quite sensitive to the volume of the extrapolation

space T'.

!Submitted for publication
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1 Introduction

Consider the regression model given by
Y(x:) =2"(x:)0+e; i=1, ..., n, (1)

where the regressors {z;(x;)}5_, are linearly independent, x; € S C R?, 8 € RP*! and
the ¢; are additive, uncorrelated errors with common variance o2. The extrapolation
problem is to predict the value of 27 (x)8, x € T ¢ R? (SNT = 0) and in connection
with this prediction the design problem is to choose the design points x; from S in
some optimal manner.

When the model (1) is exactly correct, the extrapolation design problem is con-
sidered in a series of papers: Kiefer and Wolfowitz (1964a, 1964b, 1965), Hoel and
Levine (1964), Studden (1971) and Herzberg and Cox (1972). Box and Draper (1959)
pointed out that it would become dangerous to design a regression experiment which
assumes that (1) is exactly correct. Therefore, it is reasonable to introduce a bias

term in (1). The corresponding model can be defined now by
Y (x) =27 (x)0 + f(x) +¢, (2)

where f(x) is an unspecified contamination function from some class F.

Some authors have constructed optimal extrapolation designs for versions of (2),
in which they choose different kinds of contamination classes, the design spaces and
the extrapolation spaces, the regressors and the loss functions used. Draper and
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Herzberg (1973) handle the design problem for extrapolation with bias in which first-
order regression is considered and the bias comes from the second-order terms, when
S is a g-dimensional ball and T is the line segment from a point ¢ to the closest
point of S. They use the Least Squares technique to estimate the model parameters.
But, the designs are limited to a certain subclass of designs over which the integrated
mean squared error over T is minimized. Karson, Manson and Hader (1969) have
treated the same problem in a different way. They propose choosing a class of linear
estimators which minimize the integrated squared bias over T, then choosing the
optimal design to minimize the resulting variance. With S = [0, oc] and T = {t},

t < 0. Huber (1975) suggests (for some constant 7 > 0)
F ={f: fis (p+1) times differentiable and |f®*V(z)| < 7, = € [t, o]},

Huber finds that by using MSF as loss function, the optimal extrapolation design sits
on (p+ 1) points: 0 = z; < --- < Zp4;, which after the addition of another point
Zp+o constitute the set of Chebyshev points of order (p + 1) in [0, z,42]. Huang and
Studden (1988) give a counter example to Huber’s proof, but confirm Huber’s result.
In their paper, the designs considered are limited to exactly (p + 1)-point designs. As
well, Spruill (1984) constructs the extrapolation design when F is a Sobolev space
and Huang (1990) treats the partially linear model when the departure satisfies a
Lipschitz condition. Dette and Wong (1996) construct extrapolation designs when
there is uncertainty in the degree of polynomial, and they propose a new class of
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optimality criteria for extrapolation.

In this article we address the construction of extrapolation designs for model (2)
when the contamination class F is an £,-neighbourhood, specified below. We choose
the Integrated Mean Squared Prediction Error (IMSPFE) over T of the fitted value

Y(x) as loss function. The following problems are considered:

P1). Determine a design to minimize the maximum value of IMSPFE over T, with

the maximum being evaluated over f.

P2). After splitting the IMSPE into two parts: Integrated Prediction Variance
(IPV) and Integrated Squared Prediction Bias (ISPB), we seek the design which

minimizes the maximum of ISPB, subject to bounding IPV.

P3). We construct designs which minimize the IPV subject to bounding the maxi-

mum, over f, value of ISPB.

The organization of this paper is as follows. In Section 2, we define precisely
the regression model to be considered, and give the maximum of IMSPE over T.
Solutions to P1) - P3) are given in Section 3. Two simulation studies are given in

Section 4. All proofs are given in the Appendix.
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2 PRELIMINARIES AND NOTATION

In general, we assume that S and T are two non-intersecting subsets of R, and

the i-th observation y; € R can be described by the model
Y =2T(x:)0 + f(x:) +&;, i=1,...,n, (3)

where x; € S with unit volume, 8 € RP*!, and 2z(x) is a (p + 1)-vector of real valued
functions on S UT. The response error f(x) belongs to the class (for some known

positive constants ng and n;):

F={f: [S F(x)dx < n; /T F2(x)dx < 7% /S 2(x)f(x)dx =0},  (4)

in which the last condition is without loss of generality, and ensures the identifiability
of 8. The requirement that T and S be disjoint needs not exclude the application of
our results to interpolation problem, i.e. the case T' C S, as long as design points are
not to be chosen from within 7. One can then replace S by S\T. The ¢; are additive,
uncorrelated errors with common variance o2. As to the predicted value, we choose
the Least Squares estimator.

Let & be the design measure, i.e. the empirical distribution of {x,,...,x,}. Define

matrices Ar, As, B¢ and vectors bs¢, by 1 as follows:

Ar = /z(x)zT(x)dx, As=/z(x)zT(x)dx,
T S
Be = [ 20 (x)ds(x), bre = [ 2(x)f(x)d(x),
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bfr = /Tz(x)f(x)dx.

Then the Least Squares estimator of 8 is 8 = Bgl Js 2(x)y(x)d&(x), with bias vector

and covariance matrix
E[8] -8 =B:'b covid] = gt
[ ]— - E fas’ - n &£ -
We predict E[Y|x] for x € T by Y(x) = zT(x)é, and consider the resulting IMSPE
IMSPE(f.€) = / E[Y (x) — E(Y|x))%dx.
T
The IMSPE can be split into two parts:
IMSPE(f,§) = IPV(§) + ISPB(f,§),
where

IPV(§)

/T E[Y(x) — E(Y(x)) ]Pdx = gnz—tr(ATBgl),

ISPB(f,€)

/T ( E[Y ()] - E[Y|x] )2dx

= b} B 'ArB;'bs¢ — 2b; 7B 'bre + / FA(x)dx.
T

We find that IMSPE(f,£) depends on f only through ISPB(f,£), that is, f does
not affect the value of IPV (£). So evaluating the maximum value of IMSPE(f,£) is
equivalent to evaluating the maximum value of ISPB(f,§).

We adopt the methods of approximate design theory, and allow £ to be any dis-
tribution function on S. Then it can be shown by modifying Lemma 1 of Wiens
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(1992) that the optimal extrapolation designs are absolutely continuous, and so must
be approximated to be made implementable.

Let v := ni:g and rrs := 71/Ms. Then v can be viewed as the measurement of the
relative importance of variance and bias, and rr s gives the relative amounts of model

response uncertainty in the extrapolation and design spaces. For fixed £, with density

function m(x), the following theorem gives the maximum of IMSPE(f.£), over f.

Theorem 1 Define K = [, z(x)zT(x)m*(x)dx, G = K — B¢A;'B¢, and H =
BcA7!Be. Let A, be the largest solution to |G — AH| = 0 and let the vector ag
be defined by

(GH™'G — A\,G)ag =0 and alGay = 1.

Then we have

mazserISPB(f.€) = n%(VAm +7r5)°

mazserIMSPE(f,€) = n3[vtr(ArBY) + (VAm +rrs)?,

which are attained at the following least favourable function

ns2T (x)[m(x)I — A5'Belag ifx € S,
fm(x) =
—nsrr,sz’ (x)B; 'Gag/VAn ifxeT.

Based on Theorem 1, our problems can be rewritten as:

P1). Find a density m;(x) to minimize utr(ATBgl) + (VAm +7115)°%.
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P2). Seek a density m2(x) to minimize n% (v Am+7r,5)?, subject to nivtr(ArBg') <

d, for some constant d.

P3). Choose a density m3(x) which minimizes nvtr(ArBg'), subject to n% (VAm +

rr.s)? < k2, for some constant k2.

3 OPTIMAL EXTRAPOLATION DESIGNS

In this section we construct optimal extrapolation designs for multiple linear regres-
sion without interaction: z7(x) = (1, x7), with S being a p-dimensional sphere of

unit volume:
_FG+ylr

§={x| lIx|| < Bs: 77 h

and T chosen as

T = {x| Bs < |IxIl < Br}-

Since S and T are symmetric about the origin, we restrict to densities m(x) with
identical, symmetric marginals and seek the minimax extrapolation design density
within this class. See Wiens (1992) for a discussion of this point.

Define a volume measure §, and three types of second moments v, vg, v by

o, = de=g—§—1, 7=/:rfm(x)dx,
ﬁz ‘Bp+2_ﬁp+2
_ 2 _ S — 2
s T /fld"‘(pw)’ / = e
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then

As = 19, Ar =6, B 77, B =171,

K

2 2m?2 JIr _ _
( /S m?(x)dx) & ( /S M), 1 = 6,

The maximum eigenvalue A, in Theorem 1 is found to be \,, =maz(\?, A\{)), with

XD = gy( [ midx—1), MY =53 [ atmiax -1, ()
and then
maz ;e IMSPE(f,€) = n3[v(6, + péf-) + (VO + r1.5)2. (6)

We exhibit the solutions to P1) - P3) in the following subsections.

3.1 Minimax extrapolation design: Solution to P1)

Theorem 1 shows that the maximum of IMSPE(f,£), over f, is attained at f,,, so
the problem P1) is to find an optimal extrapolation design density which minimizes
IMSPE(fm.£). We first find m. minimizing (6) with A\, = A%} (i = 0 or 1). Then if
m. satisfies Al) > Al~9 it is the required minimax density.

Let p = L. It can be shown that: p = ;-,Ls'fs |1x]|?m(x)dx < p—,t-s Js Bim(x)dx =
(p+ 2)/p and p = 1 when m(x) = 1, the continuous uniform design. If £ is a design

such that p < 1, then

maz e r IMSPE(f,£) > ng[u(ép +pz—::) + 7'%‘.5] = maz e r IMSPE(f,&),
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where £, represents the continuous uniform design, because A¢, = 0. So we only need
to consider p € [1, (p+2)/p]-

Before stating the theorem, define functions for b € [0, 1]:

] B 1 - . _ 1 _ b kp_a(b) _ 1.
GO = [ i - #0) = oroR® ez G
D Jp+2(b) _ b?

p+2 220) LG -

p(1 — %) — 26%(1 — b)

b
Jo() p—

hp(b) =
Theorem 2 (7). Let b, be the solution to
8, p kpa(b) 0 2 _
VP5p+255(;)—+—2—‘kp(b) ) + 55 (\/ 6p+29p(b) +77.5)" = 0. (7)

Then if by satisfies

8p+29p(b1) = 6pgp—-2(b1). (8)
we have the minimaz extrapolation design density

Bs

my(x) = a;[l - bl(l—lx—”)z]+,
with a, determined by
N
' phya(by)
It can be shown that p = E—;gk—ff(:(—;)l—) € [1, "%2-] and that (8) holds for v € [v4(6,), 00),
for some v4(6p) > 0.
(it). a) Define p, = \/6;:2 p(p(ﬁ')aiﬁ) and Kk = 6,,”(":4). Let p, be the root of the
equation
PVbpi2 = 2kpi[K(p; — 1) + T1.5]. 9)
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Then if

4

we have the optimal extrapolation design density:

IIXII2

p+4
4

- D(—

my(x) =

It can be shoun that when 6, is small, (10) is true for v € [v1(8,), v2], where va is
calculated by (9) when p; =1+ #Hf)-.

b) Let c; be the root of the equation

UBBper (2 (‘E)c)> + o (Bphole) +r5)? =0. (11)
Then if c; satisfies
bhp(c1) = bpiahpia(ct), (12)

we have the optimal extrapolation design density

1 xll e
ml( ) J (C )[( ) 62]+'
J; c .
It can be shown that p = —%)1— el+ m ‘”%2]_. and that when 6, is small, (12)

holds for ¢, € [0, c1(6p)], t.e. forv € [va, v3(8,)], where v, is calculated by (11) when

Ci = 0.
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Remarks

1.

o

The assumptions on m(x), together with a convexity argument as in Fang and
Wiens (1999), imply that the design density depends on x only through ||x||.
Conditions (8), (10), (12) ensure that A, is indeed the larger of the two

eigenvalues in (5).

The minimax density depends on the unknown parameters through v, 6, and
the ratio rrs. Although we do not have the solution for some intervals of v,
the numerical results in Table 1 show that v4(6§) — 0 as §, — oo and the limit
is approached very fast. So when 6, becomes larger, our solution in Theorem 2

(7) is optimal for almost all v.

As to the implementation of these designs, we may use the fact that under the
density m(x), x/||x|| and U := ||x|| are independently distributed, with x/||x||
having a uniform distribution over the surface of the unit sphere. Hence a possi-
ble implementation can be as follows. Let H(u) be the cumulative distribution

function of U, i.e. H(u) = [ (puP~!/B%)mi(u)du. We obtain [\/n] values:
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u; = H™Y((i = 1)/([/A] = 1)), i = 1, ..., [/7]. Then we have [\/n] design points
{ sin(ﬂh- + 1(—;77:'1—12) \
cos(01; + IL—J\/—;L)) - sin(fq; + _._l""(\j/;} )

cos(0y; + ”—(J\;z—l)) - cos(0q; + 3’—(34/.‘;1—)) - sin(03; + fr(\j/:_ll))

cos(6y; + m‘/%ll) - cos(Op_2yi + = \J;ﬁl)) - stn(Bp—1y: + 2113‘512)

\ cos(Br + HZ2) - - cos(Bp—ay: + TZZP) - cos(8p-1y: + TIEH)
where 7 = 1,...,[v/n], equally spaced over |[x|| = u;. for each i. And we
choose (n — [/n]?) points at the origin. The angles 6, (r = 1,...p — 2) are
uniformly distributed over (—3,—3 + -\1/'—;) and f(p—1): is uniformly distributed
over (—m, -7 + %). All the angles 0,; (r =1,...p — 2) and 6,_,); are indepen-
dent. The rationale of this implementation is that the empirical distribution of

the chosen design points tends weakly to the distribution of the optimal design.

Example 1. For the straightline regression (SLR) situation, i.e. p = 1, we
have exhibited some numerical values of the parameters in Table 2. We assume that
rr.s = 1. Based on these values, we have the following observations about the optimal

m]_(I)Z

(1). As v — oo (i.e. ng = 0, variance dominant), m;(z) corresponds to the design

L which coincides with the result of Hoel and Levine

with all mass at [z| = %3,
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(3)-

(1964). But m; = 1 becomes optimal as , — oo and v — 0 (bias dominant

case). See Figure 1(a).

. In practice, we should assume that g = O(n‘%) in order that the errors due

to variance and to bias remain of the same order of magnitude, that is, v is
relatively small but should be bounded away from zero. This is the so-called
“typical situation”, which is to be anticipated as one in which the experimenter
would probably be prepared to tolerate or accept biases that are of the same
order roughly as variances. In this situation, we use m;(z) = (az® + b)* if §, is

small while we adopt m,(z) = a[l — b(%‘i)Q]‘*‘ if 6, is large. See Figure 1(b).

Table 2 implies that for fixed v, the minimax design density puts more mass on
an area closer to T" when &, becomes large. So the minimax design moves the

design points closer to T' when T is large.

In Figure 2, we compare the behaviour of the minimax extrapolation design with

that of other typical designs: the classical extrapolation design, which has design

points < —0.5,0.5 >, and the continuous uniform design. When the fitted model

E[Y|x] = 27 (x)@ is exactly correct (no contamination), the loss is

(1+6,)1%%P —1
124

o2 o?
IMSPE(f = 0.€) = IPV(§) = Ztr(ArBg") = (6, +

where < is the second moment of £. Figure 2(a) gives the plot of (9’13)‘1IPV(§) Vs

op for three designs. When the model is only approximately linear, the bias term is
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Table 1. Values of vi(6,) when p=1 (values in parentheses)
and p=2: Case (7) holds for v > v4(6,); Case (iZ) a) holds for

v1(6p) < v < va(6p); Case (i) b) holds for v3(8,) < v < v3(6p).

bp 1/1((5;;) V2(6p) V3(6p) V4(6p)

0.0625 4.96(8.0) 6.83(11.11) 477.7(449.2) 500.2(493.1)
0.125 3.65(6.07) 4.94(7.96) 121.5(107.2)  132.9(129)

0.25 2.76(4.93) 3.53(5.5) 31.15(23.95)  37.08(34.8)

0.5 11.16(9.76)
1 3.7(2.82)
5 0.4(0.15)
10 0.16(0.04)
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Table 2. The constants for m;(z): Letters in parentheses indicate which case holds.

& v a; by c1 p || 61 v a by
0.0625 | 8.503(ii. a)) 167 || 1 |5.268G6) 4 0.25
20.5(ii. b)) 0.455 20.5(i) 11.657 0.5
521.84(%) 143.5 0.84 oo(i) 00 1
oo (%) oo 1

0.125 | 7.09(ii. a)) 1.72 || 5 | 0.578G) 1.754  0.06
20.5(3. b)) 0.551 5.268(:) 528  0.319
521.84(s) 173.7 0.854 20.5(i) 14.52  0.544

oo(%) 00 1 oo(i) 00 1
0.25 | 5.257(i. a)) 1.71 || 10 | 0.047(s) 1.14  0.004
20.5(43. b)) 0.625 5.268(i)) 5.5 0.329
521.84(i) 201.3 0.864 20.5(:) 14.98  0.55

oo(1) 00 1 oo(i) 0o 1
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Figure 1: Minimax extrapolation design densities for SLR. (a) Case (7). §; = 10 :
v = 0.047 (solid line), v = 5.268 (dotted line), v = 20.5 (broken line); (b) v = 5.257 :

61 = 0.25 (solid line, Case (i) a)), 8; = 5 (dotted line, Case (z)).

04 -0.2 0.0 02
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included in the loss. We compare the IMSPFE instead of the IPV. While the classical
extrapolation design has infinite maz;IMSPE(f,€) we plot ng2maz;IMSPE(f,£) for
the minimax extrapolation design and the continuous uniform design in Figure 2(b).
We have chosen p = 1, v = 3 and rrs = 1. We find that the use of the minimax
extrapolation design results in a significant reduction of loss in the presence of con-
tamination. When there is no contamination in the model, the performance of the

minimax extrapolation design is close to that of the classical extrapolation design.
3.2 Bounded variance design: Solution to P2)
For some given bound d, P2) may be phrased as looking for
ma(x) = argmin{ni(\V/Am +r75)*: /m(x)dx =1, n3v(é, +p7—7T) < d}
s
= argmin{An : /m(x)dx =1, /I]xllzm(x)dx >d,;},
s s

where d; = p?y1/(d/n%v — 8,) > 0. The technique to solve this problem is the same

as that in Section 3.1.

Theorem 3 If d, € [0, #ﬁg], then the continuous uniform design tis the optimal

bounded variance design for extrapolation, that is, mq(x) = 1 is the solution to P2).

Combining this theorem and the fact that [ |[x|[*m(x)dx <mazxes||x||> = 53,
we only need to consider the case when d; € (;%ﬁg, B%]. With A, = Al))| we have
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Figure 2: (a) Integrated Prediction Variance vs §, when there is no contamination:
Minimax (solid line), classical design (broken line) and uniform design (dotted line).
(b) mazsIMSPE vs 6, when there exists contamination in model: minimax (solid

line) and uniform design (dotted line).

g g
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the following lemma.
Lemma 4 The function
argmin{6pa(25 [ 2mieax—1): [ miodx =1, [ IxlPmxjdx 2 i}
is equal to
argmin{/s ||x£|2m2(x)dx:[9m(x)dx= 1, /;Hx[lzm(x)dx= di}.

This lemma changes the inequality in P2) into an equality, so it greatly simplifies

the minimization problem.

Theorem 5 For any fired 6, if di € [d1(5,), B%] , the solution to P2) has the form

ma(x) = a[l — b-ﬁ—]*"
[E31Ea
where a. b are determined by
1
“ = pkp—2(b) ’

d = apk-p(b)ﬁ.zg-

The minimaz IMSPEFE is

ngzmazfe_;-IMSPE(f, 52) = V((Sp + p2%) + (\ / 6p+ggp(b) + TT'S)z. (13)

The bound d(6,) depends on 6, and is obtained by

ks (b)
kp—2 (b)

6p+29p(b) = 8pgp—2(b).

dl(ép) = :B?S'v
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Table 3. Some typical values of d;(6,)

P 6p dl(‘sp) P 6;7 dl(ép) p 617 dl(ép)

1 1 0147912 1 023943 1 0.3164
10 0.1008 10 0.1738 10 0.2487

oc 0.0833 oc 0.1592 oo 0.2309

It can be shown that when 6, — oo, d;(6,) — p—_%,@g, the lower bound of d,.

Remarks

1. We only present the solution for large d; when 6, is given. But the limit in the
theorem is approached quite rapidly (see Table 3), so our solution will hold for

almost all d; when 6, becomes large.

2. Table 4 gives the efficiencies of the bounded variance design &, relative to other
designs: the continuous uniform design (§;;) and the design (£5) which places
all mass on the boundary of design space. When the model does not include any
contamination term, the OLS estimate is unbiased. This efficiency is defined

by
IPV(f=0,§) _ Sp+pT
IPV(f=0,&) &, +p*%’

rel(§) =

where ~ represents the second moments of £&. When the true response is only
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Table 4. Relative efficiencies of &, relative to the

uniform design (§;) and the discrete design (£z).

p di b, rel(§y) rel(€p) re2(§y) rme2(£p)

1 015 1 1.64 0.68 1.35 oo
10 1.79 0.61 1.63 oo

2 025 1 1.45 0.83 1.16 oc
10 1.53 0.8 1.36 )

3 035 1 1.42 0.93 1.02 oo
10 1.47 0.92 1.18 00

partially linear, in contrast, this efficiency is defined by

_ mazserIMSPE(f,£)
re2(§) = maz ;e r IMSPE(f,£,)’

where maz ;e s IMSPE(f,€,) is calculated by (13) and n52maz ;e IMSPE(f. &)

= v(6p + pbps2) + % 5. In Table 4, we assume that » =3 and rr5 = 1.
3.3 Bounded bias design: Solution to P3)
Problem P3) is to seek the design density
ma(x) = argmax{zl-)/ Ix]|>m(x)dx : /m(x)dx =1, A < K1},
s s

with a given value k; = ("%;’I)2 > 0.
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To solve this problem, we first find
mar(x) = argmaz (> [ [x|Pm(edx [ mix =1, (L5 [ IxiPme 1) < ki),
and

man(x) = argmaz (> [ IxlPmia)dx: [ mxjax = 1, 8p( | mPx)dx — 1) < k).
Then we claim that mg(x) = may(x) if
8ol [ mbie)dx— 1) < ki, (14)
or ma(x) = msa(x) if
bpra(2S [ IxlPmie)x—1) < k. (15)

To establish the claim, note that if (14) holds, then An,;, < k;. And for any density
m.(x) satisfying Am. < ki, the definition of m3;(x) shows that [ ||x|[*m.(x)dx <
Js lIx[I*m31(x)dx. This implies that m3(x) = mg;(x). The case when (15) holds is
similar.

. . Plki+dpia) _ plki+8p42) Pépr2 __ p _. p(p+2)
Now, to find mg3;(x), let ks := Spr2Ts po (2 T s B ) and

define
Cy={m@): [ mixix =1, [ Ix'mexdx = pv., [ elPm? (i < k)
Lemma 6 (i) If C, # 0. then there exists a, b such that
o[l — b(Ls = ” 2J* e C,.
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ii) For any fized value ko (> EBX2), the largest v such that C,, # 0 is determined by
Bs L

v = aky(b)B%, (16)
1
¢ = ) (17)
b~ PEEGO) 1) (18)
6%

We note that given ko, we calculate the value of b by (18) and then the largest value
of v is given by (16) and (17): v = (ky(b)B%)/(pkp—2(b)). These 7, a, and b satisfy

fsall - lel *dx =1 and [ [|x]|?a[1 — b( lxll) J*dx = py.

For any ks, let v, a, and b be the values given by (16), (17) and (18). Then for any
density m.(x) with second moment v, = £ [ [Ix|*m.(x)dx and [ ||x]|*m?(x)dx <k;7?,

we have v > v, by Lemma 6 (iz). This implies that

2 1 21+ 2.
/ Ix%a[1 b(” TRICE / Ix[2m. (x)dx

Hence, we conclude that

m3 (x) = [l—b( =), (19)

[t
with a, b given by (17), (18) for any fixed ky(> EEE2), ie. fixed ki(> 0).

Theorem 7 Suppose that k; > ko(6,), determined by the equations

p(p + 2)(gp(b) + 1)
5% ’
6pgp—2(b) = 6p+2gp(b)v

k2(6p)
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Table 5. The values of k;(8) and £2(9) -

6 |p ki(6) ka(6) |p ki(8) ka(6) |p Ki(8) Ka(6)

11 0842 1344412 0819 31993 0.809 53.48
10 0.776 12.007 0.612 25.26 0.507 39.35

o) 0 12 0 25.13 0 38.98

for any given 6,. Then the solution to P3) is m3(x) = mg3,(x), defined by (17), (18)

and (19). The minimaxr IMSPE is

ng- *maz;er IMSPE(f,&;) = v(6, + p 5p+2 Z;zé)b)) + (1/ bp+2gp(b) + TT,S)Q’

2
Note that ky(6,) — 2%:—) as &, — oo.

In Table 5, we give some typical values of k2(6,) and related &,(6,), for p =1,2,3.
We find that k>(o0) (or k1(oc)) can be reached very quickly. The efficiencies of design

&5, which has density ms(x), relative to £; and £y are given in the Table 6.

4 Comparisons

Example 2 (Linear regression). Consider a regression model as at (3) and (4) with
z(z) = (1,2)7,-0.5 < £ < 0.5, normally distributed errors with ¢ = 1, and sample
size n = 16. As model contamination function f(z), we take the quadratic Legendre

polynomial, f(z) o (12z? — 1),with normalization [ f?(z)dz = n% = 1/8, so that
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Table 6. Relative efficiencies of £; relative to

uniform design (§;;) and discrete design (£g).

p k2 &6 rel(§y) rel(§p) re2(§y) re2(£p)

1 14 1 1.69 0.7 1.34 0o
10 1.86 0.63 1.66 oo

2 34 1 1.45 0.82 1.11 oo
10 1.52 0.79 1.3 oo

3 54 1 1.31 0.86 1.04 oo
10 1.35 0.84 1.17 00

v = 0.5. The extrapolation region has volume § = 5. We compare five designs: designs
from P1), P2), P3), the continuous uniform design (U) and the classical design (C)
which has eight observations at each of +0.5. For the four continuous designs four
observations are made at each of £71((i — 1)/(v/n —1)),i =1,2,3, 4.

Values of IPSB, IPV, and IMSPE are given in the Table 7. All three robust
designs performed better than U and C by comparing the values of IMSPE. The
classical design has highest bias although its variance is lowest. The three robust
designs, especially P1), greatly reduce the bias. Meanwhile, the variances of the
robust designs are much lower than that of the uniform design.

Is this model inadequacy likely to be detected? To answer this question, we fit a
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Table 7. ISPB, IPV and IMSPE for the designs of

Example 2 and Example 3; Incorrect fitted response

Linear response bivariate response

design | ISPB | IPV | IMSPE | ISPB IPV IMSPE

P1) | 0.697 | 7.123 7.82 0.091 3.389 3.48
P2) 1.957 | 5.458 | 7.415 | 0.116 3.319 3.435
P3) 2.232 1 5.255 | 7.487 | 0.198 3.158 3.356

U 0.318 | 8.375 | 8.693 | 0.024 3.813 3.837

C 3.036 | 4792 | 7.828 | 1.127 2.5 3.627

quadratic response 6g + 6,z + 0,2° and test the significance of 6,. A size 0.05 t-test
of Hy : 82 =0 vs. H; : 8; # 0 was carried out. The classical design is excluded from
consideration because it does not have enough sites for fitting a quadratic response.
The powers, based on 20,000 simulations are given in Table 8. The same 320, 000
standard normal values are simulated and used in each of the four designs. The powers
are low in view of the fact that the parametric form of the alternative hypothesis is
correctly specified.

Example 3 (Multiple Regression With Two Regressors). Assume the model
defined by (3) and (4) has two regressors: p = 2. Then B¢ = 0.5642. Assume

6 = 5. We compare the designs (P1, P2, P3) with the continuous uniform (U) and
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Table 8. The powers of tests in Examples 2 and 3

design linear response bivariate response
P1) 0.322 0.102
P2) 0.089 0.098
P3) 0.072 0.083
U 0.497 0.134

classically optimal (C) designs. As model contamination function, we use f(x) o
[2(z2 + 23)/B% — 1], with normalization [ f?(x)dzidz, = n% = i. Let the sample size
n = 16, then v = 0.5.

Design C consists of n points equally spaced over the boundary ||x|| = B¢. It
is classically optimal in the sense of minimizing the integrated variance (IPV) when
the model is correct. To implement the four continuous designs, apply Remark 3 of
Section 3.1 with p = 2. See Figure 3.

The values of ISPB, IPV and IMSPE in Table 7 have the same performance
measures as in Example 2. We test the significance of the second-order terms, that
is, we test Hy : 613 = 635 = 615 = 0. The test is the extra-sum-of-squares F-test. The
powers are again based on 20,000 N(0, 1) simulated errors and are given in Table 8.
We find that the powers for P1) and U are much lower than those in Example 2 while

the powers are approximately the same for P2) and P3) in both of Examples 2 and
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Figure 3: Design points of Example 3: (a) P1); (b) P2); (c) P3); (d) U.
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3. These powers indicate that the model departure used in these simulations is not
likely to be detected. This strongly suggests that we should anticipate and address

such departures at the design stage.

APPENDIX: DERIVATIONS

Proof of Theorem 1. First, we assume G > 0, i.e. G is positive definite.

If f € F is such that fg f3(x)dx < n%, [, f3(x)dx < 7%, then we can define
a function cf as ¢sf on S, crf on T where [cs] > 1, |er| > 1 and their signs are
chosen such that —2bZ, rB'bere = —2cresbf Bi'bse > —2b7,B;'bse. Thus
ISPB(cf,£) >ISPB(f.£). Hence, it is sufficient to evaluate the maximum value of
ISPB(f,€), over f, subject to [;z(x)f(x)dx = 0, [; f3(x)dx = n%, [, f3(x)dx = n}.

Given any f € F, define

srzT (x)[m(x)I — A5'B{H b, ifz €S,
hy(x) =
trzT (x)B; by ifreT,

with S? = T]%/b}:EH—lGH—.lbﬁg, t} = T]%/b}l-:sH_lbf,E; and S = + S}, tf = x t?—
chosen such that bf 7Bz 'bs,¢ < 0. Then

i) hy(x) € F; and ii) ISPB(h;,€) > ISPB(f,£).

In fact, i) can be shown by verifying [ h3(x)dx = 1%, [ h3(x)dx = n%,

Jsz(x)hs(x)dx = 0. To prove ii), we note that
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(1) bh!,T = thTBE—IbLg and bhf,5 = SfGH—Ibflg,
(2) [s f(x)hs(x)dx = s¢b] H by, and [ f(x)hs(x)dx = tfb}:eBglbf'T.

Thus

ISPB(hs,§) = sz'EH_lth,f + 2|b£,,TBe—lbhy.£! + 7%

= stb H 'GH 'GH 'bs¢ + 2|sy||t;|bf . H 'GH 'by¢ + 13-
By the first equality of (2) and the Cauchy-Schwarz inequality, we have
HOFH b < [ £e0d00) [ Kidx) < s

so the definition of sy gives

(b7 ¢H 'bye)*

2 > .
7S = BT H-'GH 'by,
Similarly,
2 - (breBg'bsr)?
T 2 TF 30 .
bl H-'b;
Hence
ISPB(h;, €)
_ ns(blH'GH 'GH ™ 'by¢) 2ngnr(bT H'GH by¢) L
b7 H-'GH 'by, (b7 H-'GH 'by¢)/2(bT ,H-1b/)'/2 T
(b H 'bye)? _ _ _ _
> GTHOGH Pl CH'GH by + 267 B byl + 77
f.€ s
This implies that ISPB(hf,€) >ISPB(f,§) if
(b H 'bse) (b7 H'GH'GH 'by¢) > (bT H 'GH 'bye)*. (A.1)
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In fact, with w = H-2b; and J = H-2GH"Z, (A.1) becomes
(wTw)(wTF2w) > (wlIw)2 (A.2)

This is true by Cauchy-Schwarz inequality and (A.1) follows.
Therefore, we can restrict to f € F of the form
2z (x)[m(x)I — A5'B¢a ifz €S,
f(x;a,c) =

zT (x)B; 'c ifzeT,

where a and ¢ are arbitrary vectors satisfying
n% = / f3(x;a,c)dx =aTGa, ni= / f3(x;a,c)dx = cTH 'c.
s T

Subject to these conditions we maximize

ISPB(f.£) bl H 'bs¢ — 2b7 B 'by¢ + 1%

= a’GH !Ga - 2cTH 'Ga + 73

This is maximized by
nrGa

C= ————
|H-1/2Gal|

and then

_ aTGH 'Ga
ISPB(f.,£) = a’GH IGa"l—zT]T"l'm‘*'n%

= (VaTGH'Ga+ np)%.

With ag = a/ng, we are then to maximize

ISPB(f,€) = (n5\/a{ GH™'Gao + 17)",
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subject to alGay = 1. This is a standard eigenvalue problem. If A, is the largest
solution to

|IGH™!G — AG| =0,

that is

|G — AH| =0,
then the maximizer ag will be defined by
(GH™'G-\.G)ag =0,

normalized to satisfy al Gag = 1. This proves the theorem when G > 0.

If a design density m(x) is such that G > 0, but |G| = 0, we can approximate
it as follows. Take any density m;(x), with corresponding matrix G; > 0. Let
m(x) = (1 — t)m(x) + tm,(x), then m,(x) is a density. Define G, as the matrix
corresponding to G when the density is m,(x) and p(t) = |G¢|. Then p(t) is a
polynomial in t € [0, 1] and p(0) =0, p(1) = [G1]| > 0. So p(t) is non-constant and
p(t) > 0. This implies that p(t) > 0 for all sufficiently small £ > 0. Now, the theorem
holds for G;. By letting ¢ — 0, we show that the theorem holds for G. d

Proof of Theorem 2. (i) Based on Theorem 1, the maximum IMSPE(f,£) is
maz rer IMSPE(f,€) = n5[v(6p + p172) + (VA +71.5)7),
where
A = maz{5,( | m¥(xjax = 1); Epua(2S [ Ilimie)dx - 1),
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Under the stated conditions, we show that m;(x) minimizes

B(m) = r3(5, + 2 E) + (1 61225 / Ix[[2m2(x)dx — 1) + rr.5)7,

and that

A = 61225 [ Pt — 1).
We first minimize ®(m) for fixed v, then minimize over <, i.e. we first minimize
Js lIx||*m?(x)dx for fixed ~, then minimize the resulting ®(m) over 7.

At the first stage, we have

with Lagrange multipliers a, b determined by [;m;(x)dx = 1, [ [[x]|?>m,(x)dx = py
If b < 0, then m;(x) = a[l — b(Z= i5)%]- When p < 3, we have [ m;(x)dx = oo
This is a contradiction. When p > 3, we have a — %‘;— =1, py=apys—ab(p+2)ys

This implies L =1+ < 1, which is useless to us.

s P(P 2)

Thus, we only need to consider the case b € [0, 1]. Then a, b satisfy

1
© = L) (4-3)

= a(p+2)ky(b). (A.4)
s

So m;(x) can be parameterized by b € [0, 1], with a, v determined by (A.3), (A.4).
Since
/||x||2mf(x)dx = a/ |[x||2m1(x)dx—abﬁ§/ml(x)dx=ap*y—-abﬁ§,
s s s
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Bs p—1 1
S 0 'BS B

= pa’kp2(b) — pa’bky_4(b),
then by (A.3) and (A.4), we have

6p+2(Z5 [ IXIPm3(x)dx — 1) = 6,4205(6),
5p(fs m}(x)dx — 1) = 6pgp—2(b),
®(m1) = n{v[6p + POpr2 252001 + [V/Brr205(0) + rrsl’).
Therefore, the definition of b, indicates that b; is the minimizer of ®(m;) and it
follows that
2]+

(%) = al bl(u u

with a; determined by (A.3) (take b = b;), minimizes ®(m) unconditionally. If (8)
holds then Am, = 6p42(2% [5lx|[*m}(x)dx — 1) and it implies that m;(x) is the

minimax extrapolation design density. Now, we have the following facts:

1). The function {;(6,) = %22 = “*‘mh L is an increasing function of &, € (0, oo),
2 bp &7 P

with limg _, g l1(6p) =1+ 3.

2). For b € [0, 1], the function l;(b) = 3%?—6()1) is decreasing, with lim,_.; {3(b) = 1 + %

and hmb_.o lg(b) = 0Q.

3). The function l3(b) = (—1)Z[\/6p+29p(0) + T1.5]%/ (POps2 ab[(:+23élg)]) is increasing,

with llmb_.lls(b) =

And 1) and 2) imply that for fixed 6,, (8) holds when b is large. Hence, by 3), (8) is
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true when v € [v4(8), 0], for some v4(8) > 0.

(i7). Similar to (z), under the stated conditions, we show that m;(x) minimizes

¥(m) = n3[(é, + pL )+(\/ p(/mz(x dx ~ 1) +rr5)",

and that

Am, = 6,,(/S m?(x)dx —

First fix p, i.e. fix p= %, then the minimizer of ¥ () has the form:
my ,(z) = (allx]? + b)*,

with Lagrange’s multipliers a, b determined by [¢m) ,(x)dx =1, [ [|x[|?m ,(x)dx =
7. The forms of the minimax extrapolation design depend on the sign of b.

a). a,b> 0, then 1 < p < ZZ and m, ,(z) = 1+25 (p— 1)( 2L —p). Therefore,

Sl 5 [ I xlax — 1] = 5pual T EEL L

X /S md @)z 1] = 8, (512

T(my,) = 2w, + paﬁz;l;) +(5(p = 1) + rr.5)?).

(= -17,

So, by the definition of p,, m;(x) =1+ %(pl - 1)(%‘2—2 — p) minimizes ¥ (/) uncon-
ditionally. If (10) holds, then Am, = &,(f; m3}(x)dx — 1) and it follows m,(x) is the

solution to P1). The remaining statement of ¢) follows as in () by the facts:
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1). pg increases with 6, and lims,—.0 pp = (;T—(,Eﬁz) ): < (1+ p(p:‘;))?

2). v increases with p.
b). a >0, b <0. Define c € (0, 1) by c*4} = —b/a. Then 2 < p = 2 <

% and m ,(z) = (""” — c?]*, described by the parameter c¢. Thus,

J,,(c) el

bpr2(5% [ lIx[Pm3 ,(x)dx — 1} = &pr2hpi2(c)

6p[fs m%,p(x)dx — 1] = 6phy(c);

U(my,) = nZ[v(6p + Pfswzj—:%) + (V/&php(c) + r1,5)]
Hence, if ¢; is the root of (11), then m,;(x) = Jp(lq)[( le")2 c?]* minimizes ¥(m)
unconditionally. If (12) holds then An,, = 6,(f;m?(x)dx — 1) and it follows that
mi(x) is the solution to P1). The remaining part of b) is similar to a). O
Proof of Theorem 3: In the light of the fact: A, = 0 and [ ||x|[*m(x)dx =pvg
when m(x) = 1.
Proof of Lemma 4: Let my;(x) be the solution to the second minimization, then

2

[I= Il2

mo; =a[l - b I*

with a, b € (0, 1) determined by [cma (x)dx =1, [ ||x||*m2 (x)dx = d,, i.e. (note

that 8% = (p + 2)7s)

1
© = o) (A-3)
di = apky(b)B% = aky(b)p(p + 2)7s, (A.6)
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Hence, we have (note that py = d; here):

Js IIxI*m3, (x)dx

Y4
- = [ad, — ab(p + 2)vs]

di
gp(b) +1
Ts

which is an increasing function of b. So it is an increasing function of d; by the fact
that d; increases with 6. This proves the Lemma. d

Proof of Theorem 5: We want to show :

1) ma(x) = argmin{8p2(L% [5 Ix|[Pm?(x)dx—1) : [¢m(x)dx =1, [¢|x[[>m(x)dx >
dy}.

2) Amp = Epra( 25 [ lIx[Pm3(x)dx — 1),

As in Lemma 4, we have 1), and that
bpr2(35 [s IxlIPm?(x)dx — 1) = &p1295(0) = ((1+6,)' 7P —1)g,(b),
bp[[s m3(x)dx — 1] = bpgp—2(b).

Thus, 2) is true if (1+6");:2/p—1 > Q’;;(zlf;’ ). But the latter holds for d; € [d1(8p), (p+

2)vg), with d,(6,) determined as in the statement of the Theorem, in light of the

facts: 'gg;(zlf)b ) decreases with b and hence decreases with dy; limg g gg;(20()b) =1+ 12’ <
Qﬂ%, This complete the proof. (]

P

Proof of Lemma 6: For any ~v, if C, # 0, then there exists a density m.(x), such

that
/ m.(x)dx = 1, / 2. (x)dx = 77, / Ix[[2m2(x)dx <kz?.
S S S
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But, we have parameters a, b, such that

argmin{/gllxlﬁm%x)dx: /sm(x)dx= 1, /S||x||2m(x)dx=p*y}
&)2]+’

= ol =

with a, b determined by (16), (17). So [, l|x||2(a[1—b(”%% 2*)2dx < [ [Ix||*m2(x)dx

<kov?. This proves (7). Since

Js IIxlP(all — b(55)2+)%dx 1
- = slpay — ab(p+2)1s]
_ p(gp(b) +1)
s ’
is an increasing function of b, it increases with . Hence, (ii) is true. O

Proof of Theorem 7: Simple calculations show that

6 /5 m2,(2)dz — 1) = 8,gp2(b),

with b determined by (18), i.e.

P(KE +6p12) _ | _ Plos(0) +1)
T Ts

Thus
k% = 6P+2gp(b)7

and (14) can be rewritten as:

g2(b) _ (L+8)M2 1
w® = &

The monotonicity of these functions implies the theorem. O
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Chapter Three

Robust Extrapolation Designs and Weights for Biased
Regression Models With Heteroscedastic Errors!

Abstract

In this article we consider the construction of designs for the extrapolation of re-
gression responses, allowing both for possible heteroscedasticity in the errors and for
imprecision in the specification of the response function. We find minimax designs
and correspondingly optimal estimation weights in the context of the following prob-
lems: 1) For ordinary least squares estimation, determine a design to minimize the
maximum value of the Integrated Mean Squared Prediction Error (IMSPE), with the
maximum being evaluated over both types of departure; 2) For weighted least squares
estimation, determine both weights and a design to minimize the maximum IMSPF;
3) Choose weights and design points to minimize the maximum IMSPE, subject to
a side condition of unbiasedness. Solutions to 1) and 2) are given for multiple linear
regression with no interactions, a spherical design space and an annular extrapolation
space. For 3) the solution is given in complete generality; as one example we consider
polynomial regression. Applications to a dose response problem for bioassays are dis-

cussed. Numerical comparisons including a simulation study indicate that, as well

1Co-authored with D.P. Wiens. To appear in The Canadian Journal of Statistics.
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as being easily implemented, the designs/weights for 3) perform as well as those for
1) and 2), and outperform some common competitors, for moderate but undetectable

amounts of model bias.

1 Introduction

In this article we study the construction of designs for the extrapolation of regression
responses, in the presence of both possible error heteroscedasticity and an approx-
imately and possibly incorrectly specified response function. Design problems for
estimation in the face of response uncertainty, but for homoscedastic errors, have
been studied by Box and Draper (1959), Huber (1975), Pesotchinsky (1982), Wiens
(1992) and others; Wiens (1998) allows also for heteroscedastic errors. Designs under
error heteroscedasticity, assuming the fitted response to be exactly correct, were con-
sidered by Wong (1992) and Wong and Cook (1993); both of these papers assumed a
known variance structure. Designs for extrapolation of polynormials, again assuming
a correctly specified response, were studied by Kiefer and Wolfowitz (1964a,b) and
Hoel and Levine (1964). Studden (1971) studied such problems for multivariate poly-
nomial models. Spruill (1984) and Dette and Wong (1996) constructed extrapolation
designs for polynomial regression, robust against various misspecifications of the de-
gree of the polynomial. Draper and Herzberg (1973) extended the methods of Box

and Draper (1959) to extrapolation under response uncertainty. In their approach
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one estimates a first order model but designs with the possibility of a second order
model in mind; the goal is extrapolation to one fixed point outside of the spherical
design space. Huber (1975) obtained designs for extrapolation of a response, assumed
to have a bounded derivative of a certain order but to be otherwise arbitrary, to one
point outside of the design interval. These results were corrected and extended by
Huang and Studden (1988).

Extrapolation to regions outside of that in which observations are taken is of
course an inherently risky procedure, and is made even more so by an over-reliance
on stringent model assumptions. For such reasons we shall take rather broad classes

of departures from the usual linear model:
1. The response is taken to be only approzimately linear in the regressors; viz.
E(Y|x) = 872(x) + f(x) (1)

for a p-dimensional vector z of regressors, depending on a g-dimensional vector
x of independent variables. The response contaminant f represents uncertainty
about the exact nature of the regression response and is unknown and arbitrary,
subject to certain restrictions detailed in Section 2. One estimates @ but not
f. leading possibly to biased estimation of E(Y'|x) and consequently to biased
predictions. The experimenter is to take n uncorrelated observations Y; =
E(Y|x;) + e(x;), with x; freely chosen from a design space S. The goal is to
extrapolate the estimates of £(Y|x) to a given region T disjoint from S.
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2. The random errors, although uncorrelated with mean zero, are possibly het-
eroscedastic: VAR{e(x)} = o2%g(x) for a function g satisfying assumptions

given in Section 2.

As an optimality criterion we take an analogue of the classical notion of Q-
optimality: the supremum, over f and g, of the Integrated Mean Squared Prediction
Error (IMSPE) of the predicted values Y(x), with the integration being over the
extrapolation region 7', is to be minimized by an appropriate choice of design. The

following problems will be addressed:

P1) For ordinary least squares (OLS) estimation, determine designs to minimize the

maximum, over f and g, value of the IMSPE.

P2) For weighted least squares (WLS) estimation, determine designs and weights to

minimize the maximum IMSPE.

P3) Choose weights and design points to minimize the maximum IMSPE, subject

to a side condition of unbiasedness.

As a possible application, consider the following extrapolation problem for bioas-
says. Let P(z) be the probability of a particular response when a drug is admin-
istered at dose z. At various levels of = one observes the proportion p, of subjects
exhibiting the response, and transforms to the p.-quantile Y = G~!(p,) for a suit-
able distribution such as the logistic. The regression function is then modelled as
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E(Y|z) = G~!(P(z)). Since P(z) is unknown, E(Y|z) is often approximated by a
low-degree polynomial ((z). In the ‘low-dose’ problem, it is difficult or impossible
to observe Y near z = 0, or the error variance increases markedly as z — 0; either of
these situations leads to the extrapolation of estimates computed from data observed
at, say, z € [a,1] (@ > 0) to estimate E(Y|z = 0). Krewski et al (1986) consider
designs for such problems assuming that E(Y|z) is exactly linear in Inz. Lawless
(1984) takes an approach closer to ours, obtaining designs which minimize the MSPE
of };?mo: for various trial values of E(Y |z = 0) — ((0). Of course this difference is
unknown; the approach of the current article is to model it (by f(0) in (1)) in such
a way as to open the door to a minimax treatment. Another point of departure of
our approach from that of Lawless (1984) or Huber (1975) is that although our treat-
ment does not allow the case T' = {0} (or any other extrapolation space of Lebesgue
measure zero), it does treat the case of an interval T, i.e. extrapolation to a range of
values near £ = Q. This is particularly significant if the problem is to determine a
‘virtually safe dose’ (Cornfield 1977).

Despite these differences, Lawless (1984) reaches qualitative conclusions very sim-
ilar to ours, remarking that “...in extrapolation problems a slight degree of model in-
adequacy quickly wipes out advantages that minimum variance designs possess when
the model is exactly correct.”

The designs and weights which constitute solutions to problems P1), P2) and P3)
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are given in Sections 3, 4 and 5 respectively. Those for P1) and P2) are theoreti-
cally and numerically rather complex, and our solutions are restricted to situations
exhibiting considerable structure. In contrast, the solution to P3) is given in com-
plete generality and turns out to be computationally straightforward. @We apply
the solution to P3) to the dose response problem described above. A comparative
study accompanied by concluding remarks and recommendations is given in Section
6. Some mathematical preliminaries are detailed in Section 2, where we reduce each
of P1) - P3) to a single minimization over a class of densities. Proofs for Section 2

are postponed to the appendix.

2 PRELIMINARIES AND NOTATION

For the regression model described in Section 1 we shall assume that the contami-

nation function f(x) in (1) is an unknown member of the class

F=A{fl /Sf2(x)dx < n% < oo, /sz(x)dx < 1% < oo, /Sz(x)f(x)dx =0}, (2)

for positive constants ng and 7. The random errors €(x;) satisfy
VAR{e(x:)} = 0%g(x:), / PA(x)dx < Q! = / dx < 50, 3)
s s

The last condition of (2) is required in order that the true parameter @ be uniquely
defined, and then @ := arg min, [,{t7z(x) — E(Y|x)}?dx. One can instead start with
this definition of @, then define f(x) = 87z(x) — E(Y|x), thus obtaining the last
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condition of (2) as a natural consequence of the definition of the parameter being
estimated. @ The other conditions of (2) are needed to ensure that errors due to
estimation and prediction bias remain bounded. The conditions of (3) are equivalent
to defining 0% = sup,[[; VAR? {e(x)}Qdx]z.

At the outset the only assumptions made about T are that it be disjoint from S
and that the integrals in (2) exist; special cases will be considered in Sections 3 to
5. The requirement that T' and S be disjoint need not exclude the application of our
results to interpolation problems, i.e. the case T C S, as long as design points are not
to be chosen from within T. One can then replace S by S\T. The cases in which
S C T, or in which S and T are merely overlapping, may be handled similarly. If
design points may be chosen from within T then f(x) is defined for values x € SNT
and our method of maximizing the loss over F fails.

We remark that for P1) and P2) our results depend on the unknown parameters
only through v := ¢2?/(nn%) and rrs := ny/ng; for P3) no knowledge whatsoever
is required of these parameters. One can interpret v as representing the relative
importance of bias versus variance, in the mind of the experimenter. As v — 0
bias completely dominates the problem, whereas v — oo results in a ‘pure variance’
problem. Similarly, the choice of rr g reflects the relative amounts of model response
uncertainty in the extrapolation and design spaces. In our simulation study for this

article we made the rather arbitrary choice v = Q and the intuitively appealing choice
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rrs = 1; a perhaps equally appealing choice of rr s is the ratio of the volume of T to
that of S. The qualitative aspects of the results did not change when other choices
of v and rrs were made.

To avoid trivialities, and to ensure the nonsingularity of a number of relevant
matrices, we assume that the design and extrapolation spaces satisfy

A) For each a # 0, the set {x € SUT : a’z(x) = 0} has Lebesgue measure

Z€ero.

We propose to estimate @ by least squares, possibly weighted with non-negative
weights w(x). Let £ be the design measure, i.e. £ = n~! Y " b, where 6, is point
mass at x. Define matrices and vectors

A7 = [z(x)zT (x)dx, As = [, z(x)zT (x)dx,
B = [;z(x)zT (x)w(x)é(dx), D = [;z(x)z” (x)w?(x)g(x)E(dx),

brs = [sz2(x)f(x)w(x)é(dx), byr= frz(x)f(x)dx.

It follows from A) that Ar and As are nonsingular, and that B is non-singular if
& does not place mass on sets of Lebesgue measure zero. As discussed below, this
sufficient requirement turns out to be necessary as well.

The WLS estimator of 0 is
6=B"n Y abc)u(x)¥: = B [ a(xulx)y(x)é(dx),
=1 S
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with bias vector and covariance matrix
_ 2
E@) - 0=B"'b;s, COV() = %B“DB“.

Note that 02/n = n%v; we shall henceforth use the latter expression since it will
generally appear together with functions of the bias.

We predict E(Y|x) for x € T by Y(x) = @Tz(x) and consider the resulting
Integrated Mean Squared Prediction Error. The IMSPFE splits into terms due to

prediction bias, prediction variance, and model misspecification:

IMSPE(f,g,w,£) = / E[{¥(x) — E(Y]x)}¥dx
T

= IPB(f,w,§) + IPV(g,w,§) +/T:f2(x)dx,

where, with H := BAT'B, the Integrated Prediction Bias (IPB) and Integrated Pre-

diction Variance (IPV) are

IPB(f,w,€) = /T [E{Y (x) — 07z(x) }]2dx — 2 /T E{Y (x) — 0Tz(x)} f(x)dx
= b}:sH_lb]"s - 2b}:TB—1bL57 (4)

IPV(g,w,€) = /TVAR{Y(X)}dx=néu/szT(x)H‘lz(x)w2(x)g(x)§(dx).

In contrast to the decomposition of IMSE for estimation into positive summands, the
IPB may be negative. However, IPB + [. f?(x)dx > 0.

In practice £ must be discrete, with atoms consisting of integral multiples of n~1
at the design points. We adopt the viewpoint of approrimate design theory and allow
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£ to be any probability measure on S. It then turns out that the optimal extrapola-
tion designs are not discrete. In fact, to guarantee that either of sup,IPB(f,w,§) or
sup,IPV (g, w, &) be finite, it is necessary that £ have a density. This can be estab-
lished by modifying the proof of Lemma 1 of Wiens (1992). A consequence is that the
optimal extrapolation designs must be approximated to make them implementable.
This can be carried out by placing the design points at an appropriate number of
quantiles of &.

Let k(x) be the density of £, and define m(x) = k(x)w(x). Without loss of
generality, assume that the mean weight is [, w(x)§(dx) = 1. Then m(x) is also a

density on S which for fixed weights satisfies

TUX) e =
sw(x)dx 1. (3)

From the definitions of B and by,s we see that IPB(f, w, &) depends on (w,£) only
through m and IPV (g, w,§) through m and w. Hence, we can optimize over m and
w subject to (5) rather than over w and k.

Given fixed m(x) and w(x), the ‘max’ parts of the minimax solutions are given
by Theorem 1. Before stating this we define matrices K = [ z(x)z” (x)m?(x)dx and
G = K — BAS'B. We define A, to be the largest solution to |G — AH| = 0 and
let ag be any vector satisfying (GH™'G — A\,,G)ag = 0 and alGay = 1. Define also

ln(x) = 2T (x)H™'2(x) and am = [o{lm(x)m?(x)}*/3dx.
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Theorem 1 a) Maximum Integrated Prediction Bias is
sup IPB(f,w,€) = n3{(V/Am +1.5)* = 7.5} 20,
feF

attained at

nsz” (x){m(x)[ — Ag'B}ay x € S,
fm(x) =
—nr2T (x)B1Gag/VAm xeT.

b) Mazimum Integrated Prediction Variance is
1/2
supy IPV(g, w,€) = n2vQ /2 [ i {w(x)zm<x)m(x>}2dx] ,
s

attained at gm uw(X) < wW(X)lm(x)m(x).

¢) Marimum Integrated Mean Squared Prediction Error is

9 1/2
sup IMSPE(f, g, w,€) = 1% { (\//\m + rT,s) + Q712 [/ {w(x)lm(x)m(x)}zdx] } .
fg S

Note that the least favourable contaminant is in fact linear (in z) on T and that
fm also maximizes IPB + [. f3(x)dx (since [ fZ(x)dx = n%).

We say that a design/weights pair (£, w) is unbiased if it satisfies
EB) =80 forall f € F,

so that supsIPB(f,w,§) = 0. The following theorem gives the minimax weights for

fixed m(x), and a necessary and sufficient condition for unbiasedness.
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Theorem 2 a) For fized m(x) the weights minimizing sup,IPV(g,w,£) subject to
(5) are given by
wn(X) = am{3,(x)m(x)} "2 I{m(x) > 0}.
Then sup, IPV(g, wm, £) = nZvQ~2a32.
b) The pair (£, w) is unbiased if and only if m(x) = .
In view of Theorems 1 and 2, our problems in this article can be rewritten as

follows:

P1) Find a density m,(x) which minimizes

D)

2 1/
ns’sup IMSPE(f,g,1,€) = (\/ Am + TT‘s) + Q2 [/ {lm(x)m(x)}2dx} ;
f.g s
(6)
Then k.(x) = m.(x) is the optimal extrapolation design density for OLS esti-

mation.
P2) Find a density m.(x) which minimizes
5 Sup IMSPE(f. 9,0, €) = (Vm +75) + 00 alf%
Then the weights w.(x) = m.(x)/k.(x) and the design density k.(x) =

a; {m2(x)lm. (x)}*/3 are optimal for WLS estimation.

P3) Find weights wy(x) o ln(x)%/3, satisfying (5) with m(x) = Q. Then wg(x)
and the design density ko(x) = Q/wy(x) are optimal in that they minimize
sup; ,IMSPE(f,g,w,£), subject to the side condition of unbiasedness.
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Note that we have multiplied the quantities to be minimized by 7)52; this is without

loss of generality and makes our results dependent only on the parameters v and rr 5.

3 MINIMAX EXTRAPOLATION DESIGNS FOR OLS

For P1) and P2) we consider only multiple linear regression without interactions,
i.e. z7(x) = (1,xT), with S being a g-dimensional sphere of unit radius centered at
the origin. We take an annular extrapolation space: T = {x | 1 < ||x|| < 8}. There
being no reason to give preference to one coordinate of x over another, we restrict to
densities m(x) with identical, symmetric marginals. Then As = Q~}(1& (¢+2)"'L,)
where Q = ['(1 + ¢/2)/7%2, and B = 1 & 71, where v := [ zim(x)dx. Define

pararmeters

To = fT dx7 Ko = Qz

2 o
=32 k= Qg+ 27
We calculate that
q+2 _ 1
2d =/3 ,
/Tx‘ *Talg+2)

vielding 7; = (89% — 1)/k; for i = 0,1, and that Ar =10 & fT zidx - I,.
We find that l,(x) = I(||x||;v), where {(u;y) := 7¢ + T1qu? depends on the

design only through v. The maximum eigenvalue A, in (6) is found to be A,, =
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max(A?, A1), where

A0 = { / [|x[|#m?(x)dx — rc,-} :
S

We must consider two cases. For u € [0,1] and i = 0,1 define

a;v(b; +u?)*
(1+ rr,sc)u® + divl?(u; )’

hi(u;v) =

where the constants a; = a;(y) > 0, b; = b;(7), ¢i = ci(y) > 0 and d; = d;(v) > O

satisfy
1 q—1
/qu hi(u;v)du = 1, )
0 Q
1 uq—l )
/ qQ u?hi(u;yv)du = g7, (8)
0
1 q-1
C?Ti{ gy—'—uzlh?(u?)’)du—ﬁi} = 1, (9)
0 Q
1 1/2
2dirs { i z?(u;v)quq-lh?(un)du} _— (10)
0

We denote these by Case 0 (i = 0) and Case 1 (¢ = 1). It turns out that for fixed v,
Case 0 holds for small values of 3, Case 1 for large values of 5. The precise relationship

between v and § has not been determined.

Theorem 3 Minimaz extrapolation designs for OLS. For i = 0,1 define

If the inequality

()2
E{ U079h(Usv:)} < &(;L + K1-i (12)

1—1
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Figure 1: Optimal extrapolation design densities and least favourable variances for
OLS and SLR. (a) Design densities, § = 1.5; (b) Design densities, 5 = 5; (c) Least
favourable variances, 8 = 1.5; (d) Least favourable variances, 8 = 5. Each plot uses

three values of v: v = .25 (broken line), v = 1 (solid line), v = 100 (dotted line).
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holds, where E;{-} denotes expectation with respect to the density (qui~'/Q)h;(u;~;)
and where k; and T, are evaluated at v = v,, then the minimaz (for OLS) extrapola-
tion design density is

k.o(x) = m.(x) = hi([lx];7,)-

Minmaxz IMSPFE is

I o S S
sup IMSPE(f,g,w = 1,€.) =5 | {an) ™ +ras} 4 | )

Remarks:

1. We sketch the proof of Theorem 3 for i = 0; that for ¢ = 1 is similar. We
first find mo minimizing (6) with A, = A, Then if mq satisfies AQ > AL,
it is the required minimax density. For fixed v and A, = A9 the loss (6) is a
convex functional of m which remains fixed under orthogonal transformations
of x. By averaging over the orthogonal group we find that the minimizing mq
is spherically symmetric. A standard variational argument shows that mg(x) is
of the form ho(||x|[;y) for appropriately chosen constants ag-dy. The integrand
in (7) is the density of U = ||x||, equation (8) fixes v = E(U?)/q, equation (9)
states that c5? = /\f,?) and equation (10) expresses the first order variational
condition that hy be a stationary point. These equations allow (6) to be ex-
pressed as a function of v alone; a further minimization over v then results in
(11). Condition (12) ensures that A (= co(7,)72) > PYCN
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Table 1. Constants for m.(x) of Theorem 3;

g =1 (SLR) and rr s = 1.

Jéj v a b c d Y

1.5 .25 15.26 14.52 110.56 .140 334
5% 1497 .203 4.61 .159 417

1*  11.57 .079 3.80 .163 423

100 7.07 -—-.163 1.53 .184 .979

100* 6.80 -—-.195 145 185 .596

oo®* 6.77 —.198 144 .185 897

5 .25t 7.01 —.000 215 4.04e—6 .334
S5t 251 —.005 771 4.35¢—6 .339

1t 148 —.015 445 4.62—6 .343

100 983 —.096 .296 9.0le—6 .436

100f 981 —.132 280 1.12e—5 .475

oot 973 —.134 277 1.13e—5 .476

*Case 0; fCase 1.
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2. For the numerical work equations (10) (for i = 0,1) were first eliminated by

using them, in the presence of (7) to (9), to express d; in terms of a;-c;:
d;! = 4Qr? [a.,(b,- +qv) — 1+rrse ZT'Sci {(C?Ti)_l + Hi}] . (14)

The remaining equations were then solved. Finally (11) was minimized and
(12) verified. See Table 1 for some numerical values of the constants in the case
g = 1 - straight-line regression (SLR) - with rrs = 1. Figure 1 gives plots of

the minimax extrapolation design densities for varying 8 and v.

3. To implement these designs, we may use the fact that under the density m.(x),
x/||x|| and U = |[x|| are independently distributed, with x/||x|| being uniformly
distributed over the surface of the unit sphere. A possible implementation is
then as follows. Let H, be the cumulative distribution function of U. Choose r,

design points uniformly distributed over each of the annuli ||x|| = H'(i/[n/74]),

4. When the fitted model E(Y|x) = 87z(x) is correct and the variances are ho-

mogeneous, the OLS estimate is unbiased and the loss is
IMSPE(0,1,1,€) = IPV(1,1,6) = rvEU(ixllin)} = n3v (ro+ 2 [ stax).
T

where v is the second moment of £. In Figure 2(a) we compare the loss for our

minimax SLR design £, with that of the two-point (+1) design &;, constructed
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Figure 2: (a) Integrated Prediction Variance vs. §; (b) sups,IMSPE vs.S for three
designs: £, (minimax, v = €; solid lines), &, (2-point; dotted line), &, (uniform;

broken lines); all for OLS and SLR.
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by Hoel and Levine (1964) under the assumption of an exactly correct fitted
model, and of the continuous uniform design &,.
When the model may contain response contamination and heteroscedastic er-
rors, &, has sup; ,IMSPE = oo. Figure 2(b) gives plots of sup, ,IMSPE for the
uniform design and for £,. For the minimax design supy,IMSPE is given by
(13). For the uniform design Theorem 1c) gives

sups, IMSPE(f,g,1, &)
. 4q _ 1/2
=n%{rFs+V [{To +q%(g +2)¥*m 2 + m{Q(q + 2)727'1}2] } . (15)

with 7; evaluated at 4. We have used v = Q = .5 and g = n = 1 in Figure 2.
For this value of v the minimax design is close to the uniform and the efficiencies
relative to £,, when the model is correct, are rather low. For larger values of v

these relative efficiencies are somewhat higher.

4 MINIMAX EXTRAPOLATION DESIGNS AND WEIGHTS FOR WLS

We consider the same multiple linear regression model, spherical design space and

extrapolation space as in the previous section. We again consider two cases. For

u € [0,1] and i = 0,1 define k;(u;~) to be the (sole) real root of

14 715C 90, 12 (w; y) by (u;7) | /2 2
—u hi(u;v) + { 1Pt — a;(b; + u*)T =0,

86



ie. hl-l/s(u; v) = z'3(u)— [u {3(u;7)/ (4(22d1-‘r‘})}1/3 /{3(1 + rT,sc,-)ugi}] z~13(u), where

v vi?(u;vy)
= - | ai(b; + )t (b; + u2)+}? ’ | .
#(u) 2(1 + rr.sci)u? [a (b +u?)" + \ﬂt( )t 2702%d; 74 (1 + rrsci)u®
The constants a; = a;(y) > 0, b; = b;(), i = ci(v) > 0 and d; = d;(y) > 0 are

determined by (7), (8), (9) and (14).

The following result is established in a manner similar to that used for Theorem

Theorem 4 Minimaz extrapolation designs and weights for WLS. For i = 0,1 de-

fine

. _ v
¥; = argmin,xo [{c"('y) rrsh o+ 4Qd;(v)r:]

If the inequality (12) holds, then the minimaz (for WLS) extrapolation design density
k.(x) and weights wp, (X) are given by

ka(x) = {4QY2d:(r)meh2(lIxll; vl %l v) )2

m.(x) = hi(|[x]};7:), wa(x) = m.(x)/k.(x).
Minmaz IMSPE is
4Qd;(v,;) s

sup IMSPE(f. g, w..£.) = {a(v,-)-‘+rr,s}2+—”——]. (16)
g

Table 2 gives some typical values of the constants and Figure 3 shows plots of the

minimax design densities and weights, both for g =1 and rrs = 1.
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Figure 3: Optimal extrapolation design densities and minimax weights for WLS and
SLR. (a) Design densities,3 = 1.5; (b) Design densities, 3 = 5; (c) Minimax weights,
8 = 1.5; (d) Minimax weights, 3 = 5. Each plot uses three values of v: v = .25

(broken line), v = 1 (solid line), v = 100 (dotted line).
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Table 2. Constants for m.(x) of Theorem 4;

g=1(SLR) and rr.g = 1.

Jé) v a b c d g

1.5 .25 21.82 20.69 22584 096  .336
5* 1169 7.46 8491 097  .336
1* 11.15 .865 16.04 099 359
10t 139 .122 251 016 485
100f 1.18 .161 1.96 017  .508

oot 1.16 .166 1.91 .017 211

5 .25 60.76 .233 3.35 2.95e—5 .349
5t 344 005 875 5.26e—6 .425
It 226 .005 467 T7.07e—6 .485
100 1.38 .027 .247 9.68—6 .559
1000 1.3¢ .027 215 1.06e—5 .585

oof  1.32 .029 215 1.06e—5 .585

*Case 0; fCase 1.
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We have computed the efficiencies of £, relative to other designs £, also symmetric
with identical marginals and with second moment v. When the fitted model E(Y |x) =

z7(x)0 is correct and the variances are homogeneous, this relative efficiency is

IPV(g=1,w=1,§) 7o+ 2 [ z3dx
PVg=1lw=w.L) (4v/Qdir:)=3 [ (qui~1/Q)RZ (w; v,)1V/3(w; ;) du

rel(€) =

Table 3 gives some representative values of rel(§) for £ = £,, with all mass on the

boundary of S, and £ = &,, the continuous uniform design. Also given are values of

o) — _SUPsg IMSPE(f,g,1,¢)
re (E) - Supj,g IMSPE(f,g,w"E.)’

(17)

which measures the efficiency of (£,,w.) relative to another design £, with constant
weights, when the true response is only partially linear and the variances are het-
eroscedastic. The denominator of (17) is (16). For &, the numerator is oo, for &, it
is given by (77). As before, we take v = 2 and rrs = 1. The numbers in Table
3 show the appreciable gains to be enjoyed when £_ is employed in the presence of

contamination and heteroscedasticity.

5 OPTIMAL UNBIASED EXTRAPOLATION DESIGNS

In this section we make no apriort restrictions (beyond assumption A)) on the design
density, design space or extrapolation space. Note that if mg(x) = 2, we have

B = QAgs. The following result is then an immediate consequence of Theorem 2.
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Table 3. Relative efficiencies rel (no contamination)
and re2 (maximal contamination) of £, of Theorem 4,
with optimal weights w, and v = (2, versus the
design &; with all mass on ||x|| = 1 and the

uniform design §,, both with constant weights.

B q rel(§) rel(&,) re2(&) re2(&,)

1.5 1= 517 1.15 o 1.27
2*  .609 1.07 oS 1.16

3 671 1.04 oo 1.10

5 1F 495 1.40 ) 1.57
2t 567 1.11 oo 1.24

3t .649 1.07 00 1.14

*Case 0; tCase 1.
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Theorem 5 The density ko(x) of the optimal extrapolation design measure €,, and
optimal weights wo(x), which minimize sup; , IMSPE(f,g,w,§) subject to

sup/IPB(f,w,§) =0, are given by

o {2T(x)A5'ATAG 2(x)}?/3
boX) = T () A5 ArAS 20} 7odx (18)

and wo(x) = Q/ko(x). Minmaz IMSPE is

3/2
sup IMSPE(f, g,wo, &) = n% {r%,s +vQ? [ / {zT(x)AglATAg‘dx)}2f3dx] } :
f.g s

attained at go(x) = wo(x) /2.

Example 1. Consider the multiple linear regression model, design space and
extrapolation space of Sections 3 and 4. The optimal unbiased extrapolation design
density is

B+ 1 2/3
ko(x) o< {1 + (g + 2)W_1—”x”2} -

See Table 4 for relative efficiencies, with v = Q and rr s = 1. These efficiencies are
at most only marginally lower than those of (§,,w.) of Section 4.

Example 2. In this example there is insufficient structure to allow for a tractable
treatment via P1) or P2), but (18) is easily evaluated. The regression response is as
in Example 1, but the design space is the g-dimensional cube § = [—1,1]? and the
extrapolation region is the possibly asymmetric perimeter T' = [—0,, 3,]7\S, where

81,082 > 1. One of 34, 8, may be unity, for one-sided extrapolation. We find that

. 2 ! ) 2/3
ko(x) 1+3 :l:,-) +9< ———) x||? - = s
o(%) {( my He =g ) Il = 75
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Table 4. Relative efficiencies rel (no contamination)
and re2 (maximal contamination) of §; of Example 1,
with optimal weights wg and v = 2, versus the
design &; with all mass on [|x|| = 1 and the

uniform design &,, both with constant weights.

B q rel(§) rel(§y) re2() re2(&;)

1.5 1 014 1.14 o0 1.27
2 .607 1.07 0o 1.16

3 671 1.04 oo 1.10

5 1 441 1.22 00 1.54
2 962 1.10 oc 1.23

3 .640 1.06 oo 1.13
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where p) = (8; — B1) /2, 2 = (B2 + 8,)° /12 and py = (8, + B,) /2. For symmetric
extrapolation 3, = 8, and p; = 0.
For the dose response problem discussed in Section 1, if a linear approximation to

E(Y|z) is taken then the design density is

Q2
Q

l+a 2
ko((:l:— D) )(l—a))’ alz<l1; py ==, p2 =15

1 : a
If instead a polynomial approximation is thought more appropriate then the design
density is obtainable by applying a similar linear transformation to z in Example 3
below. In either case, a suitable implementation would consist of taking an appro-
priate number of replicates at each of a number of quantiles of £;(-). The number of
replicates vs. the number of quantiles would likely be determined by the requirements
of the particular problem under investigation.

Example 3. Polynomial regression. Take z”(z) = (1,z,...,z7"!), corre-
sponding to polynomial regression of degree p — 1, on S = [—1, 1]. To evaluate (18) it
is convenient to first express z(z) in terms of the Legendre polynomials. Denote by
P,.(z) the m'* degree Legendre polynomial, normalized by f_ll P2(z)dz = (m+ .5)"L.
For instance Py(z) = 1, Pi(z) =z, P(z) = (322 - 1)/2, P(z) = (523 — 3z)/2. We
then find that

2’(z)A5'ArAS'2(z) = ) @i Piz)Pi(a),

0<ig<p-1

where a;; = (i + .5)(j + .5) [ Pi(z)Pj(z)dz.
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Figure 4: Optimal unbiased extrapolation design densities in biased quadratic and
cubic polynomial models: (a) quadratic model, symmetric extrapolation region; (b)
quadratic model, one-sided extrapolation region; (c) cubic model, symmetric extrap-
olation region; (d) cubic model, one-sided extrapolation region. Each plot uses two

values of 3: B = 1.5 (solid line), 8 = 5 (dotted line).
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Denote the density (18) by k,_;(z; 3). When T is symmetric, i.e. T = [—3, 5]\ S,
we find
ka(z; 3) o {5838+ 1)(3z% — 1)? — B(B + 1)(5z* — 2222 + 5) + 4(1 — 222 + 5z)}?/3,
ks(z: B) = {1758°(8 + 1)z*(3 — 52%)% — 58%(8 + 1)(595z° — 963z* + 369z — 9) +
58(8 + 1)(140z° — 177z* + 902 — 9) + 4(175z° — 165z* + 4522 + 9)}%/3.
When T = [1, J] is one-sided, we find
ko(z: 8) = {58%3z% —1)2+58°3z — 1)(z + 1)(3z2 — 1) — B*(5z* — 30z® — 2227 +
10z + 5) — B(z + 1)(5z° — 1522 — Tz + 5) +
2(10z* + 523 — 42% + z + 2)}?73,
ks(z; 8) o {1758°z2(5z% — 3)% + 1758°z(z + 1)(5z% ~ 2z — 1)(5z% — 3) —
58%(595z° — 5251° — 963z* + 490z + 369z% — 105z — 9) —
583%(z + 1)(5952° — 385z* — 578z% + 25822 + 111z — 9) +
58°(140z°® — 2102° — 177z* + 32023 + 90z% — 102z — 9) +
568(x + 1)(140z° — 35z — 14223 + 4822 + 42z — 9) +

700z° + 525z° — 660z* — 470z + 180z + 165z + 36}%/3.

For both symmetric and one-sided extrapolation regions,

{Pg—l(z)}z/s
[P (=)} dz 49

kp—l(z; OO) =
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Table 5. Relative efficiencies rel (no contamination) and
re2 (maximal contamination) of £, of Example 3, with optimal weights wyq,

versus the uniform design €, and the p-point design &3, both unweighted.

T=[-8,81\5 T=(1,5]

8 p—1 rel(§p) rel(§3) re2(§;) re2(&s) rel(§z) rel(§3) re2(§p) re2(&s)
15 1 .14 514 127 00 1.35 380 142 0o

2 123 387 178 oo 151 329 227 oo

3 1.32 389 217 0o 1.53 340  2.89 00
5 1 1.25 441 154 0o 1.30 424 161 oS

2 129 455 176 0o 1.32 452 1.83 oo

3 129 471 186 0o 1.32 469 193 S
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Remarks:

1.

o

The limit in (19) is approached quite rapidly and we find that for moderately
large (3 the symmetric and one-sided design densities are, for practical purposes,
identical. In contrast (see Figure 4), for small 8 and one-sided extrapolation
the optimal designs place appreciably more mass on that side of S closer to the
extrapolation region.

For large p one can combine (19) with the asymptotic expansion

1 4 Usp-1)(z)

7Vv1 — z2 T

where Uzp—1)(z) = sin((2p — 1) arccos =)/ sin(arccos z) is Chebyshev’s polyno-

(p— 1)Py_y(z) = +0(p~'?), (20)

mial of the second kind. The right-hand side of (20) is a density whose first

term is the limiting density of the D-optimal design, as p — oc.

The modes of k,_;(z; 00) are at +1 and at the critical points of P,—;(z). Recall
that these are precisely the support points of the classical D-optimal design,
which minimizes estimation variance alone. Thus k,_;(z;oc) may be viewed
as a smoothed version of the D-optimal design. Efficiencies relative to the
continuous uniform design £, and Hoel and Levine’s (1964) extrapolation design
&5, with v = Q and r7 g = 1, are given in Table 5. Note however that both
&5 and the D-optimal design have only as many design points as parameters, so

that there is no opportunity to assess the fit of the model.
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Table 6. Comparative values of
ns? max;,IMSPE for the

designs of Section 6.

v P11 P2 P3 U HL

0.25 28 23 23 28 o
0.5 46 36 36 46 oo
1 77 6.2 62 81 o
10 97.1 484 331 725 oo

100 543 482 522 716 oo

6 COMPARISONS

We have carried out a simulation study for a regression model as at (1) - (3) with z(z)
= (1,z)T (-1 < z < 1), normally distributed errors with ¢®> = 1, and sample size
n =20. Wetook rrs =1and T = [— 3, 5]\S with 8 = 1.5. Designs solving problems
P1), P2) and P3) were constructed and compared with the continuous uniform design
(“U”) and the two-point design ( “HL") of Hoel and Levine (1964). Table 6 gives some
values of ng? max,IMSPE. In preparing this table it was assumed that P2 and P3
would be used with the correspondingly robust weights. Note that by this measure of
maximum loss, the unbiased design P3 performs as well as P2, for moderate values

of v.
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To compare the relative performances against particular types of departures, we
then chose a quadratic response: f(z) « P(x) with the normalization [ f*(z)dr =
1/5, and the variance function g(z) « (1 + z2)® (a = 0,2), with the normalization
Js9*(z)dz = Q7'. Designs P! and P2 employed v = Q = 0.5. Note that then
Js f3(z)dz = 2n%; this choice was made to further test the robustness of PI and P2.
For the continuous designs the design points were placed at the quantiles £~!((i —
1)/(n — 1)) (¢ = 1,...,n) of the design measures. When using WLS, the weights used
for P1 were generated from Theorem 4 in the same way as those for P2. The uniform
design weights were generated from Theorem 5 in the same way as those for P3.

For HL, with 10 points at each of +1, weighting has no effect. The other design

points and weights were as follows:

Pl: +.095 +£.265 +£.398 +.506 *.600 £.684 ==.764 +£.842 +.920 =£1.00
weights: 2.49 1.71 1.24 976 811 .698 612 %2 A87 438
P2: 133 <&+ +.484 +£.591 +£.680 +.757 £.825 +.886 £.942 +1.00
weights: 2.62 1.58 1.15 929 .792 697 .628 975 532 493
P3: +.148 +.353 +£.489 +£.595 +£.682 £.759 £.827 +£.889 +.947 £1.00
weights: 2.59 1.57 1.15 934 .800 .705 .636 .583 .539 .504

U: +.053 +£.158 +£.263 +.368 +.474 +£.579 +£.684 £.789 +.895 +1.00

weights: 2.20 1.84 1.43 1.10 .867 .701 .581 491 421 367

Table 7 gives values of n5%IPB, ng%IPV and n52IMSPE for both OLS and WLS
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Table 7. IPB, IPV and IMSPE for the simulations of Section 6;
heteroscedastic errors and contaminated response function.

Values of IPV under homoscedasticity in parentheses.

OLS WLS

Design 17§2 IPB  ng*IPV 7]§2 IMSPE 7)52 IPB 1752 IPV n§2IMSPE

P1 —22 .30 (.23) 1.09 11 27 (:27) 1.38
P2 —33 .28 (.20) 96 —.02  .25(.25) 1.23
P3 —33 .28 (.20) 95 —04  .25(.24) 1.22
U ~.07 .35 (.26) 1.28 29 .30 (.33) 1.59
HL —86  2.52 (1.29) 2.66 —.86  2.52(1.29) 2.66
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fits. All three robust designs performed substantially better than did U or HL; P2
and P3 in particular did well both with and without weights. Note however that
when used without weights this good performance was attained at the cost of a
substantial negative IPB. When used with the optimal weights, P2 and P38 virtually
eliminated this bias. Design P3 enjoys the additional advantage of requiring no
particular assumptions on the design space or fitted response function.

Faced with data reflecting the departures modeled by these simulations, would a
statistician see evidence of the inadequacy of the linear model? To answer this we fit
a quadratic response 6y + 8,z + 82z% and carried out size .05 ¢-tests of Hy : 685 = 0
vs. Hy : 8 # 0. Both OLS and WLS fits were compared. The powers, based on
20, 000 simulations, are presented in Table 8. The same 400,000 simulated normal
errors were used in each of the four design cases. Note that for HL the quadratic
model cannot be fitted and the power is zero.

A message to be gotten from the powers in Table 8 is that the, common and
realistic, response departure used in these simulations is not likely to be detected,
even when its parametric form is specified exactly by the alternative hypothesis.
We view this as a powerful argument in favour of anticipating and addressing such

departures at the design stage.
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Table 8. Power of t-test of quadratic vs.
linear response for homoscedastic (a = 0)

and heteroscedastic (a« = 2) errors.

OLS WLS

Design a=0 a=2 a=0 a=2

P1 0.29 031 0.29 0.33
P2 0.29 0.28 0.32 0.33
P3 0.29 0.27 0.32 0.32

U 031 037 0.20 0.29

7 CONCLUSIONS AND GUIDELINES

We have given methods of designing for regression extrapolation, in the face of model
uncertainties and possible heteroscedasticity, under a number of optimality criteria.
The results tend to be somewhat complex and in some cases require extensive nu-
merical work prior to implementation. They do however admit a number of informal

and heuristic guidelines.

e In general, and as one would expect, the experimenter should place relatively
more design points closer to the boundary between the design space S and the
extrapolation space T, either as the volume of T increases relative to that of S,
or as the emphasis on variance minimization versus bias minimization increases
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(as expressed by increasing values of v).

e Notwithstanding the previous point, relative to designs for variance minimiza-
tion alone the designs of this article are substantially more uniform, with mass
spread throughout S rather than only at extreme points near 7. This allows

both for bias minimization and for the testing of alternative models.

e The unbiased designs of Section 5 are numerically less demanding than those
of the preceding sections, although not completely without computational re-
quirements. In line with (18) the general prescription is for the designer to place
mass at points X proportional to values of ¢(x) := {z7(x)Ag'ArAS z(x)}?/3;
the appropriate regression weights are then inversely proportional to this quan-
tity. This requires a study of ¢(x) for the particular design and extrapolation
spaces under consideration. Some intuition can be gained from the explicit
expressions in Examples 1 and 2; the latter in particular illustrates the manner
in which the relative magnitude of ¢(x) varies as T changes. As in Example 3,
it can be convenient to transform to orthogonal regressors, so that A s becomes

a diagonal matrix.

A relevant problem concerns the manner in which the desired number n of observa-
tions is to be apportioned between design sites and replicates. We have recommended

placing the former at quantiles of the optimal design densities; the determination of
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the number of such quantiles is the subject of further research.

APPENDIX: DERIVATIONS

Proof of Theorem 1: a): First note that we can assume that the inequali-
ties in (2) are in fact equalities. For, if f € F is such that [, f3(x)dx < n% or
J¢ F3(x)dx < n%, then we define a function cf € F as being csf on S and crf on T,
where |cs| > 1, |er| > 1 and the sign of crcs is chosen so that —2bT, B~ 'b.fs =
—2¢resbT B by s > —2bT,B~bs. Then IPB(cf,£) > IPB(f,£). Hence it is suf-
ficient to evaluate the maximum value of IPB(f,£) under the conditions [, z(x) f (x)dx
=0, [5 f3(x)dx =n%, [ f}(x)dx = n%.

Note that
G = /S [{m(x)I — BA3'}z(x)][{m(x)I — BAs'}z(x)[Tdz > 0.  (A.1)

We temporarily assume that G is positive definite. Given any f € F, define

s;zT (x){m(x)I — A5'B}H 'b;s, z € S,
hy(z) =

t;z? (x)B~ by s, zeT,

with s3 = 7%/bI ;H'GH 'bys, t3 = 73 /bTsH 'bss and sy = +,/s%, t; =
i\/g chosen so that b{!,TB‘lbh!,s < 0. Then we claim that i) hy(z) € F and

it) IPB(hg,€) > IPB(f,€). The verification of i) is straightforward. For i) we note
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that bh,,T = thTB'.lbf'S, that bhf'g = SfGH_lbfvs, and that
[ 1G0ns(xydx = sbTHbrs, [ fGOR G0 = t/b] B by, (A2)
S

Evaluating (4) gives IPB(hy, &) = s}bT cHT'\GH ™ 'GH 'by s+2|sf||t;[bI ;H-'GH 'by 5.
By the first equality of (A.2) and the Cauchy-Schwarz inequality, we have s3(bT sH™'by,5)?
< [ FA(x)dx [ h3(x)dx < n%, so that the definition of sy gives 7% >

(bTsH 'bys5)? /b sH"'GH'by 5. Similarly, n% > (b sB~'bs1)?/b;sH 'b;s. Hence

m(bfH'GH'GH 'bs) _ 2nnr(b]H'GH 'bys)
bl H-'GH by s \/(T)}:SH—l GH-'b;s)(bT ;H 'bys)

- (b}:sH_lGH_lbﬁs)Z

IPB(hs,€) =

bl H'GH 'GH 'by s + 2|by sB™'by 7|,

and so IPB(hy,£) > IPB(f.€) if (bT sH b, s)(bT sH-'GH'GH 'b5) >
(b7 sH"'GH™'by,s)?, an inequality whose verification is again straightforward.

We can now restrict to f € F of the same form as hy, i.e.

z7 (x){m(x)I - A5'B}a z € S,
f(x;a,c) =
zT (x)B~lc zeT,

where a and c satisfy n% = [ f3(x;a,c)dx = a"Ga, 7% = [, f3(x;a,c)dx =
cTH-!c. Subject to these conditions we are to maximize IPB(f,£) = aTGH '!Ga —
2cTH !Ga. The maximizing c is ¢ = —n+Ga/||H™/?Ga|| and then IPB(f,£) =
(VaTGH ™ 'Ga +177)% — n%. With ag = a/ng, we are then to maximize alGH™!Gay
subject to alGag = 1. This is a standard eigenvalue problem. If ), is the largest
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solution to |GH™!G — AG| =0, i.e. |G — AH| = 0, then the maximizing a, is a solu-
tion to (GH™!G — A,,G)ap = 0, normalized to satisfy aJ Gay = 1. A final evaluation
of IPB( f,£) now completes the proof of ) when G > 0.

If the design density m(x) is such that G = G(m) > 0 but |G| = 0, we proceed as
follows. Take any density m;(x) for which the corresponding matrix G(m;) > 0. Put
my(x) = (1 — t)m(x) + tm;(x) and define p(t) = |G(m.)|. Then p(t) is a polynomial
in t € [0, 1] with p(0) = 0 and p(1) > 0, so that p(t) is non-constant and non-negative
on [0,1]. Thus p(t) > 0 for all sufficiently small ¢ > 0. Now apply a) of the theorem
to G(m,) and let ¢ — 0, to see that the result holds in the general case.

b): By the Cauchy-Schwarz inequality we have
1/2 1/2
/S w(%) ()l () (x)dx < [ /5 {w(x)lm(x)m(x)}zdx] { /s g’-’(x)dx}

and b) follows. Part c) follows from a) and &). a

Proof of Theorem 2: Part a) is a straightforward variational problem. For b), note

that by Theorem 1la) and (A.1) we have
sup IPB(f, w,£) =0 <> Ap =0 < G = 0 <=(m(x)I - BA5")z(x) = 0 a.e.
!

Thus m(x) is an eigenvalue of BAZ! if z(x) # 0, so that on Sy := {x € S : z(x) # 0},
m(x) can assume at most p distinct values. Decompose Sg as Sy = J;_, S, withs < p
and m(x) = a; on S;. For any S; with positive Lebesgue measure the relationship
(a;I — BAG')z(x) = 0, together with assumption A), forces a;I = BAS!, so that at
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most one set S; can have positive measure. Thus m(x) is almost everywhere constant

on Sy, hence on S itself since, again by A), S\ Sp is of measure zero. O
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Chapter Four

Robust Extrapolation Designs for Approximate Polynomial
Models!

Abstract

In this article we consider the construction of optimal designs for extrapolation in
the polynomial regression setup, allowing for imprecision in the specification of the re-
sponse function. We adopt a minimax approach, which determines an optimal design
to minimize the maximum value of the Integrated Mean Squared Prediction Error
(IMSPE), with the maximum being evaluated over the departures from the model.
It turns out that in straight-line and quadratic regression, the minimax extrapola-
tion designs are the same as the Minimum Integrated Variance (MIV) extrapolation
designs, which assume that the fitted models are correct. But for cubic or higher
degree polynomial regression, numerical comparisons show that the robust extrapo-
lation designs perform better than the MIV extrapolation designs and the uniform

design.

'Revision requested by the Journal of Statistical Planning and Inference.
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1 Introduction

In this article we are concerned with the univariate polynomial regression setup,
with a possible contaminant term included in the model. Specifically, by polynomial

regression, we mean that an experiment is performed whose outcome has the form

p -
Y(z:) =) Bzl +e, i=12,..,n, (1)

=0
where z; € S C R! and {e;}2, are uncorrelated random variables with mean 0 and
variance 0. The coefficients, 8 =(8,, ..., 3,)7, are unknown. If the model (1) exactly
describes the character of the experimental outcome, then the Least Squares (LS)
estimate 3 is unbiased. Hence, for any region T (TNS = ¢), we predict Y(z),z € T,
by Y(z) = XF o szj. The extrapolation design problem, considered in this article,
is to choose the experimental points z; in an optimal way.

As described by Kiefer (1959), an experimental design is a discrete probability
measure £ on S. That is, if n observations {z;}, are to be taken, then £ is the
empirical distribution function of {z,,...,z,}. These z; do not need to be distinct.
Suppose that { puts mass p, on z, where the np, = n, are integersand v = 1, ..., r,
where r represents the number of distinct design points. Then the experimenter takes
n uncorrelated observations, with n, observations at z,,.

Let z(z) = (1, z, ...,z?)T. If the model (1) is correct, then the traditional measures

111



of design optimality are usually based on the information matrix

M= /s 2(z)zT (z)dE.

When constructing the optimal design for extrapolation to one point {¢}, Hoel and
Levine (1964) seek the design which minimizes the variance of the LS estimate of
Y (¢): d(t,€) = 2T (¢)M~'z(t). However, as King and Wong (1998) point out, in some
situations the point or points which are interesting to predict are not known before
the experiment is performed. For this reason, we are concerned with constructing the
optimal design for predicting the response surface over any region T. The I-optimal
(or Q-optimal) design for extrapolation minimizes the integrated prediction variance:
Jr2zT (z)M™1z(z)dz.

But unfortunately, as mentioned by Box and Draper (1959) and followed by Draper
and Herzberg (1973), Huber (1975, 1981), Wiens(1992), Fang and Wiens (1999) and
others, using extrapolation designs becomes too risky in the situations when the
“true” regression response function is only approximated by a polynomial. For such

reasons we shall introduce a bias term in the linear model:
p .
Y(z:) =) Bzl + 2P f(z) +e;, i=1,2,...,7, (2)
=0

where f(z) is an unknown function from some class . A motivation for considering
this model is to use a Taylor expansion as an approximation to the “true” regression
response function. The contamination function can be treated as the remainder of the
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Taylor expansion. One estimates 3 but not f, leading to biased estimation of E[Y ()]
and consequently to biased predictions. This requires that one should consider the
bias term as well as the variance term when constructing the design. Therefore, as an
optimality criterion we take an analogue of the classical notion of I-optimality: the
maximum, over f, of the Integrated Mean Squared Prediction Error (IMSPE) of the

predicted value Y (z), with the integration being over the extrapolation region T,
IMSPE(£,€) = [ EIV(2) - E(Y (2))d,

is to be minimized by an appropriate choice of design.

For estimation, Liu and Wiens (1997) construct the optimal robust designs for the
same model as (2). It turns out that these designs are supported on (p + 1) points.
Pesotchinsky (1982) obtained minimax designs under departures similar to those in
(2), with the fitted response surface being a hyperplane. No work has been done on
optimal robust designs for extrapolation under model (2). In this paper, we attempt
to fill this gap in the literature. We give the robust designs for extrapolation for linear
(p = 1), quadratic (p = 2) and cubic (p = 3) regression. One can similarly obtain

robust extrapolation designs when p > 4 and p is fixed.

2 Preliminaries

For the regression model (2) described in Section 1, we assume the design interval
S = [—1,1] and the extrapolation region T = [—t,t]\S, where ¢t > 1. We shall assume
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that the contamination function f is unknown but satisfies the following conditions:

A1l). The function f(z) is continuous, and |f(z)] < ¢(z) on [—t,¢], where ¢(z) is a

continuous, even function which is positive when z # 0.
A2). The function {(z) := z¢(/T) is a convex function of z € [0, ¢], with {(0) = 0.

Let F be the class of functions f which have the above two properties. The
continuity of f at z = 0 is required in order that the true parameter 3 in (2) be

uniquely defined. In fact, if 3, and 3, satisfy
Biz(z) + zP*! fi(z) = B z(z) + =P fa(x),

then
(8, — By)"z(z)| < 2|zP+ ¢(z). (3)

Let z — 0, we have |3, — 89| < 0, that is, 8,9 = (9. Hence, (3) can be rewritten as

< 2jz[P¢(z).

p B
Y (B = Boj)z’
=1

Let z — 0, we have 3,, = §,,. By repeating the above process, we show that 3, = 3,.
Al) and A2) together imply the following lemma which is useful for the construc-

tion of designs.

Lemma 1 (a). The function [(z) is monotone increasing on [0, t].
(b). The function g,(z) := l(z?) = z°¢(x) is convez for = € [0,t]; go(z) := To(x)
is monotone increasing on [0, t].
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Proof. (a) is obvious. The first part of (b) follows the fact that the composition
of positive, increasing, convex functions is convex. For the second part, let 0 < z; <

z9 < t. The convexity of g,(z) implies that

zig(z1) < T3¢ (z2)
Iy - I '

which implies the monotonicity of g»(z). =
We propose to estimate 3 by Least Squares. Define matrices
—_ T — T — p+1
A= /T 2(z)27(z)dz, Be = /S 2(z)27 (z)dE(z), bye /S 2(z) 2P f(z)dE (z).

To avoid trivialities, assume that B¢ is nonsingular. Then the LS estimator of 3 is
B = B;! [sz(z)y(z)d&(z), with bias vector and covariance matrix,

- o2

EB)-B=B{'b,,, COV[3=—B;"

n
We predict E[Y |z] for z € T by Y (z) = ﬁTz(x) and consider the resulting Integrated
Mean Squared Prediction Error. The IMSPE splits into terms due to Integrated

Prediction Variance (IPV) and Integrated Prediction Bias (IPB):

IMSPE(f,€) = /T E[Y(z) — E(Y|z)]*dz

= IPV () + IPB(f,£),
where

IPV () = LZT(I)COV[ﬁ]z(z)dx = %?tr(BglA)
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IPB(f,) = [ [2"()(EIB] - B) — ="' f(a)"dz

= [E"@Bg'b, — o7 f(a)dz.

Our goal is to find an optimal design £, which minimizes maz;crIMSPE(f,£). In
practice, £ must have jumps consisting of integral multiples of n=! at each design point.
For mathematical convenience, we shall drop this restriction and allow n, = np, be
any positive real number if £(z,) = p,. Therefore we shall adopt the approrimate
design theory. That is, if n, is not an integer, it would be necessary to choose an
integer close to n, for the actual number of observations at z,. See Pukelsheim (1993).

The loss IMSPE(f,£) depends on f only through IPB(f,£). To evaluate the
maximum of IMSPE(f.£) over f € F, define b;(§) = [5z(z)zP(signz)i¢(z)dE and
Ki(§) = [r[z" (z)Bg 'bi(§)—zP*!(signz)'¢(z)|’dz. Then K;(€) =IPB((signz)'¢(z).£),

t1=1,2.

Theorem 2 For any &, we have

K>(§) if $(0) > 0,
maz{ K,(§), K2(€)} if #(0) = 0.

mazrerIPB(f,§) =

Proof. It is obvious that F is a convex set. In light of the fact that the functional
H(f) := zT(x)Bglb“ — Pl f(z) is linear, IPB(f,£) is convex on F. Thus, to
maximize IPB(f,£) we only need to consider the extremal f, which satisfies | fo(z)| =
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o(z). In fact, if there exists z; such that | fo(z,)| < #(z,), then we can construct two
functions fy, f, € F such that fo(z) = 3 fi(z)+3 fa(z). This implies that IPB(fy. &) <
maz{IPB(f1,€),IPB(f2,§)}, so that fy can not be the maximizer.

In order that such an extremal fo(z) be continuous, we must have fo(z) = ¢(z) or
fo(z) = —¢(z) if $(0) > 0, while we could still have fo(z) = (signz)d(z) or fo(z) =
—(signz)o(z) if ¢(0) = 0. The theorem is proved by noting that IPB(—f.£) =
IPB(f,£). =

Before discussing the optimal designs for extrapolation, we introduce the concept
of orthogonal polynomials and one of their properties . This material is from Dette
and Studden (1997). A sequence of polynomials {P;(z)}:>0, where P;(z) is of exact
degree 1, is said to be orthogonal with respect to the measure 1 on the interval [a, b]
if

b
[ P@Pi@)dn@) =0, i#;
The polynomials are called monic orthogonal polynomials with respect to the measure

i if the leading coefficient of P;(z) is 1 (for all 7 > 0).

Lemma 3 The zeros of the orthogonal polynomials { P,(x)}:>q, with respect to a mea-

sure u on the interval [a,b], are real and distinct and are located in the interior of the

interval [a, b].
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The lemma is taken from Lemma 2.1.3 of Dette and Studden (1997) (see also
Theorem 3.3.1 of Szego (1975)). It is essential in the proof of the Theorem 5 in

Section 3.

3 Optimal designs

Since S = [—1,1] and T = [—¢,t]\S are both symmetric, we will limit our considera-
tion to the class of all symmetric designs. An explanation for this is given as follows.

Consider the transformation:
w:z — 7w(z) = -z, zesS.

Define f.(z) = f(w(z)) for all f € F. Then #S = S and f, € F. Motivated by the

discussion in Kiefer (1959), we restrict to the class of invariant designs € such that
IMSPE(f=,€) = IMSPE(f,£), for all f.

This requires that £ be symmetric.

Let =, be the class of all symmetric designs on [—1,1]. For any £ € Z;, we know
that to make 3 estimable £ has to give positive probability to at least (p + 1) points.
The following Theorem 5 shows that we can confine ourselves to the (p + 1)-point
symmetric design when ¢(z) = const. By Z,(p), we mean the class of all symmetric

designs which have only (p + 1) support points.

Lemma 4 Suppose ¢(z) = d > 0. Define ap := Bg'by(€)/d, for any £ € ;.
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(a) If (p+ 1) is even, then (ag)2 = (ap)a = -+ - = (g)p+1 = 0.

(b) If (p+ 1) is odd, then ()1 = (cxg)3 = - - - = (@0)p+1 = 0.

Proof. Define

g(a) = [ (="' - aTz(z))de.

Then g(@) is minimized uniquely by ag. Let P be a (p+ 1) x (p+ 1) diagonal matrix,
with (¢,7)*" element being (—1)*~!. Then z(—z) = Pz(z).
If (p + 1) is even, then g(a) =g(Pa). So the uniqueness of the minimizer implies

that a9 = Pay. Hence, for even index i, we have
(ao)i = (Pa): = —(axo)i,
that is, (a); = 0. (a) is proven. The proof of (b) is similar. ®
Theorem 5 Suppose ¢(z) =d > 0. Then there ezists §; € =;(p) such that

&y = argmingc=, {mazrer IMSPE(f.£)}.

Proof. Consider the class of designs which are the members of =, with fixed even
moments E¢(X%),i =0,1,...,p — 1. It is known that in this class there is a design
belonging to Z,(p) which maximizes the moment E¢(X??) (See the proof of Theorem

2.6 of Liu and Wiens (1997)).
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Since ¢(z) = d > 0, then, by Theorem 2, we have the maximum value as
maz ;s IMSPE(f,€) = /T 27 (z)B; '2(z)dz + d? /T [27 (z)B7 by (€)/d — 2P+ Pdz.

If for any £ € =,, with fixed E¢(X?%),i = 0,1,...,p — 1, maz;erIMSPE(f,£) is a
decreasing function of E¢(X??), then minimizing maz;cxIMSPE(f,£) is equivalent
to maximizing E¢(X?P). From the above paragraph, to prove the theorem, we only
need to prove that mazscrIMSPE(f £) is a decreasing function of E¢(X?) when
Ee(X*),i=0,1,...,p — 1, are fixed. It is sufficient to show that [z (z)B;'z(z)dz
and [r[27 (z)B; 'b2(€)/d — zP*']?dz simultaneously decrease as E¢(X??) increases.

In fact, define e; € RP*!, with 1 as j** element and 0 as other elements, j =
1,2,...p+ 1. Define u = E¢(X?") and functions h;(u) = 27 (z)Bg'z(z), ha(u) =
27 (2)B;'by(£)/d for any z € T. Then

Oh,(u) _
du

—z"(z)B; 'epi1el, B z(z) < 0.
This indicates that h;(u) decreases with u, for any z € T. Hence [z (z)B;'z(z)dz
decreases with E¢(X?P).

Next, we first show that hy(u) is an increasing function. With ¢; = E¢X* and

b2(£)/d = (cp41s ---s c?p702p+1)T, we have

ahgiu) = —zT(:L')Bg'lep+1eg‘+1Bg—lbz(g)/d + zT(:z:)BE'Ie,,/d.

The first term vanishes because eI, B;'b,(£)/d is just (ag)p+1 in Lemma 4 and
is zero. Now, we want to show z7(z)B;'e, > 0. Define polynomials Q,,(z) =
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zT (z)B;'e,, then

Qp-1(z) = e[B{'e,+ze]B;'e, +---+zF 'elBle, + z”el, B le,
g 0 ¢ - a2 1 o
1 |0 c 0 -+ ¢a T cpn
| Be|
Cp Cp+i Cpi2 “°° Cp2 TP cCp

has degree (p — 1) because eI, B;'e, = 0, where the second equality comes from
the relation between B;' and the adjoint matrix of B¢ and from the expression of a

determinant in terms of cofactors. Now,

co 0 ¢ - g2 a o
Lo 1 |0 e 0 - 1 C4i Cper
[ eQi(@)ds(a) = B
Cp Cpt1 Cpy2 - - C2p—2 Cpyi C2p
= 0,
where 7 = 0,1,- - -,p — 2, since two columns in the determinant are equal. So

{Qp_l(:c)}pZI, with Qo(z) = 1, are orthogonal polynomials with respect to £ on
[—1,1]. By Lemma 3, we conclude that Q,—,(z) has (p — 1) real zeros belonging to
(=1,1). Hence Qp_i(z) > 0, i.e. z7(z)B;'e, > 0, for z > 1, since e7B;'e, > 0.
This implies that h(u) = 27 (z)Bg'by(€)/d is an increasing function of u.

We note that as a polynomial of z, 27 (z)B; 'b2(£)/d only has odd-power terms
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when p is even, and even-power terms and constant term when p is odd. Hence,
Jr2T(z)B; 'bo(€)/d — 2P+ |2dz = 2 [{[27 (z)B; 'by(€) /d — zP+!]dz. So to prove that
Jr2T (z)Bg 'by(€)/d — zP+|2dx decreases as E¢ X" increases, it is sufficient to show
that z7(z)B; 'by(€)/d < zP*!, for £ > 1. Define Wy, (z) = zP+! — 27 (z)B; 'by(£)/d,

p > 1, then W, ,(z) is monic polynomial and

1 a --- o c 1 - ¢
1 T C - Cpyl cKL T --r Cptl
Woini(z) = x”“—m Cp+1 T Cps2 t+

TP Cpt1 tcr Cyp cp TP - Cap
Co 1 Cp cog Ci 1
¢t - T Cpyi €&t € -+ T

" Cop + Cap+1}-

Cp - P C2p Cp Cpy1 - - P

Since [} TW,1(T)dE(T) = Cpriv1 —Cpriv1 = 0, =1,2, ..., D, {W,,.i.l(:l:)}p21 are monic
orthogonal polynomials with respect to £ on [—1,1]. In light of Lemma 3, W, (z) has
(p+ 1) real zeros belonging to (—1,1). So Wy.i(z) > 0, i.e. 2T (z)B'b2(£)/d < zP*!
when = > 1. Hence [r[z7(z)B; 'b2(§)/d— 7' |?dz decreases with E¢ X ?P. This proves
the theorem. ®

In the following subsections, we find that when p = 1,2, the result of the above

theorem still holds for arbitrary ¢ € . When the observations are taken at exactly
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(p + 1) distinct z-values for model (2), the Least Squares estimator of the response
function can be expressed as follows (assume £(z,) =p, = 2 >0, v =0,1,...p):
P
= Z L(Z) G,
v=0
where [, = I'I#,,(—(ftx-ll is the Lagrange interpolation polynomial and 7, is the average

of the observed values taken at z,,. Thus, IMSPE(f,£) can be rewritten

IMSPE(f,€) = / VAR[Y (z)|dz + /T (E(Y(z)) ~ E(Y(z)]*dz
Zfrlz(x)dm

v=0

+ [[BF (@) - E(Y (2)dz,

where the second term does not depend on p, since E(7,) = n,E(Y'z,))/n, =
E(Y (z,)) does not depend on p,. Hence, for any chosen set of design supports, the

following theorem yields the corresponding masses p,’s which minimize IMSPE(f, £).

Theorem 6 For any symmetric design §: £(z,) = p,, with p, € (0,1) and 3F_, p, =

1, the choice
[z 12(z)d=z]'/?

o= ‘_O[IT 12(:1,‘ dz]l/Z’ v = 0, 1, ...p (4)

will minimize IMSPE(f,£).

Proof. For any design £, the minimizers in (4) are obtained by using standard
calculus techniques. (See also Lemma 1 of Hoel and Levine (1964)). Now assume £

has supports {£z;, i = 1,..., 2}, when p odd} or {£z;,0, i = 1,..., &, when p even},
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we claim that p; = p_;, with p_; being the mass on —z;. In fact, when p is odd,

/T 12(z)dz

(z + :l:p;_l)...(x +z))(z — z1)...(x — Zi1) (T — ZTigy) (T — a:g;_x) )
T (@i + Tagt) (@i + 21) (@i — 1) (Fs — T 1) (T — Tir1) (@i — Tagt)
/ (—z+ xp_;i)...(—:z: +z1)(~z — z1)ec(—Z — Ziy )(—T — Ziyy)...(~2 — a:p::_x)
T

(1,',; -+ Ig-;_l)...(xi + .’111)(1‘1' - 171)...(1‘1' —_ 1:,-_1)(:1:,- - l‘,’.{..]_)...(l‘i - .’L‘g;_l)

]zda:

_ / [ (z+ xpz_x)...(x +Zip1 )@ + Zimy) (T + 7)) (T — 31 (T — Tep1)
T

(=2 + zepr)oo(=2i + Zent (= 2i = Zimt) oo (=T + 21) (= Zi — 1) (—Ti — Topa)

= /T 2 (z)dz.

This holds as well when p even. This, together with (3), establishes the claim. =

With these masses, the variance term of IMSPE(f,£) becomes

2 p
IPV(E) = Z[3( | E(@)dz) /2P (5)

v=0

Therefore, when constructing the optimal designs, it is sufficient to consider the
symmetric design £ with masses given by (4) if we confine ourselves to designs & €
=s(p). We will find the robust extrapolation designs for special values of p in the
following subsections. The conclusions obtained in Subsections 3.1 and 3.2 imply
that the optimal robust extrapolation designs (when p = 1,2) are the same as the
designs which only minimize the integrated variance. But they are different when

p=3.
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3.1 Linear regression (p = 1).

From past experience, the experimenter suspects that the response function is only

approximately linear in z. Then, for any £ € =; and ¢ satisfying A1) and A2), we

have
( 1 0 2(t — 1) 0
B, = , A= ,
L0 Ee(X?) 0 22-1)/3
( 0 E 2 -
(X2¢(X))
bi(€) = ba®) = |
\ Ee(X?sign(X)eé(X)) 0
Hence,
_ . TE¢(X sign(X)¢(X))
Ki(©) = [Bsign(z)ole) - =S g e
_ ¢ TE¢(X3sign(X)e(X))
= 2 [le*(z) - Ee(X?) 'da.

Ky(§) = /T [z%¢(z) — Ee(X?¢(X))]*dz =2 /1 [£%6(z) — Be(X?6(X))[2dz.

The following theorem extends the result in Theorem 5 to the situation when ¢ is not

a constant.

Theorem 7 For p =1 and any ¢ satisfying Al) and A2), design &, : {x(£1) = 0.5

is the optimal robust extrapolation design, that is,

§o = argmingez, {maz;cx IMSPE(f,£)}.
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Proof. For any £ € =;, Theorem 2 gives

02
maz e IMSPE(f,€) = =[2(t — 1) + 2(* — 1)/ Ee(X?)] + maz{K1(6), Ka(£)}.

By Lemma 1, we can show that (1) £2¢(z) > E¢(X?%¢(X)) and z2¢(z) > 2EE(X2:$(;;)¢(X))

for all z € [1,¢]; (2) if z, is the largest value of the design points of £ and £*(+z.,) = 3,
then Ee(X?) < 22, = Ee-(X?) and Ee(X26(X)) < 22,6(2m) = Ee- (X?6(X)): (3)

zE- (X3sign Y .
= (XEfE X(z))( J6X) _ 2 (2m) > 52,6(5m) = Ee-(X26(X)), for all z € [1,1].

Therefore, maz{K,(£), K2(§)} = Ka(€) = K(§") =maz{K(£"), K2(£7)} and it fol-
lows that

maz e IMSPE(f,€) > mazser IMSPE(f,€").

So we only need to consider the two-point symmetric design £°. Now, with arbitrary

Zm € (0, 1], we have
0'2 < ¢ 9 9
maz er IMSPE(f,€") = {2(t=1)+2(E~1)/ B (X)]+2 [ [5%6(2) — Be (X?6(X))d.

Similarly, Lemma 1 gives that E¢- (X2%¢(X)) < 124(1) and E¢-(X?) < 1, where equal-
ities hold when £°(£1) = 0.5. Hence, &, : {§;(£1) = 0.5 is the optimal robust extrap-
olation design. ®

A by-product of the above proof is that &, is the minimum integrated variance
(IPV (£&)) design, too.

Kiefer and Wolfowitz (1964) constructed the optimal designs for extrapolation by
minimizing D(£) =mazzesur{z? (z)M~'z(z)} when the model (1) is true, where M is
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the information matrix. They found that £, was the optimal design for extrapolation

in straightline regression.

3.2 Quadratic regression (p = 2).

As in the straightline regression case, the following Theorem 8 indicates that the
conclusion of Theorem 4 holds without the restriction of ¢(z) =const. With z(z) =

(1,z,z%)7 and a symmetric £, we have

([ Ee(X?sign(X)6(X)) 0
bile) = 0  ba() = | B(x0(X)) |+
| Be(X3sign(X)6(X)) 0
([ 0 E(X?)
B = 0 Ee(X3) 0
| Be(X?) 0 B(x¥)

Theorem 8 For p = 2 and any ¢ satisfying A1) and A2), there exist a three-point

design g € Z,(2), such that

o = argminges, {mazse s IMSPE(f,€)}-
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Proof. Assume design € : {(*z;) = p;/2 and £(0) = pg, ¢ = 1,...,m, where pg
might be equal to zero but p; > 0 forz > 0 and >, p; = 1, then

Es(X“fﬂ(X))Jc < Ee(X?)xh.6(zm)
E¢(X?) - E¢(X?)

2" (z)Bg'by(€) = T = z22,¢(Tm)-

Now for design &* : £*(+zn,) = p and £°(0) = 1 — 2p, p > 0, such that E(X3?) =
E¢(X?), we obtain

e —E(XY)E(X3sign(X)$(X)) + Ee(X?) Ee(X5sign(X)6(X))
<" (@)Be'bi(€]) = — B = B(X%) *
Ee(X?) Ee(X*sign(X)9(X)) = Ee(X*sign(X)$(X) ,

[Ee(X?)]? — Ee(X*)

= $2$m¢(zm)7
E(X*o(X 2pxi 4 >
ZT(I)Bé—'Ib2(§‘) = E(EE(;(z) ))1:: pafrzr;igm)x:zx;nqb(xm)'
Hence,

K\(&) = /T [22Zmd(zm) — 23sign(z)é(z))’dz = 2 /1 [£22md(zm) — £(2)]2dz,
Ky(€) = /T[m?nqs(zm) — 2%¢(z))*dz = 2 /f{m?ncb(xm) — 2%¢(z))%dz.
The monotonicity of the function z¢(z) implies that £3¢(z) > 2z @(Tm) > 22,0(Tm)
for all z € [1,t]. This yields
maz{K:1(£), K2(§)} = K2(€§) = K2(€7) = maz{K1(£"), K2(£")}

which implies that £* has smaller bias term than &.
We claim that tr(BglA) > tr(BE‘.IA). In fact, for fixed E¢(X?), tr(BglA) =
Jr2zT(z)B¢'z(z)dz is a decreasing function of E¢(X*). Now by E¢(X2) = Ee-(X?),
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2px?n = Z Ping’

=1

we have

Ee-(X?) = 2pz}, szz > Y pxi = Eeg(XY),
i=1 i=1
which implies that tr(B;'A) > tr(Bz'A). The claim is proven.
From the above arguments, to find £ in order to minimize maz;crIMSPE(f.£),

it is sufficient to confine ourselves to three-point design £ € Z,(3) : £(£z,,) = p and

£(0) =1 — 2p, with any z,, € (0, 1] and p > 0. Under this circumstance,
¢ 2 3 2
mazcrIPB(£,6) = 2 [ [t*Emb(zn) - 2°¢(c)ds
t
> 2 [[2°16(1) - s¢(a)dz,
1

where the equality holds when z,, = 1. In light of Theorem 6 and (5), we have

2
(2[/((:L'+1:m)1:)2d ]1/‘) /(($+$m)( — m))zdxll/z)
($+Im)-'5 2 (T—Zm)T 9, 11/2 z2, 1/2 2
2 [y + (o gy e
(o = e e ; o)

(ot [ B2 oy ([ (E )

where the equality holds when z,, = 1. This shows that the three-point design

l

IPV(£)

v
% 3% :I% 3%

&o : o(£1) = p and £,(0) = 1 — 2p simultaneously minimizes maz;xIPB(f,£) and
IPV (&), where p is determined by Theorem 6. The proof is completed. m
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The value of p varies with ¢t. To determine p, a simple calculation yields

t (222 + 2)z? 1 1 4
______.d P _ts —t3 -
/1 1 o 0 T8 T
2. 4 16
2 2 5 3
1Dz = S5 -Zpypor- 2
/T("" )z 5 T3t t2 35

Then,
1 45 143 4 2
b ] (35t° + gt ~ )Y .
AHE +if — )P+ (G- F + 2 - D)

We exhibit some typical ¢ values and the corresponding values of p:

t: 1.5 ) 10 100

p: 037 0.26 0.25 0.25

As the proof of Theorem 8 points out, this design £, minimizes IPV (£) as well, that
is, the minimum integrated variance design is model robust for quadratic regression.
Kiefer and Wolfowitz (1964) gave the optimal design for extrapolation in quadratic
regression as: £, _yw(0) = 1/2 — 3/8t% and &x_y (£1) = 1/4 + 3/16t%. Numerically,
E_w(xl) < &(£1), but the difference is very small when ¢ becomes large. Note
that the two designs come from two different criteria.

We find that p — 0.25 as ¢ — oo. This means that we take the same number of
observations at the origin as the end points of design interval when the extrapolation
region becomes very large. This design was employed for a most powerful test for
distinguishing quadratic regression from straightline linear regression (Huber, 1981,

page 249). It is also the so-called D;-design which minimizes the variance of the
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Least Squares estimate of the highest coefficient in the quadratic regression (Dette

and Studden, 1997, page 141).

3.3 Cubic regression (p = 3).

Theorem 5 implies that the robust extrapolation design only has four support points
when p = 3 and ¢(z) = const. Although we do not know whether the conclusion of
this theorem is true when ¢(z) # const, we still like to confine ourselves to four-point
designs because in some situations, people might be interested in the design with as

few observations as possible.
Theorem 9 When p = 3 and § € =,(3), we have, for any ¢ satisfying A1) and A2),
mazser IPB(f,§) = K»(§)

Proof. Assume the four-point symmetric design £ : &£(%+z;) = 0.5 — p, and
&(+z2) = p, with p > 0, then by the definition of the moment of a discrete ran-
dom variable, we have,

ZT(x)Be—lbl(g) — ng¢(x2)(zz — ‘TE% : §§?¢(Il)(z2 — x%) > 0’
1

and

z3¢(x2)(2? — 2}) — 21¢(21)(2? — 23)

z3 — 1

27 (z)Bg 'by(€) = > 0.
Now, we claim that zT(:z:)Bglbg(f) < zT(:r)Bglbl(f) < zi¢(z) for all z € [1,¢]. If
these inequalities hold, then, by the definitions of K;(£) and K>(£), we have K;(£) <

131



K5(&), i.e. mazserIPB(f,€) = K,(€) in this case. In fact,
(xo - -731)[ T(x)Be lbl(f) - ZT(-'L') _1b2(§)]

= {zz3d(z2)(z® — z}) — zzid(21)(2® — 23)} — {z36(2)(¢® — 23) — zid(z1)(z* — 22)}

= (z - z2)(z — 21){2(z38(z2) — 236(21)) + T1z2(3(z2) — 236(22))}

> 0,
where the inequality is because of the monotonicity of function z¢(z). Hence,
27 (z)B;'by(£) < 27(z)B;'b;(£). Similarly, we have

(23 — 22)27 (2)B7 'y (€) < {22236()(2? — 22) — 2%226(z1) (22 — 22)}.

But, by the convexity of g,(z) = zé(y/z), we obtain

$3¢($2) —zid(z1) _ z°¢(z) — zié(z1)

z3 — 1?2 - z2 — z2 '
that is
z36(z2) (2% — 23) < $2¢(-’5)($2 — z3) + zi¢(z1)(z? — -”52)
Hence,

z?z3¢(z2)(2* — 2}) ~ 2%2i9(21) (2 — 23)

< $2[$2¢(-’L‘)($§ —z3) + zio(x)(2* — 73) — z36(z1)(z* — -”33)]
= z'¢(z)(2} — }).
Therefore, zT(z)B;'b1(£) < z*¢(x). Thus the claim is true and the proof is com-

pleted. =
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Next, we want to locate the design points, that is, to find z;, zs (where z; < z,) in
order to minimize G(z1, T2) =maz;cxr IMSPE(f, &), while the corresponding variance
term is IPV (z,z,) (given by (5), since the design only has four support points and
Theorem 6 applies) and the bias term IPB(z;,z;) = K7(§).

For any fixed z; € (0,1), we have

rizd(zdd(zs) — zis(z1)) |, 234(x2) — zio(21) 22

2" (z)Bg'ba(§) = — " t e
2 ) —
= (2% - z})zig(z2) + zio(21) + (27 zf)%‘p(zﬁ ﬁqﬁ(xl)
27+
< (@ -6 + sloe) + Fi(a? — ) LL @),
1

then

IPB(z1,72) = [ [27(@)B{'ba(6) — 2*6(a) *de

> IPB(z,1),

where the equality holds when z, = 1.

For the variance part,

7 — J_ (z+z1)(z — z1)(x — o) 1/2
IPV(zy,22) = —{2([] o2 o S e ey 4 +

(z+z:) (T —z2) (T —Z1) 12, (17292
A / ot o) (2, — 2 y =)
2{/ (z% — 2 (23: +2x2)d$]1/2+

n (1'2
/ (23"—.'132)2(;1' +2zl)d$]1/2}2
Iy
> IPV(xla 1)~
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where the equality holds when z; = 1. So in order that £ be the optimal robust
design for extrapolation, it must have +1 as its support points. It remains to choose
z, to minimize G(z,,1) =IPB(zx;,1)+IPV(z,1). Obviously, the choice will depend
on the values of %, t and on ¢. With several typical ¢'s, we give out the values of ;
and the corresponding masses in the following examples by the help of computer.
Example 1. When ¢(z) = 0, the cubic model is correct and the bias term in
the loss function disappears. In this case, only the variance is considered to find the
optimal extrapolation design. Then the choice of z; only depends on ¢, not on %
Table 1 gives the positive design points and the corresponding masses on these points.
We find that the design points are quite close to the Chebychev points {+0.5, +1},

which is the optimal design for extrapolation to one point when the cubic model is

exactly correct (Hoel and Levine (1964)).

Table 1. The positive design points and masses when ¢(z) = 0.

t 1.5 5 10 100
(z1,22) | (0.475,1) (0.497,1) (0.499,1) (0.5,1)
(p1,p2) | (0.238,0.262) | (0.327,0.173) | (0.332,0.168) | (0.333,0.167)

As in straightline and quadratic regression, when extrapolating to a symmetric
region, Kiefer and Wolfowitz (1964) constructed the optimal design for extrapolation
in cubic regreSSion: fK_W(:tl/2¥1/16t2) = 1/3— 1/9t2 and gK__“/(:tl) = 1/6+ l/gtz.

These values are very close to those in Table 1.

134



Example 2. When ¢(z) # 0, the cubic regression model is only an approximation
of the model response. In this case, the values of z; depend on 22 as well as ¢. Table 2

n

and Table 3 give the positive design points and masses when ¢(z) = 1 and ¢(z) = |z|.

Table 2. The positive design points and masses when ¢(z) = 1.

< t 1.5 5 10 100
100 | (z1,72) | (0.475,1) (0.497,1) (0.499,1) (0.5.1)
(p1.p2) | (0.238,0.262) | (0.327,0.173) | (0.332,0.168) | (0.333,0.167)
10 | (z1,z2) | (0.476,1) (0.497,1) (0.5,1) (0.5,1)
(p1,p2) | (0.237,0.263) | (0.327,0.173) | (0.333,0.167) | (0.333,0.167)
1 | (z1,z2) | (0.479,1) (0.504, 1) (0.507,1) (0.508,1)
(p1.p2) | (0.237,0.263) | (0.325,0.175) | (0.33,0.17) | (0.332,0.168)
0.1 | (z1,22) | (0.516,1) (0.575.1) (0.582,1) (0.584,1)
(p1.p2) | (0.232,0.268) | (0.311,0.189) | (0.314,0.186) | (0.316,0.184)
0.01 | (z1,z2) | (0.724,1) (0.799, 1) (0.805, 1) (0.806, 1)
(p1.p2) | (0.221,0.279) | (0.274,0.226) | (0.276,0.224) | (0.277,0.223)
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Table 3. The positive design points and masses when ¢(z) = |z].

< t 1.5 5 10 100
100 | (z1,z2) | (0.475,1) (0.497, 1) (0.5,1) (0.5,1)
(p1,p2) | (0.238,0.262) | (0.327,0.173) | (0.333,0.167) | (0.333,0.167)
10 | (z1.22) | (0.476,1) (0.501, 1) (0.508, 1) (0.602. 1)
(p1.p2) | (0.237,0.263) | (0.326,0174) | (0.33,0.17) | (0.312,0.188)
1 | (z1,22) | (0.485,1) (0.546.1) (0.601,1) (0.832,1)
(p1.p2) | (0.236,0.264) | (0.317,0.183) | (0.311,0.189) | (0.273,0.227)
0.1 | (z1,22) | (0.585.1) (0.777,1) (0.832,1) (0.928,1)
(p1.p2) | (0.225,0.275) | (0.277.0.223) | (0.272,0.228) | (0.259,0.241)
0.01 | (z1,22) | (0.822,1) (0.907,1) (0.928,1) (0.968, 1)
(p1.p2) | (0.225,0.275) | (0.26,0.24) | (0.259,0.241) | (0.254,0.246)
Remarks:

1. These tables show that when o2/n becomes large (variance dominant case), the
designs tend to the design obtained by assuming ¢(z) = 0. That is, we can
construct the design by minimizing the integrated variance only if we know in
advance that the sampling variation is very large. When o2/n becomes small,
the model bias does have an affect on the choice of the design. And when the

degree of ¢(z) becomes higher, i.e. the bias of the model becomes more “serious”
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(in the extrapolation region), the design points move closer to the end-points of

the design interval for every fixed ¢ value.

2. For a fixed value of 6%/n, the value of r; increases as t increases. This makes
sense, as Lawless (1984, page 7) points out, because fitting a cubic model based
on observations at o = +1 and z; closer to the end-point of the design interval
will reduce the prediction bias. On the other hand, the closer z; is to the end-
point, the smaller the prediction variance is, so that the optimal extrapolation

design is a compromise between having small variance and small bias.

3. Let &, be the optimal robust design, let &;; be the four-point uniform design on
[—1,1] with &,(%1) = &,(£1/3) = 1/4 and let &, be the minimum integrated
variance design given by Example 1. In Table 4, we give the efficiencies of &,
relative to &, and §,,. When the cubic model is correct , the LS estimate is

unbiased. The efficiency of £, relative to & is defined by

IPV(£)
rel(§) = TPV

with IPV (&) = & $3_o(4 fi L2(z)dz), while IPV(&,) and IPV(€,,) are given

by (5). When the true response is only approximated by the cubic polynomial,

the LS estimate becomes biased and the relative efficiency should be defined by

_ maz;crIMSPE(f,£)
re2(8) = s, IMSPE(f.£))
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From Table 4, one has the impression that whether there exists a contaminant
term in the regression or not, £, is approximately as efficient as £,, when o2/n
becomes large. Both of them are more efficient than the uniform design. But
when o%/n is small and there is a contaminant term in the regression, &, is

preferable.

Table 4. Relative efficiencies of minimax design
& (when ¢(z) = 1) versus the uniform design

and minimum variance design, with t = 1.5

o?/n | rel(§y) | rel(§y) | re2(&y) | re2(€y)
100 | 1.39 1 1.14 1
10 | 1.39 1 1.14 1
1 1.39 1 1.14 1
01 | 141 0.99 1.19 1.05
0.01 | 0.99 0.66 1.66 1.46

4. To compare the relative performances against uncertainty of the degree of the
underlying polynomial, we consider the situation in this subsection when the
contaminant term is zf(z) = dz*, with different values of d. In other words,
we fit a cubic model, aiming to safeguard against a possible quartic model. In
order to illustrate the effect of using a polynomial to approximate the true,
possibly non-linear, model, we add two cases in Table 5: f(z) =exp(—~|z|/5)
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and f(z) =ezp(|z|/5). Table 5 gives the IMSPE values corresponding to the

different designs we consider. Here, we assume 0?/n = 0.01, ¢t = 1.5 and & is

the minimax design given by Table 2.

Table 5. The values of IPV, IPB, IMSPE and f(x)

37 v €o

f(x) |IPV IPB IMSPE |IPV IPB |[IMSPE |IPV IPB IMSPE
01 | 038 0.2 0.40 033 001 0.34 050 0.01 0.51
05 | 038 0.39 0.77 0.33 035 0.68 0.50 0.24 0.74
1 0.38  1.57 1.95 033 1.38 1.71 0.50 095 1.45
5 0.38 39.28 39.66 | 0.33 34.55 34.88 0.50 2369 2419
10 038 157.11 15749 | 0.33 13822 13855 | 0.50 94.76  95.26
e I7/5 1 038 0.73 1.11 0.33 0.63 0.96 050 0.41 0.91
el#t/5 1 038  3.27 3.65 0.33 292 3.25 0.50 2.08 2.58

The results in Table 5 are to be expected, with £, performing well when d is

large, and less well as d becomes small. In all cases, £, substantially reduces

the bias. This indicates that when the departure reaches a certain magnitude,

the model bias affect the choice of the designs for extrapolation and the robust

extrapolation design &, is preferable.
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Chapter Five
Applications

In the field of health risk assessment, more and more statisticians reveal their
interests in the estimation of toxic effects of environmental chemicals at low exposure
levels. See Krewski and Brown (1981) for a guide to the literature. It is pointed out
by Crump (1979) that since direct estimates of effects associated with very low levels
of exposure often require very large numbers of experimental subjects, such estimates
are of necessity based on the downward extrapolation of results obtained at relatively
high dose levels using a moderate number of subjects. Usually, people use a set of
pre-selected dose levels and run experiments with equal numbers of subjects being
tested at those levels. The numbers of subjects showing the response are recorded.
Statisticians apply these data to fit the dose-response curve P(z), where P(z) repre-
sents the probability of subjects responding at dose z. Then we can apply this curve
to estimate the life risk of a subject exposed to a very low dose level or inversely, to
estimate a dose level zg such that P(zy) does not exceed a specific low value. The
value of zg is called the virtually safe dose (VSD) (Cornfield (1977)).

Suppose that n, subjects are allocated to the dose x and define n := 3~ , \.cq Pz
the total number of subjects used in the experiment. Let R, be the number of subjects

showing the response at dose z, then R. is binomially distributed with the number
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of trials n, and the probability of success P(z). At dose z, the ratio p, = R./n. is

obtained and transformed to the p.-quantile
Y=F _l(pz)

for some cumulative distribution function F', in order to build the statistical model.
Different choices of F(z) give different models. The typical ones in the literature are
the probit model (Finney, 1971) with F'(z) the standard normal distribution function,

the logistic model (Ashton, 1972), with

1

) = ey

and the extreme value model (Gumbel, 1958), with
F(z) =1 — exp{—ezp(z)}.

Since

E@.) = P(z), Var(p,) = LB ZP@)

Nz
then the regression model can be defined as
ElY|z] = F~'(P(z)). (1)
and
Var[¥|z] ~ ( aazf (:))2 P ("”)(ln: b)) @)
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The function P(z) is unknown, so we have to consider a further approximation of
F-!(P(z)) in order to use the above model. F~!(P(z)) is usually approximated by a

polynomial. Thus, we obtain the model function
EY|z] = 6o + b1z + - - - + 2P, 3)

and the variance as (2). Then, with the (weighted) least squares estimates 8, of 6;.

j=0,1,---.,p, the estimate of P(z) is given by
- p - .
P(z)=F (Z 0]-:1:1) :
=0
1 Approximate Polynomial Models

When F(z) is the logistic distribution function, the logits of the proportions (p;) of

subjects responding at dose z is

Y,:log(lfzp )

To illustrate the fact that a polynomial is only an approximation to the logistic model,

we use the first data set of Table 1 of Janardan (1995). The experiment was run to

test the liver Hepatoma response of mouse to DDt. The dose units are ppm.
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Table 1. Toxic Response Data

Doses | Animals | Animals Expected
tested with toxic | numbers from
response quadratic model
0 111 4 4.8
2 105 4 4.8
10 124 11 7
50 104 13 14.3
250 90 60 59.9

Figure 1 gives the plot of logits versus dose levels. The fit of logits to doses using the

quadratic model gives

E[Y|z] = —3.091831 + 0.02757783z — 0.0000498z2,

with the (residual sum of squares) RSS = 0.3281413. The last column of Table 1
gives the expected numbers of animals responding from the fitted model. These fitted
numbers are not very close to the observed numbers except for the fitted number at
dose = 250. Furthermore, we do not have observations at doses between 50 and 250.
So we can not detect any possible departures from the assumed polynomial model in

the interval (50,250). This requires us to construct the optimal design, with an eye

on the possible violation of the assumed model.
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Figure 1: Plot of logits vs doses: fit the data by quadratic model.
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The above example and the approximate natures in (1), (2) and (3) make it
reasonable to assume that the regression function of logits to doses is an approximate

polynomial only. So (3) can be rewritten as

ElY|z] =60+ 01z + - - - + 0,z + f(z), (4)

with f being unknown and belonging to some class. Thus, the model used in this

dissertation seems quite appropriate for the low-dose extrapolation problems.
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Some authors construct optimal designs for low-dose extrapolation by assuming
that the model (3) is exactly correct, that is, ignoring the approximate nature of
(3). See Little and Jebe (1975), Meeker and Hahn (1977) and Hoel and Jennrich
(1979). Krewski, Bickis, Kovar and Arnold (1986) obtained optimal designs for low-
dose problems with the assumption that E[Y'|z] was exactly linear in In z. However,
these designs will be non-robust if the polynomial is only an approximation of E[Y|z],

because they ignore completely the effects of bias.

2 Optimal design for low-dose extrapolations

Lawless (1984) applied the model (4) to the low-dose problem. He assumed the model
was nearly linear with a slight amount of curvature, constructing the designs which
minimize the mean squared error of )7|1=o, for some specific model contamination
function f(z). In reality, however, we can not know what f(z) exactly is. This
suggests that we use the minimax approach to handle the design problem. In Chapters
2 and 3 of this dissertation, we assumed that f(z) is bounded in £,-norm. We have two
reasons to make this assumption. One is that the £,-class includes the typical model
departures we might encounter in practical situations. The other is that the L£,-class
has good analytical properties which are useful for solving optimization problems.
In order to illustrate the application of the designs we obtained in Chapter 3 to

the low-dose extrapolation problem, we assume an approximately quadratic model
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Figure 2: Optimal design density of DDt data

\
o
N
8 -
o
[Fy)
5_
=]
2>
‘@
S o
° S A
o
72}
=]
8 -
o
o
S
T i I 1 i t
0 50 100 150 200 250

doses

to the DDt data, with design space as interval [1,250] and extrapolation point as

t = 0.5. The solution to P3) gives the design &,, with density
ko(z) = [0.00353899—0.0001129439x+ (1.28 x 107¢)z? — (107%)z% +(9.99 x 107!2)4]?/3,

which is plotted in Figure 2.

To implement this design, one can choose the modes < 1,150.2,250 > of the
density as the sampling sites. But this choice does not allow us to test the model ad-
equacy. We do not recommend it for robustness reasons. Another approach discussed
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in the dissertation fixes the number r of sampling sites and determine these sites by
Kg'(=h), i = 1,2, ..., 7, where Ko(z) is the cumulative distribution function of &,.
Then one makes equal numbers of observations at these sites as experimenters did in
the animal experiments described previously. For the DDt experiment with n = 534
mice, if we test the animal responses at r = 6 dose levels, then these levels given by

our design are

< 1,10.79, 23.59. 43.6, 142.79, 250 >,

which includes one point in the interval (50, 250). We do not have a unique way for
choosing r. Common choices are a factor of n or the value of [\/n]. The problem of

choosing an optimal value of r remains open.

3 Conclusion

The model function we build to fit the experimental data is typically only approx-
imately correct. And the model in the extrapolation region might differ from that
in the design region. When the model is inadequate, the estimation of the regres-
sion response is biased. So the designs obtained by minimizing the variance do not
make sense and it will be dangerous to apply these designs to estimate the response
function.

The final point is that the minimum-variance designs always make observations

at (p + 1) sites only when the assumed model is a p-degree polynomial, and thus
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we can not check the validity of the model. Although the robust designs we give
are continuous, thus complex to implement, the design densities have mass spread
throughout the design interval. This suggests that we make observations on enough
sites so that we can reduce the bias of estimation and test the adequacy of the model

used.
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